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Abstract

Intent Prediction and User Preference Modeling in Conversational Search and Recommendation
By Harshita Jagdish Sahijwani

Conversational systems have emerged as potent tools for increasing the accessibility of user-
facing applications, in particular, search and recommendation. This dissertation addresses two key
challenges in conversational systems: intent prediction and user preference modeling.

Identifying the intent of each user utterance in conversational systems is a crucial step for all
subsequent language understanding and response tasks. The high cost of collecting conversational
training data makes the task of intent prediction challenging. The first main research question
addressed in this dissertation is: Can we use external knowledge and synthetic data to improve
intent prediction? I propose methods for knowledge-aware intent prediction in three settings,
including open-domain social bots, conversational information elicitation systems, and web-based
domain-specific search systems. In addition, I study the impact of synthetic data on intent
prediction in these systems.

User preference modeling is another essential part of effective conversational systems. The
second main research question addressed in this dissertation is: Can we anticipate the user’s next
topic of interest by constructing a user profile using conversation context? I propose methods to
represent the user based on the conversation history. Moreover, a sequence modeling approach is
proposed to predict the user’s next topic of interest in conversational systems.

Despite the capacity of large language models to implicitly perform end-to-end intent detection
and user preference modeling, they are not universally applicable. They cannot be used with private
data. Moreover, modular systems with specialized components allow for more interpretability and
control over the system. Systems with modules for intent detection and user preference modeling
are thus still relevant.

Together, the proposed methods enable a better understanding of the user’s immediate needs
and long-term preferences in all types of conversational systems. The findings of this research hold
implications for improving the accuracy and performance of conversational search and recommender
systems.
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Abstract

Conversational systems have emerged as potent tools for increasing the accessibility of user-
facing applications, in particular, search and recommendation. This dissertation addresses two key
challenges in conversational systems: intent prediction and user preference modeling.

Identifying the intent of each user utterance in conversational systems is a crucial step for all
subsequent language understanding and response tasks. The high cost of collecting conversational
training data makes the task of intent prediction challenging. The first main research question
addressed in this dissertation is: Can we use external knowledge and synthetic data to improve
intent prediction? I propose methods for knowledge-aware intent prediction in three settings,
including open-domain social bots, conversational information elicitation systems, and web-based
domain-specific search systems. In addition, I study the impact of synthetic data on intent
prediction in these systems.

User preference modeling is another essential part of effective conversational systems. The
second main research question addressed in this dissertation is: Can we anticipate the user’s next
topic of interest by constructing a user profile using conversation context? I propose methods to
represent the user based on the conversation history. Moreover, a sequence modeling approach is
proposed to predict the user’s next topic of interest in conversational systems.

Despite the capacity of large language models to implicitly perform end-to-end intent detection
and user preference modeling, they are not universally applicable. They cannot be used with private
data. Moreover, modular systems with specialized components allow for more interpretability and
control over the system. Systems with modules for intent detection and user preference modeling
are thus still relevant.

Together, the proposed methods enable a better understanding of the user’s immediate needs
and long-term preferences in all types of conversational systems. The findings of this research hold
implications for improving the accuracy and performance of conversational search and recommender
systems.
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1 Introduction
Conversational Systems have gained significant popularity as tools for performing everyday

tasks. Recent advancements in technology have led to the development of conversational agents like
ChatGPT 1 and Gemini 2, which leverage large language models to provide information from the web
in a conversational manner. Voice-based personal assistants like Alexa and Google Home are capable
of fulfilling a range of user requests, including package tracking, making reservations, answering
questions, and controlling home automation devices. Furthermore, embodied conversational
agents are promising tools to make interactions with machines even more natural and human-like.
In this thesis, I focus on conversational search (CSI) and conversational recommender systems
(CRS). Specifically, I study the intent prediction and user preference modeling tasks in various
conversational settings.

An IR system needs to understand both the user’s current needs and long-term preferences
well to produce relevant and personalized results. Effective methods for performing these tasks
have greatly improved the performance of web search and recommendation systems. However,
for conversational systems, intent understanding and user preference modeling have not yet been
perfected.

While end-to-end conversational systems have majorly improved in their capabilities, there
are specific applications where providing meticulously curated responses and generating follow-up
questions based on predefined logic is crucial. For example, it is not feasible to risk providing
incorrect information in a medical setting. Generative models that have even a slight possibility
of hallucinating facts are not suitable for such applications. In such cases, modular systems with
specialized components for intent classification and user modeling are commonly employed in
practice. Modular systems are also useful when training data is available for individual components.
A modular design enables building a system that is a combination of specialized supervised
models [101]. This thesis focuses on conversational systems with dedicated modules for intent
recognition and user preference modeling.

Intent prediction and user modeling are more challenging in the conversational setting because
of the following reasons:

1. Conversational training data is expensive to collect and is not easily available, especially in the
case of conversational information seeking and conversational recommendations. Moreover,
the set of possible conversations is so large that it is not possible to collect a comprehensive
set of dialogs.

2. Conversational data is much harder to interpret. Click data, although noisy, is a rich source
of user preference information that is generally not available in the conversational setting.
The system only has the conversational context to understand the user’s needs.

This thesis addresses the complementary problems of intent classification and implicit user
preference modeling. I propose methods for incorporating external knowledge and augmenting
training data with synthetic samples to improve intent classification. In addition, I performed
experiments with a conversational system to conduct interviews. I also propose methods for

1https: // chatgpt. com/
2https: // gemini. google. com

https://chatgpt.com/
https://gemini.google.com
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learning users’ preferences from their conversations, which are then used to predict their next topic
of interest.

Figure 1.1: Example conversation between an open-domain conversational system and a user. The
user starts the conversation with an information request. The bot recognizes the topic as “Music”
and responds appropriately. When the user wants to switch topics, the system asks the user about
their preference for “News”. In parallel, the system keeps track of the user’s preferred topics to use
for future topic suggestions.

I address the following research questions for conversational search and recommendation:

RQ1: Can we use external knowledge to improve intent prediction? The specific research questions
are:

(a) How can we incorporate entity-type information and conversational context to perform
intent classification in an open-domain conversational system?

(b) In a conversational system that conducts interviews, how can we interpret the partici-
pant’s response, for example, by matching it to one or more predefined options? Also,
can we improve intent classification by incorporating external knowledge?

(c) How can we improve intent classification for health-related queries using entity infor-
mation from an external source and synthetic training data from a large language
model?

This question is studied in the context of conversational systems and web-based systems.
RQ2: Can we anticipate the user’s next topic of interest by constructing a user profile using

conversation context? The specific research question is:

(a) In an open-domain conversational system, how can we represent the user to anticipate
their interest in new topics of conversation?
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Figure 1.2: The figure shows the modules of a conversational system corresponding to the research
questions.

This question is studied in the context of conversational systems.

Figure 1.1 illustrates the research questions addressed with an example. The system recognizes
the user intent on each turn (intent classification). It also asks questions about the user’s preferences
when appropriate, and keeps track of the user’s accepted topics and other features to perform
topic recommendations (user modeling). 1.2 shows the modules of a conversational system that
correspond to these problems.

In summary, the contributions of this thesis are:

1. Methods for incorporating external knowledge and conversational or session context for intent
prediction (Chapter 3 and Chapter 4).

2. Methods for learning a user preference model from conversation history or session history to
predict their next topic of interest (Chapter 5 ).

The rest of this thesis is organized as follows: Chapter 2 describes related work. Chapter
3 describes experiments I have done to address RQ1 in the conversational setting. Chapter 4
discusses my work on query intent prediction in domain-specific web search. Chapter 5 describes
experiments I have done to address RQ2. Chapter 6 concludes the thesis with a discussion of
contributions, potential impact, limitations, and future work.

Now, I describe the related work to place my contributions in context.
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2 Related Work
This chapter describes research that is relevant to the work outlined in this dissertation. The

focus is on work that also addresses my research questions as well as on approaches utilized in the
implementation of these systems which may not directly relate to the research questions. To begin,
a review of the literature on intent prediction is provided, as it pertains to Research Question
1 (RQ1). Subsequently, papers on conversational search are explored, as they tackle challenges
similar to those encountered in both Research Question 1 (RQ1) and Research Question 2 (RQ2).
Next, state of the art in conversational recommender systems is discussed, which is relevant to the
topic recommendation method discussed in Chapter 5.

2.1 Intent Prediction
This section discusses existing work that deals with RQ1.

2.1.1 Intent Prediction in Open-Domain Conversational Systems
Open-domain and domain-specific conversational agents usually have a predefined set of intents and
slot values that they can identify and process. Existing intent classifiers employ various approaches
such as transformer-based models [100], hierarchical text classification [139], and knowledge-guided
pattern matching [138] to map user utterance to the relevant intent. However, intent classification
becomes challenging when the number of intents is large, and training data is scarce.

In the past, intent prediction was modeled as a text classification problem, using handcrafted
features like bag-of-words, tf*idf, part-of-speech tagging, and tree kernels [99, 134]. Later, semantic
and implicit information in the text was encoded using word embeddings [85] and sentence
embeddings [21]. At the time of publication of ConCET in 2019, the state-of-the-art intent
classifier was ADAN [38], proposed by Guo et al. Guo et al. proposed “Attentional Deep Averaged
Network (ADAN)”, an unsupervised neural network method that learns relevant keywords’ saliency
for the corresponding topic classes. A limitation of ADAN is that it does not perform well on
utterances with recent entities. Chapter 3 describes ConCET, an intent classification approach for
open-domain conversational systems that I developed in collaboration with my colleagues during
the Alexa Prize 2018.

ConCET overcame this limitation of ADAN. It explicitly incorporates entity-type information
and applies data augmentation to generate additional training data, leading to significant perfor-
mance improvements compared to ADAN. Since then, implicit representation-based models have
made substantial progress, rendering explicitly defined features less necessary. I have conducted
additional experiments to assess whether external information from dynamic knowledge bases
remains beneficial when employing recent semantic representation models such as BERT and T5. I
use more recent language models for text representation, and knowledge adapters and retrieval
augmentation as sources of external information for domain-specific web search queries in Chapter
4.

In [125], Wang et al. argue that existing methods do not work in large-scale industrial settings
like the e-commerce dialog agent AliMe by Alibaba. They propose a multi-task learning user intent
classifier trained using multi-task learning and designed to work for a large number of intents
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from distinct domains. I face the challenge of a large number of intents in the work described in
Chapter 3.2. However, I have much less training data than this approach requires. There are several
approaches to deal with the data scarcity problem. In [65], Li et al. address 2 problems faced in
continuous few-shot intent detection (CFID): catastrophic forgetting during continuous learning and
negative knowledge transfer across tasks. They use the SimCSE [37] model, a contrastive learning
approach for regularizing pre-trained embeddings to learn better sentence representations. This
approach shows promising results with a small number of training examples. Another approach is
data augmentation, which has been explored in [70]. The newest solution for few-shot settings is to
use a pre-trained language model (PLM) [83,84, 114]. In [84], Mi et al. address the question, how
can we best prompt pre-trained language models (PLM) to perform 3 tasks related to Task-oriented
Dialog (ToD): intent classification, dialog state tracking, and natural language generation. I plan
to use large language models to generate more training data.

2.1.2 Intent Prediction in Information Elicitation Conversational Sys-
tems

Conversational systems for information elicitation, specifically for conducting structured interviews
given a protocol, are a relatively unexplored area of research that I focus on in this dissertation.
There has been extensive prior work on closely related problems like intent prediction and slot-
filling for conversational systems [100, 138, 139], dialog representation [81, 93], knowledge grounded
language models [150], and domain-specific language models [12]. However, these methods rely on
the availability of extensive training data and the intents and slots being limited in number. In the
structured interview setting, users often give long descriptive answers to open-ended questions,
which makes it hard to apply these intent classification models.

A distinguishing feature of this setting is the large set of intents and the need for a model
that can handle long, open-ended responses. A possible way to address the problem of a large
number of intents is to use a hierarchical intent classifier [111]. In [111], Schuurmans et al. show
promising results by leveraging class taxonomy. In the structured interview setting, I work with,
the dialog logic is simple, and the user response can be assumed to be relevant to the last question
asked. Therefore, at a given time, the number of possible intents is limited. Therefore, in my work
described in Section 3.2, we model the problem as a text classification task.

Reading comprehension tasks that require answering multiple-choice questions based on some
given context are also closely related to my work. [77] propose a BERT-based framework for
handling multiple-choice questionnaires focused on reference passages. [43,92] address the problems
of history selection and dialog representation for conversational reading comprehension. However,
answers in reading comprehension tasks are generally factual and precise, as opposed to ones in
structured interviews. Therefore, the challenges involved in training models for them are different.

Language Models pre-trained on dialog [140,153] are also relevant to this work. TOD-BERT [140],
after being pre-trained on nine human-human and multi-turn task-oriented dialogue datasets,
outperformed strong baselines like BERT on four downstream task-oriented dialogue applications.
I use TOD-BERT in the experiments to study the advantages of dialog pre-training for this task.

External knowledge bases and knowledge graphs have been incorporated in many approaches
for NLP and IR tasks to yield promising results [10, 53, 69, 74, 146]. Most of these approaches
rely on the existence of a knowledge graph with relevant information. Domain-specific models like
SciBERT [12] and BioBERT [60] have shown that downstream tasks can significantly benefit from
models pre-trained on in-domain data.
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The experiments on this topic described in Chapter 3 were conducted with a structured interview
about skincare preferences. Although this data is domain-specific, there isn’t a pre-trained model
or knowledge graph tailored for this setting. Therefore, I perform knowledge injection using
ConceptNet neighbors of terms in conversations to experiment with the effects of incorporating
external knowledge.

2.1.3 Intent Prediction in Web Search
I also address intent classification in a non-conversational setting, i.e., health-related web search
queries. Specifically, the task is to classify health-related queries into a predefined set of intents,
for which the search system has specialized widgets for a smoother user experience. These widgets
provide the interface for further query refinement. The intent prediction task, in this case, is related
to conversational search since it enables interactive, multi-turn search. But it is also different in
that there is even less context available than in a conversational setting. Also, the input, web
search queries, is stylistically different from conversational utterances. A specific type of web search
setting is addressed in my work, that of search on a health insurance website. It is a relatively
small-scale domain-specific search engine.

Query intent classification in web search has been worked on in the information retrieval
community for decades [19]. Two types of query intent classification are commonly studied in the
literature:

1. For mapping to a vertical search engine: Here, the goal is to predict the intent behind a
user’s query to help a search engine automatically route the query to some corresponding
vertical search engines, like in [42].

2. For identifying relevant topics: Here, the goal is to provide more relevant documents by
matching the topics of the query and the documents. The topics are referred to as intents in
this chapter [19].

Leveraging search results is a more widely used way of gathering additional context for query
classification [19, 35]. In recent work by Srinivasan et al. [115], the authors demonstrate that
providing the titles and URLs of retrieved documents as context to LLMs improves query intent
classification. They further go on to introduce a knowledge distillation method to alleviate the
high inference cost. However, in the setting of a small-scale domain-specific search engine with
limited user interaction data, the document or URL that is appropriate for the user’s intent may
not be ranked highly or even present in the search results. I, therefore, propose methods for query
classification that do not rely on search results. Another motivation to use entity information as
a source of contextual knowledge is that the website has its specilized knowledge base of named
entities like providers and facilities. Although only Wikipedia entities are used in the experiments,
the proposed methods can be extended to inject knowledge about any entity, for example, names
of new providers or drugs.

2.2 Conversational Search
Conversational search is a subfield of information retrieval that focuses on the interaction between
a user and a search system in the form of a conversation. Although not directly addressed in this
dissertation, conversational search is relevant to my work on intent prediction and user modeling in
conversational systems. It is also somewhat related to intent prediction in the context of web-based
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search for health-related queries, as discussed in Section 2.1.3. Here, I provide an overview of
related problems in the context of conversational search that apply to the intent prediction task.

Query representation is an essential component of conversational search systems. In [40], the
authors address the problem of learning embeddings for ambiguous search queries. In [39], the
authors address the problem of representing the conversation in a conversational search scenario
that includes clarifying questions. They enrich conversation representations learned by transformer
networks using a novel attention mechanism from external information sources that weights each
term in the conversation. This representation is then used for document retrieval and next clarifying
question selection. They propose a model that can generate semantically different intents and their
appropriate representations for queries if they have more than one possible intent. [161] introduces
a method for conversational product search where they learn the semantic representations of user,
query, item, and conversation via a unified generative framework. These representations are then
used for product retrieval. The goal is to assign each query to one of a predefined set of classes.
That is, intents are defined as that set of classes, as in [42], and not the space of all possible
information needs represented by the query as in the above papers.

In [79], the authors introduce an approach for conversational search session representation.
They propose a sparse Lexical-based Conversational REtriever (LeCoRE), which leverages these
representations. This is relevant my work on conversational user preference modeling using
conversation context in Chapter 5.

There are some datasets that have greatly aided research in conversational search. In [102], Qu
et al. introduce the MSDialog dataset with intent annotations for information-seeking conversations.
In [142], Xiao et al. introduce a conversational dataset for online shopping. The dataset was
constructed without crowdsourcing. They also introduce an end-to-end conversational search
method. In [28], Chu et al. introduce a Chinese conversational search behavior dataset that was
collected using a WOZ approach. I use the TripClick dataset [104] as a source of web search session
data for my experiments on intent prediction health-related queries to evaluate the method on
publicly available data.

The use of LLMs is becoming increasingly common in conversational search. In [88], Mo et al.
propose ConvGQR, a new framework based on generative pre-trained language models (PLMs) for
query reformulation in conversational search. In [78], Mao et al. use GPT-3 to rewrite queries for
conversational search. In this work, I use LLMs to generate synthetic queries for data augmentation
in Chapter 4.

2.2.1 Entity linking
Entity linkers identify entity mentions in text and resolve and map the mentions to a unique identifier
in an associated knowledge base, a common choice for which is Wikipedia. Babelfy [8] uses a
graph-based approach for jointly performing word sense disambiguation and entity linking. DBpedia
Spotlight [82] links entity mentions to their DBpedia [11] URIs using cosine similarity between
Vector Space Model representations of the DBpedia resource and the context to disambiguate
mentions. The SMAPH [30] system for linking web-search queries piggybacks on a web search
engine to put the query into a larger context, and further uses a supervised ranking model to
predict the joint annotation of the full query.

In Section 3.1, to annotate the dataset with entity information, I used DBpedia Spotlight as
well as a customized PMI-based entity linker that I built, that is described in section 3.1. Entity
linking requires an associated knowledge base with all the entities that it links entity mentions to.
DBpedia Spotlight links entity mentions to their DBpedia URI. It uses Lingpipe’s string-matching



11

algorithm implementation together with a weighted cosine similarity measure to recognize and
disambiguate mentions. Other entity linkers include AIDA, which links to the YAGO2 database,
and TAGME, which is suitable for short, incomplete texts and links entities to Wikipedia pages.
The experiment results in Section 3.1 show that DBpedia Spotlight is an effective entity linker for
the datasets used. However, the customized entity linker I built specifically for our application
leads to even better results on incorporating entity information into the text representation.

For the experiments in Chapter 4, I use the ReFinED [119] entity linker that uses Wikidata as
the knowledge base. I did not explore the benefits of using an application-specific entity linker
in this setting. However, the results show that incorporating entity information into the text
representation improves the performance of the intent classifier. It is reasonable to assume that
using a more accurate entity linker would further improve the performance of the intent classifier.

2.3 Entity-based Text Representation
Entity-based text representation has been studied for different research areas such as information
retrieval [143], question answering [144], and coherence modeling [47, 90]. Yamada et al. [144]
proposed a model to encode entity information from a corpus like Wikipedia into a continuous
vector space. This model jointly learns word and entity representations from Wikipedia and
DBpedia. [128] proposed a CNN-based model for merging the text and entities extracted from a
large taxonomy knowledge base for short-text classification. I propose incorporating entities, their
most likely types, and positional order into a neural network architecture and processing pipeline
for conversational intent classification in Chapter 3.

In Chapter 4, I use TransE [16] embeddings to represent entities in text. This method was
originally proposed in [154] to add entity information to a pre-trained language model, specifically
BERT. In my work, I study its effectiveness in pretrained language models of different sizes and
compare it to other methods of incorporating entity information.

2.4 Conversational Systems for Interviewing Users
Conversational systems make for an intuitive and user-friendly interface. This makes them the
perfect tool for collecting data from users in a natural way. They can also serve as assistants or
coaches, e.g. while users are performing a task or working on behavior change. In [62], conduct a
user study with a conversational system that encourages self-disclosure in mental health patients.
Their results confirm the effectiveness of conversational systems in eliciting information from users.
In [55], the authors introduce Reflection Companion, a mobile conversational system that supports
engaging reflection on personal sensed data, specifically physical activity data collected with fitness
trackers. Their results based on a user study with Fitbit users show that the system helped facilitate
behavior change in the users. Seltzer et al. in [113] use a virtual agent to ask probing questions
while a participant fills out a market research survey form. I also address the same problem of
eliciting more informative responses from users in a conversational setting. In [158], Zhou et
al. propose a conversational system for health coaching. They focus specifically on low-resource
settings. They release their dataset of conversations between coaches and users. This is one of
the few real-world human-human conversational datasets available. In [159], the authors gather
data using a WOZ setting to train a dialog system for motivational coaching. This system does
not use any hand-coded rules. They learn “dialog phase and scenario embeddings” to inform their
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response generator of the context and type of dialog.
Preference elicitation for CRS is an active area of research. Deciding what questions to ask

and in what order is a critical problem to solve, and is addressed in [27, 152, 160]. The systems
in [27,63,160] ask yes/no questions about the user’s preference for an item or an attribute that
would be the most helpful in converging to a recommendation. In [152], the system asks the user
for their preference in specific attributes and can interpret responses with values of those attributes.
Zhao et al. in [155] and Li et al. [68] address the preference elicitation problem in CRS using a
multi-arm bandit approach.

The above work proves that conversationally eliciting free-form information from users is a
relevant problem. I study specifically the intent classification for such conversations as part of RQ1
in Section 3.2. I built an information elicitation conversational system with a simple dialog policy
for the purpose of my research.

2.5 Knowledge Injection
Injecting new knowledge into LLMs has been an active area of research in recent years. [98] proposes
E-bert, where Wikipedia2Vec entity vectors are projected into BERT’s wordpiece vector space.
This way, entity information from external vectors can be leveraged without additional pre-training
of the BERT encoder. The PELT [147] approach also involves building an entity lookup table in
the representation space of PLM token embeddings. However, here, the external representations
are obtained from textual corpora instead of a knowledge graph. The output representations of a
specific entity in multiple contexts are aggregated to build a contextualized, “knowledge-aware”
entity representation. Another popular method is K-adapters [129]. Here, the authors introduce a
transformer-based adapter layer. Two kinds of adapters are added to RoBERTa, one for factual
knowledge from Wikipedia, and another for linguistic knowledge from dependency parsing. In [154],
the authors propose a method of incorporating entity information into a model already fine-tuned
for a classification task. Their method, called “map tuning”, projects TransE embeddings [16] of
entities into the token embedding space of a language model. I apply this method for knowledge
injection for query intent classification.

A recently active area of research is knowledge injection into large language models. LLMs
have a large amount of intrinsic world knowledge. However, in the cases where the knowledge is
not present in the pre-training data, it is necessary to inject external knowledge. And this is a
challenging problem because the knowledge must be injected in a way that does not disrupt the
existing knowledge in the model, and is also not prohibitively expensive in terms of computation.
In [80], the authors introduce a new data generation process for incorporating previously unseen
knowledge into LLMs. [94] compares the effectiveness of unsupervised fine-tuning with RAG in
using external datasets to incorporate new information. This dissertation only explores knowlege
injection into language models of size upto 3 billion parameters. I instead investigate whether
LLMs can be used to generate synthetic queries for data augmentation in Chapter 4 as a way to
incorporate external knowledge into smaller intent classification models.

Retrieval augmentation is another way of incorporating external knowledge that I use in Chapter
4. Lewis et al. proposed retrieval augmented generation (RAG) in [64], arguing that traditional
models store factual knowledge in their parameters but struggle with precise knowledge access and
manipulation, leading to suboptimal performance on tasks requiring dynamic knowledge integration.
This is consistent with the experimental results in Chapter 4 that show that retrieval augmentation
improves the performance of language models on intent classification.
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The idea of conditioning a language model’s generated text on retrieved passages has been ex-
tensively explored since then. Leveraging retrieved context to improve the knowledge-groundedness
of models has been studied during various stages of model training and inference. It’s effectiveness
has been demonstrated during pretraining [17], fine-tuning [71,110], and inference [46,116,131].

I apply retrieval augmentation to improve the performance of intent classification models in
Chapter 4. In the specific setting studied, dense retrieval of relevant paragraphs is not feasible. I
instead apply a simple yet effective method of using explicit entity linking to get entity information
from a knowledge base to augment the text representation of the query.

2.6 Dialog Management
Although this work does not directly address dialog management, it is an important component of the
conversational systems used in the experiments. [122] introduces a new dialog task, Conversational
Tree Search. Here, all the possible dialog flows are predefined in the form of a tree. They also
introduce a novel deep reinforcement learning architecture to carry out these interactions with a
user. They find that their framework leads to a higher goal completion rate. [86] presents some
interesting findings for conversational agents used to enable micro-coaching dialogs in nutrition

— brief coaching conversations related to specific meals, to support the achievement of nutrition
goals. The authors compared reinforcement learning (RL), rule-based, and scripted approaches for
dialog management and found that while the data-driven RL chatbot succeeded in shorter, more
efficient dialogs, surprisingly, the simplest, scripted chatbot was rated as higher quality, despite
not fulfilling its task as consistently. The authors hypothesize that this could be because the
scripted chatbot’s sequence of questions might have sounded more intuitive to the user. The paper
highlights unintuitive/unexpected dialog flow as a potential drawback of RL-based strategies. This
also explains why real-world systems often still rely on carefully designed conversational interactions
instead of data-driven RL and generative approaches. Several tools have been proposed to facilitate
dialog design. For example, [26], the authors introduce ProtoChat, a crowd-powered chatbot design
tool built to support the iterative process of conversation design. This work supports the continued
relevance of conversational systems that use scripted dialog flows and cannot be implemented
end-to-end using generative models.

2.7 Clarification Question Generation
This thesis focuses on implicit intent classification in conversational systems. However, a com-
plementary and relevant task is clarification question generation for intent clarification when it
is It is hard to build any practical conversational system that can always understand the user’s
needs without asking clarifying questions. Therefore, this problem has been extensively studied,
especially in the context of conversational search. In [162], the authors investigate the effect of
the quality of clarification questions in web search on user behavior and satisfaction. They find
that low-quality clarification questions harm search performance and user satisfaction. However,
asking clarification questions to understand user intent is a critical capability for any conversational
system.

Two of the most commonly used datasets for this task are ClariQ [89] and MIMICS [149]. The
ClariQ dataset was released by Aliannejadi et al. in [89] to enable answering the following research
questions: 1) When to ask clarifying questions during dialogues? and 2) How to generate the
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clarifying questions? Zamani et al. in [149] introduce the MIMICS, which is a collection of search
clarification datasets for real web search queries sampled from Bing query logs. Each clarification
question comprises a question and up to five candidate answers.

In [157], the authors propose a method for generating clarification questions based on top search
results for the query. Another way of generating clarification questions is to use templates and
fill them with the most likely query facets. In [127], the authors propose a method for generating
clarification questions using templates. They train a model whose objective jointly optimizes
selecting question templates and filling question slots. They use the MIMICS [149] dataset in
their experiments. In [133], the authors address the problem of zero-shot clarification question
generation using question templates and query facets. Facet ranking or generation is an important
component of such systems. In [108], the authors analyze and combine 3 different methods of
query facet generation: facet extraction as sequence labeling, facet generation as autoregressive
text generation, and extreme multi-label classification. They find that these methods produce
complementary facets and propose ways to aggregate them.

Research has also been carried out to identify the most useful types of clarification questions.
In [118], Tavakoli et al. analyze human-generated clarification questions on Stack Exchange. They
identify six types of clarification questions: 1. Ambiguity/Incompleteness (e.g., “How much money
did you assume to start with?”); 2. Confirmation (e.g., "Does it have to be a single word?");
3. General (e.g. "Would you like to make the question more specific?"; 4. Incorrectness (e.g.,
"Are you sure it is 62 and not 66?"); 5. Paraphrasing (e.g., "Are you asking how to write an
exchange simulator?"); and 6. Suggestion (e.g., “Can the book "Monte Carlo simulation in financial
engineering" by Glasserman help you?”). In their survey paper [49], Keyvan et al. list the types of
ambiguous queries that have been researched in work on conversational ambiguous queries.

Salle et al. in [107] investigate the effectiveness of conversational search refinement and
clarification using a user simulator. They also analyze the types of queries for which facet ranking
algorithms perform the best. They find that when the list of facets is large, the success rate
of converging to the facet relevant to the user is generally low. This is especially the case for
ambiguous queries. This is consistent with the challenges I encounter with response interpretation
for questions with a large number of possible answers in Section 3.2. Thus, clarification for queries
with a large number of facets is still an open problem. This work on intent prediction in this
setting is applicable because it helps narrow down the number of possible intents for a query.

The tradeoff between search result quality and search efficiency is an important consideration in
real-world conversational search systems. In [135], the authors propose a reward-free conversation
policy imitation learning framework which also optimizes efficiency.

In [52], Amazon Alexa AI explore the problem of preventing too many confirming questions in
the context of ASR/spoken language understanding confirmation. In [6], the authors analyze the
best time for asking clarification questions and asking for feedback in mixed-initiative conversational
search systems. In [132], the authors propose a reinforcement learning agent for conversational
search that explicitly takes the risk of asking irrelevant clarification questions into account. This
research highlights the importance of accurate intent prediction in conversational systems to avoid
asking clarification questions unless necessary.

In [112], the authors propose a transformer-based model to predict the user engagement resulting
from asking a clarification question in web search. In [95], the authors develop a user simulator to
generate conversational search data with feedback from the user. The simulator, once initialized
with an information need description, is capable of providing feedback to the system’s responses,
as well as answering potential clarifying questions. They extend proven models and show that
effective utilization of user feedback can lead to improved retrieval performance. In [7], the authors
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collect and release a new clarifying question dataset focused on open-domain single-and multi-turn
conversations. They also propose a pipeline consisting of offline and online steps for evaluating the
quality of clarifying questions in various dialogues.

2.8 Conversational Recommendation
Befor generative models became capable enough to carry out coherent conversations, conversational
systems would use a repository of predefined utterances and rank them based on the user’s
input [145]. However, this approach was mainly applicable to a non-modular conversational
system. In practice, due to the vast number of possible utterances coming into a social bot,
many conversational systems rely on multiple response modules where each response module
would be responsible for a particular domain or set of domains [51]. When the user is passive
or gets fatigued with a particular topic, the system needs to switch to a different component
with domain-specific capabilities to keep the user engaged. This thesis formalizes the problem of
suggesting the best next interesting topic. This is closely related to the problem of conversational
recommendation [27,67,117].

2.9 Summary
In this chapter, I have reviewed the related work in the areas of intent prediction, conversational
search, entity-based text representation, conversational systems for interviewing users, knowledge
injection, dialog management, and clarification question generation.

My thesis contributes entity-information-based methods for intent prediction in multiple settings.
It also explores data augmentation using entity information.

It also contributes to work on conversational systems for interviewing users by studying the
specific challenges in intent prediction in this setting.

It formalizes and proposes a solution to the problem of suggesting the best next interesting topic
in an open-domain conversational system. However, its contribution to the area of conversational
recommendation is limited because it applies to a very specific setting. Also, newer work has made
it less relevant.
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3 Intent Detection in Conversational Search and
Recommendation

This chapter addresses RQ1, i.e., can we improve intent detection with external knowledge?
I want to clarify that in this dissertation, the term “Intent” represents different things depending

on the type of conversational system. In modular open-domain conversational systems, intent
classification is the critical step that routes the user utterance to the appropriate module for queries
in that domain. Here, intent informs us of the topic the user is interested in. This is how the
term is used in prior work like [42], and my work described in Section 3.1. On the other hand, in
information elicitation conversations, intent represents a characteristic of the user. In particular
when there is a structured interview with a list of questions and possible answer options given,
intent refers to the answer options. That is the definition used in Section 3.2. In conversational
search and recommender systems, intent represents the user’s information and/or product need,
and intent prediction is often modeled as a clustering task. However, in this dissertation, in all
three settings where intent prediction is studied, there is a predefined set of intents that I want to
classify the given input into.

In Section 3.1, I address intent prediction for an open-domain conversational search and
recommendation social bot, Irisbot [3]. The work described was originally published in the
proceedings of CIKM 2019 [5]. My key contributions to this paper were:

1. Coming up with the idea of incorporating entity-type information for intent prediction.

2. Implementation of entity linking and representation modules.

3. Independent evaluation of entity linkers

4. Analyzing the effect of entity information on intent prediction.

I describe the experiments I conducted in collaboration with my team as part of the Alexa Prize
Challenge in 2018. Our entry to the contest, IrisBot [3], is a conversational agent that aims to
help customers be informed about the world around them while being entertained and engaged. It
incorporates real-time search, informed advice, and the latest news recommendation into a coherent
conversation.

Following that, Section 3.2 describes experiments for conversational response interpretation,
which I model as an intent prediction problem. This research was published in WebConf 2023’s
Companion Proceedings [106].

3.1 ConCET: Entity-Aware Intent Classification for Open-
Domain Conversational Agents

Identifying the intent (in this section’s context, that refers to the domain that the user is interested
in talking about) of each user’s utterance in open-domain conversational systems is a crucial step
for all subsequent language understanding and response tasks. In particular, for complex domains,
an utterance is often routed to a single component responsible for that domain. Thus, correctly
mapping a user utterance to the right domain is critical. To address this problem, ConCET: a
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Concurrent Entity-aware conversational intent classifier is introduced, which incorporates entity-
type information together with the utterance content features. Specifically, ConCET utilizes entity
information to enrich the utterance representation, combining character, word, and entity-type
embeddings into a single representation. In addition, to complement the model, a simple and
effective method for generating synthetic training data is proposed, to augment the typically
limited amounts of labeled training data, using commonly available knowledge bases as to generate
additional labeled utterances. ConCET and the proposed training method are extensively evaluated
first on an openly available human-human conversational dataset called Self-Dialogue, to calibrate
the approach against previous state-of-the-art methods; second, ConCET is evaluated on a large
dataset of human-machine conversations with real users, collected as part of the Amazon Alexa
Prize. The results show that ConCET significantly improves intent classification performance on
both datasets, reaching 8-10% improvements over deep learning methods that do not use entity
type information.

Since the publication of this work, many new intent classification methods have been built on
top of larger language models such as BERT. Although these models encode entity information
implicitly, explicitly encoding entity information can improve the performance of these models,
especially for unseen entities [64]. The effectiveness of incorporating entity information for improving
intent classification is investigated in Chapter 4.

3.1.1 Introduction
Open-domain conversational agents are often built using a modular architecture, where each module
is responsible for a specific domain. For example, the Movie Bot is responsible for answering
questions about movies, and the Music Bot is responsible for answering questions about music.
Although end-to-end generative models have been built, production environments still use a
combination of specialized modules, some of which are created and maintained by third-party
developers. The first step in this architecture is to identify the intent of the user’s utterance, and
route it to the appropriate module.

Classification of utterances in open-domain dialogue systems is a much more challenging task
compared to general text classification due to four main factors: 1) Human utterances are often short;
2) Errors in Automatic Speech Recognition (ASR); 3) Users frequently mention out-of-vocabulary
words and entities; 4) Lack of available labeled open-domain human-machine conversation data.

This makes keyword-based classification insufficient. Domain-specific keywords or triggers
might help for queries like “Let’s talk about my dog”, since the word “dog” appears frequently in
utterances from the Pets_Animals intent. However, they do not enable us to correctly classify
utterances containing ambiguous keywords that can refer to multiple entities. For example, to
correctly classify utterances like “When is the next Hawks game?”, we need to take into account
all the possible types of entities that the word “Hawks” might be referring to, i.e. the bird hawk
and the sports team Atlanta Hawks, as well as the context, which mentions “game”.

Moreover, the creation of new entities, like recent movies, makes the model obsolete with time.
To fix this problem, it would be necessary to constantly keep updating the model by incorporating
new information about people, organizations, movies and other entities, which can cause unintended
effects in the model, and would be inefficient. To address these problems, a novel, data-driven
approach to entity-aware conversational intent classification is introduced: a deep learning algorithm
named Concurrent Entity-aware Intent classifier (ConCET) augmented with external knowledge
about entities and their types, retrieved dynamically from a knowledge base, using either a publicly
available entity linker, or one fine-tuned for the expected utterances. ConCET combines the implicit
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Figure 3.1: The overall network architecture for Entity-Aware Intent Classifier (ConCET) model,
where “SP” and “ST” stand for Sports_Player and Sports_Team entity-types.

and explicit representations of the utterance text, together with the semantic information retrieved
about the mentioned entities. To train ConCET, a synthetic dataset, created from the expected
entities and entity-types, to augment the limited labeled conversational data is introduced. This
dataset is modeled to approximate the real human-machine conversations observed with real users,
as described below. ConCET is evaluated on an openly available human-human conversational
dataset, and a large dataset of human-machine conversations with real users, collected as part of the
Amazon Alexa Prize 2018. The results show that ConCET significantly improves intent classification
performance on both datasets, reaching 8-10% improvements compared to state-of-the-art deep
learning methods.

In summary, the contributions of this work are: (1) The development of ConCET, a novel
entity-aware intent classifier by combining implicit and explicit representations of an utterance
and fusing them with handcrafted features; (2) Incorporating external knowledge about entities
retrieved from a knowledge base; and (3) creation of a new large-scale synthetic yet realistic dataset
for training intent classification systems designed for open-domain conversational agents.

The following subsections detail the proposed approach and the experimental results.

3.1.2 ConCET System Overview
ConCET system is now introduced at a high level, before diving into implementation details. The
proposed ConCET model is illustrated in Figure 3.1.

ConCET utilizes both textual and entity information from an utterance. To represent textual and
entity information, ConCET extracts both sparse and dense representations. To this end, a pipeline
of deep neural networks and handcrafted feature extraction modules is designed. This pipeline
consists of four components namely Utterance-to-Vector (Utt2Vec) network, feature engineering
module, Entity-to-Vector (Ent2Vec) network, and the Entity-type distribution generator. The
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Entity-type distribution generator module uses an entity linker to get the entity-type distribution
corresponding to each entity in the utterance.

Utt2Vec and the feature engineering module extract the textual representation. Utt2Vec is a
deep neural network model which utilizes character, word, and POS tags for utterance representation.
Feature engineering module extracts handcrafted features such as LDA and LSA topic distribution
from an utterance. Finally, they are combined through a fully-connected neural network.

To model the entity information, ConCET utilizes both the entity-type distribution and the
order of entity-types appearing in the utterances. Ent2Vec network is responsible for mapping this
entity sequence representation to a high dimensional vector. Entity-type distribution features and
the output of the Ent2Vec network are combined through a fully-connected neural network.

Next, the cosine similarity1 between textual and entity representations is computed. This
similarity value, concatenated with the textual and entity representations, is fed to a feed-forward
layer to compute the final softmax distribution of intents.

To summarize, ConCET proposes an entity-aware text representation model that learns a
ternary representation of character, word and entity information. In the next section, the entity
linking methods used to derive entity-based information are introduced. The experiments were
conducted using two different entity linkers to measure the sensitivity of the ConCET model to
the entity linking step. Then, in Section 3.1.4 I explain the details of the ConCET model.

3.1.3 Conversational Entity Linking
In this section, I describe the two entity linkers that were used for detecting entities and their type
distributions. The type information is used for semantic representation in the ConCET model.

I emphasize that the focus of this work is not on developing a novel entity linker, which is an
important area of research on its own. Rather, I experiment with an off-the-shelf entity linker,
DBPedia Spotlight2, and my own PMI-based domain-specific entity linker (PMI-EL), designed
to cover in more depth some of the conversation domains and entity-types most relevant to
the conversational agent. The experiments with different off-the-shelf entity linkers during the
development of our conversational agent showed these two linkers are the most effective for intents
that our bot supported. I describe both entity linkers in depth in the next section. Here I want to
emphasize that the proposed classifier model can incorporate the output of any available entity
tagger or linker.

DBpedia Spotlight

DBpedia Spotlight annotates DBpedia resources mentioned in the text as described in reference [82].
It annotates DBpedia resources of any of the 272 classes (more than 30 top-level ones) in the
DBpedia Ontology. It performs entity annotations in 3 steps, 1) spotting, 2) candidate selection,
and 3) disambiguation. It uses the Aho-Corasick string matching algorithm for finding all the
phrases which could potentially be entity mentions or surface forms. It then finds candidate entities
for each surface form using the DBpedia Lexical Dataset. For disambiguation, each candidate
DBpedia resource is first represented in a Vector Space Model (VSM) as the aggregation of all
paragraphs mentioning that concept in Wikipedia. The candidates are then ranked by their tf ∗ icf
cosine similarity score with respect to the context, where the icf score estimates how discriminating

1Dot product also can be used. In this case, the entity vector should be normalized to unit length.
2https://github.com/dbpedia-spotlight/spotlight-docker
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a word is, which is assumed to be inversely proportional to the number of DBpedia resources it is
associated with.

PMI-based Entity Linker (PMI-EL)

A domain-specific entity linker called PMI-EL is created for our conversational system for the
Alexa Prize, which annotates the 20 entity-types most relevant to our system. It links entities to
an associated knowledge base containing all the entities supported by our conversational agent.
PMI-EL follows similar steps to DBpedia Spotlight. However, it does not use the utterance context
in the disambiguation step and relies solely on an estimated prior distribution of types for a given
entity for disambiguation. The main reason was that most of the user utterances were short
(average utterance length of 3.07 words), and sometimes consisted of just the entity name. Thus,
the context was often not helpful or present, and type inference based on prior probabilities may be
sufficient for this setting. I next describe the process by which the knowledge base was constructed,
and how the prior type probabilities were estimated for entity-type inference.

Movie_Name Celebrities Authors Bands
Sports_Team Sportname Companies Food
Organization Politicians Universities Singers
Songname Animal Country Actors
Hotels_Foodchains Tourist_points Genre_Books City

Table 3.1: Entity-types recognized by PMI-EL.

PMI-EL knowledge base construction

The knowledge base starts with entities from a snapshot of DBpedia from 2016. Additionally,
to provide coverage of current entities of potential interest to the user, the knowledge base is
augmented by adding entities that our open-domain conversational agent supports. Entities from
the following sources and domains are periodically retrieved:

• Persons, Organizations and Locations: from news provided by Washington Post3

• Cities and Tourist Attractions: from Google Places API4

• Bands and Artists: from Spotify5 and Billboard6

• Books and Authors: from Goodreads7 and Google Books8

• Actors and Movies: from IMDb9 and Rotten Tomatoes10

An index of all the entities and their corresponding types is maintained using ElasticSearch11,
which is used in the online entity linking step.

3https: // www. washingtonpost. com/
4https: // developers. google. com/ places/ web-service/ search
5https: // www. spotify. com/ us/
6https: // www. billboard. com/
7https: // www. goodreads. com/
8https: // developers. google. com/ books/
9https: // www. imdb. com/

10https: // www. rottentomatoes. com/
11https: // www. elastic. co/ products/ elasticsearch

https://www.washingtonpost.com/
https://developers.google.com/places/web-service/search
 https://www.spotify.com/us/
https://www.billboard.com/
 https://www.goodreads.com/
 https://developers.google.com/books/
https://www.imdb.com/
https://www.rottentomatoes.com/
 https://www.elastic.co/products/elasticsearch
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PMI-based type distribution

For entities with more than one type, the estimated pointwise mutual information (PMI) [18] of
the entity with all its types is also indexed. PMI is a measure of how much the actual probability
of a particular co-occurrence of events p(x, y) differs from what we would expect it to be on the
basis of the probabilities of the individual events and the assumption of independence of events x
and y, and is calculated as:

PMI(x, y) = ln

(
p(x, y)

p(x)p(y)

)
(3.1)

To predict the most likely type for entities with multiple types, the point-wise mutual informa-
tion (PMI) of the entity with each type is estimated by counting the co-occurrences of the entity
and the type’s name in a large corpus, which has been shown to correlate with the probability of
association [18]. More formally, the entity-type PMI score is computed as:

PMI(m, ti) = |(Docs(m, C) ∩ Docs(ti, C))|
|Docs(m, C)| (3.2)

where m is an entity mention, ti is a type, C is a corpus and Docs(phrase, C) is a set of
documents in C containing a given phrase. For the experiments, a publicly available corpus of 46
million social media posts from a snapshot of Reddit is used as C.12

For example, to disambiguate the mention “Kings” in a user’s utterance, the number of times
each type name co-occurred with the word “Kings” in the corpus is computed, normalized by the
total number of occurrences of the word “Kings” itself. The relative values of PMI are used to
come up with a ’type distribution’ for the entity, which indicates the probability of the entity
mention being linked to an entity of a certain type. In this example, the type distribution for a
string “Kings” is: [Sports_Team : 0.54, Movie_Name : 0.44, City : 0.02]. Because of the large
size and diversity of the corpus, PMI is expected to be a good estimate of type distribution. Despite
potential noise in estimating type distribution for some polysemous entities, the ConCET model is
able to use the type distribution, as is demonstrated empirically under a variety of conditions.

PMI-EL entity detection in utterances

To support efficient entity linking at run-time, an inverted n-gram entity index was constructed for
all entities in the knowledge base. At runtime, entities are detected via n-gram matching against
an entity index. For example, if the utterance is “who won the Hawks and Kings game”, the index
is queried for “the Hawks”, “Kings”, “Hawks” and every other possible n-gram with less than 6
words. For this utterance, the response from the entity index would be the entities and the type
distributions associated with them, e.g. “Hawks”: [Sports_Team : 0.88, Animal : 0.11, City : 0.01]
and “Kings”: [Sports_Team : 0.54, Movie_Name : 0.44, City : 0.02].

The entity detection step has time complexity O(n2) in the number of words in the utterance
since O(1) look-ups are performed for O(n2) n-grams for each utterance. The running time for
entity linking is 16 ms on an average for utterances with 4 words which were common, and 100
ms for utterances with 32 words, which were among the longest utterances encountered. However,
PMI-EL would not be efficient if used on very long text.

12https: // files. pushshift. io/ reddit/ submissions/

https://files.pushshift.io/reddit/submissions/
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The output from the entity linker is passed to the Entity Representation Model, described in
3.1.4, which converts it into a suitable representation for the ConCET model.

3.1.4 ConCET: Concurrent Entity-Aware Intent Classifier
In this section, I present the details of ConCET model. First, Section 3.1.4, describes the model
for the textual representation of the utterance. Then, Section 3.1.4, presents the proposed entity
representation model. Finally, Section 3.1.4 discusses the merging and decision layer of the ConCET
model.

Textual Representation

Character, word, and POS tagging are used to model the textual representation. Then, the
representation is enriched with the unsupervised topic distribution, as described in detail next.

Utterance to vector (Utt2Vec) network

Utt2Vec network takes word tokens Uttw, characters Uttc and POS tags Uttp of an utterance Utt
as inputs:

Uttw = [w1; w2; w3 ... wn] (3.3)
Uttc = [[c11...c1k]; [c21...c2k]; ... [cn1...cnk]] (3.4)

Uttp = [p1; p2; p3 ... pn] (3.5)

Figure 3.2: Utt2Vec network.
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The NLTK13 library is used for extracting POS tags. Utt2Vec network allows freedom of
combining different deep learning architectures such as CNN and RNN to extract features. I define
three functions fw, fc, and fp that each take these inputs and output learned hidden representations
(h):

hw = fw(Uttw) (3.6)
hc = fc(Uttc) (3.7)
hp = fp(Uttp) (3.8)

For the implementation, fw is a 3-layered CNN with max pooling. For f c and fp, 1-layered
BiLSTM network with global attention is used. For the word embedding layer, the weights are
pre-initialized using Word2Vec vectors with size 300. The weights on the word embedding layer
are tuned during training. For character and POS embeddings, the embedding layer with size 16 is
randomly initialized. Given the hidden representations of each timestamp hi in LSTM cells, dot
product similarity score si is computed based on a shared trainable matrix M, context vector c and
a bias term bi. Softmax activation is applied on similarity scores to obtain attention weights α.
Lastly, using learned α, weighted sum on BiLSTM hidden representations is applied to obtain the
output ĥ as follows:

si = tanh(MThi + bi) (3.9)

αi = exp(si
Tc)∑n

i=1 exp(siTc) (3.10)

ĥ =
n∑

i=1
αihi (3.11)

M, c, and b are randomly initialized and jointly learned during training. The three outputs
from word-CNN (hw), char-BiLSTM ˆ(hc), and POS-BiLSTM ˆ(hc) are concatenated to produce
Utt2Vec output:

Utt2V ecout = [hw; ĥc; ĥp] (3.12)

This final output is fed to a linear layer of size 256 with ReLU activation and a dropout rate of
0.5 to obtain the utterance vector.

Feature engineering module

The goal of this module is to provide the flexibility of incorporating various external features in
ConCET. Since the intents correspond to different domains, unsupervised topic modeling features
are extracted. However, depending on the data and the task, any type of feature extraction pipeline
can be incorporated here. Two different topic modeling algorithms are combined, LDA and LSA,
and implemented models using the Gensim library14. Given hyperparameter n, these models output
the unsupervised topic distribution of size n. By concatenating the two outputs described in the
table below, a topic distribution vector of size 2n is obtained. Default parameter values in Gensim
were used for training the LDA, LSA, and cosine similarity models.

13http: // www. nltk. org
14https: // radimrehurek. com/ gensim/

http://www.nltk.org
https://radimrehurek.com/gensim/
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Features Short Description
FLDA LDA topic distribution
FLSA LSA topic distribution

The outputs of these two vectors are concatenated to produce Fout:

F out = [F LDA; F LSA] (3.13)

Entity Representation

I now describe how the entity information from the entity linker is encoded as input to the model.
There are two modules to do this encoding

• Entity-type sequence generator
• Entity-type distribution generator.

Entity-type sequence generator converts the input word sequence to an entity-type sequence so that
the model can learn to predict the intent based on the order in which different entity-types appeared
in the utterance. This sequence is fed into the Ent2Vec network, which creates a high-dimensional
vector representation for the sequence. The Entity-type distribution generator constructs an overall
entity-type distribution for the utterance by aggregating type distributions for all the entities.
Finally, the output of Ent2Vec is concatenated with the entity-type distribution to generate the
final entity representation. I now describe these modules in detail.

Entity-type sequence generator

The input of this module is the list of entities and their type distributions derived from the entity
linker. To generate this entity sequence, the best type corresponding to each entity needs to be
assigned. The words that are not a part of an entity are assigned Other or O. For example, for
“who won the Hawks and Kings game”, a possible entity sequence vector would be [“who”/O,
“won”/O, “the”/ST, “Hawks”/ST, “and”/O, “Kings”/ST, “game”/O ]. However, different entity
linkers can differently assign entity-types to each word. Consequently, the resulting entity vector
has the exact length of the utterance.

Uttent = [e1; e2; e3 ... en] (3.14)

Entity-type distribution generator

For this module, I first have the total number of entity-types that the model will support. For
example, for the PMI-based linker, 20 types are supported, and for DBpedia Spotlight, the
1000 most frequent entity-types from the training set are supported. After determining the
size, the distribution value for each entity-type is either 0, or the maximum value for that
type in the list of entity-type distributions. For the example from the previous section, “who
won the Hawks and Kings game”, the type distributions for the two entities from the PMI-
based linker are, respectively, [Sports_Team : 0.88, Animal : 0.11, City : 0.01] for “Hawks”, and
[Sports_Team : 0.54, Movie_Name : 0.44, City : 0.02] for “Kings”. In that case, if the entity linker
identifies 20 types in total, the final entity-type distribution is [Sports_team : 0.88, Movie_Name :
0.44, Animal : 0.11, City : 0.02]. The value corresponding to the remaining types in Table 3.1 is
0.0 in the final output vector of length 20.
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Entity to vector (Ent2Vec) network

The input to Ent2Vec network is a list of resolved entity-types per word for Uttent from entity-type
sequence generator:

Uttw = [w1; w2; w3 ... wn] (3.15)
Uttent = [e1; e2; e3 ... en] (3.16)

A function fe that takes Uttent and outputs learned hidden representations is defined as follows:

he = fe(Uttent) (3.17)

A 1-layered BiLSTM network is used as fe function. An entity embedding layer that has 16
trainable weights is randomly initialized for each entity-type. Then, the same attention mechanism
as in Section 3.1.4 is applied to he to obtain ĥe or Ent2Vecout. Lastly, entity-type distribution
Entdist is concatenated with ĥe to obtain the final Entity output:

Entout = [Ent2V ecout; Entdist] (3.18)

This output is fed to a linear layer of size 100 with ReLU activation and a dropout rate of 0.5 to
obtain the final entity vector.

Merging and FeedForward Layer

The three different outputs are obtained from Utt2Vec network, feature engineering module and
Ent2Vec network. Utt2Vecout is first concatenated with Fout to obtain the following final textual
representation Textout of an utterance:

Textout = [Utt2Vecout; Fout] (3.19)

I feed Textout to a linear layer of size 100 with ReLU activation to obtain vector of the same
length as Entout. Cosine similarity between these two vectors are computed and concatenated to
obtain 201-dimensional ConCETout:

ConCETout = [Entout; Textout; Cos(Entout, Textout)] (3.20)

According to [144], cosine similarity represents the normalized likelihood that entity-type Entout
appears in Textout. Finally, softmax activation is applied to generate a probability distribution
over n possible domains.

3.1.5 Conversational Dataset Overview
In this section, I describe the conversational data collected during the 2018 Alexa Prize and another
publicly available dataset called Self-Dialogue. I also describe the algorithm designed to generate
synthetic training samples, which will be used to augment the original data.
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Amazon Alexa Prize 2018

The data for evaluation of the proposed models is collected from the 2018 Alexa Prize, a competition
held by Amazon every year since 2017 to advance conversational AI. My team was one of the
8 semi-finalist teams funded by Amazon for the competition. Users were asked to talk to our
conversational bot and give a rating from 1.0 to 5.0 (inclusive) based on their experience.

Obtaining True Labels for Alexa Data

Two hundred conversations from the Alexa Prize data were randomly chosen, which consist of
3,000 utterances and responses. These utterances were manually labeled by three different human
annotators, whom I call annotator A, B, and C. The matching and kappa scores between the
annotator pairs (A, B), (A, C), and (B, C) are (0.82, 0.78), (0.72, 0.65), and (0.80, 0.75), respectively.
Overall, these metrics indicate substantial agreement between all annotators. The final true labels
were selected by majority voting. When there was no majority, one of the labels was randomly
selected. The final distribution of annotated intents is shown in Table 3.2.

Movie 31% Music 20% News 16%
Pets_Animal 6% Sci_Tech 6% Sports 6%
Travel_Geo 2.5% Celebrities 2.5% Weather 1.5%
Literature 1.5% Food_Drinks 1.5% Other 1.5%
Joke 1% Fashion 1% Fitness 1%
Games 1%

Table 3.2: Intent distribution in Alexa Data.

I randomly selected 90 conversations for training and 10 conversations for validation. The
remaining 100 conversations were reserved for evaluation.

Self-Dialogue Dataset

Self-Dialogue dataset15 released by one of the Alexa Prize teams [57] is a human-human conversa-
tional dataset collected by using Amazon Mechanical Turk. Given a predefined topic, two workers
talked about anything related to this topic for 5 to 10 turns. Although this dataset is not comprised
of human-machine conversations, it is one of the few publicly available datasets which has a very
similar structure to real human-machine conversations, except that the utterances are syntactically
richer. This dataset contains 24,165 conversations from 23 sub-topics and 4 major topics (intent):
Movie, Music, Sports, and Fashion. The intent distribution for the Self-Dialogue dataset is 41.6%,
35.1%, 22.2%, and 1.1% for Movie, Music, Sports, and Fashion, respectively.

For training, all subtopics are merged into the 4 major topics. I also filtered 198 conversations
that were designed only for transitions from Movie to Music topics and 216 conversations with
mixed Movie and Music labels because I could not assign a unique label. In addition, some of
the utterances in the dataset are non-topical chit-chat utterances. They are mostly used for
conversational follow-ups such as Yes-Answers, Backchannel, and Conventional-opening. Since
these utterances are unrelated to the set of intents I want to identify, I removed these types in
both the training and the test set. To do this, I annotated all the utterances using pre-trained
ADAN [50] classifier, which supports 25 topical domains and one Phatic domain. The Phatic

15https: // github. com/ jfainberg/ self_ dialogue_ corpus

https://github.com/jfainberg/self_dialogue_corpus
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domain represents all chit-chat and non-topical utterances and any utterance annotated as Phatic
is removed from both the training set and the test set. To verify the accuracy of ADAN classifier,
I randomly selected 20 conversations and asked one human annotator to label each utterance as
Phatic or Non-Phatic. Based on this setup, inter-annotator agreement of 0.87 and Kappa score
of 0.82 were achieved, indicating substantial agreement. The final processed dataset consists of
23,751 conversations (363,003 utterances) on 4 main intents (topics). Finally, I divided the dataset
into 70%, 10% and 20% for training, validation, and evaluation, respectively.

A summary of the Alexa data and Self-Dialogue dataset statistics is reported in Table 3.3.
Utterances from the Alexa data are significantly shorter (3.07 words on average compared to 9.79
in Self-Dialogue), indicating that often entities may be mentioned without extensive context, e.g.,
as a response to a system question. The statistics also may clear the significant differences in the
human-human and human-machine conversations by all criteria.

Dataset Words per Turns per Vocabulary
Utterance Conversation Size

Alexa 3.07 16.49 16,331
Self-Dialogue 9.79 5.84 117,068

Table 3.3: Alexa and Self-Dialogue data statistics.

Synthetic Training Data Generation

A simple yet effective approach is proposed to generate many synthetic utterances for training
intent classification models. As will be shown, this ability can be particularly useful for augmenting
real data when limited manual labels are available, to train deep neural network models which
require large amounts of labeled training data. The approach is summarized in Algorithm 1.

For each topic, a small number of predefined intent templates are created. These templates are
designed by engineers who developed each domain-specific module. The rules described in Amazon
Alexa developers’ guide16 were applied in order to capture the most common topic-specific intents
and accommodate enough lexical and syntactic variations in the text. The templates contain slots
to be filled with either entities or keywords, for example, “Play a KEYWORD_MUSICGENRE
music from NER_SINGER” and “tell me some KEYWORD_MOVIEGENRE films played by
NER_ACTOR”. Each slot starting with NER is filled by an entity from the knowledge base, and
each slot starting with KEYWORD is filled using a predefined list of intent-oriented keywords. For
instance, the slot KEYWORD_MUSICGENRE is randomly filled using a list of popular music
genres like rock, pop and rap. I first generated these predefined keywords manually and expanded
the lists with the 10 most similar words from WordNet17 for each keyword. To fill in the entity
slots, I used the corresponding lists from the knowledge base (described above), prioritizing the
most popular entities, and the most common templates according to domain knowledge and most
frequent utterance statistics. While the possible number of generated utterances is the direct
product of the number of templates, keyword values, and entity-values, the process ends after a
predefined number of synthetic utterances is reached. For the experiments, I control the size of
the synthetic dataset with a parameter named ρ. This value is determined based on the number

16https://developer.amazon.com/docs/custom-skills/best-practices-for-sample-utterances-and-custom-slot-type-
values.html

17https: // wordnet. princeton. edu

 https://wordnet.princeton.edu
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of available templates for an intent, importance of an intent, and the overall number of covered
intents. I conducted an experiment on this value described in Section 3.1.7. I decided to choose
400K to make a trade-off between time and accuracy and to make the experiments manageable.

Movie 28% Music 15% Pets_Animal 13%
Travel_Geo 12% News 10% Games 10%
Sports 5% Sci_Tech 3% Celebrities 2.5%
Fashion 1% Weather 1% Literature 1%
Food_Drinks 0.9% Other 0.1%

Table 3.4: Intent distribution in Synthetic Dataset.

Any other external dataset can be incorporated into the synthetic generator above to enrich
classes lacking sufficient samples. In the experiments, I did not have as many utterances from
Technology and Sports domain compared to Movies and Music domains. Hence, I used an open-source
Yahoo-Answers question-answer corpus to add questions for these classes. Since human-machine
utterances tend to be short, as reported in Table 3.3, I only added questions shorter than 10 words.
The final topic distribution of the synthetic dataset is shown in Table 3.4.

Template and Entity-based Synthetic Utterance Generator
for intent in intent_list do

for template in common_topical_templates do
tmp = read(template);
ρ= SYNTHETIC_DATASET_SIZE;
e.g. tmp = “Fun facts for NER_ANIMALS”
e.g. tmp = “The best KEYWORD_LEAGUE team”
slot_list = find(slots);
for entity_type and keyword_type in slot_list do

for entity in entity_type and keyword in keyword_type do
if entity in common_entity_list and keyword in common_keyword_list then

generate_utterance(temp);
generate_label();
if len(dataset) > ρ then

return dataset;
else
end

else
continue;

end
end

end
end

end
Algorithm 1: Algorithm to generate the synthetic template-, keyword-, and entity-oriented
utterances

3.1.6 Experimental Setup
In this section, I first describe baseline methods in Section 3.1.6. Experimental metrics and
procedures are described in Section 3.1.6. All experiments were implemented in Python 2.7 using
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TensorFlow 1.12.018 library. (For Dataset details, please refer to Section 3.1.5.)

State-of-the-Art Baselines

Three state-of-the-art methods were used as baselines:

• ADAN [50]: ADAN was proposed by Amazon for conversational topic classification, and it
was trained on over 750K utterances from internal Alexa user data for 26 topics.

• FastText [15]: FastText is a text classification model from Facebook Research. FastText
operates on character n-grams and uses a hierarchical softmax for prediction, where word
vectors are created from the sum of the substring character n-grams.

• VDCNN [29]: This model was proposed as a character-based text classification model.
VDCNN, like FastText, can model misspelled words (potentially mitigating ASR problems in
human-machine conversations) more robustly than word-embedding based models.

Training Parameters

In this section, I describe different parameters for the training of the proposed ConCET model and
the baseline methods described in Section 3.1.6.

To train the ConCET model, the parameters for CNN and BiLSTM described in Figure 3.2
were chosen based on my experience and previous literature. Finally, I trained the overall model
with an Adams optimizer and a learning rate of 0.001. All experiments for ADAN were conducted
using the intent classifier API made available to the teams by the Amazon Alexa Prize [50]. To
train the FastText model19, character 5-grams with word embedding of size 300 were used. Finally,
VDCNN results are reported based on a publicly available implementation.20. The results are
reported for a 29-layer VDCNN, based on the original paper.
Evaluation metrics. I used two standard classification metrics, Micro-Averaged Accuracy
and Micro-Averaged F1 [87], to evaluate the approach.

3.1.7 Results and Discussion
I begin this section by reporting the performance of ConCET in comparison to the baseline models
described in Section 3.1.6. Then, I illustrate the impact of the entity, external, and utterance
features through a feature ablation study.

Main Results

Table 3.5 summarizes the performance of the models on Alexa and Self-Dialogue datasets. The
results show that both variations of ConCET outperform the state-of-the-art classifier baselines
Fastext, VDCNN, and ADAN on Alexa dataset by large margins of 13%, 23%, and 10%, respectively
in terms of Micro-Averaged F1 score. Among the baselines, ADAN has the best results on the
Alexa dataset, while VDCNN achieves the best results on the Self-Dialogue dataset. All the
improvements are statistically significant using one-tailed Student’s t-test with p-value < 0.05.

18https: // www. tensorflow. org
19https: // fasttext. cc
20https: // github. com/ zonetrooper32/ VDCNN

https://www.tensorflow.org
https://fasttext.cc
 https://github.com/zonetrooper32/VDCNN
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Dataset

Method Alexa Self-Dialogue
Accuracy F1 Accuracy F1

FastText [15] 54.54 58.34 79.21 79.32
ADAN [50] 62.01 66.10 46.64 59.66
VDCNN [29] 46.48 48.56 79.98 80.61
ConCET (S) 68.75 (+10.9%) 68.73 (+4.0%) 84.58 (+5.7%) 84.71 (+5.1%)

ConCET (P) 71.46 (+15.2%) 71.72 (+8.5%) 84.59 (+5.7%) 84.66 (+5.0%)

Table 3.5: Intent classification on Alexa and Self-Dialogue datasets, where (S) stands for Spotlight
entity linker and (P) stands for the domain-specific PMI-EL entity linker. The relative improvements
over ADAN and VDCNN are shown on the Alexa and Self-Dialogue datasets, respectively.

The results indicate that ConCET exhibits the highest Accuracy and F1-score on both datasets,
significantly outperforming the baseline models.

Interestingly, the performance of the VDCNN and ADAN methods switches for the human-
machine and human-human datasets, as ADAN relies only on keywords, which is not sufficient
for complex human-human utterances, while VDCNN exhibits the worst performance for short
human-machine utterances. In contrast, ConCET exhibits robust and consistently high performance
on both human-human and human-machine conversations.

Detailed Performance Analysis

ConCET is a complex model consisting of different steps built based on deep learning models like
CNN and RNN. A comprehensive feature ablation analysis is performed to evaluate the effect of
each subsection on the overall performance of the system.

Entity linker evaluation

While entity linking is not the focus of this paper, since entities and their types play a central role
in the approach, entity linking performance could have a significant effect on the overall classifier
performance. To quantify the downstream effects of the entity linking accuracy, and to understand
whether ConCET can operate with inaccurate entity linkers, I manually annotated entity-types for
350 utterances, which contained entities spotted by at least one entity linker. The distribution over
classes is similar to that indicated in Table 3.2, with a higher number of utterances from Movies,
Music, and Travel_Geo compared to the other classes. Table 3.6 presents the accuracy and F1
values of PMI-EL and Spotlight on different classes of utterances.

The two entity linkers exhibit comparable performance, with PMI-EL showing higher Accuracy
on the Movies, Music, Travel_Geo, and News intents, but DBpedia Spotlight exhibiting higher
overall F1 scores. As I will show later in this section, ConCET can perform well with either entity
linker.

Impact of textual representation

To evaluate the impact of the textual representation choices, I conducted a feature ablation study.
Table 3.7 summarizes the results, which indicate that all of the implemented components are
significantly contributing to the final performance. Both Utt2Vec and TopicDist representations
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Entity Linker

Class PMI-EL Spotlight
Accuracy F1 Accuracy F1

Movie 80.00 77.19 71.83 78.46
Travel_Geo 80.77 87.50 75.47 82.47
Music 65.51 59.37 64.44 72.5
Sports 70.56 63.16 84.00 91.30
News 76.47 78.78 66.66 70.59
Others 53.68 54.84 50.69 62.12

Overall 68.30 68.18 63.48 72.67

Table 3.6: Accuracy and F1 scores of entity detection by PMI-EL and DBPedia Spotlight entity
linkers.

contribute to the classification performance, but the contributions are greater in Alexa dataset,
due to a stronger correlation between the keywords with the user intents.

Dataset
Method Alexa Self-Dialogue

Accuracy F1 Accuracy F1

CNN 47.59 42.93 79.61 79.73
CNN+BiLSTMpos 51.60 48.14 82.82 82.75

(+8.4%) (+12.1%) (+4.0%) (+3.8%)
CNN+BiLSTMchar 52.40 48.65 83.12 83.01

(+10.1%) (+13.3%) (+4.4%) (+4.1%)
Utt2Vec 54.27 50.84 83.33 83.35

(+14.0%) (+18.4%) (+4.6%) (+4.5%)
Utt2Vec+TopicDist 55.88 53.09 83.45 83.75

(+17.4%) (+23.6%) (+4.8%) (+5.0%)

Table 3.7: Intent classification Accuracy and F1 for different textual representations Alexa and
Self-Dialogue datasets.

Impact of entity-type representation

The model utilizes two variants of entity-type representations, namely entity-type distribution
(TypeDist) and entity-type sequence modeling (Ent2Vec). I evaluate both entity representation
vectors separately on both Alexa and Self-Dialogue datasets. Moreover, I report the result when
different combinations of the entity representations are joined with the Utt2Vec network. Table
3.8 reports the contribution of each entity representation to the final performance. While both
representations contribute greatly to the classifier performance, the effects are greater in the Alexa
dataset, due to the strong correlation between the entity-types and the user intents.

Impact of synthetic dataset on ConCET

To evaluate the effectiveness of the synthetic dataset, I augmented the Alexa and Self-Dialogue
datasets using the synthetic data described above and re-trained the models. The results are
reported in Table 3.9. Even though the synthetic dataset is effective in the real human-machine
conversations with Alexa, it has a negligible impact on the Self-Dialogue dataset. I attribute this
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Dataset

Method Alexa Self-Dialogue
Accuracy F1 Accuracy F1

Utt2Vec 54.27 50.84 83.33 83.35
Ent2Vec 26.93 19.93 52.45 50.32
TypeDist 33.73 25.54 58.95 57.00
Ent2Vec+TypeDist 35.66 26.33 60.22 57.91
Utt2Vec+Ent2Vec 60.26 57.93 84.48 84.83

(+11.3%) (+14.6%) (+1.4%) (+1.5%)
Utt2Vec+TypeDist 63.46 61.03 84.43 84.71

(+17.0%) (+20.0%) (+1.4%) (+1.6%)
Utt2Vec+TypeDist+Ent2Vec 64.80 61.59 84.51 84.86

(+17.4%) (+23.6%) (+1.4%) (+1.8%)

Table 3.8: Ablation study for different entity representations.

effect to the large size of the Self-Dialogue dataset. I argue that even a portion of this dataset is
enough for a model to reach its asymptotic performance. To evaluate this hypothesis, I re-trained
ConCET in two different settings. First, I randomly sampled 1% of Self-Dialogue dataset and used
it as the training set. Then, I added the synthetic dataset to the sampled portion and trained the
model again. In the former case, ConCET reached the Accuracy of (72.01 ± 0.1), while in the latter
case it reached the Accuracy of (73.12 ± 0.09). Each experiment was performed 5 times. This
confirms that the size of the labeled dataset is indeed affecting the extent to which the synthetic
data can be helpful. An experiment is conducted to determine an estimate for the value of ρ using
DBPedia Spotlight as the entity linker. The results are shown in Figure 3.3, which indicate that a
value of 400K samples is appropriate for ρ in Algorithm 1, due to the classifier peaking at this
point with more than 61% Accuracy.

Dataset
Train On Alexa Self-Dialogue

Accuracy F1 Accuracy F1

Synthetic (S) 61.60 57.44 75.62 75.52
Synthetic (P) 62.93 63.83 58.73 59.03
Alexa data (S) 64.81 61.92 - -
Alexa data (P) 62.93 60.24 - -
Alexa data+Synthetic (S) 68.75 68.73 - -

(+6.1%) (+10.7%) - -
Alexa data+Synthetic (P) 71.46 71.72 - -

(+13.5%) (+19.0%) - -
Self-Dialogue (S) - - 84.61 85.86
Self-Dialogue (P) - - 84.55 84.71
Self-Dialogue+Synthetic (S) - - 84.58 84.71

- - (-0.0%) (-1.3%)
Self-Dialogue+Synthetic (P) - - 84.59 84.66

- - (-0.0%) (-1.4%)

Table 3.9: Performance of ConCET with and without training on the synthetic dataset, where “S”
stands for the Spotlight entity linker and “P” stands for domain-specific PMI-EL entity linker.
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Figure 3.3: ConvCET Accuracy on Alexa Prize dataset for varying ρ values in Algorithm 1.

Discussion

I now discuss the strengths and potential limitations of the proposed approach. Generally, entity-
aware classifiers are prone to overfitting to the majority entity-type. I addressed this difficulty by
adding sparse and dense representations of the entity-types, which helps in smoothing the entity
representation. In other words, using an additional network and separately training the entities
reduced the bias towards entity-types. Furthermore, there are entity-types like Movie_Names,
which are notoriously problematic for classification. For example, the utterance “Fabulous how are
you echo” can be easily mis-classified if the entity-aware model is biased toward certain entity-types.
In this example, “Fabulous” could be a Movie_Name, and “Echo” could be a City located in
Oregon. In such cases, the ConCET model avoids this error in two different ways. First, because
combinations like these appear in all classes, the classifier tends to be less biased to these entities.
Second, two different joint deep network layers are used in ConCET model, which makes the system
more robust to entity-type errors.

The ConCET model enriches the textual representation of an utterance with entity information
for intent classification. By simultaneously learning the text and entity-types, ConCET captures
the likelihood of the appearance of a specific entity-type in an utterance text to thereby learn
a specific intent label. Moreover, to model semantic (dense) representations of the entity-types,
I computed an entity-type sequence as Equation 3.14. The interactions between entity-types,
when more than one entity-type appear in the utterance, as well as the order of their appearances
in an utterance, can, therefore, be inferred. As a result, ConCET can jointly learn a semantic
(dense) representation and the distribution of entity-types with textual information to represent an
utterance.

Although ConCET outperforms all of the baselines with either entity linker, I observe higher
improvements on Alexa data with the PMI-EL domain-specific linker. I conjecture that this is
because PMI-EL is designed to identify the entity-types supported by the conversational agent,
which are better aligned with the target domains. In general, entity-types which correspond more
directly to the class labels would be more useful as features for classifying intents as opposed to
generic entity-types. Nevertheless, ConCET exhibits significant improvements over the previous
state of the art with an off-the-shelf generic entity linker, and, when available, can take advantage
of the domain-specific entity linking for additional improvements.

A reference implementation of ConCET and the associated entity linker implementations,
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training data, models, and the Knowledge Base snapshot was released to the research community21.
Deploying a complex system like ConCET in production could potentially degrade system

performance by introducing higher response latency. This is an important issue, as response
latency has a dramatic effect on the user experience. Interestingly, the classification latency
for the proposed approach is not substantially higher compared to the baseline classifier that
operates on an utterance text alone. The main reason is that all the 4 stages of the ConCET can
be run in parallel. In addition, while entity linking requires a knowledge base lookup, modern
in-memory KB storage implementations support candidate entity retrieval and matching in only
10s of milliseconds, which does not introduce perceptible increases to response latency. Finally,
ConCET can be executed in parallel for different conversations, allowing the system higher overall
throughput without increasing latency for each user.

3.1.8 Limitations
The main limitation of this work is that it uses very simple word embeddings compared to SOTA.
Although these embeddings were the best available at the time based on the preliminary analysis on
a development phase, I now have significantly more advanced language models. It is possible that
the improvements from entity-type features will not hold if I use embeddings from a foundation
model like GPT-4.

In the next section, I apply the main components of the ConCET framework, entity knowledge
injection and synthetic data generation, to newer embedding models: BERT and T5.

3.1.9 Conclusion
I have successfully demonstrated that entity-type information from external sources leads to better
intent prediction when using relatively shallow classification models. The approach, ConCET, uses
a combination of text and entity-type features and data augmentation. However, I need to check
whether external knowledge provides any benefit if large language models is used for classification
or generating embeddings.

In the next chapter, I apply the main components of the ConCET framework, entity knowledge
injection and synthetic data generation, to newer embedding models: BERT and T5. Also, I study
whether using synthetic data generated using a large language model instead of a template-based
approach can lead to better results.

3.2 Contextual Intent Classification for Automated Struc-
tured Interviews

In this section, I address the intent classification problem for information elicitation dialog agents.
An information elicitaiton dialog agent (IEDA) is defined as a conversational agent that, given
a set of questions and possible answers, will conduct an interview with the user to elicit their
preferences and other information. In this context, intent prediction is the task of matching the
participant’s response to one or more predefined answer options.

Structured interviews are used in many settings, importantly in market research on topics such
as brand perception, customer habits, or preferences, which are critical to product development,

21Available at https: // github. com/ emory-irlab/ ConCET

https://github.com/emory-irlab/ConCET
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marketing, and e-commerce at large. Such interviews generally consist of a series of questions
that are asked to a participant. These interviews are typically conducted by skilled interviewers,
who interpret the responses from the participants and can adapt the interview accordingly. Using
automated conversational agents to conduct such interviews would enable reaching a much larger
and potentially more diverse group of participants than currently possible. However, the technical
challenges involved in building such a conversational system are relatively unexplored. To learn more
about these challenges, I convert a market research multiple-choice questionnaire to a conversational
format and conduct a user study. I address the intent prediction task involved in conducting
structured interviews, namely matching the participant’s response to one or more predefined
options.

3.2.1 Introduction
Information elicitation conversations, such as when a sales agent tries to understand their customer’s
preferences or a medical professional asks about a patient’s history, often begin with a routine set
of questions. In e-commerce, market research professionals and companies conduct many such
surveys each year, often multiple times, before developing, updating, or launching new products -
to collect critical data on customer preferences, interests, and awareness, among other topics.

In structured interviews, an interviewer asks a predetermined set of questions conversationally,
adapting them to the user’s responses and behavior. While extremely informative and a de-facto
standard in market research (e.g., via focus groups), these studies are limited in scale to a small
number of participants and are time-consuming and expensive to conduct.

To expand the reach of such studies, online static multiple-choice questionnaires or surveys are
used. However, such online questionnaires have some disadvantages. They need to be shorter than
interviews to avoid "respondent fatigue" [20]. There is also a greater risk of missing data because of
a lack of probing or supervision. Also, it is difficult to ask open-ended questions [20]. Conversational
systems that can conduct structured interviews can thus potentially be more effective tools for
preference elicitation. Such a system would, given a structured interview provided by a domain
expert, converse with the participant to elicit responses to a series of questions. Ideally, it should
also be able to ask clarification questions, prime the user with possible answers, and reorder and
skip questions based on the user’s responses. An essential requirement for such an agent to be
effective is the ability to interpret the responses, often by matching them to a previously defined
set of options.

As a first step towards building a conversational system for conducting structured interviews, I
investigate the trade-offs of conducting a structured interview via an automated conversational
agent vs. the traditional, static, multiple-choice web-based questionnaire. To this end, I conduct a
large online user study where a questionnaire with choices for each question is presented in both
a conversational interface and as a static multiple-choice questionnaire. The questionnaire was
provided by a reputed Personal Care products company’s marketing team. The company has a
wide range of products for skin care, which target specific skin conditions. Market research and
brand awareness are critical for ensuring that their products meet their consumers’ needs and that
they can find the right product.

I then address the intent prediction problem for this setting, i.e., given a structured interview
in the form of a list of questions and the set of possible answers (options) for each question, the
model needs to infer the options with which the user’s response matches. For the related problem
of intent classification for goal-oriented and open-domain conversational agents, prior work achieves
good results by jointly training large language models on intent classification and slot-filling tasks.
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Figure 3.4: The user’s conversational responses should be mapped to the correct answer option(s).

However, in a system-initiative conversation where the user is asked open-ended questions about
their preferences, intent classification is challenging because 1) interview questions often elicit
descriptive answers as opposed to names of entities of an expected type, and 2) it is expensive
to collect conversational data for supervised learning. I investigate three approaches for using
contextual information for the intent prediction task defined below: 1) using historical probability
distribution over the answer options, 2) using previous conversation context, and 3) using external
knowledge.

I also analyze the user study data to determine whether the change in interface and the absence
of options lead to more informative responses, and what types of questions would benefit from an
open-ended conversational interface.

Setting: Structured interview conducted by a conversational
agent with a user

Given: A conversation consisting of system utterances
(in the form of questions)
s1... sn−2, sn−1, sn,
and user responses
u1... un−2, un−1, un,
and a set of possible answers to si given by
A(q = si) = ai,1, ..., ai,m

Problem: At conversation turn i, match ui to a subset Mi

of possible answer options A(q = si) that represents
user intent

Figure 3.5: Intent Prediction Problem Definition
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Open-domain and domain-specific conversational agents usually have a predefined set of intents
and slot values that they can identify and process. Existing intent classifiers apply a variety of
approaches, however, these methods rely on the availability of extensive training data and the
intents and slots being limited in number. In the structured interview setting, users often give long
descriptive answers to open-ended questions, which makes it hard to apply these intent classification
models.

I use TOD-BERT in our experiments to study the advantages of dialog pre-training for our
task.

Although our data is domain-specific, there isn’t a pre-trained model or knowledge graph
tailored for our setting. Therefore, I use ConceptNet neighbors of terms in conversations to
experiment with the effects of incorporating external knowledge.

3.2.2 Data Collection
I conducted a user study where participants interacted with both a conversational agent and a
static questionnaire. The users’ responses in both settings served as a source of training data for
intent prediction. I describe the data collection process in this section.

User Study

I conducted a user study with 139 participants to compare the informativeness and other charac-
teristics of Conversational Interface responses with Web-based Questionnaire responses. I used
a questionnaire provided by domain experts from a reputed company, as described in §3.2.1. It
contains 25 multiple-choice questions about the client’s lifestyle, skin and hair care routines, and
preferences. The questionnaire contains 12 single-option questions (the user can select exactly
one option) and 13 multi-option questions (the user can select multiple options). The user study
consists of 2 phases. In the first phase, the participants interact with a text-based conversational
agent that asks a question from the questionnaire, responds to the user’s free-form answer with an
acknowledgment (“Ok”, “Alright” or “I see”), and then proceeds to ask the next question. The
participants are then asked to fill out an online web-based survey with the same questions, but this
time with options to choose from. They were shown their conversational response to the question
and asked to pick the options that matched it. In addition to the responses from the questionnaire,
the participants could also choose from two additional options, “None of the above” and “I don’t
know”.

Intent Classification Data

I model the intent prediction task as a binary classification problem. That is, given a <conversa-
tional response, answer option> pair, the model predicts the probability that they are semantically
equivalent. I use the data from the user study in §3.2.2 as a source of ground truth for <conver-
sational response, answer option> pairs. I split conversations among the train, validation and
test sets in a 60:20:20 ratio. I construct a labeled dataset of <conversational response, answer
option> pairs from conversations in the train set to train our binary classification models. The
<conversational response, answer option> pairs from §3.2.2 are used as positive examples. I add
an equal number of randomly selected negative examples. The model is trained on 22865 samples
and validated on 7724 samples. It is then evaluated on the holdout set of 20% of the conversations.
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3.2.3 Methods
I use a probabilistic model as a baseline because the prior and conditional distributions over the
answer options inferred from the training data can intuitively be used to predict the response. I
then experiment with fine-tuning pre-trained language models with different context lengths to
find the optimal context length for our task. Lastly, I experiment with incorporating external
knowledge to improve the model’s performance on out-of-vocabulary terms. This section describes
the different methods I use for response prediction.

Using Probabilistic Models Learned from Historical Data

I use purely probabilistic models, which do not consider response text, as baselines.

Context-Less: Using Prior Probability Distributions

In this method, I infer the prior probability distribution over the options for each question using
the training data. I infer the probability of an answer option aj,k ∈ A(sj) being the match for
question sj as follows:

P (Mj = {aj,k}) = N (aj,k)∑m
i=1 N (aj,i)

(3.21)

where N (aj,i) represents the number of times aj,i is observed as the matching choice Mj for sj in
the training data. The model prediction is therefore aj,k, where k = argmaxx P (Mj = {aj,x}).

Contextual: Probability Distribution Conditioned on One Previous Response

In this method, I use a conditional probability distribution. Given that ai ∈ A(si) was the selected
option for si, the probability that aj,k ∈ A(sj) will be selected for sj, where i < j is given by

P (Mj = {aj,k}|Mi = {ai}) = P (Mj = {aj,k} and Mi = {ai})
P (Mi = {ai}) (3.22)

Intuitively, if the answer to si provides some information about the answer to sj, then H(Mj) >
H(Mj|Mi), where H(x) is the entropy of the probability distribution over the values of random
variable x.

H(x) = −
n∑

i=1
p(xi)log2p(xi) (3.23)

Our hypothesis is that the answer options matching the user’s conversational responses for different
questions in the interview are not independent of each other. Each answer contains information
that can be used to infer subsequent answers more accurately. For example, I observe in our
dataset that if the user’s response for the question “After applying a facial moisturizer, how do
you want your skin to feel?” is known, the entropy of probability distribution over the options for
“What type of weather do you usually live in?” is much lower than the prior. I find the conditional
probability distribution with the lowest entropy as follows:

argmin
i

H(Mj|Mi) (3.24)

The model prediction is therefore aj,k where k = argmaxx P (Mj = {aj,x}|Mi = {ai}).
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Fine-tuning Pre-Trained Language Models

In this approach, I treat intent prediction as a binary classification task. Given a <conversational
response, answer option> pair, I train the model to output a score that indicates their semantic
similarity. The final prediction is the option with the highest score.

Fine-Tuned BERT Classifier

In this method, I fine-tune BERT [31] to output a score of either 1 (when conversational response
and answer option match) or 0 (when conversational response and answer option don’t match)
when given the conversational response and answer option as input. I employ a linear layer on top
of the [CLS] token for classification.

I predict the semantic similarity score of a user response uj with all the possible answer options
for the question sj as follows: Let q be a question to be posed to the user with option choices given
by the function A(q) = a1, ..., am and let un be the user response for the same. Then, I compute
all options Y greater than a threshold t ∈ [0, 1] in the following fashion:

Sj,k = BERT ([CLS]∥uj∥[SEP ]∥aj,k) ∀aj,k ∈ A(q = sj) (3.25)

The model prediction is aj,k, where k = argmaxx Sj,x. For multi-correct questions, I can use a
threshold to determine the subset of correct answers.

Incorporating Conversation Context

To determine if previous conversational history is useful to better identify the correct choice,
I include previous conversation turns in the model input. I experiment with different number
of previous turns of context to find the optimal context length for our setting. To keep the
conversational nature of the text intact, I append each conversational utterance with either a
“[SYS]” or a “[USR]” token depending on whether it is a system or a user utterance. Let tj represent
the concatenation of the jth system and user utterances.

tj = [SY S]∥sj∥[USR]∥uj (3.26)

I experiment with three settings:

• Context of the current turn j:

Sj,k = BERT ([CLS]∥tj∥[SEP ]∥aj,k) ∀aj,k ∈ A(q = sj) (3.27)

• Context of 1-previous turn:

Sj,k = BERT ([CLS]∥tj−1∥tj∥[SEP ]∥aj,k) ∀aj,k ∈ A(q = sj) (3.28)

• Context of 2-previous turns:

Sj,k = BERT ([CLS]∥tj−2∥tj−1∥tj∥[SEP ]∥aj,k) ∀aj,k ∈ A(q = sj) (3.29)

The model prediction is aj,k, where k = argmaxx Sj,x.
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Incorporating Dialog Pre-training

The BERT model [31] in our previous experiment has been pretrained over free-flowing text and
fine-tuned over dialog data. I hypothesize that a model pre-trained on dialog tasks would perform
better than a generic pre-trained language model in our conversational setting. In this approach,
fine-tune TOD-BERT instead of BERT. TOD-BERT has the same architecture as BERT but has
been pre-trained on various dialog tasks.

Incorporating External Knowledge

BERT often does not capture the semantic relatedness of domain-specific terms. For example,
it does not know that “dry” and “oily” are antonyms. I hypothesize that leveraging knowledge
graphs can help the model better understand the domain-specific terms in our dataset. To bridge
the vocabulary gap between the user responses and questionnaire answer options, I concatenate
one-hop neighbors from ConceptNet 22 of all the terms in the user input to the user input.

I query ConceptNet for all the one hop neighbors for each word. I do not include bigrams. The list
of neighbors often contains multiple occurances of the same term. This is because ConceptNet has
several nodes corresponding to the same concept from different sources. They have different URIs
but the same text. For example, for the term “whitehead”, the list of neighbors contains “whitehead”
(46 times), “whitehead_link” (2 times), “pimple” (2 times), “white”, “alfred_north_whitehead”,
“torpedo”, and “sebaceous_gland”. I remove the terms identical to the original word (“whitehead”).
I also remove the terms that appear only once (“alfred_north_whitehead”, “torpedo”, and
“sebaceous_gland”). This helps in getting rid of noisy, unrelated neighbors. Lastly, I also remove
bigrams (“whitehead_link”). After processing, the list of neighbors for “whitehead” contains only
“pimple”.

3.2.4 Experimental Setting
I use 5-fold cross-validation for our experiments. I treat each fold as the test set one by one and
use the other folds as train and validation. I report the average of results from all test folds.

Models Compared

I use a naive probabilistic model described in §3.2.3 as the baseline. I compare three variants of
fine-tuned BERT to study the effect of dialog pre-training and external knowledge. I list all the
models below:

• Probabilistic Baseline: I use the conditional probability-based model described in §3.2.3 as
the baseline.

• BERT: I fine-tuned bert-base-uncased23 on our dataset of <conversational response, answer
option> pairs (§3.2.3). I experiment with different lengths of conversation context. Results
are reported for the best version, which only considers the current conversation turn.

• TOD-BERT: I also tried a BERT model pre-trained on conversational data. Results are
reported for TOD-BERT (described in §3.2.3) fine-tuned on our task with 2 previous turns
of context.

22https: // conceptnet. io/
23https: // github. com/ google-research/ bert/ blob/ master/ README. md

https://conceptnet.io/
https://github.com/google-research/bert/blob/master/README.md
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• BERT-CNNet: Since our dataset is domain-specific and has a different vocabulary than
BERT’s pre-training data, I also experiment with augmenting input to BERT with domain-
specific keywords. Again, results are reported for the best version that only considers the
current conversation turn. (§3.2.3)

Evaluation Metrics

I train and evaluate our models on single-option questions and multi-option questions separately. I
use accuracy as the evaluation metric, which I define as the fraction of test questions where the
model assigns the highest score to the true answer option based on the ground truth data described
in §3.2.2.

For multi-option questions, where the user can select multiple options, I use ROC-AUC as the
evaluation metric.

Human Annotation

I observed that in the user study, in the Web-based Questionnaire , the participants often selected
options that they hadn’t implied in their Conversational Interface responses. To measure how
difficult intent classification is for humans, I recruited annotators from MTurk who were familiar
with and interested in the domain. I asked them to choose the most appropriate option for each
question, given the chat responses from the original user study participant. Four different workers
annotated each question for a sample of 27 conversations. I use Fleiss Kappa [34] to measure
inter-annotator agreement. The average agreement is 0.46, which indicates moderate agreement.
Note that this indicates that the task is challenging for humans as well, and our results should be
interpreted as a lower bound on the performance of our models. The agreement varied significantly
across different questions, as Table 3.12 shows. The average agreement between the MTurkers and
original respondents is 0.44, which is also moderate.

I find agreement is highest for the questions which are general in nature ( not domain specific),
have a small number of options that are also short and non-ambiguous (e.g. store names v/s
descriptions of skin texture).

Table 3.10: Main Results: Accuracy on Single-Option Questions

Model Overall On High-κ Questions
Accuracy Std Accuracy Std

Prob. Baseline 0.51 0.02 0.53 0.02
BERT 0.64 (+24.0%) 0.04 0.71 (+34%) 0.04
TOD-BERT 0.55 (+7.6 %) 0.04 0.63 (+18.8%) 0.03
BERT-CNNET 0.62 (+20.9%) 0.02 0.68 (+28.3%) 0.05

3.2.5 Results and Discussion
I first report the main results of different methods for intent classification, then discuss findings
about user behavior, and finally, investigate the factors that make the task challenging.
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Table 3.11: Main Results: AUC on Multi-Option Questions

Model Overall On High-κ Questions
AUC Std Accuracy Std

Prob. Baseline 0.77 0.01 0.76 0.01
BERT 0.78 (+1.4 %) 0.05 0.79 (+3.6 %) 0.04
TOD-BERT 0.76 (-1.3 %) 0.07 0.76 (-0.1 %) 0.06
BERT-CNNET 0.78 (+2.0 %) 0.05 0.78 (+3.0 %) 0.04

Table 3.12: Questionwise Results: Accuracy is reported for the best performing model; Fleiss
Kappa is agreement among human annotators; the last row is the fraction of times annotators
chose "None of the above". Response length represents the number of words in the response

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Mean
Accuracy 0.76 0.66 0.76 0.81 0.60 0.71 0.58 0.52 0.40 0.41 0.84 0.69 0.65
Fleiss κ 0.88 0.78 0.78 0.74 0.69 0.49 0.44 0.26 0.22 0.21 0.09 0.04 0.47
Number of Options 2.00 3.00 11.00 4.00 5.00 4.00 5.00 4.00 4.00 3.00 4.00 3.00 4.33
Conversational Dwell Time (sec) 11.79 7.38 6.21 12.42 9.38 12.03 12.23 14.77 14.57 13.43 7.52 6.68 10.70
Conversational Response Length 3.30 2.78 3.44 6.70 3.44 6.41 5.48 7.30 4.19 4.63 4.00 4.19 4.65
Questionnaire Dwell Time (sec) 10.59 4.96 10.93 14.37 9.15 7.52 10.04 8.59 20.70 20.56 7.74 11.30 11.37
Questionnaire Response Length 1.23 1.95 3.65 1.40 7.71 4.26 7.46 2.71 5.04 2.73 4.88 1.42 3.70
"None of the above" answers 0.02 0.03 0.08 0.08 0.14 0.41 0.22 0.58 0.37 0.50 0.02 0.64 0.26

Intent Classification Results

Table 3.10 shows the accuracy of all the models on single-option questions. I consider improvement
to be statistically significant if ttest on each fold returns a p-value < 0.05. Significant results are
marked in bold text. Table 3.11 shows the AUC of all the models on multi-option questions. The
relative performance of models is the same on both types of questions. The accuracy of TOD-BERT
is not significantly higher than our probabilistic baseline. This is because the conversations in our
setting are different from the goal-oriented dialog that TOD-BERT is pre-trained on. The model is
not able to transfer its knowledge to intent classification in a structured interview.

Fine-tuned BERT and BERT-CNNET significantly outperform the baseline.
The highest value of accuracy achieved is 64%, which is relatively low. As discussed in §3.2.4,

the inter-annotator agreement is lower on some questions, indicating that intent prediction on
these questions is difficult even for humans. I obtain higher accuracy values by excluding questions
with low inter-annotator agreement from our test set. I set the threshold for low agreement as
0.4, which is standard for Fleiss Kappa. This leaves us with 7 single-option questions out of 12.
Table 3.10 also shows these results. I compare 4 versions of our models, one that uses just the
current chat response as the conversation representation, one that uses the current question and
its response, one that includes 1 previous turn of conversation in addition to the current, and
lastly, on that includes 2 previous turns of conversation in addition to the current. Unfortunately,
incorporating previous turns of conversation does not improve accuracy (decreases by ∼ 4% on
average). This might be because each information turn asks a new question. A structured interview
flows differently than an ordinary conversation. Results are reported for the version that uses the
current question and its response as conversation representation.

Tradeoff Between Effort and Information

Table 3.12 summarizes our findings from the user study. The average dwell time (Time elapsed
between the question’s appearance and the user’s first click/keypress) for a question was comparable
for Web-based Questionnaire and Conversational Interface . The input time was much longer
for Conversational Interface because participants had to type their responses instead of selecting
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options with clicks. On average, the Conversational Interface response has more words than the
Web-based Questionnaire response. In some cases, the extra effort on the users’ part resulted in
more informative answers. For example, for the questions, "When do you moisturize your face"?
(Q4) and "How do you handle unexpected stress?" (Q8), the Conversational Interface response is
significantly more verbose than the Web-based Questionnaire response. These questions elicited
descriptive answers that were more informative in Conversational Interface .

On the other hand, for the question "What kind of hair day are you having today?" (Q5), users
were more likely to give a response like "good" or "not bad". Although the longest conversational
response for this question had 13 words, on average Web-based Questionnaire elicited more
informative responses.

I also observe that 26% of the Conversational Interface responses annotated by MTurkers
were mapped to "None of the above", which indicates that Conversational Interface often collects
information that is entirely absent from Web-based Questionnaire options. The highest number of
"None of the above" responses were observed for questions "After applying a facial moisturizer, how
do you like your skin to feel?" (Q10) and "How would you describe your natural hair?" (Q12). This
might have been because these questions can be interpreted in different ways, but the options list
is small and specific.

Error Analysis and Discussion

Table 3.13 shows the correlation between 4 features of questions with the best model’s accuracy
(Accuracy) and the inter-annotator agreement (κ) for that question. Contrary to what I expected,
a larger number of options does not make the task harder for the model or human annotators. The
number of words in the conversational response (Conv. Response Length) negatively correlates
with κ more than with Accuracy. That might be because longer responses could partially match
more than one answer option and cause disagreement. A longer dwell time indicates that the
question is hard to understand or hard to answer. It negatively correlates with Accuracy more
than with κ. This might be because it is harder for the model to handle unusual responses it hasn’t
been trained on.

Thus, we can see that the model fails to generalize to unusual responses. Another case where I
observe high error is when matching responses requires some logical reasoning. For example, for the
question "Which ONE benefit are you primarily looking for, over time, from your facial moisturizer
products?", the user responds by saying "The main benefit I’m looking for is smooth/healthy
looking skin that isn’t oily or shiny". However, the choices in the questionnaire are "Maintain the
appearance/feel of my skin", "Enhance my skin’s appearance/ feel", "Fix my skin’s problem areas"
and "Prevent future skin problems". The model would have to infer that the user’s response implies
that they want to enhance their skin’s appearance. The domain-specific nature of the task also
remains a source of error. ConceptNet does not have high enough coverage of skincare terms.

Pearson Spearman
Accuracy κ Accuracy κ

No. of Options 0.18 0.26 0.05 0.04
Conv. Response Length -0.1 -0.24 -0.21 -0.42
Dwell Time (Conversational) -0.61 -0.14 -0.59 -0.21
Dwell Time (Online Survey) -0.58 -0.30 -0.27 -0.25

Table 3.13: Correlation Values
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3.2.6 Limitations
Based on the experiments so far, I have found that BERT-based models have limited capability to
effectively represent context even when they are pretrained on dialog data.

The knowledge injection approach did not lead to any improvement in performance. That might
be because that was not an effective approach of knowledge injection for this setting. Another
approach, like the knowledge probing method introduced in [33] might be more suitable. This
approach involves integrating knowledge base adapters (repositories of domain-specific information)
with large language models.
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4 Query Intent Classification for Domain-Specific
Web Search

In this chapter, I present the experiments for RQ1c: Can we improve intent classification for
health-related queries with external knowledge and data augmentation? This work has not been
published yet.

I explore 3 main research questions:
(i) How do different methods of incorporating external entity knowledge compare for the task of

intent classification for health-related queries?
(ii) How much improvement can we get using external knowledge on models of different sizes?
(iii) Can we use large language models to generate queries with entities of specific types to

augment training data for infrequent classes?

Figure 4.1: Example of a widget for the “find doctors and providers” intent. If the user’s query is
classified as this intent, they will be given the option to provide their location to find providers
near them.

4.1 Introduction
Users often come to a healthcare website with different intents, such as learning about a disease,
finding a provider or a hospital, or reading messages from their doctor. Different interfaces
are suitable for different types of information, and classifying the user’s intent can help show
relevant information in an appropriate interface. For example, the website of the health insurance
organization that this work was done in collaboration with has specialized widgets for the “find
doctors and providers” (See Figure 4.1) and “health insurance plans” intents. The goal is to surface
the appropriate widget to the user based on their query. To enable this, the user queries must be
classified into a predefined set of intents. In this context, the intent is the user’s goal or the type of
information they are looking for. I model this as a multi-class, multi-label classification problem,
where one or more intents are predicted for each query. The setting I focus on in this chapter is
health-related web search.

I conduct experiments on two datasets. In one, the intent labels correspond to application-
specific classes, and in one where the intent labels represent the topic of the documents that
the query should retrieve. (Section 2.1.3 has more details about these settings.) The methods
are designed to be general and can be applied to any domain-specific search engine for either of
the above tasks. I perform experiments on publicly available web search log data as well as on
real-world proprietary data from the search feature on the website of a reputed health insurance
organization.
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Query classification is challenging because web search queries are short and often do not contain
enough contextual information. Moreover, in health-related searches, it is difficult to retrieve
relevant information from external knowledge sources because there is a significant vocabulary
difference between web search queries and the medical terminology used in most health-related
knowledge bases.

Leveraging search results is an effective way of gathering additional context for query classifica-
tion. (See Section 2.1.3) However, in the setting of a small-scale domain-specific search engine with
limited user interaction data, the document or URL that is appropriate for the user’s intent may
not be ranked highly or even present in the search results. Also, many queries are navigational in
nature, and the user’s intent is to reach a specific page on the website (See Section 4.3.1). In such
cases, the search results are not useful for intent classification. I, therefore, propose methods for
query classification that do not rely on search results. I use explicit entity information as a source
of contextual knowledge. Although only popular Wikipedia entities are used in the experiments,
the proposed methods can be extended to inject knowledge about any entity, for example, names
of new providers or drugs.

Another direction I explore for improving intent classification in this setting is synthetic query
generation for frequently misclassified classes. Query generation is often applied to improve the
performance of dense retrievers, which require substantial amounts of training data.

I also propose using external knowledge for query generation. However, I do not use documents
as context. I instead leverage the vast knowledge of large language models and entity information to
generate synthetic queries. In Chapter 3, we saw significant improvements in intent classification in
the conversational setting by augmenting the training data. In particular, I used a template-based
approach that replaced entities in the given query with other entities of the same type to generate
synthetic examples. In this chapter, I explore the effectiveness of this method in the web search
setting. A large language model is prompted to generate queries. Given a query with an entity
mention, the model must return new queries with the same intent, but mention other entities of
the same type. This method is compared with a baseline data augmentation method that does not
explicitly use entities to prompt the LLM.

4.2 Methodology
In this section, the methodology is described for answering the research questions posed in the
introduction. Two types of approaches are studied for improving intent classification performance:

• Knowledge Injection (§4.2.1): Here, RQ1ci and RQ1cii are answered.
• Data Augmentation (§4.2.2): Here, RQ1ciii is answered.

4.2.1 Knowledge Injection
Injecting new knowledge into language models has been an active area of research in recent years
(Ref. 2.5). In contrast to most prior work, I use explicit entity information as a source of external
knowledge. I investigate the effectiveness of using entity information for query intent classification
through multiple knowledge injection methods. I conduct experiments on four base models of
different sizes and report results on two datasets.

I compare three methods of domain adaptation for domain-specific search intent classification:

• Entity Linking + Knowledge Adapters
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• Entity Linking + Retrieval Augmentation
• In-Context Few-shot Learning

Entity Linking + Knowledge Adapters

Using knowledge adapters has been shown to be an efficient way to incorporate external knowledge
into a model without retraining the entire model. The most impactful prior work in this area,
however, uses BERT and RoBERTa as the base model. In [129] the authors introduce K-adapter, a
transformer-based adapter layer that is added to the base model to incorporate external knowledge.
Two kinds of adapters are added to RoBERTa, one for factual knowledge from Wikipedia, and
another for linguistic knowledge from dependency parsing. In [154], the authors show that
incorporating entity information into BERT and RoBERTa models (already fine-tuned for a
downstream task) using mapped entity embeddings can improve performance on downstream tasks.

Figure 4.2: Overview of the map tuning method. The adapter is trained to minimize the cross
entropy loss on the intent classification task.

Since I want to incorporate entity information similar to [154], I adapt their method for my
setting. Figure 4.2 shows an overview of the method. In the following paragraphs, the method is
described in detail, using the same paradigm and terminology as used in [154].

Notation: I will refer to the language model fine-tuned on the intent classification task as
D, and the underlying PLM (e.g. BERT) as P. The method relies on a knowledge base B
that comprises a set of entities and knowledge about these entities. It also requires a knowledge
representation model K, that assigns to each entity an entity embedding. An adapter, or mapper,
M is used to map the entity embeddings from K to the language model’s token embedding space.
Method Overview: Every input sequence is processed as follows. The first step is entity linking,
where entities are detected in the query text and linked to B. The next step is to incorporate the
entity information from K into the model. However, the entity embeddings from K are not in the
same space as the token embeddings of the language model. Therefore, for each entity, the entity
embedding is first translated into the language model’s token embedding space using the mapper,
M. The mapper is a linear layer that maps the entity embedding to the language model’s token
embedding space. The mapped entity embedding is then inserted into the model input right after
the text embeddings of the entity mention. (The embedding for “/” is used as a separator between
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the entity’s token embeddings and its mapped entity embedding.) This input representation is then
passed to a language model with a classification head, trained on the intent classification task (D).

Training the Mapper: The process of training the mapper M is termed “map tuning”. Two
map tuning methods are proposed in [154]:

1. General map tuning: Here, the mapper is trained on a Mention-Masked Language Modeling
(MMLM) task. This is similar to MLM, but only entity mentions are masked in the input text
to ensure that entity information is required to predict the missing tokens. The underlying
PLM P, in combination with the mapper M, is used to predict the masked entity tokens.
The mapper is trained to minimize the cross-entropy loss on the MMLM task, while the PLM
is kept frozen.

2. Task-specific map tuning: Here, the model parameters are kept frozen while the mapper
is trained on the downstream task’s objective. I.e. D is kept frozen, and M is trained to
minimize the cross-entropy loss on the classification task. The authors show that this method
is more effective than general map tuning for improving performance on the downstream
task.

The setting in this work is different from [154] in two ways. The first key difference to note
here is that the dataset of web search queries used does not contain entity annotations, and entity
linking is relatively hard for short, ambiguous text. Therefore, the entity annotations are noisier
than for the datasets used in [154].

Another difference is that this method of knowledge adaptation was specifically proposed for the
scenario where the downstream model has to use new knowledge without any additional training or
fine-tuning. That is not a constraint in my setting. I, therefore, finetune the model snapshot to
use the mapper effectively after training the mapper.

Figure 4.3: Overview of the retrieval aug method. The language model is fine-tuned on the
classification task with the augmented input.

Entity Linking + Retrieval Augmentation

A complementary approach to knowledge injection is also explored, in which textual descriptions
of entities are used instead of leveraging information from the topological structure of a knowledge
graph.
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Figure 4.3 shows an overview of the method. The first step in this method is to detect entities
in the query text and link them to an associated knowledge base. Then, information about the
detected entities is incorporated into the model input by concatenating entity descriptions to the
query text. The model is then fine-tuned on the classification task with the augmented input.

Few-Shot In Context Learning

In this method, I rely on a large language model’s vast knowledge for domain adaptation. The
model is prompted with few-shot examples to perform the intent classification task. The few-shot
examples comprise an equal number of examples from each class. The LLM is prompted to return
multiple labels when applicable. But examples with just one correct label are used when possible
for in context learning. The prompt describes the dataset and the task and provides examples.
Following [136], we assign a persona modifier to the LLM in the prompt, that of a “web search
assistant”. The full prompt can be found in the appendix. §A.

Figure 4.4: Overview of the In-Context Learning method. The large language model is prompted
with few-shot examples to perform the intent classification task.

4.2.2 Data Augmentation
Here, the hypothesis that entity information can be used to generate more training data for
frequently misclassified classes to improve classification is tested. A large language model is used
to generate synthetic training data given a query with an entity mention, the entity type name of
the mentioned entity and its intent. The classifier is then trained further on the synthetic queries
generated by the LLM.

Figure 4.6 shows an overview of the proposed method. Here, the LLM is prompted with a
template that includes the entity type and the intent label. An example prompt for the topic
pediatrics and the entity infant death syndrome is “The query is "risk of sudden infant death
syndrome with position supine" and the topic is "pediatrics". Please rewrite the query with another
disease.” Here, “disease” is the entity type obtained from the knowledge base. (The granularity
of types depends on the knowledge base used. Wikidata, which is used in this work, has several
hundred entity types, including broad ones like “type of chemical entity”, “class of disease”, and
“medication”; and specific ones like “developmental defect during embryogenesis”) The training
data is first filtered to find queries that have at least one entity. We try to use queries with only
one correct label to construct prompts. Some classes never appear as the only label in our dataset.
In that case, queries with the fewest labels are used. The LLM generates synthetic queries that are
then used to augment the training data.
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Figure 4.5: Baseline data augmentation method.

Figure 4.6: Entity-based data augmentation method.

This method is compared with a baseline data augmentation method that does not explicitly
use entities to prompt the LLM. Figure 4.5 shows an overview of this method. An example prompt
for the baseline method is “Given a topic, you need to generate 10 queries that are likely to retrieve
the documents on that topic. The topic is "pediatrics". Here are some example queries with that
topic: <list of example queries>”. (The full prompt can be found in the appendix. §A)

4.3 Experimental Setting: Data and Methods Compared

Name Size Num Labels % of Queries with Train:Val:Test
Entities Split

Private Health Search 50475 1 21.154 60:20:20
Tripclick 143269 1.76 (avg) 22.831 60:20:20

Table 4.1: Dataset Description

4.3.1 Data
The impact of the entity-knowledge incorporation and data augmentation approaches is measured
on two real-world datasets:

1. TripClick: A large publicly available dataset of click logs from a health search engine

2. Private Health Search: Internal dataset from the search engine of Kaiser Permanente website.

Table 4.1 summarizes the attributes of both the datasets.

Private Health Search (Priv HS) Dataset This dataset includes search logs from a healthcare
website’s search engine from January 2022 to September 2023. This data offers insights into user
search behavior, including queries and clicked URLs in the healthcare domain.
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To build an effective search intent classifier to direct users to relevant pages and widgets, it was
first necessary to understand users’ diverse goals on the healthcare website. The user goals were
categorized into 14 coarse-grained intents. They broadly fall into three main areas.

1. Self-Service Actions: Queries where users manage their healthcare experience directly through
the portal. This includes “Account management”, “Medical records”, “Cost, coverage &
benefits”, “Appointments”, and “Communication”.

2. Navigation within the Healthcare System: Queries related to navigating the healthcare
system. This includes “Health plans”, “Providers”, “Facilities”, “Health programs & classes”,
“Customer support”, and “Careers”.

3. Health Information: Queries related to health information. This includes “Health wellness
information”, and, “Drug information”.

Queries that did not fall into any of these categories were labeled as “Other”.
URLs were classified into one of the intent labels with a semi-automatic approach. Healthcare

portals often organize content hierarchically, with specific sections for providers, facilities, account
management, etc. This structure was used to define URL patterns for each intent category. For
example, queries consistently clicking URLs containing the term “email” suggest "Communication"
intent. By defining URL patterns for each intent category, we can infer user intent based on clicked
URLs. Each query was then assigned labels based on the most frequently clicked URLs for that
query.

To get higher quality labels, only the queries with at least 2 clicks were included. Even
though our model performs multi-label classification, to minimize noisy labels, we only assign one
label to each query, based on its most frequently clicked URL. The dataset is split into training,
validation, and test sets in a 60:20:20 ratio. The task is to classify the queries into one of the
above predefined coarse-grained intents. This data is not publicly accessible but helps assess the
real-world performance of all the methods. Moreover, since this is private data, we can be certain
that the queries are not present in the training data of the LLMs (in particular proprietary ones like
GPT-4) used for comparison. It gives us reliable estimate of large language models’ performance
on this task.

TripClick Dataset TripClick is a large-scale publicly available dataset of click logs in the health
domain from the Trip Database health web search engine [104]. The TripClick dataset contains
about 5.2 million user interactions collected between 2013 and 2020 and contains the following
information: the queries, the clicked documents, and document attributes. The document attributes
include the document title, the document URL, and the document topic. For this dataset, the
topics of the documents clicked for a query are treated as its intent labels. Only those queries are
incuded that have at least 5 clicks. This dataset has 36 intents, and many queries have more than
one correct label. It is split into training, validation, and test sets in a 60:20:20 ratio.

Note that as Table 4.1, both datasets have around 20% of queries with entities. This is a lower
bound, as the entity linker used to annotate the queries does not have perfect recall. The entity
linker used is ReFinED [119] with Wikidata as the knowledge base. Only the queries where the
mention span is linked to a Wikidata entity with high confidence (0.95 or above) are considered to
have entities. The knowledge injection methods mainly affect these queries. With a more advanced
or domain-specific entity linker, the proportion of queries with entities would be higher.
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Table 4.2: Overall Micro F1 and NDCG on TripClick Dataset. Bold means best method for that
model, * means statistical significance from the baseline.

Model Experiment Micro F1 NDCG

BERT

baseline 0.731 0.848
retrieval aug 0.731 0.849 (+0.1%)
map tuning (Gen) 0.733* (+0.3%) 0.850* (+0.2%)
map tuning (Task) 0.727* (-0.5%) 0.846* (-0.3%)

BERT data aug baseline 0.647* (-11.5%) 0.792* (-6.7%)
data Aug 0.683* (-6.6%) 0.818* (-3.6%)

T5-Base
baseline 0.723 0.844
retrieval aug 0.724 (+0.2%) 0.845 (+0.1%)
map tuning (Task) 0.721* (-0.3%) 0.843* (-0.2%)

T5-3b
baseline 0.665 0.807
retrieval aug 0.667 (+0.3%) 0.809* (+0.2%)
map tuning (Task) 0.665 (-0.1%) 0.807

Llama-3-8b In-Context Learning 0.644 0.775
GPT-4 In-Context Learning 0.677 0.8014

Table 4.3: Overall Micro F1 and NDCG on Priv HS Dataset. Bold means best method for that
model, * means statistical significance from the baseline.

Model Experiment Micro F1 NDCG

BERT

baseline 0.891 0.930
retrieval aug 0.890 (-0.1%) 0.929 (-0.1%)
map tuning (Gen) 0.894 (+0.4%) 0.932 (+0.2%)
map tuning (Task) 0.880* (-1.3%) 0.923* (-0.7%)

T5-Base
baseline 0.893 0.932
retrieval aug 0.895 (+0.1%) 0.933 (+0.1%)
map tuning (Task) 0.891 (-0.2%) 0.931 (-0.1%)

T5-3b
baseline 0.895 0.933
retrieval aug 0.897 (+0.2%) 0.934 (+0.1%)
map tuning (Task) 0.892* (-0.3%) 0.931* (-0.2%)

Llama 3 8b In-Context Learning 0.631 0.797
GPT-4 In-Context Learning 0.714 0.829

4.3.2 Knowledge Base and Representation
I use Wikidata [124] as the external knowledge base in all my experiments.

For my implementation of map tuning, I follow [154] and use Wikidata5M [130] as the knowledge
base. I use TransE [16] embeddings to represent entities. A hashmap is used to look up the
TransE embedding for the detected entities. The Wikidata5M dataset was constructed by mapping
Wikidata entities to their corresponding Wikipedia pages, and dropping entities with missing pages
or with descriptions shorter than 5 words. All relationsfrom Wikidata where both entities belonged
to the filtered set were retrieved. This graph was then used to train the TransE embeddings, that I
use in the experiments.
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4.3.3 Validation Experiments
This section describes the validation experiments that determined the configurations used in the
main experiments.

For Retrieval Augmentation

In the preliminary experiments for choosing the best retrieval augmentatiom method, I also tried a
version without an entity linking step. I instead applied dense retrieval over an index of entity
descriptions. The full query text was used to find the top k most relevant entity descriptions, which
were used to augment the input text.

I experimented with 2 indexes for retrieval:

1. Definitions of concepts/entities from UMLS

2. Descriptions of entities from Wikidata

ColBERT-v2 was used as an efficient dense retrieval model with low latency. I found that retrieval
was low-precision, and adding the top-k matched documents to the model input harmed performance
on the downstream task. Therefore, for the retrieval augmentation experiments, I report results on
the version with an explicit entity linking step to Wikidata, as described in Section 4.2.1.

For Entity Linking

Since our proposed methods aim to leverage entity information to improve intent classification,
correctly identifying and mapping entity mentions in queries to a KB is important. Since our queries
belong to the healthcare domain, we considered using UMLS [14], a domain-specific knowledge base.
It is often used to incorporate domain knowledge for tasks like biomedical question answering [96].

We used a popular and efficient library SciSpacy [91] as the entity linker for the UMLS dataset.
Unfortunately, entity mentions were often missed because of the short length of the text and
vocabulary mismatch between health search queries and UMLS. We got better results in our
validation experiments by using the ReFinED [119] entity linker with Wikidata as the knowledge
base. We report metrics that were calculated using the ReFinED entity linker while using Wikidata
as the KB in the following sections.

For Map Tuning Approach

As described in Section 4.2.1, [154] propose two approaches for map tuning. I compared both
methods for BERT, and the results are included in Tables 4.2 and 4.3. For general map tuning,
the Wiki20 [36] dataset was used for Mention-Masked Language Modeling. For task-specific map
tuning, the mapper was trained on the multi-label classification task of intent prediction.

As table 4.2 shows, general map tuning leads to slightly better performance than the baseline
BERT model. However, task-specific map tuning leads to a decrease in performance. This is
inconsistent with the results in [154]. This might be because Wiki20 is a higher quality dataset
compared to heuristically determined intent labels in our dataset. Another possible reason is that
we do entity annotations using an off-the-shelf entity tagger, while the Wiki20 dataset has precise
entity annotations from Wikipedia text and hyperlinks. Even though it performed better in the
validation experiment, I did not use general map tuning in the main experiments for the remaining
models. This is because the difference in performance is not significant. Moreover Mention-Masked
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Language Modeling requires a text corpus that is dense with entity mentions, which would limit
the applicability of the method to new entities. Therefore, I use task-specific map tuning for BERT
and T5 in the main experiments.

4.3.4 Methods Compared
The main results report classification metrics for two baselines and three methods of domain
adaptation. They are described below.

1. In-Context Learning with Large Language Model: The first baseline is a large language model
prompted (zero-shot and few-shot) to perform the intent classification task. I report results
for Llama3 8b Instruct and GPT-4, which are prompted similarly. This demonstrates the
performance of open source and proprietary large language models on the task.

2. Medium-sized models fine-tuned on intent prediction data. The second baseline is BERT,
T5-Base, and T5-3b models finetuned on the intent classification task. This approach has
been shown to be effective for the related task of joint intent prediction and slot filling in the
standard ATIS and SNIPS datasets [23].

3. Knowledge Injection: To answer the first two research questions, we compare two methods of
knowledge injection on 3 models of different sizes: BERT, T5-Base, and T5-3b. For all the
models, the performance of both types of knowledge injection is compared with that of the
base model fine-tuned on the intent classification task.

(a) Knowledge Adapter: As discussed in 4.2.1, here, an adapter is used to incorporate entity
information into the model input.

(b) Retrieval Augmentation: Here, the model input is augmented with text about detected
entities, as described in Subsection 4.2.1.

4. Data Augmentation: To answer the third research question, GPT-4 is used to generate
synthetic training data for the intent classification task, as described in Section 4.2.2. To
investigate whether entity information can be used to generate more training data for
frequently misclassified classes, I compare two methods of data augmentation.

(a) Entity-based Data Augmentation: The LLM is prompted with a template that includes
the entity type and the intent label. The LLM generates synthetic queries that are then
used to augment the training data.

(b) Lexical Data Augmentation: In this baseline approach, LLM is prompted to generate
queries that are likely to retrieve the documents on a given topic. The topic is provided
in the prompt. The LLM generates synthetic queries that are then used to augment the
training data.

4.3.5 Evaluation Metrics
Two evaluation metrics, Micro F1 and NDCG, measure the model’s ability to classify and rank
classes correctly.
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4.4 Results

4.4.1 Main Results
Tables 4.2 and 4.3 show the overall results for both datasets. Retrieval Augmentation improves
performance in some cases and almost never hurts, which proves that including information
about entities has an advantage. However, map tuning often decreases the metrics compared to
the baseline. Task-specific map-tuning, in particular, never leads to an improvement for BERT.
Thus, neither map tuning nor retrieval augmentation consistently improves intent classification
performance on the overall dataset.

The results also show that increasing the size of the model does not necessarily lead to better
classification performance.

General vs Task-Specific Map Tuning

Tables 4.2 and 4.3 show that general map tuning leads to a slight improvement in performance
for BERT on the TripClick dataset. However, task-specific map tuning leads to a decrease in
performance for BERT on both datasets. This is discussed in more detail in Section 4.3.3.

Results on Queries with Entities

Table 4.4 reports the results on only those queries where at least one entity is detected. Here,
retrieval augmentation significantly improves classification on queries with entity mentions. Map
Tuning actually decreases metrics on the queries with entities for T5. This might be because the
mapper for T5 is fine-tuned on the intent classification task using click datasets, which does not
impart as much entity knowledge to the mapper as “general map tuning”. Note that this means
that if knowledge injection models are only used on queries with entities, they can significantly
improve performance over the baseline.

4.4.2 Data Augmentation Results
The preliminary experiments showed that augmenting data for all classes leads to worse intent
classification performance. This shows that LLMs are not able to produce realistic web search
queries using the baseline or entity-based prompting approach. I report results for the experiment
in which the three classes with the lowest F1 scores (and frequency greater than a threshold)
were augmented to further examine the effects of data augmentation in Tables 4.5 and 4.6. (The
class-wise results showing how these classes were chosen can be found in the appendix. §B) The
entity-based data augmentation does lead to bigger improvements in metrics on augmented classes
compared to the non-entity-based augmentation method, showing that entity information does
improve the quality of the generated queries.

4.4.3 In-Context Learning Results
I experiment with different numbers of few-shot examples for the in-context learning approach
with Llama 3 8b. I find that increasing the number of examples stops helping beyond a point.
In [2], the authors show that many-shot prompting generally leads to better results, which is in
contrast to the results. We experimented with different seeds and the results consistently got worse
when examples were increased beyond a certain point. We hypothesize that this is because we
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Table 4.4: Micro F1 and NDCG for just the queries where at least one entity was detected. Bold
means best method for that model, * means statistical significance from the baseline

Dataset Model Experiment Micro F1 NDCG

TripClick

BERT

baseline 0.687 0.823
retrieval aug 0.687 0.824 (+0.1%)
map tuning (Task) 0.662* (-3.6%) 0.808* (-1.9%)

T5-Base
baseline 0.659 0.805
retrieval aug 0.678* (+2.8%) 0.819* (+1.6%)
map tuning (Task) 0.644* (-2.4%) 0.796* (-1.2%)

T5-3b
baseline 0.588 0.760
retrieval aug 0.614* (+4.5%) 0.779* (+2.5%)
map tuning (Task) 0.585 (-0.5%) 0.759 (-0.2%)

Llama3 8b In-Context Learning 0.513 0.734
GPT-4 In-Context Learning 0.559 0.779

Priv HS

BERT
baseline 0.852 0.905
retrieval aug 0.881* (+3.4%) 0.924* (+2.1%)
map tuning (Task) 0.789* (-7.4%) 0.867* (-4.2%)

T5-Base
baseline 0.857 0.909
retrieval aug 0.877 (+2.3%) 0.921 (+1.4%)
map tuning (Task) 0.833 (-2.8%) 0.895 (-1.6%)

T5-3b
baseline 0.872 0.919
retrieval aug 0.882 (+1.1%) 0.925 (+0.6%)
map tuning (Task) 0.837* (-4.0%) 0.897* (-2.4%)

Llama3 8b In-Context Learning 0.683 0.797
GPT-4 In-Context Learning 0.767 0.860

Table 4.5: Comparison of Baseline and Lexical Data Augmentation

Experiment F1 NDCG

Baseline 0.2172 0.804
With Data Aug 0.1882 (-13.38%) 0.791 (-1.61%)

Table 4.6: Comparison of Baseline and Entity-Based Data Augmentation

Experiment F1 NDCG

Baseline 0.2172 0.804
With Data Aug 0.2202 (+1.34%) 0.8249 (+2.59%)

use a weak supervision dataset. A larger set of few-shot examples would be more likely to include
queries that are not representative of the class in question.
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Table 4.7: Comparison of Different Number of Shots for In-Context Learning for TripClick Data

Examples per class F1 NDCG

0 0.6116 0.7508
1 0.6447 0.7757
3 0.6395 0.7744
5 0.6311 0.7701
10 0.3957 0.5451
15 0.5064 0.6199

Table 4.8: Comparison of Different Numbers of Shots for In-Context Learning for Private Health
Search Data

Examples per class F1 NDCG

0 0.4578 0.6564
5 0.6314 0.7971
10 0.5432 0.7276
15 0.6326 0.7882

4.5 Discussion

4.5.1 Ground Truth Data
Collecting ground truth labels for intent classification is expensive and time-consuming. It is
especially difficult even for humans without knowing the original searcher’s context [109]. Both
datasets are created from real-world search engine logs, and the labels are obtained based on the
clicked documents and URLs. Heuristics are used to minimize the noise in the labels. However,
the labels are not perfect. That is because, first, if none of the presented documents are relevant,
frequently clicked documents will also be irrelevant for that query. Second, some clicked documents
are impossible to predict as relevant based just on the query text. Thus, the evaluation metrics on
test sets from these datasets are not perfect indicators of the model’s performance. However, the
relative performance of different methods on the same dataset is still a reasonable indicator of the
effectiveness of the methods.

As proof of the quality of the labels, I calculated Cohen’s Kappa for the intent labels assigned
by two human annotators and the automatic method described in Section 4.3.1. The results are
shown in Table 4.9. The annotators were asked to label 200 queries from the Private Health Search
dataset. The instructions and examples provided to the annotators were the same as those used
as input for in-context learning (Section 4.2.1). The values are in the range of 0.4-0.6, which is
considered moderate agreement [59]. This shows that the automatic method is able to assign labels
that are as consistent with the human annotators as the human annotators are with each other.

Annotator 1 &
Annotator 2

Annotator 1 &
Automatic

Annotator 2 &
Automatic

Cohen’s Kappa 0.516 0.531 0.438

Table 4.9: Cohen’s Kappa values for different pairs of annotations.
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4.5.2 Entity Linking
Many existing methods rely on entity annotations to get the appropriate knowledge to improve
the performance of LMs on downstream tasks. However, entity linking for query text is a hard
problem because of their usually short length and ungrammatical structure. This means I have to
work with noisy entity information, similar to the conversational setting in Chapter 3. Improved
entity linking is expected to improve the knowledge injection methods’ effectiveness. The current
results represent a lower bound on the performance of these methods.

4.6 Limitations and Future Work
The experiments have a few key limitations. I do not perform entity linking on a large-scale
knowledge base (like full Wikipedia) or one that includes domain-specific tail entities (like UMLS).
I focused on head entities because those were more reliably linked in short input texts in the
validation experiments.

Second, I do not fine-tune models larger than T5-3b. The results do not show a direct correlation
between model size and domain adaptation method, but that might change if I experimented with
more models of different sizes.

Third, I do not use the best possible entity linking method. Since this work was done in a
low-resource setting where inference time had to be minimized, I chose a lightweight entity linker
with sufficient coverage of entities and put a high similarity threshold to avoid false matches.
However, the effect of the quality of entity linkers on the results is an important direction to
explore.

4.7 Conclusion
Different ways of incorporating entity knowledge as context into fine-tuned LMs are studied. The
results show that input augmentation with entity descriptions is the most effective approach for
intent prediction classification models trained using click data and imprecise entity annotations.
The results also show that increasing the size of the model does not necessarily lead to better
classification performance. The experiments also show that results peak at a small number of
examples per class for in-context learning. Since weak supervision datasets are used, a larger set of
few-shot examples is likelier to include unrepresentative samples.

The findings of these experiments can potentially lead to better responses and user experience for
health-related search. Moreover, the methods for incorporating entity information and generating
synthetic training data can also be used for web search in other domains.

4.8 Future Work
The first important direction of future work would be to try other entity linking methods. That
might significantly improve the results of the knowledge injection methods, especially map tuning.
Another interesting direction would be to combine session context with entity information. Finally,
investigating the effect of knowledge injection on larger models than T5-3b could be another
interesting direction of future work.
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5 User Modeling
In this chapter, I address RQ2: "Can we anticipate the user’s next topic of interest by constructing

a user profile using conversation context?" Section 5.1 introduces the topic recommendation problem
and explores several user representation methods. This work was originally published in the
proceedings of CHIIR 2020 as the paper “Would you Like to Talk about Sports Now? Towards
Contextual Topic Suggestion for Open-Domain Conversational Agents.” My key contributions to
this work include:

1. Implementation of code to extract collaborative filtering features from the conversation log
data for the implementation of CTS-CF and CTS-Seq-CF models.

2. Implementation of the Collaborative Filtering (CF) baseline model for topic suggestion.
3. Analyzing overall and per-topic performance of all the models compared.

5.1 User Modeling for Topic Recommendation in Open-
Domain Conversational System

To hold a true conversation, an intelligent agent should be able to occasionally take initiative and
recommend the next natural conversation topic. A topic suggested by the agent should be relevant
to the person, appropriate for the conversation context, and the agent should have something
interesting to say about it. Thus, a scripted, or one-size-fits-all, popularity-based topic suggestion
is doomed to fail.

Therefore, different methods for personalized, contextual topic suggestion are explored for
open-domain conversations. Conversational Topic Suggestion problem (CTS) is formalized to more
clearly identify the assumptions and requirements. Three possible approaches to solve this problem
are also explored, which vary in their representation of the user: (1) model-based sequential
topic suggestion to capture the conversation context (CTS-Seq), (2) Collaborative Filtering-based
suggestion to capture previous successful conversations from similar users (CTS-CF), and (3) a
hybrid approach combining both conversation context and collaborative filtering. To evaluate
the effectiveness of these methods, real conversations collected as part of the Amazon Alexa
Prize 2018 Conversational AI challenge are used. The results indicate that the user preference
modeling methods are effective: the CTS-Seq model suggests topics with 23% higher accuracy
than the baseline. CTS-Seq method is found to outperform CTS-CF for this task. However
incorporating collaborative filtering signals into a hybrid CTS-Seq-CF model further improves
recommendation accuracy by 12%. Together, the proposed models, experiments, and analysis
show that conversational context can be leveraged to learn user preferences to enable better topic
suggestion.

5.1.1 Introduction
For an open-domain conversational agent to be coherent and engaging, it must be able to drive the
conversation to the next topic, and in a way that does not appear scripted. This task is complicated.
As for many realistic and complex tasks, extensive knowledge engineering is needed for in-depth
domain-specific capabilities, usually handled by specialized components. For a user to remain
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engaged, the overall conversational AI system should be able to recommend the next conversation
topic (or component) in a natural and coherent fashion. Appropriate topic recommendations are
also critical to expose the capabilities of the system to the user, who otherwise may not know that
a conversational agent is an expert in particular topics like sports, cars, or video games.

Yet, the right topic to recommend depends on both prior user interests and the conversation
context. A topic could be aligned with the user’s interest and still not be appropriate to recommend
if it does not fit the context. This makes the problem different from non-conversational topic
and content recommendation, where extensive work has been done using content-based [75] and
collaborative filtering methods [9, 56, 76]. It is unclear just how to adapt recommender system
techniques to the conversational setting. In open-domain conversational agents, the recommended
items might be agent’s sub-components with dynamically changing content and interactions
underneath, specific items, general suggestions, or even clarification questions. In this work, model-
based and collaborative filtering recommendation algorithms are extended for topic and content
recommendation in the conversational setting. We experiment with different ways to represent user
preferences for topic suggestion in the conversational setting. Conversational systems often operate
in the cold start setting. This is especially the case in my dataset, where most conversations
are with new users without any conversation history. Content-based recommendations have been
shown to perform better that collaborative filtering in this setting [76,126]. Therefore, the primary
approach for the conversational topic recommendation is content-based. However, we find that
incorporating collaborative-filtering features when they are available improves performance. Other
approaches have explored online experimentation (e.g., [66]), and using social media or other
metadata (e.g., [22, 97] for recommendation. Unfortunately, these signals are not easily available
in the conversational setting. All the attributes of users and their preferences need to be inferred
from their interaction with the conversational agent.

The topic suggestion task is different from next utterance suggestion. For example, Yan et al.
[145] describe a next-utterance suggestion approach for retrieving utterances from a conversational
dataset to use as suggestions, along with the response. The proposed model learns to give
suggestions related to the response, to continue the conversation on the same topic. In practice, due
to the vast number of possible utterances coming into a social bot, many conversational systems
rely on multiple response modules where each response module would be responsible for a particular
domain or set of domains [51]. Fine-grained utterance suggestions would be applicable to the
implementation of each domain-specific module. However, when the user is passive or gets fatigued
with a particular topic, the system needs to switch to a different component with domain-specific
capabilities to keep the user engaged. In this paper, we attempt to formalize the problem of
suggesting the best next interesting topic.

The contributions are threefold: (1) Formalizing the conversational topic suggestion problem
for open-domain conversational agents; (2) Development of a sequential contextual topic suggestion
model for this task; (3) Empirical exploration of the effectiveness of model-based, collaborative
filtering-based, and hybrid approaches to topic suggestions in the conversational setting. The
experiments indicate the value of inferring user preferences from the conversational interaction for
contextual and personalized topic suggestion. They also hightlight the strengths and limitations of
different user preference models for this task.

5.1.2 Conversational Topic Suggestion (CTS): Problem Definition
I now define the conversational topic suggestion problem and introduce the proposed solutions in
the following section.
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Turn User Utterance System Response Topic PS PST Labels
1 Alexa, let’s chat. Hi! What would you like to talk about? Music None None chat
2 Tell me recent songs. Circles by Post Malone, Talk by Khalid, and Bad Guy

by Billy Eilish are currently popular. Would you like to
talk about Billy?

Music Opening Music Music_accept

3 No I do not. Alright. How about some info on Khalid? Music Music Music follow-up
4 Oh, no. Ok, do you want to hear about some places to travel? Phatic Music Music chat
5 I love traveling. Cool! Which country do you want to visit? Travel Music Travel Travel_accept
6 Somewhere in Australia. Australia is beautiful, especially the beaches. Do you

like beaches?
Travel Travel Travel follow-up

7 Yes. I recommend Bondi Beach, it is amazing. Wanna here
more about it?

Travel Travel Travel follow-up

8 No thanks, let’s talk about
something else.

Sure, would you like to discuss the news? Phatic Travel Travel chat

9 No, news is boring. Sure, Do you want to talk about recent movies? Phatic Phatic News News_reject
10 Okay, that sounds interesting. Cool, which genre do you prefer, comedy or drama? Movies Phatic News Movie_accept
11 I like both. How about The Favourite by Yorgos Lanthimos? Movies Movies Movies follow-up
12 I have to go Alexa, bye! Nice talking to you, good bye! Phatic Movies Movies chat

Table 5.1: A Conversation example, where PS and PST refer to Previous State and Previous
Suggested Topic, respectively.

Features Description Example Values
Topic and Behavior
F1 – F8 One-hot encoding for user response for each topic on previous turn,

where 1=Accepted, 0=not suggested, and -1=rejected [+1,0,-1,0,0,0,0,0]
F9 – F10 - Two previous topics Two previous components that user engaged with Movies, Music
F11 – Previous accepted topic Previous suggestion that was accepted by the user Music
F12 – Previous rejected topic Previous topic that was rejected by users Pets_Animals
User Profile
F13 – Name Does user give his/her name True/False
F14 – Gender What is the user’s gender M/F
F15 – Time Time of the day during the conversation Morning/Day/Evening/Night

Table 5.2: Dialogue manager state information features used for CTS recommendation. The values
are computed up to turn i in the conversation so far.

Consider the example conversation in Table 5.1. While this is not a real user1, the conversation
is typical of those observed with our system during the Alexa Prize challenge. In a regular Alexa
conversation, a user may have an initial interest or information need (e.g., “recent songs”) which is
handled by a particular system component (in this case, the Music component); however, the user
might quickly lose interest, and the system (conversational agent) must take the initiative to find
the next topic of conversation that this user is likely to be interested in, for example, Travel. In
the example conversation, the user accepts the suggestion to talk about the topic Travel, and a
different system component starts interacting with the user to drive the conversation. The next
suggested topic News, however, is not accepted by the user, and the system has to make another
recommendation, which would degrade the user experience.

Conversational Topic Suggestion (CTS) is defined as follows:
Note that this definition focuses on the acceptance of the topic suggestion, and does not

explicitly consider the user’s future satisfaction or engagement with the selected topic. This is
because the ultimate user satisfaction depends also on the topic-specific component’s ability to
engage the user. I also would like to emphasize that CTS is formulated based only on short-term
history (conversation or session-level), and not on long-term user interests. In many practical
situations, a conversational agent must make coherent topic suggestions for new (cold-start) or
inactive users. We focus on topic recommendation in this setting. The models, described next,
attempt to capture both the conversation context and the internal system information for this task.

1Exact user conversations cannot be reproduced due to Alexa Prize terms.



62

Setting: Open-Domain mixed initiative conversation with a
multi-component conversational agent.

Given: A conversation C, consisting of a sequence of user
utterances U0..i, a sequence of system states S0..i,
and a set of possible conversation topics t ∈ T ,
(e.g., system components or mini-skills).

Problem: At conversation turn i, select a topic ti to suggest
for the current user u, to maximize the likelihood
of acceptance (i.e., the probability that user u
would like to talk about the topic ti next).

Figure 5.1: Definition 1: Conversational Topic Suggestion (CTS) Problem Statement.

5.1.3 CTS-Seq Approach
For relevant and coherent topic suggestions, it is necessary to consider the conversation context,
e.g., the sequence of previous user utterances and system states. For example, if a user is talking
about Movies, it might be more natural to suggest Music as the next topic, as opposed to Cars.
Also, if a user declined to talk about Movies in the past, the system should not suggest this topic
or a related topic like Television unless explicitly requested. For this reason, a sequence modeling
approach is proposed to be used for conversational topic suggestion. I will further show how this
approach can be combined with more traditional collaborative filtering-based methods.

Before the specific sequence models are described, we first discuss the conversation features,
used for both sequence modeling and collaborative filtering-based methods.

System State and User Profile Features

To represent the conversation context, two different groups of features are extracted for each
conversation turn, as summarized in Table 5.2. The first group is Topic and Behavior features,
which represents the user’s previous responses, i.e., the accepted and rejected topic suggestions.
These features have the values of 1 for accepted topics, −1 for rejected topics, and 0 for the topics
that have not been proposed yet. This group of features is designed to prioritize the topics that
have been accepted 1 or unexplored 0. Topic and Behavior features also model topic classification
features (The topic of the utterance as inferred by the topic classifier. We use the classifier described
in Section 3.1) and the current conversation context and system state. These features could indicate
the historical probability that the current state is a potential topic-switching point, or whether it
should be a follow-up for the previous topic. The second group of features is User Profile features.
They contain the inferred gender of the user [-1,1] based on the provided name, and whether they
gave their name at the start of the conversation or not (a weak indicator of the user’s openness
to sharing information with the bot). Other features like age and location, which are often used
for user profiling, are usually not available in the conversational setting. Table 5.2 shows different
categories of features that are used in all the CTS-CRF, CTS-CNN, and CTS-RNN models. The
values of these feature groups are computed for each conversation turn and stored in separate
vectors, which are then concatenated to produce the full conversational state representation, fv,
specifically:
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fv = [F1; F2; ...; F15] (5.1)

The user is modeled as a sequence of turns, where each turn is a vector encoding topic and
behavior and user profile features. I emphasize that these features will be used for all sequence
and CF-based model variations, to explore the trade-offs in modeling, while keeping the actual
features constant.

5.1.4 CTS-Seq: Models
In this section, I list three different implementations of the proposed CTS-Seq method. First,
Conditional Random Fields (CRF) implementation is described. Then, I describe the CNN-based
followed by the RNN-based implementation.

CRF Implementation of CTS-Seq: CTS-CRF

As the first and most straightforward implementation of CTS, the well-known and robust CRF
model is used. CRF is an undirected graphical model, which estimates the conditional probability
of a sequence of labels (tags) with respect to the observed features, and requires relatively small
amounts of training data [58,148].

Each conversation is represented as a sequence of turns, with observable features extracted
from each utterance and system state. Recall that a conversation j is represented as a sequence of
turns Convj = [utt1, ..., utti, ..., uttn]. Then, for each sequence of utterances, a sequence of labels
(topics) [t1, ..., ti, ..., tn] is generated. The intent classifier described in Section 3.1 is used to assign
these labels. The recommended topic t is modeled as the CRF hidden state, and X is the observed
variable represented by the features described above. Thus, the CTS-CRF model aims to predict
the most likely next topic ti+1 after observing the first i conversation turns and system states.

More formally, Eq. 5.2 computes the probability of a topic t given the sequence of previous
turns and topic decisions, where Z(X) indicates the normalization factor and θ and η are weights
that can be tuned using maximum likelihood estimation. Moreover, f(ti; Xt) and g(ti; ti−1; Xt)
jointly represent the next topic to predict, the context (previous topic) and the features for the
current turn x.

p(t|x) ∝ 1
Z(X)

m∏
i=1

exp
 m∑

j=1
θjfj(ti; Xt) +

m∑
k=1

ηkgk(ti; ti−1; Xt)
 (5.2)

The CRF-based implementation of CTS, CTS-CRF, is illustrated in Figure 5.2.

Deep-learning based implementation of CTS-Seq: CTS-CNN and CTS-RNN

Deep learning approaches such as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have shown promising results for different natural language processing tasks,
from text classification to dialogue act classification (e.g., [13, 21, 29, 48, 54, 61, 151]). Lee et
al. [61] proposed a pipeline of deep learning methods to model a sequence of short texts. Inspired
by [61], we propose two deep learning models for implementing CTS, namely CTS-CNN and
CTS-RNN. CTS-CNN and CTS-RNN respectively use a CNN and a BiLSTM to incorporate
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Figure 5.2: CTS-CRF topic suggestion model for conversation turn i. Feature details are reported
in Table 5.2 and Section 5.1.3. ASR stands for authomatic speech recognition.

textual and contextual evidence gathered so far from the conversation to recommend (predict) the
next conversation topic.

CTS-CNN Implementation.

Here, I walk through different steps in the CTS-CNN model. CTS-CNN-CF network takes word
tokens, from m consecutive utterances. utti stands for the words in the i-th utterance, where wij

stands for j-th word in i-th utterance.

utti−m = [w(i−m)1; w(i−m)2; w(i−m)3 ... w(i−m)n] (5.3)

....

utti−1 = [w(i−1)1; w(i−1)2; w(i−1)3 ... w(i−1)n] (5.4)
utti = [wi1; wi2; wi3 ... win] (5.5)

A function fc that takes an utterance as input and outputs the learned utterance representation
ycnn is defined:

y(cnni) = fc(utti) (5.6)

fc is a 3-layered CNN with max pooling, which is applied in parallel on all the utterances in a
window of size m. The first layer is a word embedding layer with pre-initialized weights from
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Figure 5.3: CTS-RNN-CF or CTS-CNN-CF model architecture, where Topic and Behavior features
include the list of all previously suggested, accepted and rejected topics from the beginning of the
conversation. User Profile features contain the list of Name, predicted Gender, and time of the day.
CF features also include the suggested topic distribution extracted from the collaborative filtering
model. Feature details are reported in Table 5.2. ASR stands for automatic speech recognition.

Word2Vec2 vectors of size 300. The weights on the embedding layer are tuned during training
using the cross-entropy loss function.

CTS-RNN Implementation.

CTS-RNN uses a BiLSTM network followed by an attention layer to model the utterance repre-
sentation. In CTS-RNN, a function fr is defined that takes an utterance as input and outputs a
hidden representation hi for each utterance:

hi = fr(utti) (5.7)

where fr is a BiLSTM model with 256 hidden layers. It is also applied in parallel on a window
of size m in the same way as for fc. Then, the hidden representation for the i-th utterance is passed
to an attention layer to generate the final representation yrnni

. Given the hidden representations
of each timestamp of j in LSTMi is hij, dot product similarity score sij is computed based on a
shared trainable matrix Mi, context vector ci and a bias term bij. Mi, ci and bij are initialized
randomly and jointly learned during training. Softmax activation is applied on similarity scores
to obtain attention weights αij. Lastly, using learned αij, a weighted sum on BiLSTM hidden
representations is applied to obtain the output yrnni

for the i-th utterance as follows:

sij = tanh
(
MT

i hij + bij

)
(5.8)

2https: // github. com/ mmihaltz/ word2vec-GoogleNews-vectors

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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αij =
exp(sT

ijci)∑n
j=1 exp(sT

ijci)
→ yrnni

=
n∑

j=1
αjhij (5.9)

Finally yrnni
is computed for every utterance located in the window.

Merging and Feed-Forward Layers.

This step is similar for both CTS-CNN and CTS-RNN models, where the output of the textual
representation of each utterance is merged with Topic and Behavior, and User Profile features.
Here describe all the details of these layers for the CTS-CNN model are described.

To create the final representation of a wi in a conversation, ycnni
is extracted from all the

utterances located in the window in parallel. Then, the window is fed to an LSTM network with
100 hidden states. An LSTM is deployed instead of an Bi-LSTM since in real conversation, there
is not a backward signal. Finally, the output of the last layer is

wi = [utti−m; ...; utti−m+j; ...; utti] (5.10)
repwi

= [ycnni−m
; ...; ycnni−m+j

; ...; ycnni
] (5.11)

output = LSTM
(

repwi

)
(5.12)

Where, in this equation j < m < i. The final output is fed to a feed forward layer of size 256
with a dropout rate of 0.5. A softmax function f(s) is applied to generate a probability distribution
over C possible topics. The network was trained with an Adam optimizer with a learning rate
of 0.001 using the softmax cross-entropy loss function CE. C is the number of classes, ti is the
one-hot representation of the target label, and si are the scores inferred by the model for the i-th
class:

f(si) = exp(si)∑C
i=j exp(sj)

→ CE = −
C∑

i=1
ti log (f(output))) (5.13)

I summarize the parameters of the (CNN-) and (RNN-) based models in Table 5.3. The
parameters were not tuned and were chosen based on my experience and previous literature.

Hybrid Sequential and Collaborative Filtering: CTS-Seq-CF

The new model, CTS-Seq-CF, is not introduced, which augments the sequence modeling approach
described above, with additional signals extracted from other users’ experiences using collaborative
filtering. The proposed models, CTS-CNN-CF and CTS-RNN-CF, incorporate the probability of
acceptance of each topic based on similar users’ preferences (I describe the collaborative filtering
methods used in Section 5.1.5.) as features into the CTS-CNN and CTS-RNN models, respectively.
One of the resulting hybrid models, CTS-RNN-CF, is illustrated in Figure 5.3. CTS-CNN-CF
follows the same pattern as CTS-RNN-CF, with the semantic utterance representation being
generated using a CNN model. They aggregate contextual evidence from the preceding states by
considering a window of size m for each turn. Then, all the system state information for the turns
in that window is extracted, which includes all the features in Table 5.2, as well as suggested topic
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Table 5.3: Detailed configuration parameters of the CTS-CNN and CTS-RNN implementations.

Parameters Values
Pooling type max
L2-regularization 0.001
Word embedding length 300
Momentum 0.997
Epsilon 1e-5
Learning rate 0.001
Dropout 0.5
Batch Size 64
Number of layers (CNN) 3
Number of filters(CNN) 128
Filter sizes (CNN) 1,2,3
Hidden state (RNN) 100
Feed forward layer (RNN) 256

distribution predicted by the collaborative filtering method described in Section 5.1.5. Finally,
all the utterance vector embeddings within the window are concatenated with them to form the
window vector embedding. Here, I walk through the details for CTS-RNN-CF.

yrnni
is first concatenated with fvi to obtain the enriched representation reprnni+fvi

of an
utterance. Then, they are concatenated with the CF features, which were extracted by collaborative
filtering module to generate the final utterance representation reputti

.

rep(cnni+fvi) = [ycnni
; fvi] (5.14)

reputti
= [rep(cnni+fvi); CFi] (5.15)

To create the final representation of a wi in a conversation, reputti
is extracted from all the

utterances located in the window in parallel. Finally, all the outputs are concatenated together to
form the final vector.

wi = [utti−m; ...; utti−m+j; ...; utti] (5.16)
repwi

= [reputti−m
; ...; reputti−m+j

; ...; reputti
] (5.17)

output = LSTM (repwi
) (5.18)

Then, repwi
is fed to an LSTM network with 100 hidden states, later the output of the last

layer going through a feed-forward layer followed by a softmax layer as described in Section 5.1.4.

5.1.5 Experimental Setup
I now describe the baselines, data, metrics, and experimental procedures used to evaluate the
proposed conversational topic suggestion models.
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Baseline 1: Popularity Method

The Popularity method is a heuristic method, which suggests the next conversation topic based
on overall frequency (popularity) in previous conversation data and previous user ratings, and
the approximate time of day. The order of suggestion is Movies, followed by Music, followed by
Video Games or Travel or Animals depending on the time of day to accommodate the expected
differences in user demographics. This heuristic popularity baseline was deployed during the Alexa
Prize competition [4].

Baseline 2: Collaborative Filtering (CF)

The classical approach of CF, originally introduced for item recommendation, is adapted to the
conversational setting using the K-Nearest Neighbors (KNN) model. Each user is represented by
the following features:

• User and time features: F13, F14, F15 from Table 5.2.

• Suggestion acceptance and rejection rate: The fraction of topic suggestions accepted by the
user and the fraction rejected by the user.

• Topical features: F1 - F8 from Table 5.2.

For each conversation turn, the feature vector described above is calculated based on the
conversation up to this turn. For example, if a user has accepted a suggestion to talk about Movies
and rejected a suggestion for Music, the accept and reject rates would be 0.5. The topical feature
vector would contain 1 for Movies and −1 for Music, and then top k users with most similar
conversation histories would be retrieved. More formally,

Ua = [F1(a) : F8(a), F13(a) : F15(a), raccept(a), rreject(a)] (5.19)

sim(Ua, Ub) = Ua · Ub

||Ua|| × ||Ub||
(5.20)

pred(Ua, T ) =
∑

Ub∈N sim(Ua, Ub) × s(Ub,T )∑
Ub∈N sim(Ua, Ub)

(5.21)

where Ua is the user who the topic scores are calculated for, Ub is one of the neighbors from
set N , which is the set of 33 nearest neighbors of Ua, raccept(a) is the suggestion acceptance rate of
user Ua, rreject(a) is the suggestion rejection rate of user Ua, s(Ub,T ) indicates the score of topic T
for user Ub, and pred(Ua, T ) represents the predicted score of a topic T for the active user.

For final classification, the predicted topic scores based on 33 nearest neighbors’ preferences are
fed to a feed-forward layer followed by a softmax layer, as described in Section 5.1.4.

Baseline 3: Contextual Collaborative Filtering: Contextual-CF

Contextual-CF utilizes the collaborative filtering signals extracted from the preceding utterances.
Then, a fully connected neural network followed by a softmax is applied to combine the features
and provide the final prediction result. To this end, the CF model described in Section 5.1.5 is
applied to extract the suggested topics for all the utterances located in a window of size m. To
represent the CF features, we considered a one-hot-vector, where the length of the one-hot-vector is
equal to the number of available topics that are supported by the conversational agent. The value
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corresponding to the topic selected by the CF model is assigned as 1. Then, the one-hot-vectors
are concatenated together to create the final vector for the corresponding window. As a result,
a vector of size [window_size ∗ len(one − hot − vector)] is generated. Eq. 5.23 represents the
feature vector of wi.

wi = [utti−m; ...; utti−m+j; ...; utti] (5.22)

CCFwi
= [CFutti−m

; ...; CFutti−m+j
; ...; CFutti

] (5.23)

Where CCFwi
indicates the contextual CF features extracted from i-th window and CFutti

represents the CF features extracted from the i-th utterance. For final classification, CCFwi
is fed

to a feed forward layer followed by a softmax layer as described in Section 5.1.4.

Methods Compared

For convenience, the methods compared in the next section are summarized for reporting the
experimental results.

Popularity:A heuristic method, described in Section 5.1.5, using topic frequency in previous
conversations.

CF: The collaborative filtering approach, described in Section 5.1.5, using the conversation
state (accepted/rejected topic suggestions) as the user profile.

Contextual-CF: The contextual collaborative filtering approach, described in Section 5.1.5,
incorporating CF signals from preceding utterances into CF features from the current utterance
using a fully connected neural network.

CTS-CRF: The CRF implementation of the CTS approach, described in Section 5.1.4, using
only the conversational context (model-based recommendation).

CTS-CNN: The CNN implementation of the CTS approach, presented in Section 5.1.4, using
only the conversational context features (model-based recommendation).

CTS-RNN: The RNN implementation of the CTS approach, presented in Section 5.1.4, using
only the conversational context features (model-based recommendation).

CTS-CRF-CF: The hybrid model-based and collaborative-filtering based approach, enhancing
the CTS-CRF model with collaborative filtering features (Section 5.1.4).

CTS-CNN-CF: The hybrid model-based and collaborative-filtering based approach, enhancing
the CTS-CNN model with collaborative filtering features (Section 5.1.4).

CTS-RNN-CF: The hybrid model-based and collaborative-filtering based approach, enhancing
the CTS-RNN model with collaborative filtering features (Section 5.1.4).

Dataset: Amazon Alexa Prize 2018

The conversation data were collected by participating in Amazon Alexa Prize 2018 competition [103].
The conversation dataset consisted of 14,707 open-ended conversations longer than four turns
(because the first 2-3 turns usually consisted of the required introduction and exchanges of greetings).
These conversations were collected from August 1, 2018, to August 15, 2018. The first ten days
of conversations were used for training and the rest for testing. The relative topic popularity is
shown in Table 5.4. The conversations have an average length of 11.5 turns, where 91% of the
conversations contain at least one suggestion, and 60% have at least two explicit topic suggestions.
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Table 5.4: Topics distribution in Alexa dataset.

Movie 20.1% Music 14.4% News 18.4%
Pets_Animal 10% Sci_Tech 6% Sports 6%
Travel 9.1% Games 6% Celebrities 2.5%
Literature 1.5% Food_Drinks 1.5% Other 1.5%
Weather 1.5% Fashion 1% Fitness 1%
Entertainment and Cars 1%

Table 5.5: Accuracy of the topic suggestion methods compared: Popularity, CF, and Contextual-CF
(C-CF) methods, vs. CTS-CRF and CTS-CNN (model-based), vs. CTS-CRF-CF and CTS-CNN-
CF (hybrid models). All the results are reported for a window of size five for contextual models.
All the improvements are reported based on the strongest baseline, Contextual-CF, where they are
statistically significant using a one-tailed Student’s t-test with p-value < 0.05.

Method Pop. CF C-CF CTS-CRF CTS-CNN CTS-RNN CTS-CRF-CF CTS-CNN-CF CTS-RNN-CF

Movies 0.594 0.804 0.827 0.909 0.785 0.794 0.910 0.906 0.909
Music 0.533 0.468 0.807 0.802 0.724 0.741 0.828 0.800 0.813
Travel 0.445 0.863 0.853 0.720 0.801 0.824 0.833 0.875 0.902
Animals 0.425 0.276 0.482 0.780 0.603 0.621 0.812 0.702 0.681
News 0.414 0.164 0.466 0.741 0.518 0.555 0.742 0.543 0.584
Sports 0.232 0.000 0.316 0.621 0.523 0.544 0.663 0.645 0.608
Ent + Cars 0.307 0.752 0.949 0.651 0.831 0.856 0.855 0.881 0.928
Games 0.321 0.010 0.405 0.748 0.572 0.605 0.751 0.689 0.659
Micro-Avg Acc 0.450 0.519 0.640 0.793(+23%) 0.669(+5%) 0.693(+8%) 0.819(+27%) 0.754(+18%) 0.765(+20%)

Macro-Avg Acc 0.408 0.482 0.639 0.746 (+16%) 0.668(+4%) 0.692(+8%) 0.799(+25%) 0.755(+18%) 0.760(+19%)

Evaluation Metrics

To evaluate the approach, the topic suggestion models are computed on off-line data for each of
the methods compared. Following the established recommender system research, the following
metrics were used:

• Micro-averaged Accuracy: The accuracy is averaged across each topic suggestion individ-
ually, thus prioritizing more popular topics and potentially longer conversations.

• Macro-averaged Accuracy: The accuracy is averaged across each topic class, equally
weighing both popular and “tail” topics.

Ground Truth Labels

To create the ground-truth labels, two different scenarios have been followed for training and test
data.

For training, if a topic t was suggested in turn i, and the user talks about topic t in turn
i + 1, the label of T_accept is assigned to turn i. If the user rejects the suggestion, or asked for
something else, the label was T_reject. Otherwise the label is follow − up if the user continues to
engage with the same topical component, or chat if the utterance is classified as non-informational
or phatic.

At test time, the ground truth labels were assigned as follows: if at turn i, a user rejects the
suggested topic T and subsequently, in turn (i + n), requests topic T , then the label for turn i
is modified from T_reject to T_accept, because it ultimately matched the user interests. Only
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the turns with T_accept labels were used as ground truth labels, because users accepted those
suggestions at some point during the conversation. Other turns, without a true (accepted) topic,
were not used for evaluation. The same ground truth labels were used for all the baseline and the
proposed methods.

Training CTS-CRF Model

To train both Seq-CTS-CRF and CTS-CRF-CF models, a maximum likelihood algorithm is applied,
where the parameters are optimized using Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method. For both methods, the context of length five turns is considered. In addition,
elastic net (L1 + L2) regularization is used to avoid overfitting. Finally, a grid search is deployed
to find the optimal values for L1 and L2, where the values of 0.03 and 0.01 are assigned to L1 and
L2, respectively.

To implement the CF method, the KNN model was trained on the training set with a K value
of 33, and the cosine similarity is used as a measure of similarity.

5.1.6 Results and Discussion
I first report the main results of evaluating the proposed topic suggestion models against the
popularity-based, CF, and Contextual-CF baselines. I then analyze the recommendation perfor-
mance for different conversation settings and discuss some limitations of the reported experiments.

Main Results

The main results on most popular classes are reported in Table 5.5. The proposed CTS models
outperform the strongest baseline Contextual-CF method, where CTS-CRF, CTS-CNN, CTS-RNN,
CTS-CRF-CF, CTS-CNN-CF, and CTS-RNN-CF outperform the Contextual-CF method by 23%,
4%, 8%, 27%, 18%, and 20% respectively. Taking the sequence of turns/topics into account leads
to significant improvements over a collaborative filtering-based approach.

The results show that CRF significantly outperforms CNN and RNN models, which is surprising
for a sequence tagging problem. RNN-based models typically outperform CRF-based methods in
similar tasks like entity tagging [24]. We conjecture that CRF outperforms RNNs on this task due
to two main reasons: first, the available dataset is relatively small compared to standard entity
recognition datasets such as DBpedia [82] and OntoNotes 5.0 [137] with more than 1200K and
1600K samples, respectively. Second, random transitions (e.g., due to dialogue breakdowns) in
conversations are more frequent compared to conventional, coherent text. Users usually do not
follow a standard conversation with the bot, and may randomly jump between topics. Therefore,
even more data are needed to properly model the sequences. However, in contrast to deep RNNs,
CRF models need significantly fewer data to be trained.

In general, the collaborative filtering approach appears to perform worse than the other models,
including the Popularity-based heuristic baseline (which was manually tuned to optimize the
experience of the majority of users). However, incorporating contextual information into the
prediction process with CF improves accuracy by 23%. Contextual-CF produces the best results
on Entertainment and Cars, while it is among the worst results on the other topics like Games
and Animals. We conjecture that this is because Entertainment and Cars is a tail topic that few
users chose to engage with, and CF is designed to work well for users with rare preferences.
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Dropout Num Filters #Hidden States Batch Size Accuracy

0.5 128 100 64 0.765
0.25 128 100 64 0.762(-0.0%)
0.5 512 100 64 0.774(+1.2%)
0.5 128 300 64 0.770(+0.7%)
0.5 128 100 16 0.764(-0.0%)

Table 5.6: Macro-averaged accuracy for CTS-CNN-CF with different parameter settings.

Method Context Size No Features Topical User Profile All Features
CTS-RNN 1 0.563 0.612(+8.7%) 0.601(+6.7%) 0.665(+18.1%)

CTS-RNN 3 0.584(+3.7%) 0.638(+13.3%) 0.621(10.3%) 0.685(+21.6%)

CTS-RNN 5 0.613(+8.8%) 0.674(+19.7%) 0.656(16.5%) 0.693(+23.0%)

CTS-RNN-CF 5 0.701(+24.5%) 0.736(+30.7%) 0.717(+27.3%) 0.765(+35.8%)

Table 5.7: Ablation study on different features of the CTS-based models, where Context Size is
measured in conversation turns. All the improvements are reported based on CTS-RNN with
no dialogue manager state information feature and no context. The Macro-averaged accuracy is
reported, and all of the improvements are statistically significant with p-value < 0.05.

Similar to Contextual-CF, CTS-CNN, CTS-RNN, and CTS-CRF can effectively capture each
specific conversation context, for dramatically more accurate recommendations. In contrast, they
are reliable, where they provide high accuracy in all the classes. Interestingly, a hybrid of CTS
(model-based) and CF model resulted in a more effective model for topic suggestion, where CTS-
CRF-CF and CTS-CNN-CF boost performance by 4% and 9% respectively compared to the
CTS-CRF and CTS-CNN models.

Feature Ablation on CTS

CTS-based methods are complex models consisting of different steps built based on deep learning
algorithms like CNN and RNN. A comprehensive feature ablation analysis is performed to evaluate
the effect of each feature group on the overall performance of the system. Table 5.7 reports the
results. Using all the CF, topical, and user profile features in combination, is the most effective
approach for CTS-based models. Moreover, the results indicate that the impact of Topic and
Behavior is higher than User Profile information. We conjecture that the Topic and Behavior
features contain contextual information from previous utterances. Also, as conversations progress,
the values of these features are updated for each user. In contrast, User Profile information contains
static and global information about users, which remain largely unchanged during the conversation,
thus having a lower impact.

Parameter Tuning.

To evaluate how parameter tuning contributes to the final results, several experiments were
performed with different parameter settings. Table 5.6 shows macro-averaged accuracy of the
CTS-CNN method with different parameters.



73

Figure 5.4: Topic acceptance rates in Alexa dataset.

Discussion

I now discuss the strengths and potential limitations of the proposed CTS models on different topics
at different stages in the conversation. Finally, I provide the limitations that were encountered
during the experiments.

User Topic Acceptance Rate.

Some topics are more popular and interesting for users, such as Movie and Music. The Popularity
baseline described in Section 5.1.5 is designed based on these metrics. Figure 5.4 shows the topic
acceptance rate for the most popular topics in Alexa dataset. The results indicate that Movie
is the most popular topic among users with over 60% acceptance rate, and Scitech is the least
favorite topic with an acceptance rate less than 20%.

Analyzing CF contribution to RNN- based models.

RNN-based methods are known for finely capturing the contextual information within a sequence.
The results in Table 5.5 show that using CF features contributed to the CTS-RNN by extracting
relevant knowledge from the dataset that is hidden to CTS-based models. In this specific case,
this can be for two reasons, 1) CF features are generated using all the conversation context, while
the LSTM model generally considers the history window of size m, and 2) CF features utilize the
user-level information like the similarity between user behaviors in accepting or rejecting topics
whereas RNN does not consider the user-level information.

Performance for Different Conversation Stages.

As the conversation progresses, the next topic suggestion becomes increasingly challenging, as it
is challenging to keep people engaged for long conversations. A proper topic suggestion model
could encourage a user to engage more with the conversational agent, which has been shown to
be associated with an increase in user satisfaction [25, 123]. Figure 5.5 reports Micro-averaged
accuracy for CTS-CRF-CF, CTS-CNN-CF, CTS-RNN-CF, and the baseline Popularity model for
a varying number of suggested topics per conversation. Surprisingly, the average accuracy of the
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Figure 5.5: Micro-averaged accuracy for CTS-CRF-CF, CTS-CNN-CF, and baseline Popularity
model vs. the number of topic suggestions in the conversation.

suggested topic drops, as the number of suggestions in a conversation increases. We conjecture
that this effect is due to a design decision in the conversational system, where a direct topic
suggestion was only invoked if a user was not engaged with the current topic or a domain-specific
component has returned conversation’s control back to the main dialogue manager. These situations
indicate that the user may already not be sufficiently engaged in continuing a conversation with the
conversational agent past the suggestion point. Also, the rejection of the proposed topic may not
be (solely) due to the recommendation algorithm but as a result of user fatigue, or other factors. At
the same time, fewer people continue talking to the conversational agent for the increased number
of suggestions. The vast majority of people only interact with the first one or two suggested topics.
Thus, the accuracy of the first handful of suggestions is critical for user experience, as an incorrect
first suggestion may cause the user to end the conversation immediately.

Limitations.

The experimental evaluation used offline analysis, and the results might differ in the online setting.
However, I do not anticipate that the conclusions would change: I emphasize that the reported
results are a lower bound on performance since I rely on conversations continuing beyond the
current turn in order to give “credit” to the proposed suggestions that were not recommended
at the appropriate time during the live competition. Another potential limitation is the form of
the recommendations themselves. In this study, the system proposed a general topic like Sports
for some topics. Still, I found that proposing a specific item for the topic, e.g., “News about the
Yankees” instead of just Sports may be more effective, and would be a promising complementary
direction to the current work, initially explored in [105].
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Conclusions

This work introduced and formalized the problem of conversational topic suggestion for mixed-
initiative open-domain conversational agents, specifically designed to deliver relevant and interesting
information to the user. To address RQ2, I presented and explored three approaches for user
preference modeling for this problem, a collaborative filtering based approach, a model-based
sequential topic suggestion model (CTS-Seq), implemented using CRF, CNN and RNN models,
and a hybrid model which combined sequence modeling approach with traditional collaborative
filtering methods (CTS-CRF-CF and CTS-CNN-CF). A hybrid representation that includes both
the conversation context and collaborative filtering features outperforms all other approaches in
this setting. I showed that contextual, sequence-based recommendation significantly outperforms a
heavily tuned, popularity- and time-based baseline, and incorporating collaborative filtering signals
further improves performance.

Although CRF outperformed the deep-learning based methods in my experiments, that might
not be the case with fine-tuned large language models that have been released since this paper was
published. However, the findings about the importance of user-level features and the effectiveness
of the hybrid model are likely to remain relevant.
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6 Discussion and Conclusions
This thesis presents a thorough investigation of the effectiveness of incorporating external

knowledge and synthetic data in intent prediction for different types of conversational systems and
for domain-specific web search. It also proposes methods to infer user preferences from conversation
history for modular open-domain conversational systems. In this chapter, I summarize this thesis’s
contributions, discuss the findings and limitations of the work, and suggest future directions for
each research question.

6.1 RQ1: Intent Prediction
The first main research question addressed in this thesis is, “Can we use external knowledge to
improve intent prediction?”

6.1.1 RQ1a
In Section 3.1, I address the subquestion “How can we incorporate entity-type information and
conversational context to perform intent classification in an open-domain conversational system?”.
Intent prediction in this setting is challenging because of short utterance length, out-of-vocabulary
words and entities, and a lack of human-machine conversational training data. New entities were a
significant challenge in this setting because the conversational system was expected to talk about
the most current topics.

The main contribution of this work is the development of ConCET, an entity-aware classifier
that incorporates external knowledge about entities and their types, retrieved dynamically from
a knowledge base. The second contribution of this work is a simple yet effective method for
generating synthetic data for training intent classifiers.

The experiment results show that ConCET significantly improves intent classification perfor-
mance on a human-machine and a human-human dataset, compared deep learning methods that
do not use entity type information. Maintaining an application-specific entity index can lead to
further benefits. This thesis thus presents an efficient method to incorporate external knowledge,
especially about new entities.

Since the publication of this work, many new intent classification methods have been built
on top of larger language models such as BERT. This makes external knowledge less impactful.
Although these models encode entity information implicitly, explicitly encoding entity information
can improve the performance of these models, especially for unseen entities [64]. A limitation
of this work is that the effectiveness of incorporating entity information is not studied for larger
models for this setting. However, the general idea of incorporating external knowledge through
entities still remains applicable. The effectiveness of incorporating entity information for improving
intent classification for domain-specific web search is demonstrated in Chapter 4 for a larger model.

6.1.2 RQ1b
The next research question I studied is “In a conversational system that conducts interviews, how
can we interpret the participant’s response, for example, by matching it to one or more predefined
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options?” I investigated intent recognition in the unexplored setting of an information elicitation
dialog agent (IEDA). This setting, where the user is asked open-ended questions about their
preferences, poses unique challenges because 1) interview questions often elicit descriptive answers
as opposed to names of entities of an expected type, and 2) it is expensive to collect conversational
data for supervised learning.

The first main contribution is the investigation of three approaches for using contextual
information for this task: 1) using previous conversation context, 2) using dialog pretraining, and 3)
using external knowledge. The second main contribution is findings about what factors can predict
the difficulty of a question for a conversational system to interpret. An additional contribution
is an analysis of user study data to determine what types of questions would benefit from an
open-ended conversational interface.

The experiments show that it is hard to leverage conversational context and external knowledge
for this task. The TOD-BERT model with dialog pretraining is not able to transfer its knowledge
to intent classification in a structured interview. Including previous conversation turns also did not
improve accuracy. The best results are obtained by using the current question and its response for
conversation representation. Even though responses to previous questions can potentially contain
clues about the current question, BERT-based models are not able to leverage this information
effectively. These findings indicate that intent prediction in automated structured interviews will
take models with strong reasoning capabilities to interpret contextual information.

Data from the user study indicates that using a conversational interface often elicits information
that is entirely absent in the survey form and also gets more verbose responses. This suggests that
the conversational interface is more engaging and can potentially lead to more accurate responses.

I also study the attributes of questions that might be indicators of model and human accuracy
on them. A larger number of options does not make the task harder for the model or human
annotators. Response length negatively correlates with model accuracy, but the correlation is not
high. This suggests that the difficulty comes from the complexity of the response more than its
length.

This work has some key limitations. The first is that we do not explore more advanced
knowledge injection methods. The lack of improvement in performance by incorporating external
knowledge might be because we used ConceptNet neighbors to augment input instead of a more
advanced approach.

Second, we use a simple dialog policy where the system just returns a generic acknowledgment
of the user’s response and asks a new question on each term. Thus, the conversations in our dataset
are not perfectly representative of the structured interview setting.

An interesting direction for future work could be collecting or generating a dataset of more
realistic interview conversations, where the system can ask follow-up questions and engage in a more
natural conversation. Another future experiment could be to use LLMs with Chain-of-Thought
prompting and conversation context to perform intent classification in this setting. This could
potentially improve the performance of the model by allowing it to leverage the context of the
conversation and external knowledge more effectively.

6.1.3 RQ1c
The third research question I address is “Can we improve intent classification for health-related
queries with external knowledge and data augmentation?”

Knowledge injection is challenging in this setting because the common method of leveraging
search results cannot be used. In the setting of a small-scale domain-specific search engine with
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limited user interaction data, the document or URL that is appropriate for the user’s intent may
not be ranked highly or even present in the search results. Also, my queries are navigational.
Moreover, web search queries are short and often do not contain enough contextual information.
Also, in the setting of health-related search, it is hard to retrieve relevant information from external
knowledge sources because there is a significant vocabulary difference between web search queries
and the medical terminology used in most health-related knowledge bases.

The results indicate that incorporating entity descriptions in the model input is a simple and
effective way of improving intent classification for domain-specific web search on models of all
sizes compared. The map-tuning method did not show the expected improvement. This shows
that for the mapper to be effectively trained to leverage external entity embeddings, it needs to
be trained on data with higher-quality entity labels. That was the case in the original paper.
Moreover, the data augmentation results show that entity information does improve the quality of
the generated queries, but the data quality is still not high enough to improve the performance
of the intent classifier. This suggests that generating synthetic data for this task is challenging.
Lastly, performance peaks early for in-context learning with LLMs when the few-shot examples
come from weak supervision data.

The methods investigated are applicable in small-scale, domain-specific search engines that
cannot use web search results as context. An application-specific entity database would further
improve performance, like for ConCET.

The experiments have a few key limitations. I do not perform entity linking on a large-scale
knowledge base (like full Wikipedia) or one that includes domain-specific tail entities (like UMLS).
I focused on head entities because those were more reliably linked in short input texts in the
validation experiments. Second, I do not fine-tune models larger than T5-3b. The results do not
show a direct correlation between model size and domain adaptation method, but that might
change if I experimented with more models of different sizes. Third, I do not use the best possible
entity linking method. Since this work was done in a low-resource setting where inference time had
to be minimized, I chose a lightweight entity linker with sufficient coverage of entities and put a
high similarity threshold to avoid false matches. However, the effect of the quality of entity linkers
on the results is an important direction to explore.

There are several possibilities for future work. The first important direction would be to
try other entity linking methods. That might significantly improve the results of the knowledge
injection methods, especially map tuning. Another interesting direction would be to combine
session context with entity information. Finally, investigating the effect of knowledge injection on
larger models than T5-3b could be another interesting direction of future work.

6.1.4 Relevance in the LLM Era
Large language models have accomplished impressive results on many NLP tasks, often rendering
specialized models unnecessary [1, 120]. Fine-tuned LLMs are currently the predominant form
of dialog systems in practice, especially as “support” tools on top of existing applications like
e-commerce and customer service.

Currently, large language models are costly in terms of computation resources. There are several
complementary directions of research to address this issue. There is some promising work [41,45] on
using sparse mixture-of-expert models to drive down the cost. Which expert to use is determined
implicitly in these models, and explicit intent prediction models aren’t needed. If the cost can be
brought down further, modular systems that use intent prediction might become obsolete.

Oh the other hand, small models are relevant in the on-device setting, where the model must
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run with limited computational resources. On-device models are also an active area of research [32],
and the methods proposed in this thesis could be useful in this setting. Multi-agent AI systems are
also an active and promising area of research [44, 141]. Although explicit intent prediction has not
been explored in this setting, it could be applied for more efficient communication between agents.

Another relevant question is, would knowledge-aware methods be necessary if the LLM were
trained on all publicly available intent prediction data? This is hard to predict, but the answer
might be yes, because the LLM would still not have access to private, application-specific data.

6.2 RQ2: User Modeling

6.2.1 RQ2a
I also addressed the research question, “In an open-domain conversational system, how can we
represent the user to anticipate their interest in new topics of conversation?” At the time I did
this work, coarse-grained topic suggestion and, therefore, user modeling for this purpose were
unexplored.

The right topic to recommend depends on both prior user interests and the conversation. A
topic could be aligned with the user’s interest and still not be appropriate to recommend if it does
not fit the context. I explored adapting existing recommendation models to this setting. It remains
an open problem, but many new methods have been proposed since then, which make this work
much less relevant.

The main challenge in this setting was creating a user representation based on just the current
conversation. I showed that contextual, sequence-based recommendation significantly outperforms
a heavily tuned, popularity- and time-based baseline, and incorporating collaborative filtering
signals further improves performance.

This work, however, has several limitations. The text representation models used in this work
are very simple compared to the state-of-the-art models. The results about the relative performance
of the models compared might not hold when more advanced models are used.

The findings about the importance of user-level features and the effectiveness of the hybrid
model are likely to remain relevant. Even for the latest models, topic recommendation in mixed-
initiative dialog systems is not a solved problem. However, newer representation methods would
serve as a much better starting point for future research than the models used in this study.

6.3 Limitations
The overall experimental setting has several limitations. First, for every research question, I only
use a conversational system of one domain and modality. I address RQ1a and RQ2a in the context
of an open-domain voice-based conversational assistant, while I use a text-based conversational
system for RQ1b. The findings may not generalize to conversational systems in other modalities.

Also, I assume a static set of intents, which is often not the case. Life-long Intent Detection is an
active area of research. [72, 73, 121, 156] propose approaches to address the problem of catastrophic
forgetting in lifelong intent detection. I do not perform online learning in this work. The approaches
only work in settings where the set of intents is known in advance and does not change often.

For my work on user preference modeling, I conducted the experiments only on the data collected
using our Alexa Prize conversational system. Although the methods I propose are generalizable to
other conversational systems, I do not have experimental results to support this claim.
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Fairness and transparency are also important considerations for any system that interacts with
users. Although I have tried to be as inclusive as possible in the system design, recommender
systems are prone to be biased to the types of users in their training data, and that is the case for
my systems as well. Also, in Section 5.1, I use inferred gender as a feature for the user model, and
the possible values for the feature are male and female, which is not inclusive of non-binary genders.
This was because I relied on a name database that did not have non-binary names. However, this
is a limitation that must be addressed before deploying the system in the real world.

6.4 Conclusions
This dissertation introduces novel methods for intent prediction and user modeling. Specifically, it
makes the following contributions:

1. Methods for knowledge-aware intent prediction in three settings

2. Approach for user preference modeling in open domain conversational systems

3. Investigation of the response interpretation problem in information elicitation dialog

These contributions are relevant for improving information relevance and user experience in various
conversational systems.

One of my main contributions is in the area of intent prediction. With more accurate intent
prediction, conversational systems can provide more relevant and appropriate responses, resulting
in a more natural and satisfying user experience. This contribution has the potential to improve
user engagement and the overall effectiveness of conversational systems. The approach for intent
classification using data augmentation and external knowledge can be used in any low-resource
setting. This is critical for the functioning of conversational systems. I also introduce an approach
for user preference modeling to enable personalization in conversational systems. I test this method
for intent prediction in open-domain settings, but it is generalizable to domain-specific systems as
well.

Thus, by addressing critical challenges in intent prediction and user modeling, this research lays
the foundation for more contextually aware conversational systems. As conversational AI becomes
increasingly prevalent in various applications, this can lead to greater user satisfaction in many
applications.
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Appendix A

Prompts for Experiments with LLMs

This chapter lists the prompts used for experiments with generative large language models. All
prompts were written as chat completions in JSON format. The words surrounded by curly braces
({}) are not put in the prompt verbatim but replaced by the text they describe.

A.1 Prompts for Synthetic Data Generation

A.1.1 Baseline
• TripClick

[{"role": " system ",
" content ": "You are an AI assistant that helps generate realistic

training data for query classification models ."},
{"role": "user",

" content ": "Your task is to generate plausible web search queries
from the healthcare domain for training a query classification
model. The queries are from the TripClick dataset , which contains

click data from a web search engine . The clicked documents have
topics associated with them. Given a topic , you need to generate
10 queries that are likely to retrieve the documents on that
topic. The queries should be stylistically similar to the given
examples . Respond with just the queries , with each query in a new

line. The topic is {topic }. Here are some example queries with
that topic :{ list of examples , each in a new line }"}]

• Private Health Search
[{"role": " system ",

" content ": "You are an AI assistant that helps generate
realistic training data for query classification models ."},

{"role": "user",
" content ": "The queries are from a health insurance website .

Users typed these queries looking for different types of
information . They clicked URLs that were relevant to their
queries . The URLs have intents associated with them , and the
queries are classified into the same intents . Given an intent
, you need to generate a query that would be issued by a user

with that intent . Given an intent , you need to generate 10
queries that are likely to be issued by a user with that
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intent . The queries should be stylistically similar to the
given examples . Respond with just the queries , with each
query in a new line. The intent is { intent }. Here are some
example queries with that intent :{ list of examples , each in a

new line }"}]

A.1.2 Entity-based
• TripClick

[{"role": " system ",
" content ": "You are an AI assistant that helps generate realistic

training data for query classification models ."},
{"role": "user",

" content ": "Your task is to generate plausible web search queries
from the healthcare domain for training a query classification
model. The queries are from the TripClick dataset , which contains

click data from a web search engine . The clicked documents have
topics associated with them. You will be given a query and the
associated topics . The query will mention one or more named
entities . You need to generate 10 similar queries that mention a
different named entity of the same type as the original query ,
that would still result in clicks on documents of with the same
topics as the original query. The new query should be
stylistically similar to the original query. Respond with just
the queries , with each query in a new line. Do not number the
queries . The query is "{ query }" and the topic is {topic }. Please
rewrite the query with another {type of detected entity }."}]

A.2 Prompts for In-Context Learning
• TripClick

[{"role": " system ",
" content ": "You are a web search assistant . Your job is to help

understand which topics the user is interested in so that the
most relevant documents can be shown to the user. "},

{"role": "user",
" content ": "Your task is to classify web search queries into a set

of \" topics \". The queries are from the TripClick dataset , which
contains click data from a web search engine . The clicked
documents have topics associated with them , and the queries are
classified into the same topics . Multiple topics can be
associated with a query. Respond with just the topics separated
by commas . \n\nHere is the full list of topics :\n {List of all
topics in the dataset }\n\nDO NOT respond with topics that are not

in the list. Here are some examples . The format is <query > | <
topics >.\n\n {List of examples , each in a new line .}"}]

• Private Health Search
[{"role": " system ",

" content ": "You are a web search assistant . Your job is to help
understand which topics the user is interested in so that the
most relevant documents can be shown to the user. "},
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{"role": "user",
" content ": "Your task is to classify web search queries into a set

of \" intents \". The queries are from a health insurance website .
Users typed these queries looking for different types of
information . They clicked URLs that were relevant to their
queries . The URLs have intents associated with them , and the
queries are classified into the same intents . Multiple intents
can be associated with a query. Respond with just the intents
separated by commas . \n\nHere is the full list of intents :\n {
List of all intents in the dataset }\n\nDO NOT respond with
intents that are not in the list. Here are some examples . The
format is <query > | <intents >.\n\n{List of examples , each in a
new line .}"}]



Appendix B

Additional Results

Table B.1: Classwise results for intent classification on TripClick dataset. Bold classes are those
augmented

label F1 Class Frequency

dentistry 0.8934 799
ophthalmology 0.8654 408
psychiatry 0.8585 2310
cardiology 0.8576 3896
pulmonology 0.8576 2216
urology 0.8559 1227
endocrinology 0.8536 2132
obgyn 0.8400 3828
oncology 0.8375 2396
neurological surgery 0.8311 2292
rheumatology 0.8247 1766
geriatrics 0.8209 1313
gastroenterology 0.8168 2475
infectious disease 0.8123 3447
dermatology 0.7955 953
orthopaedics 0.7720 1288
otolaryngology-ent 0.7565 1054
pediatrics 0.7335 4244
critical care 0.6919 672
allergies and immunology 0.6762 369
hematology 0.6723 1111
anesthesiology 0.6566 727
surgery 0.6401 1974
radiology 0.6157 413
emergency medicine 0.6035 659
physical medicine 0.5293 524
pain_management/palliative_medicine 0.4000 4
hospice and palliative care 0.3259 58
womens health 0.2704 1272
primary care 0.2010 272
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