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Abstract

Half Covering, Half Coloring

By Alexander James Clifton

Alon and Füredi determined the minimum number of affine hyperplanes needed to

cover all but one point of an n-dimensional rectangular grid. It is natural to ex-

tend this to higher covering multiplicities and ask for the minimum number of affine

hyperplanes needed to cover every grid point at least k times each, except for one

point that is not covered at all. In the special case of an n-cube, we use a Punctured

Combinatorial Nullstellensatz of Ball and Serra to exactly determine the minimum

for k = 3 and to formulate a lower bound for k ≥ 4. We also treat the problem

as an integer program to determine an asymptotic answer for fixed n as k → ∞.

Again using the Punctured Combinatorial Nullstellensatz, we answer the question for

a general grid when k = 2.

Another generalization we address for the n-cube is the minimum number of affine

subspaces of codimension d needed to cover all but one vertex at least once. We also

consider the minimum number of hyperplanes needed to cover all points of a triangular

grid.

In the second half of this dissertation, we consider arithmetic Ramsey theory

problems in the spirit of van der Waerden’s theorem. For a set D ⊂ Z>0, Landman

and Robertson introduced the notion of a D-diffsequence, which is an increasing

sequence a1 < · · · < ak such that all the consecutive differences ai − ai−1 are in D

for i = 2, · · · , k. We say that the set D is r-accessible if every r-coloring of the

positive integers contains arbitrarily long monochromatic D-diffsequences. For an r-

accessible set D, we define ∆(D, k; r) to be the minimum n such that every r-coloring

of [n] := {1, 2, · · · , n} contains a monochromatic D-diffsequence of length k.

By considering the case where D consists of all powers of 2, we provide an example



of a 2-accessible set where ∆(D, k; 2) grows faster than any polynomial. The proof

relies on a series of periodic colorings based on the Thue–Morse sequence. We also

use Beatty sequences to classify which sets of the form D = {d1, d2, · · · } with di | di+1

for all i are 2-accessible.
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Chapter 1

Introduction

1.1 Covering and Coloring

This dissertation considers various problems in extremal combinatorics. We primarily

consider Covering questions and Coloring questions. In the Covering questions, our

goal is to find the minimum number of affine hyperplanes that cover a given set of

points (possibly with multiplicity) while avoiding a forbidden point. In the Coloring

questions, our goal is to find the smallest positive integer n such that every coloring

of {1, · · · , n} with r colors contains a monochromatic copy of a certain arithmetic

structure, or to show that no such coloring exists. The Covering questions here exist

within a wider context of covering problems, particularly graph covering, while the

Coloring questions exist within the wider context of Ramsey theory.

The common thread between these topics is that they are both optimization prob-

lems where the goal is to find the minimum size of a set satisfying certain conditions.

Furthermore, making sure each point is covered enough times or making sure a col-

oring of {1, · · · , n} avoids a monochromatic copy of some pattern are both linear

constraints. Thus, both of these problem types, at their core, are integer linear pro-

grams. This means they can in part be addressed by a common set of tools, such as
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using software like Gurobi to compute data for small cases.

While viewing these questions as integer programs allows us to make some progress,

we will also utilize other techniques. For lower bounds in Covering problems, we will

lean heavily on algebraic methods such as the Punctured Combinatorial Nullstellen-

satz [BS09]. For lower bounds in Coloring problems, we will rely on a creative choice

of ad hoc colorings.

1.2 Background for Covering

1.2.1 Covering Problems

Covering problems are a broad class of combinatorial problems where the goal is

often to find the smallest collection of sets such that every object in some family is

contained in at least one set of the collection. Many covering problems take place on

graphs. A classic example is the vertex cover problem where the goal is to find the

smallest set of vertices of a graph G such that each edge of G is incident to (covered

by) at least one vertex in the collection.

An equivalent formulation of the vertex cover problem is to find the smallest

collection of star subgraphs such that each edge of G is contained in at least one such

subgraph. More generally, one could ask for the smallest number of complete bipartite

graphs such that each edge of G is contained in at least one of these graphs. There

are further ways to modify the question such as requiring that no edge is contained in

more than one graph of the collection. The celebrated Graham-Pollak theorem [GP72]

states that the smallest collection of complete bipartite graphs which contains every

edge of the complete graph Kn exactly once, is of size n− 1. One way to obtain this

optimum is to take a collection of stars centered at the first n− 1 vertices. Another

modification we have considered [BCC+22] is to determine the smallest number of

complete bipartite graphs needed to cover each edge of G an odd number of times
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and each non-edge of G an even number of times. In this problem, we are likely to

incidentally cover objects outside the family we aim to cover.

The covering problems we consider in Chapters 2 and 3 will generally not take

place on graphs. Instead, we endeavour to cover sets of points using collections of

hyperplanes (or other affine subspaces). In particular, we will have some points we

wish to cover, possibly more than once, and potentially other points we wish to not

cover at all.

These constraints on how many times each relevant point should be covered allow

us to formulate an integer program where the variables are how many times each

hyperplane is used. This allows us compute the optimum for many examples using

software such as Gurobi (see Appendix C). Another advantage of formulating a cover-

ing problem as an integer program is that it can be easier to solve its linear relaxation,

which immediately gives a lower bound. Our other predominant means of computing

lower bounds, particularly when the points we wish to cover lie on some rectangular

grid in Rn, is via algebraic methods, in particular Combinatorial Nullstellensatz and

its generalizations.

1.2.2 Combinatorial Nullstellensatz

One of the most fundamental facts about polynomials is that a nonzero single-variable

polynomial of degree n has at most n zeros. Thus, if a polynomial of degree ≤ n

vanishes at n+1 different values, it is necessarily the zero polynomial. A multivariable

polynomial such as f(x1, x2) = x1x2 can vanish at infinitely many points. However,

we can still use its degree to restrict where it vanishes if we focus our attention on

just a rectangular grid.

The Combinatorial Nullstellensatz, introduced by Alon [Alo99] states that a mul-

tivariable polynomial cannot vanish on the entirety of some grid. In particular, for

any nonzero term of maximal degree, the polynomial cannot vanish on a grid whose
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ith dimension is larger than the xi degree of that term for all i = 1, · · · , n.

Theorem 1.2.1. [Alon, Combinatorial Nullstellensatz] Let F be an arbitrary field,

and let f = f(x1, · · · , xn) be a polynomial in F[x1, · · · , xn]. Suppose the degree deg f

of f is
∑n

i=1 ti where each ti is a nonnegative integer, and suppose the coefficient of∏n
i=1 x

ti
i in f is nonzero. Then, if S1, · · · , Sn are subsets of F with |Si| > ti, there are

s1 ∈ S1, s2 ∈ S2, · · · , sn ∈ Sn so that

f(s1, · · · , sn) ̸= 0.

Example 1. f(x1, x2) = −2x3
1 + 3x2

1x2 + 4x1x
2
2 + x1x2 − 4x4 + 5 cannot vanish at

all points of {0, 5, 6}× {3, 5} since it has degree 3 and has a nonzero x2
1x2 coefficient.

Likewise, f cannot vanish at all points of {−6, 3} × {0, 2, 100} since it also has a

nonzero x1x
2
2 coefficient.

Combinatorial Nullstellensatz has a stunning array of uses, often providing new

proofs for classical results. Among other applications, it has been used to find upper

bounds on the list coloring number of graphs, show the existence of subgraphs with

certain degree conditions, and to provide another proof of the well-known Cauchy–

Davenport Theorem in Additive Number Theory.

Here, we will focus on one particular application of Combinatorial Nullstellensatz.

Komjáth [Kom94] asked for the minimum number, m(n), of affine hyperplanes needed

to cover all but one vertex of Qn := {0, 1}n while leaving the last vertex uncovered.

(The question in this form is actually due to Imre Bárány (see [AF93]) as Komjáth’s

original question only concerned showing that m(n) → ∞.) It is important to specify

that exactly one vertex is left uncovered since otherwise, two hyperplanes, such as

x1 = 0 and x1 = 1, will be sufficient for any n ≥ 1. For Komjáth’s question, it is easy

to see that n hyperplanes suffice. One option is to use xi = 1 for i = 1, · · · , n, while

another is to use x1 + · · ·+ xn = i for i = 1, · · · , n.
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Alon and Füredi showed that indeed, n is also the minimum. While their original

proof [AF93] does not make use of Combinatorial Nullstellensatz, the proof we include

here does.

Theorem 1.2.2. [AF93] If H1, · · · , Hm are a collection of hyperplanes such that

none contains 0⃗ and every point of {0, 1}n\{⃗0} is contained in at least one hyperplane

of the collection, then m ≥ n.

Proof. For the sake of contradiction, assume that there exists a collection of n − 1

hyperplanes meeting the conditions. Without loss of generality, we may write the

equation of each hyperplane Hi as ai,1x1 + · · ·+ ai,nxn = 1. For i = 1, · · · , n− 1, we

can then define the polynomials Pi = ai,1x1 + · · · + ai,nxn − 1 and let P :=
∏n−1

i=1 Pi.

The polynomial P has degree n − 1 and vanishes on {0, 1}n \ {⃗0}. The premise

of Combinatorial Nullstellensatz is that a nonzero polynomial cannot vanish on the

entirety of a grid that is too large. A natural choice for our grid is to take Si = {0, 1}

for i = 1, · · · , n. However, the polynomial P does not vanish on the entirety of this

grid so we are not yet primed for a contradiction.

Instead, we will tweak the polynomial P so that it also vanishes at 0⃗. Note that

P (⃗0) = (−1)n−1. Therefore, if we let

Q(x1, · · · , xn) := P (x1, · · · , xn) +
n∏

i=1

(xi − 1),

we have that Q(⃗0) = (−1)n−1 + (−1)n = 0. Furthermore, Q still vanishes on all of

{0, 1}n \ {⃗0}.

Q is a degree n polynomial which vanishes on {0, 1}n. The only degree n term

used in the sum defining Q is
∏n

i=1 xi so Q has a nonzero
∏n

i=1 xi coefficient. In the

setting of Combinatorial Nullstellensatz, this is t1 = · · · = tn = 1, so Q cannot vanish

on the entirety of any grid S1 × · · ·Sn with |S1|, · · · , |Sn| ≥ 2. However, Q vanishes

on {0, 1}n, giving a contradiction. Thus, our original collection of n− 1 hyperplanes
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with the correct covering properties cannot exist.

In Chapter 2, we will consider generalizations of Komjáth’s question to higher

multiplicity. In particular, we will ask for the smallest number of affine hyperplanes

f(n, k) such that every point of {0, 1}n \ {⃗0} is contained in at least k of the hy-

perplanes while 0⃗ is contained in none of them. In Chapter 3, we will address this

higher multiplicity covering question for general rectangular grids S1 × · · · × Sn. For

these multiplicity questions, it will help to consider the following modified version of

Combinatorial Nullstellensatz [BS09].

Theorem 1.2.3. [Ball–Serra, Punctured Combinatorial Nullstellensatz]

For i = 1, · · · , n, let Di ⊂ Si ⊂ F and gi =
∏

s∈Si
(xi − s) and li =

∏
d∈Di

(xi − d).

If f has a zero of multiplicity at least t at all the common zeros of g1, · · · , gn, except

at at least one point of D1 × · · · ×Dn where it has a zero of multiplicity less than t:

Then, there are polynomials hτ satisfying deg hτ ≤ deg f −
∑

i∈τ deg gi, and a non-

zero polynomial u satisfying deg u ≤ deg f −
∑n

i=1(deg gi − deg li) such that

f =
∑

τ∈T (n,t)

gτ(1) · · · gτ(t)hτ + u
n∏

i=1

gi
li
.

Here, T (n, t) indicates the set of all non-decreasing sequences of length t on [n].

The crux of this theorem is that if a multivariable polynomial vanishes to multiplic-

ity at least t at every point of some rectangular grid, except for on some rectangular

subgrid, we can write it as a combination of auxiliary polynomials satisfying certain

degree conditions. For our covering questions, a collection of m hyperplanes which

covers all but one grid point at least t times without covering the last point, can be

used to define a degree m polynomial, as in the beginning of the proof of Theorem

1.2.2. This polynomial then vanishes to multiplicity at least t on the entirety of the

original grid, except for one point, which can be viewed as a 1× · · · × 1 rectangular
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subgrid. Thus, the degree m polynomial corresponding to a collection of hyperplanes

with the correct covering properties will satisfy the criteria needed to apply Theorem

1.2.3.

1.3 Background for Coloring

1.3.1 Ramsey Theory

For any k, a sufficiently large group of people will have either k people who all know

each other or k people who all don’t know each other. Alternatively, if we color the

edges of the complete graph Kn either red or blue, for sufficiently large n, we will

end up with either a red copy of Kk or a blue copy of Kk as a subgraph. A common

slogan used in the field of related questions, known as Ramsey theory, is that complete

randomness is impossible.

Another way to view a Ramsey theory problem is to ask the following question:

If the whole contains some special structure and the whole is then divided into parts,

is some part guaranteed to retain that structure?

Arithmetic Ramsey theory concerns whether coloring positive integers (or tuples of

positive integers) with r colors will guarantee the presence of a monochromatic copy

of some arithmetic structure. An early example is Schur’s theorem [Sch17] which

states that for any finite number of colors r, an r-coloring of Z>0 contains x, y, z of

the same color such that x+ y = z.

Another classical result is van der Waerden’s theorem [Wae27]. It states that

any r-coloring of Z>0 contains arbitrarily long monochromatic arithmetic progres-

sions. Equivalently, for every k, there is some n such that every r-coloring of [n] :=

{1, · · · , n} contains a monochromatic arithmetic progression of length k.

For a given r and k, the smallest such n is the van der Waerden number W (r, k).

Outside of a few trivial infinite families, van der Waerden numbers are only known
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exactly in a few small cases. The best known general upper bound [Gow01] is

22
r2

2k+9

.

1.3.2 Diffsequences

Besides arithmetic progressions, one can ask what other monochromatic structures

are guaranteed to show up in an arbitrary r-coloring of the positive integers. A

tightening of van der Waerden’s result is to look at only arithmetic progressions with

certain gaps. A setD ⊂ Z>0 is called r-large if every r-coloring of the positive integers

contains arbitrarily long arithmetic progressions whose common difference lies in D.

The content of van der Waerden’s Theorem is that Z>0 is r-large for all r.

In [BGL99], Brown, Graham, and Landman determined some conditions that

D must satisfy to be r-large for all r. In particular, D must contain an infinite

number of multiples of every positive integer and D = {d1, d2, · · · } cannot have

lim infn→∞
dn+1

dn
> 1.

A relaxation of considering arithmetic progressions with a fixed difference is to

consider sequences whose consecutive differences lie in a given set but are not nec-

essarily the same as each other. This is the notion of a diffsequence, introduced by

Landman and Robertson in [LR03].

Definition 1. For a set D of positive integers, a D-diffsequence of length k is a

sequence of positive integers a1 < a2 · · · < ak such that

ai − ai−1 ∈ D

for i = 2, 3, · · · , k.

We can then ask for which sets D and which numbers of colors r a van der

Waerden-like theorem exists.
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Definition 2. A set D is called r-accessible if every r-coloring of the positive integers

contains arbitrarily long monochromatic D-diffsequences.

Any r-accessible set D is automatically t-accessible for t < r. The notion of r-

accessibility is analogous to van der Waerden’s theorem with r colors. Note that

r-accessibility refers to the presence of arbitrarily long finite monochromatic D-

diffsequences and we do not consider questions about infinite D-diffsequences.

Example 2. The set, D, of even numbers is r-accessible for all r.

Proof. If the positive integers are partitioned into finitely many colors, at least one

color will contain infinitely many integers. Thus, it contains infinitely many integers

of the same parity, from which we can take arbitrarily large subsets which are D-

diffsequences.

Example 3. The set, D, of odd numbers is not r-accessible for r ≥ 2.

Proof. In general, to show that a setD is not r-accessible, we just need to demonstrate

one r-coloring of the positive integers which avoids arbitrarily long monochromatic

D-diffsequences. For r = 2, we can color all the even numbers with color 0 and all the

odd numbers with color 1. Thus, a monochromatic sequence only contains numbers of

the same parity and we do not even have a monochromatic D-diffsequence of length

2. Since D is not 2-accessible, it is also not r-accessible for any larger number of

colors.

The set of Fibonacci numbers is known to be 2-accessible [LR03] but not 6-

accessible [AGJ+08]. The set of primes is not 3-accessible [LR03] but the question

of whether it is 2-accessible remains unresolved. Results on accessibility for fixed

translates of the set of primes are given in [LR03] and [LV10]. The set of powers of

n is only 2-accessible when n = 2 since otherwise there is a periodic coloring modulo

n− 1 which avoids arbitrarily long monochromatic D-diffsequences.
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In Chapter 4, we primarily address two types of questions. First, for a special

2-accessible choice of D, we study the smallest n := n(k) such that any 2-coloring of

{1, · · · , n} contains a monochromatic D-diffsequence of length k. This is analogous to

the van der Waerden numberW (2, k). Next we consider sets which are generalizations

of the set of powers of n and determine precisely when they are 2-accessible. We

conclude with a brief exploration of 2-accessibility for randomly generated sets D.

Remark 1. The question of whether every 2-coloring of {1, · · · , n} contains a monochro-

matic D-diffsequence of length k can be conveniently reframed as an integer program.

We have n binary variables representing whether each number is assigned color 0 or

1. For each possible D-diffsequence of length k, we have a constraint that the sum of

the variables corresponding to elements of that diffsequence is at least 1 and at most

k−1. We are guaranteed a monochromatic D-diffsequence of length k precisely when

this integer program is infeasible.

1.4 Dissertation Synopsis

We generalize Komjáth’s question to higher covering multiplicity, and ask for the

smallest size, f(n, k), of a collection of hyperplanes which covers each point of {0, 1}n\

{⃗0} at least k times without covering 0⃗ at all. In Section 2.2, we use the Punctured

Combinatorial Nullstellensatz of Ball and Serra [BS09] to resolve this question for

k = 3 and to improve further the lower bound for k ≥ 4. In Section 2.3, we examine

the linear relaxation of this integer program and utilize it to determine the asymptotic

behavior for f(n, k) as k → ∞ for fixed n. In the process, we prove a generalization

of the Lubell-Yamamoto-Meshalkin inequality [Lub66,Yam54,Mes63].

In Section 2.4, we consider the smallest number of affine hyperplanes of codimen-

sion d needed to cover every point of {0, 1}n \ {⃗0} without covering 0⃗. This question

has been previously addressed over finite fields [Jam77,BBDM21], but we consider it
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over R. We then consider, in Section 2.5, the question of finding the smallest collec-

tion of affine hyperplanes over F2 that do not contain the origin but do contain every

point of {0, 1}n with a fixed number of 1’s as coordinates. We note some connections

between this problem, traditional graph covering, and Sidon sets.

We next study higher multiplicity generalizations of Alon and Füredi’s result that∑n
i=1(|Si| − 1) affine hyperplanes are the minimum needed to cover all but one point

of a general rectangular grid S1×· · ·×Sn. We demonstrate a construction in Section

3.1 that resolves this question when each covered point is covered at least k = 2

times and contrast this with the difficulties encountered when k = 3 (Subsection

3.1.1). In the process, we generalize a question solved for {0, 1}n by Sauermann

and Wigderson [SW20] and ask for the lowest possible degree of a polynomial which

vanishes to multiplicity at least k on all but one point of S1 × · · · × Sn while not

vanishing at the last point.

In Section 3.2, we consider covering questions for triangular lattices. Most of our

results concern determining the smallest number of lines needed to cover every point

of T1(d, 2) := {(x1, x2) ∈ Z2
≥0 | x1 + x2 ≤ d− 1}. We solve the fractional version of

this problem when d ≡ 1 (mod 3) and conjecture a corresponding result for all d. We

also solve the integer programs of determining the smallest number of lines needed

to cover every point of T1(d, 2) at least k times, when k ∈ {1, 2, 4}. Using data from

Gurobi (see Appendix A), we formulate a conjecture for general k and highlight a

surprising connection to our answer for the fractional problem.

We then shift to the Coloring half. The questions we consider will be, in some

sense, two steps away from van der Waerden’s theorem [Wae27]. We focus on the

notion of a D-diffsequence, introduced by Landman and Robertson [LR03], which is a

sequence, a1, · · · , ak, of positive integers where every consecutive difference, ai+1−ai,

lies in some fixed set D ⊂ Z>0. In Section 4.1, we consider a question that can be

thought of as finding analogues of van der Waerden numbers: finding the smallest
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n such that any r-coloring of {1, · · · , n} contains a monochromatic D-diffsequence

of length k. We demonstrate the first known example of a set D such that the

smallest n := n(k) where any 2-coloring of {1, · · · , n} contains a monochromatic

D-diffsequence of length k grows faster than polynomial in k. In Section 4.2, we

generalize the notion of a periodic coloring to show, for a wide class of D’s, that

there exist 2-colorings of Z>0 which avoid monochromatic D-diffsequences. Lastly, in

Subsection 4.2.3, we consider what happens when the elements of D are chosen at

random.

Sections 2.2 and 2.3 are joint work with Hao Huang and originally appeared in

[CH20]. Sections 2.4 and 3.2 are part of an ongoing project with Abdul Basit and Paul

Horn. Most of Chapter 4 originally appeared in [Cli21]. Patrick Schnider suggested

thinking about D-diffsequences for a randomly chosen D.
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Chapter 2

Covering for Hypercubes

2.1 Preliminary Results

In this chapter, we will primarily consider higher multiplicity generalizations of the

Alon-Füredi theorem 1.2.2. Let f(n, k) be the minimum number of affine hyperplanes

needed to cover every vertex of Qn := {0, 1}n at least k times except for 0⃗ = (0, · · · , 0)

which is not covered at all. We call such a cover an almost k-cover of the n-cube.

The Alon-Füredi theorem gives f(n, 1) = n.

No hyperplane can cover a single point with multiplicity more than one. Thus,

removing a hyperplane from an almost k-cover still leaves an almost (k−1)-cover. This

gives a recursive lower bound of f(n, k) ≥ f(n, k − 1) + 1 for k ≥ 2. By induction on

k, this yields f(n, k) ≥ n+ k − 1.

For an upper bound, we can restrict our attention to two types of hyperplanes:

those of the form xi = 1 for some i = 1, · · · , n and those of the form
∑n

i=1 xi = t for

some t = 1, · · · , n. One construction is to use xi = 1 for i = 1, · · · , n, together with

k − t copies of
∑n

i=1 xi = t, for t = 1, · · · , k − 1. In this construction, every binary

vector with t ≥ 1 coordinates equal to 1 is covered t times by {xi = 1}, and k−t times

by x1 + · · ·+ xn = t. The total number of hyperplanes is n+
∑k−1

t=1 (k− t) = n+
(
k
2

)
.
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This establishes f(n, k) ≤ n+
(
k
2

)
. The upper and lower bound match for k = 2,

giving f(n, 2) = n+1 for all n. The first case we consider is k = 3, where these basic

observations have given us n+ 2 ≤ f(n, 3) ≤ n+ 3.

In the next section, we will consider the problem of finding the smallest almost

k-cover of the n-cube for fixed k. In the following section, we will consider what

happens when the dimension n is fixed and k → ∞.

2.2 Fixed Covering Multiplicity

We determine f(n, k) for k = 3 and improve the lower bound for k ≥ 4.

Theorem 2.2.1. For n ≥ 2,

f(n, 3) = n+ 3.

Theorem 2.2.2. For n ≥ 3, f(n, 4) ≥ n+ 5.

Because of our recursive lower bound, f(n, k) ≥ f(n, k − 1) + 1, we get that

f(n, k) ≥ n+ k + 1 for k ≥ 4 as an immediate consequence of Theorem 2.2.2.

The primary tool we will use in the proofs of these results is Theorem 1.2.3. If we

have an almost k-cover consisting of the hyperplanesH1, H2, · · · , Hf(n,k), then eachHi

does not contain 0⃗ and so can be written as ai,1x1+ai,2x2+· · ·+ai,nxn = 1 without loss

of generality. We can then define the polynomials Pi := ai,1x1+ai,2x2+ · · ·+ai,nxn−1

and P =
∏f(n,k)

i=1 Pi. The polynomial P vanishes to multiplicity at least k on all

vertices of Qn except for 0⃗ where it does not vanish at all. Theorem 1.2.3 provides

conditions that must be satisfied by any polynomial vanishing to higher multiplicity

on all of a grid S1 × · · · × Sn except for on some subgrid D1 × · · · × Dn. Taking

each Si to be {0, 1} and each Di to be {0}, these are exactly the vanishing conditions

on P . If we succeed in using Theorem 1.2.3 to give a lower bound on the degree of

P , then this immediately gives a lower bound on the size of an almost k-cover. In
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fact, once we construct the polynomial P , we never make use of the fact that it splits

completely into linear factors and actually corresponds to a a set of hyperplanes.

Proof of Theorem 2.2.1. To show that f(n, 3) = n + 3, it suffices to establish the

lower bound. We will prove this by contradiction. Suppose H1, · · · , Hn+2 are n + 2

affine hyperplanes that form an almost 3-cover of {0, 1}n. Without loss of generality,

assume the equation defining Hi is ⟨⃗bi, x⃗⟩ = 1, for some nonzero vector b⃗i ∈ Rn.

Define Pi = ⟨⃗bi, x⃗⟩ − 1, and let

P = P1P2 · · ·Pn+2.

Since H1, · · · , Hn+2 form an almost 3-cover of Qn, every binary vector x⃗ ∈ Qn \ {⃗0}

is a zero of multiplicity at least 3 of the polynomial P . We apply Theorem 1.2.3 with

Si = {0, 1}, Di = {0}, gi = xi(xi − 1), ℓi = xi,

and write P in the following form:

P =
∑

1≤i≤j≤k≤n

xi(xi − 1)xj(xj − 1)xk(xk − 1)hijk + u
n∏

i=1

(xi − 1),

with deg(u) ≤ deg(P )− n = 2.

Note that P = 0 on Qn \ {⃗0}. Moreover,

∂P

∂xi

=
n+2∑
j=1

P1 · · ·Pj−1 ·
∂Pj

∂xi

· Pj+1 · · ·Pn+2.

Since each Pj is a polynomial of degree 1, each first order partial derivative ∂P/∂xi

is just a linear combination of P1 · · · P̂j · · ·Pn+2 terms. Note that removing a single

hyperplane still gives an almost 2-cover, so ∂P/∂xi vanishes on Qn \ {⃗0}. Similarly,

each second order partial derivative of P is a linear combination of terms of the form
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P1 · · · P̂i · · · P̂j · · ·Pn+2. Removing two hyperplanes still gives an almost 1-cover, so

we can show that all the second order partial derivatives of P vanish on Qn \ {⃗0} as

well. More generally, if P is the product of equations of the affine hyperplanes from

an almost k-cover, then all the jth order partial derivatives of P vanish on Qn \ {⃗0},

for j = 0, · · · , k−1. It is not hard to observe that xi(xi−1)xj(xj−1)xk(xk−1)hijk =

gigjgkhijk also has its tth order partial derivatives vanishing on the entire cube Qn,

for t ∈ {0, 1, 2}, since every term in the product rule expansion will contain at least

one of xi(xi − 1), xj(xj − 1), or xk(xk − 1), which each vanish on Qn. Therefore the

following polynomial

h = u
n∏

i=1

(xi − 1)

has jth order partial derivatives vanishing on Qn \ {⃗0}, for j = 0, 1, 2.

We denote by ei the n-dimensional unit vector with the ith coordinate being 1.

By calculations,

∂h

∂xi

=
∂u

∂xi

n∏
j=1

(xj − 1) + u
∏
j ̸=i

(xj − 1).

Therefore

0 =
∂h

∂xi

(ei) = (−1)n−1u(ei),

and this implies

u(ei) = 0 for i = 1, · · · , n.

Furthermore,

∂2h

∂x2
i

=
∂2u

∂x2
i

n∏
j=1

(xj − 1) + 2
∂u

∂xi

∏
j ̸=i

(xj − 1).

Therefore

0 =
∂2h

∂x2
i

(ei) = (−1)n−1 · 2 ∂u
∂xi

(ei),
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and this implies

∂u

∂xi

(ei) = 0 for i = 1, · · · , n.

Finally,

∂2h

∂xixj

=
∂2u

∂xixj

n∏
k=1

(xk − 1) +
∂u

∂xi

∏
k ̸=j

(xk − 1) +
∂u

∂xj

∏
k ̸=i

(xk − 1) + u
∏
k ̸=i,j

(xk − 1).

By evaluating at ei and ei + ej, we have

∂u

∂xj

(ei) = u(ei) = 0, and u(ei + ej) = 0.

Summarizing the above results, u is a nonzero polynomial of degree at most 2, satis-

fying: (i) u = 0 at ei and ei + ej; (ii) ∂u/∂xi = 0 at ej (possible to have i = j). We

define a new single-variable polynomial w,

w(x) = u(x · ei + ej).

Then deg(w) ≤ 2, and w(0) = w(1) = w′(0) = 0. Thus, w has a zero of multiplicity

at least two at 0, as well as a zero at 1, despite only being degree at most 2, so w ≡ 0.

We write out u as a generic degree at most 2 polynomial in n variables:

u =
∑
i

aiix
2
i +

∑
i<j

aijxixj +
∑
i

bixi + c.

Evaluating u at x · ei + ej yields aiix
2 + (aij + bi)x + (ajj + bj + c). Each coefficient

of this must be 0, so this gives for all i ̸= j,

aii = 0, aij + bi = 0, aii + bi + c = 0.
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On other other hand ∂u/∂xi = 0 at ei gives

2aii + bi = 0.

It is not hard to derive from these equalities that

aii = aij = bi = c = 0

for all i, j. Therefore, u ≡ 0. Since
∑

1≤i≤j≤k≤n xi(xi − 1)xj(xj − 1)xk(xk − 1)hijk

vanishes at 0⃗, we have f (⃗0) = 0, which contradicts the assumption that 0⃗ is not

covered by any of the n + 2 affine hyperplanes. Therefore, f(n, 3) = n + 3 for

n ≥ 2.

Note that f(1, 3) = 3 and the proof does not work for n = 1 because ei + ej does

not exist in a 1-dimensional space.

Having f(n, 3) = n+3 for n ≥ 2 immediately gives that f(n, 4) ≥ n+ 4 for n ≥ 2.

For n = 2, it is straightforward to check that f(2, 4) = 6, with an optimal almost

4-cover x1 = 1 (twice), x2 = 1 (twice), and x1 + x2 = 1 (twice). However for n ≥ 3,

we can improve this lower bound 1 further.

Proof of Theorem 2.2.2. For n ≥ 3, we would like to prove by contradiction that n+4

affine hyperplanes cannot form an almost 4-cover of Qn. Following the notations in

the previous proof, we have

P1 · · ·Pn+4 =: P =
∑

1≤i≤j≤k≤l≤n

gigjgkglhijkl + u

n∏
i=1

(xi − 1),

with deg(u) ≤ 4. Following the proof of Theorem 2.2.2, we are able to ignore the

terms gigjgkglhijkl and conclude that u
∏n

i=1(xi−1) and its partial derivatives of order

less than or equal to 3 vanish on Qn \ {⃗0}. Using product rule to expand out these
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derivatives, we see that u satisfies the following relations: (i) u = 0 at ei, ei + ej and

ei + ej + ek for distinct i, j, k; (ii) ∂u/∂xi = 0 at ej and ej + ek for distinct j, k (i = j

or i = k possible); (iii) ∂2u/∂x2
i = 0 at ej (i = j possible); (iv) ∂2u/∂xi∂xj = 0 at ek

(i = k or j = k possible). The polynomial u is nonzero and has degree at most 4, so

we write

u =
∑

aiiiix
4
i +

∑
aiiijx

3
ixj + · · ·+

∑
biiix

3
i + · · ·+

∑
ciix

2
i + · · ·+

∑
dixi + e.

Since P (⃗0) = (−1)n+4 = (−1)n, we know that u(⃗0) = 1 and thus e = 1.

Let w(x) = u(x · ei + ej). Then w(0) = w(1) = w′(0) = w′(1) = w′′(0) = 0.

Since w(x) has degree at most 4, we immediately have w ≡ 0. Recognizing that each

coefficient of w(x) must be 0, this gives

aiiii = 0, (2.1)

aiiij + biii = 0. (2.2)

aiijj + biij + cii = 0. (2.3)

aijjj + bijj + cij + di = 0. (2.4)

ajjjj + bjjj + cjj + dj + 1 = 0 (2.5)

Using ∂u/∂xi(ei) = 0 and ∂2u/∂x2
i (ei) = 0, we have

4aiiii + 3biii + 2cii + di = 0, (2.6)

12aiiii + 6biii + 2cii = 0. (2.7)

Equation 2.5 can be rewritten with i’s instead of j’s. Using aiiii = 0, we can

then solve the system of linear equations given by equations 2.5, 2.6, and 2.7 to get
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biii = −1, cii = 3, di = −3. This implies aiiij = 1. Plugging into the equations (2.3)

and (2.4), we have:

aiijj + biij = −3,

biij + cij = 2.

Now using ∂2u/∂xi∂xj(ei) = 0, we have 3aiiij + 2biij + cij = 0, which gives

2biij + cij = −3.

The three linear equations above give biij = −5, cij = 7, aiijj = 2.

For n ≥ 3, we can also utilize the relation ∂2u/(∂xi∂xj) = 0 at ek with k ̸= i, j.

This gives aijkk + bijk + cij = 0, hence

aijkk + bijk = −7.

Also ∂u/(∂xi) = 0 at ej + ek simplifies to

aijkk + aijjk + bijk + 3 = 0.

Together they give bijk = −11 and aijkk = 4. Finally, by calculations

u(ei + ej + ek) = 3aiiii + 6aiiij + 3aiijj + 3aiijk + 3biii + 6biij + bijk + 3cii + 3cij + 3di + e

= 2 ̸= 0.

This gives a contradiction. Therefore for n ≥ 3, there is no u of degree at most 4

satisfying the aforementioned relations. This shows for n ≥ 3, f(n, 4) ≥ n+ 5.

The proof does not work for n < 3 because ei + ej + ek does not exist in a 1-

dimensional or 2-dimensional space. Since f(n, 4) ≤ n +
(
4
2

)
= n + 6, it can only be
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either n+ 5 or n+ 6.

We note that for n ∈ {3, 4, 5}, we have f(n, 4) = n+5. For Q3, note that x1 = 1,

x2 = 1, x3 = 1, and x1 + x2 + x3 = 1 form an almost 2-cover. Doubling it gives

an almost 4-cover of Q3 with 8 affine hyperplanes. For Q4, the following 9 affine

hyperplanes form an almost 4-cover: x1 = 1, x2 = 1, x3 = 1, x4 = 1, x1 + x4 = 1,

x2 + x4 = 1, x3 + x4 = 1, x1 + x2 + x3 = 1, x1 + x2 + x3 + x4 = 1. For Q5, one can

take xi = 1 for i = 1, · · · 5, together with xi + xi+1 + xi+2 = 1 for i = 1, · · · , 5, where

the addition is in Z5.

We have determined the minimum size of an almost k-cover of Qn, for k ≤ 3. Note

that f(n, 1) = n for n ≥ 1, f(n, 2) = n+ 1 for n ≥ 1, and f(n, 3) = n+ 3 for n ≥ 2.

All of these attain the upper bound f(n, k) ≤ n+
(
k
2

)
whenever n is sufficiently large.

For larger k, the following conjecture seems plausible.

Conjecture 2.2.3. For an arbitrary fixed integer k ≥ 1 and sufficiently large n,

f(n, k) = n+

(
k

2

)
.

In other words, for large n, an almost k-cover of Qn contains at least n +
(
k
2

)
affine

hyperplanes.

The following result of Noga Alon provides some evidence toward Conjecture 2.2.3.

Remark 2. Alon (see [CH20]) showed that the upper bound of n +
(
k
2

)
is tight for

sufficiently large dimension n for any covering which makes use of the standard set of

hyperplanes x1 = 1, x2 = 1, · · · , xn = 1. That is, the following holds for sufficiently

large n: Suppose H1, · · · , Hm are affine hyperplanes in Rn not containing 0⃗, and they

cover all the vectors with t ones as coordinates at least k−t times, for t = 1, · · · , k−1.

Then, m ≥
(
k
2

)
.

In practice, the affine hyperplanes x1 = 1, · · · , xn = 1 have been useful in minimal

constructions, so for Conjecture 2.2.3 to be false, there would have to be situations
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where the minimal almost k-cover misses at least one of these hyperplanes. We revisit

this idea in Subsection 3.1.2 in the context of general polynomial vanishing problems.

Remark 3. Lisa Sauermann and Yuval Wigderson [SW20] showed a lower bound of

f(n, k) ≥ n+ 2k − 3 in the case of k ≥ 2 and n ≥ 2k − 3. This offers an improvement

over the stated bound of n + k + 1 whenever k ≥ 5. Notably, they showed that for

these choices of n and k, there exists a polynomial of degree exactly n+2k− 3 which

vanishes to multiplicity at least k on Qn \ {⃗0} without vanishing at 0⃗. This means

any potential further improvement to the lower bound for the almost k-cover question

would have to make use of the fact that the polynomial P splits completely into linear

factors. For each k ≥ 4, n + 2k − 3 is the best possible lower bound for sufficiently

large n if we ignore that the polynomial we work with actually corresponds to an

almost k-cover with hyperplanes.

2.3 Fixed Dimension

In this section, we study the growth of f(n, k) as k → ∞ for n fixed. To do so,

it helps to view f(n, k) as the optimum of an integer program where the variables

correspond to the hyperplanes not passing through the origin and the constraints are

that each remaining point of Qn is covered the requisite number of times. (If one

wishes to avoid having infinitely many variables, it suffices to consider the possible

intersection patterns of a hyperplane in Rn with Qn.) We can then obtain a lower

bound on f(n, k) by considering the linear relaxation of this integer program.

We will assign to every affine hyperplane H in Rn a nonnegative weight w(H),

with the constraints

∑
v⃗∈H

w(H) ≥ k, for every v⃗ ∈ Qn \ {⃗0},
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and ∑
0⃗∈H

w(H) = 0.

Such an assignment w of weights is called a fractional almost k-cover of Qn. We

would like to minimize the sum of the weights,
∑

H w(H). Denote by f ∗(n, k) the

minimum of
∑

H w(H), i.e. the minimum size of a fractional almost k-cover. We are

able to determine the precise value of f ∗(n, k) for every value of n and k.

Theorem 2.3.1. For every n and k,

f ∗(n, k) =

(
1 +

1

2
+ · · ·+ 1

n

)
k.

This implies that for fixed n and k → ∞,

f(n, k) =

(
1 +

1

2
+ · · ·+ 1

n
+ o(1)

)
k,

which grows linearly in k.

Note that this linear growth in k is in contrast to our upper bound of n+
(
k
2

)
.

As an intermediate step of proving Theorem 2.3.1, we prove the following theorem,

which can be viewed as an analogue of the well-known Lubell-Yamamoto-Meshalkin

inequality [Bol65,Lub66,Mes63,Yam54] for subset sums.

Theorem 2.3.2. Given n real numbers a1, · · · , an, let

A = {S : ∅ ≠ S ⊂ [n],
∑
i∈S

ai = 1}.

Then, ∑
S∈A

1

|S|
(

n
|S|

) ≤ 1.
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Equivalently, let At = {S : S ∈ A, |S| = t}. Then,

n∑
t=1

|At|
t
(
n
t

) ≤ 1.

Moreover, the inequality is tight whenever a⃗ = (a1, · · · , an) is a nonzero binary vector.

To prove Theorem 2.3.1, we first establish an upper bound via an explicit con-

struction of almost k-covers.

Lemma 2.3.3. (i) For every n, k,

f ∗(n, k) ≤
(
1 +

1

2
+ · · ·+ 1

n

)
k.

(ii) When k is divisible by nx, with x = lcm(
(
n−1
0

)
,
(
n−1
1

)
, · · · ,

(
n−1
n−1

)
), we have

f(n, k) ≤
(
1 +

1

2
+ · · ·+ 1

n

)
k.

Proof. For (ii), it suffices to show that when k = nx, we can find an almost k-cover of

Qn, using k(1+1/2+ · · ·+1/n) hyperplanes. We can then replicate these hyperplanes

to upper bound f(n, k) where k is any multiple of nx.

For j = 1, · · · , n, we will use every affine hyperplane of the form xi1 + xi2 + · · ·+

xij = 1 a total of nx

j(nj)
times. This number is actually an integer since it is equal to

x

(n−1
j−1)

, and by definition, x is divisible by all
(
n−1
j−1

)
.

There are
(
n
j

)
affine hyperplanes in this form, so the total number used is

n∑
j=1

nx

j
(
n
j

) · (n
j

)
=

n∑
j=1

nx

j
=

(
1 +

1

2
+ · · ·+ 1

n

)
k.

This is the number of hyperplanes claimed. If we can show that they form an

almost nx-cover of Qn, then we can scale the weights by a constant factor to obtain

a fractional almost k-cover of Qn for every k and (i) will follow immediately.
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It is apparent that (0, · · · , 0) is never covered. Because of the symmetric nature

of our construction, we just need to check, for t = 1, · · · , n, how many times we have

covered any particular vertex that has t ones as coordinates. It gets covered by t
(
n−t
j−1

)
distinct hyperplanes of the form xi1 + xi2 + · · ·+ xij = 1, each of which appears nx

j(nj)

times. Thus, the total number of times a point with t ones is covered is given by:

n∑
j=1

nx

j
(
n
j

) · t(n− t

j − 1

)
= nxt

n−t+1∑
j=1

(
n−t
j−1

)
j
(
n
j

) = nxt

n−t+1∑
j=1

(n− t)!(n− j)!

(n− t− j + 1)!n!

= nxt · (n− t)!

n!
·
n−t+1∑
j=1

(n− j)!

(n− t− j + 1)!

=
nx

(t− 1)!
(
n
t

) n−t+1∑
j=1

(n− j)!

(n− t− j + 1)!
=

nx(
n
t

) n−t+1∑
j=1

(
n− j

t− 1

)
=

nx(
n
t

)(n
t

)
= nx = k.

To establish the lower bound in Theorem 2.3.1, first we assign weights to each

vertex of Qn we wish to cover. A vertex with t ones as coordinates is given weight

1

t(nt)
. Then the sum of the weights of all the vertices is:

n∑
t=1

(
n

t

)
· 1

t
(
n
t

) =
n∑

t=1

1

t
.

If we cover each vertex k times, the sum over all affine hyperplanes of the weights

of the vertices they cover is k(1 + 1/2 + · · · + 1/n). Thus, if we can show that no

hyperplane can cover a set of vertices whose weights sum to more than 1, we will have

proven the lower bound. Given an affine hyperplane H not containing 0⃗, denote by
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At the set of vertices with t ones covered by H. We wish to prove Theorem 2.3.2, i.e.

n∑
t=1

|At|
t
(
n
t

) ≤ 1.

In general, vertices of Qn \ {⃗0} correspond to nonempty subsets of [n]. It is worth

noting that if the equation of H is a1x1 + · · · + anxn = 1, and all coefficients ai

are strictly positive, the subsets corresponding to the vertices it covers will form an

antichain. By the Lubell-Yamamoto-Meshalkin inequality,

n∑
t=1

|At|
t
(
n
t

) ≤
n∑

t=1

|At|(
n
t

) ≤ 1.

However, some coefficients ai may be non-positive. In order to consider a more

general hyperplane, we will associate each vertex it covers to some permutations of

[n]. Consider the vertex (c1, c2, · · · , cn) ∈ Qn where the coordinates which are ones

are ci1 , · · · , cit . We will associate this vertex to the permutations, (d1, d2, · · · , dn) of

[n] which begin with {i1, i2, · · · , it} in some order and also have
∑j

k=1 adk < 1 for

1 ≤ j < t. We will make use of the following lemmas.

Lemma 2.3.4. No permutation of [n] is associated to more than one vertex on the

same hyperplane.

Lemma 2.3.5. The total number of permutations associated to a vertex with t ones

as coordinates is at least (t− 1)!(n− t)!.

Essentially, each vertex covered by a given hyperplane is associated to a lot of

permutations but there are a limited number of permutations available, since the

same permutation cannot be repeated. Thus, we will be able to establish an upper

bound on the total weight of the covered vertices. Conditional on the lemmas, we

give a proof of Theorem 2.3.2.
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Proof of Theorem 2.3.2. By definition, sets in A correspond to vertices of Qn covered

by the hyperplane H with equation a1x1 + · · · + anxn = 1. From Lemma 2.3.4 and

2.3.5, these vertices define disjoint collections of permutations of length n. Moreover

if S ∈ A has size t then there are at least (t− 1)!(n− t)! permutations associated to

it. Since in total there are at most n! permutations, we get

∑
S∈A

(|S| − 1)!(n− |S|)! ≤ n!,

which implies ∑
S∈A

1

|S|
(

n
|S|

) ≤ 1

as desired.

Note that when a⃗ = (a1, · · · , an) is a nonzero binary vector with j ones, we have

that At ⊂ Qn consists of all vertices with a 1 in one of the coordinates where a⃗ has

a 1 and t− 1 1’s in coordinates where a⃗ has a 0. Thus, |At| = j
(
n−j
t−1

)
, and we have

n∑
t=1

|At|
t
(
n
t

) =
n∑

t=1

j
(
n−j
t−1

)
t
(
n
t

) = 1,

where the second equality was previously shown in the proof of Lemma 2.3.3. Thus,

the inequality is tight when (a1, · · · , an) is a nonzero binary vector.

We now prove the lemmas used.

Proof of Lemma 2.3.4. Suppose for the sake of contradiction that a permutation is

associated to two vertices, v and w, of the same hyperplanes. They may have either

the same or a different number of ones as coordinates.

Suppose that v and w both have a ones as coordinates. The permutations as-

sociated to v have the a indices where v has a 1 as their first a entries and the

permutations associated to w will have the a indices where w has a 1 as their first a

entries. However, v and w do not have their ones in the exact same places so the set
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of the first a entries is not the same for any pair of a permutation associated to v and

a permutation associated to w.

We are left to consider the case where v and w do not have the same number of

ones as coordinates. Without loss of generality, v has a ones as coordinates and w

has b ones as coordinates where a > b. Suppose the permutation associated to both

of them begins with (d1, d2, · · · , db). By the restrictions on permutations associated

to v, we have that
∑b

j=1 adj < 1. However, the conditions on permutations associated

to w tell us that (d1, d2, · · · , db) are precisely the indices where w has a 1 coordinate.

This implies
∑b

j=1 adj = 1, giving a contradiction.

Proof of Lemma 2.3.5. There are (n − t)! ways to arrange the indices other than

{i1, i2, · · · , it}, so it suffices to show that there exist at least (t − 1)! ways to order

{i1, i2, · · · , it} as (d1, d2, · · · , dt) such that we have
∑j

k=1 adk < 1 for 1 ≤ j < t. We

notice that (t − 1)! is the number of ways to order {i1, i2, · · · , it} around a circle

(up to rotations, but not reflections). Thus it suffices to show that for each circular

ordering of {i1, i2, · · · , it}, we can choose a starting place from which we may continue

clockwise and label the elements as (d1, d2, · · · , dt) in such a way that
∑j

k=1 adk < 1

for all 1 ≤ j < t.

Equivalently, the values of aik for 1 ≤ k ≤ t, which happen to sum to 1, have

been listed around a circle. We wish to find some starting point from which all the

partial sums from that point of up to t − 1 terms are less than 1. We can subtract

1/t from each to give the equivalent problem of t numbers, which sum to 0, written

around a circle and needing to find a starting point from which all the partial sums of

1 ≤ j ≤ t− 1 terms are less than 1− j
t
. It suffices to find a starting point for which

the aforementioned partial sums are at most 0.

Consider all possible sums of any number of consecutive terms along the circle and

choose the largest. We will label the terms in this sum as e1, e2, · · · , em and continue



29

to order clockwise around the circle em+1, em+2, · · · , et. Choose the starting point to

be em+1. If any of the partial sums em+1+ em+2+ · · ·+ em+j exceeds 0, for m+ j ≤ t,

we could simply have chosen e1, e2, · · · , em+j to get a larger sum than e1+e2+· · ·+em.

Similarly, if em+1 + em+2 + · · ·+ et + e1 + e2 + · · ·+ ej > 0 for some 1 ≤ j < m, then

we can note that (e1 + e2 + · · ·+ et) + (e1 + e2 + · · ·+ ej) exceeds e1 + e2 + · · ·+ em,

and since e1 + e2 + · · ·+ et = 0, we have that e1 + e2 + · · ·+ ej > e1 + e2 + · · ·+ em,

a contradiction. Thus, if we start at em+1 and move clockwise around the circle, the

first t− 1 partial sums will be at most 0, as desired.

Now we are ready to prove our main theorem in this section.

Proof of Theorem 2.3.1. As mentioned before, we assign weight 1

t(nt)
to each vertex of

Qn \ {⃗0} with t ones as coordinates. By Lemma 2.3.2, every affine hyperplane covers

a set of vertices whose weights sum to at most 1. Therefore in an optimal fractional

almost k-cover {w(H)},

f ∗(n, k) =
∑
H

w(H) ≥ k ·
n∑

t=1

(
n
t

)
t
(
n
t

) =

(
n∑

i=1

1

i

)
k.

With the upper bound proved in Lemma 2.3.3, we have

f ∗(n, k) =

(
n∑

i=1

1

i

)
k.

For integral almost k-covers, note that f(n, k) ≥ f ∗(n, k). Using Lemma 2.3.3

again,

f(n, k) = f ∗(n, k) =

(
n∑

i=1

1

i

)
k,

whenever nx divides k. For fixed n and k → ∞, note that f(n, k) is monotone in k,
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which immediately implies

f(n, k) =

(
1 +

1

2
+ · · ·+ 1

n
+ o(1)

)
k.

For small values of n, we can actually determine the value of f(n, k) for every k.

It seems that for large k, f(n, k) is not far from its lower bound ⌈f ∗(n, k)⌉. Trivially

f(1, k) = k.

Theorem 2.3.6. The following statements are true:

(i) f(2, k) = ⌈3k
2
⌉ for k ≥ 1.

(ii) f(3, k) = ⌈11k
6
⌉ for k ≥ 2 and f(3, 1) = 3.

Proof. (i) The lines x = 1, y = 1, and x + y = 1 give an almost 2-cover of Q2 using

3 affine hyperplanes. Therefore f(2, k + 2) ≤ f(2, k) + 3, and it suffices to check

f(2, 1) = 2 and f(2, 2) = 3 which are both obvious.

(ii) There exists an almost 6-cover of Q3 using 11 affine hyperplanes: each of xi = 1

twice, each of xi + xj = 1 once, and x1 + x2 + x3 = 1 twice. Therefore f(3, k + 6) ≤

f(3, k) + 11. It suffices to check f(3, k) ≤ ⌈11k
6
⌉ for k = 2, · · · , 5 and k = 7. From

f(n, 2) = n + 1, we have f(3, 2) = 4. f(3, 3) ≤ 6 follows from Theorem 2.2.1.

f(3, 4) ≤ 8 since f(3, 4) ≤ 2f(3, 2). f(3, 5) ≤ 10 by taking each of xi = 1 twice,

x1 + x2 + x3 = 1 three times, and x1 + x2 + x3 = 2 once. f(3, 7) ≤ 13 follows from

taking each of x1 = 1, x2 = 1, x3 = 1, x1+x2 = 1, x1+x3 = 1 twice, and x2+x3 = 1,

x2 + x3 − x1 = 1, x1 + x2 + x3 = 1 once.

With the assistance of a computer program, we also checked that f(4, k) = ⌈25k
12

⌉

for k ≥ 2. f(5, k) = ⌈137
60
k⌉ for k ≥ 15 except when k ≡ 7 (mod 60) where f(5, k) =

⌈137
60
k⌉+ 1. The following question is natural.
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Question 2.3.7. Does there exist an absolute constant C > 0 which does not depend

on n, such that for a fixed integer n, there exists Mn, so that whenever k ≥ Mn,

f(n, k) ≤
(
1 +

1

2
+ · · ·+ 1

n

)
k + C?

If so, this would show that f(n, k) and f ∗(n, k) differ by at most a constant when

k is large. Specifying k large is necessary since when k = 1, f(n, k) − f ∗(n, k) =

n− (1 + 1
2
+ · · ·+ 1

n
) can be arbitrarily large.

2.4 Higher Codimension

We can also consider analogous almost-covering problems where the goal is to cover

all but one point of {0, 1}n using affine subspaces of codimension d. Jamison [Jam77]

considered the question of covering all the points except 0⃗ in the vector space Fn
q at

least once without covering 0⃗ while Bishnoi et al. [BBDM21] considered this question

for Fn
2 and higher covering multiplicity.

We will also consider the n-cube, except we will regard it as a proper subset of

Rn, rather than as Fn
2 . Working over characteristic 0 differs from the finite field case.

Working over F2, all codimension d affine subspaces will contain 2n−d points.

Over R, a codimension d subspace may contain up to 2n−d points of {0, 1}n but

could also contain fewer. Groenland and Johnston [GJ20] determined which numbers

between 2n−d−1 and 2n−d are possible cardinalities of the intersection H ∩ {0, 1}n for

a codimension d affine subspace H of Rn.

The fact that a codimension d affine subspace over F2 will cover at least as many

points of {0, 1}n as one over R might suggest that the minimum number of subspaces

needed is higher over R. To the contrary, this is never the case for covering all but

the forbidden point at least once. We also establish some absolute bounds for the

minimum number of codimension d subspaces needed over R.
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Theorem 2.4.1. For n ≥ d ≥ 2, let h(n, d) represent the minimum number of

affine hyperplanes needed to cover all but one point of Fn
2 while leaving the last point

uncovered. Let g(n, d) represent the minimum number of affine hyperplanes over R

needed to cover all but one point of {0, 1}n while leaving the last point uncovered.

Then, the following statements are true.

(i) n ≤ g(n, d) ≤ h(n, d),

(ii) g(n, 2) = n for n ≥ 4 and g(n, 3) ≤ n+ 2 for n ≥ 7, and

(iii) g(n, d) ≥ 2d + 1 for n ≥ d+ 3.

Proof. (i) For n = d, codimension d affine subspaces are just points, so g(d, d) =

h(d, d) = 2d−1. Lemma 3.2 of [BBDM21] demonstrates that h(n+1, d) ≥ h(n, d) + 1.

To show that g(n, d) ≤ h(n, d) for all n ≥ d, it suffices to show that g(n + 1, d) ≤

g(n, d) + 1. To see this, we consider a minimal coveringH1, H2, · · · , Hg(n,d) of {0, 1}n\

{⃗0} in Rn. Then, H1 × {0, 1}, H2 × {0, 1}, · · · , Hg(n,d) × {0, 1} cover all points of

{0, 1}n+1 except for 0⃗ and (0, · · · , 0, 1). It is easy to find a subspace of codimension d

which contains (0, · · · , 0, 1) but not 0⃗ in order to complete a covering of size g(n, d)+1.

From the later bounds, we will see that h(n, d) and g(n, d) are not always equal.

Suppose we have a cover of {0, 1}n \ {⃗0} consisting of g(n, d) codimension d affine

subspaces over R. Each subspace is of the form {v +
∑n−d

i=1 civi : c1, · · · , cn−d ∈ R}

for some vectors v, v1, v2, · · · , vn−d ∈ Rn. We can extend these subspaces to affine

subspaces of codimension 1 by including d − 1 vectors with “irrelevant” directions

such as (1, · · · , 1, π, 1, · · · , 1) and taking spans. Thus, we obtain a list of g(n, d)

affine hyperplanes which cover the same subset of {0, 1}n as before. By Alon and

Füredi’s result [AF93], this list must consist of at least n hyperplanes so g(n, d) ≥ n.

(ii) The reason we sometimes obtain g(n, d) < h(n, d) is because there are affine

subspaces containing the origin over F2 whose counterparts over R do not contain the

origin. For n = 4, d = 2, we are able to obtain the following cover consisting of four

affine subspaces over R:
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• x4 = 0, x1 + x2 + x3 = 2,

• x3 = x4 = 1,

• x3 + x4 = 1, x1 = x2, and

• x3 = 0, x1 + x2 = 1.

Note that the 2 in the equation of the first subspace is the reason no analogous

construction exists over F2. Since we have that g(n + 1, d) ≤ g(n, d) + 1, obtaining

g(n, 2) = n for n = 4 ensures g(n, 2) ≤ n for n ≥ 4, which combined with the lower

bound gives g(n, 2) = n for n ≥ 4.

Similarly, we can show that g(n, 3) ≤ n+ 2 for n ≥ 7 by demonstrating that

g(7, 3) ≤ 9. We present the following construction:

• x1 = x3 + x4 = 1, x4 = x5,

• x3 = x1 − x4 = 0, x2 + x6 = 1,

• x1 = 0, x3 = x7 = 1,

• x7 = x1 − x5 = 0, x4 + x5 = 1,

• x7 = x1 − x4 = 0, x3 = 1,

• x7 = 1, x1 = x3 = x5,

• x3 = x2 − x6 = 0, x1 + x5 = 1,

• x3 = x4 − x5 = 0, x1 + x2 + x4 + x6 = 2,

• x1 − x7 = x3 − x4 = 0, x1 + x3 + x5 = 2.

Note that seven of these subspaces cover 16 points of {0, 1}7, while the other two cover

12 points. It is impossible to find a construction using nine subspaces which each cover

16 points of {0, 1}7 since using the same equations over F7
2 would avoid the origin and
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thus imply h(7, 3) ≤ 9, whereas we know that h(7, 3) ≥ 4 + h(3, 3) = 4+(23−1) = 11.

Similarly, it is impossible to find a construction using eight subspaces which each cover

16 points and one that covers 12 since the ones that cover 16 points will still cover

the same points over F7
2 and the one that covers 12 points can be replaced by two

codimension 3 subspaces over F7
2 which cover those 12 points without covering 0⃗. (For

example, the last subspace in our construction could be replaced by the subspaces

defined by x1 − x7 = x3 − x4 = 0, x1 = 1 and by x1 − x7 = x3 − x4 = 0, x3 = 1.) This

implies that h(7, 3) ≤ 8 + 2 = 10, a contradiction.

(iii) Lastly, we will show that g(n, d) ≥ 2d + 1 for n − d ≥ 3. There are 2n − 1

points to cover and we can only cover 2n−d at a time, so this gives an immediate lower

bound of 2d for d ≤ n− 1. Further, 2d can only be obtained if one of the following

scenarios holds:

• Each subspace used covers 2n−d points of Qn.

• 2d − 1 subspaces used cover 2n−d points, while the last covers 2n−d − 1 points.

In the first scenario, since 0⃗ is uncovered, exactly one vertex of {0, 1}n is covered

twice.

For a particular affine subspace of codimension d which covers the maximum

possible 2n−d points of Qn, the vertices covered look like a +
n−d∑
i=1

civi where each

ci ∈ {0, 1}, a ∈ Qn, and v1, · · · , vn−d ∈ {−1, 0, 1}n. We can partition these into

pairs {a+
n−d−1∑
i=1

civi + vn−d, a+
n−d−1∑
i=1

civi}, for fixed choices of c1, · · · , cn−d−1. If vn−d

has a 0 for its xi coordinate, then both members of each pair will have the same

xi coordinate, meaning that an even number of points covered by this subspace will

have an xi coordinate of 1. If vn−d has a 1 or −1 as its xi coordinate, then half of

the vertices covered by this subspace have a 1 as their xi coordinate, for a total of

2n−d−1, which is again even.

This means that for each i = 1, · · · , n, if we add up the xi coordinates of the
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points covered (with multiplicity), we will always get 0 ∈ F2. However, the points

covered are all the vertices of {0, 1}n except 0⃗, and then one vertex covered a second

time. The sum of the xi coordinates of the points in {0, 1}n \ {⃗0} is always 0 ∈ F2

for n ≥ 2 so the vertex covered twice must have an even xi coordinate for all i. But

that means 0⃗ is covered twice when it’s not supposed to be covered at all. Thus, the

first scenario is impossible.

For k ≥ 6, Groenland and Johnston [GJ20] determined the possible large sizes of

an intersection of a dimension k affine subspace over R with Qn.

Theorem 2.4.2. [GJ20] If H is a dimension k affine subspace of Rn with k ≥ 6 and

|H ∩Qn| > 2k−1, then |H ∩Qn| ∈ {2k−1+2i | i = 0, · · · , k−1}∪{2k−1+2k−5+2k−6}.

Note that for k ≥ 6, none of these possible sizes is equal to 2k − 1. Therefore, we

conclude that a codimension d affine subspace cannot contain exactly 2n−d− 1 points

of Qn when d ≤ n− 6.

We will now show that such a subspace cannot exist for d ∈ {n− 5, n− 4, n− 3}

either. Note that when d = n − 2, it is possible to have an affine subspace of

codimension d which contains exactly 2n−d − 1 = 3 points of Qn and that we obtain

g(n, n− 2) = 2n−2 for n ≥ 4.

Let k := n − d ∈ {3, 4, 5}. Suppose that n is the smallest possible dimension

such that there is a dimension k affine subspace, H, which contains exactly 2k − 1

points from Qn. Without loss of generality, at least 2k−1 of these points have x1 = 0.

Consider the points which lie in the intersection of H∩Qn and the hyperplane x1 = 0.

They either lie in a dimension k − 1 affine subspace of Rn or they span a dimension

k affine subspace.

If they span a dimension k affine subspace, then there are no other points ofH∩Qn

with x1 = 1, since then the points of H ∩ Qn would span a subspace of dimension

at least k + 1. Thus, all 2k − 1 points of H ∩ Qn lie in the intersection of Qn and

x1 = 0. This is isomorphic to a copy of {0, 1}n−1 embedded into Rn, contradicting
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the minimality of n.

In the remaining case, the intersection of H ∩Qn and x1 = 0 lies in a dimension

k− 1 affine subspace of Rn. Therefore, this intersection, which contains at least 2k−1

points, must contain exactly 2k−1 points. The remaining 2k−1 − 1 points of H ∩ Qn

have x1 = 1. In particular, the points of H ∩Qn with x1 = 1 can be written as v+ vk

where v lies in the intersection of H ∩ Qn with x1 = 0 and vk is a fixed vector in

{−1, 0, 1}n with 1 as its x1 coordinate.

As before, we can partition the elements in the intersection of H ∩Qn with x1 = 0

into pairs {a+
∑k−2

i=1 civi, a+
∑k−2

i=1 civi+vk−1} for some vectors a ∈ Qn, v1 · · · , vk−1 ∈

{−1, 0, 1}n, and with c1, · · · , ck−2 ∈ {0, 1}. If the xj coordinate of vk−1 is 0, we

conclude that an even number of these vectors have xj = 1. If the xj coordinate of

vk−1 is 1 or −1, we conclude that half of these vectors, a total of 2k−2, have xj = 1.

In either case, we get that for every j = 1, · · · , n, an even number of vectors in the

intersection of H ∩ Qn with x1 = 0 have xj = 1, and thus that an even number of

vectors in the intersection of H ∩Qn with x1 = 0 have xj = 0.

We know that vk has x1 = 1 and also that vk ̸= e1 since |H ∩Qn| < 2k. Therefore,

there is some j ∈ {2, 3, · · · , n} where xj ∈ {−1, 1} for vk. If the xj coordinate of vk

is 1, it means that for every v in the intersection of H ∩ Qn with x1 = 0 that has

xj = 1, we have that v + vk is not in Qn. There are an even number of such v’s, so if

the number of such v’s is nonzero, then we have |H ∩Qn| ≤ 2k − 2. This means that

for every j where xj = 1 for vk, every single vector in the intersection of H ∩Qn with

x1 = 0 must have xj = 0. Similarly, if the xj coordinate of vk is −1, it means that

for every v in the intersection of H ∩ Qn with x1 = 0 that has xj = 0, we have that

v + vk is not in Qn. There are an even number of such v’s, so if the number of such

v’s is nonzero, then we have |H ∩ Qn| ≤ 2k − 2. This means that for every j where

xj = −1 for vk, every single vector in the intersection of H ∩ Qn with x1 = 0 must

have xj = 1.
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Since every v in the intersection of H ∩ Qn with x1 = 0 has xj = 0 when vk has

xj = 1 and has xj = 1 when vk has xj = −1, we can add vk to all 2k−1 of those

vectors and still be in Qn which would give |H ∩Qn| = 2k.

Therefore, we conclude that this scenario is impossible as well, forcing g(n, d) ≥

2d + 1 for n ≥ d+ 3.

2.5 Connections to Graph Covering and Sidon Sets

One consideration which arises when determining how many points of {0, 1}n each

subspace can contain in an optimal cover over R is how many affine subspaces of

the same codimension, not passing through the origin, are needed to cover the same

set of points over F2. For example, the points of {0, 1}7 covered by the subspace

x3 = x4−x5 = 0, x1+x2+x4+x6 = 2 over R cannot be covered by a single codimension

3 subspace over F2 without covering 0⃗, but can be covered by the subspaces x3 =

x4 − x5 = 0, x1 + x2 = 1 and x3 = x4 − x5 = 0, x1 + x4 = 1 of F7
2, neither of which

contains 0⃗ ∈ F7
2.

We will focus our attention on subspaces of codimension 1. For an intersection

pattern of an affine hyperplane and {0, 1}n that does not contain the origin over R,

how many affine hyperplanes over F2 not passing through the origin are needed to

cover the same set of points? We will consider the cases where the normal vector of

the hyperplane is an element of {0, 1}n.

If the hyperplane is of the form xi1 + · · ·+ xik = c where c is odd, we can use the

same equation over F2 without passing through the origin. If c is even, we will need

more than one hyperplane over F2 to cover the same set of points.

Consider xi1 + · · · + xik = 2d for d ∈ Z>0. Over F2, we can replace it with a

collection of hyperplanes of the form
∑

i∈S xi = 1 for various subsets S ⊂ [n]. First
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we make the case that the minimum number of such hyperplanes needed is the same

as the number needed when k = n.

Without loss of generality, we can consider x1 + · · · + xk = 2d. For any set of

2d distinct indices, {j1, j2, · · · , j2d} ⊂ [k], this collection must cover all points that

have 1’s in each of those coordinates and 0’s in the remaining coordinates in [k].

For dimension k, this is equivalent to making sure that for each {j1, j2, · · · , j2d} ⊂

[k], some hyperplane corresponds to a set S ⊂ [k] which contains an odd number

of elements from {j1, j2, · · · , j2d}. Taking the equations of a minimum cover over

dimension k and regarding them instead as hyperplanes of Fn
2 will still cover all points

of Fn
2 with 1’s in 2d of their first k coordinates. Thus, the number of hyperplanes

needed over dimension n > k is at most the number needed for dimension k.

However, for any choice of 2d indices {j1, j2, · · · , j2d} ⊂ [k], a cover over dimension

n needs to cover, in particular the points with 1’s in those coordinates and 0’s in

the remaining n − 2d coordinates. That is equivalent to making sure that for each

{j1, j2, · · · , j2d} ⊂ [k] some hyperplane corresponds to a set S which contains an

odd number of elements from {j1, j2, · · · , j2d}. Note that satisfying this criterion

is unaffected by which elements of [n] \ [k] are in which S’s. Thus, this necessary

condition corresponds to choosing subsets of [k] such that for each choice of 2d indices

in [k], there is some subset where an odd number of those indices appear. This

was exactly the condition for finding a cover over dimension k, so the number of

hyperplanes needed over dimension n > k is at least the number needed for dimension

k.

In Rn, consider the hyperplane x1+x2+· · ·+xn = 2. The collection of hyperplanes

chosen over F2 to cover these points without covering 0⃗ must, for any 1 ≤ p < q ≤ n,

cover all points with xp = xq = 1 and xi = 0 for i ∈ \{p, q}. That is equivalent to

making sure some hyperplane corresponds to a set S which contains exactly one of p

and q.
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Another way of viewing this is to regard each hyperplane,
∑

i∈S xi = 1, in the cover

as a complete bipartite graph with partite sets S and [n]\S. For these hyperplanes to

form a valid cover, there must be, for each pair 1 ≤ p < q ≤ n, some complete bipartite

graph in the list where p and q are in different partite sets. This corresponds to using

complete bipartite graphs to cover the edges of a complete graph on [n]. Thus, the

minimum number of affine hyperplanes of Fn
2 needed to cover all points with exactly

two 1’s as coordinates, while avoiding the origin, is ⌈log2 n⌉.

Next we can consider the case of covering all points of Fn
2 with four 1’s as coor-

dinates. For any subset D ⊂ [n] of size 4, we must choose some hyperplane corre-

sponding to an S ⊂ [n] which contains either exactly one or exactly three elements

of D.

Let hc(n, 4) denote the minimum number of affine hyperplanes needed to cover all

the points of Fn
2 with exactly four 1’s as coordinates, without covering 0⃗. hc(n, 4) is

non-decreasing in n since taking a cover for dimension n and removing any appearance

of xn from the equations of hyperplanes in the collection will still produce a cover

over dimension n − 1. We establish an asymptotic upper bound by showing that

hc(3k, 4) ≤ 2k.

To do this, we will make use of the hyperplanes x3i−2+x3i−1 = 1 and x3i−2+x3i = 1

for i = 1, · · · , k. Consider D ⊂ [n] := [3k] of size 4. There is some i ∈ [k] where the

set {3i− 2, 3i− 1, 3i} contains an element of D. In fact, if it contains three elements

of D, some other set of the form {3j − 2, 3j − 1, 3j} for j ∈ [k] must contain exactly

one element of D. Thus, some set of the form {3i − 2, 3i − 1, 3i} contains exactly

one or two elements of D. If it contains exactly one or just 3i− 1 and 3i, then either

of the hyperplanes x3i−2 + x3i−1 = 1 or x3i−2 + x3i = 1 will include the point with

1’s in coordinates corresponding to elements of D and 0’s elsewhere. If it contains

3i− 2 and 3i− 1, we can use x3i−2 + x3i = 1. If it contains 3i− 2 and 3i, we can use

x3i−2 + x3i−1 = 1.



40

Note that unlike in the case of covering the points of Fn
2 with two 1’s as coordinates,

it is now possible for some indices to appear in exactly the same set of S’s. In

particular, we could use the hyperplanes x1 = 1, x2 = 1, · · · , xn−3 = 1 and the last

three indices would not appear at all. However, it is impossible to choose {a, b, c, d} ⊂

[n] where a and b appear in exactly the same S’s and c and d appear in exactly the

same S’s. The reason for this is the point with 1’s in coordinates a, b, c, and d and

0’s elsewhere will not lie on any of the hyperplanes
∑

i∈S xi = 1.

Finding a minimum cover consists of picking hc(n, 4) subsets, S, of [n] that serve

as index sets for each hyperplane
∑

i∈S xi = 1. For each i ∈ [n], picking which

hyperplanes use it as an index is equivalent to picking a vector, vi, in Fhc(n,4)
2 . The

condition that for each setD ⊂ [n] of size 4, there is some hyperplane that uses exactly

one or exactly three elements of D as indices is equivalent to va + vb + vc + vd ̸= 0⃗

for {a, b, c, d} ⊂ [n]. This can be rewritten as va + vb ̸= vc + vd. While the vi’s do

not need to be unique for every i ∈ [n], we can discard at most two of them to get a

unique set of vectors. Thus, determining hc(n, 4) is closely related to the problem of

finding the smallest dimension, k, for which there is a set, T ⊂ Fk
2, with |T | = n for

which the pairwise sums va + vb for distinct va, vb ∈ T are unique.

This T can be thought of as analogous to a Sidon set. A Sidon set, A ⊂ Z>0, is a

set where a+b = c+d for a, b, c, d ∈ A implies {a, b} = {c, d} as multisets. Extending

this definition to Fk
2, there is no such thing as a nontrivial Sidon set since we always

have va + va = 0 = vb + vb, but the condition imposed on T is the closest notion in

the sense that the pairwise sums will be distinct unless they a priori agree.

More generally, we can consider the question of finding the smallest dimension,

k := s(n, d), such that we can find a collection of n vectors in Fk
2 such that no d

distinct vectors in the collection sum to 0⃗. When d is even, s(n, d) is related to

the question of finding the smallest number of hyperplanes over Fn
2 which cover all

points with exactly d 1’s as coordinates, without covering 0⃗. For d odd, we expect
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the behavior of s(n, d) to be significantly different since it is possible to choose all

vectors whose first coordinate is 1 in our collection.

In fact, s(2m−1 + 1, 3) = m < s(2m−1 + 2, 3) for m ≥ 2, which can be rearranged

to give s(n, 3) = ⌈log2(n− 1)⌉ + 1 for n ≥ 3. To see this, we show that 2m−1 + 1 is

the largest possible size of a subset of Fm
2 such that no three distinct elements sum to

0⃗. An optimal construction consists of taking 0⃗ along with every vector in Fm
2 with a

1 in the first coordinate. To see that this is optimal, suppose we have a set T ⊂ Fm
2

with |T | = 2m−1 + 2 such that no three distinct elements of T sum to 0⃗. Consider

some nonzero t ∈ T and let W := T \ {t}. Both W and t −W are of size 2m−1 + 1

so they share a common element. Thus, there exist a, b ∈ W with a = t − b. Note

that a ̸= b since otherwise t = a + b = 0⃗. Therefore, we have three distinct elements

a, b, t ∈ T such that a+ b− t = a+ b+ t = 0⃗, a contradiction.
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Chapter 3

Covering for General Grids

3.1 Rectangular Grids

Alon and Füredi [AF93] also showed a more general version of their hypercube almost-

covering result which holds for any rectangular grid:

Theorem 3.1.1 (Alon-Füredi, 1993). For subsets S1, · · · , Sn of a field F, the smallest

number of affine hyperplanes needed to cover every point of the grid S1×· · ·×Sn except

for one point that must remain uncovered is:

n∑
i=1

(|Si| − 1).

Note that the n-cube is the case where |S1| = · · · = |Sn| = 2. An easy way of

interpreting this summation is that the natural construction using only hyperplanes

orthogonal to the standard unit vectors is optimal. For example, in two dimensions,

the optimum number can be obtained just from taking all the horizontal and vertical

lines of the grid which do not pass through the excluded point.

It is natural to extend this question to higher multiplicity and ask for the smallest

number of affine hyperplanes needed to cover every point of S1 × · · · × Sn at least

k times except for one point that must remain uncovered. A related question is to
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extend the work of Sauermann and Wigderson [SW20] and ask for the lowest degree

of a polynomial which vanishes to multiplicity at least k at every point of S1×· · ·×Sn

except for one point where it does not vanish. The hyperplane covering question is

the same as the polynomial vanishing question with the added condition that the

polynomial splits completely into linear factors. In fact, this condition is not used at

all in Alon and Füredi’s lower bound so the answer to these questions is the same for

k = 1.

In this section, we will solve both questions for k = 2 and explain why they are

more difficult for k ≥ 3.

Claim 3.1.2. For subsets S1, · · · , Sn of a field F, the smallest number of affine hy-

perplanes needed to cover every point of the grid S1 × · · · × Sn twice except for one

point that must remain uncovered is:

max
i

|Si| − 1 +
n∑

i=1

(|Si| − 1).

Furthermore, the minimum degree of a polynomial in F[x1, · · · , xn] which vanishes to

multiplicity two on all but one point (where it does not vanish) of S1 × · · · × Sn, is

again

max
i

|Si| − 1 +
n∑

i=1

(|Si| − 1).

Proof. Ball and Serra [BS09] used the Punctured Combinatorial Nullstellensatz (The-

orem 1.2.3) to prove a lower bound of (t−1)(maxi |Si|−1)+
n∑

i=1

(|Si|−1) on the degree

of a polynomial which vanishes to multiplicity t on all but one point of S1 × · · · × Sn

and does not vanish at the remaining point. We will include a proof of this, specifi-

cally for the case t = 2. This also serves as a lower bound for the hyperplane covering

problem. We will construct a collection of maxi |Si|−1+
n∑

i=1

(|Si|−1) hyperplanes with

the desired covering properties. Each hyperplane can be written as fi(x1, · · · , xn) = 0

for some linear polynomial fi. The product of the fi’s in turn provides a matching
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upper bound for the polynomial vanishing question.

For the lower bound, we may write each hyperplane, Hi, in our cover as ai,1x1 +

ai,2x2+ · · ·+ai,nxn−ci = 0. Writing fi := ai,1x1+ai,2x2+ · · ·+ai,nxn−ci, we see that

the product of the fi’s vanishes to multiplicity at least 2 everywhere on S1 × · · · ×Sn

except for the uncovered point (a1, · · · , an), with ai ∈ Si for i = 1, · · · , n. Thus, the

lower bound for the polynomial vanishing problem also serves as a lower bound for

the hyperplane covering problem. Now we provide a proof of the lower bound for the

polynomial vanishing problem.

In the context of Theorem 1.2.3, we take Di = {ai} for i = 1, · · · , n. Thus,

gi =
∏

j∈Si
(xi − j) and li = xi − ai. Note that throughout this proof, we will treat

gi
li
and similar expressions as polynomials defined everywhere rather than as rational

functions defined only on the domain F \ {ai}. Without loss of generality, we assume

that maxi |Si| = |S1|. Assume that a polynomial f of degree less than |S1| − 1 +∑n
i=1(|Si| − 1) vanishes with multiplicity at least 2 at every point of S1 × · · · × Sn

except for (a1, · · · , an) where it does not vanish.

Then, we have polynomials hτ with τ ∈ T (n, 2) and a nonzero polynomial u with

deg u ≤ deg f −
∑n

i=1(|Si| − 1) < |S1| − 1 such that:

f =
∑

τ∈T (n,t)

gτ(1)gτ(2)hτ + u
n∏

i=1

gi
li

Any first-order partial derivative ∂f
∂xi

vanishes everywhere on S1 × · · · × Sn \

{(a1, · · · , an)}. Note that

∂(gτ(1)gτ(2)hτ )

∂xi

= gτ(1)

(
gτ(2)

∂hτ

∂xi

+
∂gτ(2)
∂xi

hτ

)
+ gτ(2)hτ

∂gτ(1)
∂xi

so terms of this form will vanish on S1×· · ·×Sn for all i and τ . Therefore, all the

first order partial derivatives of u
∏n

i=1
gi
li

will vanish everywhere on S1 × · · · × Sn \

{(a1, · · · , an)}.
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In particular, consider ∂
∂x1

(
u
∏n

i=1
gi
li

)
. This is equal to

(
n∏

i=2

gi
li

) ∂u

∂x1

g1
l1

+ u
∂

∂x1

∏
j∈S1\{a1}

(x1 − j)


We consider grid points that agree with the uncovered point everywhere but the

first coordinate. Since xi = ai for i ≥ 2, then
∏n

i=2
gi
li

is nonzero. Therefore, for

r ∈ S1 \ {a1}, the following vanishes at (r, a2, · · · , an):

∂u

∂x1

g1
l1

+ u
∂

∂x1

∏
j∈S1\{a1}

(x1 − j).

g1
l1

=
∏

j∈S1\{a1}(x1 − j) must vanish at (r, a2, · · · , an), so we conclude that the

following expression must as well:

u(x1, x2, · · · , xn)
∂

∂x1

∏
j∈S1\{a1}

(x1 − j).

Note that

∂

∂x1

∏
j∈S1\{a1}

(x1 − j) =
∑

j2∈S1\{a1}

∏
j∈S1\{a1}(x1 − j)

(x1 − j2)
.

When x1 = r ∈ S1 \ {a1}, this is equal to
∏

j∈S1\{a1,r}(r − j).

Therefore, for r ∈ S1 \ {a1}, we have that:

u(r, a2, · · · , an)
∏

j∈S1\{a1,r}

(r − j) = 0

u(r, a2, · · · , an) = 0.

Recall that u(x1, · · · , xn) is a multivariable polynomial of degree less than |S1|−1.

Thus, u(x1, a2, · · · , an) is a single-variable polynomial of degree less than |S1| − 1.
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However, it vanishes for all values of x1 in S1 \{a1}, which is a total of |S1|−1 values.

This necessitates that u(x1, a2, · · · , an) is the zero polynomial. However, that would

mean that u(a1, a2, · · · , an) = 0. Also note that any gi vanishes at (a1, · · · , an). This

means f =
∑

τ∈T (n,t) gτ(1)gτ(2)hτ+u
∏n

i=1
gi
li
will vanish at (a1, a2, · · · , an), which gives

a contradiction because our original function f did not vanish at (a1, · · · , an).

Thus, we conclude that any polynomial vanishing with multiplicity at least 2 at

every point of S1 × · · · × Sn except for one point where it doesn’t vanish, must have

degree at least |S1| − 1 +
∑n

i=1(|Si| − 1).

We now construct an optimal covering. Suppose that the point in S1×S2 · · ·×Sn

that we do not wish to cover is (a1, · · · , an). Utilizing the hyperplanes xi = si for

i = 1, · · · , n and si ∈ Si \ {ai} will cover every point at least twice except for the

forbidden point (a1, · · · , an) and the grid points that share all but one coordinate

with (a1, · · · , an). Then, the remaining points that need to be covered an additional

time lie on a set of n pairwise orthogonal lines. A hyperplane is a dimension n − 1

affine subspace so there is at least one hyperplane passing through a given set of n

points. Thus, we can take hyperplanes which cover one point each from the n lines

containing points that still need to be covered. The most points that still needed

to be covered on any given line was maxi |Si| − 1, so we need a total of at most

(maxi |Si| − 1) +
n∑

i=1

(|Si| − 1) hyperplanes.

3.1.1 Complications for k = 3

Unlike for k = 1 and k = 2, we will see that the minimum number of affine hyperplanes

needed to cover all but one grid point at least 3 times depends on the point being

removed.

Example 4. Consider the two dimensional grid {0, 1, 2} × {0, 1, 2}. Covering all

points but (1, 1) at least 3 times and leaving (1, 1) uncovered requires ten lines while



47

covering all points but (0, 0) (or another corner) at least 3 times and leaving (0, 0)

(that same corner) uncovered requires only nine lines. Note that (1, 0) behaves simi-

larly to (0, 0).

Proof. An optimal construction for leaving (1, 1) uncovered is to use x = 0 and x = 2

twice each, along with y = 0, y = 2, x+y = 1, x+y = 3, y = x+1 and y = x−1. An

optimal construction for leaving (0, 0) uncovered is to use x = 2, y = 2 and x+ y = 1

twice each, along with x+ y = 2, x = 1, and y = 1. Now we show that using ten and

nine lines respectively cannot be beaten.

Suppose it is possible to use nine or fewer lines to cover all grid points three times

except for (1, 1) which is left uncovered. It is always possible to find a cover with the

same number of lines in which each line covers at least two grid points. For simplicity,

refer to (0, 0), (2, 0), (0, 2), and (2, 2) as corners and refer to (1, 0), (0, 1), (2, 1), and

(1, 2) as edges. For a line to cover at least two grid points without covering (1, 1), the

only options are to cover two corners and an edge (Type A), to cover two edges (Type

B), or to cover one corner and one edge (Type C). Suppose that a covering with nine

lines uses a of type A, b of type B, and c of type C. This means a+ b+ c = 9. Also,

the four corners are covered a total of at least 3(4) = 12 times, as are the four edges.

This gives that 2a + c ≥ 12 and a + 2b + c ≥ 12. This last inequality simplifies to

b ≥ 3.

However, since the total covering multiplicity is at least 3(8) = 24, we also have

that 3a + 2b + 2c ≥ 24 which simplifies to a + 2(9) ≥ 24. Since a ≥ 6, we have that

b+c ≤ 3. This is only possible if b = 3, c = 0, and a = 6. Note that the total covering

multiplicity is 3(6)+2(3)+2(0) = 24, so every grid point except (1, 1) must be covered

exactly three times. There are only four lines of Type A: x = 0, x = 2, y = 0, and

y = 2. Without loss of generality, x = 0 is used at least two times. If it is used three

times, then y = 0 and y = 2 cannot be used at all without covering (0, 0) or (0, 2) too

many times. Then, since a = 6, x = 2 would have to also be used three times. This
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would leave us with needing to cover both (1, 0) and (1, 2) three times each using just

three lines. This cannot be done since a line through both (1, 0) and (1, 2) would also

contain the forbidden point (1, 1).

Thus, x = 0 is used exactly twice (and no other line of Type A is used more than

twice). Again, (0, 0) and (0, 2) can only be covered exactly three times so y = 0 and

y = 2 are used at most once each. Thus, x = 2 is used at least twice. This can only

happen if x = 2 is used exactly twice and y = 0 and y = 2 are used exactly once.

However, we then need to cover (1, 0) and (1, 2) an additional two times each using

only three more lines. This cannot be done since no valid line contains both (1, 0)

and (1, 2).

It is quicker to show that nine lines is optimal for the case of leaving a corner

uncovered. Suppose it is possible to use eight lines to cover all points three times

except for (0, 0) which is left uncovered. No line can cover more than three grid points

at a time and the total covering multiplicity for all the points is at least 8(3) = 24.

Thus, this can only be done if every point is covered exactly three times and every

line used covers exactly three grid points. However, the only way to cover (1, 0) with

a line through three grid points and not cover (0, 0) is to use x = 1 and the only

way to cover (0, 1) with a line through three grid points and not cover (0, 0) is to use

y = 1. This means x = 1 and y = 1 are each used at least three times, so (1, 1) is

covered at least six times instead of exactly three times.

A further, and perhaps the most important, complication with k = 3 is that

the polynomial vanishing question no longer has the same answer as the hyperplane

covering question:

Example 5. Covering all points of {0, 1, 2}× {0, 1, 2} but (1, 1) at least 3 times and

leaving (1, 1) uncovered requires ten lines. However, there is a degree 8 polynomial

which vanishes to multiplicity at least 3 at all points of {0, 1, 2}× {0, 1, 2} except for

(1, 1) where it doesn’t vanish. To see this, we may use the polynomial (x2−xy+y2−
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x− y)(x2 + xy + y2 − 3x− 3y + 2)xy(x− 2)(y − 2).

Similarly, the answers to the hyperplane covering and polynomial vanishing ques-

tions also differ when covering all points of {0, 1, 2, 3} × {0, 1, 2, 3} or {0, 1, 2, 3, 4} ×

{0, 1, 2, 3, 4} at least 3 times except for (1, 1), which is left uncovered. We know from

Gurobi computations that 14 lines are necessary for {0, 1, 2, 3} × {0, 1, 2, 3} while 18

are necessary for {0, 1, 2, 3, 4} × {0, 1, 2, 3, 4}. However, there is a degree 13 polyno-

mial, xy(x−2)(x−3)2(y−2)(y−3)2(x+y−3)(x2−xy+y2−x−y)(x2+y2−3x−3y+2),

that has the correct vanishing on {0, 1, 2, 3} × {0, 1, 2, 3}.

There is also a degree 17 polynomial with the correct vanishing for {0, 1, 2, 3, 4}×

{0, 1, 2, 3, 4}. Note that the degree 15 polynomial, xy(x−2)(x−3)(x−4)2(y−2)(y−

3)(y − 4)2(x + y − 4)(x2 − xy + y2 − x− y)(x2 + y2 − 3x− 3y + 2), does not vanish

at (1, 1), vanishes twice at (1, 3), (1, 4), (3, 1), (3, 3), and (4, 1), and vanishes at least

thrice at the remaining grid points. Then, since there is a conic through every five

points, there exists a degree 2 polynomial which vanishes at (1, 3), (1, 4), (3, 1), (3, 3),

and (4, 1). Note that such a polynomial does not vanish at (1, 1), since if it did,

there would be three intersections between the conic and each of the lines x = 1 and

y = 1. That could only happen if the conic was reducible and was simply the union

of lines, x = 1 and y = 1. However, it is not, since it must contain (3, 3). Thus,

multiplying our degree 15 polynomial by this degree 2 polynomial will yield a degree

17 polynomial with the proper vanishing.

In general, we can ask if this discrepancy between the answers to the polynomial

vanishing and hyperplane covering questions persists for larger grids.

Question 3.1.3. For m ≥ n ≥ 2, is the minimum degree of a polynomial which

vanishes to multiplicity at least 3 at every point of {0, 1, · · · ,m}×{0, 1, · · · , n} except

(1, 1) and does not vanish at (1, 1) strictly less than the minimum number of lines

needed to cover every point of {0, 1, · · · ,m}×{0, 1, · · · , n} at least three times except

for (1, 1), which is left uncovered?
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Question 3.1.4. When |S1|, |S2|, · · · , |Sn| ≥ 3 and k ≥ 3, does there exist some point

p ∈ S1 × · · · × Sn such that the minimum degree of a polynomial which vanishes to

multiplicity at least k on every point of S1 × · · · × Sn \ {p} without vanishing at p

is strictly less than the minimum number of affine hyperplanes needed to cover every

point of S1 × · · · × Sn \ {p} at least k times without covering p?

Remark 4. The answer to the polynomial vanishing question again depends on the

point removed. It is impossible to find a degree 8 polynomial which vanishes to

multiplicity at least 3 at all points of {0, 1, 2} × {0, 1, 2} except for (1, 0) where it

doesn’t vanish. For the sake of contradiction, assume that f is a degree 8 polynomial

satisfying these vanishing conditions, and consider the irreducible factors of f . By

Bézout’s theorem, a degree d > 1 irreducible factor will have at most d intersections

with each of the lines x = 0, x = 1, and x = 2, so it contributes no more than 3d to the

total vanishing. Also, a linear factor contributes at most 3 to the total vanishing. f

must vanish to multiplicity at least 3 at eight points, so the total vanishing multiplicity

is at least 3(8) = 24, requiring that each degree d irreducible factor of f have total

vanishing multiplicity of 3d on {0, 1, 2}× {0, 1, 2} \ {(1, 0)}. We know from Example

4 that all linear factors will not work. An irreducible conic (d = 2) cannot vanish to

multiplicity 2 at any given point so it necessarily would vanish at two grid points on

each of the lines x = 0, x = 1, x = 2, y = 0, y = 1, and y = 2. As it cannot vanish at

(1, 0), this would require it to vanish at (0, 0), (2, 0), (1, 1), and (1, 2). Such a factor

also must vanish with total multiplicity at most 2 along the lines x − y = 0 and

x + y = 2, so it cannot vanish at (2, 2) nor (0, 2). This would then necessitate that

it vanishes at (0, 1) and (2, 1), which is a contradiction since it cannot vanish three

times along y = 1. To potentially achieve degree 8, we are then forced to consider

irreducible factors of degree d ≥ 3. Such a factor vanishes to total multiplicity d

on each of the lines x = 0, x = 1, x = 2, y = 0, y = 1, and y = 2. Since it does

not vanish at (1, 0), it must vanish with total multiplicity d on {(0, 0), (2, 0)} and
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on {(1, 1), (1, 2)}. At one point in each pair, the vanishing multiplicity is at least

⌈d/2⌉. However, the total vanishing multiplicity cannot exceed d along any line, so

there are no two points for which the vanishing multiplicity sums to more than d. For

odd d, we have that 2⌈d/2⌉ > d, so the only remaining possibility is that d is even

and the irreducible factor of degree d vanishes with multiplicity exactly d/2 at each

of (0, 0), (2, 0), (1, 1), and (1, 2). Again, it can only vanish to multiplicity at most d

along each of x − y = 0 and x + y = 2, so it cannot vanish at (2, 2) nor (0, 2). This

necessitates vanishing to multiplicity d/2 at (0, 1) and (2, 1), which is a contradiction

since it now vanishes to multiplicity 3d/2 along y = 1.

Similarly, a polynomial f which vanishes to multiplicity at least 3 everywhere on

{0, 1, 2} × {0, 1, 2} except for (0, 0), where it does not vanish, must have multiplicity

at least 9. Using linear factors is not enough to achieve degree 8 and we get that

the only potentially helpful higher degree irreducible factors must have even degree

d and vanish with multiplicity d/2 at (0, 1), (0, 2), (1, 0), and (2, 0). In turn, such a

factor cannot vanish at (1, 1), and thus vanishes with multiplicity d/2 at (1, 2) and

(2, 1). Notably, it cannot vanish at (2, 2) either. This means only linear factors of

f can vanish at (1, 1) and (2, 2), but any line through those points also contains the

forbidden point (0, 0). Thus, we must use a total of six linear factors to vanish thrice

at both (1, 1) and (2, 2) and can then only use a degree 2 polynomial vanishing at

(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), and (2, 1). This will not work since every linear factor

must vanish at three of the grid points, so (2, 2) can only be handled by x−2 or y−2.

Additionally, the total vanishing multiplicity of a degree 8 polynomial on this grid is

at most 24, so f cannot vanish to multiplicity more than 3 anywhere. Thus, we must

utilize (y − 2)2(x − 2) or (y − 2)(x − 2)2 in order to vanish thrice at (2, 2) without

vanishing more than thrice elsewhere. By symmetry along y = x, we may assume

that we must use (y− 2)2(x− 2). There are three possible linear factors which vanish

at (1, 1) and two additional grid points, without vanishing at (0, 0): x − 1, y − 1,
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and x+ y − 2. However, of these, only y − 1 vanishes at three points where we don’t

already have vanishing multiplicity three, so we must use (y − 1)3. However, now f

vanishes to multiplicity greater than 3 at (0, 1) and (2, 1).

3.1.2 Restrictions on the Minimum Degree Polynomial

Proposition 3.1.5. Let S1, · · · , Sn be subsets of a field F and 2 ≤ k ≤ n. Suppose f

is a polynomial of minimal degree which vanishes to multiplicity at least k on all but

one point, (a1, · · · , an), of S1 × · · · × Sn, and does not vanish at (a1, · · · , an). Then,

there exists a polynomial g with deg g = deg f and
∏

i∈[n]
∏

s∈Si\{ai}(xi − s) | g such

that g vanishes to multiplicity at least k on S1 × · · · × Sn \ {(a1, · · · , an)} and does

not vanish at (a1, · · · , an).

A consequence of this is that to determine the minimum degree polynomial with

the desired vanishing properties, we only need to consider the minimum degree poly-

nomial among those divisible by
∏

i∈[n]
∏

si∈Si\{ai}(xi − si). In the hypercube case,

where |Si| = 2 for i = 1, · · · , n, this means that we only need to consider polynomials

divisible by
∏

i∈[n](xi − 1). Each of these linear factors corresponds to a hyperplane

xi = 1. In Remark 2, we mention that the n +
(
k
2

)
upper bound on the number of

affine hyperplanes needed to cover {0, 1}n \ {⃗0} k times without covering 0⃗ is tight for

sufficiently large n if we assume the almost k-cover includes xi = 1 for i = 1, · · · , n.

If we could show that the minimal almost k-cover utilizing all of these hyperplanes

cannot be beaten for sufficiently large n, we would be able to establish that the n+
(
k
2

)
upper bound is tight for sufficiently large n, proving Conjecture 2.2.3. The fact that

the optimal answer to the related polynomial question must include factors of xi − 1

corresponding to each of these hyperplanes provides some circumstantial evidence

supporting Conjecture 2.2.3.

Proof of Proposition 3.1.5. Suppose that f vanishes to multiplicity at least k on S1×
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· · · × Sn \ {(a1, · · · , an)} and does not vanish on (a1, · · · , an). We can use Theorem

1.2.3 with gi :=
∏

s∈Si
(xi − s), li = xi − ai, and t = k to express f as:

∑
τ∈T (n,k)

gτ(1) · · · gτ(k)hτ + u

n∏
i=1

gi
li

where T (n, k) is the set of all non-decreasing sequences of length k on [n] and u is a

nonzero polynomial of degree at most deg f −
n∑

i=1

(|Si| − 1).

Let Mi denote the set of points of S1 × · · · × Sn which disagree with (a1, · · · , an)

on exactly i coordinates. Generalizing part of the proof of Theorem 2.2.1, we will

demonstrate that for i = 1, 2, · · · , k − 1, u and its partial derivatives of order up to

k − i− 1 vanish on Mi. Alternatively, we may say that u vanishes to multiplicity at

least k − i on Mi.

Each term of the summation
∑

τ∈T (n,k) gτ(1) · · · gτ(k)hτ vanishes at (a1, · · · , an) but

f does not vanish at (a1, · · · , an), so u
n∏

i=1

gi
li

does not vanish at (a1, · · · , an). Thus,

u does not vanish at (a1, · · · , an). Let h be a minimum degree polynomial which

vanishes to multiplicity at least k− i on Mi for i = 1, 2, · · · , k−1 but does not vanish

at (a1, · · · , an). We observe that u shares these vanishing properties so deg u ≥ deg h.

Then, the inequality deg u ≤ deg f −
∑n

i=1(|Si| − 1) can be rearranged to yield that

deg f ≥ deg u+
n∑

i=1

(|Si| − 1)

≥ deg h+
n∑

i=1

(|Si| − 1).

Also, we can construct a polynomial of degree deg h +
∑n

i=1(|Si| − 1) with the

correct vanishing by taking h
∏n

i=1

∏
s∈Si\{ai}(xi − s). Therefore, among polynomials

with the correct vanishing on S1×· · ·×Sn and minimal degree, there exists one which

is divisible by
∏n

i=1

∏
s∈Si\{ai}(xi − s).

What is left is to verify our claim that for i = 1, 2, · · · , k − 1, u and its partial
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derivatives of order up to k − i− 1 vanish on Mi.

Since f vanishes to multiplicity at least k on S1 × · · · × Sn \ {(a1, · · · , an)}, we

know that f and its partial derivatives of order at most k − 1 vanish on S1 × · · · ×

Sn \ {(a1, · · · , an)}. First we note that for all τ ∈ T (n, t), gτ(1) · · · gτ(k)hτ and any of

its partial derivatives of order up to k−1 will vanish on S1×· · ·×Sn \{(a1, · · · , an)}.

Thus we observe that u
∏n

i=1
gi
li

and its partial derivatives of order up to k − 1 will

vanish on S1 × · · · × Sn \ {(a1, · · · , an)}.

First, we will consider a point, p := (p1, · · · , pn), in M1 with pi ̸= ai. Points in M1

only disagree with (a1, · · · , an) in one coordinate so we have pj = aj for j ∈ [n] \ {i}.

We consider the product rule expansion of ∂
∂xi

applied to u
∏n

i=1
gi
li
. All the summands

contain a factor xi−pi except for one. Therefore, all the terms but one automatically

vanish at p, so the last term must as well.

This last term is

u

 ∏
j∈[n]\{i}

gj
lj

 ∏
si∈Si\{ai,pi}

(xi − si)

 .

All these factors besides u cannot vanish at p, so we get that u vanishes at p. Similarly,

u vanishes on all of M1. We now proceed by induction.

For 2 ≤ d ≤ k − 1, suppose that by looking at the partial derivatives of u
∏n

i=1
gi
li

of order less than or equal to d − 1, we have shown that u vanishes on Mi for i =

1, · · · , d−1 and that the partial derivatives of u of order less than or equal to d− i−1

vanish on Mi for i = 1, · · · , d− 2.

Now consider a point, p := (p1, · · · , pn), in Mq with 1 ≤ q ≤ d such that p

disagrees with (a1, · · · , an) in coordinates i1, i2, · · · , iq. We apply a partial derivative

∂

∂xi1∂xi2 · · · ∂xiq∂xJ

to u
∏n

i=1
gi
li
where ∂xJ signifies any combination of d−q ∂xj’s with j ∈ [n]. We know
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this function will vanish at p since any partial derivative of u
∏n

i=1
gi
li
of order at most

k − 1 will vanish there.

Every term in the product rule expansion looks like the the product of some cth

order partial derivative of u and some (d − c)th order partial derivative of
∏n

i=1
gi
li
.

For c ≤ d− q − 1, we already know that all cth order partial derivatives of u vanish

at p. If d− c < q, then every term in the product rule expansion of a (d− c)th order

partial derivative of
∏n

i=1
gi
li
contains some factor (xi − pi) for some index i where p

disagrees with (a1, · · · , an). Thus, all the terms automatically vanish except for those

with c = d− q. Furthermore, the product rule expansion of a (d− c)th order partial

derivative of
∏n

i=1
gi
li
contains all but d− c of the original factors xi − si. This means

when d− c = q, a term in a (d− c)th order partial derivative of
∏n

i=1
gi
li
will contain

at least one factor of the form xi − pi except in the special case where the q missing

factors are precisely those of the form xi − pi for each i at which p disagrees with

(a1, · · · , an). This means that every term but one in the product rule expansion of

∂

∂xi1∂xi2 · · · ∂xiq∂xJ

(
u

n∏
i=1

gi
li

)

automatically vanishes at p. The only term that does not automatically vanish at p

is

∂u

∂xJ

∂

∂xi1∂xi2 · · · ∂xiq

n∏
i=1

gi
li
.

In fact, ∂
∂xi1

∂xi2
···∂xiq

∏n
i=1

gi
li
is equal to

 ∏
i∈[n]\{i1,i2,··· ,iq}

gi
li

 ∑
(b1,··· ,bq)∈Si1

\{ai1}×···×Siq\{aiq}

q∏
j=1

gij
(xij − aij)(xij − bj)

 .

Furthermore, the only summand that does not automatically vanish at p is when

bj = pij for j = 1, · · · , q. Thus, in order for ∂
∂xi1

∂xi2
···∂xiq∂xJ

(
u
∏n

i=1
gi
li

)
to vanish at
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p, we must have

∂u

∂xJ

 ∏
i∈[n]\{i1,i2,··· ,iq}

gi
li

( q∏
j=1

gij
(xij − aij)(xij − pij)

)

vanish at p. However,
(∏

i∈[n]\{i1,i2,··· ,iq}
gi
li

)(∏q
j=1

gij
(xij

−aij )(xij
−pij )

)
is nonzero at p, so

we get that ∂u
∂xJ

vanishes, where ∂
∂xJ

can be any order d− q partial derivative. (Note

that in the case of q = d, this is simply telling us that u vanishes, so we now have

that u vanishes on Mi for i = 1, · · · , d.)

From the induction hypothesis, we had that looking at partial derivatives of

u
∏n

i=1
gi
li

of order up to d − 1 revealed that partial derivatives of u of order less

than or equal to d − q − 1 vanish on Mq for q = 1, · · · , d − 2. Now we have that

the partial derivatives of u of order less than or equal to d − q vanish on Mq for

q = 1, · · · , d− 1. Continuing until d = k − 1, we get that the partial derivatives of u

of order less than or equal to k − 1 − q vanish on Mq for q = 1, · · · , k − 2. We also

have that u vanishes on Mi for i = 1, · · · , k − 1. This completes the proof.

3.2 Triangular Grids

We need not restrict our attention to rectangular grids. In particular, in n dimen-

sions, we can consider a triangular grid consisting of lattice points (x1, · · · , xn) with

nonnegative coordinates satisfying x1+ · · ·+xn ≤ c for some fixed constant c. In the

case of c = 1, this is just a simplex and any choice of all but one of the points lie on

a common hyperplane.

We define the set T1(d, n) as {(x1, · · · , xn) ∈ Zn
≥0 | x1 + · · ·+ xn ≤ d− 1} so that

each outer edge of T1(d, n) has d points. In this section, we let t1(d, n) represent the

minimum number of affine hyperplanes needed to cover every point of T1, t
∗
1(d, n)
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represent the minimum needed for the fractional version of this covering question,

and m1(d, n) represent the minimum needed to leave exactly one point uncovered.

We note that m1(d, n) is well-defined as the number of affine hyperplanes needed will

not depend on the choice of which point is left uncovered. Note that for the covering

problems we study, any set of points that can be obtained from such a T1(d, n) via

an affine transformation will behave the same way.

In Subsection 3.2.1, we determine t1(d, n) as a step toward finding m1(d, n). In

Subsection 3.2.2, we note that questions about covering every point of a triangular

grid are interesting in their own right. We address the problem of computing t∗1(d, 2)

and also consider questions involving higher covering multiplicity for T1(d, 2) and for

a related grid.

A fundamental limitation of triangular grids is that unlike rectangular grids, they

cannot be thought of as a product of sets. This limits our ability to use Combinatorial

Nullstellensatz.

3.2.1 With a Point Uncovered

Proposition 3.2.1. t1(d, n) = d.

Proof. We can cover T1(d, n) using the d hyperplanes x1 = 0, x1 = 1, · · · , x1 = d− 1

so t1(d, n) ≤ d.

Note that t1(d, 1) = d since each of the d points needs to be covered but the

hyperplanes are single points. t1(1, n) = 1 since the single point needs one hyperplane

to cover it. Now we proceed by induction on n. One “face” of the lattice T1(d, n) is

an n − 1 dimensional triangular lattice with d points along a side. A face is either

the intersection of T1(d, n) with the hyperplane xi = 0 for some i or the intersection

of T1(d, n) with x1 + · · ·+ xn = d− 1. Each face is a copy of T1(d, n− 1) embedded

in n-dimensional space.

Choose a face of T1(d, n) and suppose we do not use the hyperplane, H, containing



58

this entire face. Then the (n−1)-dimensional hyperplanes we do use will have (n−2)-

dimensional intersections with this face. The fewest number of hyperplanes needed

to cover this face is then t1(d, n − 1), which is d by induction. Thus, to have any

chance of getting less than d, we have to use this face.

Now suppose that we do use H. It does not cover any other grid points outside

of this face so we still need to cover an n-dimensional triangular lattice with d − 1

points along the longest side. That is, the set of grid points not covered by H is a

copy of T1(d− 1, n). By induction on d, this requires d− 1 hyperplanes to cover and

in conjunction with H, that gives a total of at least d.

Proposition 3.2.2. m1(d, n) = d− 1 regardless of which grid point is left uncovered.

Proof. Note that d − 1 hyperplanes are sufficient. If (a1, · · · , an) is the forbidden

point, we can cover everything else using hyperplanes of the form xi = k for k =

0, 1, · · · , ai − 1 for every i = 1, · · · , n, along with x1 + · · · + xn = k for k = a1 +

· · ·+ an +1, · · · , d− 1. Any grid point (b1, · · · , bn) with bi < ai for some i = 1, · · · , n

is covered by a hyperplane of the first type and any remaining grid point besides

(a1, · · · , an) is covered by a hyperplane of the second type. This construction uses a

total of a1 + · · ·+ an + (d− 1− (a1 + · · ·+ an)) = d− 1 hyperplanes.

If d = 2, the lattice T1(d, n) is a simplex and once one point is removed, the

remainder can be covered with one hyperplane, so m1(1, n) = 1. Now we induct on

d.

For d ≥ 3, regardless of which point is left uncovered, there is some face of T1(d, n),

isomorphic to a copy of T1(d, n−1), that does not contain it. If we use the hyperplane,

H, containing that entire face, then we are left with a n-dimensional lattice with d−1

points along the longest side with one forbidden point. By induction, that requires

an additional m1(d− 1, n) = d− 2 hyperplanes to almost cover, so we could not use

fewer than 1 + (d− 2) = d− 1 affine hyperplanes when H is included.

If we do not use H, we need to find some other list of hyperplanes that cover all



59

grid points contained in H. Since the face of T1(d, n) contained in H is isomorphic to

a copy of T1(d, n− 1) and the intersection of each such hyperplane with that face is

(n− 2)-dimensional, the minimum number of hyperplanes needed is t1(d, n− 1) = d,

which is already too many. Therefore, there is no way to beat the construction which

gave d− 1.

3.2.2 With All Points Covered

For a rectangular grid, the question of finding the minimum number of affine hyper-

planes which cover all points is not interesting. Assuming that Sn is the smallest of

the sets S1, · · · , Sn, we can cover all points by using the hyperplanes xn = s for each

s ∈ Sn. No hyperplane contains more grid points than these and every grid point

lies on some hyperplane which covers this maximum possible number of points. For

triangular grids, this is not the case. For example, there exist lines that cover four

points from T1(4, 2), yet the grid point (1, 1) is not covered by any of those lines.

Since we can no longer simply use the hyperplanes which each cover the most points,

the question of finding the minimum number of affine hyperplanes which cover all

points is interesting in its own right.

In the previous section, we already determined the minimum number needed to

cover every point of T1(d, n) at least once. In the 2-dimensional setting, we will

consider the fractional version of this problem to compute t∗1(d, 2). We will also

examine the problem of covering each point of T1(d, n) more than once. We define

t1(d, n, k) as the minimum number of affine hyperplanes needed to cover every point

of T1(d, n) at least k times. Note that t1(d, n, 1) = t1(d, n) = d and that t1(d, n, k) ≥

t∗1(d, n, k) = kt∗1(d, n).

Theorem 3.2.3. t∗1(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

Proof. For j = 0, there is a single point to cover which requires a single line. Oth-

erwise, j ≥ 1. T1(3j + 1, 2) is {(x, y) | x, y ≥ 0, x + y ≤ 3j}. We can cover all these



60

points with the following lines:

• x = i for i = 0, · · · , 2j − 1 with weight 2j−i
3j

,

• y = i from i = 0, · · · , 2j − 1 with weight 2j−i
3j

, and

• x+ y = 3j − i from i = 0, · · · , 2j − 1 with weight 2j−i
3j

.

If i1, i2 ≤ 2j − 1, then (i1, i2) ∈ T1(3j + 1, 2) is covered with weight 2j−i1
3j

by

a vertical line and weight 2j−i2
3j

by a horizontal line for a total weight of at least

4j−i1−i2
3j

. If i1 + i2 ≤ j, this is already at least 1. If instead i1 + i2 > j, we have that

(i1, i2) is covered by the line x+ y = i1 + i2 with weight i1+i2−j
3j

, for a total weight of

4j−i1−i2
3j

+ i1+i2−j
3j

= 1.

It is not possible for both i1 and i2 to exceed 2j−1 for a point (i1, i2) in T1(3j+1, 2).

Without loss of generality, we may now assume that i1 ≤ 2j − 1 and i2 ≥ 2j. Then

(i1, i2) is covered with weight 2j−i1
3j

by a vertical line and weight i1+i2−j
3j

by a diagonal

line for a total weight of at least 2j−i1+i1+i2−j
3j

= j+i2
3j

≥ 1.

Thus, this is a valid covering and the total weight of all of these lines is

3

3j

2j−1∑
i=0

(2j − i) =
1

j

(
(2j)(2j + 1)

2

)
= 2j + 1,

which establishes the upper bound.

To determine the lower bound, we will assign weights to all of the points of T1(3j+

1, 2) in such a way that no line covers points of total weight more than 1. Thus

t∗1(3j + 1, 2) will be at least the sum of the weights assigned to the points.

In fact, many points will be assigned a weight of 0. The nonzero weights are

assigned to points belonging to the hexagons X1, X2, · · · , Xj defined in the following

manner:
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X3

X2

X1

m
n

Figure 3.1: Weights for T1(10, 2)

The grid points in X1 are assigned weight 1
12
, those in X2 are assigned weight 2

12
, and

those in X3 are assigned weight 3
12
. The remaining points receive weight 0.

The line m is not parallel to any sides of a hexagon, so it intersects each Xi in at
most two points. The line n has the same slope as some hexagon sides. In this case,
it contains an entire side of X2, which means it cannot contain any points of X1 nor
more than two points of X3.
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Xi consists of the grid points lying on the boundary of the hexagon formed by the

lines x = j − i, x + y = 2j − i, y = j − i, x = j + i, x + y = 2j + i, and y = j + i.

Note that grid points that lie on one or more of these lines but not on the sides of

the hexagon are not included in Xi. Figure 3.1 shows an example for j = 3.

For i = 1, · · · , j − 1, the hexagon Xi is nested inside Xi+1. Since no grid point

belongs to multiple hexagons, we can unambigously assign a weight of i
j(j+1)

to each

grid point of Xi and a weight of 0 to any grid point that does not belong to any

hexagon.

The hexagon Xi has i+ 1 grid points along a side for a total of 6(i+ 1)− 6 = 6i

points. Thus, the total weight of all the points in the grid is

j∑
i=1

6i(
i

j(j + 1)
) =

1

j(j + 1)

j∑
i=1

6i2

=
1

j(j + 1)
(j(j + 1)(2j + 1)) = 2j + 1.

It now remains to show that with this weighting, no line passes through points of

total weight more than 1. The sides of the hexagons Xi all are vertical, horizontal,

or have slope −1. A line with any other slope will intersect each hexagon in at most

two points. It will thus cover points of total weight at most

2

j∑
i=1

i

j(j + 1)
=

2

j(j + 1)

j∑
i=1

i

=
2

j(j + 1)

(
j(j + 1)

2

)
= 1.

For a line that is vertical, horizontal, or has slope −1, the only way it can po-

tentially cover more than two points from a single hexagon is if it contains an entire

side of some hexagon Xa. It would then contain no points of Xi for i < a but could

contain up to two points for each of Xa+1, · · · , Xj. Thus, it would cover points of
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total weight at most

(a+ 1)

(
a

j(j + 1)

)
+ 2

j∑
i=a+1

i

j(j + 1)
=

1

j(j + 1)

(
a(a+ 1) + 2(j − a)(

a+ 1 + j

2
)

)
=

1

j(j + 1)

(
a2 + a+ (j − a)(a+ 1 + j)

)
=

1

j(j + 1)

(
a2 + a+ ja+ j + j2 − a2 − a− aj

)
= 1.

Thus, no line can cover points of total weight more than 1 and our lower bound

matches the upper bound.

In fact, we conjecture a general formula for t∗1(d, 2):

Conjecture 3.2.4. For integers j ≥ 0, t∗1(3j+2, 2) = 2j+1+ 2j+1
3j+2

and t∗1(3j+3, 2) =

2j + 2 + j+1
3j+4

.

We revisit this later as it appears to have a non-obvious connection to the problem

of covering every point of T1(d, 2) with multiplicity at least k.

We can demonstrate the upper bound of Conjecture 3.2.4, via the following con-

structions. For d = 3j + 2, we can use the lines:

• x = i for i = 0, · · · , 2j with weight 2j+1−i
3j+2

,

• y = i for i = 0, · · · , 2j with weight 2j+1−i
3j+2

, and

• x+ y = 3j + 1− i for i = 0, · · · , 2j with weight 2j+1−i
3j+2

.

For d = 3j + 3, we can use the lines:

• x = i for i = 0, · · · , 2j + 1 with weight 2j+2−i
3j+4

,

• y = i for i = 0, · · · , 2j + 1 with weight 2j+2−i
3j+4

, and

• x+ y = 3j + 2− i for i = 0, · · · , 2j + 1 with weight 2j+2−i
3j+4

.
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We can also prove some exact results for the integral covering problem and low

multiplicity.

Theorem 3.2.5. For d ≥ 2, we have that

t1(d, 2, k) =


⌊3d+1

2
⌋, if k = 2,

3d, if k = 4.

Proof. First we consider the case of covering twice. We begin by demonstrating a

construction to show that ⌊3d+1
2

⌋ lines are sufficient to cover every point of T1(d, 2)

at least twice. T1(d, 2) consists of the points {(x, y) ∈ Z2
≥0 | x + y ≤ d− 1}, so we

can use the following lines:

For even d:

• x = i for i = 0, 1, · · · , d/2− 1

• y = i for i = 0, 1, · · · , d/2− 1

• x+ y = i for i = d/2, d/2 + 1, · · · , d− 1

For odd d:

• x = i for i = 0, 1, · · · , d−1
2

• y = i for i = 0, 1, · · · , d−1
2

• x+ y = i for i = d−1
2

+ 1, d−1
2

+ 2, · · · , d− 1

To verify that these are valid constructions, we first note that these constructions

contain ⌊3d+1
2

⌋ lines as claimed. We must check that each point of T1(d, 2) is in fact

covered the requisite number of times. Any point of T1(d, 2) has either x < d/2 or

y < d/2. If both of these hold, it is covered twice using vertical and horizontal lines.

If only one of these inequalities holds, then x + y ≥ d/2, so (x, y) is also covered by

a diagonal line and still covered at least twice.
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For the lower bound, note that for d = 2, we have three points that need to be

covered twice each and we can only cover two at a time. This necessitates the use of

three lines, which will suffice. We now induct on d to establish the lower bound.

Suppose that t1(m, 2, 2) = ⌊3m+1
2

⌋ for some m ≥ 2. Let us consider the case of

d = m + 1. If some line corresponding to a side of the triangle (x = 0, y = 0, or

x+ y = d− 1) is used with multiplicity two, then there is still a triangular grid with

m points along each side, isomorphic to T1(m, 2), where no points have been covered.

This requires an additional t1(m, 2, 2) lines to cover for a total of ⌊3m+1
2

⌋ + 2. If no

line corresponding to a side of a triangle is used more than once, there are 3m−3 (all

the non-corners) points remaining on the sides of the triangle that need to be covered

an additional time. No remaining line covers more than two of these at a time, so

this forces us to use at least ⌈3m−3
2

⌉ additional lines, so at least ⌈3m−3
2

⌉ + 3 in total,

if each of x = 0, y = 0, and x+ y = d− 1 is used exactly once. If one of those three

lines is never used, then separate lines are needed to cover the m+1 points along the

corresponding side of the triangle twice each, for a total of at least 2(m + 1), which

is at least 3m
2
+ 3.

Thus, comparing across all cases,

t1(m+ 1, 2, 2) ≥ min{⌊3m+ 1

2
⌋+ 2, ⌈3m− 3

2
⌉+ 3}

This gives a lower bound of 3m
2

+ 2 when m is even and 3m+3
2

when m is odd.

Thus, t1(m+ 1, 2, 2) ≥ ⌊3m
2
⌋+ 2 = ⌊3(m+1)+1

2
⌋, completing the induction.

Next we do the case of covering four times. We begin with a construction involving

3d lines which works for d ≥ 2. Note that for d = 2 or d = 4, we have that

⌊d−1
3
⌋+ 1 > ⌊2d

3
⌋ − 1, so three of these classes will be empty.

• x = i twice for i = 0, 1, · · · , ⌊d−1
3
⌋

• x = i once for i = ⌊d−1
3
⌋+ 1, ⌊d−1

3
⌋+ 2, · · · , ⌊2d

3
⌋ − 1
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• y = i twice for i = 0, 1, · · · , ⌊d−1
3
⌋

• y = i once for i = ⌊d−1
3
⌋+ 1, ⌊d−1

3
⌋+ 2, · · · , ⌊2d

3
⌋ − 1

• x+ y = i twice for i = d− 1− ⌊d−1
3
⌋, d− 1− ⌊d−1

3
⌋+ 1, · · · , d− 1

• x+ y = i once for i = d− ⌊2d
3
⌋, d− ⌊2d

3
⌋+ 1 · · · , d− 2− ⌊d−1

3
⌋

This construction contains 3
(
2(⌊d−1

3
⌋+ 1) + ⌊2d

3
⌋ − ⌊d−1

3
⌋ − 1

)
= 3d lines. We

can now follow a process similar to that used in the partial proof of Conjecture 3.2.6

to verify that each point of T1(d, 2) is actually covered at least four times.

For d = 2, note that 3d = 6 lines are necessary since there are three points to

cover four times each and no line can cover more than two at a time. Now, we will

establish the lower bound by inducting on d. Suppose that there exists some value of

m ≥ 2 for which t1(m, 2, 4) = 3m. We now examine T1(m+ 1, 2).

Consider some line that coincides with a side of T1(m+ 1, 2), either x = 0, y = 0,

or x + y = m. There is a triangular grid with m points along the each side, and

thus isomorphic to T1(m, 2), for which none of the points are covered by this line.

By induction, it takes 3m lines to cover this smaller triangular grid, so to have any

chance of beating 3m + 3, we would not be able to use the same line incident with

a side of the triangle three times. Since each of x = 0, y = 0, and x + y = m is

used at most twice, there are 3m− 3 points (non-corners) on the sides of the triangle

which still need to be covered at least twice more. The remaining lines can only cover

up to two of these points at a time. This requires at least (3m−3)(2)
2

= 3m − 3 lines

beyond the six coinciding with sides of a triangle. This again gives a lower bound of

(3m− 3)+6 = 3m+3. (Using some line incident with a side of the triangle less than

twice would require even more lines since we would be committing to covering two

boundary points at a time even when there was still a chance to cover m+ 1.)

Based on data for d ≤ 21 (see Appendix A), we conjecture that t1(d, 2, 3) = ⌊9d+3
4

⌋

as well as asymptotic behavior for general k.
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Conjecture 3.2.6. For k ≥ 1, t1(d, 2, k) = (t∗1(k, 2))d+Od(1).

The presence of t∗1(k, 2) suggests a connection between the fractional problem on

a grid of size k and the k-covering problem on a grid of any size. Conditional on the

veracity of Conjecture 3.2.4, we can account for one direction of this correspondence.

Proof. For large d, we can cover every point k times by “lifting” the constructions

given in the upper bounds for t∗1(k, 2). As in those constructions, we will only use

lines of the form x = i, y = i, and x+ y = i for i = 0, · · · , d−1. In particular, among

such lines, the ones which cover the most grid points will get used more times and

the ones that cover the fewest grid points will not get used at all.

We will split the lines x = 0, · · · , x = d− 1 we utilize into sets, Br, that are equal

in size and assign the same weight to each line in the set, in proportion to the weights

used in our fractional cover construction. We then make an analogous partition of

the lines we use from y = 0, · · · , y = d − 1 and from x + y = 0, · · · , x + y = d − 1,

adding those to the correct Br. The construction varies slightly based on k (mod 3).

For k = 3j+1, the first set B1 consists of the lines x = i, y = i, and x+y = d−1−i

for i = 0, · · · , ⌈ d
3j
⌉ − 1. Each subsequent Br for r = 2, · · · , 2j consists of the lines

x = i, y = i, and x+ y = d− 1− i for i = (r − 1)⌈ d
3j
⌉, · · · , r⌈ d

3j
⌉ − 1. The remaining

lines parallel to x = 0, y = 0, and x+ y = 0 will receive weight 0 so they do not need

to be classified. For r = 1, · · · , 2j, every line in Br will be used 2j + 1 − r times.

In total, we use 3(2j)⌈ d
3j
⌉ lines an average of 2j+1

2
times each for a total of at most

6j( d
3j

+ 1)(2j+1
2

) = (2j + 1)d+ 3j(2j + 1) lines.

For k = 3j+2, the first set B1 consists of the lines x = i, y = i, and x+y = d−1−i

for i = 0, · · · , ⌈ d
3j+2

⌉ − 1. Each subsequent Br for r = 2, · · · , 2j + 1 consists of the

lines x = i, y = i, and x + y = d − 1 − i for i = (r − 1)⌈ d
3j+2

⌉, · · · , r⌈ d
3j+2

⌉ − 1. The

remaining lines parallel to x = 0, y = 0, and x+y = 0 will receive weight 0 so they do

not need to be classified. For r = 1, · · · , 2j+1, every line in Br will be used 2j+2−r
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times. In total, we use 3(2j+1)⌈ d
3j+2

⌉ lines an average of j+1 times each for a total

of at most 3(2j + 1)( d
3j+2

+ 1)(j + 1) = (2j + 1 + 2j+1
3j+2

)d+ 3(2j + 1)(j + 1) lines.

For k = 3j+3, the first set B1 consists of the lines x = i, y = i, and x+y = d−1−i

for i = 0, · · · , ⌈ d
3j+4

⌉ − 1. Each subsequent Br for r = 2, · · · , 2j + 2 consists of the

lines x = i, y = i, and x + y = d − 1 − i for i = (r − 1)⌈ d
3j+4

⌉, · · · , r⌈ d
3j+4

⌉ − 1. The

remaining lines parallel to x = 0, y = 0, and x+y = 0 will receive weight 0 so they do

not need to be classified. For r = 1, · · · , 2j+2, every line in Br will be used 2j+3−r

times. In total, we use 3(2j + 2)⌈ d
3j+4

⌉ lines an average of 2j+3
2

times each for a total

of at most 3(2j + 2)( d
3j+4

+ 1)(2j+3
2

) = (2j + 2 + j+1
3j+4

)d+ 3(j + 1)(2j + 3) lines.

We have shown that these constructions are the right size and it remains to show

that they actually cover every point of T1(d, 2) at least k times. Consider a point

(i1, i2) where x = i1 is in the set Br1 and y = i2 is in the set Br2 . Then horizon-

tal and vertical lines cover this point 2k − 2j − (r1 + r2) times. This is already

enough times unless r1 + r2 > k − 2j. In that case, i1 + i2 is at least (r1 + r2 −

2)⌈ d
2k−3j−2

⌉ so we have that 0 ≤ d− 1− (i1 + i2) ≤ d− 1− (r1 + r2 − 2)⌈ d
2k−3j−2

⌉ ≤

(2k − 3j − r1 − r2)⌈ d
2k−3j−2

⌉ − 1. This means that the line x+ y = i1+ i2 is in Br for

some r ≤ 2k − 3j − r1 − r2 ≤ k − j − 1 and is thus used at least k − j − (2k − 3j −

r1 − r2) = 2j − k + r1 + r2 times. Thus, (i1, i2) is covered at least k times.

By symmetry, this also covers the cases where x + y = i1 + i2 and at least

one of x = i1 and y = i2 are used a nonzero number of times. However, it turns

out that every point of T1(d, 2) is included by these cases. It is impossible for

x = i1 and y = i2 to both be used zero times since this would give x + y =

i1 + i2 ≥ (2k − 2j − 2)⌈ d
2k−3j−2

⌉ ≥ d. If exactly one of x = i1 or y = i2 is used

zero times, we have max{i1, i2} ≥ (k − j − 1)⌈ d
2k−3j−2

⌉. Then d − 1 − (i1 + i2) ≤

d− 1− (k − j − 1)⌈ d
2k−3j−2

⌉ ≤ (2k − 3j − 2− (k − j − 1))⌈ d
2k−3j−2

⌉ − 1 = (k − 2j −

1)⌈ d
2k−3j−2

⌉ − 1 ≤ (k − j − 1)⌈ d
2k−3j−2

⌉ − 1, meaning that x + y = i1 + i2 is used a

nonzero number of times.
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Additionally, we can consider a slightly different triangular grid. We define the set

T2(d, n) as {(x1, · · · , xn) ∈ Zn
≥0 | x1

2
+x2+x3+ · · ·+xn ≤ d− 1}. In two dimensions,

this is the set of points {(x, y) ∈ Z2
≥0 | x

2
+ y ≤ d− 1}, which is a triangular grid of d

rows such that the ith row has 2i− 1 grid points. While the lines that contained the

most points in T1(d, 2) could be of the form x = i, y = i, or x+ y = i, there are some

horizontal lines that contain substantially more points of T2(d, 2) than any other line.

This suggests that a minimal set of lines which covers the points of T2(d, 2) at least k

times each might consist mainly of k copies of each line y = i for i = 0, · · · , d−1 (with

some slight modifications such as accounting for y = d − 1 being a useless inclusion

which only covers one point). Indeed, if we define t2(d, n, k) to be the smallest number

of affine hyperplanes needed to cover every point of T2(d, n) at least k times, the data

(see Appendix A) appears to bear this out.

Based on the values of t2(d, 2, k) computed for k ≤ 6 and d ≤ 21, we make the

following conjecture.

Conjecture 3.2.7. For k ≥ 1, t2(d, 2, k) = kd+Od(1).

We verify this conjecture for k = 1, 2, 3.

Theorem 3.2.8.

t2(d, 2, k) =


d, if k = 1,

2d, if k = 2,

3d− 1, if k = 3, for d ≥ 2.

Proof. Covering each row with a horizontal line requires d lines. We see that t2(1, 2, 1) =

1 and can show t2(d, 2, 1) = d by induction. If we don’t cover the bottom row,

where y = 0, with a horizontal line, then we need 2d − 1 separate lines to cover
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each of those points, so it is more efficient to use a horizontal line which gives

t2(d, 2, 1) ≥ 1 + t2(d− 1, 2, 1) = 1 + d− 1 = d.

For covering twice, using each horizontal line y = i twice for i = 0, · · · , d−1 gives

a construction with 2d lines. We see that t2(1, 2, 2) = 2 and can show t2(d, 2, 1) = 2d

by induction. If we don’t cover the bottom row twice with horizontal lines, then we

need 1 horizontal line and 2d − 1 additional separate lines which is already 2d or

2(2d− 1) separate lines, which is at least 2d. Thus, there is no way to do better than

2 + t2(d− 1, 2, 2) = 2 + 2(d− 1) = 2d.

We can cover 3 times using all the horizontal lines y = i three times for i =

0, · · · , d − 3. We can then use y = d − 2 only twice. We can then cover each point

with y = d− 2 an additional time by using a line that passes through that point and

the last point (0, d− 1). This gives an upper bound of 3d− 1.

t2(2, 2, 3) = 5 since using the only line, y = 0, which covers three points forces

us to use three more lines to cover the top point, (0, 1). Thus, to potentially beat 5,

we can only use y = 0 once and have to cover a total of nine more points (counting

multiplicity) but can cover only two at a time. We now proceed by induction on d.

In an optimal cover, the lines y = i for i = 0, · · · , t− 1 are used at least twice for

some d − 1 ≥ t ≥ 0 and the line y = t is used at most once. Such a t exists since

there is no incentive to use the top row y = d− 1 which would only cover one point.

With the lines y = i for i = 0, · · · , t − 1, the top d − t rows are not yet covered at

all. The lowest of these rows has 2d− 2t− 1 points that each need to be covered an

additional two times by lines other than y = t. Thus, at least 2(2d− 2t− 1)+1 more

lines are used in additional to the 2t lines y = i for i = 0, · · · , t− 1. We are trying to
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use less than 3d− 1 lines so we require that

2(2d− 2t− 1) + 1 + 2t ≤ 3d− 2

4d− 2t− 1 ≤ 3d− 2

d+ 1 ≤ 2t

This means at least d + 1 horizontal lines are used. By induction, we cannot beat

3d− 1 if we use the line, y = 0, containing the bottom row three times, so there are

2d−1 points in the bottom row that need to be covered separately by non-horizontal

lines. This gives at least (d + 1) + (2d − 1) = 3d lines total. Therefore, we cannot

beat 3d− 1.
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Chapter 4

Results in Arithmetic Ramsey

Theory

4.1 Superpolynomial Growth for ∆(D, k; 2)

When a set D ⊂ Z>0 is r-accessible, we may study the function ∆(D, k; r) which

denotes the smallest n for which every r-coloring of [n] contains a monochromatic

D-diffsequence of length k. There are numerous examples where ∆(D, k; r) grows

polynomially in k.

Example 6. Suppose that D consists of all multiples of m for some fixed m ∈ Z>0.

Then, D is r-accessible for all r ∈ Z>0, and

∆(D, k; r) ≤ rm(k − 1) + 1.

Proof. In [rm(k − 1) + 1], there are r(k − 1) + 1 numbers that are 1 (mod m). By

Pigeonhole Principle, at least k of these are the same color. Any sequence contained

within a residue class (mod m) is such that the consecutive gaps are multiples of m

and thus lie in D.
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Example 7. [CCLS18] For a fixed m ≥ 3, suppose that D consists of all non-

multiples of m. Then, D is 2-accessible and for k ≥ 2,

∆(D, k; 2) = 2k − 1 + 2⌊ k − 2

m− 2
⌋.

Example 8. [Lan97] Let S be the set of odd positive integers and let D = {2} ∪ S.

Then, D is 3-accessible and

∆(D, k; 3) ≤ 6k2 − 13k + 6.

The key result of this section is to demonstrate that ∆(D, k; r) does not always

need to be polynomial in terms of k. In particular, we will show that when r = 2,

and D consists of all powers of 2, we have ∆(D, k; 2) = 2Ω(
√
k).

Landman and Robertson [LR03] previously demonstrated that this choice of D

is 2-accessible and determined an upper bound of ∆(D, k; 2) ≤ 2k − 1, as well as a

linear lower bound. Chokshi, Clifton, Landman, and Sawin [CCLS18] improved the

lower bound to quadratic and conjectured the existence of a superpolynomial lower

bound, which we confirm [Cli21].

Theorem 4.1.1. When D = {2i | i ∈ Z≥0},

∆(D, k; 2) ≥ 2
√
2k

(
(
√
2− 1)k

8
−

√
k

8

)
+

√
k

2
.

In order for Theorem 4.1.1 to be meaningful, we must demonstrate that D =

{2i | i ∈ Z≥0} is actually 2-accessible so that the function ∆(D, k; 2) is defined for all

k ∈ Z>0. For completeness, we reproduce the induction argument of Landman and

Robertson [LR03].



74

Claim 4.1.2. Let D = {2i | i ∈ Z≥0}. Then D is 2-accessible; in particular,

∆(D, k; 2) ≤ 2k − 1.

Proof. ∆(D, 1; 2) = 1 so the claim is true for k = 1. We now assume that it holds for

k = n and proceed by induction.

Consider an arbitrary 2-coloring of Z>0 using colors 0 and 1. Suppose that

a1, · · · , an is a monochromatic (in color 0) D-diffsequence with an ≤ 2n − 1. Then,

an + 1, an + 2, · · · , an + 2i, · · · , an + 2n are all at most 2n+1 − 1. In order to avoid

extending the monochromatic color 0 diffsequence of length n to one of length n+ 1

in [2n+1 − 1], we require that an + 2i is color 1 for i = 0, 1, · · · , n.

However, (an +2i+1)− (an +2i) = 2i for i = 0, 1, · · · , n− 1. Since the consecutive

gaps are all powers of 2, these form a monochromatic D-diffsequence (in color 1)

contained in [2n+1 − 1]. Thus, we are guaranteed a monochromatic D-diffsequence of

length at least n+ 1 in [2n+1 − 1], completing the induction.

We will now prove Theorem 4.1.1 by utilizing a series of periodic colorings to

obtain the lower bound. The first set of colorings considered does not quite yield the

desired bound but inspires a series of more refined colorings which do.

Let P1 be a periodic coloring modulo two with a repeating block of “10”. This

means that odd numbers are assigned color 1 and even numbers are assigned color 0.

Let P2 be a periodic coloring modulo four with a repeating block of “1001”. This

means numbers that are 1 or 4 (mod 4) are color 1 while numbers that are 2 or 3

(mod 4) are color 0.

P3 will be a periodic coloring modulo eight with a repeating block of “10010110”.

Continuing in this manner, we define Pt as a periodic coloring with a repeating

block of size 2t. The first half of the repeating block is the repeating block of Pt−1

while the second half is the complement of the first half. Thus, by construction, any
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two numbers x and x+ 2t−1 have different colors with respect to Pt.

The repeating block of Pt can be thought of as the first 2t bits of the Thue-Morse

sequence. (Note that P3 is the periodic coloring that Landman and Robertson used

to obtain their initial linear lower bound in [LR03].)

A monochromatic sequence a1 < a2 < · · · < ak with respect to the coloring Pt

has no gaps, ai+1 − ai, of size 2t−1. Furthermore, we can obtain an upper bound for

the number of gaps of each size less than 2t−1 that depends only on the coloring used

and not on the length, k, of the D-diffsequence:

Lemma 4.1.3. For m = 0, 1, · · · , t − 2, there are at most m + 1 gaps of size 2m in

a monochromatic (with respect to Pt) D-diffsequence.

Proof. Consider a monochromatic D-diffsequence with respect to Pt. For each m =

0, 1, · · · , t − 2, we can split each repeating block of size 2t into 2t−m−1 sub-blocks of

size 2m+1. Each sub-block resembles a repeating block for Pm+1, possibly with the

colors swapped.

If ai+1−ai = 2m, then by construction, ai cannot be in the first half of a sub-block

of size 2m+1. So for any gap ai+1 − ai of size 2m, ai ∈ {2m + 1, 2m + 2, · · · , 2m+1}

(mod 2m+1). We say that ai is in the second half mod 2m+1 while ai+1 is in the first

half.

If the gaps ai+2 − ai+1, ai+3 − ai+2, · · · , aj − aj−1 are all larger than 2m, then aj is

in the first half mod 2m+1 and thus aj+1 − aj cannot be a gap of size 2m. This means

that in between every two gaps of the same size, there is at least one gap of a smaller

size. Since there is no way to have a gap of size smaller than 1, there is at most one

gap of size 1.

We will now prove the lemma by induction. Suppose that there exists some 1 ≤

q ≤ t− 2 such that there are at most m+1 gaps of size 2m for m = 0, 1, 2, · · · , q− 1.

We will now show that there are at most q + 1 gaps of size 2q.

Assume for the sake of contradiction that there are at least q + 2 gaps of size 2q.
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The first q + 2 of these are the gaps between aij and aij+1 for some indices ij with

j = 1, 2, · · · , q + 2. For j = 1, 2, · · · , q + 1, the sequence of gaps aij+2 − aij+1, aij+3 −

aij+2, · · · , aij+1
− aij+1−1, consists of at least one power of 2 smaller than 2q, as well

as possibly some powers of 2 larger than 2q, which we can ignore, as they are 0

mod 2q+1. For convenience, let Aj denote the sum of the gaps aij+2 − aij+1, aij+3 −

aij+2, · · · , aij+1
−aij+1−1 which are not divisible by 2q for j = 1, 2, · · · , q+1. For each

j = 1, 2, · · · , q+1, we have that (ai1+2q)+(A1+2q)+(A2+2q)+· · ·+(Aj−1+2q)+Aj =

ai1 + (A1 + A2 + · · · + Aj) + j2q is in the second half mod 2q+1. This means that

ai1 + (A1 + A2 + · · · + Aj) is in the second half mod 2q+1 if j is even (this includes

when j = 0 and we are just considering ai1) and is in the first half mod 2q+1 if j is

odd.

Beginning with ai1 , every time we add the next Aj, we switch halves mod 2q+1.

This means that A1+A2+· · ·+Ar > (r−1)2q for any r = 1, 2, · · · , q+1. In particular,

A1 + A2 + · · · + Aq+1 > q2q. Thus, there exist gaps of sizes 1, 2, 4, · · · , 2q−1 which

collectively sum to at least q2q + 1. By the inductive hypothesis, we have at most

m + 1 gaps of size 2m for m = 0, 1, · · · , q − 1. Thus the gaps of size 1, 2, 4, · · · , 2q−1

collectively sum to at most:

q−1∑
m=0

(m+ 1)2m =

q−1∑
m=0

(2q − 2m)

= q2q −
q−1∑
m=0

2m

= q2q − (2q − 1)

= (q − 1)2q + 1.

This contradicts that these must sum to at least q2q + 1, so it’s impossible for a

monochromatic D-diffsequence with respect to Pt to have q+2 gaps of size 2q. Thus,

there are at most m + 1 gaps of size 2m for m = 0, 1, 2, · · · , q and the induction is
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complete.

Lemma 4.1.3 gives a constant upper bound, 1 + 2 + · · · + (t − 1) = t(t−1)
2

on the

number of gaps smaller than 2t in a monochromatic (with respect to the coloring Pt)

D-diffsequence and thus a lower bound, k−1− t(t−1)
2

for the number of gaps of size at

least 2t. A lower bound on ∆(D, k; 2) comes from summing the sizes of these longer

gaps:

∆(D, k; 2) ≥ 2t(k − 1− t(t− 1)

2
).

This bound is linear in terms of k and has a slope which depends on t.

Picking t = ⌊
√
2k⌋ for a given k is in fact enough to obtain an exponential lower

bound of

∆(D, k; 2) ≥ 2⌊
√
2k⌋(

√
2k

2
− 1).

This bound has the same exponent as in Theorem 4.1.1, but differs by a factor of

Θ(
√
k). However, we will instead demonstrate a more refined series of colorings which

yield a slightly better lower bound.

For u ∈ Z≥0, let Pt,u be the periodic coloring with a repeating block of size 2t+u

obtained by replacing each bit of Pt by 2u copies of itself. We call these 2u consecutive

1’s or 2u consecutive 0’s a sub-block. Note that Pt,0 is simply Pt.

Example 9. P3,1 has a repeating block of “1100001100111100”, containing 8 sub-

blocks of length 2.

Example 10. P2,2 has a repeating block of “1111000000001111”, containing 4 sub-

blocks of length 4.

If ai and ai+1 are consecutive entries in a monochromatic D-diffsequence with

respect to the coloring Pt,u, there are three possibilities:

i) ai and ai+1 are in different positions within the same sub-block, or
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ii) ai and ai+1 are in different sub-blocks (possibly in the same block) but the same

position within their respective sub-blocks, or

iii) ai and ai+1 are in different sub-blocks and different positions within their re-

spective sub-blocks.

In the second case, ai+1 − ai is a multiple of 2u, the length of a sub-block, so

ai+1 appears exactly 2l sub-blocks after ai for some l. In the third case, we note that

ai+1 − ai cannot be divisible by the sub-block size 2u. Therefore, it is at most 2u−1,

so ai and ai+1 are in consecutive sub-blocks.

If we consider what sub-blocks a1, a2, · · · , ak lie in and ignore those that are not

the first ai in their respective sub-block, this corresponds to a monochromatic D-

diffsequence with respect to the coloring Pt.

Example 11. 5, 6, 10, 11, 12, 28 is a monochromatic sequence in color 0 with respect

to the coloring P2,2. If we look at the sub-blocks these are in, we have 2, 2, 3, 3, 3, 7.

Ignoring repeated occurrences of the same sub-block leaves us with 2, 3, 7 which is a

monochromatic D-diffsequence of color 0 with respect to P2.

Applying Lemma 4.1.3 to this D-diffsequence gives that for m = 0, 1, · · · , t − 2,

there are at most m + 1 occurrences of ai and ai+1 in the original sequence at a

distance of 2m sub-blocks apart. In particular, there is at most one i for which ai and

ai+1 are in consecutive sub-blocks. For m = 1, · · · , t− 2, there at most m+ 1 values

of i with ai+1 − ai = 2m+u.

In the first case, ai+1 is in a later position within the sub-block than ai is. There

is at most one time (the third case), where ai+1 can be earlier in its sub-block than ai

is. Thus, if we keep track of changes in the position of ai within its sub-block, it can

increase within the range 1 to 2u, decrease once, then increase again, potentially up

to 2u. This means the gaps accounted for by the first and third cases sum to at most

2(2u) − 1. For m = 1, · · · , t − 2, we have an upper bound on the number of gaps of



79

size 2m+u. We can then obtain a lower bound on the number of gaps of size at least

2t+u. (Note that gaps of size 2t−1+u cannot occur in a monochromatic D-diffsequence

with respect to Pt,u.)

Although it is possible for gaps of size 2u to occur in a monochromatic D-

diffsequence with respect to Pt,u, there is never any reason to use them if the goal is

to minimize ak. This is because a gap of size 2u can only occur if two sub-blocks of

all 1’s or two sub-blocks of all 0’s are adjacent. In that case, it is better to use 2u

consecutive gaps of size 1 in place of one gap of size 2u. This means there are at most
t−2∑
m=1

(m + 1) gaps of size less than 2t+u accounted for by the second case, in addition

to at most 2u+1 − 1 gaps of size less than 2t+u accounted for by the first and third

cases. There are a total of k − 1 gaps ai+1 − ai, so at least

(k − 1)−
t−2∑
m=1

(m+ 1)− (2u+1 − 1)

have size at least 2t+u. Replacing a smaller gap by another gap of size at least

2t+u would increase the sum of the gap sizes, so to minimize the total size of the gaps,

we will take as many as possible of each size less than 2t+u.

Thus, the sum of the k − 1 gaps is at least:

(2u+1 − 1) +
t−2∑
m=1

(m+ 1)2m+u + [k − 1− (2u+1 − 1)−
t−2∑
m=1

(m+ 1)]2t+u

=2t+u(k − 2u+1 − (t− 2)(t+ 1)

2
) + (2u+1 − 1) + (2u+t−1 − 2u+1) +

t−2∑
m=1

(2u+t−1 − 2u+m)

=2t+u(k − 2u+1 − t2

2
+

t

2
+ 1) + (t− 2)2u+t−1 + 2u+1 − 1

=2t+u(k − 2u+1 − t2

2
+ t) + 2u+1 − 1.
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This sum is a lower bound for ak − a1 so

∆(D, k; 2) ≥ 2t+u(k − 2u+1 − t2

2
+ t) + 2u+1.

We can now strategically choose t and u to maximize the lower bound. Suppose

t = ⌊
√
2k⌋ and u = ⌊log2

√
k
2
⌋. Then we have:

∆(D, k; 2) ≥ 2⌊
√
2k⌋+⌊log2

√
k
2

⌋

(
k − 2⌊log2

√
k
2

⌋+1 − ⌊
√
2k⌋2

2
+ ⌊

√
2k⌋

)
+ 2⌊log2

√
k
2

⌋+1

≥
2
√
2k(

√
k
2
)

4

(
k −

√
k − k +

√
2k − 1

)
+

√
k

2

= 2
√
2k

(
(
√
2− 1)k

8
−

√
k

8

)
+

√
k

2
.

This completes the proof of Theorem 4.1.1.

Note that there is still a considerable gap between the upper bound of 2Θ(k) and the

lower bound of 2Θ(
√
k). The values of ∆(D, k; 2) computed for k ≤ 12 (see Appendix

B) are more closely in line with the lower bound, suggesting that perhaps ∆(D, k; 2) =

2Θ(
√
k).

While we have shown that superpolynomial growth is possible for ∆(D, k; r), it

remains to be seen whether there are any restrictions on how fast ∆(D, k; r) can grow.

Question 4.1.4. For which t ∈ R+ does there exist an r-accessible set D ⊂ Z>0 for

which

∆(D, k; r) = eΩ(kt) ?

One possible mode of attack is as follows. For any infinite set T ∈ Z>0, the set

D = {i − j | i, j ∈ T, i > j} is r-accessible for any r [LR03]. This means we can

construct arbitrarily sparse sets which are still r-accessible. In a heuristic sense, we

expect a sparser set to have higher values for ∆(D, k; r). However, this could manifest

as an increase in the size of the constants involved in a lower bound and not affect



81

the asymptotic nature of the growth.

4.2 Inaccessibility of Certain Sets

In the previous section, we examined ∆(D, k; 2) where D was the range of an expo-

nential function defined on Z>0. Other exponential functions would not yield similar

results. In fact Dt := {ti | i ∈ Z≥0} is not 2-accessible for t ∈ Z≥3.

To see this, we can color multiples of t− 1 with color 0 and everything else with

color 1. Since ti ≡ 1 (mod t − 1) for all i, a Dt-diffsequence of length at least t − 1

would contain values in all residue classes (mod t− 1) and thus contain both colors.

We can generalize these periodic colorings to show that a wider class of D’s are not

2-accessible. We will consider sets D = {d1, d2, d3 · · · } with di | di+1 for all i. We call

such a set a dividing set since d1 | d2 | d3, · · · is a dividing sequence. Alternatively,

we may view a dividing set as

D{an} := {
k∏

i=1

ai | k ∈ Z>0}

for a fixed sequence of positive integers a1, a2, a3, · · · with ai ≥ 2 when i ≥ 2.

The set of powers of t is always a dividing set, so we observe that it is possible for

a dividing set to be 2-accessible or to not be 2-accessible. We classify [Cli21] precisely

when each happens.

Theorem 4.2.1. D{an} is 2-accessible if and only if {an} contains arbitrarily long

strings of consecutive 2’s.

First we will demonstrate that arbitrarily long strings of consecutive 2’s is enough

to guarantee 2-accessibility.

Claim 4.2.2. If {an} contains arbitrarily long strings of consecutive 2’s, then D{an}

is 2-accessible.
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Proof. Suppose for the sake of contradiction that some 2-coloring of Z>0 avoids ar-

bitrarily long monochromatic D{an}-diffsequences. Suppose that the longest such

diffsequence is of length k and given by b1 < b2 < · · · < bk.

Because {an} contains arbitrarily long strings of consecutive 2’s, there exists some

index j such that aj, aj+1, · · · , aj+k−1 all equal 2. Letting C =

j−1∏
i=1

ai, we have that

2tC ∈ D{an} for t = 0, 1, · · · , k. To avoid extending our monochromatic diffsequence

b1 < b2 < · · · < bk to a longer one, bk+2tC must be the other color for t = 0, 1, · · · , k.

However, this gives a monochromatic D{an}-diffsequence in the other color, as the

consecutive differences are

(bk + 2tC)− (bk + 2t−1C) = 2t−1C

for t = 1, 2, · · · , k. Thus, we have a monochromatic D{an}-diffsequence of length

k + 1, giving a contradiction.

The previous examples (powers of t ∈ Z≥3) of showing that a dividing set is not

2-accessible relied on periodic colorings. In many cases, a periodic coloring with two

colors can be reinterpreted as coloring each positive integer n according to the parity

of ⌊αn⌋ for some fixed rational number α which depends on the coloring. For the

remaining cases, we will utilize a similar coloring, except where α is irrational. For

every sequence {an} that does not have arbitrarily long strings of consecutive 2’s,

we will demonstrate the existence of an α such that coloring the positive integers

according to the parity of ⌊αn⌋ will avoid arbitrarily long monochromatic D{an}-

diffsequences.

The one case where we explicitly write α is when an = n for all n. That is, when

D{an} is the set of factorials.
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4.2.1 Factorials

Claim 4.2.3. The set, D := {i! | i ∈ Z>0}, of factorials is not 2-accessible.

We will make use of the following coloring. The integer n is assigned color 0 or 1

depending on the parity of ⌊nα⌋ where

α := 2− e

2
− 1

2e
= 1−

∞∑
i=1

1

(2i)!
.

Here we show that this coloring avoids monochromatic D-diffsequences of length

4. That is, there are no a1 < a2 < a3 < a4 in Z>0 with a2 − a1, a3 − a2, a4 − a3 ∈ D

such that ⌊aiα⌋ has the same parity for i = 1, 2, 3, 4.

Lemma 4.2.4. For all k ≥ 1, there exists some integer n such that

2n+
1

3
≤ k!α < 2n+ 1.

Proof. We split into the cases where k is even and when k is odd:

When k = 2m for m ≥ 1, we have

k!α = (2m)!−
∞∑
i=1

(2m)!

(2i)!
= (2m)!−

m∑
i=1

(2m)!

(2i)!
−

∞∑
i=m+1

(2m)!

(2i)!

= (2m)!−
m−1∑
i=1

[(2m)(2m− 1) · · · (2i+ 1)]− 1−
∞∑

i=m+1

1

(2m+ 1)(2m+ 2) · · · (2i)

= 1−
∞∑

i=m+1

1

(2m+ 1)(2m+ 2) · · · (2i)
(mod 2).

To reach the desired conclusion, it suffices to demonstrate that

2

3
≥

∞∑
i=m+1

1

(2m+ 1)(2m+ 2) · · · (2i)
> 0.

It is clear that the sum is positive. It can also be bounded above by the following
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convergent geometric series:

∞∑
i=m+1

1

(2m+ 1)2i−2m
=

1
(2m+1)2

1− 1
(2m+1)2

=
1

(2m+ 1)2 − 1

≤ 1

32 − 1
=

1

8
.

When k = 2m+ 1 for m ≥ 1, we have

k!α = (2m+ 1)!−
∞∑
i=1

(2m+ 1)!

(2i)!
= (2m+ 1)!−

m∑
i=1

(2m+ 1)!

(2i)!
−

∞∑
i=m+1

(2m+ 1)!

(2i)!

= (2m+ 1)!−
m−1∑
i=1

(2m+ 1)!

(2i)!
− (2m+ 1)−

∞∑
i=m+1

1

(2m+ 2)(2m+ 3) · · · (2i)

= 1−
∞∑

i=m+1

1

(2m+ 2)(2m+ 3) · · · (2i)
(mod 2).

To reach the desired conclusion, it suffices to demonstrate that

2

3
≥

∞∑
i=m+1

1

(2m+ 2)(2m+ 3) · · · (2i)
> 0.

It is clear that the sum is positive. It can also be bounded above by the following

convergent geometric series:

∞∑
i=m+1

1

(2m+ 2)2i−2m−1
=

1
2m+2

1− 1
(2m+2)2

=
2m+ 2

(2m+ 2)2 − 1

≤ 4

42 − 1
=

4

15
.

Only k = 1 remains to be checked. We have established that 1 − 1
8
≤ 2α < 1

(mod 2). This means that either 7
16

≤ α < 1
2
(mod 2) or 1 + 7

16
≤ α < 1 + 1

2

(mod 2). If the latter statement is true, then α > 1 or α < 0 but this is false because

α < 2 − e
2
< 2 − 2

2
= 1 and α > 2 − 3

2
− 1

2(2)
= 1

4
. Therefore, 7

16
≤ α < 1

2
(mod 2),

giving us 1
3
≤ α < 1 (mod 2) as desired.
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Proof of Claim 4.2.3. Now suppose that there exist a1, a2, a3, a4 all the same color

such that the consecutive gaps lie in D = {i! | i ∈ Z>0}. Since this sequence is

monochromatic, ⌊ai+1α⌋ − ⌊aiα⌋ is even for i = 1, 2, 3. By Lemma 4.2.4, we know

that for i = 1, 2, 3,

2ni +
1

3
≤ (ai+1 − ai)α < 2ni + 1

for some integers ni.

If aiα ∈ [2
3
, 1) (mod 2), then ai+1α ∈ [1, 2) (mod 2). Similarly, if aiα ∈ [5

3
, 2)

(mod 2), then ai+1α ∈ [0, 1) (mod 2). Thus, in order for ai+1 and ai to be the same

color, we need 0 ≤ aiα < 2
3
(mod 1). In particular, we need 0 ≤ a2α < 2

3
(mod 1)

and 0 ≤ a3α < 2
3
(mod 1).

By similar reasoning, these inequalities force 0 ≤ a1α < 1
3
(mod 1) and 0 ≤ a2α <

1
3
(mod 1), respectively. However, since ⌊a2α⌋ and ⌊a1α⌋ have the same parity, this

gives −1
3

< a2α − a1α < 1
3
(mod 2), contradicting the restriction that 2n1 +

1
3
≤

(a2 − a1)α < 2n1 + 1. Therefore, no such a1, a2, a3, a4 exist with respect to this

coloring. We avoid arbitrarily long monochromatic D-diffsequences, in particular by

avoiding monochromatic D-diffsequences of length at least four.

4.2.2 Existence Proof for General Dividing Sets

We are left to consider the general case of D{an} where {an} does not have arbitrar-

ily long strings of consecutive 2’s. All elements of D{an} are multiples of a1, so any

monochromatic D{an}-diffsequence stays within a residue class modulo a1. Consider-

ing each residue class (mod a1) separately, we can avoid the presence of arbitrarily

long monochromatic D{an}-diffsequences in a residue class as long as it is possible

to find a coloring which avoids arbitrarily long monochromatic T{an}-diffsequences in

Z>0 where T{an} = { d
a1

| d ∈ D{an}}. Thus, it suffices to only consider when a1 = 1.

If there is no string of k consecutive 2’s in {an}, we will show that there exists
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a coloring of Z>0 which avoids monochromatic D{an}-diffsequences of length 2k + 1.

As with the set of factorials, we will use Beatty sequences to make such a coloring.

Every n ∈ Z>0 will be colored according to the parity of ⌊nα⌋ where our choice of α

depends on {an}. For convenience, let dt :=
t∏

i=1

ai so that D{an} = {dt | t ∈ Z>0}.

Lemma 4.2.5. If the sequence {an} contains no string of k consecutive 2’s, then

there exists some α > 0 such that for all t ∈ Z>0, there exists some integer nt such

that

2nt +
1

2k
≤ dtα ≤ 2nt + 1.

Using this lemma, we can finish the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. Suppose for the sake of contradiction that we have a monochro-

maticD{an}-diffsequence b1 < b2 < · · · < b2k+1. Since this sequence is monochromatic,

⌊bi+1α⌋ − ⌊biα⌋ is even for i = 1, 2, · · · , 2k. By Lemma 4.2.5, we know that for

i = 1, 2, · · · , 2k,

2mi +
1

2k
≤ (bi+1 − bi)α ≤ 2mi + 1 (4.1)

for some integers mi. In order for bi+1 and bi to be the same color, we need 0 ≤ biα <

1 − 1
2k

(mod 1), so 0 ≤ b2kα < 1 − 1
2k

(mod 1). Since ⌊b2kα⌋ and ⌊b2k−1α⌋ have the

same parity, this in turn necessitates

0 ≤ (b2k−1)α < 1− 2

2k
(mod 1),

which necessitates

0 ≤ (b2k−2)α < 1− 3

2k
(mod 1).

Continuing in this manner, we get that

0 ≤ b2α < 1− 2k − 1

2k
=

1

2k
(mod 1).
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However, ⌊b1α⌋ and ⌊b2α⌋ have the same parity so either 0 ≤ b2α− b1α < 1
2k

(mod 2)

or 1 < b2α− b1α < 2 (mod 2). This directly contradicts Equation 4.1.

Proof of Lemma 4.2.5. For each t ∈ Z>0, we will construct closed intervals I tb :=

[Ct
b, D

t
b] for b = 1, · · · , t such that if dbγ ∈ I tb (mod 2), then dhγ ∈ I th (mod 2) for

h = b+1, b+2, · · · , t. These will be constructed in such a way that 1
2k

≤ Ct
b < Dt

b ≤ 1

for b = 1, · · · , t. Then, for any γ ∈ I t1, we have d1γ ∈ I t1 (mod 2) and thus dhγ ∈ I th

(mod 2) ⊂ [ 1
2k
, 1] (mod 2) for h = 1, 2, · · · , t.

We then define Jt := [Ct, Dt] :=
t⋂

b=1

Ib1. Thus, for γ ∈ Jt, we have dbγ ∈ [ 1
2k
, 1]

(mod 2) for b = 1, 2, · · · , t. Also we have Jt+1 ⊂ Jt for all t ∈ Z, so Ct ≤ Ct+1 <

Dt+1 ≤ Dt for t ∈ Z.

Consider the sequence {Ct} for t = 1, 2, · · · . This is a non-decreasing sequence

and it is bounded above by 1. Therefore, it converges to some limit α. Similarly, the

sequence {Dt} for t = 1, 2, · · · is non-increasing and bounded below by 0 so it also

converges to some limit β ≥ α. For each t ∈ Z>0, we have Ct ≤ α ≤ β ≤ Dt. Thus,

this α lies in Jt for all t ∈ Z>0, meaning that dtα ∈ [ 1
2k
, 1] (mod 2) for all t ∈ Z>0.

It now suffices to construct each I tb. We begin with I tt := [1
2
, 1]. Then for b ≥ 2,

we recursively construct I tb−1 from I tb as follows:

• If ab is odd:

Ct
b−1 =

ab − 1 + Ct
b

ab
Dt

b−1 =
ab − 1 +Dt

b

ab
.

• If ab is even:

Ct
b−1 =

ab − 2 + Ct
b

ab
Dt

b−1 =
ab − 2 +Dt

b

ab
.

We claim this construction satisfies the requisite properties:
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Claim 4.2.6. For b = 1, 2, · · · , t,

1

2k
≤ Ct

b < Dt
b ≤ 1.

Claim 4.2.7. For b = 1, · · · , t, if dbγ ∈ I tb (mod 2), then dhγ ∈ I th (mod 2) for

h = b+ 1, b+ 2, · · · , t.

Proof of Claim 4.2.6. We set Ct
t :=

1
2
and Dt

t := 1. We have Dt
b > Ct

b for t = b and

whenever Dt
b > Ct

b, we get that ab−2+Dt
b > ab−2+Ct

b and ab−1+Dt
b > ab−1+Ct

b,

so by backwards induction, Dt
b > Ct

b for b = 1, · · · , t.

Now we need to show that Ct
b ≥ 1

2k
and Dt

b ≤ 1 for b = 1, · · · , t − 1. We will

proceed by induction by showing that for b = 2, · · · , t, Ct
h ≥ 1

2k
for h = b, b+1, · · · , t

implies Ct
b−1 ≥ 1

2k
and that Dt

b ≤ 1 implies Dt
b−1 ≤ 1. There are two cases to consider:

i) ab > 2 or

ii) ab = ab+1 = ab+2 = · · · = ab+q−1 = 2 with b + q − 1 ≤ t but either ab+q > 2 or

b+ q = t+ 1. Note that that the sequence {an} has no string of k consecutive

2’s so q < k.

In either case,

Dt
b−1 ≤

ab − 1 +Dt
b

ab
≤ ab − 1 + 1

ab
= 1.

Since Ct
b < Dt

b ≤ 1, we know that 1 ≥ 1− Ct
b > 0. In Case i) and with ab odd,

Ct
b−1 = 1− 1− Ct

b

ab
.

This is minimized when ab = 3, in which case,

Ct
b−1 = 1− 1− Ct

b

3
≥ 2

3
.
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For Case i) and with even ab,

Ct
b−1 = 1− 2− Ct

b

ab
,

which is minimized when ab = 4, yielding,

Ct
b−1 = 1− 2− Ct

b

4
≥ 1

2
.

This means that when ab > 2, we not only get Ct
b−1 ≥ 1

2k
, but we get the potentially

stronger claim of Ct
b−1 ≥ 1

2
.

Now we consider Case ii). If b + q ≤ t and ab+q > 2, then a consequence of our

analysis of Case i) is that Ct
b+q−1 ≥ 1

2
. If b+ q = t+1, our initial definition of Ct

t also

gives Ct
b+q−1 ≥ 1

2
.

Now since ab = ab+1 = · · · = ab+q−1 = 2, we have for h = b− 1, b, · · · , b+ q − 2,

Ct
h =

ah+1 − 2 + Ct
h+1

ah+1

=
2− 2 + Ct

h+1

2
=

Ct
h+1

2
.

This means

Ct
b−1 =

Ct
b+q−1

2q
≥ 1/2

2q
=

1

2q+1
.

Recall that q < k, so this quantity is at least 1
2k

and the proof is complete.

Proof of Claim 4.2.7. It suffices to show that if dbγ ∈ I tb (mod 2), then db+1γ ∈ I tb+1

(mod 2) for b = 1, · · · , t− 1.
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If dbγ ∈ I tb (mod 2) and ab+1 is odd,

Ct
b ≤ dbγ ≤ Dt

b (mod 2)

ab+1 − 1 + Ct
b+1

ab+1

≤ dbγ ≤
ab+1 − 1 +Dt

b+1

ab+1

(mod 2)

ab+1 − 1 + Ct
b+1 ≤ ab+1dbγ ≤ ab+1 − 1 +Dt

b+1 (mod 2)

Ct
b+1 ≤ db+1γ ≤ Dt

b+1 (mod 2).

Note that to go from the second pair of inequalities to the third pair, we use that

0 ≤ Ct
b+1 ≤ Dt

b+1 ≤ 1 and that ab+1 − 1 is even. In particular, we have some integer

nb where dbγ ∈ [2nb +
ab+1−1+Ct

b+1

ab+1
, 2nb +

ab+1−1+Dt
b+1

ab+1
]. Multiplying by ab+1 gives

ab+1dbγ ∈ [2nbab+1 + (ab+1 − 1) + Ct
b+1, 2nbab+1 + (ab+1 − 1) +Dt

b+1].

Similarly if dbγ ∈ I tb (mod 2) and ab+1 is even,

Ct
b ≤ dbγ ≤ Dt

b (mod 2)

ab+1 − 2 + Ct
b+1

ab+1

≤ dbγ ≤
ab+1 − 2 +Dt

b+1

ab+1

(mod 2)

ab+1 − 2 + Ct
b+1 ≤ ab+1dbγ ≤ ab+1 − 2 +Dt

b+1 (mod 2)

Ct
b+1 ≤ db+1γ ≤ Dt

b+1 (mod 2).

Going from the second pair of inequalities to the third pair uses that 0 ≤ Ct
b+1 ≤

Dt
b+1 ≤ 1 and that ab+1 − 2 is even.

While we have demonstrated a wide class of sets that are not 2-accessible, this

occurs for modular arithmetic reasons, as opposed to sparsity reasons. It would be

interesting to determine whether there exists a growth condition on the elements of

the set D which can disqualify it from being 2-accessible. For example, we propose
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the following question.

Question 4.2.8. Does there exist an absolute constant C ≥ 2 and a 2-accessible set

D = {d1, d2, d3, · · · } such that di+1 > Cdi for all i ∈ Z>0? If yes, can C be arbitrarily

large?

We can also look specifically at the case where di+1

di
does not fluctuate much. We

can interpolate between sets of the form {ti | i ∈ Z≥0} by defining Df
α := {⌊αi⌋ | i ∈

Z≥0} or Dc
α = {⌈αi⌉ | i ∈ Z≥0} for α > 1.

When α = 2
1
n for some n ∈ Z≥0, then both Df

α and Dc
α contain all powers of 2

and therefore are 2-accessible. More generally, we can consider Df
δ,α := {⌊δαi⌋ | i ∈

Z≥0} ∩ Z>0 and Dc
α = {⌈δαi⌉ | i ∈ Z≥0} for α > 1, δ > 0. We could also consider

the set consisting of the values (excluding 0) of δαi rounded to the nearest integer,

though that will sometimes be ambiguous if δαi ever has fractional part 1
2
. When

α = 1+
√
5

2
and δ = 1√

5
, the rounding is never ambiguous and the set we obtain in this

manner is the set of Fibonacci numbers, which is known to be 2-accessible [AGJ+08].

These pieces of evidence motivate the next two questions.

Question 4.2.9. Is there any α ∈ (1, 2) for which Df
δ,α or Dc

δ,α is not 2-accessible for

some choice of δ > 0? (for δ = 1?)

Question 4.2.10. Is there any α > 2 for which Df
δ,α or Dc

δ,α is 2-accessible for some

choice of δ > 0? (for δ=1?)

If the answer to any of these questions is yes, we can also consider whether the

set of such α has nonzero measure.

4.2.3 Random Diffsequences

We may also consider what happens when D is a random subset of the positive

integers.



92

Claim 4.2.11. If we select the elements of D from the positive integers, independently

and uniformly at random with probability 0 < α < 1, then D is 2-accessible with

probability 1.

Proof. For each integer k ≥ 1 and each prime p, consider the set {p, 2p, 4p, · · · , 2k−1p}.

Note that for different choices of p, these sets are disjoint. The probability that D

includes all the numbers in {p, 2p, · · · , 2k−1p} is a constant αk > 0. Since these sets are

disjoint, there is probability 1 that there exists some prime p with {p, 2p, 4p, · · · , 2k−1p} ⊂

D. This is homothetic to {1, 2, 4, · · · , 2k−1} so whatever we can say about integer se-

quences with gaps in {1, 2, 4, · · · , 2k−1}, we will be able to say about sequences within

a fixed residue class mod p with gaps in {p, 2p, 4p, · · · , 2k−1p}.

We know that the set, T , of powers of 2 is 2-accessible. In particular, coloring

{1, 2, · · · , 2k − 1} with two colors guarantees the presence of a monochromatic T -

diffsequence of length k. However, the numbers are small enough that there could

be no gap of size more than 2k−1 in such a diffsequence. Thus, the presence of

{1, 2, · · · , 2k−1} in D ensures that any 2-coloring of Z>0 has monochromatic D-

diffsequences of length k. Similarly, the presence of {p, 2p, 4p, · · · , 2k−1p} in D will

as well.

Thus, for any k, we have probability 1 that every 2-coloring of the positive integers

contains a monochromatic D-diffsequence of length k.

It remains to be seen whether a similar argument can be used for r-accessibility by

showing that with probability 1, D will contain homothetic copies of certain subsets

whose union is a known r-accessible set.

If we include each positive integer x in our set with probability 1
x2 , then the ex-

pected size of our set D is finite, so D is finite with probability 1 and thus 2-accessible

with probability 0. There are countless other probability functions which result in a

set that is 2-accessible with probability 0 because D is finite with probability 1. It

is still possible for D to be 2-accessible with probability 0 despite being infinite with
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probability 1 since we could select D to be a random subset of a set like the odd

numbers which is known to not be 2-accessible.

If neither of these criteria to make D 2-accessible with probability 0 is satisfied,

we ask if there are still other obstructions to D being 2-accessible.

Question 4.2.12. Suppose that D is a random subset of Z>0 where each x ∈ Z>0

is included in D independently with some positive probability f(x). If
∑∞

x=1 f(x)

diverges, is it possible for D to be 2-accessible with probability less than 1?

One interesting case to examine might be when the probability function used is

f(x) = 1
x
.

Lastly, as we range over all possible distributions for D as a random subset of

Z>0, we ask what are the possible probabilities that D is 2-accessible.

Question 4.2.13. Suppose that D is a random subset of Z>0 where each x ∈ Z>0 is

included in D independently with some positive probability f(x). Can the probability

that D is 2-accessible be anything other than 0 or 1?

We restrict our attention to when the elements of D are chosen independently,

since otherwise, we can for any 0 < p < 1, choose a distribution so that the random

set D is equal to Z>0 with probability p and empty otherwise.
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Appendix A

Number of Lines Needed to Cover

Triangular Grids
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d t1(d, 2, 2) t1(d, 2, 3) t1(d, 2, 4) t1(d, 2, 5) t1(d, 2, 6) t1(d, 2, 7)

1 2 3 4 5 6 7

2 3 5 6 8 9 11

3 5 7 9 12 14 16

4 6 9 12 15 18 21

5 8 12 15 18 22 26

6 9 14 18 22 26 30

7 11 16 21 26 30 35

8 12 18 24 30 35 40

9 14 21 27 33 39 45

10 15 23 30 36 44 51

11 17 25 33 40 48 56

12 18 27 36 44 52 60

13 20 30 39 48 56 65

14 21 32 42 51 60 70

15 23 34 45 54 65 75

16 24 36 48 58 69 80

17 26 39 51 62 74 85

18 27 41 54 66 78 90

19 29 43 57 69 82 95

20 30 45 60 72 86 100

21 32 48 63 76 90 105
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d t2(d, 2, 1) t2(d, 2, 2) t2(d, 2, 3) t2(d, 2, 4) t2(d, 2, 5) t2(d, 2, 6)

1 1 2 3 4 5 6

2 2 4 5 7 9 10

3 3 6 8 11 13 16

4 4 8 11 15 18 22

5 5 10 14 19 23 28

6 6 12 17 23 28 34

7 7 14 20 27 33 40

8 8 16 23 31 38 46

9 9 18 26 35 43 52

10 10 20 29 39 48 58

11 11 22 32 43 53 64

12 12 24 35 47 58 70

13 13 26 38 51 63 76

14 14 28 41 55 68 82

15 15 30 44 59 73 88

16 16 32 47 63 78 94

17 17 34 50 67 83 100

18 18 36 53 71 88 106

19 19 38 56 75 93 112

20 20 40 59 79 98 118

21 21 42 62 83 103 124
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Appendix B

Values of ∆(D, k; 2) when

D = {2i | i ∈ Z≥0}

k ∆(D, k; 2)

1 1

2 3

3 7

4 11

5 17

6 25

7 35

8 51

9 67

10 83

11 115

12 147

[CCLS18]
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Appendix C

Gurobi Code

This Python implementation of Gurobi was used to compute t2(d, 2, 2). It can easily

be modified to compute t1(d, 2, k) or t2(d, 2, k) for other values of k.

import math

import gurobipy as gp

from gurobipy import GRB

for n in range ( 2 , 2 1 ) :

po in t s =[ ]

for i in range (0 , n+1):

for j in range (0 ,2∗ i +1):

po in t s . append ( [ i , j ] )

l i n e s =[ ]

for i in range (0 , n+1):

l i n e =[ ]

for j in range (0 ,2∗ i +1):

l i n e . append ( [ i , j ] )

i f len ( l i n e )>=2:

l i n e s . append ( l i n e )
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for i in range (n+1):

for i 2 in range ( i +1,n+1):

for j in range (0 ,2∗ i +1):

for j 2 in range (0 ,2∗ i 2 +1):

m=(j2−j ) / ( ( i2−i ) )

l i n e =[ ]

for k in range (0 , n+1):

i f ( (m∗(k−i ))%1==0 and 2∗k>=m∗(k−i )+j >=0):

l i n e . append ( [ k ,m∗(k−i )+ j ] )

i f len ( l i n e )>=2:

i f l i n e not in l i n e s :

l i n e s . append ( l i n e )

m=gp . Model ( )

x=[m. addVar ( vtype=GRB.INTEGER) for l in l i n e s ]

i n d i c e s =[ ]

for p in po in t s :

count =[ ]

for l in range ( len ( l i n e s ) ) :

i f p in l i n e s [ l ] :

count . append ( l )

i n d i c e s . append ( count )

for p in range ( len ( po in t s ) ) :

m. addConstr ( gp . quicksum (1∗x [ j ] for j in i n d i c e s [ p])>=2)

m. update ( )

m. s e tOb j e c t i v e ( gp . quicksum (1∗x [ i ] for i in range ( len ( l i n e s ) ) ) )

m. opt imize ( )

t i t l e= ' twice '+str (n)+ 'by '+str (n)+ ' f u l l 2 t r i a n g l e . s o l '
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m. wr i t e ( t i t l e )
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