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Abstract 
 

Associations of DNA methylation with biomarkers of liver function 
among male veterans living with HIV 

 
By Mitchell Lee 

 

Background: Chronic liver disease is a prominent cause of morbidity and mortality for people 
with HIV. The etiology of liver disease and function in people with HIV, however, is not fully 
understood. This thesis presents epigenome-wide association studies (EWAS) to identify 
associations between DNA methylation and seven biomarkers of liver function—serum levels of 
aspartate transaminase, alanine transaminase, and albumin, and total bilirubin, platelet count, FIB-
4 score, and APRI score—among a cohort of male US veterans with HIV. 
 
Methods: Blood samples and clinical data were obtained for 960 HIV+ male veterans from the 
Veterans Aging Cohort Study (VACS). Blood DNA methylation was assessed using the 
HumanMethylation450 (450K) array or the HumanMethylationEPIC (EPIC) array from Illumina, 
which cover over 450,000 and 870,000 DNA methylation (DNAm) sites, respectively. 
Associations between DNAm age acceleration (AA) and selected liver biomarkers were assessed 
by regressing biomarker values on IEAA, EEAA, PhenoAA, and GrimAA in linear models 
controlling for covariates. Associations between individual DNAm sites and selected liver 
biomarkers were assessed by separate EWAS of the EPIC and 450K sub-cohorts using mixed 
effect models controlling for covariates and batch effects. For DNAm sites measured by both 
platforms, meta-analysis of the separate sub-cohort EWAS results for each liver biomarker was 
performed. 
 
Results: Significant association was observed between PhenoAA and serum albumin (b = -0.007, 
P-value = 8.6x10-4) among all AA measurements and liver biomarkers. Nine DNAm sites 
annotated to the TMEM49, SOCS3, FKBP5, ZEB2, and SAMD14 genes were significantly 
associated with serum albumin in the meta-analysis of the EPIC and 450K EWAS results. Beta 
coefficients from the separate EPIC and 450K EWAS results for those DNAm sites were positively 
correlated, indicating consistency between the EPIC and 450K cohorts. No significant associations 
were detected for the six other biomarkers after meta-analysis. 
 
Conclusion: The EWAS results suggest that the TMEM49, SOCS3, FKBP5, ZEB2, and SAMD14 
genes might be linked to liver function through serum albumin. Since this is the first EWAS of 
liver function among people with HIV, further replication analyses in independent cohorts are 
warranted to confirm the epigenetic mechanisms underlying liver function. 
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INTRODUCTION 

Chronic liver disease (CLD)—defined as long-lasting diminished capacity of the liver to perform 

its many essential metabolic functions (1, 2)—is a prominent cause of morbidity, mortality, and 

healthcare spending for people living with HIV (3-7) (see literature review below for more details). 

Although CLD can often be prevented or intervened through behavioral changes and alleviation 

of treatable underlying causes (8-10), liver transplantation remains the only treatment option for 

patients suffering liver failure as a result of CLD (11-13). As such, and because the number of 

people living with HIV and their life expectancies are projected to increase in coming decades (14-

16), there is an urgent need to further improve and develop methods to prevent, predict, diagnose, 

and treat CLD. Along with more epidemiologic studies to identify modifiable risk factors, further 

expansion of biomedical knowledge of the physiology and etiology of CLD will benefit that effort. 

Progress toward a complete understanding of the biological mechanisms underlying CLD 

is encumbered by the complexity of the liver’s metabolic roles (17-21), which make disentangling 

the underlying mechanisms difficult, and the subtly of the effects that many genes and regulatory 

mechanisms have on controlling its activity (22, 23), which can make detection of those effects 

difficult. As a discipline that applies statistical analysis of large datasets to enable detection of 

subtle associations at the population level between biological phenomena and the human genome 

and its regulation (24-26), epigenetic epidemiology has great potential to help overcome those 

barriers, potentially leading to the generation of new hypotheses that yield actionable insights into 

prevention and treatment of CLD.  

Epigenetic epidemiology can be especially useful in elucidating biological roles and effects 

of DNA methylation, wherein DNA becomes chemically modified with methyl groups that can 

repress gene expression by inhibiting transcription machinery and stimulating repressive 
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condensation of DNA structure (27, 28). Epigenome-wide association studies (EWAS) can 

identify subtle effects of epigenetic regulation in a multifaceted condition like CLD, but require 

large sample sizes and high-throughput computational methods to detect effects from vast arrays 

of methylation events that happen throughout the human genome (29-31). Epigenomic 

epidemiologic studies have, therefore, endeavored to identify DNA methylation events that 

associate with CLD (see literature review below). HIV populations are, however, underrepresented 

in those studies. Moreover, those studies have focused on CLD as an overall clinical diagnosis and 

largely ignored looking for potential associations between DNA methylation and specific 

metabolic functions of the liver as represented by biomarkers that are regulated by those functions. 

Because such biomarkers sometimes directly indicate capacity to perform specific independent 

aspects of liver function, and because their modulation also sometimes constitutes the negative 

downstream consequences of liver disease (32, 33), such gaps in the current body of research might 

impede specific and detailed understanding of the mechanisms underlying CLD and its deleterious 

downstream consequences. 

In recognition of the need to fill the gap, this thesis presents efforts to identify associations 

between DNA methylation and seven markers of liver function—aspartate transaminase, alanine 

transaminase, serum albumin, total bilirubin, platelet count, FIB-4 score, and APRI score—that 

are commonly used in clinical settings to assess specific facets of liver function, as reviewed below 

(34-37). Specifically, this thesis presents results from two primary avenues of investigation: (1) 

linear association studies of whether acceleration of DNA methylation age relative to 

chronological age associates with variation in levels of the selected liver biomarkers; and (2) a 

series of epigenome-wide association studies (EWAS) to identify specific CpG sites across the 

autosomal portion of the human genome where DNA methylation associates with differences in 



 

   
 

3 

levels of the selected liver biomarkers. We anticipate identifying genes involved in the physiology 

of liver function that could be included as candidates in further, more focused studies of the 

genetic, molecular, and cellular bases of liver dysfunction, specifically in the context of people 

living with HIV, who suffer higher burden to CLD.
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LITERATURE REVIEW 

Burden of Chronic Liver Disease Among People with HIV 

Epidemiologic studies have demonstrated for decades that liver disease is a common comorbidity 

of HIV infection that accounts for a substantial proportion of mortality among people living with 

HIV (38). Evidence of this association first emerged as early as 1997, when a study of non-AIDS 

mortality after seroconversion among European drug injectors living with HIV found that 12.3% 

of deaths resulted from liver disease (39). A more recent study of mortality among a large cohort 

of people living with HIV in Europe, Australia, and the US during the early 2000s shows that the 

problem continues to grow, with 14.5% of deaths resulting from liver disease (40). The mortality 

among people living with HIV caused by liver disease is likely even higher today across the globe, 

where HIV and liver disease are both currently estimated to affect tens of millions of people with 

no anticipation for shrinkage of their prevalence (41-46). 

 The physical and psychological suffering that liver disease imposes on people living with 

HIV is compounded by the significant financial costs that caring for CLD incurs for affected 

individuals, healthcare institutions, and insurance companies. A review of the economic burden 

imposed by cirrhosis estimates that more than 7 billion dollars were spent on care for chronic liver 

disease in the US alone in 2014 (47). According to that same review, that overall spending can 

translate to tens of thousands of dollars in cost per year for individuals (47), a burden that can be 

increased by the need for liver transplantation, which can cost hundreds of thousands of additional 

dollars (48). For people living with HIV, who already often struggle to carry the economic burden 

imposed by paying for anti-retroviral therapy and clinical care (49), the added costs imposed by 

CLD can make pursuing treatment unfeasible, impeding progress toward reducing the prevalence 

of CLD and preventing subsequent mortality. 
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Physiology and Etiology of Chronic Liver Disease 

The physiology of CLD has been reviewed extensively (50-52). Rare genetic disorders can lead to 

CLD by disrupting metabolic pathways that perform specific metabolic activities, thereby 

impairing specific functions of an otherwise health liver (53). In Wilson’s disease, for example, 

mutation of the ATP7B gene that encodes a copper transport protein leads to a toxic accumulation 

of copper in the body that damages liver cells (54). The majority of clinically relevant CLD, 

however, results from either progressive scarring due to chronic injury of liver cells or to the 

development of liver cancer (50-52). In early stages, scarring of the liver, known as fibrosis, often 

causes no or minor symptoms and is usually reversible if the cause of the chronic damage is 

removed (55-58). Sustained scarring, however, can progress to a generally irreversible stage 

known as cirrhosis, where scar tissue accumulates and displaces healthy tissue until too few hepatic 

cells remain to sustain liver function (59-61). The most common form of liver cancer is 

hepatocellular carcinoma, which also inhibits liver function by displacing healthy cells (62-64). 

With both cirrhosis and hepatocellular carcinomas, the resulting disruption of liver function can 

intensify to the point of total liver failure, which is followed quickly by death (65, 66) and thus 

accounts for much mortality among people with CLD. 

Many causes for chronic liver damage that instigate progression through hepatic fibrosis 

to cirrhosis have been identified (67). One that has been long-recognized is excessive, long-term 

consumption of alcohol, which harms the liver when the hepatic cells that metabolize ethanol are 

damaged by its dehydrating effects and the toxic byproducts of its metabolism (68-70). Another 

well-established cause is infection with hepatitis viruses, particularly the hepatitis C virus (71-74). 

A final major source that has become increasingly prevalent in recent decades is non-alcoholic 

fatty liver disease (NAFLD), wherein adipose tissue accumulates in and on the liver, leading to 
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replacement of healthy functional liver cells and damaging inflammation of those that remain (75, 

76). Why NAFLD occurs is not clear and continues to attract intense research. 

 People living with HIV face additional drivers of CLD that are specific to their infection 

with HIV (77). Infection with HIV associates with increased risk of viral hepatitis, likely because 

the hepatitis viruses share a common infection route with HIV and cannot be cleared as effectively 

by the weakened immune systems of people living with HIV (78-80). Thus, people living with 

HIV show increased prevalence of CLD attributable to viral hepatitis (81). In fact, a study found 

that 76% of the deaths from liver disease among people living with HIV occurred in individuals 

who were coinfected with HBV and/or HCV, indicating that the hepatitis viruses contribute 

substantially to the burden of liver disease among people living with HIV (40). Indeed, another 

study of mortality among people living with HIV in France in 2000 that found that 97% of those 

who died of liver disease were infected with HBV and/or HCV (82). Moreover, the HIV virus 

itself can directly harm liver cells by infecting certain hepatic mesenchymal cells and by triggering 

harmful inflammatory immune responses within the liver that bring collateral damage (77). 

Finally, many anti-retroviral medications prescribed to treat HIV can have hepato-toxic side effects 

that can contribute to the progression of fibrosis (83, 84). Contextualizing the findings presented 

in this thesis within what is already known epidemiologically and biomedically as described above 

will be critical. 

 

DNA Methylation as a Mechanism of Gene Regulation 

DNA methylation involves the chemical bonding of a methyl group to a nucleotide in a strand of 

DNA (27, 28). In mammals, DNA methylation occurs predominantly at cytosine nucleotides 

followed by guanosine nucleotides, which together form a locus known as a CpG site (27, 28). 
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When CpG sites are located near or within the promoter or coding sequences of a gene, methylation 

at that CpG site can suppress expression of that gene by sterically inhibiting binding of 

transcriptional enzymes to the DNA (85) and by stimulating recruitment of molecular machinery 

that reorganizes DNA into compact chromatin that cannot be accessed by molecular transcription 

machinery (86). As such, DNA methylation can contribute to disease by instigating deleterious 

repression of expression of genes that play vital roles in maintaining healthy biological processes. 

Indeed, repression of gene expression by DNA methylation has been shown to contribute to range 

of disease, especially congenital defects arising during fetal development (87-90). As such, and 

because DNA methylation is estimated to occur at nearly 80% of CpG sites (27, 28), investigating 

how DNA methylation might be involved in liver dysfunction and disease among people living 

with HIV might contribute substantially to understanding the biological mechanisms underlying 

liver disease and dysfunction. 

 

DNA Methylation Age Acceleration in People with HIV 

Several studies have demonstrated that people infected with HIV exhibit accelerated DNA 

methylation characterized by global levels of DNA methylation that are elevated above the average 

level exhibited by non-infected people of equivalent chronological age. Rickabaugh et al. (2015), 

for example, demonstrated that HIV infection associates significantly with increased methylation 

of a select set of CpG sites in blood cells sampled from older and younger men who have sex with 

men, even when controlling for age (91). Horvath et al. (2015) similarly demonstrated that HIV 

infection associates significantly with increased DNA methylation in samples of brain tissue, 

whole blood, and leukocytes taken from several different populations of men and women (92). 

Horvath et al. (2018) also demonstrated that perinatally acquired HIV associates with increased 
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DNA methylation among adolescents from South Africa (93). The repeated observation of this 

association between HIV infection and accelerated DNA methylation has led to the hypothesis that 

accelerated DNA methylation contributes to the etiology by which HIV associates with the 

relatively early onset of many conditions among people living with HIV. 

Relative acceleration of DNA methylation is often measured by four metrics: intrinsic 

epigenetic age acceleration (IEAA), extrinsic epigenetic age acceleration (EEAA), phenotypic age 

acceleration (PhenoAA), and Grim age acceleration (GrimAA). IEAA is calculated as the residual 

of a person’s DNA methylation level in blood cells across a set of CpG sites proposed by Horvath 

(92) after regressing DNA methylation level on chronological age while controlling for 

proportions of different leukocytes within the sample (94). EEAA is calculated similarly, except 

that a different set of CpG sites proposed by Hanum (95) are used while controlling for proportions 

of a different set of cell types (96). PhenoAA, in contrast, is calculated by first estimating 

phenotypic age (in years) with a linear regression model that uses clinical variables as inputs, then 

estimating DNA methylation age (in years) based on methylation levels at a set of CpG sites 

proposed by Levine et al. (2018), and finally calculating the residual that results from regressing 

calculated DNA methylation age on calculated phenotypic age (97). GrimAA is calculated as with 

PhenoAA, except that levels of plasma biomarkers indicative of physiological stress are used to 

estimate phenotypic age and a different set of CpG sites are used to assess DNA methylation age 

(98). Each of these four measures of relative acceleration of DNA methylation age performs better 

than the others for predicting different outcomes. As such, testing all four metrics has become 

standard practice for DNA methylation studies. 
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Associations of DNA Methylation with Liver Function 

Research on the role of DNA methylation in chronic liver disease has focused predominantly on 

NAFLD, as clear etiologies for NAFLD cannot be as easily identified as with CLD resulting from 

alcoholism or viral hepatitis. There is therefore a need to conduct exploratory epidemiological 

studies to identify associations with DNA methylation that might hint at genes involved in 

underlying biological mechanisms for CLD. Zhang et al. (2020) recently conducted an exhaustive 

literature review and summarized results from eleven studies that investigated associations 

between DNA methylation and NAFLD (99). Two of those studies investigated the association 

between NAFLD and global DNA methylation using methylation-specific PCR or bisulphite 

pyrosequencing and samples of liver tissue obtained from South American and European 

participants (100, 101). Highlights from the results include that hypermethylation of the 

mitochondrial NAHD dehydrogenase gene and of the LINE-1 transposable element is associated 

with NAFLD. Four of the studies investigated the association between NAFLD and methylation 

in or near specific candidate genes using bisulphite pyrosequencing or methylation-specific PCR 

and samples of liver tissue or peripheral blood (102-105). Highlights from the studies that used 

peripheral blood samples include the observation that hypomethylation of mitochondrial DNA 

relative to genomic DNA associates with NAFLD, while methylation of GSTT1 and GSTP1 did 

not associate with NAFLD. Highlights from the studies that used samples of liver tissue include 

detection of an association of NAFLD with hypermethylation at the PNPLA3 gene, and with 

hypomethylation at the PARVB, MATIA, CAPS1, and FGFR2 genes. Four of the remaining five 

studies conducted EWAS for NAFLD using the Infinium HumanMethylation450 array (Illumina) 

and samples of liver tissue or whole blood (106-109). Collectively, the studies that used liver tissue 

identified associations between methylation at the PAPLN, LBH, DPYSL3, JAG1, NPC1L1, 
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STARD, and GRHL genes, while the studies that used whole blood samples identified significant 

associations between NAFLD and SLC7A11 and LINC00649. The final remaining study found 

that NAFLD associates with DNA methylation at the fibrosis-associated PPARα, TGFβ1, 

Collagen 1A1, and PDGFα genes using bisulphite pyrosequencing of liver biopsy samples (110). 

 Studies of associations between alcoholic liver disease and DNA methylation have focused 

on searching for genes where DNA methylation associates with incidence and progression of 

hepatocellular carcinomas. Chronic alcohol consumption has been shown to associate with global 

hypomethylation (111) and with methylation of at least ninety-four oncogenes for which aberrant 

expression has been shown to associate with hepatocellular carcinoma or other liver cancers (112-

114). Notable inclusions among those oncogenes are RASSF1, APC, and CDKN2A, which encode 

tumor suppressor proteins that are expressed at high levels in the liver, and the GSTP1, MGMT, 

and CHRNA3 genes, for which hypermethylation is associated with alcohol-attributed 

hepatocellular carcinoma (112-114). Additionally, in a study to investigate whether methylation 

of CpG islands can be used to predict hepatocellular carcinomas, Wen et al. (2015) identified 41 

CpG islands where hypermethylation strongly predicts hepatocellular carcinomas (ROC AUC > 

0.9 for tumors > 3 cm, and < 0.8 for tumors £ 3 cm) (115). Importantly, however, whether 

methylation within or near those CpG islands, or near the genes identified in the other studies, 

plays a causal role in hepatocellular carcinoma remains unclear. 

 Some epigenetic studies have also been conducted to identify DNA methylation events that 

associate with CLD in patients for whom the primary driver of disease is chronic viral hepatitis 

(116). Su et al. (2007) led the way by finding that hypermethylation of the promoter that regulates 

E-cadherin expression associates with hepatocellular carcinomas in patients with chronic hepatitis 

B infections (117). In a study of patients from the Renji and Shanghai Chest hospitals in Shanghai, 
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Zhao et al. (2014) expanded that knowledge by determining that changes in DNA methylation at 

the global scale and near transcription-start sites associate with progression of CLD in patients 

with chronic hepatitis B infections (118). They also identified 10 CpG sites near three genes—

SHISA7, ZNF300, and SLC22A20—where DNA methylation associates with progression of CLD 

due to chronic hepatitis B infection (118). Finally, in another study of 4,841 Taiwanese men with 

current or previous hepatitis B infections, Kao et al. (2017) identified and validated 22 CpG sites 

located in genes enriched in immune regulation, development, and proteasome degradation where 

DNA methylation associates with hepatocellular carcinoma (119). No other studies have been 

conducted that investigated associations between DNA methylation and CLD specifically in the 

context of chronic hepatitis infections. 

In contrast to the many studies that have been conducted to identify associations between 

DNA methylation and liver fibrosis and CLD as clinical diagnoses, only one study has been 

reported that sought to identify associations between DNA methylation and specific markers of 

liver function. In that study of 731 participants in the Rotterdam Study and another 719 non-

overlapping individuals, Nano et al. (2017) identified no CpG sites that are significantly associated 

with ALT after Bonferroni correction, and only one CpG site annotated to the SLC7A1 gene that 

was significantly associated with AST and a decreased risk of steatohepatitis (120). Thus, 

essentially no associations between DNA methylation and the specific markers of liver function 

reviewed above have been identified for any population, let alone people living with HIV. The 

absence of data on the relationship between DNA methylation and specific markers of liver 

function constitutes a stark gap in the literature that potentially results in the missing of insights 

that might benefit efforts to improve prevention, diagnosis, and treatment of CLD. 

 



 

   
 

12 

Clinical Biomarkers of Liver Function and Disease 

The liver performs a large and complex array of metabolic functions that can be perturbed 

independently and in concert by a variety of issues (17-21). Assessing liver function in a clinical 

or research setting therefore requires incorporating information from many biomarkers that 

generally reflect overall liver health and/or directly indicate its ability to perform specific 

metabolic functions (34-37). Several reviews have been written about which biomarkers are 

routinely used by clinicians to assess liver health and how abnormalities in those biomarkers 

should be interpreted and synthesized to accurately and completely understand liver condition (34-

37). While associations between every one of those clinically relevant markers is worthwhile given 

that each might uniquely capture a distinct component of liver function, the analyses presented in 

this thesis are limited to markers for which data from the Veterans Aging Cohort Study were 

already available: aspartate transaminase (AST), alanine transaminase (ALT), serum albumin, total 

bilirubin, platelet count, fibrosis-4 (FIB-4) score, and the ast-to-platelet-ratio index (APRI) score. 

As a result, many other markers that are used in clinical settings to assess liver health and function, 

and that directly reflect harmful downstream consequences of liver disease and dysfunction, are 

excluded from this study. Still, the new evidence presented for the biomarkers that are assessed 

for this thesis might direct researchers toward new hypotheses that expand current understanding 

of how liver disease progresses and contributes to mortality, both for people living with HIV and 

broader populations. A summary of the clinical and physiological significances of these markers 

regarding liver health and function are presented below. 
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AST & ALT 

Aspartate transaminase (AST) and alanine transaminase (ALT) are enzymes expressed primarily 

in liver cells that play important roles in protein synthesis and gluconeogenesis by catalyzing the 

interconversion of L-aspartate and L-glutamate, and of L-alanine and L-glutamate, respectively 

(121). Normally, AST and ALT are not secreted by a healthy liver and only appear at low levels 

in blood serum (0-35 units/L and 0-45 units/L, respectively) as a result of their release by 

decomposing liver cells that die as a normal part of cell turnover that is essential to maintaining 

healthy tissues in the body (122). From a clinical perspective, elevated levels of AST and ALT 

therefore indicate physical damage to the liver (122), and persistent elevation of AST and ALT is 

considered a universal warning signal for liver disease of every etiology (122). That universality 

also presents a limitation, however, as AST and ALT levels cannot be used to distinguish between 

potential causes of liver damage (e.g., alcohol abuse vs. viral hepatitis). Clinicians therefore always 

evaluate AST and ALT along with other biomarkers to diagnose specific causes for observed liver 

disease (34-37). 

 

Serum Albumin 

Serum albumin (also called total albumin) is a protein that is synthesized by the liver and released 

into the blood, where it serves to maintain proper osmotic pressure and to carry important 

hydrophobic macromolecules that would not otherwise travel well through a hydrophilic 

environment (123). Because osmotic pressure must be delicately balanced, the liver normally 

carefully controls the levels of serum albumin in the blood by tightly regulating its synthesis (123). 

Elevations or reductions in serum albumin are therefore interpreted to represent dysfunction in the 

liver’s biosynthetic capabilities (34-37). Such dysfunction can result from flaws specifically in the 
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metabolic pathway that generates serum albumin, and thus may not represent a more general 

disease of the liver. Concurrent elevation of AST and ALT, however, is interpreted to indicate that 

the synthetic dysfunction is a result of liver damage (34-37). 

 

Total Bilirubin 

Bilirubin is a normal byproduct of the normal breakdown of dead red blood cells that is 

metabolically prepared by the liver for excretion from the body (124). Excessive accumulation of 

bilirubin in blood serum is therefore interpreted in clinical settings to represent a depression of the 

liver’s metabolic capacity (34-37). Such suppression might result from issues specific to the 

metabolic pathways responsible for the breakdown of red blood cells. When observed in 

combination with abnormal elevation of direct indicators of liver damage like AST and ALT, 

however, elevated total bilirubin is interpreted to result from liver damage, especially if the 

elevation is prolonged (34-37). Serum bilirubin is therefore included among the tests that are 

routinely used to assess liver health and function and serves to provide information about the 

liver’s metabolic activity that complements the information on the physical integrity of the liver 

and its biogenic capacity offered by AST/ALT and serum albumin, respectively. 

 

Platelet Count 

Thrombocytopenia, defined as a low platelet count, is strongly associated with liver disease 

(125,126). While the etiology and physiology of thrombocytopenia is complex, with many 

potential causes and contributing factors that are unrelated to the liver (126), liver dysfunction can 

contribute by decreasing production of the hematopoietic growth factor thrombopoietin, which 

drives platelet cell production in marrow, and by inhibiting other metabolic hepatic processes that 
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support platelet synthesis (126). Platelet count is therefore routinely included in the panel of 

clinical tests that are used to assess liver health, and thrombocytopenia concurrent with 

abnormalities in other liver markers is interpreted to indicate liver disease resulting from liver 

damage (34-37). 

 

FIB-4 Score and APR Index 

The Fibrosis-4 (FIB-4) scoring index and aminotransferase-to-platelet ratio index (APRI) are 

metrics for assessing the liver health that incorporate information on a patient’s age, AST value, 

ALT value, and platelet count using similar equations (127, 128). Originally developed to detect 

assess the degree of liver damage incurred by patients with HCV infection, both metrics have 

proven effective at identifying liver disease of other etiologies as well, including alcohol abuse 

and non-alcoholic fatty liver disease (34-37). These metrics have therefore become standard orders 

when liver disease is suspected and provide a general overview of liver health that is supplemented 

by the specific information offered by other biomarkers to pace disease progression and identify 

specific causes on a case-by-case basis (34-37). 
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METHODS 

Blood and Phenotype Sampling 

Phenotypic and epigenetic data were obtained from the Veterans Aging Cohort Study (VACS), a 

prospective observational cohort study of health outcomes among veterans living with HIV who 

receive healthcare from the Veterans Health Administration throughout the United States (129). 

The VACS was approved by Yale’s human research protection program and by the institutional 

review board of the West Haven campus of the Connecticut veteran healthcare system. All 

participants provided written consent for the use of their data. 

 The sample consisted of 960 male veterans living with HIV who were cancer-free at the 

time of blood collection and for whom phenotypic and epigenetic data are available through 

VACS. Information on age, race, smoking status, BMI, diabetes status, alcohol use, ever infection 

with HBV or HCV, and anti-retroviral (ART) use at time of blood draw were obtained by review 

of medical records or by survey when relevant records were not available. AST, ALT, serum 

albumin, total bilirubin, platelet count, CD4 count, and viral load were measured for each patient 

using standard clinical tests. Participants were categorized as virally suppressed if their viral load 

was <200 copies/mL or as unsuppressed otherwise. A Fibrosis-4 (FIB-4) score and an AST-to-

platelet ratio index (APRI) score were calculated for each participant following the standard 

equations (127, 128). 

 

Associations Among Selected Liver Biomarkers 

To identify correlations among the biomarkers of liver function selected for this study, a Pearson 

correlation coefficient and corresponding P-value were calculated for every possible combination 

of two selected biomarkers using data from all 960 study participants as input for the rcorr() 
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function from the Hmisc package in R. To normalize the distributions of strongly right-skewed 

biomarkers for this and all subsequent analyses, a natural log transformation was performed on 

values for ALT, AST, FIB-4 score, and APRI score. Distributions of the biomarkers before and 

after transformation, when needed, are presented in Supplementary Figure 1 in the log2 scale for 

easier interpretation. Patterns in those correlation coefficients were then visualized via a 

correlation matrix generated using the corrplot() function from the corrplot package in R. 

Statistical significance of obtained correlation coefficients was determined against a Bonferroni-

corrected α of 0.05. 

 

DNAm Data Generation, Processing, and Quality Control 

Blood samples for clinical tests and methylation analyses were collected simultaneously. Genomic 

DNA for epigenetic analysis was extracted using FlexiGene DNA extraction kits from (130) and 

PAXGene collection tubes (131) from QIAGEN. Genome-wide DNA methylation levels for 473 

of the participants were assessed using the Infinium HumanMethylation450 (450K) array platform 

(Illumina), while those for the remaining 487 participants were assessed using the Infinium 

HumanMethylationEPIC (EPIC) array platform (Illumina) at the Yale Center for Genomic 

Analysis. 

 To remove samples and CpG sites with lower data quality, the following quality control 

steps were performed on the data from both array platforms: 1) probes within 10 nucleotides of a 

known SNP, or that map to multiple genomic locations, were removed; 2) intensity values with a 

detection P-value of ³0.001 were set to missing, and any CpG missing >5% of intensity scores 

across samples were subsequently removed; 3) any sample missing an intensity score for more 

than 5% of the CpGs covered by the platform on which it was analyzed was removed. As a result 
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of those steps, 412,583 CpGs remained for analysis in the dataset acquired with the 450K array 

while 846,604 CpGs remained for analysis in the dataset acquired with the EPIC array. Within 

both datasets, raw methylation intensity values were then quantile normalized using the limma 

package in R in keeping with the control probe scaling procedure from Illumina. The resulting 

normalized intensity values were finally used to calculate a DNA methylation score ranging in 

value from 0 (completely unmethylated) to 1 (completely methylated) for each CpG site following 

this equation: b = methylated intensity value / (unmethylated intensity value + methylated intensity 

value + 100). 

Because differences in the proportions of the six main leukocyte cell types present in whole 

blood (CD4+ T, CD8+ T, monocytes, B cells, granulocytes, and natural killer cells) across samples 

are well-known confounders of associations between DNA methylation in the blood and many 

phenotypes, the proportions of those six cell types for each participant were determined based on 

the top 100 cell-type-specific DNA methylation sites in a reference panel of known proportions 

following the standard algorithm through the minfi package in R (132). The estimated cell type 

proportions for each participant were then controlled for in all EWAS analyses. 

 

Associations Between EWAS Covariates and Selected Liver Biomarkers 

The association between each covariate included in the EWAS model—race, smoking status, BMI, 

diabetes status, hazardous alcohol use, ever HCV infection, ever HBV infection, ART use, CD4 

count, viral suppression, and leukocyte cell-type proportions—and each liver marker selected for 

this study was assessed using a linear model controlling for chronological age. Associations with 

chronological age were also assessed using a model that did not control for chronological age. 

Regardless of P-value, all covariates listed above were included in the final EWAS model to 
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account for the reasonable possibility that they might confound the relationship between DNA 

methylation and the liver markers. 

 

Associations of DNAm Age Acceleration with Selected Liver Biomarkers 

DNA methylation age acceleration for each participant was measured using the IEAA, EAA, 

PhenoAA, and GrimAA metrics as specified by original reporting articles (94, 96-98). The 

association between DNA methylation age acceleration, as measured by each of those four metrics, 

and each of the selected biomarkers of liver function was then assessed by linear regression while 

controlling for all covariates included in the final EWAS model. 

 

Principal Component Analysis 

To adjust for population structures that might confound observed associations between DNA 

methylation events and the selected biomarkers of liver function among participants profiled with 

the 450K array or those profiled with the EPIC array, separate principal component analyses were 

performed for both groups following the analytical approach developed by Barfield et al. (2014) 

(133). To begin, a pruned version of the dataset from each group was created that contained only 

CpG sites within 50 base pairs of known SNPs to approximate the genome-wide genetic variation 

traditionally used in principal component analyses. Then, principal components were calculated 

for both groups based on methylation beta values of the pruned set of CpG sites using the prcomp 

function from the Factoextra package in R. The top ten resulting principal components of the 450K 

group were then included in all subsequent epigenetic association models applied to data from the 

450K group, while the top ten principal components of the EPIC group were included in all 

epigenetic association models applied to data from the EPIC group. 
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Statistical Methods for DNAm EWAS for Selected Liver Biomarkers 

To investigate the association between each selected biomarker of liver function and methylation 

at individual CpG sites across the autosomal chromosomes, data from the 450K group was 

analyzed in parallel with data from the EPIC group using the same model, and a meta-analysis was 

conducted for CpG sites covered by both platforms as described later. To control for systematic 

variation in methylation intensity values that might have occurred across groups of co-processed 

samples because of batch effects caused by deviations in sample processing and array 

performance, a linear mixed effect model controlling for random batch effects across arrays was 

employed. That final model was adjusted for age, race, current smoking, BMI, diabetes, hazardous 

alcohol use, ever infection with HCV, ever infection with HBV, ART use, CD4 count, viral load 

suppression, leukocyte cell-type proportions, and the top ten principal components for the group 

being analyzed. When needed for a given combination of CpG site and biomarker, participants 

missing values needed by the model were excluded from the analysis for that combination. CpG 

sites for which the applied model did not converge were also excluded. Furthermore, because the 

number of covariates in the model often led to destabilizing over-sparsity when the sample size 

was <100 people, CpG sites for which the sample size used by the model was <100 people due to 

missing values were excluded from the results and further analysis. 

A variance-weighted meta-analysis was performed for 385,062 CpG sites that are covered 

by both the 450K and EPIC arrays. For CpG sites not covered by both platforms, results were 

obtained only from the cohort profiled by the covering platform and no meta-analysis was 

conducted. Separate false-discovery rate adjustments (Q < 0.05) were conducted for each liver 

biomarker, where one adjustment was conducted on P-values from the meta-analysis, and the 

second was conducted on P-values that could not be included in the meta-analysis. 



 

   
 

21 

RESULTS 

Participant Characteristics 

After data processing and quality control, the analysis dataset for those profiled using the 450K 

platform included observations from 473 individuals and the dataset for those profiled using the 

EPCI platform included observations from 487 individuals. Relevant characteristics of the two 

groups are summarized in Table 1. All participants were male veterans living with HIV who were 

never diagnosed with cancer and had an average age of 51.2 ± 7.5 years. The average difference 

in chronological age between the 450K and EPIC cohorts was significant but mall (D = 1.1 years, 

P-value = 0.031). The two cohorts did not differ significantly (P-value > 0.05) in race (Black vs. 

non-Black) or in prevalence of current smoking, diabetes, hazardous alcohol use, ever infection 

with HBV, ever infection with HCV, or viral load suppression. They also did not differ 

significantly in their average BMI or CD4 count. Average biomarker values from the 450K cohort 

differed significantly from those from the EPIC cohort for ALT (D = 4.7 units/L, P-value = 

1.93´10-3), AST (D = 6.4 units/L, P-value = 7.34´10-5), serum albumin (D = -0.11 mg/dL, P-value 

= 2.89´10-4), FIB-4 score (D = 0.24, P-value = 8.49´10-4), and APRI score (D = 0.112, P-value = 

8.35´10-4). Total bilirubin and platelet count did not differ significantly between the two sub-

cohorts. 

 

Correlations Among Selected Liver Biomarkers 

Observed values for ALT, AST, FIB-4 score, and APRI score all correlated positively and strongly 

with each other (r ³ 0.6, FDR Q < 0.05), except for ALT and FIB-4 score, which also correlated 

positively but less strongly (r = 0.36, FDR Q < 0.05) (Figure 1). Platelet count correlates 

negatively with AST, ALT, FIB-4 score, and APRI score to varying degrees (Q < 0.05) and weakly 
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with albumin (r = 0.13, FDR Q < 0.05), but not with total bilirubin (r = -0.06, Q > 0.05). Serum 

albumin correlated negatively with AST, APRI score, and FIB-4 score (-0.25 £ r £ -0.18, Q < 

0.05) but not with ALT (r = -0.01, Q > 0.05). Total bilirubin did not correlate significantly with 

serum albumin, platelet count, FIB-4 score, or APRI score (Q > 0.05) and correlated only weakly 

with AST and ALT (r < 0.14, FDR Q < 0.05). 

 

Covariate Associations with Selected Liver Biomarkers 

Associations between covariates included in the final EWAS model and the selected liver 

biomarkers are presented in Table 2. Only ever infection with HCV was associated with all seven 

selected liver health markers when controlling for age, while diabetes status was not associated 

with any of the selected markers. All liver markers associated with at least four of the covariates 

included in the model excluding cell type proportions. Regardless of the P-value for the observed 

association between each covariate and each liver biomarker, all covariates were included in the 

final epigenetic analysis model to account for the reasonable possibility that each might confound 

associations between DNA methylation events and liver phenotypes. 

 

Associations of DNAm Age Acceleration with Selected Liver Biomarkers 

DNA methylation age acceleration as measured by IEAA, EEAA, PhenoAA, and GrimAA was 

not significantly associated with any of the selected biomarkers of liver function, except in the 

case of serum albumin, which associated significantly with PhenoAA (b = -0.014, P-value = 

1.6´10-13) in an unadjusted model (Figure 2). That association remained significant after FDR 

adjustment to Q < 0.05 in a model that adjusted for all covariates included in the final EWAS 

model (b = -0.007, P-value = 8.6x10-4) (Table 3), while no other metric of DNA methylation age 
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acceleration was associated with any other selected biomarker of liver function in the adjusted 

model (Table 3). 

 

DNAm EWAS for Selected Liver Biomarkers 

Meta-analysis of the separate EWAS results obtained from the EPIC and 450K cohorts for each 

selected liver biomarker and each CpG site included in both platforms reveals that increased DNA 

methylation at nine CpG sites associates significantly with increased serum albumin among male 

veterans living with HIV after adjusting for all covariates in the final EWAS model and an FDR 

correction against Q < 0.05 (Table 4, Figure 3). A regional plot for the section of chromosome 17 

that contains five of those CpG sites is presented in Supplementary Figure 2. Quantile-quantile 

analysis of the expected and observed P-values from the meta-analysis for serum albumin reveals 

no global inflation of the unadjusted P-values (Figure 4), so no further corrections were applied. 

Notably, among the one hundred CpG sites with the lowest unadjusted P-values for association 

between DNA methylation and serum albumin after meta-analysis, the beta coefficients obtained 

from the separate EWAS analyses of the EPIC and 450K cohorts for those CpG sites show a strong, 

positive correlation (r = 0.89, P-value < 0.001) (Figure 5). 

Four of the nine CpG sites where methylation associates positively with serum albumin—

cg16936953, cg18942579, cg01409343, and cg12054453—are annotated to be located within a 

codon of the TMEM49 gene (Illumina). 10% increases in methylation of those sites correspond to 

average increases in serum albumin of 0.12 g/dL (b 95% CI: 0.08, 0.16), 0.14 g/dL (b 95% CI: 

0.09, 0.19), 0.17 g/dL (b 95% CI: 0.11, 0.23), and 0.10 g/dL (b 95% CI: 0.06, 0.14), respectively. 

Four of the remaining five CpG sites—cg18181703, cg03546163, cg20995564, and 

cg23966214—are annotated to correspond to the SOCS3, FKBP5, ZEB2, and SAMD14 genes, 
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respectively (Illumina). 10% increases in methylation at those CpG sites correspond to average 

increases in serum albumin of 0.19 g/dL (b 95% CI: 0.12, 0.26), 0.11 g/dL (b 95% CI: 0.07, 0.15), 

0.12 g/dL (b 95% CI: 0.07, 0.17), and 0.35 g/dL (b 95% CI: 0.21, 0.49). The final remaining CpG 

site, cg12992827, is not annotated to correspond to any known coding sequence. A 10% increase 

in methylation at that site corresponds to an average increase in serum albumin of 0.19 g/dL (b 

95% CI: 0.11, 0.26). No other meta-analyzed CpG sites associate significantly with a selected liver 

biomarker after FDR correction to Q < 0.05. A quantile-quantile plot and Manhattan plot of the 

FDR-unadjusted P-values obtained from meta-analysis of the separate EWAS results from the 

EPIC and 450K cohorts are presented in Supplementary Figures 3-8 for each selected liver 

biomarker except serum albumin. Additionally, statistics and annotations for the ten CpG sites 

with the smallest FDR-unadjusted P-values after meta-analysis are presented in Supplementary 

Table 1 for each selected liver marker. 

Among the CpG sites that are included in only one of the two methylation assay platforms 

used for this study, and that therefore cannot be included in the meta-analysis, DNA methylation 

was not significantly associated with any of the selected liver biomarkers. Statistics and 

annotations for the ten CpG sites with the lowest unadjusted P-values among those that could not 

be meta-analyzed are presented for each liver biomarker in Supplementary Table 2. 
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DISCUSSION 

To expand on the contributions of studies that have identified associations between DNA 

methylation and clinical liver disease as part of a larger effort to better understand the etiology of 

liver function and disease among people living with HIV, the EWAS presented in this thesis 

provide the first data to evaluate whether specific DNA methylation events associate with seven 

commonly-used biomarkers of liver function—aspartate transaminase, alanine transaminase, 

serum albumin, total bilirubin, platelet count, FIB-4 score, and APRI score—among male US 

veterans living with HIV based on data from VACS. 

 The liver biomarkers selected for this study show intercorrelations that justify performing 

a separate EWAS for each biomarker. The positive correlations among AST, ALT, FIB-4 score, 

and APRI score are expected because AST and ALT are both released into the blood upon physical 

damage to liver cells and thus should increase together, and because AST is included in the 

numerator of the equations used to calculate FIB-4 and APRI scores. The negative correlations 

between platelet count and FIB-4 and APRI scores are also expected because platelet count is 

included in the denominator of both equations. While strong intercorrelations might suggest that 

conducting a separate EWAS for each marker is unnecessary, the correlations observed are 

imperfect enough to indicate that separate EWAS are warranted. Following that same logic, the 

absence of even moderate correlations with serum albumin and total serum bilirubin suggests that 

those markers might have mechanisms of regulation that are independent of those for the other 

selected liver biomarkers, thus warranting the inclusion of separate EWAS to probe for genes 

involved in those separate mechanisms that EWAS for the other uncorrelated liver markers might 

not detect. 
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Despite the slight association observed between PhenoAA and serum albumin, the absence 

of any other significant associations for the four tested metrics of accelerated DNA methylation 

aging—PhenoAA, GrimAA, IEAA, and EEAA—suggests that differential biological aging does 

not affect the selected biomarkers of liver function. While these findings largely do not support 

that global changes in DNA methylation are linked to changes in liver function, they leave open 

the possibility that specific sites of DNA methylation might regulate the expression of genes in a 

manner that influences behavior of the selected biomarkers of liver health, either by influencing 

the progression of conditions that generally damage the liver and inhibit function—like fibrosis or 

hepatocellular carcinoma—or by affecting pathways that are specifically involved in regulation of 

a particular liver biomarkers. 

Nine CpG sites were identified where DNA methylation is associated with changes in 

serum albumin. Four of those sites are annotated to be located near the TMEM49 gene (also known 

as VMP1), which encodes a transmembrane protein that drives cell autophagy (134) and is 

overexpressed in pancreatitis-affected acinar cells (135). Cell autophagy, therefore, might be 

linked to regulation of serum albumin. Indeed, studies have demonstrated that serum albumin 

suppresses cell autophagy via mTOR activation and that depriving cultured cells of serum albumin 

induces autophagy that is thought to protect against the accumulation of harmful reactive oxygen 

species (ROS) that are released by damaged mitochondria in response to low serum albumin (136, 

137). Given those findings, the positive association observed between serum albumin and DNA 

methylation near TMEM49 might reflect that DNA methylation is involved in a mechanism by 

which serum albumin suppresses autophagy through repression of TMEM49 expression. Further 

studies are needed to investigate that possible relationship. 
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One site where DNA methylation associates positively with serum albumin levels is 

located near the SOCS3 gene, which encodes a protein that inhibits cytokine signaling along the 

STAT pathway in response to elevated cytokine levels (138, 139). Studies have established that 

repression of SOCS3 enables liver fibrosis by allowing for increased fibrogenic signaling via 

STAT-3-mediated upregulation of TGF-β (140-142). The positive association between increased 

methylation near SOCS3 and increased serum albumin observed here might therefore reflect that 

DNA methylation is linked to that relationship. Additionally, obesity has been shown to associate 

with downregulation of SOCS3, which draws attention to the possibility that an association 

between methylation near SOCS3 and liver dysfunction might result from the well-observed 

association between obesity and liver dysfunction. Indeed, cg18181703 has been shown to be 

associated with obesity in other EWAS (143). As such, further exploration of how SOCS3 might 

contribute to the etiology of CLD, and of the role that DNA methylation might play, is warranted. 

Another site where DNA methylation associates positively with serum albumin levels in 

the EWAS presented here is located near the FKBP5 gene, which encodes an immunoregulatory 

protein that contributes to basic protein folding and trafficking (144). FKBP5 has been shown to 

positively regulate stress response and to drive acquisition of metabolic disorders including 

obesity, insulin resistance, and diabetes (145). Moreover, FKBP5 is thought to contribute to liver 

dysfunction (146). Indeed, deletion of FKBP5 protected knock-out mice from fatty liver disease 

despite high-fat diets (147). Thus, the positive association of DNA methylation near FKBP5 with 

serum albumin levels might reflect that FKBP5 expression should be investigated as the underlying 

mechanism of the association. 

Yet another site where DNA methylation associates positively with serum albumin levels 

in the EWAS presented here is located near the ZEB2 gene, which encodes a zinc-finger DNA-
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binding protein known to be expressed in hepatocytes (148). Studies have demonstrated that 

repression of ZEB2 expression by microRNAs induces apoptosis in hepatocytes (149), suggesting 

that ZEB2 might influence preservation of liver integrity in the face of hepatic cell damage. Further 

investigation of the observed association between DNA methylation near ZEB2 and serum albumin 

might therefore focus on the potential effects that DNA methylation might have on ZEB2 

expression and the downstream consequences of those effects for hepatic damage. 

The remaining CpG site where DNA methylation associates positively with serum albumin 

levels is annotated to be located near genes encoding the SMAD14 gene. The function of the 

SMAD14 gene is largely unknown, but it has been shown to associate with gastric cancer and has 

therefore been hypothesized to act as a tumor suppressor (150). No studies have been conducted 

that directly link SMAD14 or its tumor suppressor properties to either general liver health and 

function or specifically to serum albumin regulation. As such, further studies are needed. 

 

Strengths and Weaknesses 

A strength of this study is that it combined data from two different microarray platforms for 

assessing genome-wide DNA methylation levels that only partially overlap in their coverage of 

CpG sites, thereby enabling analysis of DNA methylation at a wider range of CpG sites than either 

microarray platform alone would have allowed. A corresponding weakness, however, is that meta-

analysis could only be performed for the subset of CpG sites that are included in both platforms. 

Still, results from the two cohorts at CpG sites that could be meta-analyzed were highly consistent 

among top hits for serum albumin, suggesting that combining data from the two platforms 

successfully augments power to detect significant associations. 
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Another strength is that this study simultaneously examined multiple biomarkers that, 

combined, generally reflect liver function but also individually directly indicate the liver’s capacity 

to perform specific metabolic functions that are not perfectly correlated and thus might be 

regulated by independent mechanisms or affected by liver disease via distinct pathways. As a 

result, this study enables probing for associations with DNA methylation across a wider range of 

genes that might only influence specific aspects of liver function and therefore might be missed if 

a single microarray platform were used or liver disease as a general diagnosis were assessed. 

Another strength of this study is that, unlike with any EWAS study of liver function or 

disease conducted thus far, the cohort used consists exclusively of people living with HIV. As a 

result, this study can still contribute to the identification of genes that are involved in liver health 

and function for all people, but also contribute to the identification of genes that affect liver 

function specifically in the context of HIV infection—something that previous studies that did not 

exclusively include people with HIV may not have been powered to accomplish. Restriction of the 

study cohort to only veterans living with HIV who were recruited to the VACS study also 

constitutes a potential weakness, however, since veterans tend to face certain stressors and medical 

conditions more frequently than the general population. Moreover, the veterans recruited for this 

study represent an especially unhealthy section of veterans living with HIV. These factors 

jeopardize the degree to which the cohorts included in this study represent broader populations of 

people living with HIV in the US, especially younger members of those populations who never 

served in the military. As a result, the associations identified in this study might not generalize 

well to those external populations, and associations might exist in those external populations that 

were not detected in this cohort. 
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Another weakness is that this study used DNA methylation levels measured in blood cells 

to assess associations between DNA methylation and biomarkers of liver function, which is 

potentially problematic because DNA methylation patterns in blood cells may not represent DNA 

methylation patterns in the liver cells that are responsible for regulating the selected biomarkers. 

Notably, however, blood DNA methylation levels have been shown to associate with many health 

outcomes that extend beyond the blood, including obesity, diabetes, and certain cancers (151-154). 

As such, using blood DNA methylations in the studies presented here is a reasonable first step 

toward understanding the relationship between DNA methylation and liver function, especially 

given that EWAS studies are meant to generate hypotheses and identify genes that can be included 

in candidate gene studies to confirm their observed association with liver function and further 

elucidate the role of DNA methylation in modulating that relationship. 

Finally, this study failed to identify significant associations between DNA methylation 

events at specific CpG sites and six of the seven outcomes assessed. The failure to detect 

significant associations between DNA methylation events and aspartate transaminase levels, 

alanine transaminase levels, total serum bilirubin, platelet count, FIB-4 score, and APRI score 

might result from an absence of true associations between DNA methylation events and those 

outcomes. The failure might also result, however, from insufficient power to detect true 

associations with the data collected. Increasing the sample size and selecting from a generally 

healthier population of HIV+ veterans—who are more likely to have less variation in their liver 

health and, thus, their markers of liver health and function—would improve the power of this 

study. Nevertheless, this study generates several hypotheses regarding the roles of several genes 

in regulating either general liver function or specific metabolic functions of the liver that have not 

yet been directly investigated. 



 

   
 

31 

Future Work 

This thesis demonstrates that EWAS can reveal DNA methylation events that associate with 

biomarkers of liver function, suggesting that EWAS might be employed as a tool to identify 

candidate genes for more rigorous causal studies to uncover biological mechanisms that affect 

liver function by either regulating overall liver health or influencing pathways only involved in a 

specific liver function reflected by a biomarker of interest. Such application of EWAS could be 

beneficial if it broadens and deepens understanding the complex activity of the liver. Critically, 

future work seeking to identify genes that influence liver function in people living with HIV should 

include participants who do not have HIV to allow for evaluation of interaction between HIV and 

DNA methylation at identified CpG sites. Evaluation of such interaction would be useful because 

it would contribute to discrimination between CpG sites where DNA methylation influences liver 

function for all people, and CpG sites where methylation only influences liver function among 

people living with HIV. Genes that only influence liver function among those living with HIV 

would be especially interesting targets for those deploying limited resources to discover drug 

targets to improve the health of people living with HIV. 

This study offers little to substantiate the possibility that methylation at CpG sites could be 

measured to predict risk of CLD, either among people living with HIV or other populations, 

especially because none of the four metrics of accelerated DNA methylation were significantly 

associated with changes in the seven tested biomarkers of liver function, except with PhenoAA 

and serum albumin. Future work on this topic should remain responsive to identification of patterns 

in DNA methylation that might serve as early warning indicators of CLD, especially as more DNA 

methylation clocks are validated and proposed. Indeed, work could be done to specifically generate 

a set of CpG sites that can be used to predict or estimate liver function. Moreover, future 
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researchers should look out for patterns of DNA methylation that can be used to distinguish 

between subtypes of CLD that are defined by which specific metabolic functions are impeded. 

Defining such collections of CpG sites might enable clinicians to prioritize treatments that seek to 

correct specific dysfunctions in addition to correcting general health, thus giving the patient 

optimal outcome chances in accordance with the vision of precision medicine that is so urgently 

sought. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 



 

   
 

33 

REFERENCES 

1. Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver 
diseases. Journal of hepatology. 2007 Oct 1;47(4):598-607. 

2. Clark JM, Diehl AM. Defining nonalcoholic fatty liver disease: implications for epidemiologic 
studies. Gastroenterology. 2003 Jan 1;124(1):248-50. 

3. Propst A, Propst T, Zangerl G, Öfner D, Judmaier G, Vogel W. Prognosis and life expectancy 
in chronic liver disease. Digestive diseases and sciences. 1995 Aug;40(8):1805-15. 

4. Vong S, Bell BP. Chronic liver disease mortality in the United States, 1990–1998. Hepatology. 
2004 Feb;39(2):476-83. 

5. Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom 
H, Nasr P, Stal P. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver 
disease: systematic review and meta-analysis. Hepatology. 2017 May;65(5):1557-65. 

6. Paik JM, Henry L, De Avila L, Younossi E, Racila A, Younossi ZM. Mortality related to 
nonalcoholic fatty liver disease is increasing in the United States. Hepatology 
communications. 2019 Nov;3(11):1459-71. 

7. Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD, Targher G. Complications, morbidity 
and mortality of nonalcoholic fatty liver disease. Metabolism. 2020 Oct 1;111:154170. 

8. Riley T, Bhatti AM. Preventive strategies in chronic liver disease: part I. Alcohol, vaccines, 
toxic medications and supplements, diet and exercise. American family physician. 2001 
Nov 1;64(9):1555. 

9. Riley T, Bhatti AM. Preventive strategies in chronic liver disease: part II. Cirrhosis. American 
family physician. 2001 Nov 15;64(10):1735. 

10. Wiegand J, Berg T. The etiology, diagnosis and prevention of liver cirrhosis: part 1 of a series 
on liver cirrhosis. Deutsches Ärzteblatt International. 2013 Feb;110(6):85. 

11. Terpstra OT, Schalm SW, Weimar W, Willemse PJ, Baumgartner D, Groenland TH, ten Kate 
FW, Porte RJ, Rave SD, Reuvers CB, Stibbe J. Auxiliary partial liver transplantation for 
end-stage chronic liver disease. New England Journal of Medicine. 1988 Dec 
8;319(23):1507-11. 

12. Roth K, Lynn J, Zhong Z, Borum M, Dawson NV. Dying with end stage liver disease with 
cirrhosis: insights from SUPPORT. Study to Understand Prognoses and Preferences for 
Outcomes and Risks of Treatment. Journal of the American Geriatrics Society. 2000 May 
1;48(S1):S122-30. 



 

   
 

34 

13. Silva AS, Santos LL, Passos AD, Sankarankutty AK, Martinelli AD, Castro e Silva OD. 
Chronic liver disease prevention strategies and liver transplantation. Acta Cirúrgica 
Brasileira. 2006;21:79-84. 

14. Julien J, Ayer T, Bethea ED, Tapper EB, Chhatwal J. Projected prevalence and mortality 
associated with alcohol-related liver disease in the USA, 2019–40: a modelling study. The 
Lancet Public Health. 2020 Jun 1;5(6):e316-23. 

15. Adams LA, Roberts SK, Strasser SI, Mahady SE, Powell E, Estes C, Razavi H, George J. 
Nonalcoholic fatty liver disease burden: Australia, 2019–2030. Journal of gastroenterology 
and hepatology. 2020 Sep;35(9):1628-35. 

16. Estes C, Chan HL, Chien RN, Chuang WL, Fung J, Goh GB, Hu TH, Huang JF, Jang BK, Jun 
DW, Kao JH. Modelling NAFLD disease burden in four Asian regions—2019-2030. 
Alimentary pharmacology & therapeutics. 2020 Apr;51(8):801-11. 

17. Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. 
Pharmacology & therapeutics. 1992 Jan 1;53(3):275-354. 

18. Campbell I. Liver: metabolic functions. Anaesthesia & Intensive Care Medicine. 2006 Feb 
1;7(2):51-4. 

19. Anty R, Lemoine M. Liver fibrogenesis and metabolic factors. Clinics and research in 
hepatology and gastroenterology. 2011 Jun 1;35:S10-20. 

20. Mitra V, Metcalf J. Metabolic functions of the liver. Anaesthesia & Intensive Care Medicine. 
2012 Feb 1;13(2):54-5. 

21. Eriksen PL, Sørensen M, Grønbæk H, Hamilton-Dutoit S, Vilstrup H, Thomsen KL. Non-
alcoholic fatty liver disease causes dissociated changes in metabolic liver functions. Clinics 
and research in hepatology and gastroenterology. 2019 Oct 1;43(5):551-60. 

22. Bathum L, Petersen HC, Rosholm JU, Hyltoft Petersen P, Vaupel J, Christensen K. Evidence 
for a substantial genetic influence on biochemical liver function tests: results from a 
population-based Danish twin study. Clinical chemistry. 2001 Jan 1;47(1):81-7. 

23. Rahmioglu N, Andrew T, Cherkas L, Surdulescu G, Swaminathan R, Spector T, Ahmadi KR. 
Epidemiology and genetic epidemiology of the liver function test proteins. PloS one. 2009 
Feb 11;4(2):e4435. 

24. Foley DL, Craig JM, Morley R, Olsson CJ, Dwyer T, Smith K, Saffery R. Prospects for 
epigenetic epidemiology. American journal of epidemiology. 2009 Feb 15;169(4):389-
400. 

25. Relton CL, Smith GD. Epigenetic epidemiology of common complex disease: prospects for 
prediction, prevention, and treatment. PLoS Med. 2010 Oct 26;7(10):e1000356. 



 

   
 

35 

26. Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology. Nature 
Reviews Genetics. 2013 Aug;14(8):585-94. 

27. Singal R, Ginder GD. DNA methylation. Blood, The Journal of the American Society of 
Hematology. 1999 Jun 15;93(12):4059-70. 

28. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 
2013 Jan;38(1):23-38. 

29. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common 
human diseases. Nature Reviews Genetics. 2011 Aug;12(8):529-41. 

30. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, Houseman EA, 
Izzi B, Kelsey KT, Meissner A, Milosavljevic A. Recommendations for the design and 
analysis of epigenome-wide association studies. Nature methods. 2013 Oct;10(10):949. 

31. Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation 
of disease-omics. PLoS genetics. 2016 Jun 23;12(6):e1006 

32. Doweiko JP, Nompleggi DJ. The role of albumin in human physiology and pathophysiology, 
Part III: Albumin and disease states. JPEN. Journal of parenteral and enteral nutrition. 1991 
Jul 1;15(4):476-83. 

33. Lin JP, Vitek L, Schwertner HA. Serum bilirubin and genes controlling bilirubin 
concentrations as biomarkers for cardiovascular disease. Clinical chemistry. 2010 Oct 
1;56(10):1535-43. 

34. Woreta TA, Alqahtani SA. Evaluation of abnormal liver tests. Medical Clinics. 2014 Jan 
1;98(1):1-6. 

35. Agrawal S, Dhiman RK, Limdi JK. Evaluation of abnormal liver function tests. Postgraduate 
medical journal. 2016 Apr 1;92(1086):223-34. 

36. Kwo PY, Cohen SM, Lim JK. ACG clinical guideline: evaluation of abnormal liver 
chemistries. Official journal of the American College of Gastroenterology| ACG. 2017 Jan 
1;112(1):18-35. 

37. Schreiner AD, Rockey DC. Evaluation of abnormal liver tests in the adult asymptomatic 
patient. Current opinion in gastroenterology. 2018 Jul 1;34(4):272-9. 

38. Joshi D, O'Grady J, Dieterich D, Gazzard B, Agarwal K. Increasing burden of liver disease in 
patients with HIV infection. The Lancet. 2011 Apr 2;377(9772):1198-209. 

 



 

   
 

36 

39. Prins M, Aguado IH, Brettle RP, Robertson JR, Broers B, Carré N, Goldberg DJ, Zangerle R, 
Coutinho RA, van den Hoek A. Pre-AIDS mortality from natural causes associated with 
HIV disease progression: evidence from the European Seroconverter Study among 
injecting drug users. Aids. 1997 Nov 15;11(14):1747-56. 

40. Collins S, Mertenskoetter T, Loeliger E, Tressler R, Weller I, Friis-Møller N, Worm SW, Sabin 
CA, Sjøl A, Lundgren JD, Sawitz A. Liver-related deaths in persons infected with the 
human immunodeficiency virus: the D: A: D study. Archives of internal medicine. 2006 
Aug 28;166(15):1632-41. 

41. Frank TD, Carter A, Jahagirdar D, Biehl MH, Douwes-Schultz D, Larson SL, Arora M, Dwyer-
Lindgren L, Steuben KM, Abbastabar H, Abu-Raddad LJ. Global, regional, and national 
incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 
countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, 
and Risk Factors Study 2017. The lancet HIV. 2019 Dec 1;6(12):e831-59. 

42. Sayyah M, Rahim F, Kayedani GA, Shirbandi K, Saki-Malehi A. Global View of HIV 
Prevalence in Prisons: A Systematic Review and Meta-Analysis. Iranian journal of public 
health. 2019 Feb;48(2):217. 

43. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. Journal 
of hepatology. 2019 Jan 1;70(1):151-71. 

44. Xiao J, Wang F, Wong NK, He J, Zhang R, Sun R, Xu Y, Liu Y, Li W, Koike K, He W. Global 
liver disease burdens and research trends: analysis from a Chinese perspective. Journal of 
hepatology. 2019 Jul 1;71(1):212-21. 

45. Ye Q, Zou B, Yeo YH, Li J, Huang DQ, Wu Y, Yang H, Liu C, Kam LY, Tan XX, Chien N. 
Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver 
disease: a systematic review and meta-analysis. The Lancet Gastroenterology & 
Hepatology. 2020 Aug 1;5(8):739-52. 

46. Ye Q, Zou B, Yeo YH, Li J, Huang DQ, Wu Y, Yang H, Liu C, Kam LY, Tan XX, Chien N. 
Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver 
disease: a systematic review and meta-analysis. The Lancet Gastroenterology & 
Hepatology. 2020 Aug 1;5(8):739-52. 

47. Desai AP, Mohan P, Nokes B, Sheth D, Knapp S, Boustani M, Chalasani N, Fallon MB, 
Calhoun EA. Increasing economic burden in hospitalized patients with cirrhosis: analysis 
of a national database. Clinical and translational gastroenterology. 2019 Jul;10(7). 

48. Cook M, Zavala E. The finances of a liver transplant program. Current opinion in organ 
transplantation. 2019 Apr 1;24(2):156-60. 

 



 

   
 

37 

49. Ong KJ, van Hoek AJ, Harris RJ, Figueroa J, Waters L, Chau C, Croxford S, Kirwan P, Brown 
A, Postma MJ, Gill ON. HIV care cost in England: a cross-sectional analysis of 
antiretroviral treatment and the impact of generic introduction. HIV medicine. 2019 
Jul;20(6):377-91. 

50. Brunt EM. Pathology of fatty liver disease. Modern Pathology. 2007 Feb;20(1):S40-8. 

51. Brunt EM. Pathology of nonalcoholic fatty liver disease. Nature reviews Gastroenterology & 
hepatology. 2010 Apr;7(4):195-203. 

52. Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology. 2014 Oct 
1;147(4):754-64. 

53. Morrison ED, Kowdley KV. Genetic liver disease in adults: early recognition of the three most 
common causes. Postgraduate medicine. 2000 Jan 1;107(2):147-59. 

54. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML. Wilson's disease. The Lancet. 2007 
Feb 3;369(9559):397-408. 

55. Afdhal NH, Nunes D. Evaluation of liver fibrosis: a concise review. American Journal of 
Gastroenterology. 2004 Jun 1;99(6):1160-74. 

56. Bataller R, Brenner DA. Liver fibrosis. The Journal of clinical investigation. 2005 Feb 
1;115(2):209-18. 

57. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annual review of pathology: 
mechanisms of disease. 2011 Feb 28;6:425-56. 

58. Ebrahimi H, Naderian M, Sohrabpour AA. New concepts on pathogenesis and diagnosis of 
liver fibrosis; a review article. Middle East journal of digestive diseases. 2016 Jul;8(3):166. 

59. Schuppan D, Afdhal NH. Liver cirrhosis. The Lancet. 2008 Mar 8;371(9615):838-51. 

60. Pinzani M, Rosselli M, Zuckermann M. Liver cirrhosis. Best practice & research Clinical 
gastroenterology. 2011 Apr 1;25(2):281-90. 

61. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. The Lancet. 2014 May 
17;383(9930):1749-61. 

62. Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nature reviews 
Gastroenterology & hepatology. 2010 Aug;7(8):448. 

63. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and 
perspectives. Gut. 2014 May 1;63(5):844-55. 



 

   
 

38 

64. Balogh J, Victor III D, Asham EH, Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM, 
Monsour Jr HP. Hepatocellular carcinoma: a review. Journal of hepatocellular carcinoma. 
2016;3:41. 

65. Bernal W, Auzinger G, Dhawan A, Wendon J. Acute liver failure. The Lancet. 2010 Jul 
17;376(9736):190-201. 

66. Bernal W, Wendon J. Acute liver failure. New England Journal of Medicine. 2013 Dec 
26;369(26):2525-34. 

67. Losser MR, Payen D. Mechanisms of liver damage. InSeminars in liver disease 1996 (Vol. 16, 
No. 04, pp. 357-367). 1996 by Thieme Medical Publishers, Inc. 

68. Dey A, Cederbaum AI. Alcohol and oxidative liver injury. Hepatology. 2006 Feb;43(S1):S63-
74. 

69. McKillop IH, Schrum LW. Alcohol and liver cancer. Alcohol. 2005 Apr 1;35(3):195-203. 

70. Grewal P, Viswanathen VA. Liver cancer and alcohol. Clinics in liver disease. 2012 Nov 
1;16(4):839-50. 

71. Scheuer PJ, Ashrafzadeh P, Sherlock S, Brown D, Dusheiko GM. The pathology of hepatitis 
C. Hepatology. 1992 Apr;15(4):567-71. 

72. Dhillon AP, Dusheiko GM. Pathology of hepatitis C virus infection. Histopathology. 1995 
Apr;26(4):297-309. 

73. Geller SA. Hepatitis B and hepatitis C. Clinics in liver disease. 2002 May 1;6(2):317-34. 

74. Fiel MI. Pathology of chronic hepatitis B and chronic hepatitis C. Clinics in liver disease. 2010 
Nov 1;14(4):555-75. 

75. Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nature reviews 
Gastroenterology & hepatology. 2013 Nov;10(11):656-65. 

76. Byrne CD, Targher G. NAFLD: a multisystem disease. Journal of hepatology. 2015 Apr 
1;62(1):S47-64. 

77. Kaspar MB, Sterling RK. Mechanisms of liver disease in patients infected with HIV. BMJ 
open gastroenterology. 2017 Oct 1;4(1):e000166. 

78. Koziel MJ, Peters MG. Viral hepatitis in HIV infection. New England Journal of Medicine. 
2007 Apr 5;356(14):1445-54. 

79. Soriano V, Vispo E, Labarga P, Medrano J, Barreiro P. Viral hepatitis and HIV co-infection. 
Antiviral research. 2010 Jan 1;85(1):303-15. 



 

   
 

39 

80. Sulkowski MS, Mehta SH, Torbenson MS, Higgins Y, Brinkley SC, De Oca RM, Moore RD, 
Afdhal NH, Thomas DL. Rapid fibrosis progression among HIV/hepatitis C virus-co-
infected adults. Aids. 2007 Oct 1;21(16):2209-16. 

81. Soriano V, Barreiro P, Sherman KE. The changing epidemiology of liver disease in HIV 
patients. AIDS reviews. 2013 Jan 1;15(1):25-31. 

82. Salmon-Ceron D, Lewden C, Morlat P, Bévilacqua S, Jougla E, Bonnet F, Héripret L, 
Costagliola D, May T, Chêne G. Liver disease as a major cause of death among HIV 
infected patients: role of hepatitis C and B viruses and alcohol. Journal of hepatology. 2005 
Jun 1;42(6):799-805. 

83. Soriano V, Puoti M, Garcia-Gasco P, Rockstroh JK, Benhamou Y, Barreiro P, McGovern B. 
Antiretroviral drugs and liver injury. Aids. 2008 Jan 2;22(1):1-3. 

84. Kontorinis N, Dieterich D. Hepatotoxicity of antiretroviral therapy. AIDS reviews. 2003 Jan 
1;5(1):36-43. 

85. Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends 
in Endocrinology & Metabolism. 2000 May 1;11(4):142-8. 

86. Mierzejewska K, Bochtler M, Czapinska H. On the role of steric clashes in methylation control 
of restriction endonuclease activity. Nucleic acids research. 2016 Jan 8;44(1):485-95. 

87. Robertson KD, Wolffe AP. DNA methylation in health and disease. Nature Reviews Genetics. 
2000 Oct;1(1):11-9. 

88. Richardson B. DNA methylation and autoimmune disease. Clinical Immunology. 2003 Oct 
1;109(1):72-9. 

89. Robertson KD. DNA methylation and human disease. Nature Reviews Genetics. 2005 
Aug;6(8):597-610. 

90. Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nature structural & 
molecular biology. 2013 Mar;20(3):274-81. 

91. Rickabaugh TM, Baxter RM, Sehl M, Sinsheimer JS, Hultin PM, Hultin LE, Quach A, 
Martínez-Maza O, Horvath S, Vilain E, Jamieson BD. Acceleration of age-associated 
methylation patterns in HIV-1-infected adults. PloS one. 2015 Mar 25;10(3):e0119201 

92. Horvath S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic clock. The 
Journal of infectious diseases. 2015 Nov 15;212(10):1563-73. 

93. Horvath S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic clock. The 
Journal of infectious diseases. 2015 Nov 15;212(10):1563-73. 



 

   
 

40 

94. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. DNA methylation age 
of blood predicts future onset of lung cancer in the women's health initiative. Aging 
(Albany NY). 2015 Sep;7(9):690. 

95. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, 
Gao Y, Deconde R. Genome-wide methylation profiles reveal quantitative views of human 
aging rates. Molecular cell. 2013 Jan 24;49(2):359-67. 

96. Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is 
associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive 
functioning. Aging (Albany NY). 2015 Dec;7(12):1198. 

97. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, 
Stewart JD, Li Y, Whitsel EA. An epigenetic biomarker of aging for lifespan and 
healthspan. Aging (Albany NY). 2018 Apr;10(4):573. 

98. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart 
JD, Whitsel EA. DNA methylation GrimAge strongly predicts lifespan and healthspan. 
Aging (Albany NY). 2019 Jan 31;11(2):303. 

99. Zhang X, Asllanaj E, Amiri M, Portilla-Fernandez E, Bramer WM, Nano J, Voortman T, Pan 
Q, Ghanbari M. Deciphering the role of epigenetic modifications in fatty liver disease: A 
systematic review. European Journal of Clinical Investigation. 2020 Dec 22:e13479. 

100. Pirola CJ, Gianotti TF, Burgueño AL, Rey-Funes M, Loidl CF, Mallardi P, San Martino J, 
Castaño GO, Sookoian S. Epigenetic modification of liver mitochondrial DNA is 
associated with histological severity of nonalcoholic fatty liver disease. Gut. 2013 Sep 
1;62(9):1356-63. 

101. de Mello VD, Matte A, Perfilyev A, Männistö V, Rönn T, Nilsson E, Käkelä P, Ling C, 
Pihlajamäki J. Human liver epigenetic alterations in non-alcoholic steatohepatitis are 
related to insulin action. Epigenetics. 2017 Apr 3;12(4):287-95. 

102. Sookoian S, Rosselli MS, Gemma C, Burgueño AL, Fernández Gianotti T, Castaño GO, 
Pirola CJ. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: 
Impact of liver methylation of the peroxisome proliferator–activated receptor γ coactivator 
1α promoter. Hepatology. 2010 Dec;52(6):1992-2000. 

103. Kordi-Tamandani DM, Hashemi M, Birjandian E, Bahari A, Valizadeh J, Torkamanzehi A. 
Lack of association of GSTT1 and GSTP1 genes methylation and their expression profiles 
with risk of NAFLD in a sample of Iranian patients. Clinics and research in hepatology and 
gastroenterology. 2011 May 1;35(5):387-92. 

 



 

   
 

41 

104. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, Garrett ME, 
Ashley–Koch A, Suzuki A, Tillmann HL, Hauser MA. Relationship between methylome 
and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013 
Nov 1;145(5):1076-87. 

105. Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Imajo K, Saito S, Yoneda M, Nakamura T, 
Nakajima A, Hotta K. Targeted-bisulfite sequence analysis of the methylation of CpG 
islands in genes encoding PNPLA3, SAMM50, and PARVB of patients with non-alcoholic 
fatty liver disease. Journal of hepatology. 2015 Aug 1;63(2):494-502. 

106. Hotta K, Kikuchi M, Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Kessoku T, Kobayashi 
K, Yoneda M, Imajo K, Tomeno W. Identification of core gene networks and hub genes 
associated with progression of non-alcoholic fatty liver disease by RNA sequencing. 
Hepatology Research. 2017 Dec;47(13):1445-58. 

107. Mwinyi J, Boström AE, Pisanu C, Murphy SK, Erhart W, Schafmayer C, Hampe J, Moylan 
C, Schiöth HB. NAFLD is associated with methylation shifts with relevance for the 
expression of genes involved in lipoprotein particle composition. Biochimica et Biophysica 
Acta (BBA)-Molecular and Cell Biology of Lipids. 2017 Mar 1;1862(3):314-23. 

108. Nano J, Ghanbari M, Wang W, de Vries PS, Dhana K, Muka T, Uitterlinden AG, van Meurs 
JB, Hofman A, Franco OH, Pan Q. Epigenome-wide association study identifies 
methylation sites associated with liver enzymes and hepatic steatosis. Gastroenterology. 
2017 Oct 1;153(4):1096-106. 

109. Ma J, Nano J, Ding J, Zheng Y, Hennein R, Liu C, Speliotes EK, Huan T, Song C, Mendelson 
MM, Joehanes R. A peripheral blood DNA methylation signature of hepatic fat reveals a 
potential causal pathway for nonalcoholic fatty liver disease. Diabetes. 2019 May 
1;68(5):1073-83. 

110. Zeybel M, Hardy T, Robinson SM, Fox C, Anstee QM, Ness T, Masson S, Mathers JC, French 
J, White S, Mann J. Differential DNA methylation of genes involved in fibrosis progression 
in non-alcoholic fatty liver disease and alcoholic liver disease. Clinical epigenetics. 2015 
Dec;7(1):1-1. 

111. Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol research: current reviews. 
2013;35(1):6. 

112. Varela-Rey M, Woodhoo A, Martinez-Chantar ML, Mato JM, Lu SC. Alcohol, DNA 
methylation, and cancer. Alcohol research: current reviews. 2013;35(1):25. 

113. Rosen AD, Robertson KD, Hlady RA, Muench C, Lee J, Philibert R, Horvath S, Kaminsky 
ZA, Lohoff FW. DNA methylation age is accelerated in alcohol dependence. Translational 
psychiatry. 2018 Sep 5;8(1):1-8. 



 

   
 

42 

114. French SW. Epigenetic events in liver cancer resulting from alcoholic liver disease. Alcohol 
research: current reviews. 2013;35(1):57. 

115. Wen L, Li J, Guo H, Liu X, Zheng S, Zhang D, Zhu W, Qu J, Guo L, Du D, Jin X. Genome-
scale detection of hypermethylated CpG islands in circulating cell-free DNA of 
hepatocellular carcinoma patients. Cell research. 2015 Nov;25(11):1250-64. 

116. Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A. Aberrant methylation of 
multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular 
carcinoma. Hepatology. 2008 Mar;47(3):908-18. 

117. Su PF, Lee TC, Lin PJ, Lee PH, Jeng YM, Chen CH, Liang JD, Chiou LL, Huang GT, Lee 
HS. Differential DNA methylation associated with hepatitis B virus infection in 
hepatocellular carcinoma. International journal of cancer. 2007 Sep 15;121(6):1257-64. 

118. Zhao Y, Xue F, Sun J, Guo S, Zhang H, Qiu B, Geng J, Gu J, Zhou X, Wang W, Zhang Z. 
Genome-wide methylation profiling of the different stages of hepatitis B virus-related 
hepatocellular carcinoma development in plasma cell-free DNA reveals potential 
biomarkers for early detection and high-risk monitoring of hepatocellular carcinoma. 
Clinical epigenetics. 2014 Dec;6(1):1-8. 

119. Kao WY, Yang SH, Liu WJ, Yeh MY, Lin CL, Liu CJ, Huang CJ, Lin SM, Lee SD, Chen 
PJ, Yu MW. Genome-wide identification of blood DNA methylation patterns associated 
with early-onset hepatocellular carcinoma development in hepatitis B carriers. Molecular 
carcinogenesis. 2017 Feb;56(2):425-35. 

120. Nano J, Ghanbari M, Wang W, de Vries PS, Dhana K, Muka T, Uitterlinden AG, van Meurs 
JB, Hofman A, Franco OH, Pan Q. Epigenome-wide association study identifies 
methylation sites associated with liver enzymes and hepatic steatosis. Gastroenterology. 
2017 Oct 1;153(4):1096-106. 

121. Karmen A, Wróblewski F, LaDue JS. Transaminase activity in human blood. The Journal of 
clinical investigation. 1955 Jan 1;34(1):126-33. 

122. McGill MR. The past and present of serum aminotransferases and the future of liver injury 
biomarkers. EXCLI journal. 2016;15:817. 

123. Rothschild MA, Oratz M, Schreiber SS. Serum albumin. Hepatology. 1988 Mar;8(2):385-
401. 

124. Fevery J. Bilirubin in clinical practice: a review. Liver International. 2008 May;28(5):592-
605. 

125. Afdhal N, McHutchison J, Brown R, Jacobson I, Manns M, Poordad F, Weksler B, Esteban 
R. Thrombocytopenia associated with chronic liver disease. Journal of hepatology. 2008 
Jun 1;48(6):1000-7. 



 

   
 

43 

126. Mitchell O, Feldman DM, Diakow M, Sigal SH. The pathophysiology of thrombocytopenia 
in chronic liver disease. Hepatic medicine: evidence and research. 2016;8:39. 

127. Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, Fontaine 
H, Pol S. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. 
comparison with liver biopsy and fibrotest. Hepatology. 2007 Jul;46(1):32-6. 

128. Loaeza-del-Castillo A, Paz-Pineda F, Oviedo-Cárdenas E, Sánchez-Avila F, Vargas-
Vorácková F. AST to platelet ratio index (APRI) for the noninvasive evaluation of liver 
fibrosis. Annals of hepatology. 2008;7(4):350-7. 

129. Justice AC, Dombrowski E, Conigliaro J, Fultz SL, Gibson D, Madenwald T, Goulet J, 
Simberkoff M, Butt AA, Rimland D, Rodriguez-Barradas MC. Veterans aging cohort study 
(VACS): overview and description. Medical care. 2006 Aug;44(8 Suppl 2):S13. 

130. Obersteller S, Neubauer H, Hagen RM, Frickmann H. Comparison of five commercial nucleic 
acid extraction kits for the PCR-based detection of Burkholderia Pseudomallei DNA in 
formalin-fixed, paraffin-embedded tissues. European Journal of Microbiology and 
Immunology. 2016 Sep;6(3):244-52. 

131. Chai V, Vassilakos A, Lee Y, Wright JA, Young AH. Optimization of the PAXgene™ blood 
RNA extraction system for gene expression analysis of clinical samples. Journal of clinical 
laboratory analysis. 2005;19(5):182-8. 

132. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of 
DNA methylation data. Bioinformatics. 2014 May 15;30(10):1431-9. 

133. Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, Klengel T, Mehta D, 
Binder EB, Epstein MP, Ressler KJ. Accounting for population stratification in DNA 
methylation studies. Genetic epidemiology. 2014 Apr;38(3):231-41. 

134. Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-Beclin 1 interaction 
regulates autophagy induction. Scientific reports. 2013 Jan 11;3(1):1-1. 

135. Vaccaro MI, Grasso D, Ropolo A, Iovanna JL, Cerquetti MC. VMP1 expression correlates 
with acinar cell cytoplasmic vacuolization in arginine-induced acute pancreatitis. 
Pancreatology. 2003 Jan 1;3(1):69-74. 

136. Liu SY, Chen CL, Yang TT, Huang WC, Hsieh CY, Shen WJ, Tsai TT, Shieh CC, Lin CF. 
Albumin prevents reactive oxygen species-induced mitochondrial damage, autophagy, and 
apoptosis during serum starvation. Apoptosis. 2012 Nov;17(11):1156-69. 

137. Shi Y, Su C, Cui W, Li H, Liu L, Feng B, Liu M, Su R, Zhao L. Gefitinib loaded folate 
decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin 
nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive 
cancer cells. Journal of nanobiotechnology. 2014 Oct;12(1):1-1. 



 

   
 

44 

138. Rottenberg ME, Carow B. SOCS3, a major regulator of infection and inflammation. Frontiers 
in immunology. 2014 Feb 19;5:58. 

139. Jo D, Liu D, Yao S, Collins RD, Hawiger J. Intracellular protein therapy with SOCS3 inhibits 
inflammation and apoptosis. Nature medicine. 2005 Aug;11(8):892-8. 

140. Ogata H, Chinen T, Yoshida T, Kinjyo I, Takaesu G, Shiraishi H, Iida M, Kobayashi T, 
Yoshimura A. Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-
mediated TGF-β 1 production. Oncogene. 2006 Apr;25(17):2520-30. 

141. Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M, Wohlfahrt T, Karouzakis E, 
Ramming A, Gelse K, Yoshimura A. TGF-β–induced epigenetic deregulation of SOCS3 
facilitates STAT3 signaling to promote fibrosis. The Journal of clinical investigation. 2020 
Apr 6;130(5). 

142. Jadid FZ, Chihab H, Alj HS, Elfihry R, Zaidane I, Tazi S, Badre W, Marchio A, El Filali KM, 
Tahiri M, Saile R. Control of progression towards liver fibrosis and hepatocellular 
carcinoma by SOCS3 polymorphisms in chronic HCV-infected patients. Infection, 
Genetics and Evolution. 2018 Dec 1;66:1-8. 

143. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, 
Yasukawa H, Yoshimura A. Socs3 deficiency in the brain elevates leptin sensitivity and 
confers resistance to diet-induced obesity. Nature medicine. 2004 Jul;10(7):739-43. 

144. Zannas AS, Wiechmann T, Gassen NC, Binder EB. Gene–stress–epigenetic regulation of 
FKBP5: clinical and translational implications. Neuropsychopharmacology. 2016 
Jan;41(1):261-74. 

145. Sidibeh CO, Pereira MJ, Abalo XM, Boersma GJ, Skrtic S, Lundkvist P, Katsogiannos P, 
Hausch F, Castillejo-López C, Eriksson JW. FKBP5 expression in human adipose tissue: 
potential role in glucose and lipid metabolism, adipogenesis and type 2 diabetes. 
Endocrine. 2018 Oct;62(1):116-28. 

146. Kusumanchi P, Liang T, Zhang T, Ross RA, Han S, Chandler K, Oshodi A, Jiang Y, Dent 
AL, Skill NJ, Huda N. Stress-responsive gene FKBP5 mediates alcohol-induced liver 
injury through the hippo pathway and CXCL1 signaling. Hepatology. 2020 Nov 1. 

147. Stechschulte LA, Qiu B, Warrier M, Hinds Jr TD, Zhang M, Gu H, Xu Y, Khuder SS, Russo 
L, Najjar SM, Lecka-Czernik B. FKBP51 null mice are resistant to diet-induced obesity 
and the PPARγ agonist rosiglitazone. Endocrinology. 2016 Oct 1;157(10):3888-3900. 

148. Cai MY, Luo RZ, Chen JW, Pei XQ, Lu JB, Hou JH, Yun JP. Overexpression of ZEB2 in 
peritumoral liver tissue correlates with favorable survival after curative resection of 
hepatocellular carcinoma. PLoS One. 2012 Feb 29;7(2):e32838. 



 

   
 

45 

149. Zhao YX, Sun YY, Huang AL, Li XF, Huang C, Ma TT, Li J. MicroRNA-200a induces 
apoptosis by targeting ZEB2 in alcoholic liver disease. Cell Cycle. 2018 Jan 17;17(2):250-
62. 

150. Xu X, Chang X, Xu Y, Deng P, Wang J, Zhang C, Zhu X, Chen S, Dai D. SAMD14 promoter 
methylation is strongly associated with gene expression and poor prognosis in gastric 
cancer. International journal of clinical oncology. 2020 Mar 21:1-0. 

151. Willmer T, Johnson R, Louw J, Pheiffer C. Blood-based DNA methylation biomarkers for 
type 2 diabetes: potential for clinical applications. Frontiers in endocrinology. 2018 Dec 
4;9:744. 

152. Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic 
syndrome, and weight loss. Epigenetics. 2019 May 4;14(5):421-44. 

153. Das PM, Singal R. DNA methylation and cancer. Journal of clinical oncology. 2004 Nov 
15;22(22):4632-42. 

154. Li L, Choi JY, Lee KM, Sung H, Park SK, Oze I, Pan KF, You WC, Chen YX, Fang JY, 
Matsuo K. DNA methylation in peripheral blood: a potential biomarker for cancer 
molecular epidemiology. Journal of epidemiology. 2012 Sep 5;22(5):384-94. 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 



 

   
 

46 

TABLES 

Table 1. Characteristics of participants grouped by platform used for genome-wide DNA methylation profiling. 

Characteristic 450K 
(N = 473) 

EPIC 
(N = 488) 

Overall 
(N = 961) 

P-value 

ALT (units/L) 38.8 (24.9) 34.1 (21.2) 36.4 (23.2) 1.9´10-3 

AST (units/L) 43.4 (28.1) 37.0 (20.1) 40.2 (24.6) 7.3´10-5 

Serum Albumin (mg/dL) 3.84 (0.489) 3.95 (0.457) 3.90 (0.476) 2.9´10-4 

Total Serum Bilirubin (mg/dL) 0.78 (0.485) 0.76 (0.513) 0.77 (0.500) 0.61 

Platelet Count (x109/L) 224 (71.3) 232 (69.4) 228 (70.4) 8.0´10-2 

FIB-4 Score 1.81 (1.22) 1.57 (0.943) 1.69 (1.09) 8.5´10-4 

APRI Score 0.58 (0.602) 0.47 (0.393) 0.52 (0.509) 8.4´10-4 

Age (years) 51.8 (7.53) 50.7 (7.48) 51.2 (7.52) 3.1´10-2 

Race    1.00 

Black 402 (85.0%) 391 (80.1%) 793 (82.5%)  

Non-Black 71 (15.0%) 97 (19.9%) 168 (17.5%)  

Smoking Status    1.00 

Not Current 203 (42.9%) 210 (43.0%) 413 (43.0%)  

Current 270 (57.1%) 278 (57.0%) 548 (57.0%)  

Diabetes Status    1.00 

No 390 (82.5%) 406 (83.2%) 796 (82.8%)  

Yes 83 (17.5%) 82 (16.8%) 165 (17.2%)  

BMI 25.4 (4.44) 25.9 (4.43) 25.6 (4.44)   0.14 

Missing 8 (1.7%) 9 (1.8%) 17 (1.8%)  

Alcohol Use    1.00 

Non-Hazardous 195 (41.2%) 191 (39.1%) 386 (40.2%)  

Hazardous 276 (58.4%) 297 (60.9%) 573 (59.6%)  

Ever Hep C Infection    1.00 

No 241 (51.0%) 312 (63.9%) 553 (57.5%)  

Yes 232 (49.0%) 176 (36.1%) 408 (42.5%)  

Ever Hep B Infection    1.00 

No 399 (84.4%) 430 (88.1%) 829 (86.3%)  

Yes 52 (11.0%) 40 (8.2%) 92 (9.6%)  

CD4 Count 411 (252) 442 (263) 427 (258) 6.4´10-2 

Viral Load    1.00 

Suppressed 196 (41.4%) 204 (41.8%) 400 (41.6%)  

Unsuppressed 274 (57.9%) 284 (58.2%) 558 (58.1%)  

Statistics for numeric variables are presented as mean (sd), while those for categorical variables are presented as count (%). Counts across 
levels of some categorical variables may not sum to the corresponding total due to missing values. 
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Table 2. Linear association of covariates with selected liver markers 

 Liver Biomarker 

 ln(AST) ln(ALT) ln(FIB-4) ln(APRI) 

Covariate b SE P b SE P b SE P b SE P 

Age 3.0x10-3 2.2x10-3 0.17 6.3x10-4 2.5x10-3 0.80 2.4x10-2 2.2x10-3 4.1x10-25 3.6x10-3 3.0x10-3 0.23 

Race -6.3x10-2 4.3x10-2 0.14 5.1x10-2 4.9x10-2 0.30 -7.4x10-2 4.4x10-2 9.0x10-2 -4.0x10-2 5.9x10-2 0.50 

Current 
Smoking 

9.1x10-3 3.3x10-2 0.78 -3.1x10-2 3.7x10-2 0.41 5.0x10-2 3.3x10-2 0.14 2.6x10-2 4.5x10-2 0.57 

Diabetes -8.1x10-3 4.4x10-2 0.85 2.9x10-2 5.0x10-2 0.57 -3.6x10-2 4.4x10-2 0.41 -2.1x10-2 6.0x10-2 0.72 

BMI -8.1x10-3 3.7x10-3 0.03 9.2x10-3 4.2x10-3 2.8x10-2 -1.3x10-2 3.8x10-3 8.3x10-4 8.1x10-3 5.1x10-2 0.11 

Hazardous 
Alcohol Use 

0.13 3.3x10-2 7.5 x10-5 0.11 3.8x10-2 2.9x10-2 6.8x10-2 3.4x10-2 4.3x10-2 0.12 4.5x10-2 1.1x10-2 

Ever HCV 0.48 3.0x10-2 3.7x10-51 0.48 3.5x10-2 2.2 x10-39 0.37 3.2x10-2 4.2x10-29 0.61 4.1x10-2 8.7x10-45 

Ever HBV 9.4x10-2 5.6x10-2 9.5x10-2 0.10 6.3x10-2 0.11 0.18 5.6x10-2 1.5x10-3 0.23 7.6x10-2 2.5x10-3 

ART Use -7.0 x10-3 4.3x10-2 0.87 9.7x10-2 4.9x10-2 4.8x10-2 -7.1x10-2 4.4x10-2 0.11 -2.1x10-2 5.9x10-2 0.72 

CD4 Count -1.7x10-4 6.3x10-5 8.0x10-3 2.7x10-5 7.2x10-5 0.71 -4.7x10-4 6.2x10-5 6.7x10-14 -4.1x10-4 8.6x10-5 2.5x10-6 

Viral Load -6.7x10-2 3.3x10-2 4.7x10-2 7.2x10-2 3.8x10-2 5.7x10-2 -0.17 3.3x10-2 7.0x10-7 -0.13 4.6x10-2 4.6x10-3 

CD8 T Prop -0.16 0.16 0.31 -0.16 0.18 0.38 7.5x10-2 0.16 0.65 6.2x10-3 0.22 0.98 

CD4 T Prop -0.23 0.29 0.42 0.44 0.33 0.18 -0.79 0.30 8.1x10-3 -0.45 0.40 0.26 

NK Prop 0.79 0.28 4.8x10-3 0.63 0.31 4.6x10-2 0.95 0.28 8.4x10-4 1.2 0.38 1.9x10-2 

B Cell Prop 1.5 0.37 4.9x10-5 1.9 0.41 2.4x10-6 0.92 0.38 1.5x10-2 1.8 0.51 4.9x10-4 

Mono Prop 1.6 0.41 1.1x10-4 0.71 0.47 0.13 2.3 0.42 2.3x10-8 2.6 0.57 4.1x10-6 

Gran Prop -0.55 0.14 1.2x10-4 -0.63 0.16 8.4x10-5 -0.57 0.14 8.7x10-5 -0.86 0.19 9.3x10-6 
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Table 2 (Continued) 

 Liver Biomarker 

 ALB TBILI Platelet Count 

Covariate b SE P b SE P b SE P 

Age -1.4x10-3 2.1x10-3 0.49 3.4x10-3 2.2x10-3 0.12 -0.14 0.31 0.64 

Race 0.24 4.0x10-2 3.8x10-9 0.12 4.3x10-2 5.4x10-3 -10.6 6.0 7.7x10-2 

Current 
Smoking -0.13 3.1x10-2 4.9x10-5 -1.5x10-2 3.3x10-2 0.65 0.50 4.6 0.91 

Diabetes -4.2x10-2 4.2x10-2 0.31 2.5x10-2 4.4x10-2 0.56 3.4 6.2 0.58 

BMI 1.3x10-2 3.5x10-3 3.3x10-4 2.2x10-3 3.7x10-3 0.56 0.16 0.52 0.77 

Hazardous 
Alcohol Use -0.13 3.1x10-2 2.0x10-5 -3.0x10-2 3.3x10-2 0.37 3.1 4.7 0.51 

Ever HCV -0.19 3.1x10-2 2.1x10-9 8.1x10-2 3.4x10-2 1.7x10-2 -23.7 4.7 4.2x10-7 

Ever HBV -0.14 5.3x10-2 7.4x10-3 7.9x10-2 5.6x10-2 0.16 -18.3 7.8 2.0x10-2 

ART Use 0.18 4.1x10-2 1.5x10-5 0.13 4.3x10-2 2.6x10-3 5.9 6.1 0.33 

CD4 Count 4.0x10-4 5.9x10-5 1.2x10-11 2.6x10-5 6.4x10-5 0.69 5.7x10-2 8.8x10-3 1.4x10-10 

Viral Load 0.25 3.1x10-2 3.4x10-15 0.17 3.3x10-2 6.3x10-7 14.2 4.7 2.4x10-3 

CD8 T Prop -8.9x10-2 0.15 0.56 2.4x10-2 0.16 0.88 -8.8 22.6 0.70 

CD4 T Prop 1.7 0.27 6.4x10-10 0.12 0.30 0.69 78.5 41.2 5.7x10-2 

NK Prop -0.81 0.26 2.3x10-3 -0.20 0.28 0.47 -117.7 39.1 2.7x10-3 

B Cell Prop 0.41 0.35 0.25 0.44 0.37 0.23 -51.4 51.6 0.32 

Mono Prop -0.55 0.39 0.16 0.46 0.41 0.27 -183.8 57.8 1.5x10-3 

Gran Prop -3.0x10-2 0.14 0.83 -0.22 0.14 0.13 49.2 20.1 1.4x10-2 

Linear models are adjusted for age, except when age is the outcome. Results that remained significant after FDR correction to Q < 0.05 are 
highlighted in yellow. Abbreviations: AST, aspartate transaminase (units/L); ALT, alanine transaminase (units/L); ALB, serum albumin 
(mg/dL); TBILI, total bilirubin (mg/dL); PLT, platelet count (cells/μL). 
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Table 3. Associations between DNA methylation age acceleration and selected biomarkers of liver function 

 Model 

Liver Marker  
Liver Marker 

~ 
PhenoAA + Covariates 

Liver Marker 
~ 

GrimAA + Covariates 

Liver Marker 
~ 

IEAA + Covariates 

Liver Marker 
~ 

EEAA + Covariates 

ln(AST) 

b 2.5x10-3 7.9x10-3 2.6x10-3 1.9x10-3 

SE 2.1x10-3 4.0x10-3 2.8x10-3 2.8x10-3 

P 0.23 0.05 0.36 0.51 

ln(ALT) 

b 1.9x10-4 3.4x10-3 1.3x10-3 5.5x10-4 

SE 2.5x10-3 4.7x10-3 3.3x10-3 3.3x10-3 

P 0.94 0.47 0.69 0.87 

ALB 

b -7.0x10-3 -7.2x10-3 -4.1x10-3 -4.3x10-3 

SE 2.1x10-3 4.0x10-3 2.8x10-3 2.8x10-3 

P 8.6x10-4 0.07 0.15 0.12 

TBILI 

b -4.9x10-3 -1.8x10-3 2.1x10-3 2.0x10-3 

SE 2.3x10-3 4.4x10-3 3.2x10-3 3.1x10-3 

P 0.04 0.69 0.50 0.52 

PLT 

b -0.48 -0.12 -0.21 -0.72 

SE 0.32 0.61 0.44 0.43 

P 0.14 0.84 0.64 0.09 

ln(FIB-4) 

b 1.4x10-3 -5.5x10-4 -1.4x10-3 1.8x10-3 

SE 2.2x10-3 4.1x10-3 2.9x10-3 2.9x10-3 

P 0.53 0.89 0.63 0.54 

ln(APRI) 

b 1.3x10-3 3.2x10-3 2.6x10-4 3.7x10-3 

SE 2.9x10-3 5.5x10-3 3.9x10-3 3.9x10-3 

P 0.64 0.56 0.95 0.34 

Biomarker values were ln-transformed when needed to achieve a more normal distribution as indicated on the left and then regressed on each 
DNA methylation age acceleration metric in linear models that control for the covariates included in the EWAS model. Associations that 
remained significant after FDR adjustment at Q < 0.05 are highlighted in yellow. Abbreviations: AST, aspartate aminotransferase (units/L); 
ALT, alanine aminotransferase (units/L); ALB, serum albumin (mg/dL); TBILI, total bilirubin level (mg/dL); PLT, platelet count (cells/µL); 
FIB-4, FIB-4 score; APRI, APRI score; PhenoAA, phenotype age acceleration; GrimaAA, Grim age acceleration; IEAA, intrinsic epigenetic 
age acceleration; EEAA, extrinsic epigenetic age acceleration. 
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Table 4. CpG sites significantly associated with selected liver markers after meta-analysis and FDR correction 

Serum Albumin 

     Meta-analysis    EPIC     450K   

CpG Chr. Pos. Gene b SE P b SE P b SE P 

cg16936953 17 57915665 TMEM49 1.2 0.21 4.2x10-9 1.0 0.29 6.6x10-4 1.4 0.29 1.7x10-6 

cg18181703 17 76354621 SOCS3 1.9 0.35 9.5x10-8 2.3 0.45 9.9x10-7 1.3 0.55 2.1x10-2 

cg03546163 6 35654363 FKBP5 1.1 0.20 1.1x10-7 1.2 0.26 9.2x10-6 0.94 0.33 4.5x10-3 

cg18942579 17 57915773 TMEM49 1.4 0.26 1.1x10-7 1.2 0.34 7.3x10-4 1.7 0.41 3.2x10-5 

cg01409343 17 57915740 TMEM49 1.7 0.32 1.2x10-7 1.7 0.43 1.4x10-4 1.8 0.48 3.1x10-4 

cg20995564 2 145172035 ZEB2 1.2 0.23 1.9x10-7 1.5 0.29 3.0x10-7 0.66 0.39 9.1x10-2 

cg23966214 17 48203188 SAMD14 3.5 0.70 4.7x10-7 3.2 0.81 8.7x10-5 4.4 1.4 1.6x10-3 

cg12054453 17 57915717 TMEM49 1.0 0.20 5.0x10-7 0.7 0.29 1.1x10-2 1.3 0.28 8.4x10-6 

cg12992827 3 101901234 - 1.9 0.38 8.0x10-7 2.2 0.47 4.0x10-6 1.3 0.66 5.5x10-2 

 
Results for CpG sites where DNA methylation remained significantly associated with serum albumin after meta-analysis and FDR correction to 
Q < 0.05 are presented, including statistics from the meta-analysis and from the separate EWAS of the two cohorts. No significant associations 
were identified after meta-analysis and FDR correction for AST, ALT, total serum albumin, platelet count, FIB-4 score, or APRI score, so those 
markers are excluded from the table. b coefficients represent the average change in serum albumin (mg/dL) expected for a increase in DNA 
methylation from 0% to 100%. 
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Figure 1: Correlation matrix based on Pearson coefficients for selected liver markers among all study 
participants. The strength and direction of each correlation is indicated by the size and color of its representative 
circle in the matrix. A legend for the colors is included beneath the matrix. Values of the Pearson correlation 
coefficients are also presented within the circles. Grayed-out squares indicate that the observed correlation 
coefficient is not statistically significant after Bonferroni correction to an overall a = 0.05. 
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Figure 2: Scatter plot of serum albumin values across values for phenotypic age acceleration (PhenoAA) 
among the entire cohort. An unadjusted best-fit line is included (b = -0.014, P-value = 1.6´10-13). 
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Figure 3. Manhattan plot of unadjusted P-values from meta-analysis of EWAS results for serum albumin. 
The red line indicates the unadjusted P-value that corresponds to a threshold for FDR significance at Q < 0.05. 
DNA methylation was not significantly associated with serum albumin at any CpG site after a more restrictive 
Bonferroni correction to an overall a = 0.05. 
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Figure 4: Quantile-quantile plot of unadjusted P-values from meta-analysis of EWAS results for serum 
albumin. The global inflation factor was 1.02. Red lines represent a perfect 1:1 association with a 95% confidence 
interval. 



 

   
 

55 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Correlation of b coefficients obtained from separate EWAS of serum albumin among the EPIC 
and 450K cohorts for the 100 CpG sites with the smallest unadjusted P-values after meta-analysis. Beta 
coefficients from the separate analyses are positively correlated (r = 0.89, P-value < 0.001), indicating that the 
signs of observed beta coefficient are consistent between the two datasets. Circles representing P-value pairs that 
were significant after meta-analysis and FDR correction to Q < 0.05 are highlighted in red. 
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Supplementary Tables & Figures 
 

Supplementary Table 1: Top meta-analyzed CpG sites with smallest unadjusted P-values for association between methylation and 
each selected biomarker. 

 

ln(AST) 
      Meta     EPIC     450K   

CpG Chr Pos Gene b SE P b SE P b SE P 

cg14218844 18 56709536 LOC390858 3.4 0.66 2.7x10-7 4.1 0.76 1.9x10-7 1.4 1.3 0.27 

cg26312951 21 42797847 MX1 -0.87 0.18 1.1x10-6 -0.86 0.28 2.3x10-3 -0.89 0.23 1.9x10-4 

cg19939130 1 158978468 IFI16 -2.9 0.59 1.2x10-6 -2.3 0.70 8.6x10-4 -4.3 1.1 1.7x10-4 

cg18759102 1 3100343 PRDM16 -4.2 0.87 1.9x10-6 -4.4 1.0 3.0x10-5 -3.6 1.6 2.6x10-2 

cg06188083 10 91093005 IFIT3 -0.76 0.16 3.2x10-6 -0.60 0.22 7.9 x10-3 -0.95 0.24 9.2x10-5 

cg11829870 22 50988451 KLHDC7B -1.7 0.38 5.5x10-6 -1.1 0.48 2.8x10-2 -2.8 0.61 7.5x10-6 

cg02247863 22 50983415 - -1.9 0.43 7.1x10-6 -1.4 0.56 1.6x10-2 -2.8 0.68 4.7x10-5 

cg15796173 22 26934515 TPST2 5.4 1.2 9.9x10-6 4.3 1.5 3.3x10-3 7.9 2.2 4.3x10-4 

cg14793819 3 196669628 LOC152217 
NCBP2 2.9 0.66 1.0x10-5 3.5 0.79 1.0x10-5 1.4 1.2 0.24 

cg21366673 6 30459512 HLA-E -1.5 0.35 1.1x10-5 -1.2 0.40 9.4x10-3 -3.0 0.70 2.1x10-5 

 

ln(ALT) 
      Meta     EPIC     450K   

CpG Chr Pos Gene b SE P b SE P b SE P 

cg11367159 12 110044531 - -1.6 0.31 5.5x10-7 -2.0 0.42 3.1x10-6 -1.0 0.47 2.7x10-2 

cg03140421 16 67200181 HSF4 -2.7 0.56 2.3x10-6 -2.0 0.78 1.2x10-2 -3.4 0.82 3.3x10-5 

cg20204986 11 32448067 WT1 -2.1 0.45 3.2x10-6 -2.0 0.56 3.4x10-4 -2.2 0.76 3.4x10-3 

cg06780216 16 2374397 ABCA3 8.0 1.7 3.8x10-6 8.9 2.8 2.0x10-3 7.5 2.2 6.7x10-4 

cg04363281 2 121224648 LOC84931 -2.4 0.52 5.6x10-6 -2.2 0.68 1.2x10-3 -2.6 0.82 1.6x10-3 

cg19867481 5 1282984 TERT 4.0. 0.88 6.2x10-6 3.8 1.2 1.8x10-3 4.2 1.3 1.3x10-3 

cg16904639 1 224033060 TP53BP2 6.0 1.3 6.3x10-6 2.9 1.8 0.11 9.3 1.9 1.9x10-6 

cg27127351 8 670293 ERICH1 16 3.6 7.1x10-6 16.9 3.9 1.6x10-5 11 9.9 0.26 

cg26312951 21 42797847 MX1 -0.94 0.21 8.5x10-6 -0.96 0.35 6.1x10-3 -0.92 0.26 5.4x10-4 

cg13946956 9 899635 DMRT1 -1.5 0.34 8.6x10-6 -2.4 0.44 2.4x10-7 -0.35 0.52 0.51 
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Supplementary Table 1 (Continued) 

 

ALB 

      Meta     EPIC     450K   

CpG Chr Pos Gene b SE P b SE P b SE P 

cg16936953 17 57915665 TMEM49 1.2 0.21 4.2x10-9 1.0 0.29 6.6x10-4 1.4 0.29 1.7x10-6 

cg18181703 17 76354621 SOCS3 1.9 0.35 9.5x10-8 2.3 0.45 9.9x10-7 1.3 0.55 2.1x10-2 

cg03546163 6 35654363 FKBP5 1.1 0.20 1.1x10-7 1.2 0.26 9.2x10-6 0.94 0.33 4.5x10-3 

cg18942579 17 57915773 TMEM49 1.4 0.26 1.1x10-7 1.2 0.34 7.3x10-4 1.7 0.41 3.2x10-5 

cg01409343 17 57915740 TMEM49 1.7 0.32 1.2x10-7 1.7 0.43 1.4x10-4 1.8 0.48 3.1x10-4 

cg20995564 2 145172035 ZEB2 1.2 0.23 1.9x10-7 1.5 0.29 3.0x10-7 0.66 0.39 9.1x10-2 

cg23966214 17 48203188 SAMD14 3.5 0.70 4.7x10-7 3.2 0.81 8.7x10-5 4.4 1.4 1.6x10-3 

cg12054453 17 57915717 TMEM49 1.0 0.20 5.0x10-7 0.74 0.29 1.1x10-2 1.3 0.28 8.4x10-6 

cg12992827 3 101901234 - 1.9 0.38 8.0x10-7 2.2 0.47 4.0x10-6 1.3 0.66 5.5x10-2 

cg16583186 16 81526361 CMIP 1.4 0.29 1.5x10-6 1.2 0.44 7.5x10-3 1.6 0.39 6.4x10-5 

 

TBILI 

      Meta     EPIC     450K   

CpG Chr Pos Gene b SE P b SE P b SE P 

cg21497060 2 152590396 NEB -3.6 0.71 3.0x10-7 -4.0 0.79 1.1x10-6 -2.4 1.6 0.13 

cg23091255 6 64345855 - 3.3 0.68 9.5x10-7 5.2 0.85 2.3x10-9 -0.08 1.4 0.94 

cg23747525 20 37064089 LOC388796 
SNORA71D 6.9 1.4 1.1x10-6 6.9 1.6 1.6x10-5 6.8 3.2 3.5x10-2 

cg06882901 10 25013879 ARHGAP21 -11 2.5 2.7x10-6 -12 3.4 3.7x10-4 -11 3.6 2.6x10-3 

cg00617975 22 46644463 C22orf40 3.5 0.75 3.5x10-6 3.4 0.80 4.0x10-5 4.2 2.0 3.9x10-2 

cg12723809 4 87813066 C4orf36 3.7 0.80 3.8x10-6 4.6 1.0 8.5x10-6 2.2 1.3 9.1x10-2 

cg07134589 8 110551993 EBAG9 5.3 1.2 6.0x10-6 5.7 1.2 3.9x10-6 0.15 4.3 0.97 

cg06783121 5 176314628 HK3 -4.1 0.91 7.4x10-6 -4.9 1.3 1.3x10-4 -3.2 1.3 1.6x10-2 

cg03293770 11 61197075 SDHAF2 
CPSF7 3.9 0.87 7.6x10-6 3.9 1.6 1.4x10-2 3.9 1.0 2.2x10-4 

cg20754634 17 7218651 GPS2 6.7 1.5 8.9x10-6 5.1 2.0 1.3x10-2 8.8 2.3 1.3x10-4 
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Supplementary Table 1 (Continued) 

 

PLT 

      Meta     EPIC     450K   

CpG Chr Pos Gene b SE P b SE P b SE P 

acg265631
41 2 88124876 RGPD2 -254 49 2.0x10-7 -234 67 5.2x10-4 -277 72 1.3x10-4 

cg1597149
6 17 695156 RNMTL1 -407 85 1.7 x10-6 -563 118 2.7x10-6 -237 123 5.6x10-2 

cg2075255
3 3 43527232 ANO10 1006 216 3.4 x10-6 1213 263 5.6x10-6 569 382 0.14 

cg2081939
7 9 123964132 RAB14 270 60 6.6x10-6 242 86 5.2x10-3 296 83 4.4x10-4 

cg2634619
7 5 53813541 SNX18 -1798 408 1.1x10-5 -2288 654 5.3 x10-4 -1485 523 4.8 x10-3 

cg0009230
9 4 185934797 - 177 41 1.3x10-5 223 54 4.8x10-5 118 61 5.4x10-2 

cg2611065
3 13 38924412 UFM1 454 104 1.4x10-5 344 125 6.4x10-3 705 189 2.3x10-4 

cg1129655
3 5 612297 CEP72 1134 265 1.8x10-5 1207 354 7.4x10-4 1042 398 9.2x10-3 

cg0681284
0 17 7492524 SOX15 -341 80 2.2x10-5 -422 99 2.9x10-5 -191 136 0.16 

cg1794110
9 19 17407198 ABHD8 -513 122 2.5x10-5 -658 157 3.4x10-5 -292 193 0.13 

 

ln(FIB-4) 

      Meta     EPIC     450K   

CpG Chr Pos Gene b SE P b SE P b SE P 

cg2295562
8 19 45752130 NA -19 3.8 9.9x10-7 -23.55 5.21 8.8x10-6 -13 5.7 2.1x10-2 

cg0528359
7 3 52812410 ITIH1 2.3 0.49 2.1x10-6 1.45 0.63 2.3x10-2 3.6 0.76 4.4x10-6 

cg1939367
7 15 67841407 MAP2K5 2.9 0.61 2.5x10-6 2.84 0.73 1.1x10-4 2.9 1.1 9.1x10-3 

cg2194619
5 2 86012225 ATOH8 2.2 0.47 4.4x10-6 2.22 0.57 1.2x10-4 2.0 0.83 1.6x10-2 

cg0620473
5 14 74892986 TMEM90A -2.4 0.52 6.4x10-6 -2.41 0.58 3.7x10-5 -2.1 1.2 8.9x10-2 

cg2024946
9 12 11801908 ETV6 -19 4.2 6.8x10-6 -19.43 48 5.8x10-5 -17 8.8 5.6x10-2 

cg1049318
6 1 3134756 PRDM16 1.5 0.33 7.1x10-6 1.24 0.47 8.6x10-3 1.7 0.47 2.5x10-4 

cg0460397
6 19 4052706 ZBTB7A 23 0.51 8.2x10-6 1.92 0.68 5.0x10-3 2.7 0.76 4.7x10-4 

cg2659671
9 7 142986429 CASP2 1.3 0.30 9.5x10-6 1.73 0.40 2.6x10-5 0.85 0.45 6.3x10-2 

cg2282263
0 13 27692257 USP12 6.2 1.4 1.0x10-5 6.37 1.66 1.5x10-4 5.8 2.6 3.0x10-2 
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Supplementary Table 1 (Continued) 

 

ln(APRI) 

      Meta     EPIC     450K   

CpG Ch
r Pos Gene b SE P b SE P b SE P 

cg22955628 19 45752130 - -24 5.1 2.3x10-6 -27 6.9 9.5x10-5 -20 7.6 7.9x10-3 

cg26312951 21 42797847 MX1 -1.1 0.24 2.9x10-6 -1.6 0.38 2.7x10-5 -0.81 0.32 1.2x10-2 

cg06204735 14 74892986 TMEM90A -3.2 0.69 4.8x10-6 -3.3 0.76 2.0x10-5 -2.6 1.7 0.12 

cg21366673 6 30459512 HLA-E -2.2 0.48 5.4x10-6 -1.5 0.55 7.2x10-3 -4.3 0.96 1.4x10-5 

cg12674760 5 178577498 ADAMTS2 -5.3 1.2 6.9x10-6 -5.3 1.6 1.3x10-3 -5.3 1.7 2.0x10-3 

cg01740002 2 45475777 - 5.1 1.1 7.0x10-6 6.8 1.5 1.1x10-5 3.0 1.7 8.2x10-2 

cg20298895 18 42260130 SETBP1 12 2.6 8.7x10-6 12 3.1 9.3x10-5 9.6 4.6 3.7x10-2 

cg20249469 12 11801908 ETV6 -25 5.6 8.9x10-6 -26 6.3 3.7x10-5 -19 12 0.11 

cg07455789 2 232419317 - 3.8 0.87 1.0x10-5 3.6 1.2 3.6x10-3 4.0 1.2 1.1x10-3 

cg07011778 8 144105570 - -4.6 1.1 1.7x10-5 -4.3 1.3 5.7x10-4 -5.1 2.0 1.1x10-2 

 
 
For each biomarker of liver function, the ten CpG sites where DNA methylation associates with the biomarker with the smallest P-values after 
meta-analysis are presented along with genomic annotations and EWAS statistics. CpG sites that were not included in both platforms and thus 
could not be meta-analyzed are excluded. Abbreviations: AST, aspartate aminotransferase (units/L); ALT, alanine aminotransferase (units/L); 
ALB, serum albumin (mg/dL); TBILI, total bilirubin level (mg/dL); PLT, platelet count (cells/µL). 
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Supplementary Table 2: Top non-meta-analyzed CpG sites with smallest unadjusted P-values for association between methylation and 
each selected biomarker. 
  

 ln(AST) 

CpG Chr Pos Gene Platform b SE P 

cg09836914 6 33449182 - EPIC -1.9 0.39 8.9x10-7 

cg04948230 19 39402846 CCER2 EPIC -1.8 0.37 2.8x10-6 

cg04543048 15 61055941 RORA EPIC 3.0 0.64 6.7x10-6 

cg00115090 1 113242166 MOV10 EPIC -5.2 1.2 1.1x10-5 

cg15015917 19 39402823 CCER2 EPIC -1.6 0.35 1.1x10-5 

cg18428234 12 52652742 - 450K 2.8 0.62 1.2x10-5 

cg15870857 14 104742172 - EPIC 1.8 0.41 1.4x10-5 

cg14429846 10 75991175 ADK EPIC -4.3 0.99 1.8x10-5 

cg14029100 14 75518411 MLH3 EPIC -2.1 0.48 1.9x10-5 

cg10874977 4 4696317 STX18-AS1 EPIC 3.0 0.69 2.0x10-5 

  

 ln(ALT) 

CpG Chr Pos Gene Platform b SE P 

cg06347851 5 124347050 - EPIC -4.0 0.75 2.2x10-7 

cg09836914 6 33449182 - EPIC -2.5 0.48 4.4x10-7 

cg01754642 3 39150244 GORASP1 
TTC21AT EPIC -4.2 0.83 7.1x10-7 

cg08756327 4 46895394 COX7B2 EPIC 3.8 0.81 3.1x10-6 

cg20535253 4 122875768 - EPIC 6.1 1.3 6.8x10-6 

cg03196177 10 93862017 CPEB3 EPIC 6.5 1.4 7.2x10-6 

cg01087242 20 33030037 ITCH EPIC 6.9 1.5 8.2x10-6 

cg23299862 1 53326448 ZYG11A EPIC -4.0 0.87 8.8x10-6 

cg10239476 1 159568244 - EPIC 6.2 1.4 9.1x10-6 

cg20829688 13 42621527 DGKH EPIC -2.1 0.46 1.1x10-5 
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Supplementary Table 2 (Continued) 

  

 ALB 

CpG Chr Pos Gene Platform b SE P 

cg15020309 20 23848170 - EPIC 2.1 0.45 3.5x10-6 

cg19700645 15 79705656 - EPIC -3.3 0.70 3.6x10-6 

cg25121721 4 160218463 RAPGEF2 EPIC 1.6 0.33 4.4x10-6 

cg02491794 2 47204734 TTC7A EPIC 4.0 0.87 4.9x10-6 

cg22898516 12 3011514 TULP3 EPIC 3.0 0.65 6.5x10-6 

cg04615481 8 141074581 TRAPPC9 EPIC 4.6 1.0 6.7x10-6 

cg01532746 20 5510187 - EPIC 1.1 0.23 8.8x10-6 

cg17144326 3 193963847 LOC100505920 EPIC 3.3 0.73 9.0x10-6 

cg11211173 1 160102000 ATP1A2 EPIC 3.4 0.75 9.4x10-6 

cg21682939 4 34260762 - EPIC 1.6 0.36 1.1x10-5 

  

 TBILI 

CpG Chr Pos Gene Platform b SE P 

cg20717792 17 17111358 - EPIC -4.0 0.72 5.6x10-8 

cg26070749 8 129182593 - EPIC -5.6 1.2 2.3x10-6 

cg09704072 3 31872626 OSBPL10 EPIC -3.4 0.72 3.4x10-6 

cg16082566 1 45355704 EIF2B3 EPIC -2.6 0.56 6.7x10-6 

cg07091392 4 170533728 NEK1 EPIC 3.2 0.71 7.0x10-6 

cg11062835 2 55390630 - EPIC -4.6 1.0 7.9x10-6 

cg24762192 1 154292657 AQP10 EPIC -4.9 1.1 9.4x10-6 

cg15586258 8 129806984 - EPIC 9.5 2.1 1.2x10-5 

cg14087804 5 67101830 - EPIC -3.9 0.88 1.5x10-5 

cg13671412 19 5335254 PTPRS EPIC -4.0 0.72 5.6x10-5 
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Supplementary Table 2 (Continued) 

  
 

PLT 

CpG Chr Pos Gene Platform b SE P 

cg02314501 3 14639595 - EPIC 380 80 3.1x10-6 

cg03026689 6 74363884 SLC17A5 EPIC 2697 582 5.3x10-6 

cg12960616 12 95638334 VEZT EPIC -483 105 6.3x10-6 

cg06696623 17 20956123 - EPIC -816 178 6.8x10-6 

cg21627016 5 73704114 LINC01331 EPIC -291 64 8.2x10-6 

cg15632659 6 42931860 PEX6 EPIC -502 111 8.7x10-6 

cg17427349 15 38988004 C15orf53 EPIC -514 114 9.1x10-6 

cg14535019 4 129433853 - EPIC 711 159 1.0x10-5 

cg05284887 1 147233306 GJA5 EPIC 312 70 1.2x10-5 

cg10998631 10 134331816 - EPIC 281 63 1.2x10-5 

  
 

ln(FIB-4) 

CpG Chr Pos Gene Platform b SE P 

cg12356793 17 13299004 - EPIC -2.5 0.55 1.3x10-5 

cg10913741 10 121244710 - EPIC -3.8 0.85 1.4x10-5 

cg11009066 13 25592074 - EPIC -2.6 0.61 2.1x10-5 

cg08034051 17 48949161 - EPIC 1.9 0.44 2.5x10-5 

cg16130802 11 118773983 BCL9L 450K 12 2.6 2.6x10-5 

cg14397434 1 237288473 RYR2 EPIC -2.5 0.57 2.6x10-5 

cg00096756 1 14678278 - EPIC -2.0 0.46 2.8x10-5 

cg23481873 20 464190 CSNK2A1 EPIC -2.4 0.56 3.3x10-5 

cg24001468 2 62901049 EHBP1 450K -4.6 1.1 4.2x10-5 

cg26102728 7 28218933 JAZF1 450K -3.7 0.90 4.4x10-5 
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Supplementary Table 2 (Continued) 

  
 

ln(APRI) 

CpG Chr Pos Gene Platform b SE P 

cg08034051 17 48949161 - EPIC 2.9 0.57 7.8x10-7 

cg04057469 3 16472844 RFTN1 EPIC -6.7 1.4 2.8x10-6 

cg03196177 10 93862017 CPEB3 EPIC 7.3 1.6 4.9x10-6 

cg16706690 21 15135580 - EPIC -2.6 0.56 5.3x10-6 

cg22547004 20 2822133 PCED1A 
VPS16 EPIC 5.9 1.3 8.8x10-6 

cg16002826 3 123011707 ADCY5 EPIC -2.3 0.54 1.9x10-5 

cg19306317 3 156654260 LEKR1 EPIC 1.5 0.34 2.6x10-5 

cg06427816 17 1090326 ABR EPIC 3.2 0.76 2.8x10-5 

cg05198507 5 138735248 SPATA24 EPIC -3.9 0.92 2.9x10-5 

cg26044128 1 33842402 PHC2 EPIC -3.8 0.91 3.0x10-5 

  
 
For each biomarker of liver function, the ten CpG sites not included in both platforms (that therefore could not be meta-analyzed) where DNA 
methylation associates with the biomarker with the smallest P-values are presented along with genomic annotations and EWAS statistics. CpG 
sites that could be meta-analyzed are excluded. Abbreviations: AST, aspartate aminotransferase (units/L); ALT, alanine aminotransferase 
(units/L); ALB, serum albumin (mg/dL); TBILI, total bilirubin level (mg/dL); PLT, platelet count (cells/µL). 
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Supplementary Figure 1: Distributions of values for selected biomarkers of liver function among the entire 
cohort. Only biomarkers with highly right-skewed distributions were log-transformed to produce more normal 
distributions that allow for inference from linear modelling. For this figure, log2 transformation was used for easy 
interpretation. For EWAS, a natural log transformation was applied when needed.  A) Distribution of AST before 
and after log transformation. B) Distribution of ALT before and after log transformation. C) Distributions of ALB 
without log transformation. D) Distributions of ALB without log transformation. E) Distributions of ALB without 
log transformation. F) Distribution of FIB-4 scores before and after log transformation. G) Distribution of APRI 
scores before and after log transformation. Abbreviations: AST, aspartate aminotransferase level (units/L); ALT, 
alanine aminotransferase level (units/L); ALB, serum albumin level (mg/dL); TBILI, total bilirubin level (mg/dL); 
PLT, platelet count (cells/µL); FIB-4, FIB-4 score; APRI, APRI score. 
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Supplementary Figure 2: Regional manhattan plot of unadjusted P-values from meta-analysis of EWAS 
results for CpG sites in chromosome 17 and serum albumin. The red line indicates the unadjusted P-value that 
corresponds to a threshold for FDR significance (among all CpG sites from across entire genome) at Q < 0.05. 
DNA methylation was not significantly associated with serum for any CpG site after a more restrictive Bonferroni 
correction to an overall a = 0.05. 
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Supplementary Figure 3: Distribution of unadjusted P-values from meta-analysis of EWAS results from the 
EPIC and 450K cohorts for AST. (A) Quantile-quantile plot of unadjusted P-values from meta-analysis of 
EWAS results for AST. The global inflation factor was 1.04, so no further adjustment for global inflation was 
performed. Red lines represent a perfect 1:1 association with a 95% confidence interval. (B) Manhattan plot of 
unadjusted P-values from meta-analysis of EWAS results for AST. The red line indicates the unadjusted P-value 
that corresponds to a threshold for FDR significance at Q < 0.05. DNA methylation was not significantly associated 
with AST for any CpG site after a more restrictive Bonferroni correction to an overall a = 0.05. 
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Supplementary Figure 4: Distribution of unadjusted P-values from meta-analysis of EWAS results from the 
EPIC and 450K cohorts for ALT. (A) Quantile-quantile plot of unadjusted P-values from meta-analysis of 
EWAS results for ALT. The global inflation factor was 1.14, so no further adjustment for global inflation was 
performed. Red lines represent a perfect 1:1 association with a 95% confidence interval. (B) Manhattan plot of 
unadjusted P-values from meta-analysis of EWAS results for ALT. The red line indicates the unadjusted P-value 
that corresponds to a threshold for FDR significance at Q < 0.05. DNA methylation was not significantly associated 
with ALT for any CpG site after a more restrictive Bonferroni correction to an overall a = 0.05. 
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Supplementary Figure 5: Distribution of unadjusted P-values from meta-analysis of EWAS results from the 
EPIC and 450K cohorts for total bilirubin. (A) Quantile-quantile plot of unadjusted P-values from meta-
analysis of EWAS results for total bilirubin. The global inflation factor was 1.04, so no further adjustment for 
global inflation was performed. Red lines represent a perfect 1:1 association with a 95% confidence interval. (B) 
Manhattan plot of unadjusted P-values from meta-analysis of EWAS results for total bilirubin. The red line 
indicates the unadjusted P-value that corresponds to a threshold for FDR significance at Q < 0.05. DNA 
methylation was not significantly associated with total bilirubin for any CpG site after a more restrictive 
Bonferroni correction to an overall a = 0.05. 
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Supplementary Figure 6: Distribution of unadjusted P-values from meta-analysis of EWAS results from the 
EPIC and 450K cohorts for platelet count. (A) Quantile-quantile plot of unadjusted P-values from meta-analysis 
of EWAS results for platelet count. The global inflation factor was 1.02, so no further adjustment for global 
inflation was performed. Red lines represent a perfect 1:1 association with a 95% confidence interval. (B) 
Manhattan plot of unadjusted P-values from meta-analysis of EWAS results for platelet count. The red line 
indicates the unadjusted P-value that corresponds to a threshold for FDR significance at Q < 0.05. DNA 
methylation was not significantly associated with platelet count for any CpG site after a more restrictive Bonferroni 
correction to an overall a = 0.05. 
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Supplementary Figure 7: Distribution of unadjusted P-values from meta-analysis of EWAS results from the 
EPIC and 450K cohorts for FIB-4 score. (A) Quantile-quantile plot of unadjusted P-values from meta-analysis 
of EWAS results for FIB-4 score. The global inflation factor was 0.96, so no further adjustment for global inflation 
was performed. Red lines represent a perfect 1:1 association with a 95% confidence interval. (B) Manhattan plot 
of unadjusted P-values from meta-analysis of EWAS results for FIB-4 score. The red line indicates the unadjusted 
P-value that corresponds to a threshold for FDR significance at Q < 0.05. DNA methylation was not significantly 
associated with FIB-4 score for any CpG site after a more restrictive Bonferroni correction to an overall a = 0.05. 
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Supplementary Figure 8: Distribution of unadjusted P-values from meta-analysis of EWAS results from the 
EPIC and 450K cohorts for APRI score. (A) Quantile-quantile plot of unadjusted P-values from meta-analysis 
of EWAS results for APRI score. The global inflation factor was 1.08, so no further adjustment for global inflation 
was performed. Red lines represent a perfect 1:1 association with a 95% confidence interval. (B) Manhattan plot 
of unadjusted P-values from meta-analysis of EWAS results for APRI score. The red line indicates the unadjusted 
P-value that corresponds to a threshold for FDR significance at Q < 0.05. DNA methylation was not significantly 
associated with APRI score for any CpG site after a more restrictive Bonferroni correction to an overall a = 0.05. 
 


