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Abstract

Measurement and Analysis Methods of Performance Problems in Distributed Systems
By Lei Zhang

Today’s distributed systems invest significant computational and storage resources to
accommodate their large scale of data, but more resources do not automatically improve
performance. To deliver high performance, new types of large-scale solutions, such as the
cloud computing and microservices paradigms, follow the design of deploying loosely coupled
components that perform but, in the process, make it harder to maintain a global view
of system performance. With the ensuing growing complexity of system architectures,
diagnosing and understanding performance problems has become both critically important
and highly challenging.

The aim of this thesis is to fill in some missing but significant parts towards monitoring
and analyzing performance problems in distributed systems, by asking the question: What is
the performance bottleneck of distributed systems performance, and how should we improve
it? First, my thesis proposes a novel retroactive tracing abstraction where full telemetry
information about a distributed request can be retrieved “back in time” soon after a problem
is detected without unduly burdening any node in the system, with an always-on distributed
tracing system. Second, my thesis frames the challenges of data placement in modern
memory hierarchies in a generalized paging model outside of traditional assumptions, and
provides an offline data placement algorithm towards optimal placement decisions. Last,
my thesis derives a rule-of-thumb expression for cache warmup times, specifically how long
caches in storage systems and CDNs need to be warmed up before their performance is
deemed to be stable.
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Chapter 1

Introduction

1.1 Performance is Key

Distributed systems involve more computational and storage resources today for larger data

scales, but performance is not automatically improved. Data scale is growing rapidly on

modern systems including social networks and web search systems. Facebook claims their

data warehouse stores upwards of 300 PB of Hive data in 2014, with an incoming daily

rate of about 600 TB [3]. Google is also estimated to maintain more than 10 EB data

in their warehouse [28]. Together grown is the demand for service quality. Performance

is often directly related to cost benefits, where small improvements in performances could

lead to large savings on production systems. Akamai reported that each additional 100ms

of latency experienced by end-users decreased the sales by 7% [1]. Similarly, Amazon

also claimed that a 100ms reduction on latency leads to 1% lost on sales[74]. Providing

guaranteed performance in distributed systems should be considered one of the highest

priorities.

Unfortunately, traditional system solutions do not scale by themselves, even with faster

processors and storage hardware. Distributed systems are driven by more machines, more

storage nodes, and more complex architectures, which simultaneously make system devel-

opment a harder issue. New types of large-scale solutions, including cloud computing and

microservices, follow the design idea to deploy loosely coupled components. While system

developers can build decoupled applications easier, a global view of system performance
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Build

MeasureAnalyze

Figure 1.1: Developing distributed systems [18].

is missed. Applications always follow domain-specific design patterns on design logic and

resource utilization, leaving all heavy lifts of global performance optimization to the system

architecture.

Performance improvement is not a one-way process. On one hand, estimating perfor-

mance ahead of execution, with monitoring, testing, and verifying methods, can provide a

basic sense of how the system behaves. However, distributed system performance is usually

undetermined and cannot be fully tested before execution, where performance problems

may occur during execution. Thus solving performance problems is even more important

towards better improving the system.

Improving system performance is hard if it’s not well understood. This includes measur-

ing, analyzing, and understanding performance patterns. Figure 1.1 [18] presents a circle of

system building procedures. When building a large-scale system with desired performance,

performance measurement can expose general, hidden, or indiscoverable problems, while

performance analysis derives how to further improve performance, especially why is the

current performance not as expected. This drives the importance of carefully quantifying

system performances. Performance quantification includes several considerations:

• Performance should be carefully measured. Within the grown system scale, it also

becomes more challenging to monitor and diagnose unexpected performance problems,
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including failures, lags, and bottlenecks. Troubleshooting those issues requires a global

view across different machines, processes, and networks. Distributed tracing is the

solution to those questions, by deploying end-to-end tools on machines for recording

and analyzing root causes of performance symptoms.

• Performance should be well understood. Caches have been proved as the general

solution to speed up systems, understanding how cache works in distributed systems

helps maximize the power of such improvements. However, caches are still always used

as a black box. We should understand where the bottleneck occurs, what metrics are

the core of those bottlenecks, and how the system could be further optimized.

Though diagnosing distributed system performance problems is an extremely hard prob-

lem, this thesis argues that we lack a thorough understanding of distributed system per-

formances, and aims to point out some significant but missing points on monitoring and

analyzing performance problems in distributed systems. Specifically, this thesis aims to

answer the question: What is the performance bottleneck of distributed systems

performance, and how should we solve it? Since this is an expansive and deep question

I expect significant work to happen in the coming years. For this thesis, I will concentrate

on several key challenges towards addressing the proposed solutions.

1.1.1 Challenges

Diagnosing and troubleshooting distributed systems is onerous, because performance related

issues and root causes scatter across different machines without indications or practically

predictions ahead of time. Performance diagnosis relies on recording large amounts of logs,

metrics, or traces and with a branch of tools to achieve such root cause analysis. This raises

a practical issue when the amount of log data is huge. Current diagnosis solutions sidestep

these costs by tracing off the data volume, either by only gathering the most pertinent

information or by sampling on a small subset of requests or time periods with the hope

that performance issues would occur on those samples. In all those cases no one knows

prior to a problem occurring, so collecting details for diagnosing a rare problem is almost

impossible. We need to think about how to solve the problem to provide performance
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diagnosis guarantee.

Even with the ability to know performances, we should carefully design system compo-

nents for performance improvement. Caching systems are broadly used today but usually

used in a simple form. There is a lack of understanding the usage, architecture, and optimal

objective of caching systems. Unfortunately, most caching systems in production still follow

the traditional cache idea that only focuses on minimizing cache misses. Those systems are

treated as a simple black-box middleware to hold “hot” data for an uncertain amount of

speed-up. A trending cache systems design is to firstly understand the optimal boundary

and further design caches towards it. However, many recent theoretical works miss the

consideration of realistic caching system usages.

1.1.2 Opportunities

As we addressed the many missing parts of system performance quantification, there ex-

ist more chances to solve the problems. Performance measurement is not a blank world.

Generating performance tracing data is actually cheap, while the following steps are the

expensive aspects. Operators can generate as much data as they like, and the real bottle-

necks for performance measurement are in the storage to persist that data for the future,

and network costs for centralizing the data. Besides, most performance data is superfluous.

Normal operations are by definition uninteresting for tracking down a specific problem.

Finally, there is a large class of problems where the symptoms of a performance problem

can be detected quickly. For example, the moment a low-latency system observes an outlier

request, e.g., one that took seconds to be processed, something has evidently gone wrong

and an investigation is warranted. In these cases, the relevant data for troubleshooting does

not extend far back in time. Those observations indicate that we have the chance to prop-

erly deal with a small amount of data for widely and speedily diagnosing the “interesting”

performance problems.

From the perspective of building cache systems, there are many realistic aspects push-

ing us to rethink the cache design. As nascent memory technologies muddy the traditional

distinction between layers in terms of storage capacity, latency, power, and costs, the as-

sumptions underlying data placement decisions need to be revisited. Since cache perfor-
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mance relies on hardware performances, this opens a great chance to design caching system

architecture with those new memory hardware, with a consideration of high performance

hierarchies. Byte-addressable non-volatile memory (NVM), as one example, is slated to

deliver larger capacity than DRAM at competitive latency, with currently available NVM

hardware (e.g., Intel Optane DC Persistent Memory [89, 69]) incurring 2− 5× the read la-

tency and 4− 10× the write latency of DRAM, far closer than the 2–3 orders of magnitude

performance differences between DRAM and SSD.

1.2 Contributions

The thesis proposes to fill in the missing parts of distributed system performance quantifi-

cation by making the contributions as listed below.

• Retroactive distributed tracing in runtime. I propose a novel retroactive trac-

ing abstraction where full telemetry information about a distributed request can be

retrieved “back in time” soon after a problem is detected without unduly burden-

ing any node in the system. I build an always-on distributed tracing system, named

Hindsight, that enables retroactive tracing. The key idea is that all trace data about

requests is written into a fixed-size, thread-local buffer. The buffer is flushed when

full and a buffer with older data is recycled. When an application detects a problem

and wishes to persist the relevant trace data, it invokes Hindsight’s trace collection

mechanism and collects the full request traces while aggressively curtailing overhead.

• Offline optimal placement for memory hierarchy. I frame the challenges of data

placement in modern memory hierarchies in a generalized paging model outside of tra-

ditional assumptions. I design and build CHOPT, an offline data placement algorithm

for providing optimal placement decisions as the upper bound of performance gain for

any data placement algorithm. CHOPT utilized spatial sampling to provide practical

and accurate approximations. Experimental results on a wide range of data show

that CHOPT can expose the opportunities to improve latency performance ranging

between 8.2% and 44.8% on average versus the standard BELADY algorithm. As an
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additional contribution, this thesis also theoretically and experimentally evaluate the

spatial sampling performances on real world workloads.

• Cache warmup time analysis. I derive a rule of thumb expression for cache warmup

times, specifically how long caches in storage systems and CDNs need to be warmed

up before their performance is deemed to be stable. Warmup time estimation allows

CDN operators to compute the required redundancy and extra capacity to maintain

a level of service in failure scenarios. This first provides a concrete definition of cache

warmup time, that is, a cache server has warmed up when its cache hit rate over

time is and stays comparable to that of an identical cache service that processed

the same workload but suffered no downtime. This thesis then analyzes dozens of

traces across workloads collected from diverse systems, ranging from block accesses

of virtual machines in storage systems to cache accesses of large CDN providers. Our

experiments show that simple parameters concentrate at specific values for each type

of workload. Our simulation results indicate that the formula provides an accurate

expression for operators to estimate their cache server warmup time.

1.3 Thesis Overview

This thesis follows the general process as shown in Figure 1.1. Chapter 2 provides the

necessary backgrounds and related works, especially on distributed tracing and distributed

caching. Chapter 3 introduces the proposed method to measure edge case performance

problems. Chapter 4 introduces an offline analysis work to understand the optimal place-

ment policy on cache and memory systems. Chapter 5 introduces a practical case study on

quantifying cache warmup time.
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Chapter 2

Background

In this chapter, we provide the necessary background of understanding distributed system

performance. We specifically introduce how performance problems occur in modern dis-

tributed systems, and what are the state-of-the-art methods for performance improvement.

Performance Problems. In distributed systems, performance problems refer to unex-

pected behaviors of performance metrics. In this thesis, we consider all types of metrics but

specifically take latency as a major example, given that latency is one of the most important

metrics of distributed system performances. A latency issue means the execution time is

longer than expected. This falls into two categories:

• Performance bug occurs, where the latency is larger than normal. A commonly used

metric is P99 latency, which represents the 99th latency percentile so each request

with latency higher than P99 latency is counted as the slowest 1% requests among all.

• Performance is not good enough as designed or expected. Note that there are many

system components designed to improve performance. Cache is broadly used to store

data for repeated requests in the near future and reduce request execution time. Cache

itself is a system and it can also have performance problems when not providing

expected performance speed-up.
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Figure 2.1: AWS Microservice Architecture Example [2].

2.1 Modern Distributed Systems

As we discussed in chapter 1, distributed systems grow with higher demand on performance

today. We first introduce some examples of large-scale modern distributed architectural

patterns that we focus on in this thesis.

Cloud Computing. Distributed systems are developed today with huge demand for

processing massive requests and data. This raises questions on both service quality and the

complexity to design, build, and maintain systems. Such new demands push the develop-

ment of cloud computing, where massive computational and storage resources are deployed

for application developers to build their systems or services on top of. Cloud computing

provides the basis of today’s distributed systems where we have to build and deploy systems

at scale and traditional system architectures are limited.

Microservice. A trending distributed system design is the microservice architecture,

where system components are fully independent, loosely coupled, and usually single-purposed.

Building large-scale systems is then transferred to putting those microservices together as

a monolithic service as a functional system. Figure 2.1 shows an example of building a
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microservice based application with AWS components. Microservice architecture benefits

distributed system design and building by simplifying the system development process, en-

abling heterogeneous systems where different subsystems can be developed with different

programming languages, and simplifying the testing, debugging, and maintaining system

performances [76].

Heterogeneous Memories. The memory hierarchy has been a guiding model over

decades of system research, giving system designers a framework for reasoning about effi-

ciency trade-offs in architectures that combine different memory hardware, ranging from

multi-core processors to large-scale distributed web caches to multi-tier storage systems.

The historical optimization and limitation of CPU caches, the quintessential memory hier-

archy, of not allowing blocks in lower layer caches to be directly addressed have influenced

the models and algorithms deployed in other settings, even where layers are directly address-

able. Addressability becomes important as new memory hardware simultaneously diversifies

the characteristics of memory components (for instance, data volatility and bandwidth) and

decreases the performance differences (less pronounced latency or capacity difference be-

tween layers, for example).

Specifically, non-volatile memory is an existing concept but recently released products

that significantly contribute to modern memory hierarchies. Intel recently released the

Optane DC Persistent Memory [89] whose load and store latency are within the same order

of magnitude as regular DRAM. Other NVM technologies are under development, including

Spin-Transfer-Torque RAM (STT-RAM) and 3D-XPoint, and are expected to reach similar

performance. Table 2.1 shows a performance comparison of DRAM, NVM, and NVMe

memories. Intel Xeon scalable processors currently support DRAM and NVM together in

their main memory systems [14, 37], with NVM poised to sit between DRAM and the hard

drive as an additional layer in the memory architecture.

2.2 Performance Symptoms

We discuss more in detail where performance problems occur in distributed systems.
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2.2.1 Control Plane

The control plane in distributed systems includes both processing and execution on each

system component, and network topologies for data transfer. Control plane can be rep-

resented as control flow graph (CFG). With the growing distributed system scale, CFG

becomes huge and complex for real world production systems. This is especially true for

microservice architectures where system components are fully decoupled.

Microservice vs. monolithic. Building distributed systems with microservice archi-

tecture moves the heavy lifting to system operators that design and maintain the monolithic

system. Even assuming performances are well tested on individual subsystems, distributed

systems serve as a whole and global performance is the most intuitive metric of service

quality. Optimal local performance on all components does not guarantee optimal global

performance.

Such comparison is true not only for performance optimization, but also for performance

problems. We discuss why we need a monolithic view of performance problems.

• A component could become a performance bottleneck. A component can meet con-

gestion problems when it serves as a scheduler, load balancer, or when contains a

job queue. Such a component can only observe that many requests are stalled with

additional latency, but not how the requests are further affected. Such nodes can be

buggy because of some improper design that’s not compatible with the overall system.

Such nodes can also be not buggy but only busy. However, understanding such per-

formance problems is impossible only with the performance of that component, but

requires looking at many components at the same time.

• The root cause of a performance problem may be far away from where it’s observed.

For example, a node could observe a slowly executed request by capturing a slow

response. This is typically true for some RPC-based systems, where requests are

usually handled with a root node. However, the performance problem(s) usually occur

not on this node but along other nodes processing the node. It could result from a

buggy component, or even no performance bugs but a combination of hardware and
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NVM Block TLC
DRAM NVM

Devices Flash

Load Latency 70ns 180-340ns 10µs 100µs

Store Latency 70ns 300-1000ns 10µs 14µs

Max. Load
Bandwidth

75GB/s 8.3GB/s 2.2GB/s 3.3GB/s

Max. Store
Bandwidth

75GB/s 3.0GB/s 2.1GB/s 2.8GB/s

Table 2.1: Memory Hierarchy Characteristics of DDR4 DRAM, NVM (Intel Optane DC
Persistent Memory), NVMe block device (Intel Optane SSD DC), and TLC flash device [89,
69, 35]

software. Thus the performance problem is hard to analyze without a global view.

Thus we still need a monolithic view of system performance, which is even more impor-

tant for today’s distributed systems. We discuss this in chapter 3.

2.2.2 Data Plane

Besides the control plane of distributed system architecture, data placement and movement

also significantly affect system performance. Data placement refers to the system design,

both of storage and computation, to assign data on nodes that can be later retrieved [128].

Data placement aims to optimize system performance in different metrics like locality, load

balancing, data availability. In this thesis we still focus on latency, the same as discussions

in other scenarios. Different data placement policy results in different data plane for data

access, which may systematically affect performance. For example, a bad placement design

might require a computational node to always access data from a slower storage node, which

introduces very high latency.

Data placement and movement play even more important roles in modern memory hi-

erarchies as we discussed above. As nascent memory technologies muddy the traditional

distinction between layers in terms of storage capacity, latency, power, and costs, the as-

sumptions underlying data placement decisions need to be revisited. Byte-addressable non-

volatile memory (NVM), as one example, is slated to deliver larger capacity than DRAM

at competitive latency, with currently available NVM hardware (e.g., Intel Optane DC Per-

sistent Memory [89, 69]) incurring 2 − 5× the read latency and 4 − 10× the write latency
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of DRAM (Table 2.1), far closer than the 2–3 orders of magnitude performance differences

between DRAM and SSD. Similar data placement challenges exist in Non-Uniform Memory

Access (NUMA) architectures, Non-Uniform Cache Access (NUCA) architectures, multi-

tier storage systems, distributed caching systems, and across the CPU-GPU divide to name

a few examples.

Caching techniques. Cache refers to more than traditional CPU caches today. In

distributed systems, cache systems play one of the most important roles to improve service

quality by storing recently accessed data in fast memory. With the trending of in-memory

systems, it’s proper to understand memory hierarchy as a cache and thus transfer the

data placement and movement problem into designing proper caching strategies. Caching

techniques are also widely applied in distributed systems, not only for performance im-

provement (with prefetching), but also other considerations like isolation for privacy (with

multi-tenancy and shared cache design). The key metric of cache performance is the cache

miss ratio, as the number of cache misses over all received requests. Cache miss always refers

to higher data access latency because data has to be accessed from the slower storage. The

golden design goal of cache strategy is to minimize the cache miss ratio.

Note that traditional cache discussion is always based on a two-layer cache model with

one faster cache layer and the other slower storage layer. In modern memory hierarchies

where we usually have more than two layers, cache design needs to be reconsidered. For

example, even the cache miss ratio requires re-definition because it’s not clear to define a

“slower layer” then. We discuss this in chapter 4.

2.3 Quantifying Performance

Quantifying system performance, and furthermore performance problems, requires a two-

fold solution: measure the performance, and analyze how it is. This thesis focuses on

developing measurement and analysis methods for distributed system performances. With

the above background on performance problems in distributed systems, we go through some

state-of-the-art solutions on quantifying performance problems.
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2.3.1 Measurement Methods

Measuring performance serves as the first step to understanding and quantifying how system

works. People conclude many concepts which are internally overlapped but still different.

We list some useful concepts for distributed system performances here.

Logging. Logging is the basic method to keep track of everything happened on a

system. Log messages record events during the execution of a system with timestamps.

Logging systems are designed to keep as much log data as possible, which is usually the

only source of rich information to dig into the root cause of a failure. Log messages can also

serve for analyzing performance behaviors. The pros and cons are very obvious for logging:

it can keep most rich runtime information, but it’s usually very expensive thus limited on

the ability to keep a large amount of log data [170]. Besides, logging is mostly used for

systems on a single node. Though some previous works focus on logging for multi-thread

environments, it’s not natural to obtain logging messages across nodes.

Profiling. Compared with logging, profiling aims to measure performance metrics,

which are usually aggregated. Profiling aims to collect fine-grained runtime performances

while it’s executed. Performance profilers can be applied from low level metrics like CPU

usage and bandwidth to high level metrics like application behaviors. There are many well

used performance profilers like perf, gprof, Valgrind, and gperftools which are powerful to

collect metrics in many use cases. Like logging, however, profiling can also be expensive to

collect large amounts of data.

Tracing. Distributed tracing is designed to collect events across machine or system com-

ponent boundaries. In other words, tracing aims to solve the missing parts of distributed

system performance measurement. Typical tracing systems focus more on application level

context propagation to retrieve how a request is executed across different nodes. Tracing

outputs can be not only request traces but also service maps like CFG. Though many peo-

ple understand tracing as for producing only control flow relations, general tracing systems

should also include system information as well, partly overlapped with logging systems.

Tracing systems serve as the major performance quantification tool for distributed systems,
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especially for bugs not resulting from programs on a single node. Almost all major pro-

duction systems apply tracing systems for performance debugging, including Dapper (used

by Google) and OpenTracing framework (Facebook, Twitter, Uber, etc.). Ebpf is also a

popular kernel level tracing system for low level tracing, which is applied not only on Linux

kernels but also on storage systems.

2.3.2 Analysis Methods

Understanding system performances is vitally important for system development. Improv-

ing performance usually contains several steps. Before execution, performance is evaluated

through debugging and testing methods; During execution, performance should be care-

fully measured. However, it’s also very important to analyze performance after execution,

by digging into collected execution data and performance metrics to debug or find out

hidden performance problems. Especially for distributed systems, performance analysis is

sometimes the only way to reveal performance bugs because static debugging processes

cannot present performance issues on runtime.

Offline Optimal Analysis. Offline analysis represents getting log data from execution

and analyzing it afterward. Though this cannot provide online feedback on system per-

formance, it enables optimal performance analysis. Optimal analysis can not only provide

performance bounds of potential improvements, but also indicate performance patterns to-

wards better system design. There are many practical works on offline optimal placement

or caching analysis. Belady’s MIN [45] is known as the standard offline optimal caching

algorithm for basic cache assumptions. To the best of our knowledge, Berger et al. [49] and

Li et al. [104] are two state-of-the-art offline optimal placement analysis results, with both

papers focusing on variable object sizes caching problems. Berger et al. provide a method to

calculate offline optimal bounds FOO as well as a practical approximation for such bounds

PFOO for real world storage and CDN workloads through rounding. Li et al. [104] proposed

an offline optimal caching algorithm OSL which statistically predicts object lifetime with

histories and assigns leases for cached objects.

Sampling. As we discussed above, a fundamental bottleneck for performance measure-
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ment is data scale. This results in a trade-off between log data amount and measurement

overhead. A practical solution is to use a subset of large-scale log data through sampling.

Sampling techniques have been proven empirically to be efficient for measuring cache

utilities with low overhead. Many recent caching or placement works have deployed spatial

sampling [159, 97, 42, 134, 135, 158, 85] or temporal sampling [51, 163] to improve the

efficiency. Spatial sampling has been cited as a remarkably robust statistic for constructing

miss ratio curves to better reflect the common cache metrics like reuse distances, compared

with temporal sampling.

Except caching works, sampling is also well used in online performance measurements.

Recall that most tracing systems today do not trace everything; instead, they sample traces.

Head-based sampling, where the decision about whether to sample a request is made uni-

formly at random when it first enters, is a key feature of current tracing frameworks in

industry [94, 19, 22, 24] with some sampling rates reportedly as low as 0.1% [149]. Trac-

ing with head-based sampling or coordinated bursty sampling [38]— periodically recording

detailed traces across multiple layers simultaneously over a brief time interval, otherwise

recording nothing— can help diagnose issues that show up frequently enough in captured

data. However, they miss information about anomalous behaviors and infrequently exer-

cised code paths that are likely missing from the traces [101, 100, 129, 149, 7].

Delaying the sampling decision has been a hot topic among open-source tracing sys-

tems [23, 17, 39, 10, 15, 16, 20], which even saw a limited implementation in Facebook’s

Canopy [94]. These attempts have been unable to overcome incomplete or partial traces,

traces with unexpected shapes, and incorrect results in aggregate analytics [112, 39, 15, 17,

11].

Tail-based sampling is also a claimed feature of LightStep [107], whose proprietary

internals, eviction decisions, and performance impacts are unknown. For detailed telemetry

at high rates, 100% sampling of traces is quickly infeasible both for the processing overheads

and due to limitations on memory and storage. OpenTelemetry [21], the main open-source

standard for distributed tracing, still has the scalability of its tail-based sampling listed as

an open issue [108].
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Chapter 3

Tracing Edge Cases With

Hindsight

Problem. Distributed tracing frameworks record detailed, end-to-end traces of requests

executing in distributed systems, and are helpful for a wide range of troubleshooting use

cases [147, 130]. Diagnosing and troubleshooting performance problems in large scale is

famously onerous, exacerbated by growing system complexity, limited engineering resources,

and rising end-user expectations. Particularly vexing for application developers are edge

cases: performance problems that have adverse effects but are too rare or complex to

ascribe obvious root causes.

Consider, as running examples, the problems of diagnosing uncommon errors, mitigating

tail-latency, and conducting temporal provenance. High tail-latency among end-to-end

requests is a well-known bane of interactive performance [65]. Although high latency is

easy to detect and immediately experienced by the end user [65], its root causes may

be scattered across previously traversed machines and layers galore, with an exponential

number of configuration parameters or hardware components that may have contributed to

the delay.

Similarly, high-level API exceptions may culminate from prior interactions with other

requests, system misconfiguration, hardware failures, transient faults [95], elusive program-

ming mistakes, or even a significantly hard-to-reproduce combination of issues.
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Third, a request exhibiting issues because of an overfull queue somewhere in the dis-

tributed system is merely the casualty of an earlier problem [167]; troubleshooting requires

systematically investigating these other, unrelated requests.

In the ideal setting, when the developers can trace every request flowing through the sys-

tem, tracing is a powerful tool to diagnose issues, including edge cases. In typical production

environments, however, resources are not infinite. Tracing every single request—including

generating, collecting, and storing comprehensive telemetry—requires enormous backend

infrastructure and storage that is unacceptable to infrastructure operators. To manage

overhead, distributed tracing frameworks collect only a small (0.001% [149, 94]), random

sample of traces in hopes that problematic requests of interest to application developers

will show up in the sampled traces [101, 149, 94, 15]. But edge cases are, by definition, rare,

so when an edge-case request is encountered, it might not have been traced. This presents

a bind: for most edge cases there is no trace for the application developer to analyze, thus

application developers don’t have enough useful traces.

A known shortcoming of today’s distributed tracing approaches [130], the root of the

predicament is that application developers want as many useful traces as possible, while

infrastructure owners have to balance resource constraints. Yet crucially, developers are not

asking for more traces—they are asking for the right traces.

Secret Sauce. A few observations lead us to believe this Gordian knot can be cut.

First, we can separate out the performance concerns by noting that data is cheap to

generate but expensive thereafter [170, 88]. Operators can generate as much data as

they like — the bottlenecks are in the storage to persist that data for the future, and network

costs for centralizing the data. Second, we note that most data is superfluous: normal

operations are by definition uninteresting for tracking down a specific problem [129, 101].

While curbing needless data can alleviate the storage overhead concerns, determining which

data to keep remains a challenge. Finally, we pose there is a large class of problems where

the symptoms of a problem can be detected quickly. For example, the moment a

low-latency system observes an outlier request, e.g., one that took seconds to be processed,

something has evidently gone wrong and an investigation is warranted. In these cases, the
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relevant data for troubleshooting does not extend far back in time. Notably, when problems

can be detected shortly after they occur, say within 10 seconds, then even buffering all

data for a short interval is within the memory limits of each machine. Then,

at the moment of detection, all pertinent data for the problematic request would thus still

exist in memory on the nodes through which the request traversed. This data could then

be persisted on or collated from the relevant nodes, thus avoiding network and slow storage

overheads for the vast majority of requests.

Solution.1 We resolve the problem of tracing edge-case requests in production environ-

ments. We focus our attention on symptomatic edge cases, where the performance effects

of the problem manifest shortly after its causes and where the impacts can be observed

programmatically—a broad family of problems that includes the three classes of use cases

above. We call these symptomatic edge cases.

We built Hindsight—an always-on, lightweight distributed tracing system for diagnosing

symptomatic edge-cases. Hindsight is compatible with existing tracing APIs—as a practical

tool for edge-case analysis,such as occasional requests experiencing high latency, without

relying on good fortune. Hindsight offers retroactive sampling, inspired by network

provenance [182, 181, 95, 56], to collect telemetry data back in time from the present moment

of detection, across all machines that handled the request. Under retroactive sampling,

all trace data is recorded locally but only reported when a symptom is detected, allowing

applications to generate copious trace data in case they are needed without encumbering the

tracing system’s backend collection infrastructure. Retroactive sampling ultimately reports

the same volume of trace data as other sampling methods, but ensures that edge-case traces

are not missed. To provide efficient and coherent retroactive sampling, Hindsight’s design

carefully separates its dataplane – e.g. generating trace data into fast local memory – from

control logic – e.g. for indexing metadata, coordinating among machines, and triggering

collection for symptomatic requests on demand.

As demonstration, we apply Hindsight on three use cases corresponding to our run-

ning examples. We run experiments on the DeathStar Microservices Benchmark [76], the

1This work revises the paper: The Benefit of Hindsight: Tracing Edge-Cases in Distributed Systems that
is currently under review.
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Hadoop Distributed File System [148], and on several micro- and macro-benchmarks. We

have also integrated Hindsight as a replacement collection component for X-Trace [75] and

OpenTracing [22]. Our experimental results show that Hindsight imposes nanosecond-level

overhead when generating trace data, can scale to GB/s of data per node, rapidly recon-

structs traces when triggered, and effectively captures problematic traces, as well as related

lateral traces, within tens of milliseconds of identifying a symptom.

In summary, this chapter makes the following contributions.

• We describe the retroactive sampling abstraction for capturing traces of symptomatic

edge-cases.

• We present the design of Hindsight, a distributed tracing system that implements

retroactive sampling. Hindsight is compatible with existing tracing APIs and can be

transparently integrated with existing applications.

• We apply Hindsight on real-world use cases and show that efficiently collecting edge-

case requests is practical.

• We evaluate Hindsight on multiple benchmarks and real systems, showing that it can

achieve nanosecond-level overhead on trace data generation and handle GB/s data

per node while collecting coherent traces.

• We illustrate that Hindsight is compatible and performs better than state-of-the-art

tracing systems (X-Trace and Jaeger) with more efficient trace-data generation and

lower overhead, while providing edge-case tracing.

3.1 Motivation

Distributed tracing systems are in widespread use in both open-source [21, 24, 19] and major

internet companies [149, 94, 129]. These tools record traces of end-to-end requests: a trace

contains logs, metrics, and other event data, along with timing and ordering, generated

from every machine visited by the request. End-to-end request traces have proved to be

especially useful for troubleshooting distributed systems since they explicitly tie together
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the individual slices of work performed across different machines, enabling an operator to

observe how the work done by one machine influences, and is influenced by, work done on

others [75, 149, 129]. Prior research has demonstrated a range of troubleshooting tasks

using request traces, including common-case analyses centered on aggregate system behav-

ior, distributions over data, and relationships between system components [141, 130, 147];

and edge-case analyses such as error diagnosis [111, 172, 173] and tail-latency troubleshoot-

ing [65, 103, 178, 151, 122]. In this chapter, we consider general edge-case analysis use cases,

so we begin with some examples.

The picture is different, however, for the other major use case of distributed tracing:

edge-case analysis [10, 15, 16, 20, 39, 11, 108, 23, 17] , which relies on capturing rare, outlier,

and anomalous end-to-end requests [167, 82, 57, 137]. Rather, with maturing open-source

implementations [19, 24], standardization of key tracing concepts [22, 21], and widespread

adoption of distributed tracing in practice [130, 147], the gap between existing tracing

systems and the needs of edge-case analysis is becoming more apparent [39, 10, 15, 23, 17].

We consider the following cases as examples.

Error diagnosis (UC1). Hardware failures, component errors, exceptions, and pro-

gramming mistakes abound in large distributed systems. Despite advances in testing [36]

and verification [79, 102, 83], new or complex problems slip through the cracks and may

wreak havoc if not promptly addressed. Application developers thus often play the role of

detective, to identify root causes of errors. Yet without a trace of a problematic request,

the developer will face a daunting task: each request traverses many different processes

and machines and its outcome is influenced by every machine it visits. The symptoms of a

problem often manifest far from the root causes [115, 72, 111], and the potential root causes

are manifold, perhaps a combination of software or hardware problems on multiple nodes

or network links [95].

Tail-latency troubleshooting (UC2). Distributed systems track a wide range of high-

level health metrics, such as API distributions, latency percentiles, resource utilization,

and many others [94, 93]. An operator may observe an unusual metric jump, say the

99.9th percentile latency has spiked for some important API. However, knowing about the
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spike is not enough; the application developer wants to identify the specific service, code

paths, or conditions that contribute to the peak, so that any underlying problems can be

addressed [103, 65, 122].

Temporal provenance (UC3). Many modern distributed systems respond to requests

through an architecture of loosely coupled microservices [147]. Application developers need

tools for tracking queuing issues [6, 13, 8, 5, 9] when the number of components in a

distributed system is large, since a request r exhibiting symptoms (e.g. prolonged queueing

time) may not be the true culprit for the backlogged queue. Rather, the developer wants

to follow the temporal provenance of r to determine lateral traces of other related requests

with which r interacted through shared components and queues [167].

3.1.1 Trace Collection Infrastructure

Distributed tracing frameworks require a supporting backend trace collection infrastructure

that is distinct from the traced applications. Applications continually generate trace data

using a client library, which internally serializes and transmits the data over the network.

The trace collection infrastructure, or backend for short, receives trace data, and thereafter

processes it in various way to combine data from different machines, construct trace objects,

apply user-defined functions, and ultimately store the trace in a database [94].

Production applications cannot trace every request, as doing so would generate far too

much data and impose an enormous burden on the backend [108, 149, 94]. In production

systems capturing a trace of every request to an application would impose enormous burden

on the backend trace collection infrastructure. At Facebook, for example, several MBs of

tracing data are generated per traced request [94]; at Google, traces are typically more

detailed than debug-level logging [149]. Thus a key design concern for current tracing

frameworks is to reduce the volume of data reported to the backend.

Head-based sampling. The de facto approach of all existing distributed tracing tools

is to simply capture fewer traces. Instead of tracing every request, the application will

only record traces for a small number of requests, chosen by random sampling in the client

library [147]. Sampling decisions occur at the beginning of a request when it enters the



22

system and before it starts executing. Trace data is only recorded if the sampling decision

is successful. Head-based sampling satisfies an all-or-nothing property: if a request is

sampled, then applications will record an entire trace of the request, including all data it

produces across all machines it visits. Otherwise, the application records nothing about the

request on any machine. Coherent traces are essential for distributed tracing. A partial or

fragmented trace has limited value in diagnosis [75, 149] because it sacrifices the end-to-end

visibility that makes the trace useful in the first place [129].

Overall, head-based sampling reduces the volume of trace data sent to the trace col-

lection infrastructure, with the sampling probability determining how much trace data is

collected. In production, the sampling probability is typically very low: Jaeger’s default is

0.1% [90]; some systems sample as few as 0.001% [149, 94].

3.1.2 Sampling Derails Edge-Case Analysis

Head-based sampling is indiscriminate: the fate of a trace is determined a priori, upon

arrival to the system. With low sampling probabilities, the vast majority of requests are

not traced. For edge-case analysis especially, requests of interest are inherently rare and

thus unlikely to be traced at all.

The outcome for the application developer investigating edge cases is thus disappointing:

problems arise, but traces do not exist. For example, the developer may have reports that

errors took place (UC1) yet the corresponding ‘rare’ requests were not sampled when those

requests began. The developer therefore lacks the detailed cross-machine data necessary

for finding the error’s root cause. Likewise, the application’s high-level metric monitoring

may indicate a spike in end-to-end tail-latency (UC2); a developer is thus aware that these

high-latency outliers exist, yet without a trace, the developer lacks the ability to localize the

problem to a particular component or request class. The situation is even more problematic

when investigating bottlenecked queues via temporal provenance (UC3): the tracing system

will have only a vanishing probability that traces of all relevant requests in the queue were

captured, since each request was sampled independently.

Practitioners have long pointed out a discord between what traces are interesting and

what traces gets sampled [39, 10, 15, 23, 17]. Tail-based sampling describes how the
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backend trace collection infrastructure could identify ‘interesting’ traces and only persist

those to storage [141, 101, 100], yet such approaches elide the basic scalability challenge

faced by the trace collection infrastructure in the first place: we cannot collect all traces. To

date, the desire for a low-overhead sampling system that would support edge-case analysis

remains unfulfilled.

Tail-based sampling is a proposed solution that falls short in practice; it entails tracing all

requests, then discarding irrelevant traces within the backend trace collection infrastructure.

Since collecting all traces in production environments with high rates of detailed telemetry is

infeasible due to processing overheads on back-end servers [108], current tail-based sampling

systems impose additional head-based sampling [141], thus inheriting its shortcomings.

3.2 Challenges

The crucible of edge-case analysis under prevailing sampling approaches is that developers

miss out on relevant traces. Our goal is to remedy this situation: to capture all relevant

request traces without relying on serendipity or imposing additional overhead on the tracing

backend. We first address a series of motivating questions.

What traces are relevant? Typically, strong signals of an interesting request come

towards the end of its execution when more information is known about its fate [15, 8, 141,

23, 17, 39]. Moreover, looking to our motivating use cases, we observe that many issues

manifest a known set of symptoms that are cheaply detectable soon after they occur, like

error codes (UC1), high end-to-end response time (UC2), or an overfull queue (UC3). In

each scenario, the symptoms can be detected programmatically even though the underlying

causes remain unknown. We call such issues symptomatic edge-cases.

Why not just collect traces after we see the symptoms? Paradoxically, since the

request has already executed, enabling tracing at a late point of the request means we have

already missed the events that led to the anomaly. The sure-fire way of obtaining coherent

traces for any edge-case is to trace from the very beginning of the request.

Why don’t tracing frameworks use ring-buffers? Machine-level logging and teleme-
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Figure 3.1: The end-to-end lifecycle of a trace in Hindsight (subsection 3.4.1). A
request (À, solid black line) traverses the processes of the system, depositing trace data data
using Hindsight’s client library (Á). A Hindsight agent on each machine locally indexes
data (Â). If the application detects outlier symptoms, it can trigger trace collection (Ã).
Hindsight’s coordinator traverses breadcrumbs left behind on each machine (Ä), instructing
each agent to set aside and report this request’s trace data. Subsequently, agents will report
the triggered trace data to the existing backend trace collection infrastructure (Å).

try systems often make use of in-memory ring-buffers for temporarily persisting telemetry

in case it is needed in the near-future [179, 64, 56]. While conceptually appealing, the mis-

match in data granularity makes them a poor fit for distributed tracing. Machines execute

many requests concurrently and the generated trace data on any given machine is inter-

leaved with that of other requests, making it difficult to extract any one request’s specific

slice of data. Conversely, each request executes across many machines, so trace data must

be identified and extracted from all relevant machines.

3.3 Retroactive Sampling

Building on these answers, we now detail our approach to the problem, using an abstraction

we call retroactive sampling. Whereas traditional distributed tracing systems based on

sampling obtain edge-case traces only by luck, retroactive sampling enables applications

to obtain them explicitly. Inspired by work on network provenance [95, 182, 181, 55, 56],

retroactive sampling endows the application with the benefit of hindsight: when the ap-

plication detects something wrong or anomalous about a request, the tracing system can
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reach back into the recent past to retrieve its trace data as follows.

Nodes generate, but do not collect, all trace data. Our tracing system is not

clairvoyant: it lacks information about whether a request will be impacted by some sort

of problem (and thereby be interesting) until after the symptoms manifest themselves [23,

17, 39, 15]. As argued, the only conclusion is to record all trace data. Recording the data,

however, need not burden the backend infrastructure until the traces are reported, giving

applications leeway to generate fine-detail trace data locally in case it will be beneficial after

a problem occurs.

A trigger signals that a trace is relevant. Under retroactive sampling, a tracing

system programmatically signals after-the-fact that a request was indeed relevant. We call

this a trigger that may be fired at any point during or even after a request is served, since

symptoms (e.g. high request latency) may only be measurable after the fact.

Traces are collected across machines. So far, traces are only recorded locally into

memory without any forwarding or coordination among the nodes—we deliberately refrain

from doing more complex processing for every trace. Thus for each individual request, its

trace data will be dispersed across memory of the multiple machines that it visited. Yet

when a machine fires a trigger to collect a trace, it is effectively requesting all corresponding

trace data from all machines visited by the request. In response to the trigger mechanism,

systems implementing retroactive sampling must therefore notify pertinent machines that

they must report the relevant trace data to the backend.

Trace data expires. The tracing system deposits trace data in fast local memory on the

machine where the data is generated. Lazy collection via triggers implies that, eventually,

we will exhaust the memory available to record traces; naturally, we should overwrite old

trace data to make way for traces of new requests. We call the implicit time duration

between generating data and overwriting it the event horizon. After the event horizon,

the trace data has been overwritten and is gone forever. With large and detailed traces, or

highly constrained memory, the event horizon will be short—tens of seconds.

Triggers are automatic. To guarantee trace collection of any traces of interest within
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the event horizon, the developer needs automatic triggers. Symptomatic edge cases, by

definition, can be detected programmatically within a short interval of their root causes.

An automatic trigger for tail-latency (UC2), for example, could simply check for a tardy

response.

3.4 Design

This section introduces the design details of Hindsight.

3.4.1 Overview

Hindsight is a distributed tracing framework that implements retroactive sampling. We

begin with a high-level overview of Hindsight’s main components before describing our key

design choices. Figure 3.1 depicts the end-to-end flow of a request executing in a distributed

system, interacting with Hindsight’s tracing API along the way.

À Upon request arrival, Hindsight generates a random unique traceId for this request

and thereafter propagates it alongside the request to any machine visited [115].

Á While the request executes, it generates trace data (e.g. logs, tracepoints, spans) that

the application reports using Hindsight’s tracepoint client API. When the request

completes, its trace data is left scattered across the machines visited.

Â Internally, a Hindsight agent running on each machine receives and manages trace

data. Hindsight agents do not eagerly report trace data to the backend collection

infrastructure – instead, agents index and organize metadata in-memory and await

an explicit trigger. For most traces, there is no trigger, the trace is not reported, and

the data residing on the local machine is overwritten by new data.

Ã The application may detect an outlier symptom (e.g. an erroneous response value,

high latency, or a bottlenecked queue) during the request and thus want to persist

its trace. The application invokes Hindsight’s trigger API on the machine where the

symptom is detected, passing the traceId.
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Ä The local agent immediately initiates trace collection by sending traceId to Hind-

sight’s logically centralized coordinator service. The coordinator’s role is to recursively

contact all machines that the request visited by following breadcrumbs deposited by

the request at each machine it visited; a breadcrumb is a pointer to another machine

involved in the request (e.g. to the RPC caller or callee).

Å When instructed by the coordinator, an agent will set aside relevant data for this

traceId and report it to the backend.

3.4.2 API Compatibility

Hindsight centers on redesigning the internals of a distributed tracing system to support

retroactive sampling while remaining compatible with other use cases, such as tracing

common-case requests that establish aggregate system behavior. Hindsight’s design is en-

compassing: rare triggers for edge-case requests can intermingle with frequent triggers for

baseline common-case requests. Moreover, Hindsight does not redesign or replace the back-

end trace collection components.

Hindsight is compatible with existing distributed tracing APIs and can be transparently

integrated into an application’s existing tracing instrumentation (e.g. OpenTracing [22]).

In our evaluation (cf. section 3.6), we integrated Hindsight as the collection component for

both X-Trace [75] and OpenTracing [22]. Existing tracing instrumentation API calls relay

directly to Hindsight. For example, API calls that create and annotate spans are prox-

ied as tracepoint calls. Hindsight seamlessly supports any existing head-based sampling

policy: trigger is invoked immediately for a positive sampling decision or if the sampled

flag is set within a received OpenTracing context. Lastly, Hindsight piggybacks its bread-

crumbs within OpenTracing’s context propagation; transparently enabling Hindsight’s trace

coordination procedure.

For a developer wanting to benefit from retroactive sampling, the only additional concern

is when to invoke trigger. For example, this may entail adding a trigger call within a service’s

exception handler, or after checking for outlier latency upon a request’s completion. A

developer can explicitly decide the conditions for triggering a request, but Hindsight also
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provides a library of automatic triggers based on metric percentiles, categorical features, and

exceptions. All our use cases (UC1–UC3) can be implemented using Hindsight’s autotriggers

(cf. subsection 3.5.2).

3.4.3 Data Coherence

A trace is only useful if it has coherent data: the trace must contain all information about

the request across all machines visited. If a trace is patchy (i.e. missing data from one or

more machines) then the trace’s value as a whole is compromised.

Hindsight encounters potential trace incoherence in several places: at Â when an agent

chooses which old data to evict; at Ä if the coordinator is too slow to contact all machines

that handled a request; and at Å if more traces have been triggered than can be reported.

The threat is exacerbated because it only takes one agent dropping its slice of a trace to

render the remaining data on other agents effectively worthless.

We ensure coherence as follows. Within a single agent (Â), a trace is an atomic entity;

when an agent evicts a trace, the trace’s data are evicted in its entirety. Agents carefully

organize and index metadata to account for a trace being non-contiguous and fragmented

in memory, and enable efficient insertion and eviction. After a trace is triggered (Ä), the

coordinator service rapidly disseminates the trigger, recursively following breadcrumbs, to

ensure no agent inadvertently evicts its slice of the trace. Breadcrumbs are scalable, as

the coordinator only needs to contact services explicitly known to be part of a request’s

execution, and trivially scales by sharding on the triggered traceId. Triggers are eagerly

disseminated; subsequently agents report the actual trace data to the backend collection

infrastructure asynchronously in the background. Hindsight enforces a user-configured rate-

limit on background trace reporting.

Unlike head-based sampling that traces a fixed percentage of requests, retroactive sam-

pling may fire triggers arbitrarily often. A trigger-happy application may cause a backlog

of unreported traces within the agent (Å). If the agent passes a threshold of triggered data,

it will begin to drop data for triggered traces. A backlog of data on one agent strongly

implies a backlog on others, thus agents making different choices about which data to drop

risk trace incoherence. Hindsight uses consistent hashing of TraceIds in several places to
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decide priority both for reporting and evicting trace data.

Finally, a developer might invoke trigger at several different places in their application,

for a diverse range of symptoms; developers can distinguish different triggers by providing a

triggerId. Hindsight can prevent a profuse trigger from impacting trace collection of other,

low-frequency triggers: agents implement weighted fair sharing over triggers for reporting

and evicting trace data, and users can configure weights and rate-limits for each triggerId.

3.4.4 Efficient Data Management

From the perspective of the backend trace collection infrastructure, an application using

Hindsight will report a similar volume of traces and have similar demands to conventional

head-based sampling. For an individual machine (Â), however, retroactive sampling entails

the application generate a substantially higher volume of trace data into local memory.

For perspective, traces in production systems can be verbose, containing tens of thousands

of events [94], and often incorporating detailed debug information; e.g. our Hadoop ex-

periments, (cf. subsection 3.6.1), sustained 30 MB/s per process. Even when tracepoints

involve string formatting and argument packing, prior work on efficient logging has at-

tained lower bounds of a few nanoseconds per logging point [170, 171]. More generally,

Hindsight’s tracepoint API can be a sink for arbitrary telemetry sources such as function

tracing or new technology like Intel® Processor Trace (PT) [88, Ch. 36], which can reach

100–200 MB/s of data per core at 5–15% runtime overhead. Handling this data at large

volumes requires a design centered on performance.

The most sensitive performance bottleneck for Hindsight occurs between the client ap-

plication generating data via tracepoint, and the local Hindsight agent that manages trace

data. Agents must efficiently receive new trace data for every request, evict old data to be

overwritten, and set aside triggered data for reporting, while managing trace data coher-

ently with respect to other agents. Simple approaches fail to meet these needs; ring-buffers,

e.g. are effective across many systems designs but deteriorate in our setting by incoherently

overwriting trace data and posing significant costs to extract triggered data via expensive

scanning. Instead, our design establishes a clear split between control and data activities,

which congregates general-purpose data and efficiency in the data plane, and embeds all
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logic in the control plane.

Hindsight’s data plane is concerned with efficiently writing trace data from client appli-

cations. Hindsight writes trace data to a large shared memory pool, divided up into buffers.

A client invoking tracepoint writes to a buffer, and each buffer only belongs to one trace

at a time. Full buffers are continually circulated to the agent via shared memory queues;

the agent likewise continually frees up old buffers for reuse.

Hindsight’s agent process encapsulates control activities: it receives buffer metadata,

indexes them according to traceId, and coherently evicts old buffers. Agents receive trig-

gers and communicate with Hindsight’s coordinator, manage breadcrumbs linking the trace

data that is strewn across many agents, extract triggered trace data, and report data asyn-

chronously to the backend trace collection infrastructure. Hindsight’s control and data

distinction yields an efficient agent implementation, and confers additional desirable prop-

erties, such as making it easy to change and update control logic like eviction and fair

sharing policies.

In our description thus far, we assume that an application will trace all requests into

local memory. Such completeness is not a strict requirement for Hindsight; an application

may opt to trace a smaller fraction of requests (e.g. 10%), for instance, if generating data is

expensive or unoptimized, or if the application is highly performance-sensitive. Hindsight

remains effective in such a scenario since we still capture significantly more traces to local

memory than can be reported to tracing backends (e.g. 0.1% and lower). The scale-back

is supported via a trace percentage option (default 100%). Hindsight enforces scale-back

coherently across agents through consistent traceId hashing (cf. subsection 3.4.3), and will

maintain breadcrumbs and support triggers for all requests, traced or not.

3.4.5 Divorcing Triggers from Traces

Applications initiate retroactive sampling via Hindsight’s trigger API (Ä). Triggers are

orthogonal to traces in Hindsight for several reasons.

Efficiency. In principle, triggers could be calculated directly atop trace data. For

example, end-to-end latency can be calculated directly from span start and end times
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recorded in a trace. Yet applying user-defined functions in-dataplane poses an infea-

sible performance challenge. Moreover, traces are brittle data structures: in practice,

as engineers continually modify and update instrumentation, the traces may sometimes

‘break’ [27, 26, 29, 31, 30, 32, 25, 112], leading to incorrect or degenerate derivative features

and metrics [94, 113, 149].

Integration. In the common case, symptoms are easy to detect and localize: top-level

error codes; high latency; increased queue time. Such symptoms can be readily recognized

and cheaply computed without the trigger mechanism needing the trace data itself. It

further leads to a straightforward integration of triggers into existing metric monitoring

systems regardless of their architecture.

Lateral traces. Outlier behavior may not map directly to a single request; instead there

may be several other related lateral requests. For example, to diagnose a bottlenecked queue

(UC3), a trigger needs to capture traces for the previous N requests to understand what

led to queue buildup [167]; to diagnose a write-ahead log, we desire all requests blocking

on a log sync [6, 13]; to diagnose resource contention we require all requests contending for

a slow disk or network [8, 5, 9]. Hindsight enables an application to atomically trigger a

group of related lateral traceIds; internally Hindsight will ensure that the group as a whole

is coherently collected.

3.5 Implementation

We have implemented Hindsight in ≈4KLOC in C for the client library, ≈3KLOC in Go for

the agent and coordinator, and ≈300LOC for a JNI-based Java client library for integrating

with Hadoop in our experiments (cf. section 3.6). We chose C for dataplane efficiency and

Go for its ease of use for the more complex control plane logic. In this section, we elaborate

how we meet the Hindsight design goals (cf. section 3.4).

3.5.1 Agent Data Management

Hindsight pre-allocates a fixed-size buffer pool in shared memory for storing trace data. We

choose a fixed-size pool to bound memory overheads, a desirable property for telemetry
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begin(traceId) Record that request with id traceId is processing in
the current thread.

tracepoint({payload}) Record data for the current trace; payload is arbitrary
size.

breadcrumb(address) Adds a breadcrumb to the current trace on the local
node pointing to some other node address.

serialize() Obtain the current traceId and a breadcrumb to the
current node.

end() Request finished processing in current thread; flush and
remove buffers.

trigger(traceId,triggerId, later-
alTraceIds...)

Tell Hindsight to trigger traceId for collection; trig-
gerId is an arbitrary identifier used for rate-limiting.

Table 3.1: The Hindsight client API can be called by applications directly, or by other
distributed tracing tools (e.g. X-Trace [75], OpenTracing [22]) as the trace collection com-
ponent (cf. section 3.6).

systems [157]. Hindsight subdivides the buffer pool into fixed-size buffers, by default 32 kB.

Client processes write trace data to buffers via Hindsight’s client API. The agent process

does not touch data in the buffer pool except when reporting triggered traces. At each

point in time, a buffer can only contain trace data of a single request; no two different

requests will write trace data to the same buffer at the same time. A single trace will

typically comprise (1) multiple non-contiguous buffers and (2) many buffers scattered across

numerous machines. Buffers are the granularity of data management within Hindsight.

Within clients and agents, a buffer is addressable by its bufferId—its offset into the buffer

pool.

3.5.2 Client Library

Writing trace data. Table 3.1 outlines Hindsight’s client API. When a request begins

executing in a thread, it must call begin; subsequently it may call tracepoint an arbitrary

number of times; and finally when it completes executing in a thread, it must call end. As

noted in subsection 3.4.2, this aligns with existing tracing instrumentation calls. Hindsight

internally maintains thread-local state including the current traceId and a pointer to a

buffer. Calls to tracepoint write directly to the thread-local buffer without needing any

synchronization. Synchronization is only required when acquiring a new buffer or returning

a buffer to the agent; these operations touch shared-memory queues but are infrequent. A
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buffer must be acquired during begin, returned during end, and is otherwise only acquired

or flushed when it becomes full (i.e. from successive tracepoint calls).

Communicating with agents. To acquire a buffer, the client library polls a shared-

memory available queue. The queue returns an integer bufferId that points into the buffer

pool. Clients do not block if the available queue is empty—clients immediately return, and

instead of writing to the buffer pool, write to a ‘null buffer’, which is discarded afterwards.

When the client fills a buffer, it writes its traceId and the bufferId to a shared-memory

complete queue. The agent continually drains the complete queue, and likewise continually

returns fresh buffers to the available queue. Shared memory queues are lock-free and sup-

port batch operations; using batch operations, agents are robust to queue contention from

multiple client writer threads.

This paired channel design forms a natural separator between control and data with two

desirable properties: (1) queues only communicate metadata—they avoid data copying and

use a single integer bufferId to represent, by default, a 32 kB buffer; (2) communication

is infrequent, occurring only when buffers are filled or a thread switches over to execute a

different request, thereby minimizing synchronization. From the client library’s perspective,

it cheaply and blindly writes trace data into shared memory and forwards only the control

metadata to agents; conversely agents are agnostic to buffer contents—they do not inspect

data in the shared memory pool and use only the metadata communicated via the complete

queue.

Depositing breadcrumbs. Hindsight clients deposit breadcrumbs on every machine

visited by a request. Each breadcrumb addresses another Hindsight agent that handled the

request. When a request arrives at a node, it is carrying the breadcrumb of the previous

node. Hindsight’s breadcrumb API is called during trace context deserialiation, which

establishes within the local agent a pointer to the previous node visited for this traceId.

Similarly, during trace context serialization prior to communication with another node or

an RPC response, Hindsight will insert the current node’s breadcrumb transparently as a

key-value baggage field of the trace context [22, 113]. For synchronous RPCs, breadcrumbs

are sufficient for reconstructing full traces triggered by any node, including requests with
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PercentileTrigger(p) Clients call addSample(traceID, measurement).
Trigger fires for measurements above percentile p.
(e.g. high latency or resource consumption)

CategoryTrigger(f) Clients call addSample(traceID, label).
Trigger on rare categorical data that is less frequent
than threshold f (e.g. rare API calls or odd attributes)

ExceptionTrigger Trigger on an exception or error code

TriggerSet(T ,N) Trigger all lateral traces in a sliding window of length
N when trigger T fires (e.g. gather the last N traceIDs
in a bottlenecked queue)

Table 3.2: The Hindsight AutoTrigger API.

arbitrary concurrency and fan-out. To handle asynchronous settings, clients can also use

the breadcrumb API to eagerly establish forward-breadcrumbs to a named destination

node prior to communication. Internally, the breadcrumb API call reports the traceId

and breadcrumb to a shared memory breadcrumb queue. Agents poll this queue and index

breadcrumbs alongside the buffer metadata. However, agents do not forward or act upon

breadcrumbs until a trace is explicitly collected with a trigger.

Triggering trace collection. Applications initiate trace collection by invoking trigger,

passing a traceId and a triggerId; internally this writes to a shared-memory trigger queue.

The trigger API allows any condition that can be programmatically detected to initiate

trace collection in Hindsight—e.g. a trigger detecting latency outliers; a trigger for erro-

neous return values; or a trigger for high queue latency. A trigger can specify traceIds for

a group of related lateral traces (cf. subsection 3.4.5). A developer can implement custom

outlier detection and invoke trigger directly, or they can make use of Hindsight’s autotrigger

library, a separate collection of triggers that track simple conditions over time and auto-

matically invoke trigger when a condition is met in Table 3.2. TriggerSet is noteworthy

as a building block for lateral tracing; it captures recent traces related to a request that

exhibited symptoms.

3.5.3 Agent

Agents maintain metadata for each trace in a map keyed by traceId. The metadata for

each traceId includes a list of bufferIds and a list of breadcrumbs. Agents also maintain
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metadata for each trigger that has fired, including the traceId, triggerId, and zero or

more lateral traceIds.

Indexing and reusing buffers. Agents poll the complete queue, each time reading the

traceId and bufferId of a full buffer, then adding this bufferId to the trace’s metadata.

The agent then updates an LRU of traceIds. The agent performs eviction when 80%

or more of the buffer pool is indexed, by removing the least recently used traceId and

returning all its bufferIds to the available queue. Agents never touch data within buffers;

all management is done using bufferIds.

Local triggers. Agents poll the trigger queue, each time draining the trigger metadata.

The agent immediately forwards the trigger metadata and breadcrumbs to the coordina-

tor, which begins disseminating the trigger to other related agents by recursively following

breadcrumbs. Meanwhile the agent schedules the trigger for collection. In the case of a

spammy trigger, an agent may decide to immediately discard the trigger instead of for-

warding and scheduling it—this is implemented using a per-triggerId token bucket. Doing

so prevents flooding other agents with triggers.

Remote triggers. Agents receive remote triggers fired by other machines via the coor-

dinator. To facilitate rapid trigger dissemination, the agent immediately responds with any

breadcrumbs it has accumulated for the specified traceId. Agents do not rate-limit remote

triggers (unlike local triggers) since it risks incoherent traces. Instead, all remote triggers

are scheduled for collection.

Reporting traces. When a trigger is scheduled for collection, its traceId and lateral

traceIds are removed from the agent’s LRU and can no longer be evicted by the regular

buffer eviction cycle. The trigger metadata is then inserted into a per-triggerId priority

queue. In the normal case when an agent is not overloaded, the queue will be empty.

The agent asynchronously pulls trigger metadata from the queues; fetches all buffers for

all traceIds from the buffer pool; reports the buffer contents to the backend collection

infrastructure; and finally frees the bufferIds by returning them to the available queue.

If configured, the agent will apply a rate limit to pace its data reporting to the collection

infrastructure. New data for any triggered traceIds can continue to arrive via the available
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queue, possibly rescheduling the trigger if existing data is already reported.

Ignoring triggers during overload. If trace collection becomes overloaded, the pri-

ority queues will begin to fill up. The agent tracks the proportion of buffer pool pending

for collection, and when this exceeds 40%, the agent will pick a triggerId and abandon the

lowest-priority trigger from its queue. Abandoning a trigger entails removing it from the

priority queue and returning all buffers of all traceIds to the available queue. If a traceId

happens to be included in multiple triggers, its buffers are only returned after all triggers

are abandoned. The agent provides a fair allocation of buffer pool to each triggerId and

selects whichever triggerId most exceeds its weighted max-min fair share. In addition to

memory pressure, a trigger will be automatically abandoned if it has not been reported

after a configurable delay (5 minutes by default).

Reporting traces during overload. During overload, the agent continues to report

traces as described above for the normal case. The agent implements weighted fair queueing

to select the next triggerId queue, and will adhere to any configured per-triggerId rate

limits. From the selected queue, the agent dequeues the highest-priority trigger, and reports

its data as described above for the normal case.

Coherence during overload. The per-triggerId priority queues uses consistent hash-

ing of the traceId to determine priority. This priority is consistent across all agents that

may have relevant data and results in a given trace enjoying the same priority across all

agents. Consequently, even during overload, agents will consistently report the highest-

priority traces and evict the lowest-priority traces. The agent’s fair allocation of buffer

pool to each triggerId and fair sharing of reporting bandwidth means a low-throughput

triggerId is not impacted by a spammy trigger.

3.6 Results

We now evaluate how effectively Hindsight overcomes the fundamental problem of head-

based tracing methods in examples (UC1)–(UC3) and meets the goals of retroactive sam-

pling to provide lightweight and effective request tracing.
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Tracing integration. We compare Hindsight to two existing distributed tracing sys-

tems, X-Trace [75] and Jaeger [19]. We also integrate Hindsight with OpenTracing [22] and

X-Trace [75], and, in our experiments, we evaluate Hindsight as a replacement backend to

X-Trace [75].

Systems. We have integrated Hindsight with two distributed systems: the Hadoop

Distributed File System (HDFS) [148], the DeathStar Microservices Benchmark (DSB) [76].

We also benchmark Hindsight’s single-node characteristics and cross-node trace retrieval

performance.

Summary. Our experiments demonstrate the following.

• Hindsight effectively provides retroactive sampling and collects relevant edge-case

traces across real use cases.

• Hindsight is lightweight and not a bottleneck for client applications. Hindsight can

achieve < 5 ns tracepoint latency and tolerate write throughput up to 55 GB/s.

Hindsight’s control/data split lets Hindsight’s agent match client data generation.

• With large trace data volumes, Hindsight’s ‘event horizon’ extends tens of seconds

into the past.

• Hindsight has substantially lower overheads than X-Trace and Jaeger when generating

trace data.

3.6.1 Case Studies

We first evaluate Hindsight’s tracing libraries and trigger mechanisms on collecting edge-

case requests on our motivating use cases.

Error diagnosis (UC1). We deploy Hindsight on DSB, a microservice system with

12 microservices and 17 backends [76]. We add an ExceptionTrigger from Hindsight’s

autotrigger library to the ComposePostService module in DSB’s Social Network Benchmark.

We run DSB’s default workload with 300 req/s. We randomly inject exceptions in the

ComposePostService module with error rates ranging from 1% to 10%, varied after each 30 s;
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Figure 3.2: Case Study: Error diagnosis (UC1). Exceptions captured by different
sampling strategies as the error rate varies.

Figure 3.2 shows the collected exceptions for each 30 s time window. We limit Hindsight’s

agent to trigger on only 1% and 5% exceptions among all requests. Figure 3.2 shows

Hindsight is able to collect nearly all exceptions except when they surpass its collection

limits. We add a burst of 10% error rates at 7 seconds and Hindsight rapidly meets its

collection limit. Unlike Hindsight, a head-based sampling methods (at 1% sampling rate)

can only collect 1% of the exceptions at random (see Figure 3.2).

Tail-latency troubleshooting (UC2). We add a PercentileTrigger from Hind-

sight’s autotrigger library to the ComposePostService module in the same setting as above,

invoking addSample at the end of each ComposePost RPC call and providing the mea-

sured RPC duration. We set p to 0.99, 0.95, and 0.9, as different thresholds for tail latency.

We inject 10% requests at random with 20–30 ms latency. We also compare with head-based

sampling methods with 1% sampling rate. Figure 3.3 shows that Hindsight predominantly

collects requests near the threshold, whereas head-based sampling methods cannot. The

vertical dotted line marks the tail-latency percentile threshold. The figure also shows that

Hindsight collected 98.77%–100% of requests above the latency threshold; head-based sam-

pling could gather only ≈ 1%.

Temporal provenance (UC3). We add a QueueTrigger from Hindsight’s autotrigger

library to the HDFS NameNode queue — the QueueTrigger combines a TriggerSet with

a PercentileTrigger, parameterized to capture N = 10 most recently dequeued lateral
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Figure 3.3: Case Study: Tail-latency troubleshooting (UC2). Latency of requests
captured through different sampling strategies with different tail-latency triggers (top to
bottom).

requests when 99.99th percentile queueing latency is observed. We deploy HDFS on 10

machines (8 DataNodes, 1 NameNode, and 1 client) and run a Hindsight agent on each

machine. We run a closed-loop workload of random 8 kB reads with 10 concurrent requests.

Figure 3.4 (left) shows NameNode queue latency over time. We inject a burst of 10

expensive createfile requests 21 second into the trace that briefly saturate the queue—

Figure 3.4 (right) zooms in on this time window. The figure shows high-latency requests (•),

requests that fire the autotrigger (X), and the additional lateral requests that were triggered

to Hindsight (X). The first expensive request occurred at 22 seconds, followed by a pause

while it was executed. Upon dequeuing the subsequent read8k request, QueueTrigger

fired due to high queue latency, and Hindsight retroactively sampled the 10 prior traces

leading up to the trigger. The sample included the culprit expensive request. Overall,

all 10 expensive requests were sampled, 8 unrelated requests prior to the first expensive

request, and 9 additional read8k requests. Moreover, several intermittent latency spikes

occurred unrelated to the experiment (Figure 3.4, left), which Hindsight also captured; upon
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Figure 3.4: Case Study: Temporal provenance (UC3). Lateral requests gathered
(blue) after triggering on a high-latency request (red) due to an overfull queue in Hadoop’s
HDFS.

investigation, these were due to garbage collection.

3.6.2 Hindsight Tracing Performance

Hindsight’s design emphasizes low-overhead data ingestion. To evaluate this, we consider

(a) the latency of client API operations; (b) achievable client data throughput; and (c)

agent buffer indexing throughput. We run these experiments on an Intel Xeon W-2245

3.9 GHz workstation with 8 physical cores (16 hyperthreads) and 128 GB RAM. We run a

benchmarking program that uses the Hindsight client library along with Hindsight’s agent

sidecar process.

Client API. In this experiment, we run a client application that executes a loop com-

prising begin, 100 tracepoint, and end calls. We configure Hindsight with a 1 GB buffer

pool divided into 32 kB buffers. Each tracepoint writes only a 4-byte payload—this use

case is common in statically-preprocessed call site logging (e.g. wherever a program logs

only static strings [170]). We vary the number of threads from 1 to 32. Figure 3.5 plots

latency of begin, end, and tracepoint calls, as we vary the number of threads. For up

to 8 threads, tracepoint latency ranges from 4.3–4.8 ns/call, benefiting from each thread

writing to its own thread-local buffer. Beyond 8 cores, tracepoint latency increases lin-
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early as we begin to multiplex threads on cores. By comparison, begin and end are more

expensive and variable since they contend for shared-memory queues to acquire and re-

turn buffers; fortunately, these concurrent operations are uncommon by design. Latency

is between 200–400 ns with at most 8 threads, and much lower for a single thread with no

concurrent interference.

Client throughput. We repeat the experiment, keeping a buffer size of 32 kB. We now

vary the size of the payload used in tracepoint calls, using 4, 40, 400, and 4,000 bytes per

call. Figure 3.6 plots the throughput achieved in GB/s. As expected, small payloads of 4

bytes fail to fully saturate memory bandwidth, achieving only 887 MB/s with one thread

and peaking at 7.55 GB/s with 64 threads. By contrast, even a modest increase in payload

size to 40 bytes is enough to nearly saturate memory bandwidth; with 400 byte payloads, we

achieve throughput of 12.5 GB/s on a single core. We include in Figure 3.6 measurements
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of peak memory bandwidth from the STREAM benchmark [119]. These throughputs occur

because in the common case, tracepoint is a memory copy to a thread-local buffer, and

thus applications will never be bottlenecked by Hindsight’s client library.

Agent throughput. Client data throughput is moot if the agent cannot keep up; recall

the agent must continually index buffers and cycle them back to the available queue for

clients—if no buffer is available, the client will write to a ‘null buffer’ and the new data will

be lost. This is a last-resort mechanism in Hindsight that fails to respect coherence, and

thus must be avoided at all costs.
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Figure 3.9: Hindsight’s event horizon and trace reconstruction on gRPC-Chain and
gRPC-Branch as we vary the number of servers ((a)–(d)).

In this experiment we run one thread, fix the tracepoint payload size to 1 kB, and vary

the buffer size from 128 B to 128 kB (Hindsight will fragment payloads across multiple buffers

when necessary). Figure 3.7 shows the client-side data throughput along agent-side buffer

throughput achieved by one thread. The data points are annotated with corresponding

buffer size. We see, for example, that large buffer sizes (128 kB) can achieve peak client

data throughput (12.1 GB/s) while requiring little of the agent. Conversely, tiny buffer sizes

(128 B) stress the agent buffer throughput since we more frequently cycle buffers through

the queues. Figure 3.7 plots three lines and indicates two important phenomena. The

client throughput line plots the rate at which the client writes buffers, whereas the agent

throughput line plots the rate at which the agent cycles buffers; the delta in-between are ‘null

buffers’, written by the client because the available queue is empty, i.e. the agent cannot

keep up. Writing to null buffers means lost trace data; the third line, agent goodput, counts

only the agent-side throughput of buffers that are useful, i.e. buffers of traces that did not

lose data. We observe that the goodput with 128 B buffers is lower than with 256 B buffers

due to greater loss. In general, with ≥ 1 kB buffers, the agent is able to consistently keep

up without losing data.

Figure 3.8 repeats this experiment with varying numbers of threads, and plots client-
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Figure 3.10: Hindsight’s event horizon and trace reconstruction on gRPC-Chain and
gRPC-Branch as we vary the buffer pool size ((e)–(h)).

side data throughput and agent-side buffer goodput. Surprisingly, peak buffer throughput

is only achievable with one thread; beyond that, client-side contention on the shared queues

reduces the achievable client-side throughput. The same effect appears in Figure 3.5 in

increased begin and end latency. We also observe that buffer sizes of 16 kB and higher

are sufficient for reaching peak write throughput while remaining comfortably within agent

throughput limits; by default, we select 32 kB for Hindsight.

3.6.3 Retroactive Sampling

Hindsight is only useful if trace data is still in-memory on all agents when a trigger fires.

Hindsight’s event horizon describes the time window between a request completing and its

data being overwritten: triggers must fire within this window, or else it will be too late and

the data will be overwritten.

We evaluate Hindsight’s event horizon on two distributed benchmarks: gRPC-Branch

is a binary tree of N gRPC servers; each server concurrently invokes its 2 child servers

and calls tracepoint with a configurable payload. gRPC-Chain is a configurable chain of

N gRPC servers that invoke each other in sequence and calls tracepoint. We deployed

all benchmarks on 12 CloudLab c8220 nodes [66], each with two Intel E5-2660 v2 10-core
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CPUs@2.2 GHz, and ran a Hindsight agent per process.

Event horizon. In this set of experiments, we introduce a delay between requests

completing and subsequently firing a trigger. We randomly trigger 1% of requests, adding

variable delay to the trigger, and measure how many coherent traces are ultimately received

by the collection backend.

We vary the number of nodes between 4 and 40 (Figure 3.9 (a)-(d)). We configure

a 40 MB buffer pool with 4 kB buffers. The request rate is 1,000 r/s and each request

writes 4 kB trace payload per server. We intentionally select a small buffer pool to more

readily illustrate the event horizon. Figure 3.9 (a,c) shows the percentage of coherent traces

collected for each configured trigger delay. They illustrate how, 8 seconds after a request

is complete, the trace data is no longer available for collection. Nevertheless, Hindsight

successfully reports 100% of triggered traces after 7 seconds with 40 servers in the gRPC-

Chain benchmark, where breadcrumb coordination spans all 40 nodes. Figure 3.9(b,d)

shows the trace reporting time in milliseconds—the time between issuing a trigger and data

received by the tracing backends. Trace reporting typically takes 100–400 ms, and even with

40 nodes to traverse, completes in less than one second.

Extending the event horizon. Hindsight’s event horizon is proportional to the size of

the buffer pool configured for agents. To illustrate, we vary the buffer pool size (Figure 3.10

(e)-(h)) from 100 MB to 800 MB. We configure the number of servers as 10 and 8, and use

4 kB buffers. The request rate is 2,000 r/s and each request writes 16 kB trace payload per

server. Figure 3.10 (e,g) illustrates how increasing the buffer pool size effectively extends

the event horizon possible. Figure 3.10 (f,h) shows that the delay between triggering a trace

and receiving its data increases marginally with larger buffer pool sizes.

3.6.4 Comparison with the State-of-the-Art

We finally evaluate how Hindsight compares with existing state-of-the-art tracing systems.

Comparison with X-Trace. To provide more context, we integrate Hindsight with X-

Trace [75]; all data generation is done within X-Trace, but instead of reporting data in-band,

we reroute it to Hindsight. To a user, this integration is transparent. We run a benchmark
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that uses X-Trace to create traces and log 1,000 X-Trace events. With 8 threads and 32 kB

buffers, the client generates 1.33 million events/s, totaling 259.6 MB/s and consuming

66,458 buffers/s—well below Hindsight’s peak ingestion throughput. By comparison, X-

Trace’s client library experiences local performance bottlenecks and drops data from overfull

queues, only reporting data at 5.9 MB/s. This underscores how a dedicated dataplane design

can yield substantial performance improvements.

We also offer numbers from HDFS [148] (cf. subsection 3.6.1). We route Hadoop’s debug-

level logging into the Hindsight-modified X-Trace. A sustained request workload generates

≈30 MB/s from Hadoop’s NameNode and 5 MB/s from each of Hadoop’s DataNodes. In

our 10-node experimental setup (subsection 3.6.1), this results in a total of 70 MB/s.

Comparison with Jaeger. In the final experiment, we deploy Hindsight in DSB on

the cluster using docker swarm, interposing a Hindsight agent within each of the 12 DSB
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microservices. We augment the existing Jaeger instrumentation of DSB with breadcrumbs

and masquerade Jaeger spans as tracepoint payloads. We use the built-in wrk2 workload

generator with compose-post, read-home-timeline, and read-user-timeline.

We compare Hindsight’s performance to Jaeger by measuring the tracing overhead on

DSB, as well as a baseline of DSB stripped of all tracing instrumentation. To saturate the

systems, we use a 100% trigger rate for Hindsight and a 100% sampling rate for Jaeger. We

repeat the experiment with two different per-tracepoint payload sizes of 10 kB and 1 MB,

to compensate for DSB’s short request length and minimal instrumentation. For apples-

to-apples comparison, we add the payload to both Hindsight and Jaeger. Figure 3.11 and

Figure 3.12 shows the end-to-end latency and throughput comparison. Hindsight displays

significantly better performance than Jaeger at larger payloads. At 1 MB payloads, Hind-

sight boasts average latency of 3.2 ms and throughput of 549 req/sec compared to Jaeger’s

average latency of 66.7 ms and 56 req/sec.

3.7 Discussion

This section provides discussions on Hindsight design and usage, including some current

limitations and some observations we have with our experience.

Event horizon. For Hindsight to coherently capture a trace, its trigger must both fire,

and be fully disseminated, within the event horizon – otherwise an agent may have already

evicted relevant data. We note that once an agent learns of a trigger, the trace data is safe

from eviction and can be reported asynchronously in the background. In tandem with buffer

pool size, Hindsight’s event horizon is influenced by generated trace data volume. Lastly,

for use cases extending even further into the past, Hindsight’s optional trace percentage

(cf. subsection 3.4.4) offers flexibility orthogonal to buffer pool size.

The event horizon is a function of data lifetime in the buffer and the trace recon-

struction time. At fixed request rates, trace data is expected to remain in buffer as

data lifetime = trace index threshold · buffer pool size
request rate·payload , allowing the event horizon to be esti-

mated by data lifetime−trace reconstruction time. As shown in Figure 3.10(e,f), 2,000 req/s,

and payload is 16 kB/req, the expected data lifetime is 80% · 800MB · 1,024 kB/MB
2,000 req/s · 16 kB/req = 20 s, yield-
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ing an event horizon that is three orders of magnitude longer than the trace reconstruction

time of ≈10–20 ms, the event horizon time is then about 19.98 s. In practice scenarios where

tracing is desired, event horizon can be configured to up to minutes or more.

Adaptive tracing. Collecting cross boundary information is challenging, especially

considering nodes and servers are different from loads. Such difference directly affect trace

data payload on each node. As we discussed in our design, data coherence is important to

keep full traces of each request. Although Hindsight focuses a lot on maintaining coherence

on local node, Hindsight doesn’t maintain cross node coherence in the current implementa-

tion. We observe that payload linearly affect the event horizon. For example, in the DSB

workload, one service (ComposePostService) has 6 times loads than other services so the

event horizon is dominated by the trace data liveness on that node.

Though Hindsight does not solve the problem, we believe there are many practical

solutions for further optimization. The general solution is to make tracing on each node

adaptive. Buffer size and per tracepoint payload could be intelligently adjusted on each

node. If there’s strong intention to carefully trace a busy node, more memory size should

be allocated. On the other hand, if a node does not have busy payload, then it should not

allocate much memory space. Another dimension of adaptive operations is to change the

sampling rate within the current rate limiting mechanism, which is designed to limit the

tracing overhead but can also be helpful on reducing data generation rate, thus keeping

more useful traces for less requests rather than keeping all pieces of many requests.

Trace collection. Hindsight implements a relative simple but effective trace collection

mechanism with Hindsight coordinator. When operating a tracing system with large scale,

such mechanism may delay trace collection and require further optimization. Propagating

more middle-node pointers along the control flow would reduce the depth to retrieve trace

data, which is effectively paralleling the trace collection. Our breadcrumb mechanism also

reduce the collection complexity to half efforts.

A practical question is breadcrumbs may fail. In many cloud or microservices settings,

a service has the knowledge of which server or node is it calling. This is especially true

for many RPC-based frameworks. However, when the called function is not determined, a
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caller may fail to know the callee’s tracing pointer, or address. For example, if there’s a job

scheduler or a pool sitting between two services, the scheduling mechanism will determine

the next hop for execution, thus the initial hop cannot know where the request is going to.

In those cases breadcrumb may fail. However, such mechanism is not fully deployed across

services and in many cases, breadcrumb mechanism still works well as an optimization to

cut down the trace retrieval time. In our practice, breadcrumbs can effectively speed up

the trace collection.

Aggregated metrics. As Hindsight buffers trace data on local nodes, it can also pro-

vide aggregated metrics collection and calculation, which is also a major usage of common

case analysis through other existing tracing systems. Because Hindsight agent has already

maintained trace data indexing and managed data coherence, it’s easy to integrate other

aggregations for statistics. Taking latency as an example, a direct follow-up work is to

calculate request latency distribution on local agents. Such task would add few engineering

work and computational overhead. In the current implementation we limit our contribu-

tion to mainly building the tracing framework, however Hindsight can enable many future

analysis tasks towards monitoring, debugging, and analzing with low overhead.

3.8 Related Work

Distributed tracing. Numerous prior works identify end-to-end requests as a useful

granularity for slicing telemetry data and troubleshooting distributed systems. Example use

cases include detecting anomalous request structures [167, 149, 101], diagnosing changes in

the steady-state [57, 140, 127], modeling workloads [156, 117], and identifying resource

and queue contention [167, 114, 77]. Distributed tracing systems have been presented in

industry [149, 94], as open-source tools [19, 24, 22, 21], and in academia [75, 115]. We

described how head-based sampling is widespread in practice (cf. section 3.1), and despite

a desire for the ability to discriminate towards edge-cases, no techniques to do so have

emerged to date. Tail-based sampling shares similar aspirations [101, 100]; its goal is to

identify, from a collection of traces, which are most ‘interesting’ [39, 10, 15, 23, 17]. Yet tail-

based sampling—perhaps a misnomer—does not capture fewer traces or reduce overheads
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on tracing backends; instead it is useful in tracing backends after collection and processing,

for deciding whether traces can be discarded.

Network provenance. Hindsight is similar in spirit to network packet provenance

systems that chronicle the history of network state, enabling use cases such as tracking

the origin or path traversed by a packet across the network. Earlier systems, like ExS-

PAN [181] and SNP [182], adopt this abstraction; more recent works like SyNDB [95] and

SPP [56] apply network provenance for packet-level root-cause analysis on Internet scale.

Packet provenance systems primarily trace only packet metadata, which is well-structured

and can be summarized in-band; these systems tackle additional trust challenges outside

of Hindsight’s purview. By contrast, handling metadata to reconstruct the path of a trace

is but one concern for Hindsight; Hindsight is focused on handling arbitrary payloads (i.e.

trace data), and the resulting performance, coherence, and fairness challenges. Hindsight

also draws inspiration from works focused on temporal provenance [183] and packet reputa-

tion [55] in distributed systems, although Hindsight’s tracing abstractions operate entirely

at the application level.

3.9 Takeaway

Hindsight circumvents the false dilemma between performance and usefulness for diagnosing

symptomatic edge cases by providing developers detailed traces from the recent past when

they encounter symptoms of failures, performance regressions, SLO violations, or other

issues among the requests that pass through their systems, while making use of standard

instrumentation for distributed tracing and without burdening the backend. We believe

the retroactive sampling abstraction, and our Hindsight implementation of it, can shift the

conversation around tracing away from mechanism (how to collect traces) to a question of

policy (what traces should be collected), and allow distributed tracing systems to support

edge-cases analysis: a key use case for which they were originally conceived.

By this chapter, we have answered the question on how to monitor distributed system

performance at scale, especially solving the open question about how to track edge case

performance problems in real time.
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Chapter 4

Optimal Data Placement on

Memory Hierarchy

Problem. The goal of the memory hierarchy model for data placement is to carefully

trade off properties of heterogeneous resources to optimize overall system utilization and

performance. Historically, adjacent layers in the memory hierarchy (such as SRAM to

DRAM, DRAM to SSD, SSD to disk) have differed in cost, capacity and performance by

several orders of magnitude, readily supporting design decisions such as the inclusive caching

policy whereby the blocks in a higher layer memory are also present in a lower layer cache.

As nascent memory technologies muddy the traditional distinction between layers in

terms of storage capacity, latency, power, and costs, the assumptions underlying data place-

ment decisions need to be revisited. Byte-addressable non-volatile memory (NVM), as one

example, is slated to deliver larger capacity than DRAM at competitive latency, with cur-

rently available NVM hardware (e.g., Intel Optane DC Persistent Memory [89, 69]) incurring

2 − 5× the read latency and 4 − 10× the write latency of DRAM (Table 2.1), far closer

than the 2–3 orders of magnitude performance differences between DRAM and SSD. Simi-

lar data placement challenges exist in Non-Uniform Memory Access (NUMA) architectures,

Non-Uniform Cache Access (NUCA) architectures, multi-tier storage systems, distributed

caching systems, and across the CPU-GPU divide to name a few examples.

Secret Sauce. We posit that the entrenched cache replacement model for data place-
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ment in adjacent layers of a memory hierarchy fails to express and capitalize on opportuni-

ties brought on by these new technological realities. Using the DRAM-NVM interface as a

running example, this work revisits the following two assumptions.

A1 (Cache-Bypass) First, the notion that each requested block needs to be brought into

and served from faster memory is unnecessary when the slower memory is directly

addressable, allowing for cache bypassing [123] or cache admission [48] techniques

(Figure 4.1), discussed further below.

A2 (Performance-Asymmetry) Next, read (load) and write (store) operations can

have asymmetric performance characteristics (Table 2.1), implying that the latency

impact of a cache miss differs between request types. Consequently, the conventional

approach of minimizing cache miss ratio as a proxy for optimizing latency fails to

capture the nuance of how higher latency operations can be balanced against lower

latency ones. For example, it may optimize overall latency to place a write-heavy

block in DRAM instead of NVM, at the expense of a read-heavy block that would

otherwise have seen more cache hits.

We will refer to cache policies that support Cache-Bypass and Performance-Asymmetry

as data placement algorithms.

Solution.1 We present an offline data placement algorithm across cache, memory, and

storage hierarchies that optimizes latency while supporting A1 and A2. Many recent works

have considered these assumptions in isolation [71, 67, 123, 98, 69, 105, 96, 33]. When

assumptions change and models are revised, the yardstick for what constitutes “good”

performance within the model need to be adjusted as well, which underscores the need for

offline optimal algorithms. Our approach follows the template of recent and ongoing work

that revisits canonical memory model assumptions, such as by supporting variable sized

items [49], accounting for cache write-back policies [44], and enabling caches to dynamically

adjust their capacity [104].

1This work revises the previously published paper: Optimal Data Placement for Heterogeneous Cache,
Memory, and Storage Systems at SIGMETRICS’20 [175]. The published paper is awarded with Kenneth C.
Sevcik Outstanding Student Paper Award.
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Under the hood, our algorithm, Chopt (for CHoice-aware OPT), casts the demand-

based memory data placement problem within a network flow framework, then uses a

Minimum-Cost Maximum-Flow (MCMF) algorithm to determine whether each requested

memory block should be accepted into faster memory. To help accelerate trace simulation

for larger workloads, we exploit sampling and show both empirically and theoretically that

the scaled-up latency performance of Chopt on a spatial sample of a trace gives a faith-

ful approximation of the performance on the original workload. Our analysis of spatial

sampling of cache streams provides a rigorous footing for recent empirical results in the

area [159, 158, 42].

Simulation results of Chopt on dozens of traces from diverse systems, including program

memory accesses in the PARSEC benchmark suite (for the DRAM-NVM interface), block

accesses from virtual machines (VMs) on hypervisors used in production (for multi-tier

storage systems), and web cache accesses from a major content distribution network (CDN)

suggest that average latency reduction of 8.2%, 44.8%, and 25.4%, respectively, are possible

over Belady’s MIN cache replacement policy (Table 4.4). By providing the best possible

performance as a yardstick, offline trace simulation of Chopt can afford algorithm designers

and operators greater visibility into defining and evaluating online data placement policies

for their workloads.

4.1 Modern Memory Hierarchies

The memory hierarchy has been a guiding model since the beginning of computing, provid-

ing system designers a framework for managing complexity and reasoning about trade-offs

inherent in combining very different memory hardware into functioning systems. Con-

sequently, most systems until recently have required data in lower tiers to be addressed

only indirectly via higher tiers (typically operating as inclusive or exclusive caches). Such

abstraction was not only convenient because subsequent tiers of memory were orders of

magnitude different in latencies and capacities, but it also made the CPU design process

simpler and more optimized.

We suspect that the success of the strict memory hierarchy in CPU caches may also
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Figure 4.1: Supported memory modes for DRAM and NVM. If memory access is
virtualized by the memory controller, DRAM acts as an architecturally invisible “cache”
(a,b). However, unlike a traditional cache, data may also be loaded directly into the last-
level cache (LLC) from NVM. The memory controller employs algorithms to dynamically
manage data placement and therefore optimize hit latencies. On the other hand, if DRAM
and NVM are separately accessible by the software layers (c), the OS or the application
must decide data placement. (a) A requested block is found and returned from DRAM. (b)
The block is not found in DRAM so the memory controller redirects the request to NVM.
(c) Both DRAM and NVM are visible to the OS and the application that together dynam-
ically control which blocks reside in DRAM versus NVM. (a) and (b) represent “Memory
Mode” whereas (c) represents the “App-Direct Mode” supported by Intel’s Optane DC
processor [12].
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have decelerated algorithm innovation and analysis into the more general data placement

problem. For example, flash-based solid-state disks (SSDs) and hard disk drives (HDDs)

have been equally addressable from an operating system (OS) point of view since at least

the mid-2000s, yet most optimization research has treated the flash layer as a cache tier.

Addressability becomes even more important as new memory devices simultaneously

diversify the characteristics of memory components (e.g., data volatility and bandwidth) and

decrease the performance differences (e.g., less pronounced latency or capacity difference)

between layers. We begin by surveying three domains where such developments are playing

out.

Non-Volatile Memory. Intel recently released the Optane DC Persistent Memory [89]

whose load and store latency are within the same order of magnitude as regular DRAM.

Other NVM technologies are under development, including Spin-Transfer-Torque RAM

(STT-RAM) and 3D-XPoint, and are expected to reach similar performance. Table 2.1

shows a performance comparison of DRAM, NVM, and NVMe memories. Intel Xeon™

scalable processors currently support DRAM and NVM together in their main memory sys-

tems [14, 37], with NVM poised to sit between DRAM and SSDs as an additional layer in

the memory architecture. These NVM memories support direct access to data and option-

ally direct addressability from software. We illustrate the availables modes in Figure 4.1,

including the case where NVM is accessed without involving the DRAM cache. As another

layer, Intel Optane NVMe block devices have performance closer to SSDs and can be in-

terposed between main memory and slower storage, with commercial deployment already

underway [69].

Multi-Core Processors. The arrangement of the memory hierarchy among caches

and DRAM on modern multi-core processors is also changing. Non-uniform memory access

(NUMA) technologies allow direct addressability to data in DRAM on remote CPU sockets

through an interconnect, forcing the OS to consider data placement among local and re-

mote memories for maximizing overall space and bandwidth utilization at a lower latency.

Similarly, last-level caches (LLCs) in a single CPU socket may be arranged in a non-uniform

cache access (NUCA) architecture with different latency to different CPU cores.

Distributed Caches. Cache servers have been pivotal in accelerating the web and
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making services responsive, both within data centers through large-scale look-aside caches

like memcached [4], and on the wider Internet through large-scale content delivery networks

(CDN) operating on geographically distributed cache servers [86]. Internally, CDNs must

solve challenges of data placement among nodes, cache pollution from “one-hit wonders”,

routing, and replication, all to minimize the latency experienced by end-users [142]. Each

server in a distributed cache is internally addressable, allowing for Cache-Bypass, and

gets and puts of objects may have asymmetric performance [48].

4.2 CHOPT: An Optimal Data Placement Algorithm

Having seen that data placement decisions across layers arise in multiple domains, we next

consider how assumptions A1 and A2 can be incorporated into a generalized data placement

model. We then define an offline optimal algorithm for the model, allowing algorithm

designers to contextualize the level of effort that should be invested in developing online

heuristics for the problem, and to evaluate the fruits of such labor.

4.2.1 Generalized Model and Objective

Let us consider two layers of directly addressable memory (L1 and L2). We assume L1 has

a capacity of N blocks (or items), and that all data can be served from L2. We discuss

extensions to more layers in Section 4.2.5.

We define a workload as a sequence ~x = (xt)
T
t=1 of T unit-size block accesses where

xt ∈ I for all t and I denotes the set of all blocks that can be requested. A data placement

algorithm processes the sequence ~x in order, and for each request xt that is not already in

fast memory (L1) makes an online decision whether to:

1. bring xt into L1; note this may potentially evict another block on demand if L1 is

full, or

2. serve xt directly from L2 without loading into L1.

Note that (2) represents a cache-bypass (A1) decision.
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Whereas cache performance is traditionally measured simply through miss ratio (or hit

ratio) as a proxy for the average access latency, we wish to incorporate the performance

asymmetry between read and write operations (A2) directly into the performance metric.

These measurements can differ, e.g., multiple low penalty load misses may be desirable

over a costly write miss. Accordingly, we will directly measure and optimize average access

latency throughout this work. Specifically, we let ~w = (wt)
T
t=1 with wt ∈ W denote the la-

tency penalty for each request, whereW = {W`,Ws} accounts for marginal latency penalty

of load (read) and store (write) operations being served by L2 rather than L1. We assume

without loss of generality that the latency of load and store operations in L1 are identically

1. Therefore, the access latency for request xt is W` + 1 (load operation) or Ws + 1 (store

operation) if it was served from L2, and 1 otherwise.

In keeping with the two-layer DRAM-NVM memory hierarchy as a running example,

let us refer to DRAM as L1 and NVM as L2. We set the latency of DRAM load and store

operations as 1 and NVM load and store as 2 and 5 based on the hardware characteristics

displayed in Table 2.1.

4.2.2 Why Investigate Offline Performance?

Identifying the optimal cache replacement strategies, Belady’s MIN and Mattson’s OPT

(evict-farthest-in-the-future) [45, 118], was a critical junction in the creation of memory

paging systems for two chief reasons. First, it allowed researchers to study the optimal

decision making and incorporate ideas into the online heuristics. Second, and more im-

portantly, it provided both a benchmark to beat and a gauge for success. For example, if

evicting least-recently-used (LRU) pages were to yield a seemingly low 45% hit ratio on a

trace, the result becomes relevant only when we learn that the clairvoyant OPT algorithm

would obtain a hit ratio of, say, 48%. As such, evaluating offline optimal performance is

the crucial yardstick in the recent wave of adopting machine learning algorithms to make

caching decisions because these algorithms are specifically trained to imitate the optimal

policy. Berger [47], for example, applied supervised learning to practically map object fea-

tures to optimal decisions learned from offline analysis. Shi et al. [146] proposed to help

design online hardware predictors with deep learning by training offline models of OPT
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decisions.

In 2020, we find that while OPT remains the touchstone for cache replacement algorithm

performance, cracks are also forming. Recent papers have pointed out that as assumptions

shift, such as when objects have different sizes [48, 49], when the cache size is dynamic [104],

or when write endurance of the memory needs to be considered [58], the canonical cache

model is inadequate, and with it, OPT. We thus ask: Under the presented generalized data

placement model, what latency performance can we hope for, even under offline conditions?

4.2.3 Algorithm Design

We now introduce Chopt (CHoice-aware OPTimal), an optimal offline algorithm for the

data placement under the generalized model defined above. The key idea behind Chopt

is to represent memory hierarchy placement decisions as network flows, translating the

optimal placement decisions into an instance of a Minimum-Cost Maximum-Flow (MCMF)

problem. A similar approach was recently deployed by Berger et al. [49] in work concurrent

with ours to evaluate the limits of optimal replacement under variable sized cache items.

A chief difference is that the assumption of unit-size pages in our model sidesteps the

knapsack/bin-packing style complexity and hardness that arises from arbitrary item sizes.

Our preliminary results suggest our approaches can be combined but defer a full study to

future work.

In Chopt, every access in the trace ~x is associated with an explicit node. Arcs con-

nect both adjacent requests to simulate time (a timeline link), and requests for the same

block. Positive flow on the timeline links implies requests should be served from L2 (NVM),

whereas flow on the latter arcs implies that the block should be retained in L1 (DRAM)

during the corresponding time interval. Chopt thus views each flow as the representation

of a single memory slot in L1, tracking its occupancy sequence along with the workload, in-

cluding swapping blocks in and out. Costs and capacities are associated to arcs to represent

latency savings of serving data from L1 rather than L2, to ensure that each item is cached by

no more than one L1 slot, and that the maximum number of concurrent flows is N . Chopt

assumes that all requests are served by the NVM layer by default, and then calculates the

“savings” from that baseline, where the maximum savings represents the minimum overall
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cost for handling the trace. Generally, replacing a block between the layers incurs a positive

cost that we will seek to minimize, whereas accessing a block in the DRAM layer leads to a

negative cost—a reward. The optimal algorithm is now reduced to a search for the MCMF

flow solution.

4.2.4 The Anatomy of Chopt

We next provide a formal definition of the Chopt algorithm for an L1 cache of size N .

We define a cache schedule of size N as a sequence of sets C0, . . . , CT where Ci ⊆ I for all

0 ≤ i ≤ T with C0 = ∅ and such that |Ct| ≤ N , and where at most one block gets cached or

evicted in each round, that is |Ct∆Ct+1| ≤ 1 for all t. Here, A∆B denotes the symmetric

set difference (A−B) ∪ (B −A). We highlight that the schedule is not forced to bring the

block currently being accessed into cache memory.

Graph Construction. We define a directed network G with 2T + 2 nodes and up to

4T + 2 edges. For each time point t between 1 and T , we add two nodes: one main lane

node x̂t for the time point, and another high lane ĥt for the requested item i = xt.

The directed edges are drawn as follows. First, we add arcs between simultaneous main

lane and high lane nodes, specifically x̂t and ĥt for any t, which denote that the item could

be swapped in or out. The capacity for both arcs is 1, and the cost is Z. These are caching

links (pointing up to the high lane) and eviction links (pointing down to the main lane) for

the item i = xt in question.

Second, for adjacent time points in the main lane, we add a forward arc (x̂t, x̂t+1)

with infinite capacity and zero cost. The zero cost here indicates that storing data in L2,

effectively a miss, offered no savings over L1. We call these timeline links.

Third, we add arcs for neighboring requests for the same item in the high lane, specifically

(ĥt, ĥt′) where t′ is the next time after t when item i = xt = xt′ is requested. These arcs

each have a capacity of 1, and cost of −wt for wt ∈ W. Positive flow across this edge means

a cache hit in L1 and so the latency of a miss was saved. We call this edge a retention link

for item i.

At last, we add a final arc from a source node s ∈ V to x̂1 with capacity of cache size

N and cost of 0, and a zero-cost and infinite capacity arc from xT to sink node t ∈ V . The
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Figure 4.2: Example of a network flow constructed by Chopt, on a trace covering 14
requests for three unique items. Nodes and colored edges are described in Section 4.2.4.

source node arc acts as a choke link to limit the cache size.

Optimization. We now run a MCMF algorithm on G [81]. Because each arc has an

integer capacity, the ensuing optimal flow is integral. The resulting flow is interpreted with

respect to a cache schedule as follows. Positive flow across a cache link at time t for item

i indicates whether or not item i should be brought into L1 (flow of 1) or stay in L2 (flow

of 0). Similarly, positive flow on an eviction link states that item i is no longer needed

in cache at that time t. If there is any positive flow on a retention link (ĥt, ĥt′) for item

i, which must equal 1, then item i = xt = xt′ remains in cache between t and t′. In this

way, given a fixed cache size N , the minimum cost maximum flow implies a schedule for

the cache: which items are swapped in and out at what time.

Illustrative Example. Figure 4.2 shows an example of the graph constructed by

Chopt for a trace of 14 requests to blocks a, b and c. Each request is represented by two

nodes: an upper one corresponding to the DRAM (high lane) and a lower one corresponding

to NVM (main lane). We also show the source node s and sink node t. The nodes are

connected by multiple types of edges which we differentiate by color. We explain each type

of colored edges as below and reintroduce their cost and capacity in the example.

• Green edges represent the caching links and eviction links, denoting replacement

operations. The cost of replacement in each layer should be equal to the latency of a

store on that layer, so a green edge going upper or lower in the figure has cost of 1

and 5. Since at most one block can be replaced on a request, the green edge capacity

is 1.

• Black edges represent the timeline links, and act as a baseline – all blocks are assumed
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Figure 4.3: Extending Chopt to more layers. First, set choke links with capacity c1,
apply the Chopt algorithm on (a) to solve for data placement, reconstruct the graph as
per (b), modify the choke link capacity, apply Chopt algorithm again, and finally combine
the placement solutions from (a) and (b).

to be in NVM unless specifically moved to DRAM. Because the objective function cal-

culates the maximum latency improvement over exclusively using NVM, the capacity

of the black edges is +∞ and their cost is 0.

• Red, Blue, and Orange edges represent retention links, which imply DRAM accesses

on the request. The different colors represent accesses for different blocks. From each

block’s view, flow across the edge means that the block is cached in DRAM at the

time of the request. Accessing the block in DRAM can save cost compared with

NVM, so the cost for those edges is W` − 1 = 2 − 1 = 1 if the request is a read, and

Ws − 1 = 5− 1 = 4 if the request is a write. Only one cell and thus flow should hold

an item, and thus the capacity of those colored edges is set to 1.

• Pink edges represent the choke links. The capacity of a pink edge from the source

node s is the DRAM size N , which in turn controls the maximum number of flows.

The cost of a pink edge is 0.

Correctness. By construction, the MCMF over the graph implicitly considers all possi-

ble data placement options for the given trace. The proof of correctness for Chopt is mostly

routine and established by two lemmas. As a special case, they establish the optimality of

the cache-bypass policy OPTb that was investigated without proof by Michaud [121].

We provide proofs of key assertions here.
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Lemma 1. Each feasible minimum-cost flow in G is a cache schedule.

Proof of Lemma 1. For a given time point 0 ≤ t ≤ T , let St denote {s, x̂1, . . . , x̂t, ĥ1, . . . , ĥt}.

The total flow across edges in the cut (St, V − St) cannot exceed the maximum flow of the

graph, which is upper bounded atN by the choke point (s, x̂1). The retention links e1, . . . , ek

with positive flow across the cut has capacity of 1, and thus a flow of 1. By construction,

the retention edges all have different source nodes ĥi1 , . . . , ĥik where ij ∈ {1, 2, . . . , t} for

1 ≤ j ≤ k. The set of items in cache after the request at time t is correspondingly

Ct = {xi1 , . . . , xik}.

At most a single retention link terminates at ĥt, whose flow (if any) can either continue

through an eviction link (ĥt, x̂t) or another retention link for item xt. In the former case,

there was an eviction of item xt at time t, or xt ∈ Ct−Ct+1. At most a single caching link can

be traversed from x̂t+1 to ĥt+1, and positive flow across this arc means that xt+1 ∈ Ct+1−Ct,

or that item xt+1 was brought into cache at time t+1. Because the caching link and eviction

link at a given time t both have capacity of 1 and positive costs, a minimum-cost flow would

not simultaneously carry positive flow over both arcs: simply removing the flow over both

links retains feasibility (per-node flow is conserved) and yet reduces cost, thus producing

a cheaper feasible flow than the minimum-cost one – a contradiction. Thus no other flow

across the cuts impact the sets Ct or Ct+1, implying they differ by at most one element

(either one due to eviction or one from an item being brought into cache) or —Ct∆Ct+1| ≤ 1

for all t. The sequence C0, . . . , CT is thus a valid cache schedule.

Lemma 2. Each cache replacement policy can be expressed in terms of feasible flow in

network G.

Proof of Lemma 2. Let P denote a cache policy, and let C0, . . . , CT denote the cache sched-

ule for P for the given workload (xt)
T
t=1. Let yt ∈ Ct denote the (at most one) item xt that

P brought into cache at time t, specifically yt ∈ Ct − Ct−1, and let yt = ⊥ if item xt was

already in the cache at time t (cache hit). Set C0 = ∅. Similarly, let zt ∈ Ct−1 denote the

(at most one) item evicted at time step t, setting zt = ⊥ if no item is evicted.

Define the flow fe over G as follows. For high lane links e = (ĥt, ĥ
′
t) with any pair t < t′,

let fe = 1 if xt ∈ Ct and xt 6= zt, otherwise fe = 0. For caching links e = (x̂t, ĥt), set fe = 1
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if xt = yt, and 0 otherwise. For eviction links e = (ĥt, x̂t), set fe = 1 if xt = zt, and 0

otherwise. For timeline links e = (x̂t, x̂t+1), set fe = N − |Ct|. Also set f(s,x1) = N . All

flows are therefore integral and no capacity constraints are exceeded.

We next show flow is conserved at every node. On one hand, the inbound flow to each

high lane node ĥt is at most 1 (from either a caching link or an incoming retention edge)

and flows out (from either another retention edge or an eviction link, respectively). On the

other hand, the flow into node x̂t equals f(x̂t−1,x̂t) + f(ĥt,x̂t) = N − |Ct−1|+ 1[xt = zt]. This

value in turn equals the outgoing flow

f(x̂t,x̂t+1) + f(x̂t,ĥt) = N − |Ct|+ 1[xt = yt]

because Ct∆Ct−1 ⊂ {yt, zt} and either yt = ⊥ or zt = ⊥, where we assume ⊥ /∈ A for any

set A.

Lemma 3. (Chernoff bound) Let X1, . . . Xn be independent random indicator variables

with P[Xi = 1] = p for i ∈ [n]. Set X =
∑

i∈[n]Xi and µ = np. Then,

P[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ e−

min{δ2,δ}µ
4 , and

P[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
≤ e−

min{δ2,δ}µ
4

with the former for δ ≥ 0 and the latter restricted to δ ∈ (0, 1].

Proof of Theorem 4.3.1. First assume without loss of generality that wt = w for all t ∈ [T ].
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∑
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for δ =
∣∣∣ srt − 1

∣∣∣, where the first equality is justified by the linearity of expectation, the

second by the independence of r̂t and Yt, the fourth by P[A] = 1 − P[A] for any event A,

the first inequality by the triangle inequality, the second inequality combines the upper and

lower-tail Chernoff bounds (3) using r̂t, recognizing that only either one of the two terms in

the sum is non-zero for each t ∈ [T ], and the third one from that δ2 ≤ |δ| when 0 ≤ s ≤ 2rt.

When the weights a 6= b differ, we apply the bound separately for the subsequences

Ta = {t ∈ [T ] : wt = a} and Tb = T − Ta, obtaining an upper bound of

|Ta|a exp
(
−αs

8

)
+ |Tb|b exp

(
−αs

8

)
= T (ξa+ (1− ξ)b) exp

(
−αs

8

)
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where ξ = |Ta|/T .

4.2.5 Extending Chopt to Multiple Layers

Chopt is a general model that can serve as a building block when considering multiple

memory or storage layers. We sketch how Chopt can support more layers in deeper hier-

archies, keeping average access latency as our main metric. We assume that lower capacity

layers are implicitly more valuable in terms of performance.

Suppose the memory hierarchy consists of three addressable layers L1, L2, L3, as shown

in Figure 4.3(a). We expand the definition of nodes so that at each time point, we still

have one main lane node but with two high lane nodes – the core modification of the graph

structure. Assume without loss of generality that c1 < c2 < c3 where ci represents the

capacity of Li. We also extend the definition of links: caching links and eviction links

should connect each pair of main lane and high lane nodes at any time point. Timeline

links remain unmodified since we only have one baseline. Retention links, arise only in the

high lane in a two-layer memory hierarchy, but since we have one more high lane, retention

links should be constructed within each high lane. Note that we only added links for the

additional high lane, and that node and arc roles have otherwise not been changed. The

capacity and cost are unchanged, except caching links and eviction links. Cost wt on those

links represents the writing cost on the lane of the link sink, so between every two lanes,

either between a high lane and a main lane or between two high lanes, the cost of those

links can be reset correspondingly.

The main challenge now is to consider the choke links, which represents the high lane

capacity in a two-layer hierarchy. Considering that in memory hierarchies, the first priority

is to maximize the utilization of the most valuable layer — L1 in our example — and the

next is L2. This does not mean that the capacity of these layers is filled. For the multiple

layer hierarchy with multiple high lanes, we respect the priority and maximize utilization

for them layer by layer. Figure 4.3 shows the process (a) and (b) with an example. First,

Chopt sets the choke links with capacity as c1, and then runs Chopt to determine a

placement solution. Chopt terminates when the capacity of choke links is reached, or

no more negative cost cycles can be found in the residual graph (in the Figure, there is
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surplus capacity on the choke links). In the latter case, the Chopt placement solution is

already optimal since the utilization of each lane is maximized. In the former, however,

the utilization of L1 is maximized but that of L2 may not be. In this case, we should

remove all high lane nodes in L1 as well as all related caching, eviction, and retention links

from the graph. For all remaining links, we continue searching and the cost and capacity are

unaffected. Since the target changes to maximize the residual utilization of L2, the capacity

for choke links should be reset as the difference between c2 and the capacity already used

by step (a). We refer to this new graph shown in Figure 4.3(b) as the degraded graph. We

can now run Chopt again on the degraded graph to identify more placement solutions.

Note that the new solutions are compatible with the L1 placement decisions because the

high lane nodes in L1 were already removed. In this manner, Chopt determines placement

solutions for three-layer memory hierarchies, and can be expanded to support more layers.

4.3 Analyzing Long Traces by Sampling

Chopt provides an optimal offline latency estimate for a trace of length T in O
(
T 2 log2 T

)
time, with different worst-case bounds depending on what MCMF algorithm is used for

optimization [81]. Yet analyzing offline optimal placement is primarily of interest for large-

scale real-world workloads, often comprising at least 107 − 109 requests [49, 104]. The

running time of Chopt for such long traces can be prohibitive.

To make Chopt practical to use, we apply spatial sampling on the traces — a sampling

over blocks rather than requests — to reduce the scale of the simulation. Spatial sampling

has been used successfully in recent cache replacement work [159, 158, 42] and was shown

empirically to accurately calculate miss ratios. In addition to using spatial sampling on

Chopt, we investigate the analytic limits of the approximation provided via sampling,

highlighted in Corollary 4.3.1.1.

Stack algorithms. Expanding on our earlier notation, we let Cn0 , . . . , C
n
T denote the

cache schedule of size n for a cache policy P. Following the fertile line of work started by

Mattson et al. [118], we define stack algorithms as follows.

Definition 1. Cache policy P is a stack algorithm if its cache schedule adheres to the
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inclusion property, specifically that Cnt ⊆ Cn+1
t for all t ∈ [T ] and n ∈ N.

Here, we used the bracket shorthand for integer ranges, [N ] := {1, 2, . . . , N}. Common

examples of stack algorithms include LRU, LFU, and OPT [118].

Stack algorithms induce an ordering over the elements in cache. Specifically, we say

that i ≺t i′ for (i, i′) ∈ I2 at time t if for some n ∈ N we have i ∈ Cnt and i′ /∈ Cnt . The

relation ≺t defines a partial order over I.

Definition 2. P is stable if the sequence (≺t)t∈[T ] has the property that for every t ∈ [T−1]

and item pairs i, i′ ∈ I − {xt} with i ≺t i′ we also have i ≺t+1 i
′.

The omission of xt implies that the item requested at time t is the only item whose

relative order may change at time t. In the case of LRU, for instance, the requested item

xt is moved to the front (most recently used) location of the stack while leaving all others

unperturbed.

Definition 3. Define rt as the stack distance of element xt at time t, s.t. rt = |{i ∈ I : i ≺t xt}| .

The following observations are immediate.

Remark 1. The cache policy P of size s on trace ~x has a cache miss at time t for item xt

if and only if rt ≥ s.

Remark 2. LRU, LFU, OPT and Chopt are stable stack algorithms.

Generalized Miss-Ratio Curves. We measure the impact of sampling by studying

how latency changes with cache size through a slight generalization of the well-known miss-

ratio curves [159]. Let 1[A] ∈ {0, 1} denote the indicator function for predicate A, such

that 1[A] = 1 iff A is true, with the standard generalization to random variable A in a

probability space.

Definition 4. A weighted miss-ratio curve (WMRC) m : N → N over ~x on policy P is a

function that aggregates the weighted impact (latency) of cache misses for a cache of size

s ∈ N under policy P and workload ~x, formally

m(s) =
∑
t∈[T ]

wt1[rt ≥ s],
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where wt ∈ W is the marginal increase in latency for missing request xt.

The request weights ~w will serve to differentiate the latency impact W` of reads (loads)

and writes Ws (stores) into lower level cache, in which case W = {W` − 1,Ws − 1}.

Sampling WMRCs. Sampling has been shown empirically to provide fast and accu-

rate approximations for miss ratio curves [158]; our analysis provides a theoretical footing

for these results. We will focus on spatial sampling of the trace ~x, where each item — not

request — is independently included in the trace with probability α ∈ [0, 1], where α can

be referred to as the sampling ratio.

Let Yt ∈ {0, 1} be an indicator random variable denoting the event that cache item

xt was sampled, in which case Yt = 1. By assumption, P[Yt = 1] = α. Note that the Yt

variables are themselves not pairwise independent since they could refer to the same cache

elements. Let IS ⊆ I denote the set of spatially sampled items.

We now adapt our definitions to the sampled trace.

Definition 5. The sampled stack distance r̂t is a random variable, defined as r̂t = |{i ∈ IS : i ≺t xt}| .

We have the following lemma:

Lemma 4. Either rt = r̂t =∞, or the sampled stack distance r̂t ≈ Binom(rt, α). Also, r̂t

is independent of Yt.

Proof. For the first part, assume rt <∞ and consider the subsequence xj1 ≺t xj2 ≺t · · · ≺t

xjrt = xt. Then

r̂t =
∑

s∈[rt−1]

1[Yjs = 1]

which is the sum of rt independent identically distributed Bernoulli variables with proba-

bility α, thus r̂t ≈ Binom(rt, α). For the second part, note that the sum for r̂t specifically

excludes Yt.

Definition 6. The sampled miss ratio curve m̂ : [N ]→ N over ~x and weights ~w is defined

as the aggregate of the weighted impact from cache misses for cache policy P of size s ∈ N
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that observes only those requests xt in ~x with Yt = 1. Formally,

m̂(s) =
∑
t∈[T ]

wt1[r̂t ≥ s]1[Yt = 1].

Our main result is the following.

Theorem 4.3.1. (Spatial sampling theorem). For weights W = {a, b} with 0 ≤ a ≤ b and

weight skew ξ = |{t ∈ [T ] : wt = a}|/T , we have

|E [m̂(αs)]− αm(s)| ≤ Tα (ξa+ (1− ξ)b) exp
(
−αs

8

)
.

Corollary 4.3.1.1. When all weights are identically 1, the spatial sampling theorem states

that m̂(αs) ≈ αm(s) on average for any s with an error of at most Te−
αs
8 .

Summary. To avoid running Chopt on a long trace, which would take prohibitively long,

Theorem 4.3.1 establishes that Chopt can be approximated for a cache of size s through

the following procedure.

1. Spatially sample α-fraction of the blocks from the full trace T , producing shorter

sub-trace S.

2. Run Chopt on S with a cache of size αs to obtain average access latency of `.

3. Estimate the average access latency of the original trace T for cache size s as `
α .

According to the corollary, the absolute error for this approximation is no more than

exp(−αs/8) in expectation, meaning that the approximation is exponentially more accu-

rate in larger cache sizes and higher sampling ratios. The corollary assumes read and write

latency to be identical, which establishes the theorem for the special case of the conven-

tional miss ratio curves from the literature. When the weights differ, there is an additional

ξa+ (1− ξ)b factor on the error bound. We evaluate the empirical tightness of the bound

below.
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4.4 Results

We evaluate Chopt through experiments on multiple types of real-world traces that focus

on the following questions.

• Can Chopt draw the optimal placement boundary for different types of workloads?

How much improvement can Chopt demonstrate compared to other state-of-the-art

caching algorithms or placement policies?

• How do the two revisited assumptions affect data placement algorithms in memory

hierarchy scenarios?

• Does spatial sampling provide useful approximations of real workloads? How accurate

is it?

4.4.1 Traces and Workloads

We evaluate Chopt on a variety of real-world traces on different workload categories,

including memory traces, storage block traces, and content delivery network (CDN ) traces.

Throughout this section, we use original CDN traces as describe in the appendix. However,

given their sheer size, we reduce the Memory and Storage traces in two different ways. In

Section 4.4.3, we sample from the original traces to reduce runtime as described in Table 4.1.

In Section 4.4.4, however, our experimental runtime would be astronomically high even with

sampling so we choose to trim the traces before sampling.

Memory Storage CDN

Number of Traces 15 106 7

Length (×106) 40–2120 3.2–2115 10

Sampled Length (×106) ≈ 10 ≈ 1 ≈ 10

Sampling Ratio (%) 0.5–25 0.05–20 100

Running Time (hours) ≈ 36 ≈ 24 ≈ 48

Unique Items (×103) ≈ 9.4 ≈ 200 ≈ 245

Table 4.1: Basic characteristics for Memory , Storage, and CDN workload categories. Length
represents the number of requests; Sampled and Sampling ratio correspond to spatial sam-
pling; Running time represents the execution time for running Chopt to calculate offline
placement policies on sampled (Memory and Storage) and original (CDN ) workloads);
Unique items represents the number of unique requests in the workloads.
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Figure 4.4: Trace characteristics, including reuse distance—the number of unique requests
between two neighboring access of the same object, inter-reference distance—the number of
requests between two neighboring access of the same object, and object popularity through-
out the trace.

For Memory workloads, we use PARSEC [50] suite that include a variety of benchmarks

with different execution characteristics and memory access patterns. We collected all the

memory traces of 14 PARSEC benchmarks and a parallel breadth-first search algorithm

for multicore single-node systems on the Graph500 [124] benchmark at page level using

a Pin [110]-based profiler we developed. Our profiler leverages binary instrumentation to

capture all the memory operations a specified program makes. The profiler emulates the

CPU-level cache internally to filter out the cache-lines which could be cached on the CPU

caches so the resulted trace would represent the operations that only end up accessing the

main memory. For Storage workloads, we use 106 week-long disk access traces in production

storage systems [159]. For CDN workloads, we use a cache trace from a major content distri-

bution network that consists of week-long end-user requests for video-on-demand, streaming

video, downloads, and e-commerce contents. Table 4.1 shows basic characteristics of our

traces, and Figure 4.4 provides some characteristics of the workloads we used in our evalu-

ation. The characteristics include the cumulative distribution of reuse distance of accesses

throughout each trace, the inter-reference distance between accesses, and the popularity

of ith most popular item as a function of i. The trace names match those we showed in

Figure 4.5.

For Memory and Storage traces, we use variable sampling ratios to unify sampled trace
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Chopt Belady Belady-AD LRU W-TinyLFU

A1
√

×
√

×
√

A2
√

× × × ×
Online × × ×

√ √

Table 4.2: Modeling assumptions for different algorithms.

lengths, at around 10M and 1M correspondingly for the two types. For CDN traces, since

the original trace length is only around 70M , we split the trace into 7 sub-traces, each

containing about 10M requests. Traces in each workload type contain different number of

unique requests. Typically, Memory traces have far fewer unique requests than the other

two workload types, since Storage and CDN workloads usually contain behaviors like scans,

when a sequence of many low frequency requests occur, and bursts, when a small group of

high frequency requests occur.

Despite many other related works [49, 104] focusing on variable object size caching, we

only focus on memory hierarchy and assume a unit object size for each workload type. For

Memory traces, we assume each object is 4KB as the page size. For Storage traces, we

assume 64KB as the block cache size. For CDN traces, we assume 64MB since the contents

are mostly video based which indicates relatively larger object size than normal requests.

Since we apply sampling on original traces, the cache sizes shown in our results are inversely

amplified as numbers on non-sampled traces.

4.4.2 Experimental Setup

Implementation. We implemented an offline simulator for Chopt in C++, where we

apply the Bellman-Ford algorithm for solving the MCMF problem [162]. We use an Intel

Xeon CPU E5-2670 v3 2.30GHz system for simulating our experiments. The running times

for calculating optimal data placements by Chopt on our workload traces are shown in

Table 4.1.

Caching Policies. We implemented other prominent caching algorithms for comparing

data placement results with Chopt. Belady’s MIN (named as Belady in the results) pol-

icy is the authoritative offline algorithm for optimal cache placement, evicting the item that

will be used farthest in the future—if at all. Since the original Belady does not assume

A1, we modify it to allow admission control, called Belady-AD. Specifically, Belady-AD
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considers the next access for the currently requested object, but bypasses any object whose

next access is farther in the future than all other objects currently resident in the cache.

We also implemented the Least Recently Used (LRU) algorithm as the most commonly

used caching algorithm, and W-TinyLFU [67] as the state-of-the-art for a cache admission

control policy. W-TinyLFU relies on request histories for making cache replacement de-

cisions. The key idea is to maintain a freshness mechanism through lightweight counters.

Table 4.2 shows how each of these algorithms meet our assumptions A1 and A2. Since

none of those original policies consider performance asymmetry, we evaluate A2 by varying

simulation configurations as detailed below.

Memory Model and Configuration. We apply a two-tier DRAM-NVM memory

hierarchy in our experiments for evaluating Chopt’s performance. We use normalized

performance configurations based on the real measurements in Table 2.1, where DRAM

load/store latency is normalized to 1, and NVM load/store latency as either 2 and 5.

Since no comparison algorithms or policies assume A2, we evaluate Chopt on another

configuration where the normalized DRAM latency remains the same while both NVM

load/store latencies are set to 5. For each trace, we vary the cache size from tiny to large

enough to cover all unique requests in the trace instead of configuring arbitrary cache sizes

for each workload category. This allows all performance patterns to be shown in our results

while avoiding occluding unexpected results from arbitrary cache configurations.

Metrics. The key metric for our evaluation is based on access latency, since data

placement performance is more expressive than the proxy of hit ratio. We use Normalized

Average Access Latency (NAAL) to capture the average latency on placement for each

access. For apples-to-apples comparison of Chopt placement relative to other algorithms

using workloads from different categories, we use the Relative Latency Improvement (RLI )

to measure the percentage of Chopt latency performance over any other algorithm. The

NAAL of Chopt, denoted as NAAL0, and that of another algorithm, say NAAL1, is

expressed as RLI = 1− NAAL0
NAAL1

. When presenting the RLI results, we vary the cache sizes

as a ratio of unique requests to consider the diversity of different workload categories. For

the Memory category, we choose 0.1%, 0.5%, and 1% of unique requests as the cache size

for the results. In contrast, for Storage and CDN categories, we choose 1%, 2%, and 5%
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Figure 4.5: Normalized Average Access Latency (NAAL) results on three randomly chosen
workloads from each workload category. Cache size is varied from very small to large enough
to fit all unique items in the trace.

respectively. Finally, we also calculate hit ratios as a legacy comparison, as it also helps

measure wear-out of memory layers.

4.4.3 Chopt Simulation Results

Belady W-Tiny
A2 Chopt Belady

-AD
LRU

LFU√
77.78

Memory × 85.45
87.58 87.63 81.58 82.67

√
32.55

Storage × 31.42
35.39 35.42 27.11 27.15

√
65.78

CDN × 71.76
75.24 75.34 62.13 62.56

Table 4.3: Average hit ratio (%) under different A2 asymmetry assumptions, specifically
that NVM stores have respectively twice and 5× the latency of reads. Cache sizes are 1%
of unique items in each workload.

Chopt Performance. Among all workloads in the experiments, Chopt provides better

NAAL than any other algorithm at any cache size. Figure 4.5 presents several results of
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Belady Belady-AD LRU W-TinyLFU
Ns Avg % Max % Avg % Max % Avg % Max % Avg % Max %

2 8.2 63.8 6.6 47.1 14.5 70.9 12.3 47.5
Memory

5 7.2 61.5 5.5 43.7 13.7 69.0 11.3 42.9

2 44.8 74.0 22.3 71.0 53.1 80.9 17.7 49.6
Storage

5 45.0 73.9 19.2 71.2 53.0 80.9 17.9 49.1

2 25.4 66.1 17.4 47.0 33.5 75.5 13.3 55.4
CDN

5 23.1 64.6 16.2 43.7 39.9 74.4 11.1 52.6

Table 4.4: Relative Latency Improvement (RLI ) results aggregated on all workloads and
over all algorithms. Average result among all varied cache sizes. NVM load latency NVM`

is 5. Considering with and without A2 assumption through configuring NVM store latency
Ns (stands for NVMs) as 2 and 5 respectively.

NAAL on randomly chosen workloads, three from each workload category, under our normal

configuration with A2. In those examples, Chopt always provides NAAL less than 2 except

at small cache sizes, which indicates good performance with respect of latency. Figure 4.6

presents results of RLI with workload specific chosen cache sizes as discussed above, and

with the same configuration. This includes all workloads from Memory and CDN categories,

and 10 randomly chosen workloads from Storage category. Trace names shown in Figure 4.5

also represent the same trace as in Figure 4.6. Table 4.4 presents aggregated results of RLI

on all workload categories and over all other algorithms, with all varied cache sizes and under

configurations with or without A2. From the results, Chopt provides average RLI at 8.2%

over Belady on Memory workloads, and 44.8% and 25.4%, respectively, on Storage and

CDN workloads. Among all algorithms, Chopt provides RLI of 6.6%− 53.1% on average,

and even up to 74.0% over Belady on storage workloads. This exposes significant room

for further improvements on data placement policies over the memory hierarchy.

Cache Bypass. As shown in Table 4.2, Chopt, Belady-AD, and W-TinyLFU

considers A1 while Belady and LRU do not. From Figure 4.5, algorithms considering A1

often perform better. In Storage2, for example, algorithms with A1 yield NAAL between

2.5− 3.5, while others have 5− 6. Even if we define RLI for comparing improvements for

Chopt over other algorithms, RLI can also contrast these algorithms on the same workload

category, where a lower RLI by Chopt means superior latency performance. Figure 4.6

also suggests that algorithms considering A1 provide lower latency in several workloads,

especially in the Storage and CDN categories. In Table 4.4, the RLI over Belady-AD and
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W-TinyLFU are 22.3% and 17.7% for the Storage workloads, whereas the improvements

are 44.8% and 53.1% over Belady and LRU. A simpler explanation for the importance of

A1 lies in comparing the controlled results between Belady and Belady-AD, where A1

is the only variable. From Figure 4.5 and Figure 4.6, all workloads show superior NAAL

and RLI on Belady-AD over Belady. From Table 4.4, Belady-AD yields better RLI

over Belady, with minimal improvements on the Memory traces but significant savings in

the Storage and CDN categories.

Performance Asymmetry. Table 4.4 presents experimental results for different A2

assumptions, where NVMs = 5 means same NVM load/store latency as when disregarding

A2. The results show that Chopt still provides RLI over other algorithms even without

considering A2. This indicates that Chopt provides optimal data placement even without

A2, while considering performance asymmetry is necessary for accurately making data

placement decisions.

Hit Ratio and Endurance. Table 4.3 presents hit ratio results for all algorithms

in configurations that either include or exclude A2. Note that different configurations

only affect Chopt placement results. Since Chopt mainly focuses on performance related

metrics, it provides lower hit ratios than Belady and Belady-AD. However, comparing

with online algorithms LRU and W-TinyLFU, Chopt still provides higher hit ratios

across all workload categories. Though not directly correlated, higher hit ratio indicates

higher endurance on slower memory through mitigating swaps between layers. Observe that

the difference of hit ratios between Belady and Belady-AD are not significant, which

supports our idea to evaluate cost-aware metrics instead of only hit ratios when considering

the A2 assumption.

Running Time. Table 4.1 also shows the average execution time for each workload

category. Memory workloads take 36 hours on average to calculate Chopt decisions, which

is shorter than for the Storage and CDN categories. We remark that Storage workloads

have very high ratios of unique requests. Chopt is based on solving the MCMF problem,

so the execution time depends on the complexity of constructed network. The complexity

is affected by many factors. Larger trace length increases nodes of the graph, for instance,

and having more unique items increases the number of edges in the graph.
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Lessons. There are some common workload related performance patterns we exhibit in

our results. In the examples of Memory workloads, different algorithms perform differently

when cache size is small, and converge when cache size gets larger. In the Storage and CDN

workloads, many of the examples show a relatively bigger gap between algorithms. As

discussed above, this is affected by many factors like unique requests in workloads. When

there are too many unique requests, meaning that the frequency for each item is relatively

low, the optimal placement policy may decide to bypass most of these requests. However,

since the caching performance is highly workload related, workloads from the same category

may also perform differently. For example, in Figure 4.5, Storage1 and Storage2 provides

different patterns. This illustrates that determining optimal data placement is non-trivial.

NAAL reflects how placement decisions affect latency, where a small NAAL indicates

possible less unnecessary movement between memory layers. For example, when the cache

size is big enough and all objects are frequent, each request will be swapped into faster

memory layer initially and not evicted, implying that the NAAL will be close to 1. When the

cache size is relatively small, however, caching any of infrequent request may hurt the overall

latency so the optimal decision is to keep all objects in the slower memory layer, where the

NAAL is around 5. Yet a big NAAL does not imply poor caching performance. For example,

in Storage2 from Figure 4.5, NAAL for Chopt is more than 2.5. This indicates that Chopt

decides to bypass many infrequent requests. We discuss special workload behaviors in next

section.

4.4.4 Spatial Sampling Accuracy Results

Method. To thoroughly evaluate the accuracy of spatial sampling with Chopt, we generate

a total of 4, 080 sampled traces as follows. First, in each category, we either use the original

traces as is (7 CDN traces), or we trim them down (to the initial 10M and 2M requests

for 15 Memory and randomly selected 12 Storage traces (due to limited time). We then

generate 30 different sampled traces for each of a variety of sampling ratios (1%, 5%, 10%,

20%) by varying the random seed used for sampling. Finally, we run Chopt on all generated

traces with varied cache sizes and calculate the NAAL. All in all, we ran more than 20, 000

separate simulation experiments, including full Chopt without sampling, to characterize
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Sampling Ratio
Workload RLE

1% 5% 10% 20%

Avg % 0.20 0.16 0.14 0.03
Memory

Max % 0.90 0.42 0.36 0.24

Avg % 3.67 2.06 1.18 0.50
Storage

Max % 7.25 5.40 4.90 3.77

Avg % 4.08 2.17 1.62 0.93
CDN

Max % 7.95 6.22 5.74 4.74

Table 4.5: Average and maximum Relative Latency Error (RLE ) results for various sam-
pling ratios over all workload categories. Each value represents the average of multiple
experiments with different cache size configurations varied from very small to large enough
to fit all unique items in the trace.
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Figure 4.7: Absolute Latency Error (ALE ) due to spatial sampling with Chopt. We show
detailed results with a sampling ratio of 1% across selected cache sizes. For each cache size,
we plot the theoretical error bound from the spatial sampling theorem, and a box plot of
the distribution of ALE for different traces in each category.

sampling error. We also evaluate if the accuracy results approximate the theoretical bound

as shown in Corollary 4.3.1.1.

Metrics. We use Relative Latency Error (RLE ) to analyze the accuracy of sampled

traces. According to our analysis, we evaluate sampled traces with sampling ratio α and

cache size s through comparing the NAAL with the original trace at cache size of s ·
1
α . We also calculate Absolute Hit Ratio Error (AHRE ) as the difference in absolute hit

ratios from original workload. This way, we can compare our sampling accuracy with prior

results [159]that also evaluated the spatial sampling accuracy on the Storage workloads we

used in our experiments. Additionally, we use Absolute Latency Error (ALE ) for analyzing

our theoretical bounds as shown in Corollary 4.3.1.1.

Sampling Accuracy. Table 4.5 shows the result on RLE for each workload category.

The RLE on Memory workloads is only 0.2% at sampling ratio 0.01. For Storage and CDN

workloads, RLE is larger 3.67% and 4.08% respectively. Table 4.6 shows the result on hit
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ratio and AHRE for each workload category. With the same sampling ratio, the AHRE is

similar to RLE for all workload categories. We compare the AHRE with recent results [159]

that claim absolute miss ratio error of 0.01 with sampling ratio of 0.01. Note that the main

metric for Chopt is NAAL, so we have to translate the accuracy with relative errors into a

percentage. Given the variety of Storage workloads, we assume the miss ratio of workloads

as 0.2− 0.5, so absolute error at 0.01 represents relative error of 2%− 5%. In comparison,

our sampling accuracy matches prior results by Waldspurger et al. [159].

Figure 4.7 shows ALE on each workload category for the 1% sampling ratio cases. We

have already discussed how both larger sampling ratios and cache sizes contribute to better

accuracy so here we focus on the edge cases where both sampling ratio and cache size

are relatively small. Figure 4.7 demonstrates that our accuracy is close to the theoretical

bounds in Corollary 4.3.1.1.

Lessons. As the results show above, spatial sampling is more accurate on Memory

workloads than Storage and CDN traces. This is because those workloads usually have

many unique requests where spatial sampling is limited to patterns in the original trace.

We experienced in some cases that when sampled trace has a relatively small trace length

but with many unique requests, the error on RLE and ALE can be large. To make running

time feasible we apply relatively shorter original traces in our evaluation to curb running

time. Comparing with our theoretical error bounds shown in Corollary 4.3.1.1, which is

almost 0 when cache size and sampling ratio are relatively big, we still encounter some

errors. In real-world use cases, where we usually apply sampling on very long traces like

our main evaluation on Chopt showed above, unstable patterns caused by sampling can

be avoided.

Finally, as the results shown in Figure 4.7, errors can still exceed the theoretical bounds

which compute an average case. For example, when cache size is 2MB for Storage work-

loads, the theoretical expected ALE is only about 0.0001 while experimental results have

the expected ALE at around 0.005. We discuss this scenario in the next section.
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Sampling Ratio
Workload

1% 5% 10% 20%

Hit Ratio % 92.51 90.43 89.17 87.81
Memory

AHRE 0.25 0.24 0.24 0.22

Hit Ratio % 27.95 24.77 23.49 22.31
Storage

AHRE 3.83 2.43 1.35 1.18

Hit Ratio % 88.07 80.95 78.54 76.28
CDN

AHRE 4.46 1.99 1.89 1.38

Table 4.6: Hit ratio and Absolute Hit Ratio Error (AHRE ) result over all workload cate-
gories.

4.5 Discussion

We provide some discussions on potential future directions and some limitations.

Chopt Provides Optimal Placement. Chopt simultaneously addresses two fun-

damental caching questions: When should an object be cached? and Which cached object

should be evicted? Each question embeds a notion determining of whether an object will be

“hot” in the future. Chopt considers all objects and the entire time line simultaneously to

make optimal decisions, whereas practical online algorithms tend to view objects indepen-

dently and instantaneously, and have access only to the past access history. By comparison,

the offline Belady algorithm, colloquially known as MIN, also looks towards the future but

must accept all requests (no cache bypass as per A1) and ignore read/write cost asymmetry

(as per A2). The intermediate variant, Belady-AD, incorporates a cache bypass policy,

allowing Belady to reject cache requests for low utility objects that would immediately

have been evicted. Yet this mechanism is a heuristic in that it implicitly assumes that

all future requested objects will be cached. Chopt takes such considerations while also

addressing A2. The RLI results over Belady-AD indicate that these assumptions are

needed for making ideal placement decisions.

Improving Online Algorithms. The Belady-AD algorithm is clairvoyant with re-

spect to the reuse distance, a measure equaling stack distance for LRU and that is commonly

tracked by online cache eviction algorithms. The RLI results over Belady-AD and other

algorithms suggest that orthogonal factors to reuse distance, such as request frequency, may

be beneficial when evaluating eviction decisions on a range of workloads. By design, Chopt

considers all possibilities for data placement during its global optimization. The next goal
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is to produce simple heuristics that capitalize on patterns at both the local request and the

global workload level.

Request Frequency Trends. Many cache algorithms like LFU and TinyLFU use ob-

ject request frequency to determine the object locality. LFU performed significantly worse

than other algorithms on our workloads, suggesting that frequency is not a panacea and

must instead be considered dynamically. To this end, TinyLFU incorporates reuse history

through “count decayed frequencies” that span multiple past intervals. Our analysis sug-

gests that the frequency trends give an improved proxy for object locality on our workloads,

but note that parameters such as interval width (number of requests per epoch) and number

of intervals play a crucial role.

Reuse Distance Distribution. We compared the reuse distance distribution for requests

where Chopt and other algorithms make different decisions. In some workloads, particu-

larly in the Memory category, Chopt commonly rejects requests at a specific reuse distance

that other algorithms accept into the cache, either with or without considering A1. The

reuse distance profile may therefore be a crucial feature for classifying requests under our

assumptions. A special case is the first occurrence of an object which we found Chopt to

commonly ignore – a choice in line with earlier reasoning in the literature [67].

Global Patterns. Considering objects only in isolation overlooks the correlations that

are exhibited in real-world traces. Patterns, such as sequences of frequent (a burst) or

infrequent (a scan) requests for objects within an interval, are commonplace in Storage and

CDN workloads. A useful heuristic is whether the data placement policy can identify a

burst or scan globally and help with intelligent placement decisions. Optimal placement on

a scan should bypass every request in the scan (like, e.g., ARC [120]) instead of polluting the

cache with unpopular objects. Bursts within relatively large object spaces present similar

problems as scans, where the cache can be subverted by unnecessary swaps. For example, if

the cache size is s and a burst contains s+1 frequently requested objects, Chopt admits only

the most frequent s objects. Note that a near-optimal strategy is to cache any s objects only,

so long as they are all sufficiently popular. Then the performance loss is driven by accessing

one object directly from the slower layers. In contrast, other algorithms might accept all

incoming requests that exhibit high locality of reference, either without considering A1 or
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even awareness of a burst. The situation leads to suboptimal decision-making: unnecessary

swaps for some frequent objects between memory layers, which Chopt avoids.

Extending Chopt. Chopt design transforms the data placement problem into a

network flow problem, providing flexibility for more detailed questions. For example, we

implement A2 in Chopt by simply setting different weights on retention links. Other

placement problems can be solved by defining proper configurations for performance, or by

removing some links to account for hardware restrictions. For example, if we set retention

links with large weights, to imply that caching any object amounts to huge latency sav-

ings, then Chopt attempts to provide placement results with minimal bypassing. Further,

Chopt supports expanding problems to account for other metrics than latency. The main

limitation of Chopt is the sharing model, where we assume an exclusive caching model

whereby each object can only belong in one layer at a time. Although this assumption

accords with similar work [49], expanding the underlying sharing model is an interesting

future direction.

Spatial Sampling Accuracy. We evaluated the sampling accuracy, both theoretically

and empirically. Our derivations showed that spatial sampling retains self-similarity of the

original hit ratio curves with two types of error: distortion at low sampling ratios, and

uncertainty for small cache sizes.

Figure 4.7 shows cases where the empirical error exceeds the bound on expected error

from Theorem 4.3.1. We also witnessed that as sampling ratio α and cache size s increase

and the theoretical error bound e−αs/8 rapidly converges to zero, empirical errors still occur.

This phenomenon was also encountered by Waldspurger et al. [159] where they defined

“sample size” to reflect the α · s product of the sampling ratio and cache size. We believe

better bounds on the higher moments of the error distribution, or even concentration bounds

on the probability of error rather than only on the average, could shed more light on this

phenomenon.
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4.6 Related Work

Non-Volatile Memory. NVM technologies are already coming out of the labs to be

used in production, sitting between DRAM and SSD from the performance characteristics

point-of-view (latency, bandwidth, and density) [89, 12]. One of the key characteristics of

NVM is being directly accessible, which enables CPU and DMA controller to access NVM

without involving DRAM. The Linux community and Microsoft have already implemented

direct access support on file systems [152] and there has been work towards representing

NVDIMMs as volatile NUMA nodes transparently [165]. Read and write asymmetry is

another characteristic of NVMs that has been studied to mitigate endurance problems and

to improve the write performance [174, 136, 59, 184]. Philipp et al. [131] considered NVM

asymmetries through clustering rather than secondary indexes and used heap organization

of block contents to save unnecessary writes from DRAM to NVM. Sala et al. [139] proposed

to perform a single read with a dynamic threshold to adapt to time-varying channel degra-

dation for resolving NVM endurance problems caused by asymmetries. NVM is also widely

used in building general purpose storage systems [99], storing deep learning models [70],

and graph analysis [116].

Memory Hierarchy. NVM augments the memory hierarchy and may contribute vari-

ous types of memory systems, typically with DRAM serving as a filter or a faster layer in

the hierarchy for flexibility of performance trade-offs. Agarwal and Wenisch [33] presented

huge-page aware classification in DRAM-NVM hierarchy for trade-offs between memory

cost and performance overhead. Kannan et al. [96] provided guest-OS awareness during

page placement under heterogeneous memories at compile time, enabling applications to

control migrations only for performance-critical pages. Li et al. [105] estimated the benefit

of page migrations between different memory types by considering access frequency, row

buffer locality, and memory-level parallelism. Eisenman et al. [69] used NVM block devices

in a commercial key-value storage system for reducing DRAM usage and total cost with

comparable latency and QPS. Another common multi-level memory model is the exclu-

sive caching model, which removes data redundancy and save spaces within cache layers,

and problem is transferred to manage data placement and migration between layers as
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one. Wong and Wilkes [164] proposed DEMOTE techniques where data blocks can be

ejected to lower level caches and managed by a global MRU. Gill [80] analyzed the insights

into optimal offline performance of multi-level caches and provided an improved technique,

named PROMOTE, considering inner-cache bandwidths and response times which could

be problematic in DEMOTE. Some other works [180, 78] also discussed caching algorithms

in exclusive models. While those works also focus on better cache utilization, they are still

bounded with layering restrictions, whereas Chopt provides optimal placement bounds

in a global form. Besides coordinating DRAM and NVM, researchers also have investi-

gated into other memory hierarchies like using NVM for last level cache as replacement of

SRAM [98], controlling flash write amplification with DRAM [71], and intelligent placing

of packet headers near CPU to reduce tail latency in the LLC-DRAM hierarchy.

Cache Admission Control. New caching techniques have to consider cost-aware data

placements under different characteristics in the denser memory hierarchy. Specifically,

one must consider caching more costly objects but also bypassing objects of less value for

future latency costs. Mittal [123] surveyed the power of cache bypass in different hetero-

geneous systems. Admission control is a caching technique that employs cache bypassing

in practice. Einziger et al. [67, 68] proposed the state-of-the-art cache admission control

policy, TinyLFU, to filter out infrequent requests and replace cached items with old history

records, extended as Window-TinyLFU by adding an LRU filter to tame sparse bursts.

Eisenman et al. [71] implemented admission control through a Support Vector Machine to

classify objects with historical patterns. Recent papers also considered cache write-back cost

for efficiency and endurance through identifying frequent written-back blocks and keeping

them in LLC via partitioning [133, 161].

Optimal Placement Analysis. Various researchers have conducted theoretical analy-

sis of optimal offline data placement. Farach-Colton and Liberatore [73] initially proposed to

use network flow formulation for modeling local register allocation problems. Several other

authors provide theoretical approximation and heuristics for optimal placement or general

caching problems and also show that most variants of the optimal placement problem are

NP-Hard to compute. Albers et al. [34] formulated general caching problems as integer
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linear programming questions, and proposed a relaxation of optimal placement problems.

Bar-Noy et al. [41] proposed general approximation for resource allocation and scheduling

problems with local ratio technique, which can also be applied to general caching prob-

lems. Carlisle and Lloyd [54] provided an algorithm on k-coloring problem which can be

expended on weighted intervals and further solve job scheduling or register allocation prob-

lems. While these works provide insightful heuristics for contemplating caching problems,

they lack practical algorithms or policies for real-world data placement analysis [46].

Offline Optimal Placement Policies. There are many practical works on offline

optimal placement or caching analysis. Belady’s MIN [45] is known as the standard offline

optimal caching algorithm for basic cache assumptions. To the best of our knowledge,

Berger et al. [49] and Li et al. [104] are two state-of-the-art offline optimal placement

analysis results, with both papers focusing on variable object sizes caching problems. Our

network flow approach was conceived independently of prior work [49] that had used it

to model offline optimal variable-size cache eviction. Berger et al. provide a method to

calculate offline optimal bounds FOO as well as a practical approximation for such bounds

PFOO for real world storage and CDN workloads through rounding, rather than sampling

as in our approach. Li et al. [104] proposed an offline optimal caching algorithm OSL which

statistically predicts object lifetime with histories and assigns leases for cached objects.

Offline optimal placement for variable-size objects are complementary to our problem with

somewhat different assumptions. Both works also characterize the problem using weighted

intervals, where object sizes are respectively represented by weights and the dynamic of

placements depends on whether objects are cached or not. It is unclear how the approach can

be generalized to memory hierarchies where interval weights also would need to characterize

placement decisions, and a successful approach will likely require a direct integer program

formulation of the problem.

Practical Data Placement Policies. Alongside TinyLFU [67], several recent papers

have designed practical placement policies or algorithms, all of which rely on predicting fu-

ture cache behavior based on the history. Beckmann and Sanchez [43] proposed prioritizing

object eviction by their economic value added (EVA), an estimate of the expected number
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of hits for the object beyond that of an average object. The idea was then expanded for

variable sized objects [44]. Some papers leverage offline analysis of past accesses by creating

variants of Belady’s MIN algorithm. Jain and Lin [91] predicted object futures by recon-

structing Belady’s MIN solutions over a window of past accesses. Jain and Lin [92] uses a

similar idea to provide Demand-MIN for cache prefetching.

Sampling. Sampling techniques have been proven empirically to be efficient for mea-

suring cache utilities with low overhead. Many recent caching or placement works have

deployed spatial sampling [159, 97, 42, 134, 135, 158, 85] or temporal sampling [51, 163]

to improve the efficiency. Spatial sampling has been cited as a remarkably robust statistic

for constructing miss ratio curves to better reflect the common cache metrics like reuse dis-

tances, compared with temporal sampling. Our work is inspired by Waldspurger et al. [158],

and expands on the literature by providing a solid theoretical foundation under these em-

pirical results.

4.7 Takeaway

We considered the challenge of data placement between adjacent memory hierarchy layers

when we move away from the established assumptions of always needing to bring in data

to faster memory (Cache-Bypass), and that all requests are equally impacted by being

served from slower memory (Performance-Asymmetry). After generalizing the memory

model, we found that miss ratio (or hit ratio) no longer suffices as a proxy for average access

latency, and that Belady’s traditional optimal replacement policy MIN was inadequate. To

measure the extent to which new algorithms need to be designed for this problem space,

we presented a clairvoyant algorithm (Chopt) for optimal offline data placement algorithm

and proved that Chopt can correctly provide an upper bound of performance gain for any

data placement algorithm. To make Chopt feasible to run on large real-world traces, we

proved analytically that spatial sampling gives a good approximation – a result of potential

independent interest.

We ran Chopt on a variety of system workload traces, including main memory accesses

of PARSEC benchmarks, block traces from multi-tier storage systems, and web cache traces
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from a CDN, and compared it with several cache replacement and data placement policies.

Our simulation results on our offline data placement algorithms show that average latency

improvements range between 8.2%− 44.8% beyond where OPT would have marked a line

in the sand. We also evaluated spatial sampling performance empirically by running over

20, 000 simulations, showing it can approximate average latency with an average error of

only 0.2% at 1% sampling ratio on the PARSEC benchmarks, and at most 2.17% for the

sampling ratio of 5% across three classes of workloads. We conclude that Chopt can

efficiently calculate data placement decisions for diverse workloads on a two-tier DRAM-

NVM memory hierarchy, and opens up a space for improving overall system performance

and latency through new data placement algorithms that are now equipped with a critical

performance yardstick: offline Chopt.

By this chapter, we have answered the question on how to practically analyze cache

system performances through understanding the optimal cache strategies, towards better

building distributed systems.
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Chapter 5

Estimation of Cache Warmup Time

Problem. In distributed storage systems or CDNs, operators may wish to discern how

quickly after downtime or maintenance the server becomes useful again for serving content.

They may wish to reason about how long to duplicate cache traffic to a new or recently

restarted node before it can serve real clients at an acceptable hit rate. During recovery

or reconfiguration of cache nodes, they may also wish to estimate how long the back-end

storage servers must sustain additional load. In this manner, warmup time estimation

allows CDN operators to compute the required redundancy and extra capacity to maintain

a level of service in failure scenarios. In a shared memory or storage system, as another

example, dynamic cache partitioning is often used to allocate storage resources to different

processes or tenants. Here, when the partitioning controller decides to allocate more space

to a tenant, it takes a period of time until the steady-state cache performance catches up.

The controller needs to be cognizant of this delay to avoid instability whereby the partition

keeps changing based on incomplete feedback gathered before steady-state has converged.

Secret Sauce. Caching systems, including storage systems, distributed databases, and

content-delivery networks (CDN), are large and abound with configuration options that can

be opaque not only to the engineers operating these systems, but also to their designers [53,

52, 106, 154]. Two tendencies are to either ignore the complexity and set parameters from

ignorance and experience, or to treat the system as such a complex black box that it requires

another black box, such as machine learning models, to interpret the potential impact of
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changes. Between these extremes are simple and intuitive approximate models, or rules

of thumb, that are invaluable in many engineering fields to create intuitive and sufficiently

correct understanding of the system.

Solution.1. I derive a rule of thumb expression for cache warmup times, specifically how

long caches in storage systems and CDNs need to be warmed up before their performance

is deemed to be stable. We first provide a concrete definition of cache warmup time, that

is, a cache server has warmed up when its cache hit rate over time is and stays comparable

(within ε error) to that of an identical cache service that processed the same workload

but suffered no downtime. We then analyze dozens of traces across workloads collected

from diverse systems, ranging from block accesses of virtual machines in storage systems to

cache accesses of large CDN providers. We derive the following rule of thumb expression

for operators to estimate warmup time of an LRU-style cache:

warmup-time(s, ε) ∝ spse−peε,

where s represents the cache size, and ε > 0 controls how closely hit rate should match

that of a hypothetical cache server which was continuously running. Our experiments show

that the ps and pe parameters concentrate at specific values for each type of workload. Our

simulation results indicate that the formula provides an accurate expression for operators

to estimate their cache server warmup time.

5.1 Dynamic Cache Behavior

Distributed memory caches are the cornerstone of today’s content distribution networks

(CDNs) and cloud storage systems for improving web service performance. A common

architecture for a distributed cache is a collection of high-memory servers which is interposed

between client nodes (sometimes actual end-users), and a storage service that interfaces with

slower media, such as a disk-bound key-value database. When the server memory (or the

memory dedicated to the tenant on a shared cache server) is exhausted, the server makes

1This work revises the previously published paper: When is the Cache Warm? Manufacturing a Rule of
Thumb at HotCloud’20 [176]
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space by evicting older data according to a replacement policy, which in practice is normally

a variant of LRU—evict the least-recently used key-value pair [40]. A central feature of

the distributed cache design is the complete independence of servers from one another.

Independence reduces operation and implementation complexity, facilitates scalability, and

allows reasoning about each cache server in isolation.

Operational dynamics. Most research on caches assumes they operate in steady-state.

Yet understanding the cache behavior under exceptional circumstances is often crucial.

Failure recovery. First, distributed caches can comprise a vast number of servers [126],

where individual server failures are common. Accurate assessment of recovery time be-

comes increasingly important for operators to decide when servers are ready for serving

clients without imposing significant load on the storage layer or end-user perceived la-

tency. We assume that the cache memory on the server is empty (cold) after recovery

because stale cache data can produce application-level inconsistencies, even with sophisti-

cated application-specific cache invalidation pipelines [109].

Load balancing. Second, consistent hashing does not account for key popularity, so some

cache servers can become heavily loaded relative to others [87]. Manual or automatic ad-

justment of hash ranges to balance load [84] implies that some cache servers are responsible

for key-value pairs they have not encountered before, thus impacting cache hit rate.

Cache sharing. Third, large cache installations are often shared between multiple ap-

plications or tenants to improve efficiency and quality of service, either implicitly [40] or

explicitly [60]. Explicit sharing is implemented via cache space partitioning mechanisms [63]

which means cache space allocation for tenants may change over time. Operators must esti-

mate how regularly cache space can be re-partitioned, which in turn depends on how quickly

the enlarged cache space for tenants becomes useful and indicative of the tenant’s cache hit

rate performance under steady-state [61].

Cache dynamics. Operators facing these scenarios would benefit from a rule of thumb

to estimate when partially full cache memory has reached a “useful” steady-state and when

applications can use the cache without burdening the storage layer or imposing miss latency

on clients. Yet, quantifying cache warmup time is challenging due to several factors.
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Cache hit rate performance is determined by the workload. Decades of effort has been

spent on characterizing cache workloads, but historically focused on programmatic work-

loads (such as CPU caches) rather than in the context of human-driven behavior (such as

web or CDN workloads) [86, 143].

Cache workloads are not static. As mentioned earlier, considering a cache server to be

warmed up when a particular fixed hit rate threshold is reached ignores temporal popularity

dynamics [155] and diurnal variability exhibited in CDN traces [144], among others. Even

defining hit rate relative to the start of a trace embodies the same problems.

Cache performance depends crucially on the cache size. Recent attention on efficiently

computing so-called hit rate curves – hit rate as a function of cache space – has illuminated

how the relationship tends to be nuanced and volatile in real-world workloads [62, 138, 159].

Bonfire [177] uses temporal and spatial behaviors for doing proactive cache warmup, but

does not take cache size into account when defining warmup time.

5.2 Understand Cache Warmup Process

Interval hit ratio. Warmup time must capture the notion of a cache “being useful”,

which in turn is related to its hit rate. But the classical notion of “hit rate”, defined as the

number of hits received over a number of accesses in a trace, relies on requests since the

beginning of measurement being predictive of upcoming request—a degree of stability not

present when cache workloads change dynamically.

To address variability in workloads, we measure cache performance by the interval hit

ratio (IHR), defined as the ratio of cache hits in a relatively short past time window divided

by the total number of requests in that window. This focus on the recent past adapts

the metric to measure current performance with the ongoing dynamics. The IHR can be

considered over subtraces of the full cache trace. The added flexibility allows us to also

consider cache downtime, represented by a specific interval during the workload. We use

IHR(st, et, s) to denote the hit ratio computed for a short interval between start time st

and end time et at cache size s. Below, each interval spans 1/1000 of the trace length.

Our analysis shows that even within the same workload type, workloads usually behave
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Figure 5.1: Examples of Interval Hit Ratio (IHR) Curves. Each interval is 1/1000 of the
original trace length.

differently in terms of smoothness of the IHR curve. Figure 5.1 depicts the IHR curves

of four workloads, two from Storage1 workloads and the other two from CDN1. We can

see that the IHRs of CDN1-a and Storage1-a workloads remain high in most intervals,

but CDN1-b and Storage1-b workloads are generally more fluctuated, even considering the

periodic processes as a multi-day trace in the Storage1-b workload.

We note that in our analysis, we internally compute hit rate curves, or hit rate as a

function of cache size, which can be efficiently generated through spatial sampling of the

cache trace [159, 175]. Spatial sampling could be used for online computation of the warmup

time if needed.

Cache warmup time. We are now ready to define cache “warmup” time using the

interval hit ratio. At a high-level, we declare a particular moment in the trace as when the

server comes up (with an empty cache) after downtime. We then compare the IHR of that

server (a downcache) to that of a server that did not go down at all (an upcache) while

processing the exact same workload. When the IHRs of these two caches are sufficiently
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Figure 5.2: Cache warmup process, showing convergence of IHRs. Cache size is set to
25% of total unique items for better showing the convergence. Horizontal axis represents
virtual time of the trace as a sequence of accesses. The relative start time (st) of a curve,
say 0.25 means that it begins at 25% of the entire trace.

close, they have converged (as shown in Figure 5.2). This two-cache comparison overcomes

the dynamical issues from above: a cache is consider warmed up if it behaves practically

like one that did not go down.

Formally, we measure the difference in performance of a downcache that resumed oper-

ations at time st and an upcache by measuring the difference |IHR(st, t, s)− IHR(0, t, s)|

at time t. To capture the IHR of the upcache and downcache staying close, we define a tol-

erance parameter ε to express the maximum percentage difference we accept after warmup.

Definition 7. For cache size s and tolerance level ε > 0, a downcache that recovers at time

st is considered warmed up at time t if for any end time et > t, we have

|IHR(0, et, s)− IHR(st, et, s)| < ε.

Cache warmup time therefore depends on static factors, including cache size and toler-

ance levels, and dynamic factors dependent on the trace-based characteristics.

Comparing cache warmup to fill up times. The definition further highlights that



95

 0%

20%

40%

60%

80%

100%

0 0.25 0.5 0.75 1

 0%

20%

40%

60%

80%

100%

Virtual Time

Storage1-d

w, st=0.25
w, st=0.5 

w, st=0.75

f, st=0   
f, st=0.25
f, st=0.5 

f, st=0.75

C
o
n
v
e
rg

e
n
ce

 w
it

h
O

ri
g

in
a
l 
S

ta
te

C
a
ch

e
 F

ill
 U

p
 P

ro
ce

ss

Warmup vs. Fillup

Figure 5.3: Caches warm up faster than they fill up. Comparing warm up and fill
up with horizontal axis and four st as per Figure 5.2. The f and w curves respectively
represent fill up and warm up. The left vertical axis shows the convergence between each
downcache and the upcache; the right vertical axis shows the rate of cache capacity filled
by the newly started cache.

downcache need not necessarily be filled for the cache to be considered warmed up: the rate

of requests to items to which only the upcache was privy may simply be sufficiently limited

that the downcache already contains the current working set and can be considered warm.

An example is shown in Figure 5.3. Here we define cache is filled up when the cache capacity

is fully occupied after a restart, whereas warmed up refers to the definition with ε = 1%.

Across all our traces, the cache warms up faster than it fills up, with on average 39.1% and

36.8% for CDN1 and CDN2 workloads, and 16.6% and 23.8% for Storage1 and Storage2

workloads. These results underscore the opportunity for reconsidering cache warmup times

in practice.
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Figure 5.4: Approximation accuracy, evaluated with R2 cumulative distribution for pe,
ps, combined pe + ps, and pr. We consider 80% as R2 threshold of a significance (grey
dotted vertical line). Results span all workloads except CDN2 which comprises only one
trace.

5.3 Towards a Rule-of-Thumb Cache Warmup Time Estima-

tion

We analyze cache warmup time on several workloads to derive a useful estimation formula.

Specifically, we look for a rule of thumb that embodies the following attributes.

• Simplicity. Contain only a small number of parameters and as few as possible to

capture the dependencies while being intuitive and practical to compute.

• Accuracy. Closely approximate warmup time.

• Generality. Yield insightful warmup time estimates for other, similar workloads.

Step 1: Relaxing Dynamic Factors. Our problem space is still large and unwieldy

for operators to navigate in practice. Rather than capturing the full range of the workload’s
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dynamic characteristics, captured by the start time st parameter, we simplify the definition

to compute the maximum warmup time over all possible start times.

Definition 8. Given cache size s and tolerance degree ε, the warmup time of a cache

server, warmup-time(s, ε), is the smallest t such that for every start time st and any et > t,

|IHR(0, et, s)− IHR(st, et, s)| < ε.

The above definition is the expression for which we will derive a rule of thumb. Simpli-

fying is critical to minimize the number of parameters and create a practical formula.

Step 2: Approximating Static Factors. Armed with a compact definition, we can

now analyze how cache size and tolerance degree affect cache warmup time on our traces. In

search for a simple representation, we apply log-linear regression to model the relationship

between warmup time, the cache size and the tolerance degree.

We observed that the cache warmup time has a piece-wise linear relationship to size until

it reaches a plateau at larger sizes. There, the cache takes longer to warm up, but only until

the working set of the trace is captured. The relationship between cache warmup time and

tolerance is approximately log-linear; plotting warm-up time on a log-scale vs. tolerance on

a linear scale produced a straight line. Larger tolerance degrees produce shorter warmup

times as expected.

These observations suggest the following relationship, where C, pe, and ps are free pa-

rameters:

warmup-time(s, ε) = C · e−peε · sps . (5.1)

5.4 Results

We now consider our proposed rule of thumb and how it measures up against our desired

attributes.

• Simplicity. The equation above says it all: there are only three free variables and

one term.



98

Traces with parameter value in range
Param Value

CDN1 CDN2 Storage1 Storage2

ps 0-2 58.1% 100% 49% 84.2%

pe 0.5-1.5 64.5% 100% 64.3% 78.9%

pr 1-1.5 84% 100% 78.3% 66.7%

Table 5.1: Proportion of traces whose cache warmup times passed 80% goodness-of-fit-tests
within value range for cache size parameter ps, tolerance degree parameter pe, and resize
parameter pr.

• Accuracy. To determine accuracy of the model fit we use a standard R2 likelihood

test. The R2 distribution is shown in Figure 5.4. We consider 80% as R2-threshold of

a significance fit, so passing the test means the formula is accurate for use. As shown

in the result, most of our CDN traces passed the R2 likelihood test, together with a

branch of storage traces. The accuracy is higher when considering both parameters

together.

• Generality. Because C is a normalization parameter driven by time resolution, we

investigate the ranges of parameters pe and ps as shown in Table 5.1. Note that here

we only consider the traces that passed the test. These results meet our generality

goal for the proposed method.

Traces. To derive and evaluate our rule of thumb formula, we analyze a variety of CDN

and storage workloads. CDN1 includes 31 HTTP request traces from Akamai, within a sin-

gle geographic region, comprised of 34 servers located in 23 logical data centers. The work-

load is a mixture of traffic across a wide variety of different content types, including stream-

ing media, file downloads, and typical web content such as HTML, images, JavaScript, and

CSS. CDN2 are traces from the Wikipedia CDN servers [150]. Storage1 comprises 106 week-

long hypervisor-observed disk access traces in production storage systems [159]. Storage2

consists of 32 file system traces released by MSR Cambridge [125].

Implementation. We implement the warmup analysis tool on top of Mimircache [169],

an open source Python cache profiler that helps to calculate IHRs of traces, making the

simulation process lightweight. We use an Intel Xeon CPU E5-2670 v3 2.30GHz system for

our experiments.
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Applying the rule. A recent set of papers focused on offline optimal analysis of caches

have shown that workload characteristics and object features are helpful for quantifying

cache behaviors and further improving cache algorithms [175, 47, 71]. In line with those

ideas, the warmup time of a workload can be estimated in a two-step process. First,

we calculate the warmup times through an offline simulator on workloads, or a sampled

workloads for efficiency. This step could be implemented through a simple API like:

offline-results = SIMULATE(workload,params)

Here the parameters s and ε are varied in a wide range. We then apply regression over the

offline results to optimize a simple model to express warmup time over these parameters,

for instance using the following API:

warmup-time = ANALYZE(offline-results, params)

A key problem is how to make this process efficient. We have shown that cache warmup

time can be successfully estimated with a lightweight method, and that simple regression

can provide sufficiently accurate results. With a rule of thumb formula, operators and

designers can estimate warmup time with only a few parameters. We note that warmup

time is calculated for each workload and reflects the internal characteristics and behavior

of that workload, so a system operator may only need to follow this process if the workload

behavior changes drastically. Also, we found that workloads that share similar behaviors

also yield similar parameters for their rule of thumb formulas. For instance, two CDN

workloads for the same service are likely to share the rule of thumb parameters.

Extension: Enlarging a Cache We have assumed thus far that a downcache starts

off empty, which is reasonable in cases where a failure occurred since items may be stale,

expired or awaiting invalidation. When a cache is resized, however, such as during cache

partitioning, tenants retain existing content in the cache after it is enlarged. How would

growing the capacity of a cache that already contains useful data affect the warmup time?

To define warmup time in the context of cache enlargement, we want to compare a
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“downcache” (to be resized) with the state of the “upcache” (fully resized). We augment

the interval hit ratio definition to IHR(st, et, s, rt,m), where rt expresses the time when

the cache is to be resized, and m ≥ 1 expresses a multiple of its current cache size s.

Chronologically over a request stream, a cache of size s begins at time st, its capacity is

grown at time rt to a new size m · s and ends at time et. Now:

Definition 9. Given cache size s, size multiple m, and tolerance degree ε, assume a cache

server is initially run at size s and then resized at time rt to m · s. The resized cache server

is consider to be warmed up at time t if for every resize time rt and all et > t,

|IHR(0, et,m · s)− IHR(0, et, s, rt,m)| < ε.

Here, the warmup time is driven primarily by the starting size, multiple, and tolerance

level. Focusing on the first two parameters that relate directly to the cache size change, we

fix tolerance level to 1% in the following experiments.

A primary difference between the recovery and resizing cases is that a cache that went

down will be fully able to serve content after collecting all s items, whereas (m − 1) · s

items are missing in the resized cache. We therefore consider whether there is a log-linear

relationship between warm-up-time in the resized context and (m−1) ·s, and use the above

methodology to obtain (for C, pr as free parameters):

resized-warmup-time(s) = C · ((m− 1) · s)pr

Our experiments considered m ∈ {2, 3, 4} and varied s. The R2 distribution (Figure 5.4)

shows that most traces passed the R2 likelihood tests using spatial sampling rate of 1% per

trace. Our results also show that the pr exponent parameter still concentrates differently

for each workload catalog (Table 5.1).

5.5 Discussion

There are some choices that we made towards simplifying the warmup estimation process,

which could be further improved. When computing interval hit ratios, for example, a prac-
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tical question is how to choose the sliding window size. A large window size definitely

downgrades the accuracy of reflecting dynamic workloads, while a small window size adds

much overhead to the offline computation. This is a trade-off between accuracy and ef-

ficiency. In our practice, the estimation results with real workloads are not affected with

varied window size, thus we arbitrarily choose a fixed window size across all our experiments.

Understanding warmup time in cache servers is a practical operation challenge in quality

of service sensitive production systems. In our working scenarios, we always assume the

cache spaces, either restarted or newly allocated, are empty. Cache servers are actually

stateful with contents, so even with a restarted cache server, it may still contain some cache

content that was loaded before. Another complex scenario is if the cache size is decreased,

where the remaining cache slots are not new, but hard to evaluate which contents are left.

We realize that it’s challenging to estimate the remaining cache states, which should relate

to some hardware researches. However, assuming an empty cache could only maximize the

potential warmup time thus won’t hurt the estimation for critical operation decisions.

5.6 Related Work

Warmup is an important component of the systems or frameworks of several recent systems,

yet many papers either define a warmup period arbitrarily, discard the first portion of a

workload [132, 150, 160], or apply a warmup mechanism without quantifying or evaluating

such methods [145, 153, 166, 168]. Zhang et al. [177] provided a cache warmup mechanism

based on cache recency and is closest to our work. Their method does not consider workload

dynamics. To the best of our knowledge, our work is the first to provide a practical method

for estimating cache warmup time, and derive a simple expression for engineers and scientists

to use.

5.7 Takeaway

There are many scenarios where operators of large distributed caches must implicitly or

explicitly reason about warmup time of a cache server. Here, we derive a novel rule of thumb

equation based on empirical results on a variety of real-world traces that demonstrates
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a power-law relationship between warmup time and cache size, coupled with an inverse

exponential discount based on the desired tolerance level.

We build an offline simulator to fit free parameters of the formulas, which is shown to

be concentrated within each workload category, to provide a useful expression for back-of-

the-envelope calculations for the expected warmup time of cache servers without unduly

impacting end-user clients or storage servers with miss penalties.

By this chapter, we have provided a practical example on how offline optimal analysis

can serve towards better building distributed systems.
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Chapter 6

Conclusion

System design
& building

Measurement
& diagnosis
tools

• Hindsight

Theoretical
analysis &

data analysis
• CHOPT
• Warmup Performance

trace

Heuristics,
design patterns,
operation decisions

Figure 6.1: Thesis conclusion: developing distributed systems.

This thesis argues the importance of measuring and analyzing performance problems in

distributed systems towards better building systems with high performance. Furthermore,

the thesis introduces practical methods that I developed towards the problem. Figure 6.1

concludes the major works introduced in this thesis and their relationships.

For measurement methods, I developed Hindsight as a lightweight tracing tool for col-

lecting edge-case performance problems in distributed systems. For analysis methods, I

developed CHOPT as an optimal placement policy for analyzing optimal performance pat-

terns in modern memory hierarchy. I also introduced practical solutions to solve real-world

cache warmup problems through offline analysis.
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As also discussed in chapter 1, this thesis serves as filling in some missing parts towards

practically understanding distributed system performance problems. Developing measure-

ment and diagnosis tools effectively provides performance traces, which are necessary for

any future analysis. Applying theoretical analysis and data analysis, though they are usu-

ally offline based, can provide heuristics for system design and operations. Especially in

performance critical systems like memory and cache systems, those are already proved useful

towards online system design.

Both my thesis goal and my individual research works discussed in this thesis propose

the idea to apply theoretical analysis to system design and building. I believe this is trending

towards today’s distributed systems development. Compared with a decade before, building

a large-scale system to provide specific functions is not as challenging as it was. Research

and industry focuses have switched to either providing better performance or improving

the system development process. Such improvement could be through automating some

critical processes like testing and debugging by building practical tools. Besides, as the

demand for performance keeps growing, new systems are by default required to operate

speedy online feedback. In those scenarios, theoretical methods turn out to be helpful by

simplifying some processes with concluded models. Also as discussed in many sections,

theoretical analysis can also dig into the performance and find out indiscoverable problems,

like some complex problem patterns. Overall, as system developments are becoming more

intelligent, theoretical analysis and data analysis should play more important role in the

near future.

6.1 Future Directions

Improving performance problems in distributed systems is a significant problem and still

requires a lot of effort. This thesis aims at not only providing practical solutions to fill in

some missing slots for the state-of-the-art solutions, but also opening some future directions

towards the long term goal.

Tracing with broader provenance towards root cause analysis. With tracing

systems like Hindsight, system developers can efficiently capture request traces across to
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figure out what happened to problematic requests. However, root cause evidence could exist

out of the scope of captured requests, like poor queuing or scheduling mechanisms. Most

traditional tracing methods, that rely on request sampling, are even limited to zoom in

on these information because the probability of having all queued requests in the samples

is almost 0. Hindsight provides the ability to overcome this limitation, and the major

challenge comes to efficiently capture more information. A meaningful direction is to look

at this problem as an extension of Hindsight work. To solve it, tracing systems should not

only look at the application level but deeper to the host system/kernel level, which might be

supported by low level tracing tools like eBPF or Intel Processor Tracing(IPT). Then with

the additional data load, tracing should dynamically collect useful but enough information

and analyze potential provenances in runtime. If successful, this method can provide a very

broad scope of system performance problems which is fundamentally helpful for root cause

analysis.

Performance aware caching system. Cache algorithms and strategies are usually

designed to theoretically optimize the cache hit ratio, which ignores the real cost effective

to the whole system in practice. This would raise the risk especially in complex cache

systems, which typically have multiple layers and shared memory spaces, that cache may

not perform as designed and expected. It’s meaningful to bridge the gap between theory

and practice by building performance aware cache systems. Such a cache system should

provide intelligent runtime cache decisions with the knowledge of real time cache states and

the exact performance impact of a potential cache operation. Another key challenge is,

since cache itself is designed for high performance, such a method must also be efficient.

This could be potentially supported with my tracing experience which also tackles down

data collection and processing problems at low level. If successful, this proposed direction

can provide a fundamental improvement on practical cache systems.

Resource disaggregation. Distributed caching systems are based on sharding, which

leads to hotspots for highly skewed workloads. Disaggregation can make under-utilized

resources available to a hot-spot machine. It’s shown by literature that CPU and memory

utilization are commonly reported as lower than 50%. Another example is multi-tenant
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shared memory, where dynamically adjusting reserved memory space for tenants can help

improve overall performance. This requires a two-fold solution. First, we need to practically

monitor performances in real time. I propose to build tracing systems to solve this. Second,

we need to build analysis tools to make disaggregation decisions. Many recent works have

also shown the power to apply machine learning techniques to this problem, where ML

could serve as practical estimators or simplifying some time consuming processes.
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[65] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Communications of the

ACM, 56(2):74–80, 2013.

[66] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,

Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al. The design

and operation of CloudLab. In 2019 USENIX Annual Technical Conference (USENIX

ATC’19), pages 1–14, 2019.

[67] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU: A highly efficient cache

admission policy. ACM Transactions on Storage (ToS), 13(4):35, 2017.

[68] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben Manes. Adaptive software cache

management. In 19th International Middleware Conference (MIDDLEWARE 18),

pages 94–106. ACM, 2018.

[69] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong,

Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. Reducing DRAM

footprint with NVM in Facebook. In 13th EuroSys Conference, page 42. ACM, 2018.

[70] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey

Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. Bandana: Using non-

volatile memory for storing deep learning models. arXiv preprint arXiv:1811.05922,

2018.

[71] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman,

Mohammad Alizadeh, and Sachin Katti. Flashield: a hybrid key-value cache that

controls flash write amplification. In NSDI, pages 65–78, 2019.
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Daniel A Jiménez. Wade: Writeback-aware dynamic cache management for nvm-based

main memory system. ACM Transactions on Architecture and Code Optimization

(TACO), 10(4):51, 2013.

[162] Kevin D Wayne. A polynomial combinatorial algorithm for generalized minimum cost

flow. Mathematics of Operations Research, 27(3):445–459, 2002.

[163] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, and Andrew

Warfield. Characterizing storage workloads with counter stacks. In 11th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 14), pages 335–

349, 2014.



126

[164] Theodore M Wong and John Wilkes. My cache or yours?: Making storage more

exclusive. In USENIX Annual Technical Conference, General Track, pages 161–175,

2002.

[165] Fengguang Wu. PMEM NUMA node and hotness accounting/migration. In Linux

Kernel Mailing List Archive, 2018. https://lkml.org/lkml/2018/12/26/138, Last

accessed on 08-08-2019.

[166] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, Zili Shao,

and Song Jiang. Nvmcached: An nvm-based key-value cache. In Proceedings of the

7th ACM SIGOPS Asia-Pacific Workshop on Systems (ApSys 16), pages 1–7, 2016.

[167] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. Zeno: diagnosing performance

problems with temporal provenance. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI’19), pages 395–420, 2019.

[168] Ji Xue, Feng Yan, Alma Riska, and Evgenia Smirni. Storage workload isolation via tier

warming: How models can help. In Proeedings of the 11th International Conference

on Autonomic Computing (ICAC 14), pages 1–11, 2014.

[169] Juncheng Yang. Mimircache. http://mimircache.info/, May 2018. (Accessed May

11, 2020).

[170] Stephen Yang, Seo Jin Park, and John Ousterhout. NanoLog: a nanosecond scale

logging system. In 2018 USENIX Annual Technical Conference (ATC’18), pages

335–350, 2018.
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