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Abstract

Statistical Approaches for Exploring Brain Connectivity with Multimodal
Neuroimaging Data

By
Phebe B. Kemmer

Advances in neuroimaging technology provide a gateway for studying the
function and structure of the human brain, which stands to improve our under-
standing of neural networks and yield important insights about brain disorders.
The statistical analysis of neuroimaging data poses a challenge, because the data
is high-dimensional and contains spatial and temporal correlations. The focus of
this dissertation is to develop statistical methods for multimodal neuroimaging
data that allow us to explore the relationship between functional and structural
brain connectivity, and investigate how this relationship differs between healthy
and diseased brains.

A set of functionally connected brain networks can be estimated from fMRI
data using independent component analysis (ICA). However, this approach ig-
nores information about the underlying structural connections, which are believed
to facilitate functional connectivity between remote brain regions. For the first
topic, we propose a novel measure of the strength of structural connectivity (sSC)
underlying these functional networks, by incorporating structural information from
DTI data. To conduct inference on our sSC measure, we estimate a covariance term
that considers spatial similarity between observations via a parametric semivari-
ogram model with a novel distance metric. We demonstrate the performance of
our proposed measure with simulation studies, and apply our method to an fMRI
and DTI dataset. We find that sSC is associated with component reliability, demon-
strating the benefit of leveraging information from structural data in the estimation
of functional networks from fMRI data.

The second and third topics propose statistical frameworks for modeling the re-
lationship between functional and structural connectivity across the whole-brain
network. The second topic presents a hierarchical model with a linear link function
to describe the association at each edge in the network, and uses the EM algorithm
to estimate the model parameters. We consider both correlation and partial cor-
relation as measures of functional connectivity. The third topic considers a more
flexible approach to modeling the function-structure association by using copulas.
In this way, we can model the marginal distributions of functional and structural
connectivity data, and separately, estimate their association using a copula func-
tion. For each method, we conduct simulation studies to evaluate performance,
and apply the proposed methods to an fMRI and DTI dataset, demonstrating bio-
logically meaningful findings.
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Chapter 1

Introduction
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1.1 Overview

Advances in in-vivo neuroimaging technology have provided a gateway for re-

searchers to study the structure and function of the human brain, which can yield

important insights on the neurophysiology underlying both healthy and diseased

brains. Various neuroimaging techniques have been developed to investigate dif-

ferent aspects of brain processes. For example, fMRI and PET imaging can be

used to measure brain activations and functional connectivity, DTI considers the

structural connections within the brain, and MRI is useful for distinguishing tis-

sue types and detecting abnormalities. Multimodal neuroimaging methods aim to

leverage these complementary measurements by combining two or more datasets

acquired with different techniques. By integrating information across modalities,

we might improve our understanding of brain structure and function.

The statistical analysis of neuroimaging data is challenging because it is high-

dimensional and contains complex spatial and temporal correlations. The main

objective of this dissertation work is to develop novel statistical methods that com-

bine information across functional and structural neuroimaging modalities, in or-

der to provide a comprehensive examination of the neural network and investigate

the relationship between brain structure and function.

This dissertation is organized as follows: the remainder of Chapter 1 provides

background information on the human brain, a description of the functional and

structural neuroimaging data modalities under consideration (i.e. fMRI and DTI),

a review of existing methods for neuroimaging data analysis, and an overview of

the motivating dataset that we will use in our analyses. Chapter 2 presents a novel

statistic for measuring the strength of structural connectivity underlying the func-

tional networks estimated by independent component analysis (ICA). Chapter 3

discusses a modeling framework for assessing the relationship between functional

and structural connectivity across the whole brain network, using a linear link
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function. This work is extended in Chapter 4, which proposes a more flexible ap-

proach to modeling the function-structure association by using copulas.

1.2 Organization of the Human Brain

The human brain is a complex organ, responsible for producing our thoughts and

emotions, interpreting sensations, coordinating body movements, and much more.

It weighs roughly 3 pounds and contains 100 billion nerve cells, known as neurons

(Herculano-Houzel, 2009), Each neuron receives and sends signals to other neu-

rons, enabling communication between remote brain locations. On average, each

neuron is connected to 7,000 other neurons, yielding over 100 trillion total neural

connections in the brain (Drachman, 2005).

The basic components of a neuron are: 1) the cell body, which is the control

center of the neuron, 2) dendrites, which receive incoming messages from other

nerve cells, and 3) axons, which send outgoing signals to other cells. Axons are

sheathed in myelin, a fatty substance that facilitates the transmission of the neural

signal. Neurons communicate with each other through electrical impulses called

”action potentials” that fire when a nerve is stimulated. When a neuron fires, the

impulse moves down the axon and transmits the signal to the postsynaptic neu-

ron by releasing neurotransmitters in the synapse between the cells (see Figure

1.1). Generating this electrical/chemical signal transmission requires energy, pro-

vided by glucose and oxygenated-hemoglobin. Thus increased brain activity is as-

sociated with a higher rate of metabolism and increased oxygenated-hemoglobin

concentration (Bear et al., 2007).

The brain consists of two hemispheres (the left and right), each of which has an

outer layer of gray matter called the cerebral cortex, which is supported by an inner

layer of white matter. The gray matter is composed of nerve cell bodies and den-
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Figure 1.1: Communication between neurons

(source: http://vaxtruth.org/2011/10/offit-synapse/neuron-synapse/)

drites, while the white matter contains bundles of myelinated axons, called fiber

tracts, that provide a physical link for transmitting signals between nerve cells in

the cortex. The three main types of white matter tracts are: 1) projection fibers,

which run vertically to connect the cortex to the rest of the body, 2) commisural

tracts, which connect brain regions across the hemispheres (e.g. the corpus callo-

sum, see Figure 1.2), and 3) association tracts, which connect brain regions within

hemispheres (Bear et al., 2007).

Figure 1.2: The corpus callosum

(source: http://hubel.med.harvard.edu/book/b34.htm)
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The hemispheres of the brain can be subdivided into four lobes: frontal, pari-

etal, occipital, and temporal. Although they communicate with one another, each

lobe is generally associated with different functions, e.g. the occipital lobe with

vision, and the temporal lobe with auditory processes (Bear et al., 2007). To study

the brain at a region level, however, we need to use a finer parcellation of the brain.

Two common parcellation schemes are the Brodmann atlas, which defines 48 brain

regions based on cytoarchitectural properties, and the Automated Anatomical La-

beling (AAL) atlas, which defines 90 cortical brain regions based on the anatomi-

cal location of major sulci and gyri (the fissures and ridges of the cortical surface)

(Tzourio-Mazoyer et al., 2002).

Although normal healthy brains have the same general organization, all brains

exhibit slight differences from individual to individual. Individual subject’s brains

can differ in size by up to 30%. Therefore, for group neuroimaging studies, the

brain images collected from different subjects must be transformed into a common

coordinate space to accommodate individual differences in brain size and orienta-

tion. The Talairach and Montreal Neurological Institute (MNI) space are the most

commonly used standard atlases for this spatial registration step. Talairach coor-

dinates (Talairach and Tournoux, 1988) are based on the single brain of a 60-year

old French woman, whereas the more recently developed MNI atlas is based on a

large sample of structural images from healthy subjects (Evans et al., 1993), and is

thus a more representative standard.

1.3 Functional Neuroimaging

Functional neuroimaging plays a large role in the study of neural networks; it en-

ables researchers to localize brain activity in response to an experimental task and

identify functionally connected brain areas. Functional Magnetic Resonance Imag-
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ing (fMRI), Positron Emission Tomography (PET), electroencephalography (EEG),

and magnetoencephalography (MEG) are all functional neuroimaging techniques

that measure correlates of brain activity in-vivo over time. fMRI and PET can de-

tect the localized changes in cerebral blood flow associated with neural activity

with relatively high spatial resolution, but the temporal resolution is limited by

the slower rate of brain blood flow and blood oxygenation. EEG and MEG on

other hand, detect the underlying electrical activity of the brain, which allows a

higher temporal resolution than that of fMRI and PET, but results in poorer spatial

resolution (Bear et al., 2007). For my dissertation work I focus on the functional

modality of fMRI data, which is widely used in neuroimaging studies, and give an

overview of this technique in the next section.

1.3.1 Basic Principles of Magnetic Resonance Imaging (MRI)

Since fMRI is an extension of MRI, we will first describe how MRI scans are ac-

quired. MRI is a non-invasive imaging technique based on the principles of nuclear

magnetic resonance (NMR), that captures images of hydrogen atom nuclei inside

the brain. MRI relies on the fact that the human body is comprised primarily of

water and fat, and thus hydrogen protons, which have nuclear spin. When a sub-

ject is placed in a large magnetic field (B0), the hydrogen protons in the body tend

to align parallel to the direction of B0, producing a net magnetization in that direc-

tion. If a radio frequency (RF) pulse is applied at the resonance frequency, then the

protons absorb the energy and jump to a higher-energy state (anti-parallel to B0).

After the RF pulse, some of the high-energy protons move back to their low-energy

state (parallel toB0), producing the MR signal measured by the coils. T1 relaxation

defines the rate at which longitudinal magnetization recovers after the RF pulse.

When the RF pulse is applied, all the protons are spinning in phase; after the RF

pulse, the spins get out of phase at different rates, resulting in MR signal decay.
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T2 and T2* relaxation measures this rate of decay of the transverse magnetization.

Protons in different tissue types return to equilibrium at different T1 and T2/T2*

relaxation rates, allowing us to visualize the contrast between gray matter, white

matter, and CSF (Edelman and Warach, 1993). Figure 1.3 shows an example of the

tissue contrast for T1- vs T2-weighted MRI.

Figure 1.3: T1- vs. T2-weighted MRI images

(Almeida et al., 2012)

The T1-weighted MRI provides an image with higher spatial resolution, while

the T2-weighted image can be captured more rapidly. Thus, T1-weighting yields

high-resolution structural MRI scans to be used for visualizing brain tissue, while

T2-weighting is useful for capturing scans over time, i.e. functional MRI scans. An

additional MRI modality, diffusion-weighted MRI, is useful for measuring struc-

tural connections in the brain, and will be discussed in section 1.4.1.

1.3.2 Functional MRI (fMRI) data

1.3.2.1 The fMRI BOLD signal

fMRI measures brain activity as a function of the hemodynamic (i.e. blood flow) re-

sponse to experimental stimuli. As mentioned previously, firing neurons consume

lots of energy, and this change in metabolism increases the need for oxygen, carried

by hemoglobin. The human body will provide more hemoglobin than consumed
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energy to the active brain area, thus increasing the concentration of oxygenated

hemoglobin relative to that of de-oxygenated hemoglobin. Because de-oxygenated

hemoglobin is more paramagnetic, it distorts the surrounding magnetic field, re-

sulting in a weaker T2* signal where oxygen concentration is low, and a stronger

T2* signal in the areas where oxygen concentration is high. fMRI uses this blood-

oxygen-level-dependent (BOLD) contrast to measure differences in brain activity

over time (Uludag et al., 2005).

The change in the fMRI BOLD signal that is triggered by an increase in neural

activity is referred to as the hemodynamic response function (HRF; displayed in

Figure 1.4). The HRF is characterized by a delayed response, since it onsets about

2 seconds after the neural activity, and peaks 5-8 seconds after neural activity has

peaked. Another challenging property of the fMRI signal is that the magnitude

of signal change in response to neural activity is quite small, roughly 0.5-3% for a

1.5T scanner. The fMRI signal contains many sources of noise, including noise from

random neural activity, noise from the scanner due to drift and non-uniformities

in the magnetic field, as well as physiological noise due to the subject’s heartbeat,

breathing, and head movement during the scan. These artifacts can be minimized

by several preprocessing steps (see section 1.3.3), which should be applied to the

data before conducting further analysis .

1.3.2.2 fMRI data structure

In an fMRI study, each subject is scanned multiple times over the course of an ex-

perimental session, so fMRI data can be represented as a series of 3D brain scans

collected over time. Each of these 3D scans is comprised of small cubic units

known as voxels (volumetric pixels), arranged in a large 3D matrix. The BOLD

signal is measured at each voxel, resulting in an intensity value that represents the

level of brain activity at that location. Plotting the BOLD signal from a particular
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Figure 1.4: The Hemodynamic Response Function (HRF)

(Bowman, 2014)

voxel at each scan time results in a single-voxel time course of brain activity (see

Figure 1.5). For simplification, fMRI data can be rearranged into a VxT matrix,

where V is the number of voxels, and T is the number of scans.

For an individual subject, an fMRI scanning session typically includes hun-

dreds of thousands of voxels per 3D scan and hundreds of scans per session (usu-

ally recorded every 2-3 seconds). An entire fMRI study may consist of multiple

subjects and repeated scanning sessions. The massive dimensionality of this data

can pose computational burdens. Other complexities of fMRI data include spa-

tial correlations between neighboring voxels, and temporal correlations between

scans, which present challenges for statistical analysis.

1.3.2.3 Resting State

fMRI scans are acquired while a subject lies in the scanner, either performing

some experimental task or at rest. In the resting state paradigm, subjects are of-

ten instructed to relax and to not think of anything in particular, or to stare at a

fixation cross, while the spontaneous fluctuations in their brain activity are mea-

sured (Raichle, 2011). Rather than observing a brain that is silent at rest, studies
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Figure 1.5: fMRI data structure

of healthy controls have consistently identified a set of ”resting state networks”

(Smith et al., 2009), most notably the Default Mode Network (Buckner et al., 2008).

Since Biswal et al. (1995) first noted the presence of the motor network during rest,

resting-state has become an increasingly popular method for studying the brain.

Resting state can also be useful for exploring differences in functional networks be-

tween healthy and diseased brains (Greicius, 2008; Zhang and Raichle, 2010), and

has the added benefit that it is easier to acquire data and compare results between

studies.

1.3.3 fMRI Preprocessing Pipeline

Several preprocessing steps are necessary to prepare the fMRI data for further anal-

ysis.

1. Brain extraction to remove skull and non-brain matter.

2. Slice timing correction to account for timing differences in 2D slice acquisi-

tion.

3. Motion correction to re-align scans to a reference image.
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4. Co-registration to align a subject’s functional T2*-weighted scan to the high-

resolution T1-weighted structural image.

5. Spatial registration maps each subject’s brain to a standard coordinate space

(i.e. the Talairach or MNI atlases).

6. Spatial smoothing increases the signal-to-noise ratio and blurs any residual

anatomical differences that remain after spatial registration.

7. Temporal smoothing to remove low-frequency noise due to scanner drift,

the subject’s heartbeat and respiration, etc.

Preprocessing steps and the order in which they are performed are important

because they can affect the spatial and temporal correlation structure of the data

(Smith et al., 2004). Software tools that are commonly used to preprocess functional

brain images include the Statistical Parametric Mapping (SPM) toolbox in Matlab,

FMRIB Software Library (FSL), and Analysis of Functional NeuroImages (AFNI).

1.3.4 Functional Connectivity (FC) Analysis

The objectives of functional neuroimaging research are primarily studies of acti-

vation and functional connectivity. Activation studies aim to localize brain activ-

ity in response to experimental stimuli, and compare between subject subgroups

(e.g. patients vs. controls, before vs. after treatment, etc.). The goal of functional

connectivity studies, on the other hand, is to identify brain regions with similar

patterns of brain activity.

Functional connectivity (FC) is defined as the temporal coherence between the

BOLD signal of spatially remote brain regions (Richiardi et al., 2011; Friston, 1994).

A set of brain regions with similar patterns of brain activity comprise a function-

ally connected brain network, called a functional network. Many brain disorders
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are associated with disruptions in functional connectivity (e.g. Multiple Sclerosis,

Alzheimer’s Disease) (Zhang and Raichle, 2010).

Common methods for identifying functional networks include the seed-based

correlation approach and data-driven partitioning algorithms, such as clustering,

Principal Component Analysis (PCA), and Independent Component Analysis (ICA).

The seed-based approach selects a seed voxel from a region of interest (ROI),

and computes the correlation between the seed voxel’s time course and the time

course of every other voxel in the brain, generating a connectivity map. An ad-

vantage of this approach is that it is simple to implement and the results have a

straightforward interpretation. However, the choice of the seed voxel requires a

priori knowledge of ROIs and can be subjective. It also ignores the network re-

lationship between all voxels. Multivariate partitioning approaches, on the other

hand, allow for an FC analysis of the whole brain simultaneously.

Clustering is a data-driven approach that groups voxels into clusters based on

the similarity of their time courses, such that each cluster has a distinct neural pat-

tern. Several different clustering algorithms, including K-means, fuzzy clustering,

and hierarchical clustering, have been developed (Bowman et al., 2007).

Principal Component Analysis (PCA) and Independent Component Analysis

(ICA) decompose the observed fMRI signal into components that represent func-

tional networks. In PCA, the goal is to extract component maps that are uncor-

related and to summarize the variability in the observed data into as few compo-

nents as possible (McKeown et al., 2003). ICA is an extension of PCA that decom-

poses the signal into statistically independent components. The stricter criteria for

spatial independence used by ICA improves the accuracy of the estimated func-

tional networks (McKeown et al., 2003). ICA has also been shown to be more effec-

tive than PCA at identifying functional networks in resting state (Beckmann and

Smith, 2005), and runs much faster than clustering techniques (Meyer-Baese et al.,
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2004). For these reasons, we will focus on the method of ICA for the FC analysis of

resting-state fMRI data.

1.3.4.1 Independent Component Analysis (ICA)

Independent Component Analysis (ICA) was first described by Comon (1994) as

a blind source separation method. A motivating example for ICA is the ”cocktail

party problem.” Imagine a scenario in which two people talking simultaneously in

a closed room, and there are two microphones placed in the room, each recording

signals over time, x1(t) and x2(t). Each recorded signal is a weighted sum of the

speech signals from the two speakers, s1(t) and s2(t). This can be expressed as:

x1(t) = a11s1 + a12s2

x2(t) = a21s1 + a22s2

The goal of blind source separation methods like ICA is to estimate the original

source signals s1(t) and s2(t), using only the recorded signals x1(t) and x2(t).

When applied to fMRI data, the goal of ICA is to decompose the observed fMRI

signal into a set of q statistically independent component maps and their associated

time courses (see Figure 1.6).

In Figure 1.6, XTxV is the matrix of observed fMRI data; ATxq is the ”mixing”

matrix, whose columns represent the time series associated with each component;

SqxV is the matrix of source components, whose rows represent statistically inde-

pendent source signal maps; ETxV is the error matrix that represents any variabil-

ity not explained by the components. T and V represent the number of time points

(scans) and the number of voxels, respectively.

ICA decomposes the fMRI data into a set of components, such that they exhibit

a high degree of both within-component homogeneity, and between-component
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Figure 1.6: ICA for fMRI data

(source: http://users.ics.aalto.fi/whyj/publications/thesis/thesis node8.html)

variation. A major advantage of ICA is that it does not require any a priori assump-

tions about the spatiotemporal structure of the data, which is especially useful

for analyzing resting-state data, where there are no clear task-related activations.

ICA has the additional benefit of simultaneously separating neuronal and non-

neuronal (e.g. head motion, respiration) sources into different components. Each

estimated component represents a functional network, consisting of brain regions

with a high degree of functional connectivity. Many studies have applied ICA to

resting state fMRI to identify resting state networks (Laird et al., 2011; Smith et al.,

2009).

ICA for fMRI has been well-documented in the single-subject case (McKeown

et al., 1998; Beckmann and Smith, 2004). There are two primary approaches for

extending ICA for multi-subject fMRI data: the Tensor PICA method (Beckmann

and Smith, 2005) and the GIFT (Group ICA for fMRI toolbox) method (Calhoun

et al., 2001). Guo (2011) propose a general statistical model for probabilistic ICA

and a hierarchical model for group PICA (Guo and Tang, 2013). We use the well-

established GIFT method, which can be easily implemented with a MATLAB tool-

box.

The GIFT method can be summarized into the following steps:
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1. Initial data reduction with PCA for each subject.

2. Temporal concatenation of the reduced data across subjects.

3. ICA decomposition of the concatenated data.

4. Back-reconstruction for subject-specific maps and time courses.

1.3.4.2 Network Modeling Methods for FC

An increasingly popular technique for modeling FC across the whole brain is through

the network analysis approach. This method, borrowed from graph theory, mod-

els brain regions and the connections between them as a system of ”nodes” and

”edges”. The whole system can be represented by a graph or connectivity matrix

(see Figure 1.7). This approach offer a way to visualize the functional connectivity

network across the whole brain, and quantitatively characterize its properties with

metrics like small-worldness, modularity, etc. (Bullmore and Sporns, 2009).

Figure 1.7: A simple network example

(source: https://people.hofstra.edu/geotrans/eng/methods/connectivitymatrix.html)

A typical functional neuroimaging network analysis begins by parcellating the

brain into regions, then quantifying a measure of association between all pairs of

regions, to produce a functional connectivity matrix (Rubinov and Sporns, 2010).

The functional connectivity between a pair of regions is often measured by taking
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the Pearson’s correlation or partial correlation between the regions’ fMRI time se-

ries (Smith et al., 2011). Partial correlation provides a more accurate estimate of

the true network, because it regresses out the effects of all other nodes in the net-

work before estimating the pairwise correlation. Compared to correlations, partial

correlations are more computationally difficult to calculate for large networks, but

Wang et al. (2016) describe a method for efficient and reliable estimation of the

partial correlation matrix.

1.4 Structural Neuroimaging

Unlike functional imaging modalities, which aim to measure changes in brain

activity over time, the goal of structural imaging modalities is to examine brain

anatomy and/or structural connectivity. Modalities such as T1-weighted MRI

and CT are useful for obtaining high-resolution images of brain anatomy, while

diffusion-weighted MRI (e.g. DTI) can be used to locate and quantify the struc-

tural connections (i.e. white matter fiber tracts) that physically connect remote

brain regions.

1.4.1 Diffusion Tensor Imaging (DTI) Data

Diffusion Tensor Imaging (DTI) is a diffusion-weighted MRI technique that mea-

sures the direction and magnitude of water diffusion in brain tissue, allowing for

the reconstruction of white matter fiber tracts via a tractography algorithm. Be-

cause of the fatty myelin sheath coating neuronal axon fibers, water diffusion is

less restricted along the direction of fiber tracts, rather than across them. During

a DTI scan, magnetic gradients are applied in different directions to enable calcu-

lation of the diffusion tensor at each voxel location (see Figure 1.8). The tensor

is characterized by it’s three principal eigenvectors and their associated eigenval-
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ues (λ1,λ2,λ3), and the shape of the estimated tensor indicates the directional de-

pendency of the diffusion signal (Johansen-Berg and Rushworth, 2009). The level

of diffusion restriction can captured by the Fractional Anisotropy (FA) measure,

which ranges from 0 to 1. A completely spherical, isotropic tensor would have an

FA value of 0, while an extremely elongated, anisotropic tensor would have an FA

value close to 1.

Figure 1.8: Estimation of the diffusion tensor (DT) at a single voxel location

(Johansen-Berg and Rushworth, 2009)

Figure 1.9 shows an example of two crossing fiber tracts (in black) and the shape

of the tensors at each voxel (in yellow) within a small slice of the brain. Tensors

outside of white matter tend to be spherical, indicating that diffusion is equally

likely in all directions, while tensor inside a white matter fiber tract tend to be

elongated to reflect the preferred direction of diffusion. Where white matter fibers

cross, the shape of the tensor reflects that there is more than one preferred direction

of diffusion.

1.4.2 DTI Preprocessing Pipeline

As with fMRI, several preprocessing steps are needed to prepare the DTI data for

further analysis:

1. Brain Extraction to remove the skull and non-brain matter.
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Figure 1.9: DTI example with two crossing fiber tracts

(source: http://www.rsierra.com/DA/node6.html)

2. Eddy Current Correction to correct for distortions and head movement.

3. Registration to standard coordinate space.

4. Fit diffusion tensors at each voxel.

5. Fit a probabilistic diffusion model on the corrected data. This step runs

Markov Chain Monte Carlo sampling to build up distributions on diffusion

parameters at each voxel.

6. Run probabilistic (or deterministic) tractography to determine the struc-

tural connectivity distribution from user-defined seed voxels or regions.

These preprocessing steps can be easily implemented with FSL’s diffusion tool-

box (FDT), among others (Jenkinson et al., 2012; Smith et al., 2004).

1.4.3 Tractography and Structural Connectivity (SC)

A tractography algorithm can determine the directional pattern of diffusion ten-

sors to generate connectivity distributions from user-defined seed voxels. In a



19

bootstrap probabilistic tractography procedure, several streams are initialized at

a seed voxel, and then traced through the diffusion tensor field to reconstruct and

probabilistically quantify the fiber tracts in the brain. As illustrated in Figure 1.10,

we can estimate the probability of structural connectivity between voxels j and k

by p̂jk = Njk/N , whereN is the number of streams initialized from voxel j, andNjk

is the number of those streams that pass through voxel k. The procedure, imple-

mented using FSL’s FDT, allows for multiple fiber orientations and crossing fiber

tracts (Behrens et al., 2007, 2003). An alternative streamline-tracking approach is

deterministic tractography, which quantifies the strength of structural connectivity

between a pair of brain locations using fiber counts (Gong et al., 2009).

Figure 1.10: probabilistic tractography

(Johansen-Berg and Rushworth, 2009)

Tractography algorithms provide a method of measuring the structural con-

nectivity (SC) between a pair of brain regions. As with functional connectivity,

SC can also be characterized across the whole brain using a network modeling

approach (Bullmore and Sporns, 2009; Hagmann et al., 2007, 2008).
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1.5 Combining Structure and Function

1.5.1 Motivation

Emerging evidence suggests that structural connections mediate functional con-

nectivity, by providing a physical mechanism of communication between spatially

remote brain areas (Collin et al., 2014; Hagmann et al., 2008; Van Den Heuvel et al.,

2009; Toosy et al., 2004), although FC can still exist between brain regions that

lack direct structural links (Honey et al., 2009; Damoiseaux and Greicius, 2009).

Multimodal approaches that incorporate information from both fMRI and DTI can

improve our understanding of the structure-function relationship in the brain, and

allow us to characterize how these connections are affected by brain diseases.

Many brain disorders are associated with changes in connectivity. For exam-

ple, Multiple Sclerosis patients exhibit white matter atrophy, in which the myelin

sheath surrounding axons is destroyed, disrupting communication between neu-

rons. Alzheimer’s Disease is also associated with disruptions of SC and FC (Filippi

and Agosta, 2011; Bozzali et al., 2011), as are many other brain disorders (Zhang

and Raichle, 2010; Greicius, 2008). By integrating structural and functional infor-

mation, we can more comprehensively characterize the pathophysiology of brain

diseases.

1.5.2 Review of Existing Multimodal Methods

Multimodal neuroimaging methods combine information from two or more datasets

acquired by different imaging techniques, each of which provides a limited view of

the brain. The goal of this approach is to capitalize on the strength of each modal-

ity in a joint analysis, rather than separately analyzing each modality. For this

dissertation, we will review methods that combine information from functional

and structural neuroimaging modalities, namely fMRI and DTI.
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There have been several recent attempts to examine the FC-SC relationship

by combining information from fMRI and DTI data (Rykhlevskaia et al., 2008;

Damoiseaux and Greicius, 2009). Many of these studies perform analyses on each

modality separately, then assess the concordance between the FC and SC measures

(Honey et al., 2009; Greicius et al., 2009; Skudlarski et al., 2008; Rudie et al., 2013;

Horn et al., 2013). Others have developed brain connectivity methods that combine

information from functional and structural modalities. Bowman et al. (2012), for

example, present a framework for an anatomically-weighted FC measure that inte-

grates fMRI and DTI data, and demonstrate that the supplemental SC information

is particularly beneficial in the presence of fMRI noise. Also, recent multimodality

fusion approaches such as linked ICA (Calhoun et al., 2006), multimodal canonical

correlation analysis (Correa and Li, 2009), and joint ICA (Groves et al., 2011), along

with joint models of the FC and SC networks (Xue et al., 2015; Venkataraman et al.,

2012) have shown that a joint analysis of data from both modalities performs better

than separate analyses of FC or SC alone. A review of multimodal fusion methods

is provided by Sui et al. (2012) and Zhu et al. (2013).

Despite the evidence of structure-function associations in the brain, the func-

tional connectivity methods described in section 1.3.4 fail to incorporate informa-

tion about the underlying SC. Including structural data in these analyses could

allow researchers to create more biologically plausible models of functional con-

nectivity in the brain. As the relationship between structure and function unfolds,

an important next step is to develop statistical methods that combine modalities

and allow a convenient framework to conduct inference.

In addition, network approaches have become increasingly useful for modeling

the complex patterns of functional and structural connectivity across the whole-

brain network. Network studies of psychopathology rely on the notion that dys-

functional nodes and edges result in abnormal signaling, which results in differ-
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ences in brain connectivity networks. Since most major brain disorders involve

dysfunction of processes that are distributed across multiple brain regions, rather

than being constrained to one individual brain area, the network approach can

provide important insights on global brain connectivity and organization in psy-

chopathology (Menon, 2011).

1.6 Motivating Data Example

For some brain disorders, a clear disruption in brain connectivity has been estab-

lished and corroborated by results from multiple studies. In Alzheimer’s Disease

for example, studies have consistently found decreased connectivity in the default

mode network and the hippocampus (Zhang and Raichle, 2010). However, the

mechanism of connectivity disruption is not as well defined in all neurological

and psychiatric disorders.

1.6.1 Major Depressive Disorder (MDD)

Major depressive disorder (MDD) affects approximately 1 in 6 people in their life-

times, causes substantial occupational and social impairments, and is comorbid

with anxiety and substance abuse disorders (Kessler et al., 2003). Although there

have been many resting-state studies conducted on MDD, they do not all agree

about connectivity, and its pathology is still unclear (Northoff et al., 2011). (Anand

et al., 2009) found that untreated MDD patients exhibited decreased connectivity

between the dorsal ACC and other areas, and that connectivity improved in the

disrupted pathways after 6 weeks of treatment. Greicius et al. (2007) showed that

MDD patients had increased connectivity between certain regions of the default

mode network, and De Kwaasteniet et al. (2013) suggests that changes in the FC-

SC relationship play a role in MDD pathophysiology. Further studies of functional
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and structural neuroimaging play critical roles in advancing our knowledge about

this disorder.

1.6.2 Subjects

The data used in this dissertation was collected by the Mayberg Lab in the Emory

Department of Psychiatry. The dataset consists of 20 patients with MDD, and 20

healthy controls, matched by age and gender. The average ages of the MDD and

control groups were 45.8 and 42.4 years, respectively; both groups were 50% male.

For the MDD patients, the average Hamilton Depression Rating Scale (HAM-D)

score was 19, indicating ”Severe Depression” (Hamilton, 1960), and the average

length of current episode was 82 weeks.

The dataset includes resting-state fMRI and DTI scans for each subject at base-

line. At the time that the scans were collected, all MDD patients had unipolar de-

pression and had never been treated. During the scan, subjects were instructed to

lie passively in the scanner and to refrain from thinking about anything in particu-

lar. Since resting-state captures the brain ”in idle”, and the brains of MDD patients

appear to be ”stuck” in an idle state, the resting-state paradigm is well-suited for

studying this disorder.

1.6.3 Data acquisition and preprocessing

DTI, rs-fMRI, and T1-weighted MRI data were collected in a single session with 3T

Siemens Tim Trio scanner. The DTI sequence consisted of 60 scans with different

diffusion-weighted directions (b = 1000s/mm2) and four non-diffusion weighted

scans (b = 0), acquired using a single-shot spin-echo echo planar imaging (EPI)

sequence. Additional DTI scanning parameters include: TR=11300 ms, TE=104

ms, GRAPPA on, FOV=256 mm, number of slices=64, voxel size=2x2x2 mm, and
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matrix size=128x128. For registration purposes, high-resolution T1-weighted im-

ages were collected using a 3D MPRAGE sequence with the following parameters:

TR=2600 ms, TI=1100 ms, TE=3 ms, number of slices = 176, voxel size = 111 mm,

matrix size= 224256, flip angle=8◦. Functional images were collected over 150 time

points, with a z-saga sequence to minimize artifacts in the medial PFC and OFC

due to sinus cavities. Scans were acquired interleaved with the following param-

eters: TR=2.92 seconds; TE1=30 ms, TE2=66 ms, flip angle=90◦, number of axial

slices=30, slice thickness=4 mm, FOV=220 mm, and total duration=7.3 min.

Several standard preprocessing steps were applied to the functional images, in-

cluding despiking, slice timing correction, motion correction, registration to MNI

2mm standard coordinate space, normalization to percent signal change, removal

of linear trend, regressing out CSF, WM, and 6 movement parameters, bandpass fil-

tering (0.009 to 0.08), and spatial smoothing with a 6mm FWHM Gaussian kernel.

Preprocessing steps for the DTI data include brain extraction to remove non-brain

regions, phase reversal distortion correction, and aligning diffusion weighted im-

ages to the average non-diffusion weighted image by rigid body affine transfor-

mation to remove motion and eddy-current induced artifact. Using the Diffusion

Toolbox (FDT) in FSL, we can then fit a diffusion tensor model at each voxel, to

quantify the directional diffusion at that brain location (Behrens et al., 2003).

1.7 Proposed Research

The main objective of this dissertation is to develop statistical methods for multi-

modal neuroimaging data that allow us to explore the relationship between brain

FC and SC, and investigate how this relationship varies across different kinds of

brain connections, in order to distinguish different types of FC, e.g. FC based on

direct SC vs. FC due to global effects or functional co-activations. In addition,
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we aim to explore potential between-group differences in the FC-SC association,

specifically, comparing MDD subjects vs. healthy controls.

1.7.1 Topic 1: Quantifying the strength of structural connectivity

underlying functional brain networks

For the first topic, we propose a novel measure to quantify the strength of struc-

tural connectivity (sSC) underlying functional networks, by incorporating struc-

tural information from DTI data. To conduct inference on our sSC measure, we

estimate a covariance term that considers spatial similarity between observations

via a parametric semivariogram model with a novel distance metric. We demon-

strate the performance of our proposed measure with simulation studies, and ap-

ply our method to the fMRI and DTI dataset described in section 1.6. Since some

functional networks are more reproducible across different studies/subjects, we

explore whether sSC is associated with component reliability, and demonstrate the

benefit of leveraging information from structural data in the estimation of func-

tional networks from fMRI data.

1.7.2 Topic 2: A joint model for functional and structural connec-

tivity across the whole-brain network

The second and third topics propose statistical frameworks for modeling the re-

lationship between FC and SC across the whole-brain network. The second topic

presents a hierarchical model with a linear link function to describe the associa-

tion at each edge in the network, and uses the EM algorithm to estimate the model

parameters. We consider both correlation and partial correlation as potential mea-

sures of functional connectivity. We conduct simulation studies to evaluate per-

formance of our model, and apply the proposed methods to the fMRI and DTI
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dataset, demonstrating biologically meaningful findings.

1.7.3 Topic 3: Using copulas to model the structure-function rela-

tionship in the brain

As an extension to topic 2, the third topic considers using copulas to construct a

more flexible and robust statistical measure of the FC-SC association. The copula

approach allows us to flexibly model the dependence structure between FC and

SC, in a way that does not depend on the marginal distributions of the connec-

tivity values. Simulation studies and data analysis demonstrate the utility of this

method.
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Chapter 2

Topic 1: Quantifying the strength of

structural connectivity underlying

functional brain networks
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2.1 Introduction

Independent component analysis (ICA), which was reviewed in section 1.3.4.1, is a

popular approach for estimating functional networks from fMRI data (Beckmann

and Smith, 2004; Calhoun et al., 2001; Guo and Pagnoni, 2008). In addition, we

can use DTI data to extract information about the underlying structural connec-

tions (SC) that physically connect remote brain regions. Since many studies have

shown evidence that SC mediates functional connectivity in the brain (Greicius

et al., 2009; Van Den Heuvel et al., 2009), data-driven FC methods like ICA could

be improved by incorporating information about the underlying SC. Another lim-

itation of partitioning algorithms like ICA is that the reliability of the estimated

functional networks is unknown. For example, the results from an ICA run may

vary based on the choice of algorithm type, algorithm starting points, subject vari-

ability, or data preprocessing steps (Calhoun et al., 2004). Therefore, some func-

tional networks may not be reproducible in different analyses or in other data sets.

Determining the reliability of the estimated ICs obtained from a given data set is

important for making correct interpretations. Previous work has proposed assess-

ing reliability of ICs by evaluating the reproducibility in repeated ICA runs, with

different initial conditions, with data resampled from the original functional time

series, or with simulated data having a known brain network structure (Himberg

et al., 2004; Meinecke et al., 2002; Duann et al., 2006). These approaches measure

the reliability of ICs only through the algorithmic and statistical reproducibility of

ICA applied to fMRI data. The advent of DTI provides an opportunity to leverage

information about SC to take a more sound and reliable approach to estimating

functional networks from fMRI data.

As the relationship between brain structure and function unfolds, it is impor-

tant to develop statistical methods that combine information from fMRI and DTI

data. We present a novel measure of the strength of structural connectivity (sSC)
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underlying a functional network. We aim to use this measure to characterize the

sSC underlying FC networks estimated by ICA, develop a statistical testing frame-

work for the measure, and compare sSC between subject groups. We also propose

a novel reliability index for estimated FC networks, based on bootstrapped ICA

runs, and investigate the association between an FC network’s underlying sSC

and its reliability. We conduct simulation studies to evaluate the performance of

our proposed measure, and apply our method to a resting-state fMRI and DTI

dataset.

2.2 Data

We use the dataset described in section 1.6, that contains resting-state fMRI (rs-

fMRI) and DTI scans for 20 subjects with major depressive disorder (MDD) and 20

healthy controls.

2.2.1 Identifying Functional Networks

We identify group-level FC network maps by running a spatial ICA on the control

subjects’ rs-fMRI data via the Group ICA for fMRI Toolbox (GIFT) in Matlab (Cal-

houn et al., 2001). We use only the control subjects’ fMRI data to generate a com-

mon set of FC network maps, since MDD is known to be associated with functional

abnormalities in resting-state networks (Veer, 2010; Greicius et al., 2007; Northoff

et al., 2011). We apply a binary coverage mask, created from the intersection of all

subjects’ brain masks, to ensure that only voxels within the brain are used in the

analysis. The group ICA yields a common set of spatially independent component

(IC) maps and their associated time series. Many of the IC maps correspond to

known resting state networks, such as the default mode network (Buckner et al.,

2008), while others represent noise and artifacts. To determine which ICs reflect
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true FC networks, we evaluate their correlation with the set of major resting-state

network maps defined by Smith et al. (2009); we use the cutoff of r ≥ 0.25 to deter-

mine whether a IC corresponds to a known network.

2.2.2 Determining Structural Connectivity

We can evaluate structural connectivity across the whole brain from DTI data by

implementing a widely-used probabilistic tractography approach via FSL’s diffu-

sion toolbox (Behrens et al., 2007, 2003). We identify the set of white matter voxels

in each ICA map estimated from the group ICA, to be used as seed locations in the

probabilistic tractography procedure. In this procedure, we successively initiate

a given number of streams (5000 in our analysis) from each seed voxel, and trace

the streams as they pass through the diffusion tensor field, following the principle

direction of diffusion from voxel to voxel. The streams are constrained to remain

in white matter and avoid cerebral spinal fluid (CSF), and terminate according to

a stopping rule. Thus, the number of streams (out of 5000 trials) that extend from

the seed voxel to a target voxel empirically quantifies the probability of SC be-

tween these two brain locations.

2.3 Methods

2.3.1 The strength of Structural Connectivity (sSC) measure

Suppose we are investigating q IC maps extracted from a group ICA of fMRI data.

To quantify the strength of structural connectivity (sSC) underlying the FC net-
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work specified by the `th IC (` = 1, ..., q), we propose the following measure, θ`:

θ` =

∑
j,k∈Ω`

[pjk − (p̄j + p̄k)/2]∑
j,k∈Ω`

[1− (p̄j + p̄k)/2]

Here, Ω` is the set of voxels within the `th IC; pjk is the probability of SC between

the pair of voxels j and k within IC `; p̄j is the average probability of connection

between voxel j and the rest of the brain, defined as

p̄j =
1

V − 1

V∑
v=1
v 6=j

pjv

where V is the total number of voxels in the brain. (p̄k is defined analogously.)

The second term in the numerator, (p̄j + p̄k)/2, represents the average overall

probability of SC between the voxels j, k in IC ` and a random location in the brain.

Thus, the full numerator of θ` reflects the degree to which the actual SC within

the FC network exceeds the SC between the network and the rest of the brain

expected on average. This adjustment allows us to compare ICs with different

levels of overall connectedness. We standardize the sSC measure by dividing by

the maximum possible value, in which there is complete SC between all voxel

pairs within the FC network (i.e. pjk = 1 for all pairs j, k). This standardization

will restrict θ` to be less than or equal to 1, and allow comparison of this measure

across FC networks of different sizes. In this way, the structure of θ` resembles

that of the Kappa measure of inter-rater agreement, as it represents the observed

underlying strength of SC, relative to the SC expected by chance, divided by the

maximum possible value.

We can estimate the probability of SC between any pair of brain locations using

a probabilistic tractography procedure with DTI data, as described in section 2.2.2.
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In this procedure, we initiate N streams from seed voxel j and track how many of

these streams pass through target voxel k; the number of streams connecting these

voxels is denoted by Njk. Thus, we can estimate pjk, the probability of SC for voxel

pair j, k, by p̂jk = Njk/N .

In this way, we can use the results of the probabilistic tractography procedure

to construct the following estimate of θ`:

θ̂` =

∑
j,k∈Ω`

[Njk − (N̄j + N̄k)/2]∑
j,k∈Ω`

[N − (N̄j + N̄k)/2]

where Njk is the number of streams passing through voxels j and k, N̄j and N̄k are

the average Njv and Nkv over all voxels v in the brain, respectively, and N is the

total number of streams initiated in the procedure. Thus, the θ̂` statistic represents

the above-average strength of SC underlying an FC network estimated by ICA.

Although we’ve defined θ̂` here on the voxel-level, this measure could also be

defined on the region-level, where j and k represent a pair of regions rather than

voxels. When performing probabilistic tractography on the voxel-level, the mag-

nitude of θ̂` will inherently be small relative to its upper bound of 1, because the

probability of SC between two individual voxels tends to be very low due to the

small target size. However, the magnitude of θ̂` based on region-to-region proba-

bilistic tractography is expected to be larger because each region contains multiple

voxels.

To conduct inference for θ`, we will need an estimate of its variance, var(θ̂`).
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First, considerN∗, a
(
V
2

)
× 1 vector of Njk for the set of all voxel pairs {j, k}.

N∗ =

[
{Njk}

]
=



N12

N13

...

NV−1,V


Our proposed strength of SC statistic, θ̂`, can then be written as a function of N∗

(see Appendix A for details):

θ̂` =
(C` −A)N∗

b−AN∗

where

A =
(V` − 1)

2(V − 1)

∑
j∈Ω`

Cj

and

b =
V`(V` − 1)

2
N

and C` and Cj are 1 ×
(
V
2

)
row vectors of binary indicators, corresponding to the

order of the {Njk} inN∗. The elements ofC` are 1 if the j, k voxel pair is a member

of Ω`, 0 otherwise; the elements of Cj are 1 if the j, k voxel pair involves voxel j, 0

otherwise. V is the total number of voxels in the whole brain and V` is the number

of voxels in IC `.

We can consider each Njk ∼ Bin(N, pjk) where N is the number of streams

initialized in a probabilistic tractography procedure, and pjk is the probability of

SC between voxels j and k. Given that N is large, we can approximate with the

Normal distribution, Njk ∼ N(µjk, σ
2
jk), and N∗ can be considered to follow a

multivariate normal distribution with mean vector µ of size
(
V
2

)
× 1 and variance-

covariance matrix Σ of size
(
V
2

)
×
(
V
2

)
.
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That is,N∗ ∼MVN(µ,Σ), where

µ = N

[
{pjk}

]
= N



p12

p13

...

pV−1,V


and

Σ =

[
{cov(Njk, Nj′k′)}

]

=



var(N12) cov(N12, N13) · · · cov(N12, NV−1,V )

cov(N13, N12) var(N13) · · · cov(N13, NV−1,V )

...
... . . . ...

cov(NV−1,V , N12) cov(NV−1,V , N13) · · · var(NV−1,V )


Because the numerator and denominator of θ̂` are linear combinations of N∗,

we can use the Delta method based on Σ to derive the approximate the large sam-

ple variance of θ̂` (Casella and Berger, 1990).

var(θ̂`) = var

(
(C` −A)N∗

b−AN∗

)
≈
[

(C` −A)µ

b−Aµ

]2 [
(C` −A)Σ(C` −A)′

[(C` −A)µ]2
+

AΣA′

[b−Aµ]2
− 2

[−(C` −A)ΣA′

[(C` −A)µ][b−Aµ]

]

Although var(θ̂`) is a scalar value, its calculation requires estimation of the large(
V
2

)
×
(
V
2

)
matrix Σ. Estimating Σ̂ poses computational difficulties because it is a

high-dimensional matrix with spatially dependent observations (i.e. the probabil-

ity of SC tends to be higher for brain locations that are spatially close). We can

incorporate the spatial distance between observations in our estimation of Σ̂ by
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using a parametric semivariogram model (Minasny and McBratney, 2005). In this

way, we can model each covariance term, cov(Njk, Nj′k′), as a function of the dis-

tance between voxel pair j, k and voxel pair j′, k′, denoted djk,j′k′ , which decays as

the distance between the observations increases. The parameters of the semivari-

ogram can be estimated from the data, by fitting to the empirical semivariogram

function.

The elements in N∗ are based on observations between voxel pairs, so to cap-

ture the spatial similarity between these observations in the covariance term, we

need a metric that quantifies the spatial distance between pairs of voxel pairs j, k

and j′, k′. Since this is a non-standard distance, we propose a novel distance metric

to incorporate in our spatial model for covariance:

djk,j′k′ = min

[
d(j, j′) + d(k, k′)

2
,
d(j, k′) + d(k, j′)

2

]

where d(j, k) is the euclidean distance between voxels j and k; this serves as a

proxy for the true distance between voxels that is based on the length of the fiber

tract. Thus, we can use this distance metric and the semivariogram model to es-

timate the elements of Σ̂, then calculate var(θ̂`) to use in hypothesis testing for θ`.

To avoid the computational burden of estimating the large matrix Σ̂, we will also

consider a bootstrap standard error term, denoted SEboot(θ̂`), as a non-parametric

alternative for the theoretical variance term, var(θ̂`). We will compare the perfor-

mance of the theoretical vs. bootstrap variance terms via simulation studies in

section 2.4.

2.3.2 Hypothesis testing based on the sSC measure

Our goal in developing the strength of SC measure, θ̂`, and its variance term is

to evaluate the strength of SC underlying functional networks estimated by data-
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driven partitioning methods like ICA. We propose a hypothesis testing framework

for 1) evaluating sSC within a single independent component (IC), 2) comparing

sSC between two ICs, and 3) comparing the sSC for a given IC between two subject

subgroups (i.e. MDD vs controls).

For an individual IC `, if θ` = 0, this indicates that observed strength of SC

within the functional network is no higher than we would expect based on its aver-

age SC. However, if an IC is representative of a true functional network, we expect

the strength of SC underlying these functional connections to be significantly above

average, i.e. θ` > 0. Thus, we can evaluate the strength of SC within IC ` using the

hypotheses:

H0 : θ` = 0 vs. Ha : θ` > 0

and we construct a Wald-type test statistic for the single- and multi-subject cases,

respectively:

T ∗ =
θ̂`√
ˆV ar(θ̂`)

∼ N(0, 1) T ∗ =
¯̂
θ`√

ˆV ar(θ̂`)/n
∼ N(0, 1)

In order to compare the strength of SC between two ICs, ` and `′, we can use

the hypotheses:

H0 : θ` = θ`′ vs. Ha : θ` 6= θ`′

and evaluate using a non-parametric permutation testing approach, in which we

permute the IC label to generate an empirical distribution for the ¯̂
θ`− ¯̂

θ`′ difference.

Finally, we can test whether the strength of SC for a given IC ` differs between

subject subgroups (i.e. MDD vs controls) using the hypotheses:

H0 : θ`,1 = θ`,2 vs. Ha : θ`,1 6= θ`,2
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and a Wald-type test statistic:

T ∗ =
¯̂
θ`,1 − ¯̂

θ`,2√
ˆV ar(θ̂`,1)

n1

+
ˆV ar(θ̂`,2)

n2

∼ N(0, 1)

Alternatively, we can test the between-group hypotheses using a non-parametric

permutation testing approach, in which we permute subject group label to gener-

ate an empirical distribution for the ¯̂
θ`,1 − ¯̂

θ`,2 difference.

2.3.3 Using sSC to inform reliability of components

Due to the stochastic nature of the ICA algorithm and individual subject variabil-

ity, the reliability of the functional networks estimated from fMRI data may vary.

However, it is important to determine the reliability of the estimated ICs to make

accurate interpretations. To investigate whether strength of SC can be leveraged

to inform IC reproducibility, we propose a novel reliability index based on boot-

strapped ICA runs.

To calculate this reliability index, we first generate B bootstrap samples of size

n and perform group ICA for each bootstrap sample, extracting q ICs each time.

Next, for IC ` from the original data, we identify the corresponding IC `b in the bth

bootstrap sample. We then calculate r``b , the spatial correlation between original

IC ` and its corresponding bootstrap IC `b, as well as r``∗b , the spatial correlation

between IC ` and each other IC `∗b in the bth bootstrap sample. Based on these

correlation values, we propose the following reliability index R` for IC `:

R` =

1
B

∑B
b=1 |r``b| −

1
Bq

∑B
b=1

∑q
`∗b=1 |r``∗b |

1− 1
Bq

∑B
b=1

∑q
`∗b=1 |r``∗b |

The numerator of R` represents the observed similarity between IC ` and its corre-
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sponding bootstrapped IC `b, relative to its average similarity to all of the q boot-

strapped ICs `∗b , and averaged over B bootstrap samples. We standardize the mea-

sure by dividing by the maximum possible value, in which original IC ` is perfectly

reproduced in the bootstrap sample (i.e. r``b = 1). The reliability index R` ranges

from -1 to 1, where R` < 0 indicates that the IC is not reliably reproduced across

bootstrap samples, and R` close to 1 indicates that the IC is highly reproducible.

Similar to the construction of the sSC measure θ`, R` is structured like the Kappa

statistic for inter-rater agreement, in that it represents the observed reproducibility

of IC `, corrected for the reproducibility expected by chance, and divided by the

maximum possible value.

2.4 Simulation Studies

We conducted simulation studies to evaluate the performance of the estimation

and inference methods for the proposed strength of SC measure. We draw 300

simulated data sets for n = 20, 50 subjects, under two different noise levels. First,

we simulate the fMRI data based on the true source signal maps and their time

courses. We define q = 2 source IC maps, which are common for all subjects and

consist of one 10 × 10 axial slice, for a total of V = 100 voxels. IC 1 represents

a symmetric front-back network, while IC 2 represents a symmetric left-right net-

work. The value at each voxel in these maps is based on the background noise

(x1 ∼ N(0, 0.5) for all voxels, plus the within-source intensity (x2 = 3) and noise

(x3 ∼ N(0, 0.1)) for voxels within the IC map. After the IC maps are created, their

temporal responses are adapted from real fMRI data with T = 200 time points. We

generate a T ×V fMRI data matrix Yi, for each subject i, according to the ICA equa-

tion: Yi = AS + e, where A is the T × q ”mixing matrix” whose columns represent

the time series for each IC, and S is the q × V source matrix whose rows represent
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the IC maps. Gaussian background noise is linearly added to the mixed spatial

sources to generate a simulated fMRI data matrix of size 200×100 for each subject.

Figure 2.1: True IC source maps specified for simulation testing

Once the subject-level fMRI data has been simulated, we can estimate the group-

level IC maps using the GIFT method (Calhoun et al., 2001). In order to evaluate

the strength of SC underlying each estimated IC, we must first simulate the prob-

abilistic tractography SC results based on DTI data. For each subject, we generate

the
(
V
2

)
×1 matrix N∗, whose elements (Njk) represent the number of streams out

of N = 20 trials that connect each voxel pair (j, k), to simulate the results of a prob-

abilistic tractography procedure. We use the model N∗ ∼ MVN(µ,Σ) to simulate

this data, withµ and Σ defined as follows. For the mean vectorµ = Np, where p is

the vector of voxel pair connection probabilities. Voxel pairs outside of an IC map

have a connection probability of 0.25, while voxel pairs inside IC 1 or 2 have con-

nection probabilities of 0.5 and 0.75, respectively. The covariance elements of the

variance-covariance matrix Σ are defined based on the exponential semivariogram

function,

γ(h) = c0 + ce[1− e−|h|/ae ], h > 0

with parameters c0 (nugget), ce (partial sill), and ae (range); h represents the

distance between observations. We generate the SC data in N∗ under both ”low”

(c0=1, ce=4, ae=1) and ”high” (c0=2, ce=5, ae=1) noise conditions. In this way, we

can simulate the SC data in N∗, and evaluate the strength of SC underlying each
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IC.

Table 2.1 summarizes the results based on 300 simulation runs under the four

different sampling configurations. In each setting, we estimate the strength of SC

measure, θ̂1 and θ̂2, along with its variance and 95% confidence intervals, based on

both the theoretical variance term and the bootstrap standard error (using B=1000

bootstrap resamples).

Table 2.1: Results based on 300 simulation runs

n Noise θ θ̂ SE SE Cov Prob Cov Prob
Level mean (SD) (Theoretical) (Bootstrap) (Theoretical) (Bootstrap)

IC 1 20 Low 0.3077 0.3081 (0.0091) 0.0083 0.0093 92.6 94.3
High 0.3074 (0.0104) 0.0093 0.0105 91.6 94

50 Low 0.3084 (0.0061) 0.0053 0.0060 90.7 93.7
High 0.3078 (0.0069) 0.0059 0.0068 91 94.7

IC 2 20 Low 0.64 0.6405 (0.0120) 0.0112 0.0115 93.3 93
High 0.6389 (0.0134) 0.0126 0.0127 94.6 93.6

50 Low 0.6409 (0.0080) 0.0071 0.0074 90.7 93
High 0.6394 (0.0088) 0.0080 0.0082 93.7 93

We evaluate the bias of our sSC estimator by comparing the mean θ̂ to the true

sSC value, θ; there is very low bias in all simulation settings. We also assess the

performance of our two candidate variance terms by comparing the estimated the-

oretical and bootstrap standard errors (SE) to the empirical SE, SD(θ̂). We note that

the theoretical SE (based on semivariogram model fitting for Σ̂) tends to under-

estimate the variability of θ, while the bootstrap SE performs fairly well. Finally,

we compare coverage probabilities based on two types of 95% confidence intervals

(CIs): the Wald-type CI based on the theoretical SE, and the CI based on the boot-

strap percentiles. The coverage probabilities from both types of CIs are fairly close

to 95%, although the bootstrap CI tends to outperform the theoretical variance-

based CI.

Because it requires estimating the large matrix Σ̂, calculation of the theoretical

variance term V ar(θ̂) poses a computational challenge, especially when the num-

ber of voxels V is large. Even in this small-scale simulation study where V = 100,
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Σ̂ has dimensions
(

100
2

)
×
(

100
2

)
, or 4950 × 4950. The bootstrap variance estimator,

on the other hand, is more computationally feasible since it avoids estimation of

Σ̂, and shows good performance in our simulation studies. Thus, we recommend

using the bootstrap method to conduct inference in real data applications where

the number of voxels V is large.

2.5 Data Analysis

We apply our sSC method to an fMRI and DTI dataset of 20 subjects with major

depressive disorder (MDD) and 20 healthy controls. Initially, we run a group ICA

using only the 20 control subjects’ fMRI data, since studies of MDD have shown

resting state FC differences (Northoff et al., 2011; Greicius et al., 2007; Veer, 2010).

We extract q = 15 group-level IC maps, 9 of which appear to represent well-known

resting state networks (Smith et al., 2009; Laird et al., 2009) (see Figure 2.2). We

create a thresholded white matter mask for each IC, consisting of about 900 voxels,

for further exploration of the underlying structural connectivity.

To evaluate the SC distribution of each IC, we run a probabilistic tractography

procedure using the voxels in the thresholded IC mask as seed locations. We initi-

ate N=5000 streams from each seed voxel in the IC, and trace the streams as they

pass through the brain. The results of this procedure give us Njk, N̄j , and N̄k for

each voxel pair j, k in IC `, which can be used to estimate the strength of SC mea-

sure, θ̂`. We conduct inference for θ` using the bootstrap SE term, rather than the

theoretical V ar(θ̂`) term for computational feasibility.

Table 2.2 shows the sSC results for the 9 estimated ICs from the control subject

group. The θ̂ values are all fairly small, since our it was calculate on the voxel level,

yet all ICs have strength of underlying SC significantly greater than 0. Since these

IC maps all correspond to known resting state functional networks, it is not sur-
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Figure 2.2: Estimated IC maps

prising that they demonstrate within-network strength of SC above baseline. IC 8

displays the highest mean θ̂, while IC 4 displays the lowest mean θ̂. To investigate

this discrepancy, we plot the SC distribution for both of these ICs in Figure 2.3.

Here, the IC seed area for A) IC 8 and B) IC 4 is shown in red, and its SC distribu-

tion to the rest of the brain is shown in blue. We observe that IC has a high degree

of within-IC structural connectivity, while IC 4 has a low degree of within-IC struc-

tural connectivity relative to the rest of the brain. Permutation testing reveals the

the strength of SC for these two ICs is significantly different (p<0.0001).

Next, we examine the difference in strength of SC for each IC between the con-

trol and MDD subject groups; the results are shown in Table 2.3. This table shows

each group’s mean θ̂ by IC, along with the bootstrap-based 95% confidence inter-

vals and p-values (uncorrected) for the group difference in θ; p-values are calcu-

lated based on both the bootstrap SE and permutation testing. The mean θ̂ values

are very similar for the control and MDD groups, so it is not surprising that none of

of the ICs show a significant between-group difference. This indicates that for the
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Table 2.2: Results of hypothesis testing for controls

IC Mean(θ̂`) ŜEB(θ̂`) Bootstrap CI p-value
2 motor 0.0071 0.0013 (0.0066, 0.0077) <0.0001
3 FP 0.0081 0.0010 (0.0077, 0.0086) <0.0001
4 EC 0.0048 0.0004 (0.0046, 0.0049) <0.0001
5 FP 0.0077 0.0008 (0.0074, 0.0081) <0.0001
8 visual 0.0098 0.0014 (0.0092, 0.0103) <0.0001
10 EC 0.0052 0.0008 (0.0048, 0.0055) <0.0001
11 visual 0.0085 0.0009 (0.0082, 0.0089) <0.0001
12 motor 0.0058 0.0005 (0.0056, 0.0060) <0.0001
13 DMN 0.0078 0.0016 (0.0071, 0.0085) <0.0001

Figure 2.3: SC distribution for IC 8 (visual) vs IC 4 (exec control)

ICs that represent a normal resting state network, there is no substantial difference

in the underlying structural connectivity between healthy controls and patients

with MDD.

Finally, we investigated whether strength SC informs the reliability of the func-

tional networks estimated by data-driven methods like ICA. We plot the strength

of SC measure θ̂` vs our proposed reliability index R` for each IC `, and find that

these measures are positively associated (see Figure 2.4). That is, ICs with stronger

underlying structural connectivity are more likely to be consistently estimated by



44

Table 2.3: Results of hypothesis testing for MDD vs. controls

Controls θ̂ MDD θ̂
IC Mean SEb Mean SEb 95% CI Bootstrap Perm. test

(MDD - con) p-value p-value

2 motor 0.0071 0.0013 0.0070 0.0012 (-0.0009, 0.0005) 0.702 0.698
3 FP 0.0081 0.0010 0.0079 0.0012 (-0.0009, 0.0005) 0.525 0.562
4 EC 0.0048 0.0004 0.0047 0.0004 (-0.0003, 0.0002) 0.820 0.825
5 FP 0.0077 0.0008 0.0072 0.0010 (-0.0011, -0.0001) 0.018 0.054
8 visual 0.0098 0.0014 0.0095 0.0016 (-0.0012, 0.0007) 0.639 0.608

10 EC 0.0052 0.0008 0.0053 0.0008 (-0.0003, 0.0006) 0.451 0.475
11 visual 0.0085 0.0009 0.0080 0.0008 (-0.0010, 0.0000) 0.084 0.077
12 motor 0.0058 0.0005 0.0060 0.0007 (-0.0002, 0.0006) 0.277 0.299
13 DMN 0.0078 0.0016 0.0073 0.0012 (-0.0015, 0.0003) 0.251 0.252

the ICA algorithm. This suggests that we can leverage SC information from DTI

data to inform the FC networks estimated from fMRI data.

Figure 2.4: Strength of SC is associated with IC reliability
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2.6 Discussion

We integrated information from the fMRI and DTI data modalities to calculate a

novel statistical measure of the strength of SC (sSC) underlying a functional net-

work. Our simulation studies and data application demonstrated the utility of the

sSC measure, and we found a positive association between sSC and the reliability

of functional networks estimated by ICA.

Based on this finding, future work could include development of an SC-constrained

ICA algorithm, which would leverage information from DTI data to estimate a

more reliable and biologically plausible set of functional networks from fMRI data.

We might also consider two modifications to the strength of SC measure. 1) Rather

than standardizing the measure with respect to a maximum probability of 1, we

could determine a more realistic maximum probability based on the amount of

white matter in the IC. 2) Controlling for the average SC of a component is im-

portant, because different brain regions might have varying amounts of SC traffic,

but this could unfairly penalize sSC in components with high underlying SC. In-

stead we might control for SC expected by chance, which could be determined by

running tractography on a DTI image with a spherical tensor at each voxel. This

way of measuring the ”baseline” SC could account for connectivity observed by

chance.

There has been an enormous amount of research devoted to FC over the past

several years, with substantial interest focusing on resting-state FC. A set of rest-

ing state networks (RSNs) have been consistently identified in these investigations

(Smith et al., 2009; Damoiseaux et al., 2006; Laird et al., 2011), most prominently the

default mode network (DMN) (Buckner et al., 2008). While our work focused on

resting-state connectivity, our proposed methods extend to other studies involving

task-related fMRI.

Depression is a serious mental disorder affecting more than 20 million people
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in the US and roughly 121 million people worldwide, according to the WHO. Due

to the complexity of this disorder and its varied forms, its mechanisms are not fully

understood. Functional and structural neuroimaging play critical roles in advanc-

ing our knowledge about major depression and other mental disorders. Our pro-

posed methods stand to make a significant impact by improving our understand-

ing of the neural representations of MDD, concentrating largely on the functional

and structural relationships between different brain regions. Our research may

have a long-term impact that is even more profound, since our proposed methods

may generalize to studies of brain connectivity for other mental and neurological

disorders, as well as to treatment studies.
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Chapter 3

Topic 2: A joint model for functional

and structural connectivity across the

whole-brain network
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3.1 Introduction

The network analysis approach has recently become a popular technique for mod-

eling functional and structural connectivity across the whole brain. As of June

2016, a Google Scholar search of ”brain connectivity network analysis” yields 472,000

results. Adapted from graph theory, the network approach models the whole brain

and it’s connections as a system of ”nodes” (brain regions) and ”edges” (pair-

wise connections between those regions) (Sporns et al., 2000). Network studies

of psychopathology rely on the notion that dysfunctional nodes and edges result

in abnormal signaling, which results in differences in brain connectivity networks.

Since most major brain disorders involve dysfunction of processes that are dis-

tributed across multiple brain regions, rather than being constrained to one indi-

vidual brain area, the network approach can provide important insights on global

brain connectivity and organization in psychopathology (Menon, 2011).

A typical neuroimaging network analysis starts by parcellating the brain into

regions, then quantifying a measure of association between all pairs of regions to

produce a connectivity matrix (Sporns et al., 2000). For functional connectivity, the

association between each region pair can be measured using pairwise Pearson’s

correlations or partial correlations between each regions’ fMRI BOLD times series.

For structural connectivity, the association between region pairs can be represented

by the pairwise probability of SC or fiber counts, as estimated by a probabilistic or

deterministic tractography procedure, respectively, using DTI data.

In this chapter, we present a novel multimodal approach that uses fMRI and

DTI data to explore the relationship between functional and structural connectiv-

ity at each edge in the whole brain network. We use the expectation-maximization

(EM) algorithm to estimate the model parameters by maximizing the data like-

lihood. It is our hypothesis that edges within a functional module will show a

stronger association between SC and FC, relative to edges connecting regions from
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different functional modules. We also explore whether the SC-FC relationship

varies depending on how we represent FC (e.g. correlation vs. partial correlation).

Since partial correlations are said to yield more accurate estimates of the true FC

network (Smith et al., 2011), we might expect to see a stronger SC-FC association

when FC is measured in this way. We will illustrate the application of our method

to a resting-state fMRI and DTI dataset, and conduct simulation studies to evaluate

the performance of our method.

3.2 Data

We use the dataset described in section 1.6, that contains resting-state fMRI (rs-

fMRI) and DTI scans for 20 subjects with major depressive disorder (MDD) and 20

healthy controls.

3.2.1 Functional Connectivity (FC) Matrix Construction

One major challenge in brain network construction lies in defining the nodes of the

network (Zalesky et al., 2010). While Stanley et al. (2013) recommends using indi-

vidual voxels as network nodes, this results in an extremely high-dimensional con-

nectivity matrix and can be biased by artificially strong local connections. More-

over, a voxel-based network can be highly variable across subjects due to the diffi-

culty of aligning brain locations across the brains of different individuals. On the

other hand, coarse anatomical atlases like the commonly used AAL atlas (Tzourio-

Mazoyer et al., 2002) include large regions that are likely to contain multiple func-

tional subregions, which can obscure the true properties of the network. For our

network analysis, we adopt an intermediate whole-brain parcellation scheme de-

fined by 264 putative functional regions (Power et al., 2011) that span the cerebral

cortex, subcortical structures, and the cerebellum. This system of nodes was de-



50

termined using a meta-analysis of task-based fMRI studies combined with resting-

state functional connectivity mapping techniques. In this parcellation, each node

is a 5mm-radius sphere (81 voxels) in standard 2mm MNI space representing a pu-

tative functional region, and the collection of nodes provides reasonable coverage

of the whole brain (see Figure 3.1). Relative to the voxel-level or large anatomical

atlas parcellations, this system provides a good balance of spatial resolution and

dimension reduction.

Figure 3.1: The 264-node system, organized by functional module.

Once we have chosen a parcellation scheme, we must next obtain a single repre-

sentative time series for each region. Thus, for each individual subject and region,

we perform a singular value decomposition (SVD) in the time domain to the T ×V

matrix of fMRI data, where T is the number of scans and V is the number of voxels
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in the region (V =81). We extract the first right singular vector, which represents the

dominant time series for that region. The resulting 264 temporal profiles summa-

rize the neural activity at each node in our network system. To generate the 264 ×

264 FC matrix, we measure the association between a pair of regions’ BOLD fMRI

time series in three ways: 1) using Pearson’s correlations (henceforth referred to

as ”full correlation”), 2) using partial correlations at the 100% density level, and 3)

using partial correlations at the 50% density level.

Full correlations are simple to calculate, but they only reflect the marginal as-

sociation between network nodes, rather than the true or direct functional connec-

tion between them. We may observe a large correlation between a pair of nodes

because of their common connections to a third-party node, even if the two nodes

lack a direct connection. Partial correlations, on the other hand, measure the direct

FC between two nodes, by estimating their correlation after regressing out effects

from all the other nodes in the network, thus eliminating spurious effects (Smith

et al., 2011). Through simulation studies, Smith et al. (2011) compared the perfor-

mance of several FC network modeling methods, and found that partial correlation

performed well and showed high sensitivity to detect true functional connections.

Full correlations are still a reasonable and widely-used measure of FC in network

models for fMRI data, however (Zalesky et al., 2012).

Despite its advantages in measuring direct FC, the application of partial cor-

relation in the neuroimaging community has been limited, primarily because its

calculation is computationally difficult, and requires choosing a tuning parameter

to control the sparsity. Wang et al. (2016) presents an efficient and reliable approach

to estimating the partial correlation matrix, and guides the choice of tuning param-

eter to achieve the desired matrix density level. We use the associated DensParCorr

R package to estimate the partial correlation matrix at the 100% and 50% density

levels (which corresponds to a tuning parameter λ of 0.001 and 0.025, respectively).
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In order to understand the functional organization of the nodes in our network,

we assigned them to one of ten functional modules, corresponding to the ten ma-

jor resting state networks (RSNs) defined by Smith et al. (2009). The RSN maps

(shown in Figure 3.2), determined by ICA decomposition of a large database of ac-

tivation studies (BrainMap) and resting state fMRI data, are circuits whose BOLD

activity is temporally coherent during both task activity and at rest. The functional

modules include a medial visual network (Med Vis, 15 nodes), an occipital pole

visual network (OP Vis, 15 nodes), a lateral visual network (Lat Vis, 19 nodes), the

Default Mode network (DMN, 20 nodes), the cerebellum (CB, 6 nodes), a sensori-

motor network (SM, 31 nodes), an auditory network (Aud, 29 nodes), an executive

control network (EC, 39 nodes), and a right and left frontoparietal network (FPR

and FPL, 32 and 26 nodes, respectively). To determine the module membership

at each node, we identified the RSN z-statistic map with the largest value in the

location of the node, above a chosen threshold (z > 3). Thirty two of the 264 nodes

were not strongly associated with any RSN maps, and were therefore not included

in our analysis. All brain visualizations were created using BrainNet Viewer (Xia

et al., 2013).

3.2.2 Structural Connectivity (SC) Matrix Construction

The 264 nodes described in section 3.2.1 are centered in gray matter, so we needed

to identify the nearby white matter fibers for each node in order to evaluate SC

between region pairs. Rudie et al. (2013) performed a similar analysis with the

264-node system, and suggests the following procedure. Using the same set of

264 MNI coordinates from Power et al. (2011), we dilate each spheres to have a

10mm-radius to use for evaluating SC. Enlarging spheres to this size (515 voxels,

compared to 81 voxels for functional spheres) ensures inclusion of white matter

voxels, as defined by FSL’s white matter tissue prior mask, thresholded at 50%.
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Figure 3.2: Ten major resting state networks (RSNs)

On average, 68.4% of the voxels in each region are in white matter.

In order to evaluate the SC between each pair of regions, we perform region-to-

region probabilistic tractography, implemented in FSL (Behrens et al., 2007). This

procedure initiates several streams (5000 in our analysis) from each voxel in the

seed region mask, and the streams each choose a path based on the principal di-

rection of diffusion at each voxel, while avoiding passing through CSF. The pro-

portion of streams that reach the target region represents the probability of SC for

the seed-target region pair. We normalize this number by the waytotal count (i.e.

the number of viable streams initiated from the seed region) to yield a more accu-

rate measure of SC. The probabilistic nature of this algorithm can yield asymmetric

region-to-region SC values. We impose symmetry in the final SC matrix by taking

the average of the two directional measures for each region pair.
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3.3 Methods

3.3.1 Joint model of SC and FC

We develop a hierarchical modeling framework to assess the link between SC and

FC at each edge in the network.

3.3.1.1 Level 1

The first level models the observed FC and SC values and the variability due to

repeated sessions/experiments. Consider Rikj , the observed FC (as measured by

full or partial correlation) at edge k, for subject i (i = 1, ..., n), and fMRI scan-

ning session j (j = 1, ..., J). (If an fMRI data does not contain multiple scanning

sessions per subject, one may consider dividing the time series of a single scan

into equally-spaced intervals, to multiple pseudo-sessions. Since our fMRI dataset

contains only one scanning session, we split the time course of the single scan into

three even sections (J=3) of 50 time points each.) We apply the Fisher’s-z transfor-

mation to transform Rikj to the scale of all real numbers, and model the observed

FC (R̃ikj) as the sum of the subject-specific FC (fik) plus some normally distributed

measurement error term (εFikj); i.e.

arctanh(Rikj) = R̃ikj = fik + εFikj

where

εFikj ∼ N(0, σ2
k)

In addition, consider Yikl, the observed probability of SC (as measured by a

probabilistic tractography procedure) for edge k, subject i, and repeated tractogra-

phy experiment l (l = 1, ..., L). (In our analysis, we repeat the probabilistic trac-

tography experiment twice, under different random seed arguments, to get two



55

replications (L=2) per subject.) We apply the logit function to transform pikl to

the scale of all real numbers, and model the observed SC (p′ikl) as teh sum of the

subject-specific SC (sik) plus some normally distributed measurement error term

(εSikl); i.e.

logit(pikl) = p′ikl = sik + εSikl

where

εSikl ∼ N(0, γ2
k)

3.3.1.2 Level 2

In the second level models the relationship between FC and SC using a linear

link function, inspired by the function used to link longitudinal and time-to-event

data presented in Tsiatis and Davidian (2004). Preliminary empirical evidence pre-

sented later in section 3.5 also supports the use of a linear model (see Figure 3.7).

We propose to jointly model structural and functional connectivity for edge k in

the network using the following link function:

fik = λksik + βk

Since FC is driven by SC, we model the subject’s edge-level FC (fik) in terms

of a linear model based on that subject’s edge-level SC (sik). However, since FC

is not always fully explained by SC, we include an intercept term to represent the

baseline level of FC. Here, λk is the main parameter of interest, as it represents the

FC-SC association at edge k, and βk represents the baseline FC at edge k.

3.3.1.3 Level 3

Finally, in the third level, we model the subject-specific SC (sik) as the sum of

the population SC (sk) plus some normally distributed between-subject variabil-



56

ity term (eik); i.e.

sik = sk + eik

where

eik ∼ N(0, τ 2
k )

Note that the current model framework requires replicated samples to perform

the estimation. By requiring repeated experiments (e.g. multiple fMRI sessions

and tractography replications), we can better account for the variability in SC and

FC, and thus achieve more reliable estimates.

3.3.1.4 EM algorithm

We can use the EM algorithm (Dempster et al., 1977) and the maximum likelihood

framework to estimate the set of parameters θ = {λk, βk, σ2
k, τ

2
k , γ

2
k, sk}, using the

observed FC and SC data, Y = {R̃ikj, p
′
ikl}, and latent variable sik.

θ̂ = argmax
θ

logP (Y , sik|θ)

To facilitate the estimation of θ, we make the simplifying assumption of inde-

pendence between pairwise connections, and estimate the model parameters sep-

arately for each edge k in the network. By combining all the elements of the model,

we construct the complete log-likelihood function of all observed and hidden vari-

ables for each edge k:

`(θ|Y , sik) =

= log(P (Y |sik,θ)× P (sik|θ))

= log

(
n∏
i=1

[∏
j

f(r̃ikj|fik, σ2
k)×

∏
j′

f(p′ikl|sik, γ2
k)× f(sik|sk, τ 2

k )

])
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= log

(
n∏
i=1

[∏
j

1√
2πσk

e

(
−

[r̃ikj−(λksik+βk)]
2

2σ2
k

)

×
∏
l

1√
2πγk

e

(
− (p′ikl−sik)

2

2γ2
k

)
× 1√

2πτk
e

(
− (sik−sk)

2

2τ2
k

)])

= −
(
Jλ2

k

2σ2
k

+
L

2γ2
k

+
1

2τ 2
k

) n∑
i=1

s2
ik

+
n∑
i=1

sik

[
1

σ2
k

J∑
j=1

λk(r̃ik − βk) +
1

γ2
k

L∑
l=1

p′ikl +
sk
τ 2
k

]
+ const

E-step:

The E-step function is the expected value of the log-likelihood function, with re-

spect to the conditional distribution of sik|Y . For iteration t, we fix the parameter

estimates (θ(t)) and update the explicit E-step function:

Q(θ|θ(t)) = Esik|Y ,θ(t) [`(θ|Y , Z)]

= −
(
Jλ2

k

2σ2
k

+
L

2γ2
k

+
1

2τ 2
k

) n∑
i=1

Ei2︷ ︸︸ ︷
E(s2

ik|Y ,θ(t))

+
n∑
i=1

E(sik|Y ,θ(t))︸ ︷︷ ︸
Ei1

[
1

σ2
k

J∑
j=1

λk(r̃ik − βk) +
1

γ2
k

L∑
l=1

p′ikl +
sk
τ 2
k

]
+ const

where

const = −nJ log(
√

2πσk)− nL log(
√

2πγk)− n log(
√

2πτk)

− 1

2σ2
k

n∑
i=1

J∑
j=1

(r̃2
ikj + β2

k − 2r̃ikjβk)−
1

2γ2
k

n∑
i=1

L∑
l=1

p
′2
ikl −

ns2
k

2τ 2
k

and Ei1, Ei2 are the conditional first and second moment of the latent variable sik
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We show in Appendix B that

[sik|θ(t),Y ] ∼ N(µ∗ik, σ
∗2
ik )

Ei1 = E(sik|Y ,θ(t)) = µ∗ik

Ei2 = E(s2
ik|Y ,θ(t)) = [E(sik|Y ,θ(t))]2 + V ar(sik|Y ,θ(t)) = µ∗2ik + σ∗2ik

where

µ∗ik =

[
λk(r̃ik•−Jβk)

σ2
k

+
p′ik•
γ2k

+ sk
τ2k

]
[
Jλ2k
σ2
k

+ L
γ2k

+ 1
τ2k

] σ∗2ik =
1[

Jλ2k
σ2
k

+ L
γ2k

+ 1
τ2k

]
Notation: r̃ik• =

J∑
j=1

r̃ikj and p′ik• =
L∑
l=1

p′ikl

M-step:

In the M-step of the algorithm, we fix the E-step function Q(θ|θ(t)) and update the

parameter estimates (θ̂(t+1)).

θ̂(t+1) = argmax
θ

Q(θ|θ(t))

= argmax
θ

[
−
(
Jλ2

k

2σ2
k

+
L

2γ2
k

+
1

2τ 2
k

) n∑
i=1

Ei2

+
n∑
i=1

Ei1

(
1

σ2
k

J∑
j=1

λk(r̃ik − βk) +
1

γ2
k

L∑
l=1

p′ikl +
sk
τ 2
k

)

−nJ log(
√

2πσk)− nL log(
√

2πγk)− n log(
√

2πτk)

− 1

2σ2
k

n∑
i=1

J∑
j=1

(r̃2
ikj + β2

k − 2r̃ikjβk)−
1

2γ2
k

n∑
i=1

L∑
l=1

p
′2
ikl −

ns2
k

2τ 2
k

]

Explicit solutions for the parameter MLE equations are shown in Table 3.1.
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Table 3.1: Maximum likelihood estimate equations based on EM algorithm

λ̂
(t+1)
k =

n∑
i=1

J∑
j=1

Ei1(r̃ikj − β(t)
k )

J

n∑
i=1

Ei2

β̂
(t+1)
k =

1

nJ

n∑
i=1

J∑
j=1

(r̃ikj − λ(t)
k Ei1)

σ̂2
k

(t+1)
=

1

nJ

n∑
i=1

J∑
j=1

[
Ei2λ

(t)2

k − 2Ei1λk(r̃ikj − β(t)
k ) + (r̃ikj − β(t)

k )2
]

τ̂ 2
k

(t+1)
=

1

n

n∑
i=1

[
Ei2 − 2s

(t)
k Ei1 + s

(t)2

k

]
γ̂2
k

(t+1)
=

1

nL

n∑
i=1

L∑
l=1

[
Ei2 − 2Ei1p

′
ikl + p

′2
ikl

]
ŝ

(t+1)
k =

1

n

n∑
i=1

Ei1

For each edge, indexed by k (k = 1, ..., 34716), we iterate between the E- and M-

steps until convergence, which we define as ||θ(t+1)−θ(t)|| < 1×10−8. For a network

with 34716 unique edges, the total execution time ranges from 4-7 minutes, and the

algorithm achieves a convergence rate of 99.99%.

3.4 Simulation Studies

We conduct simulation studies to evaluate the performance of the proposed joint

model of FC and SC. Consider a simple brain network with 6 nodes and k=1,...,15

edges, organized in two functional modules (see Figure 3.3). We establish differ-

ent levels of FC, SC, and FC-SC association depending on whether the edges are

within- or between-module, based on the patterns we observe from real data. The
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six within-module edges fall under two settings: high SC/high FC and medium

SC/medium FC. We denote medium and high SC as having probability of connec-

tion around 0.3 and 0.6, respectively, and medium and high FC as having correla-

tions around 0.5 and 0.7, respectively. Since we also expect these edges to show a

strong SC/FC relationship, we set a high value of λk (0.25 or 0.5) at these connec-

tions.

Figure 3.3: Simulation setup for a 6x6 network.

The nine between-module edges fall under three settings: low SC/low FC, high

SC/low FC, and low SC/high FC. We typically expect between-module nodes to

show low connectivity, as empirical evidence suggests, although we occasionally

observe high FC despite low SC, and vice versa. Here, we designate low SC and

low FC to have values around 0.1 and 0.2, respectively. Since we also expect these

between-module edges to show a weaker SC/FC relationship, we set a lower value

of λk (0 or 0.08) at these connections. Guided by results from the data application,

we choose values of σ2
k=0.05, τ 2

k=0.2, and γ2
k=0.01 for all edges k = 1, ..., 15. The

remaining parameters, sk and βk, are assigned values such that each edge achieves

its predetermined SC/FC setting. Note that for simplicity, we only consider positive
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FC correlations.

Based on the population-level parameter setting at each edge k, we can gener-

ate the subject-level means (sik and fik) and ”observed data” (R̃ikj and p′ikl). The

process of generating simulated data is illustrated in Figure 3.4. For each simu-

lation run, we will use the simulated data to estimate the edge-level parameters

using the EM algorithm. We perform 1000 simulation runs under two sample

size conditions (n=20 and n=50); for each run, 200 bootstrap samples of size n

are drawn randomly with replacement, and used to generate an empirical distri-

butions for the parameter estimates. As a result, we can estimate the bootstrap

standard error (SEboot) and coverage probabilities for 95% confidence intervals.

Tables 3.2 and 3.3 summarize the results based on 1000 simulation runs and

two sample sizes, for the λk parameter at each the 15 edges, organized by SC/FC

setting. (Tables B.1-B.4 in Appendix B show results for parameters βk and sk.) The

ML estimates, bootstrap standard errors (SEboot ), and coverage probabilities are

presented for each of the 15 edges in the network. Coverage probabilities are cal-

culated from 95% confidence intervals in two ways: 1) based on the Wald-type

interval using SEboot and 2) using the bootstrap sample quantiles. (We do not

present tables summarizing results for the three variance parameters, σ2
k, τ 2

k , or

γ2
k , since they are not of interest.)

For each of the three parameters of interest, and under all configurations, we

obtain average ML estimates with very low bias. For all parameters, SEboot pro-

vides an accurate measure of variability, as compared with the empirical standard

deviation of the mean ML estimates. Both measures of coverage probability are

reasonably close to 95% coverage, although on average it is higher for the n=50

cases (93.6%) compared to the n=20 cases (92.1%).

The convergence rate for the EM algorithm was 100% under all configurations

of sample size and edge settings. For n=20, the average computation time was
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Figure 3.4: Generating simulated data.

fastest under the high SC conditions (45 iterations until convergence) compared to

medium SC (117 iterations) and low SC (548 iterations), regardless of FC setting.

The same pattern holds in the n=50 case, although the EM algorithm converges in

about 10% fewer iterations.
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Table 3.2: Simulation results for λk, n=20

setting λk λ̂k SEboot CI cov CI cov
mean (SD) prob (I) prob (II)

high SC, high FC 0.25 0.246 (0.092) 0.088 93 92
0.25 0.251 (0.090) 0.088 92 91
0.5 0.503 (0.090) 0.091 93 92
0.5 0.499 (0.089) 0.089 93 92

med SC, med FC 0.25 0.254 (0.089) 0.089 92 91
0.5 0.500 (0.088) 0.091 93 92

high SC, low FC 0 0 (0.090) 0.087 91 91
0.08 0.083 (0.093) 0.088 92 91

low SC, high FC 0 0.001 (0.084) 0.087 94 92
0.08 0.08 (0.086) 0.087 94 93

low SC, low FC 0 -0.002 (0.088) 0.087 93 92
0 0 (0.088) 0.087 92 92
0 -0.006 (0.088) 0.085 93 91

0.08 0.08 (0.087) 0.087 93 92
0.08 0.081 (0.086) 0.087 92 91

3.5 Data Analysis

We apply the proposed joint model to a resting-state fMRI and DTI data from 20

healthy controls (see 1.6). FC and SC matrices were constructed using the 264 node

system (Power et al., 2011) as described in Section 3.2.1. The 232× 232 connectivity

matrices, averaged across subjects and organized by functional module, are shown

in Figure 3.5. SC is represented by a) the probability of SC between a pair of regions

(estimated from probabilistic tractography), while FC is represented in three ways:

b) full correlation, and partial correlation at c) 100% and d) 50% density. For the

SC matrix, we observe that SC tends to be high for within-module edges, and

low for between-module edges, as we might expect. Given their organization by

functional module, it unsurprising that we observe a high degree of positive FC for

for within-module edges, and primarily low or negative FC for between-module
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Table 3.3: Simulation results for λk, n=50

setting λk λ̂k SEboot CI cov CI cov
mean (SD) prob (I) prob (II)

high SC, high FC 0.25 0.251 (0.052) 0.052 94 94
0.25 0.251 (0.053) 0.052 92 93
0.5 0.502 (0.054) 0.053 93 92
0.5 0.498 (0.053) 0.053 95 95

med SC, med FC 0.25 0.249 (0.051) 0.052 95 94
0.5 0.500 (0.054) 0.053 93 93

high SC, low FC 0 -0.001 (0.052) 0.052 95 94
0.08 0.079 (0.052) 0.051 94 93

low SC, high FC 0 0.001 (0.053) 0.051 94 94
0.08 0.079 (0.052) 0.051 94 94

low SC, low FC 0 -0.002 (0.051) 0.051 95 94
0 0.002 (0.053) 0.051 93 93
0 0.001 (0.053) 0.051 93 93

0.08 0.081 (0.051) 0.052 94 93
0.08 0.084 (0.051) 0.051 94 94

edges. It is also notable that compared to full correlations, partial correlations have

a much smaller magnitude. In addition, the sparse partial correlation matrix (50%

density) exhibits much fewer negative FC.

3.5.1 Measuring the edgewise FC-SC relationship

Although the group mean SC and FC values show a moderate linear relationship

across the entire network of edges (see Figure 3.6), our model is instead intended

to capture the relationship between SC and FC across subjects at the level of indi-

vidual edges. As an example, in Figure 3.7 we provide the SC vs. FC plots for 3

edges in the network, displaying strong, moderate, and low FC-SC associations.

Based on this empirical evidence, the linear link function appears to be a reason-

able way to model the FC-SC relationship, although a larger sample size would
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Figure 3.5: Mean connectivity matrices, for control subjects

give a clearer picture of the edge-level FC-SC association.

We apply our joint model to the fMRI and DTI, and estimate the ML estimates

for the six model parameters using the EM algorithm. We also estimate the model

parameters for 100 bootstrap resamples, to calculate the bootstrap standard error

(SEboot) for inference, which was shown in our simulations to be an adequate mea-

sure of variability. The λk parameter reflects the association between FC and SC

at edge k, since it serves as the slope term in our proposed link function. Figure

3.8 displays the heatmaps of unstandardized positive λ̂k values at each edge in

the network, using a) full correlation, b) partial correlation at 100% density, and
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Figure 3.6: SC vs FC, population-level associations

Figure 3.7: SC vs FC, edge-level associations

c) partial correlation at 50% density as measures of FC. (For interpretability, we

only present the positive λ values). In each case, we see a block diagonal pattern,

indicating that the FC-SC association is stronger for within-module edges, relative

to between-module edges. This pattern is most pronounced in plot c), which uses

sparse partial correlations as an FC measure. This provides some evidence that

direct FC (as measured by partial correlations), has a stronger association with SC,

relative to marginal FC (as measured by full correlations). However, when we use

SEboot to standardize and threshold to find the edges with significant λ̂k values

(uncorrected for multiple comparisons), the block-diagonal pattern is not as evi-

dent (see Figure B.1 in Appendix B). Furthermore, the magnitude of the estimated

association measure depends heavily on the marginal distribution of FC and SC, as
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seen by the difference in magnitudes of the λ̂k plots in Figure 3.8. Thus, the results

from this method are not directly comparable if we use full or partial correlation

to measure FC.

Figure 3.8: Unstandardized λ̂k results, using different measures of FC

Figure 3.9 shows the edges with the a) 100 highest and b) 100 lowest positive

λ̂k values, when FC is measured using full correlation. We observe that the high

positive λ̂k values tend to be short-distance and located in within-module edges,

while the low λ̂k values tend to be long-distance and located in between-module

edges. Furthermore, we observe that the 100 edges with high λ̂k (i.e. high FC-

SC association) tend to have both high underlying FC and SC, while edges with

low λ̂k (i.e. almost zero FC-SC association) tend to have underlying FC and SC
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values near zero. We observe similar trends in λ̂k when FC is measured by partial

correlation.

Figure 3.9: 100 edges with the a) highest vs. b) lowest positive λ̂k values

Figure 3.10 shows the distribution of positive λ̂k values for edges with a) very

high SC (95th percentile) vs. b) very low SC (5th percentile). Estimation is per-

formed using three different measures of FC: full correlation, partial correlation

at 100% density, and partial correlation at 50% density. We see that within each

FC measure, the FC-SC association (captured by λ̂k) is much lower for edges with

high SC compared with low SC, as expected. Comparing results from full vs. par-

tial correlations, we see that the magnitude of λ̂k is higher for the former, since full

correlations tend to be higher than partial correlations (see Figure 3.5)
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Figure 3.10: λ̂k at edges with very high vs low SC values

3.5.2 Group comparison

Figure B.2 in Appendix B shows the mean SC and FC matrices for the 20 subjects

with MDD. Comparing to the analogous matrices for healthy controls in Figure

3.5, we can see that the connectivity matrices for each subject group appear to be

similar.

We perform permutation testing to compare the edge-level FC-SC association

(using full correlation for FC) between controls and MDD patients; after control-

ling for multiple comparisons, we did not find any significant differences in λk

between the two groups.

3.6 Discussion

Our proposed method offers an approach for modeling the FC-SC relationship

across the whole-brain network. We employ the EM algorithm to obtain the maxi-

mum likelihood estimates of the model parameters, and use the bootstrap method

to estimate their variability for further inference. Simulation studies under a va-

riety of SC/FC settings demonstrate that our method yields accurate estimates of
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the model parameters, and performs most efficiently for edges with high SC.

The application of our method to a resting-state fMRI and DTI dataset of 20

healthy controls further demonstrates the ability of our method to explain the re-

lationship between SC and FC at each edge in the network. As hypothesized,

the edges with the highest positive FC-SC association tend to be within-module

and short-distance, while the edges with the lowest FC-SC association tend to be

between-module and long-distance.

We also examine the FC-SC association when FC is measured via full correla-

tion vs. partial correlation (at the 100% and 50% density levels). When using these

different measures, we find that the results follow a consistent pattern in which the

FC-SC association is much higher for within-module edges compared to between-

module edges.

One strength of the model framework is that it requires replicated samples to

perform the estimation. By requiring repeated experiments (e.g. multiple fMRI

sessions and tractography replications), we can better account for the variability in

SC and FC, and thus achieve more reliable model estimates.

3.6.1 Limitations and Future Considerations

Although we observe consistent patterns in the FC-SC association using different

measures of FC (full vs. partial correlations), the scale of the association measure

is heavily influenced by the marginal distribution of the connectivity measures.

Thus, the magnitudes of λ̂k are much higher when FC is measured by full correla-

tions vs. when FC is measured by partial correlations. Unfortunately, this means

that the association measure is not directly comparable when the method is ap-

plied using different connectivity measures. In Topic 3 (Chapter 4), we pursue a

more robust measure of association that does not depend on the marginal distri-

butions of the univariate connectivity values.
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A limitation of our joint model is that it implies a linear relationship between

FC and SC at each edge. A more flexible link function, such as that provided

by a copula model may improve the joint model by allowing for a more flexible

association between the modalities. This is the approach we pursue in the next

chapter.

In addition, our method is limited in that it assumes independence between all

edges, and estimates the model parameters at each edge separately. This assump-

tion was made for feasibility of computation, but future models could incorporate

a dependence structure between edges. By borrowing information from neighbor-

ing edges, we might improve estimation and yield a more realistic model of the

function-structure association across the whole network.

Although our analysis did not uncover a significant difference between the con-

trol and MDD population, this is not unexpected, since our analysis employed a

large number of edge-level tests (34716) and a small sample size (n=20 for each

group). Eventually, we plan to validate our findings by using a larger dataset, to

achieve higher statistical power.
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Chapter 4

Topic 3: Using copulas to model the

structure-function relationship in the

brain
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4.1 Introduction

In Topic 2, we presented a method of measuring the association of FC and SC that

assumes a linear relationship. However, the classical method of linear association

may not be appropriate for modeling the complex dependence structure between

these random variables. Measuring dependence linearly with Pearson’s correla-

tion is known to have several pitfalls, and while it measures the overall strength

of the association, it lacks information about how this association varies across the

distribution. In addition, Pearson’s correlation is strongly affected by extreme end-

points, and is not invariant under non-linear monotone increasing transformations

of random variables (Embrechts et al., 1999). Non-parametric rank correlation co-

efficients like Kendall’s tau (τ ) and Spearman’s rho (ρ) offer alternative measures of

dependence that are invariant under monotonic transformations (Schweizer and

Wolff, 1981), but they still only characterize the association with a single value,

rather than describing the joint distribution of the random variables.

In addition, the scale of the association measure proposed in Topic 2 is heav-

ily affected by the marginal distribution of the univariate connectivity values. For

example, pairwise full correlations and partial correlations, both measures of FC,

tend to have drastically different magnitudes. Likewise, SC can be measured us-

ing probabilistic or deterministic tractography, yielding pairwise probability val-

ues and fiber counts, respectively. These also have different distributions, with the

fiber counts usually having a large proportion of absolute zero values. Figure 4.1

shows example histograms of these various connectivity measures. We aim to de-

velop a more robust measure of the FC-SC association, that does not depend on

the marginal behavior of the FC and SC measures.

For Topic 3, we consider the commonly overlooked theory of copulas (Joe, 2015;

Nelsen, 2006) as a more flexible and robust approach to modeling the associa-

tion between FC and SC at the joint probability density (pdf) level. Copulas are
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Figure 4.1: Histograms different FC and SC measures

functions that link multivariate distribution functions to their univariate marginal

distributions; this allows for simultaneous modeling of the dependence structure

between random variables and separately, the arbitrary specification of each vari-

able’s univariate marginal distributions. Advantages of using copulas include 1)

the ability to flexibly model both linear and non-linear dependence, 2) separate

specification of marginal distributions, and 3) the capacity for modeling extreme

endpoints. Implementation of the copula approach to measure the FC-SC associa-

tion will be illustrated by application to an fMRI and DTI dataset, and via simula-

tion studies.

4.1.1 Copulas

Copulas are a class of functions that ”couple” multivariate distribution functions to

their univariate marginal distribution functions, where the marginals are uniform

on the interval [0, 1]. The copula completely characterizes the dependence between

random variables, and allows the parameters of each marginal distribution func-

tion to be modeled separately. The main purpose of a copula is to disentangle the

dependence structure between variables from their marginal distributions, so that

the resulting association measure is not dependent on the scale of the marginals.

The term ”copula,” meaning link or bond, was first used by Sklar (1959) to refer to
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this class of distributions.

Historically, copulas have primarily been applied in the fields of finance (Cheru-

bini et al., 2013) and survival analysis (Shih and Louis, 1995), although they are a

versatile tool that can be applied in any situation involving two or more random

variables. Recent studies have used copulas to examine associations in environ-

mental health (Kostova et al., 2012) and climate science (Schölzel and Friederichs,

2008), and to make predictions in medical studies (Kumar and Shoukri, 2007, 2008).

In the field of neuroscience, copulas have been used to describe the dependence

structure between spike counts across a population of neurons (Onken et al., 2009;

Jenison and Reale, 2004). In addition, Silva et al. (2014) describes the use of copulas

to simulate multimodal neuroimaging data, which allows the user full control of

the single-modality marginal distributions, as well as the type and level of associ-

ation between modalities.

Consider two random variables X and Y, which represent structural and func-

tional connectivity in the context of our model (see section 4.3). We denote the

joint cumulative distribution function (CDF) as H(x, y), and the marginal CDFs of

X and Y as FX(x) and FY (y), respectively. It is a well known result that the CDF

of a random variable is uniformly distributed on the interval [0,1]. In order to use

copulas, the random variables are transformed to uniformly distributed variables

U and V via the marginal CDFs:

U = FX(x) ∼ U(0, 1)

V = FY (y) ∼ U(0, 1)

There exists a bivariate copula function, C, such that

H(x, y) = C(FX(x), FY (y)) = C(u, v)
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The virtue of copulas stems from Sklar’s theorem, which states that all con-

tinuously differentiable joint CDFs can be written as a multivariable function of

their marginals (Sklar, 1959). Under the continuously differentiable assumption

for C(u, v) and H(x, y), it can be shown that the joint probability density function

(PDF) of X and Y can be written as

h(x, y) = fX(x)× fY (y)× c(u, v)

= fX(x)× fY (y)× c(FX(x), FY (y))

Where c(u, v) is the copula (joint) PDF of U and V . Therefore, the joint pdf

h(x, y) can be re-expressed as the product of the marginal pdfs times the copula

pdf, and the dependence structure betweenX and Y is entirely captured by c(u, v).

This is the main advantage of using copulas, since the univariate marginal behav-

ior of random variables can be modeled separately from their dependence.

There are many different types of copulas, which capture different types of de-

pendence. The strength of dependence is determined by the corresponding param-

eter, θ, which has a one-to-one mapping to Kendall’s τ . According to Silva et al.

(2014), ”the literature on the expected type of dependence between multimodal

[neuroimaging] sources is virtually inexistent.” In the following section, we out-

line 5 well-known copula functions: the Gaussian, t, Clayton, Gumbel, and Frank

copulas (Joe, 2015; Nelsen, 2006), which capture a wide range of dependence struc-

tures and are easily implemented with the set of copula functions in Matlab (de-

scribed here: http://www.mathworks.com/help/stats/copula-distributions-and-

correlated-samples.html). Figure 4.2 shows the different dependence structures for

data simulated under these five different copula functions. The plots in this figure

are comparable because they each correspond to a Kendall’s tau (τ ) of 0.5. We will

explore the use of these 5 copulas to investigate the association between FC and
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SC.

Figure 4.2: Data simulated under different dependence structures (copulas), but

with same Kendall’s rank correlation (τ = 0.5).

4.1.1.1 Elliptical copulas

Elliptical copulas, like the Gaussian and t copula are a class of symmetric copu-

las, so-called because the horizontal cross-sections of their bivariate pdfs take the

shape of ellipses. Both Gaussian and t-copulas are easily parameterized by the

linear correlation matrix, but only t-copulas yield dependence structures with tail

dependence.

The bivariate Gaussian copula function is given by:

C(u, v; θ) = Φ2(Φ−1(u),Φ−1(v); θ)
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where Φ−1 is the inverse CDF of the standard normal (i.e. probit function) and Φ2

is the bivariate standard normal distribution with correlation coefficient θ.

See Figure C.1 in C to visualize the dependence structure of the Gaussian copula

under different levels of θ.

The bivariate t copula function is given by:

C(u, v; θ, ν) = T2,ν(T
−1
ν (u), T−1

ν (v); θ)

where T−1
ν is the inverse CDF of the t-distribution with ν degrees of freedom, and

T2,ν is the bivariate t-distribution with ν degrees of freedom and correlation coef-

ficient θ. Not surprisingly, as the degrees of freedom parameter ν increases, the

t copula approaches the corresponding Gaussian copula. See Figure C.2 in Ap-

pendix C to visualize the dependence structure of the t copula under different

levels of θ.

For both the Gaussian and t copulas, the the linear correlation coefficient θ has

the following one-to-one relationships with Kendall’s tau (τ ) and Spearman’s rho

(ρ):

θ = sin(π
2
τ) or τ = 2

π
asin(θ)

and

θ = 2 sin(π
6
ρ) or ρ = 6

π
asin( θ

2
)

4.1.1.2 Archimedian copulas

The elliptical copulas described in section 4.1.1.1 are appropriate for modeling the

dependence structure in symmetric data. Archimedian copulas, such as the Clay-
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ton, Gumbel, and Frank copulas, have the form

Cψ(u, v) = ψ(ψ−1(u), ψ−1(v))

where ψ(t) is a generator function. For this class of copulas, the parameter θ de-

scribes the strength of dependence, and has a one-to-one mapping with Kendall’s

tau (τ ).

Table 4.1 displays the generator function ψ(t), copula function, Kendall’s τ ’s

relationship with θ, and range of possible θ values for each of the bivariate Clayton,

Gumbel, and Frank copulas. Figures C.3, C.4, and C.5 in Appendix C show the

dependence structure of the Clayton, Gumbel, and Frank copulas, respectively,

under different levels of θ. As you can see from these plots, the Clayton copula

allows for strong left tail dependence, while the Gumbel copula allows for strong

right tail dependence between variables.

Table 4.1: Bivariate Archimedian Copulas

Copula Generator fn Copula function Kendall’s τ Range of θ
ψ(t) C(u, v; θ)

Clayton t−θ − 1 (u−θ + v−θ − 1)−1/θ θ
θ+2 θ > 0

Gumbel (− ln t)θ exp−[(− lnu)θ + (− ln v)θ]1/θ 1− θ−1 θ > 1

Frank − ln e−θt−1
eθ−1

− 1
θ ln (1 +

(e−θu−1)(e−θv−1)
(e−θ−1)

) 1− 4
θ [1−D1(θ)] θ ∈ (−∞,∞)

4.2 Data

We continue to use the rs-fMRI and DTI dataset described in section 1.6. As in

Topic 2, we use the 264-node system (Power et al., 2011) (as described in sections

3.2.1 and 3.2.2) to define our FC and SC networks. For this analysis, we only con-

sider full correlation as a measure of FC and use region-to-region probabilistic trac-

tography to measure SC.
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4.3 Methods

Copula functions allow the researcher to specify the dependence structure between

random variables, and separately, to model their marginal distributions. As an ex-

tension to the methods discussed in Topic 2 (Chapter 3), we propose to use copulas

to study the association between FC and SC in two ways. First, to examine whether

the FC-SC association differs between edges located within-module vs. between-

module, and second, to estimate the association between FC and SC at each edge

in the whole-brain network.

4.3.1 Marginal distribution specification for SC and FC data

An important advantage of the copula is that it allows for any choice of marginal

distribution for the random variables, X and Y . The copula is constructed on the

assumption that the marginal distributions are known or estimated from the data.

The joint SC and FC model framework described by Venkataraman et al. (2012)

proposes to model the edge-level SC as having two latent states (present or ab-

sent) and the edge-level FC as having three latent states (negative, positive, or no

FC). Modeling SC as binary fails to capture the potential spectrum of SC strength

values, however. Instead, based on empirical evidence, we suggest modeling the

SC data as a mixture of four Gaussian components, representing 1) near-zero SC,

2) very low SC, 3) moderate SC, and 4) high SC. As prescribed by Venkataraman

et al. (2012), we will model the FC data as a mixture of three Gaussian components,

representing 1) negative FC, 2) near-zero FC, and 3) positive FC. To maintain the

notation presented in section 4.1.1, we will denote the SC and FC random variables

by X and Y , respectively.

Prior to estimating the model, we transform the SC and FC data. While a typical

transformation of data in the range of [0, 1] is the logit or probit function, the SC
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data measured by region-to-region probabilistic tractography may contain values

of 0 and 1 that are meaningful. Instead, we use the arcsine transformation:

X = arcsin(
√
p)

where p is the observed edgewise probability of SC extracted from a probabilistic

tractography procedure, andX is the transformed SC data. This function produces

valid transformations for 0 and 1 values, and maintains the original shape of the

data. For FC data, we employ the commonly-used Fisher’s-z transformation:

Y = arctanh(r)

where r is the observed edgewise full correlation between two region’s BOLD

fMRI time series, and Y is the transformed FC data.

The marginal PDF of the transformed SC data (X) can be modeled as a mixture

of 4 Gaussian components:

fX(x) =
4∑
j=1

pj ×N(x;µj, σ
2
j ) where

4∑
j=1

pj = 1

Moreover,the marginal PDF of the transformed FC data (Y ) can be modeled as

a mixture of 3 Gaussian components:

fY (y) =
3∑
l=1

πl ×N(y;λl, τ
2
l ) where

3∑
l=1

τl = 1

To justify using a Gaussian mixture (GM) model for the SC and FC data, we

preliminarily examine the distributions of X and Y using one control subject’s SC

and FC data. Plots a) and b) of Figure 4.3, show the distribution of the raw SC

and FC data, respectively, across all edges in the network. (This data is taken from

one randomly chosen control subject in Depression dataset.) We see that the SC

data is heavily right skewed, with several values at or near zero. We also observe a
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Figure 4.3: Histograms of SC and FC data for one control subject (con26) from

Depression dataset

fairly normal distribution of FC values, centered around 0. Plots c) and d) show the

transformed SC’ and FC’ data (X and Y ), overlaid with the pdfs of the fitted GM

models (in orange), respectively, demonstrating reasonably good fit to the data.

This method can also be adapted to cases where SC is measured deterministi-

cally, (section 1.4.3), in which region-to-region SC is measured using fiber counts

rather than probabilities. In this case, the distribution of SC values will be similar,

with a strong right skew, but there will be a higher spike at zero due to the large

number of absolute zeros in the data. For example, the histogram in plot a) of

Figure 4.4 shows a typical distribution of SC values as measured by fiber counts.

(This data is derived from a randomly chosen typically developing (TD) subject in

an rs-fMRI and DTI study of Autism (Brown et al., 2012).) In this dataset, about
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Figure 4.4: Histogram of SC (fiber counts), for one TD subject (TD107) from Autism

dataset

90% of edges have SC values of zero, so the proposed 4-component Gaussian mix-

ture model fails to fit the data. When modeling SC data measured by fiber counts,

we suggest substituting the first Gaussian component with the Dirac delta func-

tion δ(x) to represent the spike at zero. The remaining non-zero SC data can still

be treated as a mixture of 3 Gaussian components, as shown in plot b) of Figure

4.4.

The Gaussian mixture (GM) models can be estimated from the SC and FC

data using a set of Matlab functions (see: http://www.mathworks.com/help/stats

/gaussian-mixture-distribution-1.html). Once these marginal PDF parameters have

been estimated from the data, we must next obtain the marginal CDFs to use as

uniformly distributed variables U and V in the copula function. Variables U and
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V are derived as follows, and can be easily calculated using the normcdf function

in Matlab.

U = FX(x)

=

∫ x

−∞

4∑
j=1

pj ×N(t;µj, σ
2
j )dt

= p1

∫ x

−∞
N(t;µ1, σ

2
1)dt+ p2

∫ x

−∞
N(t;µ2, σ

2
2)dt

+ p3

∫ x

−∞
N(t;µ3, σ

2
3)dt+ p4

∫ x

−∞
N(t;µ4, σ

2
4)dt

∼ U(0, 1)

V = FY (y)

=

∫ x

−∞

3∑
l=1

πl ×N(t;λl, τ
2
l )dt

= π1

∫ x

−∞
N(t;λ1, τ

2
1 )dt+ π2

∫ x

−∞
N(t;λ2, τ

2
2 )dt+ π3

∫ x

−∞
N(t;λ3, τ

2
3 )dt

∼ U(0, 1)

4.3.2 Using copulas to measure the FC-SC association for within-

vs. between-module edges

Topic 2 (Chapter 3) measured the FC-SC association at each edge in the network,

and suggested that the FC-SC association for edges located within the same func-

tional module tended to be slightly higher than for edges between different func-

tional modules. Since within-module edges tend to have both high SC and FC (see

Figure 3.5), this result was expected, but the difference was not as evident as we

hypothesized, perhaps due to the small sample size or the limitations of the linear

link function.
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We aim to compare the FC-SC association for within- vs. between-module

edges, across all control subject. To perform this analysis, we will concatenate

the edge-level connectivity data across subjects, separately for the within- and

between-module edge groups, and fit GM models to the within- vs between-module

FC and SC marginal distributions. (By collapsing the data across subjects, we make

the assumption that the distributions of SC and FC values is the same across all

edges.) We will separately measure the FC-SC association for these two classes of

edges using Pearson’s correlation and 5 different copula functions (as outlined in

section 4.1.1). We expect our analysis to show that within-module edges have a

higher level of FC-SC association, relative to between-module edges.

4.3.3 Using copulas to measure the edgewise FC-SC association

Copulas provide a flexible way to quantify the dependence between FC and SC,

since they can capture linear and non-linear associations, unlike Pearson’s corre-

lation or the linear link function described in Topic 2. With a sufficiently large

number of subjects, one could use copulas to fit the edgewise SC and FC marginal

distributions, and model the FC-SC association at the edge-level, in an analogous

way to the modeling approach from Topic 2. Due to the small size of our rs-fMRI

and DTI dataset (n=20 control subjects) however, it is not feasible to fit a GM model

to the connectivity data for each edge individually. Rather, we make the simpli-

fying assumption that the SC and FC data follows the same distribution for each

edge in the network, and concatenate the edge-level connectivity data across all

subjects before estimating the distribution of SC and FC with a GM model.
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4.4 Simulation Studies

We perform simulation studies to evaluate the estimation method, and to com-

pare how well the copula measures the FC-SC association in the context of our

modeling framework, relative to Pearson’s correlation. The copula approach is ex-

tremely useful for simulating multimodal neuroimaging data, since it allows the

user to control the type and level of dependency between modalities, while si-

multaneously allowing for any choice of marginal distribution for each individual

modality (Silva et al., 2014).

4.4.1 Simulation example

Figure 4.5 shows an example of how the FC and SC data can be simulated using

the copula framework. The first step in the simulation is to generate data with a

known dependence structure specified the copula function and parameter θ. In

row a) of Figure 4.5, 1000 data points are generated using a Gaussian copula with

θ = 0.5 (corresponding to a Kendall’s τ of 0.33). Individually, the random variables

Φ−1(u) and Φ−1(v) are marginally normally distributed. In row b) of the figure,

we calculate the uniformly distributed marginal CDFs using u = Φ(Φ−1(u)) and

v = Φ(Φ−1(v)). Although the random variables U and V have marginal uniform

distributions, they still maintain a strong bivariate association (corr(U, V ) = 0.474).

Row c) shows the SC and FC data (X and Y ), distributed according to the user-

defined marginal PDFs (4- and 3-component GM models, respectively). In this

case, the strong bivariate association specified by the Gaussian copula with θ = 0.5

is maintained, as evidenced the Spearman’s ρ(X, Y ) = 0.473, although the Pear-

son’s linear correlation coefficient is r(X, Y ) = 0.35.

Once the FC and SC data have been simulated with the specified dependence

structure and marginal distributions, we can estimate the FC-SC association us-
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Figure 4.5: Steps for simulating data under a specified dependence structure

ing the copula, and compare to the ground truth. The first step is to estimate the

marginal distributions of X and Y based on the data. Row d) of Figure 4.6 shows

the histograms of the simulated data (X and Y ), along with the true and fitted GM

model PDFs (in red and yellow, respectively). Row e) shows that the estimated

marginal CDFs of X and Y , FX(x) and FY (y) are each uniformly distributed, and

maintain a strong bivariate association (corr(Û , V̂ ) = 0.474). In row f) we estimate

the FC-SC association using the Gaussian copula: θ̂ = corr[Φ−1(û),Φ−1(v̂)] = 0.496,

which is close to the true dependence parameter of θ = 0.5.
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Figure 4.6: Estimation steps, based on simulated data

4.4.2 Simulation Results

Following the example outlined in section 4.4.1, we simulate FC and SC data (X, Y )

using the Gaussian copula with a range of dependence levels (θ = 0, 0.1, 0.2, 0.3, 0.4, 0.5)

and sample sizes (n = 50, 100, 200). The parameters for the marginal GM models

are specified according to our empirical observations, to generate realistic distribu-

tions of SC and FC data. For each condition, we perform 500 simulation runs, and

200 bootstrap resamples of size n per run, to estimate the bootstrap standard error

(SEB) of θ̂. We can estimate the coverage probabilities for the 95% confidence inter-
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vals based on 1) the Wald-type interval using SEB(θ̂) and 2) the bootstrap sample

quantiles.

These results are displayed in Table 4.2. We see that under all conditions of

dependence level θ and sample size n, we obtain parameter estimates with very

low bias. SEB provides an accurate measure of variability, as compared with the

empirical standard deviation of the mean ML estimates. Both CI types achieve

close to 95% coverage.

Table 4.2: Simulation results for θ (S=500, B=200)

θ n θ̂ SEB 95% CI 95% CI
mean (SD) cov prob I cov prob II

0 50 0.004 (0.141) 0.141 94.2 95.8
100 0.001 (0.098) 0.098 94 95.8
200 0 (0.072) 0.070 95 94.6

0.1 50 0.082 (0.147) 0.14 92.8 94.6
100 0.102 (0.101) 0.097 93 94.2
200 0.095 (0.070) 0.069 93.6 93

0.2 50 0.188 (0.143) 0.135 91.2 93.6
100 0.194 (0.096) 0.095 93.8 94.4
200 0.193 (0.070) 0.067 93.6 93.2

0.3 50 0.282 (0.138) 0.131 91.6 93.6
100 0.293 (0.091) 0.091 94.2 95
200 0.292 (0.065) 0.064 92.8 94.4

0.4 50 0.368 (0.128) 0.126 92.8 94
100 0.392 (0.085) 0.086 95.4 95.8
200 0.401 (0.063) 0.059 92.8 93.8

0.5 50 0.468 (0.116) 0.118 93 95.2
100 0.488 (0.077) 0.080 94.6 93.8
200 0.495 (0.054) 0.054 94.2 93.8

Tables 4.3 and 4.4 show the sensitivity and specificity of the Gaussian cop-

ula dependence parameter (θ) relative to other measures of the X-Y association,

namely Pearson’s correlation (r), Kendall’s tau (τ ), and Spearman’s rho (ρ). In gen-

eral, we see that sensitivity is highest for the Gaussian copula dependence parame-

ter, especially when compared to Pearson’s correlation. As expected, sensitivity for
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each of the association measures increases as the sample size (n)and true associa-

tion value (θ) increase. When the true FC-SC association is very high (e.g. θ = 0.5),

there is no distinction in sensitivity between the different measures of association.

Interestingly, the Gaussian copula dependence parameter shows no improvement

in specificity over the other measures when θ = 0 (see Figure 4.4).

Table 4.3: Simulation results, Sensitivity(%)

θ n θ̂ r τ ρ
0.1 50 13 9.4 8.4 9.2

100 20.2 12 16.6 16.6
200 29.6 16 24 23.6

0.2 50 30.6 17 25.2 27.4
100 52 30.4 48.8 49.2
200 79.8 49.4 76.2 76.8

0.3 50 57 32.8 49 51
100 88.2 56.6 84.4 85
200 98.6 83.8 97.6 97.6

0.4 50 81.6 52.4 75 77.4
100 98.2 83 98 97.8
200 100 99 100 100

0.5 50 93.6 77.2 94.2 94.2
100 100 97.6 100 100
200 100 99.8 100 100

Table 4.4: Simulation results, Specificity (%)

θ n θ̂ r τ ρ
0 50 94.2 95.6 96.4 96.2

100 94 96.8 95 95.2
200 95 96 97 97.2

The sensitivity results from Table 4.3 are displayed graphically in Figure 4.7.

When visualized in this way, the improvement in sensitivity of the Gaussian cop-

ula dependence parameter relative to Pearson’s linear correlation coefficient is

very evident. This suggests that linear correlation may not be the best measure

of edgewise FC-SC association. The rank correlation coefficients, which have a
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one-to-one mapping with the Gaussian copula dependence parameter θ, also dis-

play an improvement in sensitivity relative to Pearson’s correlation. However, the

copula approach has the advantage in that it can also be used to specify the joint

distribution of FC and SC, in addition to providing a scalar measure of association.

4.5 Data Analysis

We apply the proposed copula method for the 20 healthy control subjects. The 232

× 232 mean SC and FC matrices are displayed in Figure 3.5 a)-b). For this analysis,

we only consider full correlation as a measure of FC. As expected, we observe that

SC and FC are both high for within-module edges, and low for between-module

edges.

4.5.1 Using copulas to measure the FC-SC association for within-

vs. between-module edges

To compare the FC-SC association for within- vs. between-module edges, we first

fit GM models to each subject’s marginal SC and FC data. Figure 4.8 shows the

SC data from both edge groups for a randomly chosen control subject (con26),

overlaid with the pdf of the fitted 4-component GM model (in orange). The GM

models appear to provide a reasonable fit for both edge groups. The histograms

show that SC tends to be higher for within-module edges. The mean and standard

deviation of the GM model parameters estimated across all subjects’ SC’ data are

shown in Tables 4.5 and 4.6.

Figure 4.9 demonstrates that we can reasonably fit a GM model to the subject-

level within- and between-module FC’ data, as shown using one subject’s data

(con26). The fitted GM model pdf is overlaid (orange line) on the histogram of ob-

served data. Since FC tends to be positive for within-module edges, a 2-component
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Figure 4.7: Sensitivity of different measures of dependence
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Figure 4.8: GM models fitted to SC data, at within- vs. between-module edges

Table 4.5: GM model components extracted from within-module SC’ data
component µ σ p

mean (SD) mean (SD) mean (SD)
near-zero SC 0.010 (0.004) 0.006 (0.002) 0.24 (0.05)
very low SC 0.040 (0.01) 0.019 (0.004) 0.31 (0.03)

mod. SC 0.131 (0.021) 0.063 (0.008) 0.26 (0.03)
high SC 0.473 (0.026) 0.228 (0.005) 0.19 (0.02)

Table 4.6: GM model components extracted from between-module SC’ data
component µ σ p

mean (SD) mean (SD) mean (SD)
near-zero SC 0.006 (0.002) 0.003 (0.001) 0.37 (0.03)
very low SC 0.021 (0.005) 0.010 (0.002) 0.35 (0.02)

mod. SC 0.068 (0.011) 0.035 (0.004) 0.22 (0.01)
high SC 0.259 (0.017) 0.169 (0.004) 0.07 (0.01)

GM model, representing the positive and near-zero FC elements, provides a bet-

ter fit to this data. The between-module edges can be fit with a 3-component GM

model, as proposed. The mean and standard deviation of the GM model parame-

ters estimated across all subjects’ FC’ data are shown in Tables 4.7 and 4.8.

Figures 4.10 and 4.11 show the FC-SC association for within- and between-

module edges, respectively, at the level of the original variables X, Y (on left) and

their marginal uniform CDFs U, V (on right). (The data shown is for one control

subject, con34.) In each case, the plots of U vs V don’t necessarily resemble the
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Figure 4.9: GM models fitted to FC data, at within- vs. between-module edges

Table 4.7: GM model components extracted from FC’ data
within-module

component µ σ p
mean (SD) mean (SD) mean (SD)

negative FC - - -
near-zero FC 0.074 (0.06) 0.265 (0.04) 0.54 (0.13)
positive FC 0.372 (0.09) 0.364 (0.03) 0.46 (0.13)

Table 4.8: GM model components extracted from FC’ data
between-module

component µ σ p
mean (SD) mean (SD) mean (SD)

negative FC -0.145 (0.07) 0.222 (0.04) 0.36 (0.10)
near-zero 0.046 (0.05) 0.234 (0.03) 0.41 (0.10)

positive FC 0.141 (0.06) 0.346 (0.05) 0.24 (0.12)

dependence structures shown by any of the five copula functions (see Figures 4.2

and C.1-C.5), but it is difficult to discern because the association is low.

Table 4.9 shows the FC-SC association as measured by correlation coefficients

between the random variables X and Y , as well as the p-value for the Wilcoxon

rank sum test comparing the two edge groups. The FC-SC association is signifi-

cantly stronger for within-module edges, compared to between-module edges, as

measured by each of the three correlation coefficients.

Likewise, Table 4.10 shows the FC-SC association as measured by the copula
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Figure 4.10: FC-SC association for within-module edges

Figure 4.11: FC-SC association for between-module edges

dependence parameter and its corresponding Kendall’s τ , for five different copula

functions. In each case, the measured FC-SC association is significantly higher for

within-module edges, as we hypothesized, except when measured by the Clayton

copula (p = 0.232).

4.5.2 Using copulas to measure the edgewise FC-SC association

In addition to using copulas to compare the FC-SC association for within- vs between-

module edges, we also aimed to use them to estimate the edgewise FC-SC associ-
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Table 4.9: FC-SC association for within- vs. between-module edges, as measured
correlation coefficients

within-module edges between-module edges
mean (SD) mean (SD) p

Pearson’s corr 0.272 (0.04) 0.132 (0.02) 6.8× 10−8

Kendall’s tau 0.096 (0.03) 0.033 (0.02) 1.05× 10−6

Spearman’s rho 0.143 (0.05) 0.050 (0.03) 1.38× 10−6

Table 4.10: FC-SC association for within- vs. between-module edges, as measured
by five copula functions

within-module edges between-module edges
copula type θ τ θ τ p

mean (SD) mean (SD) mean (SD) mean (SD)
Gaussian 0.168 (0.05) 0.107 (0.03) 0.073 (0.03) 0.046 (0.02) 1.20× 10−6

t 0.167 (0.06) 0.107 (0.04) 0.065 (0.03) 0.042 (0.20) 1.05× 10−6

Clayton 0.062 (0.06) 0.115 (0.03) 0.033 (0.03) 0.016 (0.01) 0.232
Gumbel 1.131 (0.03) 0.115 (0.03) 1.060 (0.03) 0.057 (0.01) 1.23× 10−7

Frank 0.900 (0.30) 0.099(0.03) 0.333 (0.16) 0.037 (0.02) 6.01× 10−7

ation, at each edge in the whole-brain network. Figures 4.12 and 4.13 show the

unthresholded heatmaps of the estimated Clayton and Frank copula dependence

parameter θ (on left) and associated Kendall’s τ (on right) across the whole brain

network. The Clayton and Frank copulas yield results that seem to be biologically

meaningful, since they tend to show high levels of FC-SC association for within-

module edges. The results for the other three fitted copula functions are displayed

in Figures C.6-C.8. It should be noted, however, that the Clayton and Gumbel

copula functions can only measure positive associations, which makes them more

limited compared to the Gaussian, t, and Frank copula functions, which can mea-

sure both positive and negative associations. Also, we note although the associa-

tion parameter θ has different ranges for different copulas, it can be expressed in

terms of Kendall’s τ , which is comparable between the different copula functions.

The edges with significant FC-SC associations, as measured by the Clayton and

Frank copulas, are shown by the thresholded heatmaps in Figure 4.14 (uncorrected
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p<0.001).

Figure 4.12: Edgewise FC-SC association, measured by the Clayton copula

Figure 4.13: Edgewise FC-SC association, measured by the Frank copula

In addition, if we measure FC using partial correlations rather than full corre-

lations, we can show that the copula-based association measure τ allows for direct

comparison of the results. This is because the copula association measure does

not depend on the marginal behavior of the univariate connectivity measures. For

example, Figure 4.15 shows the heatmap of the Frank copula-based association

measure (τk), when FC is measured by full vs. partial correlations, to show that the

results are on the same scale.
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Figure 4.14: Thresholded edgewise FC-SC association (p<0.001)

Figure 4.15: Frank copula-based edgewise FC-SC association (p<0.001), for FC

measured in two ways

4.6 Discussion

Copula functions allow us to simultaneously describe the dependence structure

between random variables, and separately, to model their marginal univariate dis-

tributions. It is a useful tool for measuring the association between FC and SC

that doesn’t assume that their relationship is linear. This method overcomes the

limitations of Pearson’s linear correlation and the linear link function in Topic 2,
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by offering a more flexible way to model the FC-SC association. Compared to the

method in Topic 2, the copula-based method provides a more robust measure of

association that does not depend on the marginal behavior of FC and SC values,

and can be directly compared between different measures.

Copulas are especially useful for simulating multimodal neuroimaging data

under various dependence structures and levels, and with the user’s choice of

marginal distributions. Our simulation studies found that copulas might offer a

more efficient method for detecting FC-SC associations in the brain network. Our

simulations only consider the dependence structure prescribed by the Gaussian

copula function. Future simulation studies will test the performance of other cop-

ula functions.

Our data analysis with an rs-fMRI and DTI dataset of 20 healthy controls found

that the FC-SC association, as measured by five different types of copulas, is higher

for within-module edges compared to between-module edges, as we hypothe-

sized. Our edgewise copula analysis with the Frank and Clayton copulas also

yielded biologically meaningful results, indicating that these might be good can-

didate copulas for measuring multimodal relationships in the brain, although the

Clayton copula can only model positive associations. This analysis confirms that

copulas can be successfully applied in providing additional important informa-

tion about the function-structure associations in the brain network, that cannot be

provided by Pearson’s correlation coefficient.

Future analyses will consider partial correlations as a measure of FC, and will

also perform group comparisons between the MDD subjects and healthy controls.

Also, we caution that the results of our analysis are based on a small data set of 20

healthy control subjects. A more rigorous validation should be performed, based

on a larger sample of subjects.
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Appendix A

Appendix for Chapter 2 (Topic 1)

The numerator and denominator of θ̂` can be written as linear combinations ofN∗

θ̂` =
(C` −A)N∗

b−AN∗

where A =
(V` − 1)

2(V − 1)

∑
j∈Ω`

Cj and b =
V`(V` − 1)

2
N

Notation: C` and Cj are vectors of binary indicators, indicating which voxel pairs

are members of Ω` or involve voxel j, respectively. V is the total number of voxels

in the whole brain, and V` is the number of voxels in component `. N is the maxi-

mum possible number of connections between a pair of voxels (i.e. the number of

streams initiated from each voxel in a probabilistic tractography procedure).

Proof:

θ̂` =

∑
j,k∈Ω`

[Njk − (N̄j + N̄k)/2]

 1

∑
j,k∈Ω`

[N − (N̄j + N̄k)/2]

 2
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θ̂` numerator:

1 =
∑
j,k∈Ω`

[Njk − (N̄j + N̄k)/2]

=
∑
j,k∈Ω`

Njk︸ ︷︷ ︸
3

−
∑
j,k∈Ω`

[(N̄j + N̄k)/2]︸ ︷︷ ︸
4

3 =
∑
j,k∈Ω`

Njk =

[
1 1 0 1 . . . 0

]


N12

N13

...

NV−1,V


= C`N

∗

Where C` is a 1×
(
V
2

)
vector of binary indicators, indicating which voxel pairs

are members of Ω`.

4 =
∑
j,k∈Ω`

[(N̄j + N̄k)/2]

=
1

2

∑
j,k∈Ω`

[
[Nj1 +Nj2 + . . .+NjV ]

V − 1
+

[Nk1 +Nk2 + . . .+NkV ]

V − 1

]
=

1

2

∑
j,k∈Ω`

[
CjN

∗

V − 1
+
CkN

∗

V − 1

]
=

1

2(V − 1)

∑
j,k∈Ω`

[Cj +Ck]N∗

=
V` − 1

2(V − 1)

∑
j∈Ω`

CjN
∗

where Cj is a 1 ×
(
V
2

)
vector of binary indicators, indicating which voxel pairs in-

clude voxel j
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∴ 1 =

C` − V` − 1

2(V − 1)

∑
j∈Ω`

Cj︸ ︷︷ ︸
A

N∗ = (C` −A)N∗

θ̂` denominator:

2 =
∑
j,k∈Ω`

[N − (N̄j + N̄k)/2]

=
V`(V` − 1)

2
N −

∑
j,k∈Ω`

[(N̄j + N̄k)/2]︸ ︷︷ ︸
4

∴ 2 =
V`(V` − 1)

2
N︸ ︷︷ ︸

b

−

(
V` − 1

2(V − 1)

∑
j∈Ω`

Cj

)
︸ ︷︷ ︸

A

N∗ = b−AN∗
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Appendix B

Appendix for Chapter 3 (Topic 2)

E-step:

Q(θ|θ(t)) = Esik|Y ,θ(t) [`(θ|Y , Z)]

= −
(
Jλ2

k

2σ2
k

+
L

2γ2
k

+
1

2τ 2
k

) n∑
i=1

Ei2︷ ︸︸ ︷
E(s2

ik|Y ,θ(t))

+
n∑
i=1

E(sik|Y ,θ(t))︸ ︷︷ ︸
Ei1

[
1

σ2
k

J∑
j=1

λk(r̃ik − βk) +
1

γ2
k

L∑
l=1

p′ikl +
sk
τ 2
k

]

+ const

where

const = −nJ log(
√

2πσk)− nL log(
√

2πγk)− n log(
√

2πτk)

− 1

2σ2
k

n∑
i=1

J∑
j=1

(r̃2
ikj + β2

k − 2r̃ikjβk)−
1

2γ2
k

n∑
i=1

L∑
l=1

p
′2
ikl −

ns2
k

2τ 2
k
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and

Ei2 = E(s2
ik|Y ,θ(t)) = [E(sik|Y ,θ(t))]2 + V ar(sik|Y ,θ(t))

To find Ei1 and Ei2, we need f(sik|Y ,θ(t)))

f(sik|Y ,θ(t)) =
f(Y , sik|θ(t))

f(Y |θ(t))

∝ f(Y , sik|θ(t)) = L(θ(t)|Y , sik)

f(sik|Y ,θ(t)) ∝
n∏
i=1

[∏
j

1√
2πσk

e

(
−

[r̃ikj−(λksik+βk)]
2

2σ2
k

)

×
∏
l

1√
2πγk

e

(
− (p′ikl−sik)

2

2γ2
k

)
× 1√

2πτk
e

(
− (sik−sk)

2

2τ2
k

)]

For a given i and k we can write

=
e

−

J∑
j=1

(r̃ikj − λksik − βk)2

2σ2
k

(
√

2πσk)J
+
e

−

L∑
l=1

(p′ikl − sik)2

2γ2
k

(
√

2πγk)L
+
e
− (sik−sk)

2

2τ2
k

√
2πτk

The negative exponent term in the numerator boils down to...

J∑
j=1

(r̃ikj − λksik − βk)2

2σ2
k

+
L∑
l=1

(p′ikl − sik)2

2γ2
k

+
(sik − sk)2

2τ 2
k

=
J∑
j=1

(r̃ikj − βk)2 − 2λksik(r̃ikj − βk) + λ2
ks

2
ik)

2σ2
k

+
L∑
l=1

(p
′2
ikl − 2p′iklsik + s2

ik)

2γ2
k



105

+
(s2
ik − 2siksk + s2

k)

2τ 2
k

=
J∑
j=1

(λ2
ks

2
ik − 2λk(r̃ikj − βk)sik)

2σ2
k

+
L∑
l=1

(s2
ik − 2p′iklsik)

2γ2
k

+
(s2
ik − 2siksk)

2τ 2
k

+ C

=
Jλ2

ks
2
ik

2σ2
k

− 2λk(r̃ik• − Jβk)sik
2σ2

k

+
Ls2

ik

2γ2
k

− 2p′ik•sik
2γ2

k

+
s2
ik

2τ 2
k

− 2sksik
2τ 2
k

+ C

= s2
ik

[
Jλ2

k

2σ2
k

+
L

2γ2
k

+
1

2τ 2
k

]
− 2sik

[
λk(r̃ik• − Jβk)

2σ2
k

+
p′ik•
2γ2

k

+
sk
2τ 2
k

]
+ C

=

[
Jλ2

k

2σ2
k

+
L

2γ2
k

+
1

2τ 2
k

]s2
ik − 2sik

[
λk(r̃ik•−Jβk)

2σ2
k

+
p′ik•
2γ2k

+ sk
2τ2k

]
[
Jλ2k
2σ2
k

+ L
2γ2k

+ 1
2τ2k

]
+ C

=
1

2σ∗2ik
(sik − µ∗ik)2 + C

where

σ∗2ik =
1[

Jλ2k
σ2
k

+ L
γ2k

+ 1
τ2k

] µ∗ik =

[
λk(r̃ik•−Jβk)

σ2
k

+
p′ik•
γ2k

+ sk
τ2k

]
[
Jλ2k
σ2
k

+ L
γ2k

+ 1
τ2k

]

Notation: r̃ik• =
J∑
j=1

r̃ikj and p′ik• =
L∑
l=1

p′ikl

Thus

[sik|θ(t),Y ] ∼ N(µ∗ik, σ
∗2
ik )

and

Ei1 = E(sik|Y ,θ(t)) = µ∗ik

Ei2 = E(s2
ik|Y ,θ(t)) = [E(sik|Y ,θ(t))]2 + V ar(sik|Y ,θ(t)) = µ∗2ik + σ∗2ik
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Table B.1: Simulation results for βk, n=20

setting βk β̂k ŜEB CI cov CI cov
mean (SD) prob I prob II

high SC, high FC 0.7 0.703 (0.053) 0.05 92 92
1 1 (0.053) 0.05 91 90

0.7 0.7 (0.052) 0.051 93 91
1 1.002 (0.052) 0.051 93 92

med SC, med FC 0.7 0.704 (0.086) 0.083 91 91
1 1.001 (0.086) 0.084 91 90

high SC, low FC 0.2 0.199 (0.053) 0.049 90 89
0.2 0.2 (0.052) 0.05 92 92

low SC, high FC 0.5 0.502 (0.188) 0.195 93 93
0.7 0.7 (0.19) 0.194 94 92

low SC, low FC 0.2 0.196 (0.195) 0.195 93 92
0.2 0.199 (0.194) 0.194 92 91
0.2 0.188 (0.191) 0.191 93 91
0.4 0.4 (0.195) 0.195 93 91
0.4 0.403 (0.193) 0.193 92 91

Table B.2: Simulation results for βk, n=50

setting βk β̂k ŜEB CI cov CI cov
mean (SD) prob I prob II

high SC, high FC 0.7 0.699 (0.031) 0.031 94 94
1 1 (0.032) 0.031 92 92

0.7 0.699 (0.032) 0.031 93 93
1 1.003 (0.031) 0.031 94 94

med SC, med FC 0.7 0.701 (0.051) 0.049 93 92
1 1.001 (0.050) 0.050 93 93

high SC, low FC 0.2 0.201 (0.031) 0.031 94 93
0.2 0.2 (0.031) 0.030 94 94

low SC, high FC 0.5 0.502 (0.119) 0.114 94 93
0.7 0.698 (0.116) 0.115 94 94

low SC, low FC 0.2 0.195 (0.115) 0.115 94 94
0.2 0.203 (0.117) 0.115 94 93
0.2 0.203 (0.119) 0.115 94 93
0.4 0.403 (0.115) 0.117 94 93
0.4 0.408 (0.114) 0.115 94 94
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Table B.3: Simulation results for sk, n=20

setting sk ŝk ŜEB CI cov CI cov
mean (SD) prob I prob II

high SC, high FC 0.41 0.403 (0.103) 0.098 92 91
0.41 0.405 (0.103) 0.096 92 92
0.41 0.402 (0.104) 0.097 93 93
0.41 0.404 (0.105) 0.098 92 92

med SC, med FC -0.85 -0.85 (0.107) 0.096 90 90
-0.85 -0.843 (0.102) 0.097 93 93

high SC, low FC 0.41 0.408 (0.105) 0.096 93 93
0.41 0.403 (0.1) 0.097 93 93

low SC, high FC -2.20 -2.204 (0.1) 0.097 93 92
-2.20 -2.197 (0.103) 0.098 92 92

low SC, low FC -2.20 -2.196 (0.102) 0.097 92 92
-2.20 -2.189 (0.099) 0.096 93 93
-2.20 -2.203 (0.098) 0.098 93 93
-2.20 -2.2 (0.097) 0.096 94 94
-2.20 -2.195 (0.101) 0.097 93 92

Table B.4: Simulation results for sk, n=50

setting sk ŝk ŜEB CI cov CI cov
mean (SD) prob I prob II

high SC, high FC 0.41 0.404 (0.066) 0.063 94 93
0.41 0.408 (0.065) 0.063 94 94
0.41 0.407 (0.064) 0.063 94 93
0.41 0.404 (0.066) 0.063 93 93

med SC, med FC -0.85 -0.847 (0.065) 0.063 93 93
-0.85 -0.846 (0.062) 0.063 94 94

high SC, low FC 0.41 0.407 (0.067) 0.063 92 91
0.41 0.404 (0.065) 0.063 94 93

low SC, high FC -2.20 -2.196 (0.066) 0.063 93 92
-2.20 -2.196 (0.062) 0.063 95 95

low SC, low FC -2.20 -2.196 (0.065) 0.063 94 94
-2.20 -2.202 (0.064) 0.063 95 94
-2.20 -2.202 (0.065) 0.063 94 93
-2.20 -2.197 (0.064) 0.063 95 93
-2.20 -2.197 (0.064) 0.063 94 93
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Figure B.1: Significant standardized λ̂k results, using different measures of FC
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Figure B.2: Mean connectivity matrices, for MDD subjects
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Appendix C

Appendix for Chapter 4 (Topic 3)

Figure C.1: Gaussian copula, under different association levels
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Figure C.2: Student’s t copula, under different association levels
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Figure C.3: Clayton copula, under different association levels
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Figure C.4: Gumbel copula, under different association levels
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Figure C.5: Frank copula, under different association levels

Figure C.6: Edgewise FC-SC association, measured by the Gaussian copula
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Figure C.7: Edgewise FC-SC association, measured by the t copula

Figure C.8: Edgewise FC-SC association, measured by the Gumbel copula
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