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Abstract

Robust Crowdsourcing and Federated Learning under Poisoning Attacks
By Farnaz Tahmasebian

Crowd-based computing can be described in a way that distributes tasks
among multiple individuals or organizations to interact with their intel-
ligent or computing devices. Two of the exciting classes of crowd-based
computing are crowdsourcing and federated learning, where the first one is
crowd-based data collection, and the second one is crowd-based model learn-
ing. Crowdsourcing is a paradigm that provides a cost-effective solution for
obtaining services or data from a large group of users. It has been increas-
ingly used in modern society for data collection in various domains such as
image annotation or real-time traffic reports. Although crowdsourcing is a
cost-effective solution, it is an easy target to take advantage of by assem-
bling great numbers of users to artificially boost support for organizations,
products, or even opinions. Therefore, deciding to use the best aggregation
method that tackles attacks in such applications is one of the main challenges
in developing an effective crowdsourcing system. Moreover, the original ag-
gregation algorithm in federated learning is susceptible to data poisoning
attacks. Also, the dynamic behavior of this framework in terms of choosing
clients randomly in each iteration poses further challenges for implementing
the robust aggregating method in federated learning. In this dissertation, we
devise strategies that improve the system’s robustness under data poisoning
attacks when workers intentionally or strategically misbehave.
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Chapter 1

Introduction

1.1 Motivation

Crowd-based computing can be described in a way that distributes tasks among

multiple individuals or organizations to interact with their intelligent or computing

devices. Two of the exciting classes of crowd-based computing are crowdsourcing [6,

19, 43, 44] and federated learning [47, 63] where the first one is crowd-based data

collection and the second one is crowd-based model learning.

The nature of crowd-based computing associate with uncertainty about the quality

of data provided by individuals or organizations. In this thesis, we devise strategies

that improve the system’s robustness under data poisoning attacks when workers

intentionally or strategically misbehave.

1.1.1 Crowd-based data collection: Crowdsourcing

A large amount of labeled data are crucial for machine learning, retrieval, and search.

Ideally, ground truth labels are collected from experts, but such sources are often

too slow or costly; therefore, crowdsourcing is used as a data annotation method.

Crowdsourcing is a crowd-based data collection in which organizations or individuals

obtain data or service from a large or relatively open group of users, or crowd. It

has been increasingly used in modern society for data collection in various domains
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Figure 1.1: Framework of a Crowdsourcing System

such as image annotation or real-time traffic reports. Amazon Mechanical Turk

(MTurk) [11, 37] is one of the most pervasive crowdsourcing marketplaces, in which

requesters design their tasks and publish those tasks to the MTurk platform. Those

tasks are requiring human intelligence, such as labeling objects in an image or flagging

inappropriate content.

Another example is Waze [87], navigation and traffic sharing application. Users

can report the traffic status at various locations using the app, which is then ag-

gregated to update the traffic condition shown on the map. Figure 1.1 establishes

a general framework of crowd-based computing; the essential entities of this system

are identified as follows.

1. Server is the entity that collect tasks from requesters to infer the correct an-

swer/label for each tasks.
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2. Workers or Clients are entities that perform tasks and submit the results to

the platform.

3. Tasks are entities that need contextual knowledge and the cognitive ability of

the crowd (workers).

4. Aggregator is an entity that collects workers’ answers and infers the truth of

each task.

5. Task Assignment is an entity that assigns tasks to workers.

Truth Inference in Crowdsourcing

A vital component of these crowdsourcing applications is truth inference which aims

to derive the answers for the tasks by considering all collected answers from workers,

e.g., the objects in the image, or real traffic condition of the road, by aggregating

the user-contributed data. Truth inference [20,43,56,74] is a challenging task due to

the open nature of the crowd. First, the number of available ratings for each task

varies significantly among tasks, and thus, missing ratings become a hurdle. Second,

the reliability of the workers can vary. For example, in the Waze application, it is

quite common for some users not to care to report at all or to report the traffic

condition carelessly. Therefore, estimating the level of trust one has in workers’

responses and ultimately inferring the truth value for the tasks by aggregating their

responses becomes complicated. Finally, the crowdsourcing applications may be

subject to data poisoning attacks [40,48,80] where malicious users may intentionally

and strategically manipulate reports to mislead the system to infer the wrong truth

for all or a targeted set of tasks. In the Waze example, attackers might want to take

the road with the least traffic themselves by deceiving the Waze application into

wrongly indicating heavy traffic on that specific road. This misleading in the system

can be often achieved via Sybil attacks [16, 22, 95, 101] where an attacker creates a

large number of Sybil workers to report wrong answers strategically. Studies have

shown [3,60] these attacks are beneficial towards the organization or individuals that
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hire Sybil workers. For example, increasing one-star rating by Sybil workers on Yelp

increases the revenue up to 9%.

The simplest method for truth inference is majority voting, where the truth of the

task will be the one chosen by the majority of the workers assigned to the task. Since

workers’ reliability is not considered, majority voting may yield inaccurate results in

the presence of unreliable or malicious workers. Considerable research has been done

on improving the accuracy of truth inference methods, including optimization-based

methods [39,53], probabilistic graphical model based methods [19,44,70,85,107], and

neural network based methods [29,34,98]. Zheng et al. [107] evaluated truth inference

methods under “normal” settings where workers may have varying reliability but do

not intentionally or strategically manipulate the answers. These methods construct

models that explicitly or implicitly consider workers’ credibility, which create some

form of defense against unreliable or malicious workers.

We identify two main challenges in truth inference approaches in crowdsourcing.

These challenges are 1) an accurate assessment of the robustness of truth inference

techniques requires modeling of realistic threat models and understanding the robust-

ness of existing truth inference methods, and 2) enhancing the robustness of existing

truth inference methods under such adversarial attacks.

1.1.2 Crowd-based model learning: Federated Learning

In the conventional machine learning techniques, the data points are collected, and

the training process is performed on a server. These traditional learning can be

considered as a centralized system where all procedure is performed on the server.

However, in federated learning, clients do not have to share their data. Instead, the

data points are partitioned across the devices of selected clients. Clients can have

varying numbers of data points. In the federated learning system, responsibilities

are divided among a server and the clients in a way that a federation of clients takes

over a significant amount of work. However, there is still one central entity, a server,

coordinating everything.
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Most of the learning models require access to a large amount of data and various

distribution to build a meaningful and sensible model. In reality, organizations have

some concerns regarding sharing their valuable datasets with another third party, one

of these concerns that get more attention these days is data privacy. For example,

hospitals would not share their patient data to train a model in a centralized manner.

Still, they can utilize crowd-based computing and collaborate to train a global model

leveraging each institution’s electronic health records (EHR) without compromising

patient privacy through federated learning settings. Federated learning is a crowd-

based model learning that enables a global model trained in a decentralized manner

while protecting clients’ data privacy. In federated learning, clients have the same

model as the global server, train the model on their data locally, and upload their

updates to the server. The server aggregate these updates to find the final models’

parameters [62–64].
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Google was the first company that implements federated learning on a large scale

to improve the quality of google keyword suggestions by training a global model.

Another example is leveraging federated learning in a production level setting to

enhance the Firefox search results without collecting the users’ actual data [93].

The essential entities of the federated learning are identified as follows.

1. Server is the entity that chooses the clients from a pool of clients and iteratively

aggregates clients’ provided parameters.

2. Clients Assignment is an entity that assigns tasks to clients.

3. Aggregation is an entity that collects client’s results and aggregate them.

4. Workers or Clients are entities that hold the local dataset and training model

on their local data and submit the results to the platform.

5. Tasks/Parameters are entities that define a general machine learning model.

Figure 2.1 shows a general framework of federated learning and offers a graphical

representation of the process. The server selects K clients from the pool. They

receive the current model and compute updates using their data. Training happens

on several devices. Subsequently, the new models are pushed to the central server and

averaged to get the new model. Then, the global server pushed the latest model to all

selected client’s devices, and the process starts again. While requesting updates from

all users would lead to more stable model improvements, it would also be costly. Only

querying a subset of them makes it more feasible to run many iterations efficiently.

This training process is repeated until the model parameters converge, as determined

by an appropriate criterion.

One of the key important components in a federated learning system is the ag-

gregation algorithm. The known aggregation algorithm in federated learning is Fe-

dAvg [63] that takes the average of locally updated models. However, this traditional

aggregation method is vulnerable to data poisoning attacks and byzantine clients,
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and just a few clients can compromise the entire performance of the shared model.

Considerable research has been proposed different byzantine-robust aggregation al-

gorithm [8, 32, 72, 96]. Some of these byzantine-robust aggregators are successfully

defending against some data poisoning attacks in federated learning.

The critical question that remains unanswered is how robust these crowd-based

computing models under data poisoning attacks. In crowdsourcing, malicious work-

ers may disguise themselves as ordinary workers by providing reliable answers for

specific tasks such that they escape the worker reliability model while providing

the wrong answer for other targeted tasks. Thus, it is essential to understand the

various types of data poisoning attacks and evaluate how the aggregation methods

behave under such attacks to ultimately build a robust framework complementary to

other Sybil detection methods. Moreover, a crucial challenge in federated learning is

that the small number of malicious clients could hurt the global model performance.

Therefore, it is vital to avoid aggregating malicious updates into the global model

parameters. Thus, estimating the reliability of the client’s updates at each iteration

could help to reach a solution against a poisoning attack. One potential approach

to estimate clients’ reliability is taking advantage of the truth inference approaches,

which have been extensively studied in crowdsourcing. Therefore, it is important

to assess the various architecture to adopt federated learning under truth inference

methods. This work explores deploying a robust federated learning model under

adversarial attack.

1.2 Research Contributions

In this dissertation, we propose truth inference approaches for the robustness of

crowd-based computing under data poisoning attacks with the motivation mentioned

earlier. These approaches provide a robust aggregation framework for a system under

the adversarial environment. In Chapter 3, we explore the effect of data poisoning

attacks on crowdsourcing problems. We propose a comprehensive data poisoning
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attack taxonomy for truth inference in crowdsourcing and systematically evaluate the

state-of-the-art truth inference methods under various attack models. This research

is accepted at the DBSec conference. Chapter 4 extends our work by presenting two

enhanced truth inference methods to address the robustness issues in crowdsourcing

systems under attack published at the SMDS conference. In Chapter 5, we extend

our approach to build the robust aggregation method in a federated learning system

that deals with a dynamic environment and more susceptible to data poising attacks.

In a federated learning system, the general machine learning model is trained through

multiple rounds of collaboration between a server and clients. Therefore applying

a simple truth inference method is not suitable for federated learning. Since each

iteration, the server could select different clients to participate in the training process.

Also, in each round, each client’s behavior could change and affect the performance

of the model. The rest of this section highlights the details of our contributions.

1.2.1 Evaluation of Truth Inference Methods under Data

Poisoning Attack (Chapter 3)

This chapter proposes an extensive experimental evaluation for existing truth infer-

ence methods under an adversarial environment. Many truth inference approaches

are proposed in the literature for various tasks and workers models. However, it is

still challenging to adopt the most suitable one for the system under a data poisoning

attack.

Existing truth inference approaches consider the low-quality workers who are not

experts and might randomly answer the tasks. The performance of current inference

methods under malicious workers who professionally provide fraudulent answers to

the system has not been comprehensively studied yet. Thus, the lack of an extensive

evaluation to show each method’s strengths and limitations in various attack strate-

gies is felt; therefore, building a framework to evaluate and compare these methods

remains a challenge. We summarize our contributions below.
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• We present a comprehensive data poisoning attack taxonomy in crowdsourc-

ing. We analyze the attacks along different dimensions, including attack goal

(targeted vs. untargeted), adversarial knowledge (black-box vs. white-box),

and attack strategy (heuristic vs. optimization-based).

• We design heuristic and optimization-based attacks that can be used against

various truth inference methods as part of our evaluation methodology. The

heuristic-based attacks assume black-box or no adversarial knowledge and model

the worker behavior using a confusion matrix [19] and an additional disguise

parameter to hide their malicious behavior. The optimization-based attacks

assume white-box or full adversarial knowledge, including the truth inference

methods being used and other workers’ answers, and are adapted from existing

optimization-based attacks [65] while making them more generic so they are

applicable to broader types of truth inference methods.

• We propose several metrics to evaluate the robustness or susceptibility of the

methods against data poisoning attacks. We experiment on synthetic and real-

world datasets and analyze the results over various parameters, including the

percentage of malicious workers, different attack parameters, and the sparsity

of the crowdsourcing dataset.

1.2.2 Enhanced Truth Inference Method under Data Poi-

soning Attack (Chapter 4)

Crowdsourcing is widely studied in the literature and is employed in many businesses

due to its efficiency, simplicity of use, and effectiveness. One important element of the

crowdsourcing system derives truth from the answer provided by workers called truth

inference. The goal of this chapter is to tackles the poor performance of crowdsourced

data against data poisoning attacks. Given the increasing demand in crowdsourcing,

reaching high-quality labeling is becoming essential. In an adversarial environment,
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a certain percentage of attackers may behave maliciously and strategically in order

to flip the true label of tasks.

This chapter investigates a solution that brings robustness in terms of the perfor-

mance of truth inference methods in the crowdsourcing system. First, we present

a solution based on identifying sensitive tasks that has a higher chance of manip-

ulation by adversaries. Then, it is shown that incorporating this information can

preserve the robustness of the system in the presence of data poisoning attacks. We

summarize our contributions below.

• We present a data augmentation method (EdgeInfer) focused on boundary

tasks that can be used to enhance the robustness of existing truth inference

methods against potential data poisoning attacks. The intuition behind this

is that boundary tasks are more likely to be targeted by malicious workers

to achieve a successful attack due to the weak agreement among contributing

workers. This method can be used as a preprocessing step to enhance existing

truth inference algorithms.

• As shown in the experimental survey [82] the state-of-the-art methods based on

neural networks and PGM perform better and generally more robust. There-

fore, we propose Edge-NN and Edge-PGM that are based on neural networks

and PGM models and utilizing prior information to enhance these methods.

Edge-NN offers an enhanced neural network-based inference method by replac-

ing raw data distribution based prior with a stronger prior inferred from a

probabilistic graphical model (PGM). By incorporating the prior, the method

takes advantage of two sources of knowledge from two distinctive and comple-

mentary models, which promises a boosted performance in terms of accuracy

and robustness. In Edge-PGM, we propose an enhanced truth inference method

based on PGM by taking advantage of boundary tasks and curating a better

prior for it. This PGM inference method incorporates the difficulty level of

tasks into their model. However, the estimated difficulty level of tasks is not

quite certain. Therefore, utilizing a more substantial prior of the difficulty level
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of tasks can enhance the truth inference method.

• We conduct experiments using three real datasets under different data poison-

ing attacks in crowdsourcing. The results verify that the proposed approach

outperforms state-of-the-art truth inference methods under a variety of attack

scenarios.

1.2.3 Robust Federated Learning under Data Poisoning At-

tack (Chapter 5)

This chapter extends the usage of the truth inference method for federated learning

systems with a dynamic environment with randomly choosing the workers/clients

from a pool and more vulnerable to adversary environment. Our goal is to mitigate

the effect of adversary clients on the global model. To achieve this goal, we propose

a novel aggregation method for federated learning that deals with malicious clients

with the following contributions.

We propose to use a trustworthy approach, originally proposed in the crowd-

sourcing domain, against such attacks in a federated learning setting to measure

the trustworthiness of provided updates. The intuition is that in federated learning,

benign clients’ provided updates would be similar to each other in each round. There-

fore the global server can implicitly learn to rely more on clients’ updates similar to

each other. Measuring the clients’ trustworthiness can be estimated by adopting a

truth inference mechanism. We derive our aggregation algorithm by incorporating

the reliability of each clients’ provided parameters. Based on estimated reliability,

the one is chosen if their reliabilities are not far from the other clients. Finally, the

local parameters are aggregated based on clients’ estimated reliability in the propor-

tion of the number of local data trained. We briefly summarize our contributions

as:

• We develop an aggregation method that describes the dependencies of locally

shared parameters and the clients’ reliability. We present an application of
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adopting the truth inference method in federated learning to estimate the

client’s reliabilities’ true state.

• We further enhance the aggregation method by considering the statistical

weights from previous rounds that explicitly describe the clients’ temporal cor-

relations.

• We compare our proposed method to several baselines by conducting experi-

ments on three image datasets. Our proposed aggregation mitigates the impact

of attacks in the IID setting and outperforms other baselines.
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Chapter 2

Related Works

In this chapter, we provide a brief review of crowdsourcing. Then, we review

truth inference methods along with adversarial attacks on crowdsourcing. Afterward,

we describe adversarial attacks on federated learning. Subsequently, we survey the

existing defense and robustness methods in federated learning.

2.1 Crowdsourcing

Crowdsourcing has emerged as a practical paradigm to efficiently address labeling

large datasets and performing various learning tasks by utilizing hundreds of workers

(i.e., the crowd). Access to crowd resources has been made easier due to public

crowdsourcing platforms, such as Amazon Mechanical Turk(MTurk), CrowdFlower,

and Upwork [10, 51]. Even though crowdsourcing can be efficient and relatively

inexpensive, inference of true labels from the noisy responses provided by multiple

unknown expertise workers can be challenging, especially in the typical unsupervised

scenario, where no ground truth data is available. Therefore controlling the quality of

the crowdsourcing framework is getting more attention. One important component

in the crowdsourcing framework that improves the quality of the system is truth

inference components.
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2.1.1 Truth Inference Methods

Crowdsourcing aggregates the wisdom of the crowd (i.e., workers) to infer the truth

label of tasks in the system, which is called truth inference. Truth inference is a

key component of crowdsourcing, and inferring the truth necessitates a method to

handle workers’ data quality by assessing the behavior of workers and measuring

the reliability of the workers and the aggregation method. There are four main

categories of truth inference techniques: 1) direct computation, 2) optimization, 3)

probabilistic graphical model (PGM), and 4) neural networks. Direct computation

aggregates the workers’ answers by majority voting while treating all workers equally

or heuristically assigning a weight to the workers [39]. Optimization based methods

[39,52,53,108,111] treat the estimated labels and worker reliability values as unknown

variables and use an optimization approach to find them. Probabilistic graphical

models (PGM) explicitly model workers’ reliability and possibly workers’ dependency

to estimate the labels [19, 20, 43, 44, 85, 92]. A recent experimental study compared

various truth inference methods [107].

The simplest truth inference method is majority voting, which works well if all

workers provide answers to all of the tasks. However, it fails in complicated cases.

Comparably, the probabilistic graphical model (PGM) has a better performance and

can be solved by diverse techniques, such as EM algorithms, convex optimization,

and variational inference. In general, optimization and PGM based methods follow

an iterative EM-based approach with two steps: 1) inferring the label of tasks given

the estimated reliability of workers, and 2) computing workers’ reliability given the

current inferred labels of tasks. More recently, unsupervised neural network based

approaches [29, 98] has been proposed by incorporating answers of each task in a

neural network with its output as the inferred label of the task. Other approaches

based on tensor augmentation and completion with limited performance have also

been suggested [110]. One of the famous PGM based models is the Dawid & Skene’s

model (D&S) [19] that models worker reliability using a confusion matrix. The con-

fusion matrix πwi for worker wi is an |L| ∗ |L| matrix where element πwip,q denotes the
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probability of worker wi reporting label q given the truth label p in L. Also, the D&S

algorithm focused on applying an EM (Expectation-Maximization) algorithm which

consists of two steps: 1) an expectation step (E-step), and 2) a maximization step

(M-step). In the E-step, inferring the label of tasks given the estimated reliability

of workers, and in the M-step, workers’ reliability is estimated based on the inferred

truth labels. EM algorithm iteratively applies to find the maximum likelihood esti-

mation (MLE) for the inferred truth labels and the confusion matrices πW. Truth

inference methods in crowdsourcing can be classified based on worker model and

techniques [107].

Some truth inference methods do not have an explicit worker model. In contrast,

others employ a worker model that can be represented as: 1) a single worker reliability

or penalty parameter related to how reliable the answers by each worker are [20,92],

2) a confusion matrix that captures a worker’s probability of providing a certain label

given the true label [19,44,85], 3) worker bias/variance [74] for numeric tasks, or 4)

confidence [53] related to the number of tasks answered by each worker.

Many of the truth inference methods utilize the confusion matrix in their modeling.

The confusion matrix πwi for worker wi is an |L| ∗ |L| matrix where element πwip,q

denotes the probability of worker wi reporting label q given the truth label p in L.

Assuming a binary label set L = {0, 1}, we simplify the notation using two variables,

α and β, where α = pr(cwitj = 1 | z∗tj = 1) and β = pr(cwitj = 0 | z∗tj = 0), indicating

the probability of worker wi correctly reporting task tj given its true label 1 or 0

respectively.

2.1.2 Data Poisoning Attacks in Crowdsourcing

Data poisoning attacks [27,65,66] have been recently studied against representative

truth inference methods, namely D&S [19] and PM [53] assuming attackers have full

knowledge of other workers’ answers and the inference method being used. They for-

mulate an optimization problem and assume the adversary does not know the ground

truth of the tasks. Hence the optimization goal is to maximize the number of flipped
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labels after the attack when compared to inferred labels before the attack. The at-

tack also attempts to maximize the attackers’ collective confusion matrix parameters

(reliability) inferred by the system. Intuitively, this will help them obfuscate their

malicious nature and be more successful in misleading the system.

Comparison with data poisoning attacks in machine learning: Data poisoning at-

tacks have been increasingly studied in recent years for various machine learning

(ML) algorithms [7, 30, 35, 40, 48, 75, 80, 88].There are a few distinct differences be-

tween data poisoning attacks in crowdsourcing and machine learning (ML):

First, most existing data poisoning attacks in ML deal with supervised models;

hence the goal is to degrade the model’s performance (trained on the poisoned data)

on a separate validation dataset. The truth inference problem typically does not

assume the ground truth of tasks are available for training and thus is formed as an

unsupervised problem. Second, the data poisoning attacks in ML typically assume

a certain number or percentage of records are poisoned by an attacker, and all the

features associated with the poisoned record (e.g. an image) can be altered to carry

out the attack. For crowdsourcing, it is often the case that a certain number or per-

centage of workers may be malicious (due to Sybil attacks). Here a malicious worker

can only change the answers for tasks assigned to him/her. Finally, ML problems

typically have a rich set of features for each record, while in crowdsourcing for each

task only a set of ratings from workers is available. Hence we believe crowdsourc-

ing systems are more susceptible to data poisoning attacks, due to its open and

unsupervised nature, and lack of rich features for the truth inference problem.

Shilling attack [12, 15, 33, 67, 71, 104] is another type of data poisoning attacks in

recommender systems where intruders attempt to simulate the behavior of a subset

of users, leading to their dissatisfaction in a recommender system, and disruption

in other users’ activities [33, 71]. Various types of shilling attacks such as using the

random or average ratings as the adversary response [12, 67] have been studied. As

a defense mechanism, supervised, unsupervised and statistical approaches have been

studied such as KNN-based, k-means clustering technique, hidden Markov model
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and sparse variation of the Hv-score metric [33,71,89,102,109]. The main difference

between recommender systems and truth discovery is that the true labels of tasks in

recommender systems are subjective as each user may have a personal opinion, and

therefore a tailored ground truth, while there is universal ground truth for truth dis-

covery. Besides, the answers are usually numeric in recommender systems, reflecting

each user’s personal preferences, which falls outside the current work scope.

Other related attacks include spammer [21, 36, 37, 73, 92] and sybil [13, 50, 79, 84,

87, 99–101, 103] attacks. In a spammer attack, workers (bots) randomly submit

answers to tasks [21, 36, 37]. In sybil attacks, infiltrators create fake identities to

affect the performance of the system [101,103]. For example, the attack and defense

methods in social media and IoT typically utilize metadata such as connectivity of

graph and relationship between each node, IP address, and MAC address. Sybil and

spammer attacks mainly focus on the system infiltration as part of the attack and

can be considered as means to achieve a data poisoning attack. We consider the

data poisoning attacks in this paper assume adversaries have successfully created or

compromised multiple workers and injected strategic answers.

2.1.3 Matrix Completion

Matrix completion has received a lot of attention these past years since it brings a

unique property and could be applicable in various domains. Its application varies

from wireless communications, traffic sensing to integrated radar and communica-

tions [55]. Matrix completion is a promising technique that can recover an intact

matrix with low-rank property from incomplete data. One example is the rating ma-

trix in the recommendation systems representing users’ tastes on products []. Since

users expressing similar rating on multiple products tend to have the same interest

for the new product, columns associated with users sharing the same interest are

highly likely to be the same, resulting in the low-rank structure. One benefit of the

low-rank matrix is that the essential information, expressed in terms of the degree

of freedom, in a matrix is much smaller than the total number of entries. Therefore,
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even though the number of observed entries is small, we still have an excellent chance

to recover the whole matrix.

Various matrix completion methodologies have been developed from different per-

spectives [41,55,91], one of these methodology is matrix factorization [91]. The basic

idea behind the matrix factorization is to utilize two low-rank matrices to represent

the objective matrix, assuming that the original matrix’s rank is known. A funda-

mental challenge in the study of matrix completion is that, in some applications,

the revealed entries will be inaccurate or corrupted. Some studies have utilized the

matrix completion method to robust their model. Yang et al. [94] propose a defense

mechanism that leverages matrix estimation in deep neural networks. In their pro-

posed method, a data matrix from noisy and incomplete observations is recovered.

Some studies apply tensor completion concepts to crowdsourcing problems [54,110].

They propose to augment the data tensor with an extra ground truth layer and

explore various tensor completion techniques to infer the true labels in the ground

truth layer.

2.2 Federated Learning

When the size of data is enormous or data is distributed on a series of devices, or

data privacy is considered a sensitive matter, utilizing federated learning is an excel-

lent solution. Federated learning was first introduced by Google [47]. In a federated

learning setting, multiple devices, end-user devices such as mobile phones, or or-

ganization infrastructure such as hospital servers, contribute to learning a machine

learning model. The machine learning model can be a deep neural network and a

simpler model, with fewer parameters such as a logistic regression model.

In federated learning, the original training data never leaves the corresponding

local device that collected it. Each device keeps a version of the same model; the

model’s updates are shared with a central server, which averages the new models

from all participating devices. Once a new version of the model has been trained,
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Figure 2.1: Framework of a Federated Learning

it is pushed back down to all devices. This process repeats continuously until the

model converges.

Figure 2.1 displays a graphical representation of this process. First, the global

server model is pushed down to clients, which subsequently trains the model on

local data. To make federated learning practical, the optimization problem in the

context of federated learning needs to be solved. Naively, SGD can be applied to

the federated optimization problem. The single batching gradient calculation can be

achieved by a communication round in federated network.

2.2.1 Aggregation Methods in Federated Learning.

A considerable amount of research has been conducted to study federated learning

models in terms of better communication bandwidth and malicious clients in the

system [62, 76, 77, 93]. Federated learning trains a global machine learning model

while the clients can keep their data private. In a federated learning system, a central

node called a server controls the learning process. It aggregates the information from

the clients that train the model locally using their local datasets. The clients send

the model updates to the server that aggregates all the information to update the
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shared model. A naive aggregation rule is to average the local model parameters as

the global model parameters.

Federated learning avoids centrally storing the data. Instead, it allows users to

train a shared model collaboratively by using its local data. Therefore, it guarantees

data privacy and decreases the communication cost. In general, the learning task is

achieved by a federation of participants (clients) supervised by a central coordinator

(server). Since the clients never upload their local data to the server, the clients

compute the shared model’s updates, and only this update is communicated.

In federated learning, the adversary can control the whole local training dataset,

local hyper-parameter of a model, and their local model. The studies show that using

Mean as the aggregation method fails in the presence of malicious clients that can

compromise the entire performance and the convergence of the shared model [6,25].

The potential attack strategies that can be exploited in federated learning categorize

into three parts [57]: 1) data poisoning attack, 2) model targeted poisoning attack,

and 3) freerider attacks.

Label flipping attacks, byzantine attacks, and noisy data attacks fall into the data

poisoning attacks. The model poisoning attack [6, 24] aims to poison the global

model directly, and adversary attempts to substitute the global model with their

target model. In freeriding attacks [59], the adversary takes advantage of the system

without contributing enough to the learning process.

Fung et al. [25] proposed a defense method, called FoolsGold, against data poison-

ing attack in federated learning. They assume that the non-iid follows data in the

federated learning system. They can detect the ordinary workers from adversary one

by calculating the similarity of their updated gradients.

2.2.2 Adversarial Attacks on Federated Learning

In federated learning, the adversary can control the whole local training dataset, local

hyper-parameter of a model, and local model parameters. The potential attacks that

can be exploited in federated learning categorize into three parts: 1) data poisoning
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attack, 2) model poisoning attack, and 3) freerider attacks.

In the data poisoning attack [25], the malicious workers create poisoned training

samples and inject them into their local training dataset. Then, the local model is

trained on the dataset contaminated with such poisoned samples. The purpose of

this attack is to manipulate the global model to misclassified the true class. These

attacks can be further folded into two categories: 1) label-flipping attacks [25] and

2) noisy features attack [25]. The label-flipping attack occurs where the labels of

training examples of one class are flipped to another class while the data features

remain unchanged. For example, an attacker can train a local model with cat images

misclassified as a dog and then share the poisoned local model for aggregation. A

successful attack forces a model to incorrectly predicts cats to be dogs. However, in

the noisy features attacks, the adversary adds noise to the features while the class

label of each data point intact [25], noisy data, and the backdoor attacks fall in this

type of attack.

The model poisoning attack [6,24] aims to poison the global model directly, and ad-

versary attempts to substitute the global model with their target model. To achieve

this goal, the problem is formulated as an optimization problem and the loss function

is changed so that the adversary achieves their goal.

The federated learning is vulnerable to poisoning attacks. Studies show [6,25] that

just one or two adversarial clients are enough to compromise the performance of the

global model. Hence, developing a robust method against these attacks is essential.

Fung et al. [25] proposed a defense method, called FoolsGold, against data poisoning

attack in federated learning in a non-IID setting. Their solution differentiates the

benign clients from the adversary one by calculating the similarity of their submitted

gradients. Other techniques use recursive Bayes filtering method [69] in the IID

setting to mitigate the data poisoning attack.

In some studies, researchers assume that the global server accesses the golden data

that represent data distribution from clients. However, this assumption in practice

is hard to be true. By assuming access to the golden dataset, the server can detect
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adversary and prevent attacks by assessing the effectiveness of provided updates on

the global model’s performance. If the updates do not improve the global model’s

performance, the client is flagged as a potential adversary [6]. However, this method

needs to have a golden validation dataset which would be difficult to achieve in

practice.

2.2.3 Byzantine-Robust Federated Learning

Byzantine worker’s goal is to ensure that the global model does not converge or

convergence to the sub-optimum model. The byzantine workers add Gaussian noise

to the gradient estimators and then send this perturb value to the server. There-

fore, the byzantine gradients can have similar variance and magnitude as the correct

gradients, making them hard to distinguish.

In an adversarial setting, the naive aggregation rule, averaging the local model

parameters, is not robust under adversarial settings. Byzantine-robust algorithms

have been increasingly studied in recent years [8, 96]. One of the first methods is

called Krum [8] which selects the local model as the global model that is similar

to other models by calculating the Euclidean distance. As Krum converges slowly

compared to other aggregation rules, the Multi-Krum [72] a variant of the previous

algorithm that achieves similar performance at a faster convergence rate. Trimmed

mean [96] aggregation rule aggregate each model parameter independently, for each

jth parameter, it first sorts jth parameters of all k local models, then removes the

largest and smallest β of them, and computes the mean of the remaining parameters

as the jth parameter of the global model. Bulyan [32] combines Krum and a variant

of the trimmed mean. The median aggregation rule, sorts the jth parameters of

all k local models and takes the median as the jth parameter of the global model.

Aggregation such as Krum and trimmed mean need to know the upper bound of the

number of adversary clients to set parameters appropriately.

Byzantine-Robust methods have been studied in recent years [?,?, 8, 14,23,69,96].

Most existing methods assume that data is distributed IID among clients, and the
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proposed methods are based on statistical robustness such as median-based approach.

A popular line of robust methods against the Byzantine attack is based on the

median of the updates [14]. This method sorts the local models’ jth parameters and

takes the median as the jth parameter for the global model. Trimmed mean [97] is

another method that sorts jth parameters of all local models, removes the portion of

largest and smallest of them, and computes the mean of the remaining parameters

as the jth parameter of the global model. Krum [8] selects the local model with the

smallest sum of distance as the global model. Aggregation method such as Krum and

trimmed mean need to know the upper bound of the number of compromised workers.

There are other methods that extend based on Krum such as Multi-Krum [8] and

Bulyan [23].
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Chapter 3

Evaluation of Truth Inference

Methods under Data Poisoning

Attack

This chapter proposes a comprehensive data poisoning attack taxonomy for truth

inference in crowdsourcing and systematically evaluates the state-of-the-art truth

inference methods under various data poisoning attacks. We use several evaluation

metrics to analyze the robustness or susceptibility of truth inference methods against

various attacks, which sheds light on the resilience of existing methods and ultimately

builds more robust truth inference methods in an open setting.

3.1 Problem Definition

In this section, we define the truth inference problem and introduce some terminology.

Table 3.1 lists notations used throughout this chapter.

Given a set of tasks T, set of workers W and a bipartite graph indicating tasks

assigned to each worker, a truth inference returns a set of predicted true label for

tasks, denoted as Ẑ. Figure 3.1 illustrates an example of a crowdsourcing system

with three workers and five tasks and a bipartite task-worker assignment graph. The

input of a truth inference method is an answer matrix C provided by the workers for

tasks. Workers provide labels 0 or 1 for each task, while x reflects that the task is
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Table 3.1: Notation

Symbol Description

n Number of tasks

Wj Worker number j

Ti Task number i

πj Confusion matrix of j’th worker

W ′
j Worker number j, who is malicious

π′j Confusion matrix of j’th worker, who is malicious

t∗ Ground truth vector

t̂ Predicted truth vector

tpw Average number of tasks assigned to each worker

Twj Tasks assigned to worker j

not assigned to that worker. The output is the inferred truth vector Ẑ reflecting the

inferred answer for each task. The ground truth vector Z∗ is shown as a reference.

Due to their open nature, crowdsourcing systems are subject to data poisoning

attacks [40, 48, 80] in which malicious workers may intentionally and strategically

report incorrect answers in order to mislead the system to infer the wrong label for

all or a targeted set of tasks. These strategical answers are different from unreliable

behavior, which is typically non-malicious, unintentional, and non-strategic.

In this section, the goal is to present a comprehensive data poisoning attack taxon-

omy in crowdsourcing. We analyze the attacks along different dimensions, including

attack goal (targeted vs. untargeted), adversarial knowledge (black-box vs. white-

box), and attack strategy (heuristic vs. optimization based). Therefore, propose

several metrics to evaluate the robustness of different methods against data poison-

ing attacks.

Traditional Sybil detection methods in online social networks [2,86] typically rely on

additional features or metadata such as connectivity graph and IP addresses and may

not be effective in crowdsourcing applications due to the limited availability of the
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Figure 3.1: Example of a crowdsourcing system

metadata. This chapter focuses on the truth inference algorithms that only rely on

worker answers and their robustness against such attacks, which are orthogonal and

complementary to Sybil detection methods when additional metadata are available.

3.2 Truth Inference Methods

Our goal is to be comprehensive and represent each category of techniques and worker

model applicable to shed light on their role in the robustness of an inference method

under data poisoning attacks. When possible (e.g., for optimization and PGM-based

techniques), we leverage the findings from the previous study [107] by selecting the

best-performing methods.

For direct computation, we include MV (majority voting) as a baseline and its

enhanced version, MV-Soft [39]. In optimization based approaches, we include MV-

hard [39] which employs a semi-matching optimization formulation for the worker-

task bipartite graph and PM [53] which formulates the optimization problem based
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Table 3.2: Selected Truth Inference Methods

Method Technique Worker Model

MV Direct Computation No Model

MV-Soft [39] Direct Computation Worker Penalty

MV-Hard [39] Optimization Worker Penalty

PM [53] Optimization Worker Probability

D&S [19] Probabilistic Graphical Model Confusion Matrix

BCC [44] Probabilistic Graphical Model Confusion Matrix

KOS [43] Probabilistic Graphical Model Worker Probability

LAA-S [98] Neural Network No Model

on inferred labels and worker reliability. For PGM based methods, we include the

best performing D&S [19] and BCC [44] using the confusion matrix as worker relia-

bility model and KOS [43] with a single worker reliability parameter. Among neural

network based methods, we include LAA-S [98] since it is the only one applicable to

a non-complete bipartite graph. Below we briefly review these selected methods.

3.2.1 Direct Computation

• Majority voting (MV): MV simply sets the label for a task to the most voted

label without considering any worker reliability. We include this method as a

baseline.

• MV-Soft: The majority voting with soft penalty (MV-soft) [39] implicitly mod-

els a worker’s reliability via a penalty for unreliable workers. The intuition is

that workers whose answers agree with the majority answer (or with more

workers) are more reliable and thus assigned a lower penalty. The iterative

algorithm calculates each worker’s penalty in each iteration and removes up to
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10 workers with the highest penalty for majority voting.

To compute the penalty, the algorithm considers tasks that do not have the

same unanimous answer from all workers, i.e. conflicted tasks. It builds a

bipartite graph with two set of vertices W and Tconf , where W is the set of

workers and Tconf ⊆ T is the set of conflicted tasks. Each conflicted task is

represented by two nodes, t+j and t−j . An edge {wi, t+j } or {wi, t−j } is added

to the graph if worker wi provides label 1 or 0 to task tj, respectively. The

penalty for worker wi is inversely proportional to the number of other workers

who have the same answer as wi, which is measured by the degree of each node

in the conflicted task set Tconf .

Penwi =

∑
tj∈T

wi
conf

1
deg(t+j )

.1(cwitj = 1) + 1
deg(t−j )

.1(cwitj = 0)

|Twi
conf |

(3.1)

where Twi
conf is the conflicted tasks to which worker wi has contributed, deg(t+j )

and deg(t−j ) indicate the degree of task tj for label 1 and 0 respectively, cwitj
indicates the answer provided by wi for task tj and 1 indicates the identifier

function whose value is 1 if the condition is true and 0 otherwise.

3.2.2 Optimization Based Methods

Optimization based methods [39, 52, 53, 108, 111] use an optimization approach to

obtain the optimal labels and/or the worker reliability values. Existing works differ

in the formulation of their optimization problems and objectives. For our evaluation,

we include PM [53] which is a representative method and has shown promising results

among similar methods [52, 53, 108, 111] in [107]. We also include Majority Voting

with hard penalty (MV-hard) [39] that is not included in [107] and uses a bipartite

graph formulation.

• MV-Hard: While the MV-Soft method heuristically assigns a penalty to all

workers contributing to a task, MV-Hard [39] utilizes the optimal semi-matching
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algorithm for the tasks-workers bipartite graph to assign a penalty to work-

ers. A semi matching is a matching subgraph of the original bipartite graph,

such that exactly one worker among all contributors for each label of each task

is chosen. The optimal matching is the one that minimizes the sum of ac-

cumulated degree (a typical formulation of the semi-matching problem) of all

workers:

min
Match

∑
w∈W

degMatch(w)∑
i=1

i (3.2)

where degMatch(w) denotes the degree of worker w in matching Match.

Once the optimal semi-matching is obtained, the degree of each worker is con-

sidered as its penalty. Finally the label of each task is determined as the label

connected to the worker with the lower degree or lower penalty.

• PM: The PM method [53] solves an optimization problem explicitly modeling

the reliability of each worker wi using a single probability value rwi . The

intuition is that the answers of workers with higher reliability would be closer

to the true label. The iterative algorithm involves two steps of updating the

truth labels and workers’ reliability.The optimization problem is defined as

follows:
min
r,Ẑ

∑
wi∈W

rwi .
∑

tj∈Twi

d(ẑtj , c
wi
tj ) (3.3)

where d(ẑtj , c
wi
tj ) indicates the distance between the inferred truth of task tj and

the answer provided by worker wi for task tj and rwi indicates the reliability

value of worker wi. The algorithm then solves the optimization problem by an

iterative method with two steps that update the truth labels and reliability of

workers iteratively.

3.2.3 Probabilistic Graphical Models

Probabilistic graphical model (PGM) based methods represent the true label, the

workers’ answers, and workers’ reliability as probabilistic variables and model their
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dependence via a PGM [9, 17, 19, 20, 28, 43, 44, 61, 74, 85, 90, 92, 105, 106]. Figure 3.2

illustrates a general PGM model which is the basis of many existing works [107]. cwitj
is the observed variable denoting the answer provided by worker wi for task tj. It

depends on two hidden variables: 1) πwi showing the reliability of worker wi, and

2) z∗tj representing the ground truth of task tj. The two boxes of M tasks and N

workers indicate that there are N and M repeated variables for each task and worker

respectively. Additional variables may be included such as a and b to denote the

prior distribution for the worker reliability and ground truth, respectively.

tj
*

a

b
N Workers

M Tasks

𝝅

𝒋
𝒘 z

  C

풘

tj
t

i

i

j

wi

Figure 3.2: General Probabilistic Graphical Model (PGM) for Truth Inference in

Crowdsourcing

Existing works differ in multiple ways, such as different worker reliability mod-

els [19, 20, 43, 44, 85], difficulty of tasks [92], domain or type of tasks [9, 61, 90],

semantics information of tasks [106], models for spatiotemporal tasks [28], work-

ers’ expertise [17, 61] and bias and variance of workers for numerical tasks [74].

For our evaluation focusing on binary decision tasks, we include 1) D&S [19] and

BCC [44] which use a confusion matrix worker model and are best performing in

non-adversarial settings among the applicable methods [107], and 2) KOS [43] which

uses a single probability to model worker reliability as a comparison.

• D&S Method: The seminal D&S (Dawid and Skene) [19] method employs a

graphical model similar to Figure 3.2 without a and b priors and models worker
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reliability using a confusion matrix.

Given the graphical model, the D&S [19] algorithm uses EM (Expectation-

Maximization) to iteratively find the maximum likelihood estimation (MLE)

for the inferred truth labels Ẑ and the confusion matrices πW iteratively. Wtj

is the workers responding to task tj. The objective function of this method is:

maxẐ,πW

∏N
j=1

∑
l∈L pr(ẑtj = l)

∏
wi∈Wtj π

wi
l,c
wi
tj

(3.4)

• BCC: The Bayesian Classifier Combination (BCC) algorithm [44] uses a graph-

ical model similar to Figure 3.2 with a and b priors and finds the maximum

a posteriori (MAP) estimation for the unknown parameters by optimizing the

joint posterior probability. For easy tasks, a single shared confusion matrix is

used for all workers, reducing the computations. Whereas for hard tasks, each

worker will have its own separate confusion matrix. We can formally formulate

the inference problem as:

maxa,b,Ẑ,πW

∏N
j=1 pr(Ẑ | a)

∏M
i=1 pr(π

wi | b)
∏M

i=1 pr(c
wi
tj | π

wi , Ẑ) (3.5)

There are extensions of the BCC method that take into account the difficulty

of tasks and workers collaboration, but we do not consider them in this study.

• KOS: The KOS (Karger, Oh, Shah) method [43] models worker reliability us-

ing a single parameter instead of a confusion matrix. For estimating worker

reliability, it attempts to maximize the joint probability distribution.

maxẐ,πW

∏N
j=1

∑
l∈L pr(ẑtj = l)

∏
wi∈Wtj π

wi
l,c
wi
tj

(3.6)

Since direct estimation of the distribution is intractable, an iterative belief

propagation is used to estimate a distribution for the worker reliability. The

label of tasks is determined based on the weighted product of estimated worker’s

reliability and their answers.
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3.2.4 Neural Networks and Other Methods

Neural networks have also been proposed for truth inference in crowdsourcing [29,98].

Gaunt et al. [29] utilizes a neural network for aggregating labels trained on inferred

labels from majority voting as the ground truth. One significant disadvantage is that

most methods assume a complete graph where all tasks are assigned to all workers.

In our study, we include the LAA-S method [98] which is also suitable for a sparse

graph.

LAA-S: The basic idea is to represent each task as a vector consisting of answers

provided by all workers and then train a neural network to learn its truth label as

a latent feature or representation. Figure 3.3 shows LAA-S network architecture,

which contains two shallow neural networks: 1) an encoder or classifier (qθ) which

encodes the task vector (v) into the latent feature (z) indicating the truth label, and

2) a decoder or reconstructor (pφ) which reconstructs a task vector based on the

latent feature. Note that this is an unsupervised approach, the intuition is to learn

the latent truth label that can best represent the original task vector.

𝜇

Σ

Classifier Reconstructor

Input: task vector (tj)

ሼ.

ሼ.

ሼ.

ሼ.

ሼ.

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

Sample of  

(z)

Reconstruction

ҧ𝑍
ҧ𝑍

ҧ𝑍

ҧ𝑍

Generation of task vector

by one hot encoding:

𝑐𝑡𝑗
𝑤1 = 1 →[0 1]

𝑐𝑡𝑗
𝑤2 = 0 →[1 0]

𝑐𝑡𝑗
𝑤3 = x → [0 0]

Figure 3.3: Architecture of LAA-S Method

The network is trained on all task vectors by minimizing the reconstruction error

between the original and reconstructed task vectors. To create each task vector,

one-hot encoding is applied to each worker’s answer, as illustrated in Figure 3.3. In

addition, the training also enforces the latent truth label distribution to resemble the

original answer distribution. The objective function is shown below.
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min
qθ,pθ

Eqθ(z|v)logpφ(v|z)−DKL(qθ(z|v)|| prior) (3.7)

where the first term is the reconstruction error and the second term ensures the

distribution of inferred labels follows a specific prior using the negative KL divergence

DKL, and the prior is calculated based on the fraction of labels in the workers’ answers

for each task.

3.3 Proposed Approach

We design heuristic and optimization based attacks that can be used on various truth

inference methods as part of our evaluation methodology. The heuristic-based at-

tacks assume black-box or no adversarial knowledge and model the worker behavior

using a confusion matrix [19] and an additional disguise parameter to hide their mali-

cious behavior. The optimization based attacks assume white-box or full adversarial

knowledge including the truth inference methods being used and other workers’ an-

swers, and are adapted from existing optimization based attacks [65] while making

them more generic, so they apply to broader types of truth inference methods.

3.3.1 Attack Methods

Heuristics Based Attacks (HeurAtt). We design heuristics based attacks that

are applicable for a black-box setting following non-collusive strategy. The simplest

heuristic for an attacker would be to always report the wrong answer for each of

their assigned tasks. However, this may be easily recognized by most of the truth

inference systems (besides majority voting) which model the workers’ reliability. The

attackers could disguise themselves as honest workers by providing true answers for

some tasks so that they won’t be detected by the system. The worker’s behavior

is modeled by defining a confusion matrix πw that captures a worker’s probability

of providing a certain label given the true label. Given the label set L = {0, 1}, α
and β indicate the probability of workers provide a correct label given the true label
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of 1 and 0, respectively. Each malicious worker w′ is associated with a malicious

confusion matrix πw
′

with α′ and β′ and a normal confusion matrix πw with α and

β, and a disguise parameter γ. w′ behaves as a normal worker modeled by πw with

probability γ and as a malicious worker modeled by πw
′

with probability 1− γ. For

example, a malicious worker with a moderate level of disguise may be modeled with

πw =
[

β = 1 0

0 α = 1

]
, πw

′
=
[

β′ = 0 1

1 α′ = 0

]
, and γ = 0.2.

For targeted attacks, the best strategy for the malicious workers is to flip the labels

for the targeted tasks while acting truthfully for other tasks, escaping detection and

building their reliability. Hence the disguise parameter (γ) is set to be 0.

Optimization Based Attacks (OptAtt). We adopt the optimization based at-

tack in a white box setting where an adversary has the full knowledge of truth

inference algorithm, provided answers to the system, and task assignments and op-

timally injects manipulated answers to maximize the damage to the system. The

attack goal is to maximize the number of flipped labels before and after the attack

along with maximizing the attackers’ collective confusion matrix parameters inferred

by the system. Intuitively, this will help them to obfuscate their malicious nature

and cause more disruption in the system.

Let ẑatj and ẑbtj denote the inferred answer for task tj by the D&S after and before

attack respectively. α̂w′ and β̂w′ show the inferred confusion matrix parameters

of the malicious worker w′. The optimization is posed as Equation (4.1) where λ

controls the trade-off between the objectives of maximizing the collective reliability

of malicious workers and the number of flipped labels.

maxC′
∑M

j=1 1(ẑatj 6= ẑbtj)+λ
∑

w′∈W′(α̂w′ + β̂w′) (3.8)

For untargeted attack, we extend the attack from [65] to all inference methods.

For confusion matrix based ones, we use the same formulation as equation (4.1). For

methods with a single reliability parameter or no worker model, we set λ = 0.

For targeted attack, the aim is to maximize the number of targeted tasks Ttar ⊆
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T whose label is flipped. The optimization is maxC′ &
∑

tj∈Ttar 1(ẑatj 6= ẑbtj) +

λ
∑

w′∈W′(α̂w′ + β̂w′). Similar to untargeted attacks, the second term is consid-

ered only for confusion matrix based methods. We varied λ in the interval [0,1] and

observed that a λ value in [0.9, 1] leads to the most successful attack.

3.3.2 Selected Truth Inference Methods

We systematically evaluate the state-of-the-art truth inference methods under both

heuristics and optimization based data poisoning attacks. The truth inference meth-

ods are selected carefully to represent the different types of methods including ma-

jority voting based [39], optimization based [53], probabilistic graphical model based

[19,43,44], and neural network based [98]. They also portray different worker’s behav-

ior models including probability based [53], confusion matrix based [19, 43, 44], and

implicit models [39, 53]. Our study includes not only the best performing methods

from the experimental study [107], but also additional direct computation [39] and

optimization based methods [39, 53] and more recent neural network based meth-

ods [98]. A summary of the selected methods with their key features is given in

Table 3.2.

3.3.3 Metrics

We use the following metrics to assess the robustness of inference methods.

Accuracy Accuracy is the fraction of correctly inferred tasks, i.e
∑N

j=1 1(ẑtj = z∗tj)/N ,

where ẑtj and z∗tj are inferred and ground truth of the jth task. A lower accuracy

means a more successful attack. We note that [65] defined the attack success metric

as the percentage of inferred labels flipped due to attack, comparing labels before

and after the attack. We believe this metric does not truly capture the attackers’

success where some inferred labels may be wrong without attack and were flipped

to correct due to the attack, i.e., adversaries help the system to correctly infer the
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label of an otherwise wrongly labeled task. Instead, we use the flipped labels w.r.t.

the ground truth, i.e. accuracy, as the metric for attack success. We also report F1

score to account for the skewness of classes in the unbalanced dataset.

Accuracy Targeted Accuracy Targeted is the fraction of the targeted tasks Ttar

whose truth are inferred correctly, i.e

1−
∑

tj∈Ttar 1(ẑtj 6= z∗tj)/|Ttar|.

Area Under Curve (AUC) Since the inference methods’ accuracy changes over

parameters, e.g. percentage of malicious workers, we use AUC to compare the global

performance of methods on an interval of parameter values, if feasible.

Recognizability To assess the adversary detection ability of inference methods

with explicit worker models, we define Recognizability as the similarity between

the simulated (ground truth) worker reliability and the inferred reliability. A higher

Recognizability means the method is better at detecting malicious workers. The

worker behavior is modeled by a normal confusion matrix with α and β, a malicious

one with α′ and β′, and a disguise parameter γ. We aggregate these into a single

value rw′ showing the expected reliability of a worker and define Recognizability as

1− 1
|W′|

∑
w′∈W′ |rw′ − r̂w′|, where rw′ and r̂w′ are the simulated and inferred reliability

of malicious worker w′ respectively.

rw′ =
1

| Tw′ |
∑
tj∈Tw′

(αw′ × γ + α′w′ × (1− γ))× 1(z∗tj = 1)

+(βw′ × γ + β′w′ × (1− γ))× 1(z∗tj = 0)

(3.9)

r̂w′ = 1
|Tw′ |

∑
tj∈Tw′

α̂w′ × 1(z∗tj = 1) + β̂w′ × 1(z∗tj = 0) (3.10)
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3.4 Evaluation Results

In this section, we report the robustness of various truth inference methods under

heuristic-based (HeurAtt) and optimization-based (OptAtt) attacks.

Datasets

For our evaluation, we used two benchmark datasets for decision making tasks [5,38]

as well as synthetic datasets constructed based on different parameters. A summary

of the datasets and their key properties are shown in Table 3.3.

Table 3.3: Statistics and Properties of Datasets

Dataset Product PosSent Synthetic

N (# of tasks) 8,315 1,000 [200, 40,000]

M (# of workers) 176 85 [100, 500]

V (# of answers) 24,945 20,000 [10,000, 200,000]

Redundancy (# of answers per task) 3 20 [5, 30]

Engagement (# of answers per worker) 141 235 [100, 400]

Skewness 0.88 0.52 [0.5 0.9]

Product Dataset In this dataset, each task is comparison of two products. An

example is “are iPad Two 16GB WiFi White and iPad 2nd generation 16GB WiFi

White the same?” [38]. Workers either assign label T, meaning the two products

are the same, or F otherwise. The Product dataset is unbalanced for the positive

and negative tasks with 88% of tasks having a negative label and 12% positive. The

dataset is sparse since the average number of answers per task is 3. The average

workers’ credibility is around 0.79 according to [107].

PosSent Dataset In this dataset, workers assess the general sentiment of a tweet

about the reputation of a company. An example tweet is “The recent products of

Apple is amazing” [107]. The response is either positive, meaning that the tweet

will increase the reputation of the company or negative [5]. PosSent dataset is more
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balanced with 52.8% of tasks being negative and 47.2% positive. It is also less sparse

than Product dataset in that the average number of answers per task is 20. Similar

to Product dataset, the average workers’ credibility falls in the range of 0.79 [107].

Synthetic Dataset To analyze datasets with different properties, we generate syn-

thetic datasets and change parameters such as redundancy, number of tasks, and

number of workers as shown in Table 3.3. The worker-task assignment graph is

generated from Power-law distribution. The ground truth for each task is indepen-

dently drawn from a Bernoulli distribution with prior 0.5, resulting in a balanced

dataset. We also experimented with alternative distributions and observed no signif-

icant difference in results and hence 0.5 was chosen as the default value. The workers

provide answers according to a confusion matrix with α and β drawn from a Beta

distribution.

3.4.1 Heuristic-Based Attacks (HeurAtt): Untargeted

In untargeted attacks, the goal is decreasing the overall accuracy of the system.

Impact of Percentage of Malicious Workers Here the number of normal workers is

fixed and the percentage of added malicious workers varies from 0 to 60%. Adversary

behavior setting is γ = 0, α′ = 0 and β′ = 0.

Table 3.4: AUC of Methods’ Accuracy w.r.t. % of Malicious Workers: Untargeted

HeurAtt

MV DS BCC Soft Hard KOS LAAS PM

Product 34.78 42.9 33.69 32.2 34.3 38.5 40.09 30.92

PosSent 32.88 34.01 34.2 34.99 34.215 33.6 34.062 34.12

Accuracy Figure 3.4 shows the accuracy of the methods w.r.t. the percentage

of malicious workers. We omitted the result for synthetic dataset showing similar

trends. Increasing the number of malicious workers drops the accuracy of all methods.

The direct computation (MV, MV-Soft, MV-Hard) and neural network method’s
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Figure 3.4: Untargeted HeurAtt:

Accuracy vs. % of Malicious Workers
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Figure 3.5: Untargeted HeurAtt:

Recognizability vs. % of Malicious Workers

(LAA-S) drop is almost linear early on, PGM methods (D&S, BCC, and KOS) and

probabilistic method (PM) are more resistant especially with few adversaries and

drop to 0 once the percentage goes beyond (40% to 50%). Overall, D&S and LAA-S
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are the most resilient for this attack. Comparing the datasets, Product dataset is

more susceptible to the attack due to its low redundancy. Table 3.4 shows the AUC

of methods for Product dataset that confirms the same patterns for the relative

global performance of methods. Since the AUC of PosSent dataset for all methods

is around 34, there is no clear winner among them.

Recognizability To show adversary detectability in inference methods, we report

recognizability of methods with explicit worker modeling, i.e. D&S, BCC, PM, and

KOS. We exclude MV and LAA-S as they do not explicitly model reliability. MV-

Hard and MV-Soft are excluded too since recognizability is over the average adver-

saries’ reliability and they only remove the least credible worker.

Figure 3.5 shows the methods’ recognizability w.r.t. varying percentages of mali-

cious workers. We omitted the result for synthetic dataset which was similar. D&S

and KOS perform better than BCC in adversary detection, while PM performs the

worst. This explains the robustness of the accuracy of D&S and KOS we observed

earlier. Comparing Figure 3.4 and 3.5, the accuracy and recognizability of D&S and

KOS decrease as the percentage of malicious workers increases, i.e. worker modeling

with good detection is the key to a robust inference algorithm under attack.

Impact of Redundancy and Engagement Redundancy is the mean number of work-

ers assigned per task, while worker engagement is the mean number of tasks per

worker. Figure 3.6 shows the accuracy w.r.t. varying redundancy and engagement

values. As expected, with increased redundancy, it is harder for adversaries to reduce

the accuracy (the percentage of attackers is set to 20%). D&S and MV-based models

were more sensitive to redundancy in the sparse dataset (Product). Worker engage-

ment had no significant impact, since it does not directly impact their reliability.

Impact of Class Skewness We show the effect of skewness on F1-score in synthetic

data. Figure 3.7a shows the F1-score w.r.t. varying ratios of the majority class.

MV-based methods are vulnerable to imbalance while others are robust.

Impact of Disguise (γ) We show the trend of accuracy and recognizability w.r.t

disguise. When in disguise, adversaries’ behavior is governed by α = 1 and β = 1
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Figure 3.6: Untargeted HeurAtt: Accuracy vs Redundancy and Engagement
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Figure 3.7: Untargeted HeurAtt: F1 Score vs Class Skewness

compared to α′ = 0 and β′ = 0 in pure malicious mode.

Accuracy Figure 3.8 shows the accuracy of methods w.r.t. varying disguise levels.

We use a different scale for each dataset’s y-axis to highlight their trend. Since
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Figure 3.8: Untargeted HeurAtt: Accuracy vs Disguise
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Figure 3.9: Untargeted HeurAtt: Recognizability vs. Disguise (γ)

increasing disguise after 0.7 resulted in monotonously increasing accuracy for all

models, we terminate at 0.7. For methods (e.g. MV) with no inherent attacker

recognition, disguising only boosts the accuracy. For more robust methods, as we

increase γ slightly, the algorithms fail to identify adversaries leading to the success
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of the attack. However, as disguise further increases, the accuracy goes back up due

to the correct answers by the disguised malicious workers. Hence there’s an optimal

level of disguise for attackers.

Recognizability. Figure 3.9 shows the recognizability of methods w.r.t. varying

disguise levels on real datasets. Confusion matrix based models, BCC and D&S, are

more robust to disguise and model the workers accurately regardless of adversarys’

disguise. KOS uses a single reliability value and thus is more sensitive to disguise.

Generally, the recognizability of adversaries drops as disguise increases, since their

behavior more closely resembles normal workers.

3.4.2 Heuristic-Based Attacks (HeurAtt): Targeted

We report the evaluation results for targeted attacks. We focus on parameters rele-

vant to targeted attacks, the percentage of malicious workers and the proportion of

targeted tasks.

Impact of Percentage of Malicious Workers Figure 3.10 and 3.11 show the accuracy

of the methods w.r.t. varying percentage of malicious workers on the real datasets.

We fixed the fraction of targeted tasks for Product and PosSent dataset to be 0.2

and 0.1, respectively, based on two factors: 1) targeted attack is impactful, 2) there

is an observable difference among methods’ performance. The general trend is that

increasing the number of attackers, the overall accuracy of the system increases

thanks to the truthful contributions of attackers to non-targeted tasks. However,

the accuracy of targeted tasks is decreased by attackers.

Remarkably, D&S and BCC which are more robust against untargeted attacks are

more susceptible to targeted attacks. While they maintain high overall accuracy,

their accuracy for the targeted tasks suffers the most due to their failure to differ-

entiate targeted and untargeted tasks when modeling workers’ behavior (i.e. being

misled by malicious workers based on their true answers to the untargeted tasks).

On the other hand, LAA-S is significantly more robust against targeted attacks,

even though the overall accuracy is not as high as other methods, explained by the
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Figure 3.10: Targeted HeurAtt: Accuracy & Accuracy Targeted vs. % of Malicious

Workers (Product dataset)

0 10 20 30 40 50 60

Percentage of Malicious Workers

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1   

A
c
c
u
ra

c
y

MV

DS

BCC

Soft

Hard

KOS

LAA-S

PM

(a) Accuracy

0 10 20 30 40 50 60

Percentage of Malicious Workers

0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

A
c
c
u
ra

c
y
_
T

a
rg

e
te

d

MV

DS

BCC

Soft

Hard

KOS

LAA-S

PM

(b) Accuracy Targeted

Figure 3.11: Targeted HeurAtt: Accuracy & Accuracy Targeted vs. % of Malicious

Workers (PosSent dataset)

absence of explicit worker modeling. While MV-Soft performs worse than others in

untargeted attacks (Figure 3.4), it is the most resilient alongside LAA-S for targeted
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attacks. MV-Soft’s resilience is due to accurate detection and penalization of ma-

licious workers when they are the majority contributing to a task with conflicting

answers, that happen more frequently while focusing on limited tasks rather than all

tasks.

Impact of Proportion of Targeted Tasks Figure 3.12 and 3.13 show the accuracy

of the methods w.r.t. varying percentage of targeted tasks on real datasets. As the

ratio of targeted tasks increases, the overall accuracy and targeted accuracy decrease.

However, when the ratio gets sufficiently large, accuracy increase for D&S and BCC.

Since malicious workers have to dilute their efforts among a larger set of targeted

tasks, they are more discoverable and less effective.
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Figure 3.12: Targeted HeurAtt: Accuracy vs. Ratio of Targeted Tasks (Product

dataset)

Comparing the datasets, answer redundancy inversely affect targeted attack’s suc-

cess, similar to untargeted attacks. Given the Product dataset’s lower redundancy,

this attack is successful even with a high ratio of targeted tasks.
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Figure 3.13: Targeted HeurAtt:Accuracy vs. Ratio of Targeted Tasks (PosSent

dataset)

Optimization Based Attacks (OptAtt): Untargeted

Impact of Percentage of Malicious Workers (White-Box Attack) We evaluate the

OptAtt in white-box setting, i.e. given the full knowledge of the inference method

used and all other workers’ answers. Figure 3.14 shows the accuracy of the inference

methods w.r.t. varying percentage of malicous workers.

All methods’ accuracy drops fairly quickly as the percentage of malicious workers

increases. Comparing HeurAtt and OptAtt (Figure 3.4a vs Figure 3.14a for Product

dataset, Figure 3.4b vs Figure 3.14b for PosSent dataset), the accuracy under Op-

tAtt drops to zero at a much lower percentage of malicious workers for all methods.

The attackers are indeed more successful when using the optimized scheme through

stronger adversarial knowledge. Comparing methods, all perform similarly in re-

siliency and are susceptible to the attack, since it is optimized for that particular

inference method. However, LAA-S has a slight edge over others.

Transferability of Inference Methods (Gray-Box Attack) We evaluate the effec-

tivenes of OptAtt when attackers only know other’s answers but not the inference

method used. We analyze the transferability of attack when the inference method
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Figure 3.14: Untargeted OptAtt: Accuracy vs. % of Malicious Workers
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Figure 3.15: Untargeted OptAtt Transferability (Gray-Box): Accuracy vs % of

Malicious Workers

assumed by the attack is not the same method used in reality.

Figure 3.15 shows the accuracy of the methods w.r.t. varying percentage of adver-

saries assuming the common D&S is used as the inference method. Regardless of the

inference method used in reality, the attack is as successful as the white-box attack,
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i.e. a general attack based on D&S is transferable to others.

Impact of Adversarial Knowledge (Gray-Box Attack) We analyze OptAtt in gray-

box settings when attackers only know part of others’ answers plus the inference

method used. Attackers infer labels before and after attack using partial answers.

The malicious workers are set to 20% and 30% for Product and PosSent datasets

respectively. Figure 3.16 shows the accuracy of the methods w.r.t. varying percentage

of malicious knowledge of others’ answers.
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Figure 3.16: Untargeted OptAtt (Gray-Box):

Accuracy vs Partial Knowledge

The accuracy drops and attack is more successful with more adversarial knowledge.

The attack is still quite successful even when a very low percentage of other’s answers

are known. One explanation is that the reliability of workers for both datasets is

quite uniformly distributed around 0.79. Thus for all methods, even with a small

fraction of available normal workers’ answers (i.e. 0.2), the adversaries estimate the

truth quite accurately. OptAtt in gray-box setting is quite realistic and effective

disproving that full adversarial knowledge is needed for success.
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Figure 3.17: Targeted OptAtt: Accuracy Targeted vs. % of Malicious Workers on

Product and PosSent dataset

3.4.3 Optimization Based Attacks (OptAtt): Targeted

Impact of Percentage of Malicious Workers We set the ratio of targeted tasks to be

0.01 and 0.005 for Product and PosSent datasets respectively. Since OptAtt is more

successful, a lower ratio of targeted tasks is chosen here compared to HuerAtt to

portray the same regions of interest for methods’ performance. Figure 3.17 shows

accuracy targeted of the inference methods w.r.t. varying percentage of malicious

workers on the real datasets. Overall accuracy is not shown due to space limitations.

Accuracy Targeted decreases as percentage of malicious workers increases. Compar-

ing targeted attack in HeurAtt and OptAtt (Figures 3.10 & 3.11), HeurAtt is more

effective in reducing accuracy at a small percentage of malicious workers. However,

with a greater percentage of malicious workers, targeted OptAtt attack is more suc-

cessful. One probable reason is since a subset of tasks is targeted, the chance of

adversary’s detection is lower compared to the untargeted setting. So, OptAtt that

trades some accuracy drop in exchange for less detection will lose its edge in attack

power over HeurAtt which only focuses on accuracy.
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Discussion

We summarize our key findings on the performance of leading inference methods

using diverse techniques under various data poisoning attacks.

Table 3.5: Top 2 Robust Methods under Different Attacks

GoalStrategy HeurAtt OptAtt

Untargeted D&S (LAA-S) LAA-S (KOS)

Targeted LAA-S (MV-Soft) LAA-S (BCC)

Comparison of Methods Figure 3.18 shows the overall attack susceptibility of dif-

ferent inference methods along two dimensions (untargeted attacks and targeted

attacks) under HeurAtt and OptAtt attacks. Susceptibility is defined as 1 - AUC. A

more robust method should have a lower susceptibility across both dimensions. The

AUC is the accuracy over an interval of fraction of attackers. Since in reality mali-

cious workers are not the majority, we choose the interval [0, 0.5]. The most robust

methods should be those dominating others (less vulnerable) in both dimensions, the

pareto optimal methods or skyline. Table 3.5 shows the top 2 performing methods

for each category of attacks. We also discuss the main findings below.

• Among direct computation methods, MV-Soft is more robust than MV, i.e.

dominates MV, for all attacks, thanks to its modeling of worker reliability.

• Among OptAtt, MV-Hard is more robust than PM only under targeted HeurAtt.

This can be attributed to its optimal matching algorithm that penalizes or re-

moves malicious workers when they become the majority among the contribut-

ing workers for conflicting tasks, which happens when they all give wrong

answers to a target set of tasks. On the other hand, PM is more robust than

MV-Hard under other attacks.

• For untargeted attacks, among PGM based methods, D&S dominate BCC un-

der HeurAtt. However, under OptAtt, BCC dominates D&S. Note that in
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Figure 3.18: Susceptibility of Different Inference Methods

HeurAtt the responses are designed for each individual worker, while under

OptAtt, the collective effect of malicious workers is considered. Therefore cor-

relation modeling in BCC can counter the possible collusion of malicious work-

ers, reflected in BCC’s more resilient behavior under OptAtt. Overall, D&S

is most resilient if only untargeted HeurAtt is anticipated. However, D&S is

vulnerable to all other attacks. Between KOS and BCC, KOS has a slight edge

considering all four attacks.

• The neural network based method LAA-S dominates all others in all attacks

except having a slightly higher susceptibility than D&S in untargeted HeurAtt

in the low redundancy dataset (Product). We suspect this is due to the sparsity

of the task representation vector in contrast to the large number of network

parameters combined with the lower quality of malicious answers in HeurAtt.

The superior performance in all other cases can be attributed to its network

of parameters, which can be considered as an implicit and sophisticated (non-

linear) model of worker reliability.

• Comparing different techniques, besides the best performing neural networks,



52

PGM based methods are generally more robust than optimization based meth-

ods and direct computation methods. This is also consistent with the findings

in [107] under normal settings with varying worker reliability.

• Comparing different worker models, the confusion matrix based methods gen-

erally outperform those with a single reliability model and MV method with

no worker model. Neural network based method LAA-S, even though with

no explicit worker model, achieves the best performance thanks to its network

of parameters, which can be considered as an implicit and more sophisticated

(non-linear) model of the reliability associated with each worker.

Comparison of Attacks From the attack point of view, OptAtt is more effective

compared to HeurAtt, especially for untargeted attacks. This is not surprising given

the adversarial knowledge and OptAtt strategy. While OptAtts can only be carried

out in white-box and gray-box settings given full or partial adversarial knowledge,

as we have shown, they can be very effective under gray-box settings even without

the knowledge of the inference method or with a small percentage of normal work-

ers’ answers. This shows that optimization based attacks can be a real threat to

crowdsourcing applications.

For targeted attacks, in a lower percentage of adversaries, HeurAtt can be more

successful compared to OptAtt. OptAtt trades off some accuracy drop in exchange

for less adversary detection, hence losing its edge in attack power over HeurAtt, solely

optimizing for accuracy drop. There is an optimal level of disguise and percentage

of targeted tasks for attackers under HeurAtt, however, these may not be easily

identifiable as they vary substantially across inference methods and settings.

Comparison of Datasets and Other Factors The comparison between the datasets

reveals that a crowdsourcing system with a higher redundancy of answers is generally

more robust. It remains an interesting question for a crowdsourcing system provider

to find the best trade-off between redundancy and the overall platform cost to ensure

the resiliency of the system. However, worker engagement does not have a major

impact on the robustness of the system.
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Chapter 4

Enhanced Truth Inference Method

under Data Poisoning Attack

Despite a wide range of successful applications, crowdsourcing systems have a weak-

ness. They are vulnerable to adversarial countermeasures by attackers aware of

their use through either reading publications or self-experimentation. Attackers may

become aware of the truth inference algorithm details, e.g., parameters used, and

modify their behavior to evade detection. More powerful attackers can also actively

tamper with the system by polluting the provided answers, reducing or eliminating

its efficacy.

In this chapter, we investigate the robustness of the truth inference algorithm

against adversarial attacks in the context of enriching the prior knowledge and equip

the algorithm with augmenting data into a specific portion of tasks.

4.1 Problem Definition

Crowdsourcing is a paradigm that provides a cost-effective solution for obtaining

services or data from a large group of users, or crowd. Amazon’s Mechanical Turk

(MTurk) and Waze are well-known examples of crowdsourcing systems aggregating

human wisdom to estimate the true answer for their corresponding tasks. Many

businesses use MTurk to complete simple tasks, for example, tagging images or com-

pleting a survey [46]. Another example is Waze [87], a crowd-driven navigation
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application. Waze offers users more ways to share information on accidents, police

cars actively, and even contribute content like editing roads, landmarks, and local

fuel prices. For example, users can report the traffic status at various locations, which

is then aggregated to update the traffic condition shown on the map. Today, Google

integrates selected crowdsourced data from Waze into its own Maps application.

Although crowdsourcing is a cost-effective solution, attackers could easily take ad-

vantage of it and exploit a large number of workers to elevate or reduce support for

products or opinions artificially. For example, the rating system of restaurants in

the Yelp application could be manipulated by creating fake reviews. Studies have

shown [?, 3] that the revenue of restaurants in Yelp application is increased up to

9% when the rating score of that restaurant is increased just by one score. Another

example of attacks that happened in Foursquare, Yelp and YikYak that attackers can

cheaply emulate numerous virtual devices with forged locations to overwhelm these

systems via misbehavior. Misbehavior can range from falsely obtaining coupons on

FourSquare or Yelp to imposing censorship on YikYak.

Since the answers are collected from non-expert workers in the crowdsourcing sys-

tem, the collected answers often contain inherent noise. One important component

of crowdsourcing systems is truth inference, which infers the true labels from the

answers provided by workers. Majority voting (MV) is a straightforward method to

aggregate answers which naively assumes that all workers have the same reliability.

Besides MV, advenced methods such as probabilistic graphical model (PGM) based,

and neural network based [19, 20, 39, 43, 74, 98] methods have been proposed to im-

prove the performance of truth inference by considering various parameters such as

the reliabilities of workers or the difficulties of tasks.

Most truth inference methods were designed without consideration for malicious

intents. However, crowdsourcing applications may be subject to data poisoning at-

tacks [40, 80, 88] where malicious users may intentionally and strategically report

incorrect information to mislead the system to infer the wrong truth for all or a

targeted set of tasks. In the Waze example, the competitors may intend to tarnish
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Waze’s reputation by providing wrong answers to decrease the system’s overall accu-

racy. This can be often achieved via Sybil attacks [16, 22, 95,101] where an attacker

creates a large number of Sybil workers to report wrong answers strategically.

This chapter defines robustness on the truth inference method in the crowdsourc-

ing system and provides a high-level overview of attack settings in a crowdsourcing

system.

4.1.1 Problem Definition

Given a set of tasks T and a pool of workers W, each task t ∈ T is assigned to

a subset of workers w ∈ W. Each worker wi provides an answer to each of their

assigned tasks. The goal of truth inference is to determine the true answer Ẑ based

on all the answers provided by the workers for each task. The tasks in a crowdsourcing

system can be classified into 1) decision-making tasks where workers select a binary

answer such as yes or no, 2) multi label tasks where workers select one label among

multiple candidate labels, and 3) numeric tasks where workers provide answers with

numeric values. The truth inference methods may consider different factors such

as type of tasks, level of difficulty of tasks, and task assignment methods [107]. In

this paper, we focus on the decision-making tasks, i.e., the binary truth inference

problem, and do not consider other variations.

Definition 4.1. (Truth Inference) Given a set of tasks T, set of workers W and

a bipartite graph indicating tasks assigned to each worker, a truth inference method

returns a set of predicted true label for tasks, denoted as Ẑ.

A certain percentage of attackers may behave maliciously and strategically attempt

to flip the true label of tasks in an adversarial environment. The goal of robust truth

inference is to effectively infer the truth through correct estimation of the label even

in the presence of malicious workers.
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4.1.2 Attack Setup

Based on the adversary’s level of knowledge, attacks can be classified into black-box,

gray-box, and white-box attacks. In black-box attacks, the adversaries only know

about their assigned tasks. In white-box attacks, the adversary has full knowledge

about the inference method being used, the task assignment and answered provided

by other workers. In gray-box attacks, the adversary may have partial knowledge

of the above. The two attack methodologies based on different levels of adversarial

knowledge are described as follows.

Heuristics Based Attacks

We adapt the heuristics based attacks in a black-box setting when the malicious

workers do not know each other, as a non-collusive strategy. The most straightfor-

ward heuristic for an attacker would always be to report the wrong answer for each

of their assigned tasks. However, this may be easily recognized by most of the truth

inference systems (besides majority voting) which model the workers’ reliability. The

attackers could disguise themselves as honest workers by providing true answers for

some tasks so that they won’t be detected by the system. To model this behavior,

we use the following heuristics approach [82].

The worker’s behavior is modeled by defining a confusion matrix πw that captures a

worker’s probability of providing a certain label given the true label. Given the label

set L = {0, 1}, α and β indicate the probability of workers provide a correct label

given the true label of 1 and 0, respectively. Each malicious worker w′ is associated

with a malicious confusion matrix πw
′

with α′ and β′ and a normal confusion matrix

πw with α and β, and a disguise parameter γ. w′ behaves as a normal worker modeled

by πw with probability γ and as a malicious worker modeled by πw
′

with probability

1 − γ. This parameter helps attackers to obfuscate their behavior and deceive the

system into not detecting them as malicious workers. For example, a malicious worker

with a moderate disguise may have πw =
[

β = 0.85 0.15

0.05 α = 0.95

]
and πw

′
=
[

β′ = 0.05 0.95

0.9 α′ = 0.1

]
, and

γ = 0.2.
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Optimization Based Attacks

We adopt the optimization based attack [65, 82] in a white box setting where an

adversary has full knowledge of the truth inference algorithm being used, answers

provided by other workers, and task assignments, therefore, can optimally inject

manipulated answers to maximize the damage to the system. The attack goal is

to maximize the number of flipped labels before and after the attack along with

maximizing the attackers’ collective confusion matrix parameters (reliability) inferred

by the system. Intuitively, this will help them to obfuscate their malicious nature

and cause more disruption in the system. Let ẑatj and ẑbtj denote the inferred answer

by the DS method after and before attack for task tj, respectively, and α̂w′ and β̂w′

represent the inferred confusion matrix parameters of the malicious worker w′. The

optimization problem can be formulated as follows:

max
C′

M∑
j=1

1(ẑatj 6= ẑbtj) + λ
∑
w′∈W′

(α̂w′ + β̂w′) (4.1)

where λ controls the trade-off between the objectives of maximizing the inferred col-

lective reliability of malicious workers and maximizing the number of flipped labels.

4.2 Defense Methodology

This section investigates a solution that brings robustness in terms of the perfor-

mance of truth inference methods in the crowdsourcing system. Our solution is

based on identifying sensitive tasks with a higher chance of manipulation by adver-

saries named boundary tasks. Then, utilizing the boundary tasks and incorporating

more substantial prior to preserve the robustness of the system in the presence of

data poisoning attacks.

This section proposes two solutions: 1) Edge-NN and 2) Edge-PGM that bene-

fits from data augmentation technique followed by the enhanced inference method.

Figure 4.1 depicts the overall framework of our solution.
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Figure 4.1: Overall Framework of EdgeInfer Solution

4.2.1 Boundary Task based Data Augmentation

Intuitively, malicious workers can gain power in a crowdsourcing system and manip-

ulate the result of predicted labels for some but not all tasks by preventing normal

workers from reaching consensus, which generally reflects the task’s true label. These

boundary tasks for which workers fail to reach a firm consensus are particularly vul-

nerable to manipulations and may lead to wrong inferences. Hence our proposed

approach focuses on these boundary tasks. We present two phases here, 1) detec-

tion phase in which vulnerable tasks (i.e., boundary tasks) are identified; and 2)

augmentation phase in which matrix completion technique is utilized to nullify the

misleading engineered answers of malicious workers.

Detection Phase The vulnerable boundary tasks for which workers do not reach a

strong consensus are detected.

Definition 4.2. (Boundary task) Given a set of M tasks and a set of N workers

as t ∈T = {t1, ..., tm} and w ∈W= {w1, ...wn}, a label set L = {0, 1} and answer

matrix CN,M , the subset of tasks are called boundary tasks if the certainty in workers’

majority label is less than or equal to a threshold δ.

BT = {t : t ∈ T, max (p0
t , p

1
t ) <= δ} (4.2)
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where p0
t and p1

t are the probability of the truth label of task t to be 0 and 1,

respectively.

Figure 4.2 shows a crowdsourcing system consisting of 10 workers and four tasks

where six workers answer each task. For predicting the true label of task t2 and task

t4, workers strongly agree on label 1 and label 0 for task t1 and task t4, respectively.

The certainty in workers’ majority label is 83% and 100% for t2 and t4, which are

quite high, so the malicious workers might not have enough power to flip the true

label of these tasks. Therefore applying data augmentation for these tasks would be

unnecessary and may even introduce noise. However, workers tie on the labels for

task t1 and have a weak consensus on the labels for task t3. Therefore, malicious

workers would potentially have a much greater chance of flipping the true label of

these tasks, we call these tasks with less certainty for the majority label as boundary

tasks. Since the inferred label of boundary tasks is more likely to be inaccurate,

we run the matrix completion on boundary tasks and concatenate the completed

matrix to the non-boundary tasks. Then, the truth inference method is run on this

augmented answer matrix.

Aggregation

&

Inference

Ƹ𝑧

…
…

…

𝑤1

𝑤10

𝑤9

𝑡1

𝑡2

𝑡3

𝑡4

𝑤2

Figure 4.2: Example of a Crowdsourcing System
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4.2.2 Augmentation Phase

In a comprehensive comparison of truth inference methods, Zheng et al. [107] point

out that MV outperforms other inference methods in case of complete answer set,

i.e. all workers provide answers to all tasks. Based on this conclusion, having a com-

plete answer can be advantageous in improving a crowdsourcing system’s accuracy.

Furthermore, study [82] shows that redundancy, i.e., the average number of workers

assigned per task, is an essential factor in resilience against attacks in crowdsourcing.

However, real-world data are typically sparse, meaning the number of answers

per task is relatively low, even though some workers can answer a large number of

tasks. Motivated by this, we propose a data augmentation method to address the

sparsity challenge and enhance existing truth inference methods’ robustness. The

augmentation phase is only applied to boundary tasks as a pre-processing step before

the inference to neutralize adversaries’ potential contaminated data.

Matrix Factorization is a common technique in data compression and feature learn-

ing [49,78]. Using this technique for matrix completion shows the underlying interac-

tions between workers, tasks, their corresponding level of worker reliability and task

difficulty. This technique factorizes a matrix to find two matrices such that their

product would generate the original matrix.

Definition 4.3. (Matrix Factorization): Given a set of N workers and a set of M

tasks. Let C of size |N | × |M | be the matrix that contains all the answers that the

workers provided to the tasks. Find two matrices P|N |,|K| and Q|M |,|K| such that P.QT

approximate C.

Each row of P and Q draws the association of workers and tasks with features. To

obtain P and Q, gradient descent is used to minimize the difference between their

product and the answer set C, iteratively. To avoid overfitting, a parameter η is used

to control the magnitude of the workers-feature and task-feature vectors such that

P and Q produce an accurate approximation of C without having the elements of
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these matrices to be unnecessarily large.

min (Cn,m −
K∑
k=1

pn,k qk,m)2 +
η

2

K∑
k=1

(‖P‖2 + ‖Q‖2) (4.3)

Figure 4.3: Example of Matrix Factorization

Figure 4.3 shows that the element is expressed as the inner-product of two vectors,

the corresponding row vector of Item (I) and column vector of User (U). Our learning

task is determining the value of matrices I and U by enforcing IiUj to be similar to Ci,j

for all observed entries. Although the answer matrix C is sparse, I and U would be

dense matrices, provided that we have at least one observation for all Items (rows)

and all Users (columns). As I and U are dense matrices, we can estimate unseen

entries by taking the inner-product of two corresponding vectors from I and U.

Our augmentation approach is generalizable and agnostic of the inference method,

and it is applied as a processing step before inference to increase the redundancy

of answers. There are studies based on tensor completion [?, 110] that use matrix

completion as an inference method under a non-adversarial setting and apply it on

the entire provided-answer matrix and their empirical results are generally not as

impressive as the other state-of-the-art methods, therefor, we exclude them from our

analysis.
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4.2.3 Enhanced Inference Method

Inference involves aggregating provided answers to estimate the true label of each

task. The details of inference methods in Edge-NN and Edge-PGM approaches are

described here.

Edge-NN Inference: The recent survey paper [107] compares the traditional in-

ference methods and concludes that DS is one of the overall winners. Also, this study

shows [82] that LAA-S as the latest neural network based method outperforms pre-

vious methods. Here we present a neural network based approach enhanced with a

more substantial prior to achieving more robustness. The existing state-of-the-art

neural network based approach LAA-S [98] adopts a variational autoencoder (VAE)

network [45] to leverage the learned latent truth label distribution that best repre-

sents the original task vector for inference. However, LAA-S can also be subjective

to poisoning attacks as it is employing the distribution of the original answers as a

prior (essentially majority voting). Our main idea is to enhance it with a stronger

prior that considers workers’ reliability. We propose a hybrid model that utilizes

the neural network model while incorporating the DS result as its prior. Since DS

models the reliability of workers as a confusion matrix it outperforms majority vot-

ing in terms of approximating the true labels of the tasks. Therefore, utilizing the

distribution labels of DS as the prior might result in some unsophisticated attackers

being filtered out from the system.

Figure 4.4 shows our proposed enhanced inference method composed of two parts:

1) prior estimation that approximates the distribution of labels using the inferred

truth of the tasks from DS inference method and 2) inference through the enhanced

LAA-S algorithm, while leveraging the prior obtained in the previous step.

DS method [19] is a PGM based method that models the reliability of each workers

with a confusion matrix. It utilize the EM algorithm to calculate the maximum like-

lihood and estimate the item’s true label and worker’s reliability (i.e. their confusion

matrix).
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Figure 4.4: Components of Inference Method in Edge-NN

LAA-S [98] inference algorithm adopts a VAE network [45] to leverage the learned

latent truth label distribution that best represent the original task vector. This model

contains two shallow neural networks: 1) an encoder or classifier (qθ) transforming

the task vector (v) into the latent feature (z) indicating the truth label, and 2)

a decoder or reconstructor (pφ) which recovers a task vector based on the latent

features.

Inputs and output of the VAE represent each task as a vector consisting of the

one-hot encoding of the provided answers by each worker to the task. The network

is trained on all one-hot encoded task vectors (v) by minimizing the reconstruction

error between the original and recovered task vectors. Additionally, the training also

considers how closely the learned estimated ground truth resemble those inferred by

DS, supplied to the model as the prior. The objective function is shown below.

min
qθ,pθ

Eqθ(z|v)logpφ(v|z)−DKL(qθ(z|v)|| prior) (4.4)

where the first term is the reconstruction error and the second term enforces the

distribution of inferred labels to follow a specific prior through the negative KL

divergence DKL term.

Edge-PGM Inference: GLAD inference method [92] is a PGM based model that

considers workers’ reliability and the difficulty level of task to estimate the true an-

swer of tasks. One drawback of GLAD method mentioned in Zheng et al. study [107]

is that in some cases the estimation of the difficulty level parameter related to the
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tasks is inaccurate. Hence, the GLAD fails to outperform the other inference meth-

ods.

We adopt the GLAD truth inference method which incorporates the level of dif-

ficulty of tasks into their inference method by replacing the vanilla prior of task

difficulty level with a better prior based on boundary tasks [92]. Our key insight is

that the more difficult tasks are the one that workers fail to reach a strong consensus

on and therefore are particularly vulnerable to manipulations and may lead to wrong

inference. Figure 4.5 depicts the Components of Inference Method in Edge-PGM.
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Figure 4.5: Components of Inference Method in Edge-PGM

GLAD models each client i reliability as a single value ri ∈ [0,+∞), a higher

value implies a higher reliability, and each task’s j difficulty level as a single value

1/χtj ∈ [0,+∞). A high value of 1/χtj implies task tj is more sensitive or difficult.

The true label of tasks (Ẑ) are estimated based on workers’ reliability (r) and tasks’

difficulty (χ) parameters, as follow:

p(ztj |C, r, χ) =
∏
i∈Wtj

1

1 + e
−rwiχtj

(4.5)

The Edge-PGM inference method initializes the difficulty level (χ) of detected

boundary tasks as 10 and the other tasks are all treated equally and their difficulty

level is set to 1, as follow:

{1/χtj = 10 if tj ∈ BT else 1/χtj = 1 for tj ∈ T}
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Then the expectation–maximization (EM) algorithm is iteratively applied to esti-

mate parameters (r,χ ).

4.3 Experiments and Results

4.3.1 Experiment Setup

In this section, we introduce the datasets and conduct experiments on them to eval-

uate the performance of the proposed robust mechanism.

Datasets: We tested our method on three public benchmark datasets for decision

making tasks. Table 4.1 shows the summary of the datasets and their key properties.

Table 4.1: Statistics and Properties of Datasets

Dataset Product PosSent Temp

N (# of tasks) 8,315 1,000 462

M (# of workers) 176 85 76

V (# of answers) 24,945 20,000 4620

Redundancy (# of answers per task) 3 20 10

Engagement (# of answers per worker) 141 235 60

Avg workers’ credibility 0.79 0.798 0.73

Truth Labels Ratio (negative,positive) (88%, 12%) (52.8%, 47.2%) (50%, 50%)

• Product Dataset. This dataset includes 8315 tasks where each task is a question

about a comparison of two products. An example is ”are iPad Two 16GB WiFi

White and iPad 2nd generation 16GB WiFi White the same?” [38].

• PosSent Dataset. This dataset contains information about the general senti-

ment of a tweet about the reputation of a company. Workers assess each tweet
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and provide positive label, meaning that the tweet will increase the reputation

of the company, or negative to indicate the opposite [5].

• Temp Dataset. In this dataset, each task is to identify whether or not one event

happened before another in a given context. [?]. An example news text is ”John

fell. Sam pushed him.”, and the task is to decide if the events that the colored

words describe happened before or after each other. ”pushed” happened before

”fell”.

Poisoning Dataset: For poisoning answers, assuming adversaries W ′, with the

fraction of malicious workers being |W ′|
|W |+|W ′| , we applied heuristics based (Black Box)

and optimization based (White Box) attacks given the attack strategies described in

Section 4.1.2. Heuristic based attacks are designed based on black-box knowledge

and the disguise parameter (γ) is set to 0.0. Optimization based attacks are designed

based on white-box knowledge and use DS as a inference methods in which worker’s

reliability is modeled based on confusion matrix, we set the λ parameter to be 1.

Parameters: In Edge-NN method, for data augmentation phase, the learning rate

for Temp, PosSent and Product dataset are set as [0.01, 0.01, 0.001], respectively.

Also the number of latent dimensions for each of the Temp, PosSent and Product

dataset are set to [13, 13, 20], respectively. The regularization parameter(η) is set

to 0.005. In Edge-PGM method, the range for δ parameter is limited to [50%-70%]

since other values are just complementary to this interval. The δ in Edge-PGM is

chosen as 0.55 for all the experiments.

Metrics and Comparison: We evaluate inference performance using accuracy

and F-score, computed based on the predicted labels and ground truth. Since the

Product dataset is heavily unbalanced, F-score is chosen as the metric. For the other

two datasets, we report accuracy. Accuracy is defined as the fraction of tasks whose

truth are inferred correctly.
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4.3.2 Experiment Results

We conduct several experiments with three real datasets to assess the effectivness of

our solutions.

Effect of Certainty Threshold (δ) on Accuracy/F-score: Figure 4.6 shows

the effect of the parameter δ (certainty threshold) on accuracy/f-score of the pro-

posed method, Edge-NN, for different percentage of malicious workers. We run this

experiment on three datasets, and contaminated these datasets based on heuristic

and optimization attacks described in Section 4.1.2.

The δ= 1 corresponds to augmenting all tasks and δ= 0.45 corresponds to no aug-

mentation. When the % of malicious workers (%mal) is low, having no augmentation

performs the best and the accuracy drops when augmentation increases. This trend

is as expected since the data has high quality and augmentation does not help. How-

ever, as the %mal increases, accuracy increases as augmentation increases and then

drops back when augmenting all tasks. This verifies the benefit of augmenting the

boundary tasks only when there is significant noise in the data.

As show in Figure 4.6, we observe that the accuracy of the system is sensitive

to the value of noise added for augmentation on boundary tasks. Note that the

number of candidate tasks is directly proportional to the certainty threshold (δ).

Furthermore, it is shown that the optimal δ for an effective defense is dependent

on %mal. Intuitively, at a higher %mal, there will probably be more contaminated

tasks, and so by choosing a higher δ, we will apply augmentation on more tasks.

We replicated this experiment on the PGM based methods and observed similar

trends, which stresses that the success of boundary task augmentation is not bound

to a specific inference method. This trend remains the same in both heuristic and

optimization attack.

For the remaining comparison, we choose to set δ as 0.55, 0.55, 0.65 for Temp,

PosSent and Product dataset for heuristic and optimization attack, respectively. In

general, the range of [0.5, 0.65], corresponding to the boundary tasks, gives a good
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overall performance over varying percentage of malicious workers. This also confirms

our intuition that it is beneficial to only perform data augmentation on the boundary

tasks. We note that in practice, the percentage of malicious workers will not be

too high due to the cost of creating sybil workers. Given that Product dataset is

comparatively more sparse it would be harder to reach a strong consensus with fewer

labels for each task. Therefore, to correctly infer the truth of those boundary tasks,

more of them should be included in matrix completion, hence a higher δ = 0.65 is

selected.

Ablation Study: We assess the impact of augmentation as a preprocessing step

and utilizing an enhanced prior on the three truth inference methods, DS, GLAD,

and LAA-S (i.e. majority voting as prior). The methods that just consider the

edge augmentation are called in the form of Edge-$method-name$. The methods

with enhanced prior are named in the form of $method-name$+. Also, the methods

that combine both of these techniques are named as Edge-$method-name$+. For

example, Edge-DS is a DS inference method with edge augmentation, LAA-S+ is a

LAA-S method with enhanced prior (i.e. DS as prior) and Edge-LAA-S+ is a LAA-S

method with enhanced prior along with edge augmentation.

First, we assess the impact of augmentation, as shown in Figure 4.7, in all three

datasets, Edge-GLAD, Edge-DS and Edge-LAA-S+ outperform GLAD, DS and

LAA-S, especially in the most likely range for %mal, from 20 to 30. This con-

firms the benefit of the data augmentation technique in enhancing the performance

of the existing truth inference methods.

Moreover, we assess the impact of using DS as prior on the LAA-S method instead

of majority voting. As it is shown in Figure 4.7, using the DS as a prior (LAA-

S+) helps to slightly improve the performance of the model, however, if the number

of malicious workers is higher than 20%, the DS model completely failed, therefore

using DS could not outperform the original LAA-S model. Edge-LAA-S+ (i.e. Edge-

NN) outperforms other methods and verifies the benefit of both augmentation as a

preprocessing phase and using DS as prior.
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Figure 4.6: The Effect of Certainty Threshold (δ) on Accuracy across different %mal
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Figure 4.7: Ablation Study: Robustness vs %mal
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Furthermore, we assess the impact of using different distribution for boundary tasks

versus other tasks as prior on the GLAD method instead of using uniform distribution

for all tasks. As it is shown in Figure 4.7, differentiating the difficulty level of tasks

and using it as a prior (Edge-GLAD+) helps to improve the performance of the

model.

Comparison of Edge-NN and Edge-PGM: Figure 4.7 shows that Edge-NN

(i.e. Edge-LAA-S+) and Edge-PGM (i.e. Edge-GLAD+) are robust against both

type of attacks (i.e. black-box and white-box) and reduce the attack’s success rate.

Edge-NN performs better than Edge-PGM when the %mal is less than 20%, since

the performance of Edge-NN depends on the prior and DS method at that specific

interval performs well. By increasing the number of malicious workers in the system

the DS method is unable to perform well and it effects the performance of Edge-NN

method. However, Edge-PGM outperform Edge-NN when the %mal is greater than

20%.
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Chapter 5

Robust Federated Learning under

Data Poisoning Attack

Artificial intelligence (AI) is becoming an inevitable part of our life by spreading

itself through all applications in various domains. Training a meaningful predictive

machine learning model by access to vast volumes of data is challenging since it

can be costly to collect data from clients or organizations. Also, sharing data with

any third party could compromise the privacy of clients or organizations. Recently,

federated learning has emerged as a promising new collaborative learning framework

to build a shared model while keeping the clients’ data private [1, 58,62].

The federated learning framework is quite practical and also flexible enough to be

applied in various domains, such as conversational AI and healthcare [58, 62, 68].

Training a model for these domains requires a diverse dataset. Access to data from

several organizations and centralized them in a third-party service provider is a bur-

den and can be impractical considering the personal information privacy regulations.

Yet, we still wish to use data across various organizations because a model trained

on data from one organization might show poor generalization performance. Utiliz-

ing federated learning becomes promising to collaboratively train a machine learning

model with good generalization performance without the requirement to share raw

private local datasets [1].

In this chapter, We consider the adversarial attacks problem in the federated learn-

ing setting in which a global server is responsible for aggregating model parameters
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shared by clients. Our goal is to efficiently assign reliability score to clients and

incorporate the parameters shred by reliable clients.

We use a trustworthy approach, originally proposed in the crowd-sourcing domain,

against such attacks in a federated learning setting to measure the trustworthiness of

provided updates. The intuition is that in federated learning the provided updates

by benign clients would be similar to each other in each round. Therefore the global

server can implicitly learn to rely more on clients’ updates that are similar to each

other. Measuring the clients’ trustworthiness can be estimated by adopting a truth

inference mechanism. We derive our aggregation algorithm by incorporating the

reliability of each clients’ provided parameters. Based on estimated reliability, the

one is chosen if their reliabilities are not far from the other clients. Finally, the

local parameters are aggregated based on the estimated reliability of clients in the

proportion of the number of local data trained.

5.1 Problem Formulation

In a federated learning framework, there is a central node (global server) and several

participating clients. The global server controls the learning process and aggregates

the parameters submitted by clients during multiple communication rounds. The

clients train the same model locally using their local datasets. Then, they share

their updated local model parameters, not their raw data, with the central node (i.e.,

server), which aggregates all their contributions and broadcasts back the updated

global model parameters.

The common federated learning aggregation algorithm is called FedAvg [62] that

takes the weighted average of updated locally model parameters. This aggregation

method is vulnerable to adversarial attacks or unintentional errors in a system. Due

to strategic adversarial behavior or infrastructure failure in the system, some of the

clients can become faulty during training and send malicious or arbitrary values to

the global server. Thus, the overall convergence performance can be affected severely.
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This kind of fault in which client nodes act arbitrarily is called Byzantine faults [?];

therefore, robust federated learning is necessary.

Recently, several methods have been proposed to mitigate attacks in federated

learning or distributed learning [8, 14, 25, 26, 97]. The statistical method such as

median or trimmed mean aggregation algorithms [97] perform well under Byzantine

attack however these methods are failing under other types of attacks such as label-

flipping and Gaussian noise attacks [8, 18, 31,42].

5.1.1 Federated Learning

The federated learning framework is important when the participating organizations

desire to keep their data private. Instead of sharing data, they share the model

parameters to take advantage of a high volume of data with different distribution

and improve the model’s generalization. Federated learning consists of K clients and

a global server, G. The same model is shared among the global server and all clients.

Each client ci accesses to their own local dataset Di, where |Di| = li. The total

number of samples across all the clients is
∑K

i=1 li = l. Each client ci keeps their

data private, i.e. Di = {xi1, ....xili}, from the global server. The goal of federated

learning is to learn a global model parameters vector with n parameters wG ∈ Rn in

which this parameter vector minimizes the loss among all samples D =
⋃K
i=1Di in

the aim that the global model generalizes well over the test data, Dtest.

At each time step t, a random subset from the clients is chosen for synchronous

aggregation, i.e. the global server computes the aggregated model, then sends the

latest update of the model to all selected clients. Each client ci ∈ K uses their local

data Di to train the model locally and minimize the loss over its own local data.

After receiving the latest global model, the clients starts the new round from the

global weight vector wtG and run model for E epochs with a mini-batch size B. At

the end of each round, each client obtains a local weight vector wt+1
ci

and computes

its local update δt+1
ci

= wt+1
ci
−wtG, then sends the corresponding local updates to the

global server, which updates the model according to a defined aggregation rule. The
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simplest aggregation rule is a weighted average and formulated as follow:

wt+1
G = wtG +

K∑
i=1

αi · δt+1
i (5.1)

where αi = li
l

and
∑K

i=1 αi = 1.

5.1.2 Adversarial Model

For the adversarial model, we follow two assumptions: (i) The number of adversaries

are less than 50% of whole clients (restricted effect of malicious updates on the global

model); (ii) the data is distributed among the clients in an identical independent

distribution (IID) fashion. The adversary’s goal is to ensure the performance of the

system degrade or to cause the global model to converge to a bad minimum.

In the adversarial setting, a subset of the clients act maliciously to the overall accu-

racy (untargeted attack) or the misclassification of some of the classes or particular

data samples (targeted attack). If the malicious client happens to be sampled by

the server in each round, it will submit an adversarial update based on its attack

strategy. For example, in the case of a label-flipping attack, it changes the true label

to the targeted label under attack, updates its local model based on the poison data,

and shares the local updates with the server.

We propose a novel defense algorithm called FARel, intending to mitigate the

adversarial updates’ impact on the global model. At an intuitive level, the server

estimates each client’s reliability on their submitted parameters and updates the

global model parameter based on the estimated reliability. Our main contribution

is to introduce the truth inference methods originated in crowdsourcing in a novel

way to obtain clients’ reliability and design the reliability-based robust aggregation

strategy.
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Figure 5.1: Example of crowdsourcing system

5.2 Proposed Robust Model Aggregation

We present our proposed robust aggregation method. We first introduce the truth

inference algorithm and utilize this method in federated learning in order to estimate

the reliability of provided updates by clients in each round. We further improve

upon it by introducing the necessity of applying the outlier detection on our truth

inference-based aggregation.

5.2.1 Truth Inference Method

Due to the openness of crowdsourcing, the crowd may provide low-quality or even

noisy answers. Thus, it is crucial to control crowdsourcing’s quality by assigning

each task to multiple workers and aggregating the answers given by different workers

to infer each task’s correct response. A fundamental component is called Truth

Inference, defined as follows: given a set of tasks and a pool of workers, each task

is assigned to a subset of workers. Each worker provides an answer to each of their

assigned tasks. The goal of truth inference is to determine the true answer based on

all the workers’ answers for each task.

To better understand of crowdsourcing, Figure 5.1 shows an example, given three

workers W={w1, w2, w3} and five tasks T={t1, t2, .., t5}. As it is shown, e.g., worker

w1 answers t4 with ’1.7’, i.e., w1 thinks that the answer to task t4 is ’1.72’. A naive
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solution to infer the true answer per task is Majority Voting (MV), which regards

the choice answered by majority workers as the truth. Based on Figure 5.1, the

truth derived by MV for task t1is ’1.77’.The MV incorrectly infers the true label for

that task. Another method, like the PM method, resolves conflicts from different

sources for each entry. It provides more accurate results comparing with averaging.

Compared with the ground truths, it is clear that worker w1 and w2 provides more

accurate information (more reliable) while w3 are not very reliable.

We can map the federated learning into the truth inference by considering the

model’s weight parameters as tasks. Also, the workers are the clients that provide

local parameters to the global server.

Another importan element in a crowdsourcing system is type of the tasks. The type

of tasks can be classified into three categories: 1) decision-making where workers

select a binary answer such as yes or no, 2) multi-label where workers select one

label among multiple candidate labels, and 3) numeric tasks where workers provide

answers with numeric values. In federated learning, the type of task falls into the

numeric task. Subsequently, we discuss how to obtain each client’s reliability based

on their submitted parameters to the global server.

Algorithm 2 show the truth inference framework for numeric tasks, the reliability

of each worker i ∈ [k] is denoted as rci . It initializes clients’ reliability with the

same reliability as rci = 1. Also, it initialize the estimated truth for each weight

parameter as the median of all values provided by the clients. Then it adopts an

iterative approach with two steps, 1) inferring the truth, and 2) estimating client

reliability.

5.2.2 Robust Aggregation Method: FARel

In this section, details of our proposed aggregation method are provided. To begin

of each round, we compute the reliability level of each clients by applying the truth

inference method.

Let δtci = {δtci [1], δtci [2], ..., δtci [n]} be the local updates that is shared by client ci
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Algorithm 2 Obtain Clients Reliability

Input: Provided parameters by local clients δk =
⋃K

i=1 δci , w
t
G

Output: output: R =
⋃K

i=1 rci

1: Initialize clients’ reliability (rci = 1 for i ∈ K),

2: Initialize inferred truth of each update parameter (∆̂G) as the median of local updates of δk

3: while True: do

4: Step 1: Inferring the Truth

5: for each weight parameter j ∈ N do

6: Inferring the ∆̂G based on δk and R

7: end for

8: Step 2: Estimating client reliability

9: for each client do

10: estimate R based on δk and ∆̂G

11: end for

12: if converge then

13: break

14: end if

15: end while
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at round t. Let K = {c1, c2, ...ck} be the set of clients. Hence, at round t, the

updated parameters δtk are collected from K clients. Given the updated parameters

δtk provided by K clients, the goal of utilizing the truth inference is to infer the

reliability of each clients R = {rc1 , ...rck} and incorporate this reliability score into

the aggregation method.

The idea is that benign clients provide trustworthy local updates, so the aggregated

updates should be close to benign clients’ updates. Thus, we should minimize the

weighted deviation from the true aggregated parameters where the weight reflects

the reliability degree of clients. Based on this principle, we utilize the PM method,

which is a truth inference method applicable in numerical tasks [53]. First, we need

to search for the values for two sets of unknown variables ∆ and R, which corre-

spond to the collection of truths and clients’reliability respectively, by minimizing

the objective function f(∆,R). The loss function measures the distance between the

aggregated parameters (estimated truth) and the parameters provided by client (ob-

servation). When the observation deviates from the estimated truth, the loss function

return a high value. To constrain the clients’ reliabilities into a certain range, the

regularization function is defined and it reflects the distributions of clients’ reliabili-

ties.

Intuitively, if a client is more reliable, the high penalty will be received if this client’s

observation is quite different from the estimated truth. In contrast, the observation

made by an unreliable client with a low reliability is allowed to be different from

the truth. In order to minimize the objective function, the estimated truth rely

more on the clients with high reliability. The estimatd truth and clients’ reliabilites

learn together by optimizing the objective function through a joint procedure. We

formulate this problem as an optimization problem that involves two sets of variables.

The values of one set is updated iteratively to minimize the objective function while

the values of another set is fixed. This optimization problem is defined as follow:

min
R,∆̂

K∑
i=1

rci · dist (∆̂G, δ
t
ci

), (5.2)
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Where rci , δ
t
ci

and ∆̂G represent client ci’s reliability, provided update by client ci

at time t, and aggregated updates at time t on the global server, respectively. Also

dist (∆̂G, δ
t
ci

) is a distance function from the aggregated updates of all clients to the

clients’ provided update.

The goal is to minimize the overall weighted distance to the aggregation parame-

ters in the global server in a way that reliable clients have high weights, as follow,

where dist (∆̂G, δci), is the distance between the inferred truth and the local up-

date parameter vector provided by client ci and rci is client ci’s reliability [53]. In

our problem, the type of parameters provided by clients are continuous, therefore

Euclidean distance is used as a distance function,

√∑N
j=1

(
∆̂j
G − δ

j
ci

)2

, where N is

the number of local parameters and δjci indicates the j-th local parameter shared by

client ci. The client ci’s reliability is modeled using a single value rci . Intuitively,

workers with answers deviating from the inferred truth tend to be more malicious.

The algorithm iteratively conduct the following two steps, 1) Updating the client’s

reliability and 2) updating the estimated truth for parameters.

Updating the client’s reliability In this step, we fix the values for the truths

and compute the clients reliability that jointly minimize the objective function sub-

ject to the regularization constraints.

Initially, each clients is assigned with the same reliability, ∀i∈ K rci=1. The relia-

bility score of each clients after each iteration is updated as:

rci = − log

( ∑N
j=1 dist(∆̂

j
G , δjci)∑K

k′=1 dist(∆̂
j
G , δ′k

j)

)
(5.3)

Equation 5.3 indicates that a clients reliability inversely proportional to the dif-

ference between its observations and the truths at the log scale. The negative log

function maps a number in the range of 0 and 1 to a range of 0 and , so it helps to

enlarge the difference in the clients reliability.
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Truth computation At this step, the reliability of each clients is fixed, and we

update the truth for each entry to minimize the difference between the truth and the

client’ observations where clients are weighted by their reliability degrees.

At the aggregation process (FARel), the global server incorporate the provided

parameters of each clients based on their reliability. Hence, the global parameters

are updated as follow:

wt+1
G = wtG +

∑
i∈K

rtci αi δ
t+1
ci (5.4)

5.2.3 Reduce Effect of Malicious Clients: FARel adapt

The above robust aggregation method, FARel, does not include explicit mechanisms

to detect malicious clients. Since the reliability of each client plays a role in the

aggregation method, it is important to minimize the effect of the malicious parame-

ters shared by the non-reliable client. Thus, the truth inference method allows us to

detect non-reliable clients that provide malicious updates. Algorithm 3 summarizes

FARel adapt robust aggregation method.

Algorithm 3 Robust Aggregation (FARel adapt)

Input: selected clients Kt, Rt(reliabilityofallclients), wt
G,

Output: wt+1
G

1: Cand (set of clients’ candidate) initialized to ∅
2: Rt ← getClientsReliablity()

3: µ, σ ← median(Rt), std(Rt)

4: for each client ci do

5: if reliability of client ci between µ− σ and µ+ σ then

6: Add ci to Cand

7: end if

8: end for

9: wt+1
G ← wt

G +
∑

i∈[Cand] r
t
ciαiδ

t+1
ci

Intuitively, we expect to observe the following behavior: the server assigns a higher

score as a reliability to the honest clients and a lower reliability score to the mali-
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cious one. This behavior is detected when no attack happens in the system or the

specific type of attacks such as Byzantine or apply noise to the features is occurred.

On the contrary, if a label-flipping attack happens in the system this behavior is

shifting, i.e., the truth inference system assigns higher reliability to the malicious

clients. Therefore, it is required to disregard the reliability of clients that deviates

significantly from the others. To detect anomalous reliability that does not fit with

others, outlier detection methods could be effective.

As it is shown in Algorithm 3, after obtaining the reliability of each clients, the

median (µ̄) and standard deviation (σ) of the reliabilities are computed for all the

clients participated in the round t. The clients whose reliability fit in the range of

[µ̄− σ, µ̄+ σ] are selected as a candidate, and the global parameters are updated as

follow: wt+1
G = wtG +

∑
i∈[Cand] r

t
ci
αi δ

t+1
ci

5.2.4 Further Improving the Defense Capability: FARel hist

As we have noted, the above version of our method ignores the temporal relation-

ship between weight parameters. Ignoring this temporal relationship might miss

remarkable insights that the parameters shared by clients each round. Therefore, we

incorporate the statistical information of the previous rounds during the reliability

estimation, which we call (FARel hist) algorithm. Incorporating the statistical in-

formation into the system is depended on the way of choosing the client that can fall

into static and dynamic phase:

Static Phase: the selected clients at each round are fixed, therefore, the tempo-

ral relationship between weight parameters are added as the statistics of previous

rounds. These statistics are added as the new tasks to the vector of weights. These

statistics are the number of large weights, number of small weights, median of weights

and average of weights.

Dynamic phase: clients will dynamically join or leave the federated training. In

this case, we can add median and average of weights from previous round as the

weights provided by the new clients.



83

5.3 Evaluation

5.3.1 Experiment Settings

Dataset.

We consider the following three public datasets.

• MNIST dataset: This dataset contains 70,000 real-world hand written images

with digits from 0 to 9 with 784 features. We split this dataset in which training

has 60,000 and test data has 10,000 samples.

• Fashion-MNIST (fMNIST) dataset: This dataset consists of 28×28 gray scale

images of clothing and footwear items with 10 type of classes. The number

of features for this dataset is 784. We split this dataset in which training has

60,000 and test data has 10,000 samples.

• CIFAR-10 dataset: This dataset contains 60,000 natural color image of 32x32

pixels in ten object classes with 3,072 features. We split this dataset in which

training has 50,000 and test data has 10,000 samples.

• MNIST and fMNIST dataset: For these dataseta, we use a 3-layer convolutional

neural network with dropout (0.5) as the model architecture. The learning rate

and momentum set as 0.1 and 0.9, respectively.

• CIFAR-10 dataset: We use VGG-11 as our model. The droput, learning rate

and momentum set as 0.5, 0.001, 0.9, repectively.

Adversarial Attacks.

We apply three data poisoning attacks on real-world datasets. We assume an attacker

has full knowledge about the training datasets on the local client devices. We consider

the training data splits equally across all clients. Among these clients, we assume that

30% of the clients are adversary. We consider three scenarios on how the adversary
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client poisoned their data or noisy the updated parameters to compromised the global

model.

• Label-Flipping Attacks: Adversaries flip the labels of all local training data on

one specific class (e.g., class #1) and train their models accordingly.

• Noisy Data: In MNIST and FMNIST, the inputs are normalized to the inter-

val [0,1]. In this scenario, for the selected noisy clients we added uniform noise

to all the pixels, so that x ← x + U(1.4, 1.4). Then we cropped the resulting

values again to the interval [0,1].

• Byzantine Attack: adversary perturb the model updates and send the noisy

parameters to the global server. δti ← δti + ε, where ε is a random perturbation

drawn from a Gaussian distribution with µ = 0 and σ = 20.

5.3.2 Experiment Results

Effect of Attacks on Reliability Score of Clients Fig.5.2 shows the reliability range

of malicious and benign clients under label-flipping and Byzantine attacks in static

mode for FARel and FARel hist, correspondingly. It shows that the reliability score

when confronted with flipping and label Byzantine attack are in contrast with each

others in FARel approach. The model assign higher reliability to benign workers in

Byzantine attack, however, the opposite behavior is observed in presence of flipping

attack.By incorporating the statistical information of previous rounds, the model

assign higher reliability to the benign clients in present of flipping attack with lots

of fluctuation. We observe that the trend for noisy attack follows the Byzantine

trend. As it is shown in Fig.5.2, the maximum and minimum reliability of all benign

clients are between [µ̄−σ, µ̄+σ] for both of the flipping label and Byzantine attack.

However, the reliability of benign clients in flipping attack are [0.0, 0.005] which

indicates that these clients are not provide a good quality weight parameters. In our

experiments without considering the statistical information from previous rounds, we

observe that aggregation method in presence of label-flipping attack preforms better
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(a) Flipping Label:

FARel
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(b) Byzantine: FARel
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(c) Flipping: FARel hist
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(d) Byzantine:

FARel hist

Figure 5.2: Range of Clients’ Reliability on FMNIST dataset (10 clients, 30% mali-

cious clients)

if the parameters sent by the clients with higher reliabilities are ignored. On the

contrary, the performance of the model under the Byzantine attack is improved by

removing the clients with the lower reliability.

Robustness The results of our experimental evaluation are shown in Table 5.1. We

consider two cases with the static and dynamic pool of clients for previously described

scenarios in which there are 30% malicious clients.

In this experiment we compare our robust aggregation methods with the state-

of-the-art baselines. The variant of our aggregation methods are called FARel,

FARel adapt, FARel hist. The FARel method is blindly aggregate the calculated

reliability of clients. However, FARel adapt ignores the clients provided data if their

reliabilities are far from the others. Finally, FARel hist considers statistical informa-

tion of previous weight parameters to estimate clients’ reliabilities.

• Static Mode.

In this experiment, clients that participate at each round are fixed. The total

number of clients are considered to be 10 in which 30% of them (i.e. 3 clients)

are malicious ones. As it is shown in Table 5.1, FARel adapt and FARel hist

are robust in most scenarios. As expected, Avg’s performance is significantly

affected under the presence of bad clients, especially in byzantine and flipping
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Table 5.1: Aggregation Method Comparison in Static & Dynamic Mode (30% mali-

cious clients)

Static Mode

Dataset Attack FedAvg Median Trim mean Krum FARel FARel adapt FARel hist

CIFAR 10 Clean 70.25 70.75 70.78 57.75 68.05 69.74 69.75

Byzantine 10.0 55.01 10.29 57.24 44.64 59.66 52.67

Flip Label 51.37 41.34 46.74 10.0 10.0 52.34 51.10

Noisy 67.51 68.31 68.22 57.67 67.22 67.64 67.80

FMNIST Clean 91.15 90.95 91.05 87.79 91.05 91.05 91.07

Byzantine 10.0 89.20 10.0 87.66 81.25 90.62 84.59

Flip Label 79.05 77.58 73.23 10.0 14.55 80.38 83.52

Noisy 99.25 99.20 99.32 94.78 94.09 97.74 98.0

MNIST Clean 99.29 99.31 99.34 98.51 99.01 99.3 99.32

Byzantine 11.35 98.18 11.35 97.43 91.35 98.21 98.34

Flip Label 94.58 97.80 94.47 11.35 11.40 95.56 96.34

Noisy 92.08 93.01 88.26 83.16 80.04 96.74 96.82

Dynamic Mode

Dataset Attack FedAvg Median Trim mean Krum FARel FARel adapt FARel hist

CIFAR 10 Clean 69.22 69.58 68.22 56.69 67.87 69.22 67.25

Byzantine 12.53 44.93 10.00 61.49 55.0 58.78 60.56

Flip Label 10.0 35.00 10.07 10.32 11.56 57.73 55.53

Noisy 63.27 63.35 61.18 61.36 61.67 63.43 63.78

FMNIST Clean 91.68 92.00 88.26 89.79 91.79 91.98 91.87

Byzantine 10.0 88.90 25.0 90.36 81.35 89.85 83.00

Flip Label 10.0 68.23 10.25 11.04 11.35 70.93 78.24

Noisy 89.08 88.12 86.13 81.12 89.24 90.01 90.24

MNIST Clean 99.32 99.35 99.28 99.01 99.32 99.34 99.33

Byzantine 11.35 97.05 10.01 96.37 96.27 97.07 94.38

Flip Label 10.28 94.63 10.54 11.35 12.16 94.99 95.23

Noisy 80.12 96.67 95.34 94.23 87.37 96.10 96.07
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Figure 5.3: Effect of number of Malicious Clients

scenarios. It is also interesting to observe that both Krum and Median are very

sensitive to label flipping attacks.

• Dynamic Mode. In this experiment, at each round, 10 clients are randomly

selected from a pool of 100 clients consists of 30 malicious clients and 70 normal

clients. The total number of clients participated in each round are considered

to be 10. The result of this experiment is shown in table 5.1, we observe that

FARel adapt performs better we observe that in both dataset Krum performs

better under Byzantine attack.

Impact of number of Malicious Clients We study the impact of the number of ma-

licious clients on the proposed aggregation method. As it is shown in Fig.5.3, by

increasing the number of malicious clients, the performance of global model slightly

drops. It can be observed that FARel hist improves upon FARel adapt for FMNIST

and MNIST datasets that have a higher accuracy on their clean data (i.e. no at-

tack). However, in the CIFAR 10 dataset that has a poor performance on clean data,

FARel hist could not improve the performance.



88

Chapter 6

Conclusions and Future Work

Crowd-computing has numerous applications in various domains, including health,

application reviews, traffic monitoring, and annotating detests. In this dissertation,

we proposed methods to build robust aggregation model to handle strategically and

intentionally manipulated data in such applications. Our solutions increase the ro-

bustness of these applications.

6.1 Summary

In Chapter3, we investigated the effectiveness of existing truth inference state-of-the-

art methods to make a more knowledgeable decision for choosing the best method

based on the domain. To this end, we conducted an extensive experimental evaluation

of several state-of-the-art methods. Our selected methods included direct-based,

PGM-based, and optimization approaches to estimate the true labels for binary or

decision-making tasks. We carefully chose our test data sets from both real and

synthetic data to conduct a fair and comprehensive evaluation. We also designed

extensive experiments to show both the strengths and weaknesses of each method.

Chapter 4 proposed two solutions Edge-NN and Edge-PGM to improve the robust-

ness of existing truth inference methods against data poisoning attacks in crowd-

sourcing systems. The proposed solutions provide a novel algorithm that applies

matrix completion on a subset of tasks in which workers cannot reach a sufficiently



89

strong consensus. Also, it is combined with two enhancements to existing state-of-

the-art inference methods by utilizing prior information. For the evaluation of our

work, we applied a heuristic based attack and optimization based attack and our

results confirm the effectiveness of our defense solution.

Chapter 5 investigated trustworthy solutions for federated learning based on the no-

tions of truth inference method. First, we proposed two novel solutions to aggregate

parameters without degrade the performance of the global model. Our solutions uti-

lized truth inference method and outlier detection mechanisms to integrate provide

clients parameter based on their reliability. We evaluated our methods extensively

using real datasets. Our experiments on three common real-world datasets show

that FARel adapt and FARel hist are robust to malicious clients with label flipping,

noisy data and Byzantine attacks, while prior aggregation methods are not robust

enough. This study focuses on IID distribution data among clients, future research

could focus towards non-IID distribution.

6.2 Future Work

Possible future research directions for the proposed methods in this dissertation are

presented as follows.

6.2.1 Extending robustness in crowdsourcing under data poi-

sioning attack

The goal of our evaluation study [82] is to understand the resilience of existing

leading-edge truth inference methods and ultimately build more robust systems.

Towards this end, several directions for future work can be explored.

• Attack resistant truth inference: while existing methods provide certain level

of resistance to data poisoning attacks, it remains an open question whether we

can build more robust systems, e.g. by designing hybrid methods that combine
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the strength of existing techniques (e.g. LAA-S against optimization based at-

tack and targeted heuristic based attack and D&S against untargeted heuristic

based attack) or designing entirely new techniques. A more fundamental ques-

tion is whether we can have quantifiable guarantees for the robustness of the

system against data poisoning attacks.

• Semi-supervised learning: All the truth inference approaches evaluated in this

paper assume no access to the ground truth. This unsupervised nature makes

the methods inherently susceptible to attacks. A semi-supervised approach [4,

83] may help provide resilience to attacks within which ground truth and work-

ers’ answers for historical tasks can be used for training the system.

• Dynamic behavior of workers: Our study is focused on a fixed set of workers

and tasks. In practice, the workers could join and leave the system as they

wish. They could also alter their behaviors dynamically in a strategic way to

maximize the attack effect. Understanding the impact of such behaviors and

building robust systems in a dynamic setting is also an important direction.

Deriving the true answer of tasks in crowdsourcing systems based on user-provided

data is susceptible to data poisoning attacks, whereby malicious users may intention-

ally or strategically report incorrect information to mislead the system into inferring

the wrong truth for a set of tasks. In our proposed methods [81] in chapter 4, we fo-

cused on binary tasks and proposed a solutions base on 1) detecting and augmenting

the answers for the boundary tasks in which users could not reach a strong consen-

sus and hence are subjective to potential manipulation, and 2) enhancing inference

method with a stronger prior. As future work, our approach can be extended to take

into account other types of attacks such as targeted attacks and further improvement

on robustness, especially against strong white-box attacks.
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6.2.2 Extending robustness in federated learning setting

Real-world federated learning environments are dealing with non-IID data environ-

ments. So far, most existing works mainly focus on IID distribution. The studies that

focus on non-iid consider the global server’s validation dataset to signal the model’s

performance. As one of the core parameters of federated learning is data distribu-

tion among clients. In our research, we considered data distributed identically among

clients; we did not use any golden dataset in the global server. Therefore, we built

a robust aggregation model to infer the reliability of each client. As a next step,

we plan to extend our approach to consider non-id distribution by incorporating the

golden validation set in the server-side.

Due to the multi-iteration/dynamic environment of federated learning compared

to a simple crowdsourcing framework, taking advantage of reinforcement learning

methods or the Kalman filter-based algorithm would help estimate the client’s re-

liability with more confidence. Therefore, the next step towards the robustness of

the federated learning system is expanding our work and integrating the aggregation

algorithm with a reinforcement learning algorithm. This integration would learn how

likely each client’s parameter is used in training the general model.
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Hany Abdelmessih Guirguis, and Sébastien Louis Alexandre Rouault. Aggre-

gathor: Byzantine machine learning via robust gradient aggregation. In The

Conference on Systems and Machine Learning (SysML), 2019, number CONF,

2019.

[19] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation

of observer error-rates using the em algorithm. Applied statistics, pages 20–28,

1979.

[20] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux.

Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for

large-scale entity linking. In Proceedings of the 21st international conference

on World Wide Web, pages 469–478. ACM, 2012.

[21] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux.
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[69] Luis Muñoz-González, Kenneth T Co, and Emil C Lupu. Byzantine-robust

federated machine learning through adaptive model averaging. arXiv preprint

arXiv:1909.05125, 2019.

[70] An Thanh Nguyen, Byron C Wallace, and Matthew Lease. A correlated worker

model for grouped, imbalanced and multitask data. In UAI, 2016.

[71] Michael O’Mahony, Neil Hurley, Nicholas Kushmerick, and Guénolé Silvestre.
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