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Improved Nutrition in Early Life and Cardiometabolic Outcomes in Guatemala 

Abstract 

By  

Siran He 

There is a global epidemic of cardiometabolic diseases. Metabolic flexibility, which can 

be assessed through meal challenges, is integral to cardiometabolic health. Previous research 

drew inconsistent linkages between early-life nutrition and cardiometabolic conditions in 

adulthood. The overarching goal of this dissertation is to investigate the pathways through which 

early nutrition affects long-term cardiometabolic health.  

This research is nested within the Institute of Nutrition of Central America and Panama 

(INCAP) Longitudinal Study in Guatemala, a cluster randomized controlled trial conducted in 

1969-77 with subsequent follow-up studies. In 2015-17, plasma samples were obtained both at 

the fasted state and two-hour after a meal challenge. We performed assays for lipids, glycemic 

markers, and inflammation markers.  

First, through difference-in-difference modeling and mediation analysis, we examined the 

role of leptin. We observed that leptin partially mediates the pathway between early-life nutrition 

and glycemic status (only in women). The mediation was associated with improved pancreatic β-

cell function, and not with reduced insulin resistance. Second, to describe the metabolic 

flexibility in this population, we assessed the postprandial biomarker responses, and compared 

the responses across strata of cardiometabolic phenotypes. We observed that the underlying 

pathways, particularly glycemic pathway, differed across cardiometabolic phenotypes. 

Subsequently, we compared metabolic flexibility between those who were exposed to improved 

nutrition in early life versus others. At the multi-marker level, overall postprandial biomarker 

responses did not differ by early-life nutritional exposure. However, response in the glycemic 

domain differed between exposure groups. At the single-marker level, glucose response was 

attenuated in the improved nutrition group. These findings strengthened our previous observation 

of reduced fasting glycemia among those exposed to improved nutrition. We postulated that 

nutrition improvements in early life contribute to euglycemia by enhancing metabolic flexibility.  

By integrating assessments of metabolic flexibility into a long-term cohort study, we 

extended previous research in this population. We also provided context for this work through a 

systematic review and meta-analysis to summarize global evidence on the association of 

nutrition interventions in early life and cardiometabolic outcomes. Altogether, the findings 

support evidence-based maternal and child nutrition interventions to promote long-term 

cardiometabolic health and to avoid unintended consequences. 
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CHAPTER 1: INTRODUCTION 

1.1 Background  

1.1.a Global burden of cardiometabolic diseases 

Over the past few decades, a global epidemiology transition in disease patterns has taken 

place: there has been a steady decrease in communicable diseases, accompanied by a gradual 

increase in non-communicable diseases (NCD) worldwide (1). Despite the success in reducing 

mortality rates in NCDs such as cardiovascular diseases as a result of medical advancement and 

public health efforts, these conditions place increasingly heavy burdens on the health systems, 

especially in aging populations (2). From 1990 to 2013, the global average life expectancy 

increased by more than five years, largely attributable to a decline in neonatal and child mortality 

(1). Regional and country-level differences are large, as are variations in age and sex; But the 

general trend points to even more aging populations and heavier NCD burdens across the board 

(3). The direct and indirect healthcare cost associated with managing and treating chronic 

conditions is astronomic; the loss of disability-adjusted life years is even more difficult to 

conceptualize and quantify (1).  

Cardiometabolic diseases (CMDs) are a subset of NCDs. A cluster of chronic conditions 

are referred to as CMDs due to their overlapping biological pathways and risk factors, such as 

insulin resistance, hyperlipidemia, and inflammation. CMDs include cardiovascular diseases, 

diabetes, obesity, non-alcoholic fatty acid disease, and associated complications (4). These 

conditions may result from a spectrum of factors, such as diet, environmental exposure, and 

genetics (4). CMDs are an emerging contributor to global health burden. Cardiovascular 

mortality accounts for approximately 50% of NCD deaths worldwide, and 70% of 
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cardiovascular-related deaths took place in low- and middle-income countries in 2015 (5). 

Equally disconcerting is the high prevalence of diabetes. On average, diabetes mellitus claims 21 

lives per 100,000 (and approximately 870 disability-adjusted life year, or DALY, per 100,000) in 

2015, contributing to 2.7% of global deaths (6). There is an upward trend of diabetes mortality 

rates and DALYs worldwide (6). Some low- and middle-income countries (LMICs) are heavily 

affected. For example, in recent data from Guatemala, cardiovascular disease and type 2 diabetes 

were ranked the first and the third leading causes of deaths, respectively (6). 

Occurring alongside the epidemiology transition is a “nutrition transition”, featuring 

globalization in agricultural systems and food supply networks and associated changes in food 

accessibility, dietary patterns, body composition, and other health outcomes in populations over 

long periods of time (7). While changes in food processing have provided greater accessibility to 

more diverse food options with longer shelf-life worldwide, many of these food items, however, 

are nutrient-poor and calorie rich (7). Nutrition transition, combined with a trend towards 

sedentary lifestyles and other drawbacks of unplanned urbanization, contributes to the epidemic 

of global obesity and associated complications (7, 8). Not only are the epidemiology and 

nutrition transitions worldwide phenomena, they are becoming more pronounced in low- and 

middle-income countries (LMICs) than in high-income countries (6). Approximately 80% of 

non-communicable disease mortality in the world took place in low- and middle-income settings, 

disproportionately affecting countries undergoing rapid social changes, but with sub-optimal 

health infrastructure to cope with these changes (2, 9). 

1.1.b The long-term cardiometabolic impact of nutrition in early life  

The developmental origins of health and diseases (DOHaD) paradigm links fetal and 

early life factors to long-term health consequences (10, 11). DOHaD centers around the concept 
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of developmental plasticity and the benefits of adapting to fetal environments. It also emphasizes 

a consequential mismatch between early-life environment (genetic predispositions, epigenetic 

modifications, and other environmental factors) and later environments, paving the path to 

reduced metabolic flexibility and increased susceptibility to cardiometabolic perturbations later 

in life (2). For instance, if the mother is exposed to caloric restriction during pregnancy, 

ontogenic alternations and metabolic adaptation may occur in preparation for a low-energy food 

environment (12). When this early predisposition is mismatched with a later obesogenic 

environment, the “thrifty” metabolic system, along with other metabolic alterations, will 

eventually lead to the onset and progression of CMD (13). 

Life course epidemiology is a useful tool in studying the long-term impact of early 

nutrition (14). Building upon the concept of DOHaD, life course epidemiology provides a more 

holistical analysis of the health and disease patterns throughout the life course of populations, 

beyond the focus on the in utero developmental phase (14, 15). From the perspective of life 

course epidemiology, components that could affect long-term health outcomes include genetic 

predisposition, critical windows for growth and development (such as during the first trimester of 

pregnancy), sensitive periods (such as adolescence), as well as cumulative effects of lifelong 

exposure to nutritional and environmental factors (14). Incorporating a life course perspective 

into epidemiological studies will allow us to understand the determinants of current disease 

patterns, and to evaluate nutrition investments in early life that may provide long-lasting benefits 

(5, 14, 16). 

The period from conception to two years of age, which corresponds to a period of rapid 

growth and programming, is believed to be a vulnerable phase of human development (17). This 

period, commonly referred to as “the first 1000 days” is in the focus in nutrition research and 
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public health work. First, there is now definitive evidence supporting the same growth potential 

of children across the globe (18). The variances in the actual growth patterns are attributable to 

dietary, environmental, and social factors, which are identifiable and largely modifiable (17). 

Second, the first 1000 days is a period when fetal and early-life programming occurs, including 

altered organ development and metabolic programming in response to external signals such as 

maternal diet (17, 19). With the globalization of food system and changes in nutrition 

environment, populations that were chronically malnourished in early life may be exposed to a 

different external environment later in life. This mismatch between the “hypothesized early-life 

environment” that controlled fetal programming and the actual external environment has been 

found to contribute to higher risks for CMDs in adulthood at the population level (20, 21).  

1.1.c Significance of this work 

The classic design of nutritional research usually involved an assessment of nutritional 

status and associated health effects within a relatively short period of time. This type of cross-

sectional studies, albeit effective in establishing important associations between nutrition and 

health, cannot supply much needed evidence on how, over time, nutrition influences our health. 

Nutritional needs change according to different life stages (14). Even within the same 

chronological stage, the focus on nutritional demand varies. Maternal nutritional status, for 

instance, have profound effects on fetal development: in the earlier phases of pregnancy, 

development or vital organs is rapid and protein- and energy-intensive. Based on observational 

studies, nutritional status and exposure at different fetal develop stages have varied long-term 

impact on later health (22-24). This dissertation work is situated within a prospective study, the 

Institute of Nutrition of Central America and Panama (INCAP) Longitudinal Cohort Study 

(which is described in more details in Chapter 4) that was initiated in 1969-77 as a cluster 
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randomized controlled trial, which provides valuable longitudinal data on the topic of early 

nutrition and long-term health association (25).  

This dissertation work serves to further explore the association of early-life nutrition and 

CMDs, using information from biomarkers. The INCAP researchers and staff has worked closely 

with the communities for over five decades. During the most recent follow-up study in 2015-17 

(when biological samples used in this dissertation were collected), we observed high prevalence 

of cardiometabolic conditions, and a large proportion of the study population also had subclinical 

risk factors that may lead to higher prevalence of cardiometabolic diseases as they age (16). We 

need to elucidate the underlying pathways between the early-life nutritional exposure statuses 

and cardiometabolic outcomes observed in this study population.  

Biomarkers are valuable in assessing cardiometabolic diseases. Measuring biomarkers in 

the fasted state can help fill the gaps in many population studies through elucidating 

biochemical, physiological, and pathophysiological mechanisms (26, 27). It is important to 

include relevant biomarkers in longitudinal studies, especially from the perspective of life course 

epidemiology. In this dissertation work, we selected a panel of conventional and emerging 

biomarkers to characterize cardiometabolic profiles in the study population and compared the 

profiles across strata of cardiometabolic conditions and early-life nutritional exposure status. We 

analyzed these novel and established biomarkers individually and combined, based on both a 

priori and data-driven methodologies. A more in-depth review of relevant CMD biomarkers is in 

included as Chapter 3 of this dissertation.  

While biomarker levels in the fasted state can provide a snapshot at the current metabolic 

status, they do not provide any information how these biomarkers would be affected under stress. 

One unique aspect of this work is the availability of data on two-hour response to a meal 
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challenge in a population with a relatively large sample size in a low- and middle-income setting. 

Relatively little is known, even under controlled clinical conditions in high-income countries, 

about the dynamic responses of various biomarkers and their indication for human health (28, 

29). The mixed-component meal challenge, described in more details in Chapter 4, mimics the 

stress induced by a typical meal containing fat and sugar. Responses to this physiologic stress 

was assessed through two-hour changes in biomarker levels. It is considered a more robust and 

accurate approach to examine the changes in biomarker levels in response to meal challenges 

(30). Through investigating the dynamic postprandial responses of biomarkers, we identified key 

differences in metabolic flexibility between those with and without cardiometabolic risks. 

1.2 Specific Aims  

The overarching goal of this dissertation is to examine the pathways through which 

nutrition supplementation in early life can improve long-term cardiometabolic health outcomes 

in a chronically malnourished population that is undergoing nutrition transition. 

Specific Aim 1: Investigate the role of leptin in the diverging association of early 

nutrition with cardiometabolic conditions observed in this study population, including decreased 

risk for type 2 diabetes and increase risk for obesity. 

H2.1: Early-life exposure to improved nutrition promotes organ development, which 

determines future risk for obesity and the concentration of leptin.  

H2.2: Leptin has glucose-lowering effects among participants who were exposed to 

improved nutrition in early life in this population. 

Approach: Through literature review, I built the basis for the effects of early nutritional 

exposure on ontogeny for metabolically active tissues. Using fasting biomarkers collected from 
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the Institute of Nutrition of Central America and Panama (INCAP) Longitudinal Cohort Study, I 

examined the proportional association between leptin and adiposity. Through mediation analysis 

and difference-in-difference modeling strategy, I tested the hypothesis that leptin has glucose-

lowering effects and can mediate the pathway between early-life nutritional exposure and long-

term glycemic status.  

Specific Aim 2: Describe adulthood cardiometabolic health status of the study population 

through assessment of metabolic flexibility, as characterized through meal-induced biomarker 

responses in this population.  

H2.1: Metabolic flexibility can be characterized by meal-induced responses in selected 

biomarkers to represent cardiometabolic pathways. 

H2.2:  Meal-induced responses in biomarkers differ across strata of cardiometabolic 

conditions. 

Approach: A mixed-component meal challenge was administered in the study population. 

I assayed fasting and postprandial plasma samples to obtain biomarkers that represent four 

cardiometabolic pathways, including lipids, glycemic markers, and pro- and anti-inflammation 

markers. I used least squares regression to assess postprandial biomarker responses. I compared 

the responses across strata of cardiometabolic phenotypes to examine metabolic flexibility. I 

analyzed the structural association among biomarkers using structural equation modeling, to 

further characterize the cardiometabolic profile of the study population. 

Specific Aim 3: Investigate the association of early-life nutrition with adulthood 

metabolic flexibility in cardiometabolic pathways, using a single- and multi-biomarker approach.  
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H3.1: Early-life exposure to improved nutrition, compared with other exposure status, is 

associated with improved metabolic flexibility, as characterized by biomarker responses at the 

single-biomarker level. 

H3.2: Early-life exposure to improved nutrition, compared with other exposure status, is 

associated with improved metabolic flexibility, as characterized by biomarker responses at the 

multi-biomarker level. 

Approach: At the single-biomarker level, I combined difference-in-difference modeling 

strategy and least squares regression to compare the postprandial biomarker responses between 

those who were exposed to improved nutrition in early life in the INCAP study versus other. At 

the multi-biomarker level, I used two data reduction techniques to test the hypothesis from two 

opposite directions: I used multivariate analysis of variance (MANOVA) to compare global (all 

combined) and domain specific (by cardiometabolic pathway) biomarker responses between the 

exposure groups. I then used linear discriminant analysis (LDA), a data-driven technique, to 

examine whether we can predict exposure group membership using available biomarker 

information.  

1.3 Overview of the Chapters  

The rest of the dissertation is structured as follows: Chapter 2 is a systematic review and 

meta-analysis that centered around global evidence regarding the type and the timing of maternal 

and child nutrition interventions and their associations with long-term cardiometabolic health. 

Chapter 3 present the rationale for the selected cardiometabolic biomarkers, their significance in 

nutrition research, and the relevance to this work. Chapter 4 described in details the 

methodologies used in this work, including the analytical assays and the statistical tools. The 
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next 3 chapters (Chapters 5 to 7) explore different aspects of the early nutrition-CMD paradigm, 

as described in the Specific Aims.  They represent three individual manuscripts submitted for 

publication in peer-reviewed journals. Chapter 8 summarizes the key findings and public health 

implications of this work, and to provide recommendations for future research. 

 

 

  



10 
 

 
 

CHAPTER 2: LITERATURE REVIEW PART I 

Early-life nutrition interventions and associated long-term cardiometabolic 

outcomes: a systematic review and meta-analysis 

2.1 Abstract 

Background: Early-life nutrition interventions may have lifelong cardiometabolic benefits. Most 

evidence on this topic is derived from observational studies. We evaluated the association of 

early-life nutrition interventions (randomized controlled trials) and long-term cardiometabolic 

outcomes.  

Methods: Through electronic literature search of PubMed, CABI Global Health, EMBASE, and 

Cochrane, with manual reference check and weekly new publication alert from PubMed, we 

identified 8312 records, and eventually included 55 records in this review. We conducted 

qualitative and quantitative synthesis and evaluated risk of bias. 

Results: We included 55 reports from 38 cohorts in 20 countries. Interventions were initiated as 

early as conception, and the longest till seven years of age (except for one ongoing study till 

young adulthood). The cohorts were followed up between three and 73 years. We identified 

seven types of interventions (protein-energy supplements, long-chain polyunsaturated fatty acids, 

single micronutrient, multiple micronutrients, infant and young child feeding, dietary 

counselling, and other interventions) and four categories of cardiometabolic outcomes 

(biomarkers, cardiovascular physiology, body size and composition, and sub-clinical and clinical 

outcomes). Most findings were null. The primary exception was an overall effect on fasting 

glucose concentration (standardized mean difference, SMD = -0.06; 95% confidence interval: -

0.09, -0.02; heterogeneity p = 0.70). Albeit statistically insignificant, there was an inverse effect 

on total cholesterol (-0.08; -0.17, 0.02; heterogeneity p < 0.01) and a positive effect on body 
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mass index (0.04; -0.04, 0.11; heterogeneity p = 0.01). No effect was found for blood pressure 

(heterogeneity p < 0.01 for both systolic and diastolic blood pressure). Ongoing and personalized 

dietary counselling was associated with predominantly favorable outcomes. Breastfeeding was 

associated with better cardiometabolic outcomes. The timing of intervention mattered, with 

earlier initiation conferring greater benefit. 

Conclusion: Glucose homeostasis benefited from early-life nutrition interventions, but there is a 

risk of unintended consequences, including higher adiposity. Nutrition interventions in early life 

must be evidence-based and tailored to the target populations to promote long-term 

cardiometabolic health.  
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2.2 Introduction 

There is much interest in the role of nutrition in early life, often conceptualized as the 

‘first 1000 days’ from conception to the second birthday, on child growth and development (1). 

The potential for nutrition in early life to impact also on adult outcomes has been explored.  

Early studies by Ravelli et al and a large body of work by Barker and colleagues led to the 

formulation of the Developmental Origins of Health and Disease  paradigm, positing that insults 

in fetal and early post-natal periods alter the child’s growth and development and affect the risk 

of later cardiometabolic disease (2-4).  

Epidemiological evidence from observational studies is abundant, suggesting associations 

between various early-life nutritional exposures and long-term health consequences (5-7). For 

instance, six or more months of breastfeeding, compared with shorter duration, is associated with 

lower odds for diabetes and obesity (8). A recent systematic review reported that low vitamin D 

status during pregnancy was associated with greater weight in the offspring at 9 months of age 

(9). Famine studies are generally considered pseudo-experimental, which drew lessons from the 

unfortunate “natural experiments” to explore the consequences of severe nutritional deprivation 

in early life (5). The famine studies identified early gestation as a critical window of 

development, as well as numerous morbidity and mortality consequences of severe nutritional 

deprivation in early life (10-13). 

Populations that were malnourished in childhood and subsequently exposed to an 

obesogenic environment are particularly susceptible to cardiometabolic disturbances, which 

inevitably contributes to a vicious cycle of early-life malnutrition and increased risk in 

adulthood, and may even predispose the future generations to higher risks (7). In a world of 

ageing population and increasingly heavy burden of non-communicable diseases, particularly 
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cardiometabolic diseases, we consider it urgent and critical to investigate the potentials of early-

life nutrition investments in preventing long-term illnesses (14).  

There is limited evidence from experimental studies, despite considering this type of 

study to be more indicative of causal associations (15). Nutrition interventions in early life were 

usually designed to provide short-term benefits, such as promoting infant growth and preventing 

childhood diseases (16, 17). Randomized trials conducted among pregnant women and young 

children were designed to address these shorter-term outcomes. We therefore aimed at 

summarizing the evidence on the association between early-life nutrition interventions in the 

form of randomized controlled trials and their long-term influences on cardiometabolic diseases 

and associated risk factors.  

 

2.3 Methods 

Electronic literature search 

We developed search terms based on three main domains, including “early life”, 

“nutrition interventions”, and “cardiometabolic outcomes”. We included additional qualifiers to 

specify the concept of “early life” and the duration of follow-up. In the first screening phase, we 

did not restrict the type of trial, the category of cardiometabolic outcomes, the language, nor the 

publication date. We searched the following data bases: PubMed, CABI Global Health, 

EMBASE, and Cochrane. We also set up PubMed email alert to screen new studies published 

after the initial search (completed in Feb. 2019). We received ongoing, weekly alerts of new 

publications till September 27, 2019, and added new records from the weekly list if they met the 

inclusion criteria.  

Screening process 
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We obtained 9230 records through the electronic literature search process, and an 

additional 220 records were added through other sources, including searches within known 

longitudinal studies, manual reference checks, and a search of the gray literature. After removing 

duplicates, we retained 8312 records for first-pass, title screening. After removing 7413 records 

through this initial screening process, we conducted a second round of title and abstract 

screening of the remaining 899 records, and eventually identified 136 records for full-text review 

and data extraction.  

The inclusion criteria for the articles to be included in the final analysis were: nutrition 

interventions, randomized controlled trial (acceptable if randomization by cluster or block), 

intervention conducted in early life (prenatal, maternal, gestational, antenatal, the first 1000 days, 

or in early childhood), with three or more years of follow up, and outcome(s) relevant to 

cardiometabolic diseases and risk factors.  

Exclusion criteria included: not original research articles (e.g., review, trial protocol, 

summary of outcomes in a single cohort across decades) (n = 19); observational studies (e.g., 

cross-sectional analysis) nested within cohorts that had an original randomized controlled trial (n 

= 6); interventions related to early life development and childcare, but that were not nutritional in 

nature (n = 1); did not have strictly randomized assignment for the exposure variable (n = 8); did 

not follow up with the cohort for three or more years, or the children were not yet born after 

maternal intervention (n = 13); no primary outcome of interest (e.g., reported neurodevelopment 

and dietary pattern) (n = 5); reported maternal outcome but not outcome in the children (n = 1); 

previously un-identified duplicates (n = 3); reported the same outcomes from the same 

population as another included study, but from an earlier time point (n = 1 insufficient number of 

unit in cluster randomization trials (less than 20 clusters randomized) and without appropriate 
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statistical methods to adjust for this insufficiency (e.g., small-sample corrections or variance-

weighted cluster-level analyses) (n = 2) (18); or the analysis not based on original assignment, 

but used difference-in-difference modeling strategy (n = 2).). Famine studies were excluded due 

to the quasi-experimental exposure assignment and the inability to isolate the nutritional aspects 

of the famine from other stressors (n = 20); Figure 1 provides the Preferred Reporting Items for 

Systematic Review and Meta-Analysis (PRISMA) flow chart.  

Data collection  

After the screening process, a total of 55 records were retained for data extraction and 

synthesis of results. We identified seven categories of interventions, and four categories of 

cardiometabolic outcomes.  

The interventions were classified into seven categories. 1) Protein-energy 

supplementation: in this type of intervention, the study participants (or their mothers) were 

provided supplements that contain mainly protein and energy, some of these supplements may 

include micronutrients, but the focus was protein and calories. 2) Long-chain polyunsaturated 

fatty acids (LCPUFA) supplementation. Some studies also included micronutrients along with 

the LCPUFA. 3) Single micronutrient supplementation: only one micronutrient provided in this 

type of trial. 4) micronutrient supplementation (MMS): two or more micronutrients were 

provided as supplements. 5) Infant and young child feeding (IYCF), and milk supplementation: 

all trials related to promoting or practicing IYCF were included in this category. A few studies 

that could have been included in the previous categories were included as IYCF trials as long as 

IYCF was the main purpose (e.g., LCPUFA-supplemented infant formula). 6) Dietary 

counselling: either the participants or their caretakers were provided dietary counselling. 7) 
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Other interventions: in this category we included all other types of trials that do not fit in any of 

the previous categories, including a food-based intervention and probiotics trials.  

The four major categories of cardiometabolic outcomes were: 1) Biomarkers – mainly 

glucose homeostasis, lipid profile, and inflammation; 2) Cardiovascular physiology; 3) Body size 

and body composition; and 4) Sub-clinical and clinical cardiometabolic outcomes.  

We extracted information on basic description of the study, funding and conflict of interest, 

details of methods, participant profile, and both qualitative and quantitative results. We used the 

most recent World Bank classification to determine the income levels of the countries where 

these studies were situated (19). 

Qualitative and quantitative analysis  

We first described the publication year, country, cohort, sample size, intervention age, 

duration of follow up, summary of the intervention, and outcome category. We evaluated risk for 

bias in six domains based on the Quality in Prognostic Studies (QUIPS) tool: study participants, 

study attrition, prognostic factor measurement, outcome measurement, study confounding, and 

statistical reporting (20). The research group that developed this tool advised against assigning 

an overall bias score across all domains, therefore we reported bias assessment by each domain 

for the studies in a qualitative manner. We also provided summary of key findings and outcome 

measurements. To facilitate interpretation of the results, we used bolded and capitalized words to 

indicate the key message, for instance, “NULL”, “HIGHER”, or “LOWER” value. In this 

review, the comparison was always the intervention group minus the control group, regardless of 

how the original paper presented the results.  

For quantitative synthesis, we conducted meta-analysis using the packages “meta”, 

“metafor”, and “esc” in R version 3.6.1 (R Core Team, Foundation for Statistical Computing, 
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Vienna, Austria) (21-23). We included four major outcomes in meta-analysis: fasting glucose 

concentration, total cholesterol concentration, blood pressure (systolic and diastolic), and body 

mass index. These outcomes were included based on an additional set of criteria: three or more 

studies reported this outcome; the reporting format was consistent (e.g., no transformation of the 

raw data such as z-score or logarithm in some studies but not others); qualitative synthesis 

showed that not all studies reported null results for this outcome. We pre-calculated effect size 

for each outcome by converting either unstandardized regression coefficient or mean and 

standard deviation to effect size Hedge’s g, which is bias-corrected standardized mean difference 

(SMD). We used a random effects model to generate overall effect size for each outcome with 

between-study heterogeneity test, including Higgin’s & Thompson’s I2 (percentage of variability) 

and Tau-square (τ2, between-study variance). We then plotted the meta-analysis results as Forest 

plots. For each of the selected outcomes, we also provided the corresponding funnel plot to 

assess publication bias.  

 

2.4 Results 

Summary of study characteristics 

The 55 publications were from 38 cohort studies in 20 countries, including 12 high-

income and eight low- and middle-income countries (Table 1, Figure 2). Publication dates 

ranged between 1997 and 2019 (Table 1). Interventions were conducted as early as conception, 

and the longest continued till seven years of age, with the exception of one study – the Special 

Turku Coronary Risk Factor Intervention Project for Children (STRIP), which was an ongoing 

dietary counselling intervention that lasted till early adulthood. The cohorts were followed up for 

between three and 73 years (Table 1). Most of the included studies were in the low to moderate 



18 
 

 
 

bias category across domains of bias assessment, except for Forsyth et al. 2003, which has high 

risk for bias in four domains (Table 2) (24). We did not observe publication bias for any of the 

selected outcomes (Supplemental Figure 1). 

Outcome category 1: biomarkers  

Meta-analysis showed that, fasting glucose concentration was significantly lower in 

intervention groups versus control groups across seven types of interventions (SMD = -0.06, 

95% confidence interval, CI: -0.09, -0.02), with very low heterogeneity (I2 = 0%, p = 0.70) 

(Figure 3-A). There was also a decrease in total cholesterol in the intervention groups, but it was 

not statistically significant (SMD = -0.08, 95% CI: -0.17, 0.02). There was moderate 

heterogeneity in the group (I2 = 55%, p < 0.01) (Figure 3-B).  

Qualitative evidence showed predominantly favorable outcomes in biomarkers of 

glycemic function, lipids and apolipoproteins, as well as inflammation, with a few exceptions 

(Supplemental Table 1). Two protein-energy trials that presented biomarker outcomes showed 

favorable effects, including marginally lower fasting glucose, and lower insulin and HOMA 

score (25, 26). One LCPUFA trial reported higher insulin resistance, whereas the other reported 

lower insulin concentration and insulin resistance (27). Two multiple micronutrients 

interventions reported favorable biomarker outcomes, including lower total cholesterol and lower 

inflammation marker (28, 29). Most IYCF studies reported null findings, and studies with 

significant findings were inconsistent in terms of the direction of impact. Based on the same 

study in preterm infants, Singhal et al. reported lower C-reactive protein and LDLc-to-HDLc 

ratio in banked breastmilk versus preterm formula group, but also higher insulin resistance (30, 

31). They further reported lower leptin concentration (relative to fat mass) in the intervention 

group (32). In addition, Toftlund et al. 2018 reported lower cholesterol concentration in 
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breastmilk than in preterm formula group (33). Dietary counselling (with evidence coming 

primarily from the STRIP study) reported several favorable biomarker outcomes in the 

intervention groups, including lower insulin resistance, lower circulation fatty acids, higher 

serum poly-unsaturated fatty acids, and lower serum cholesterol (34-37). All other results were 

null (Supplemental Table 1). 

Outcome category 2: cardiovascular physiology 

Meta-analysis showed that there was no statistically significantly difference between 

intervention and control groups in blood pressure (systolic: SMD = -0.00, 95% CI: -0.07, 0.06; 

diastolic: SMD = -0.01, 95% CI: -0.09, 0.07), and there were substantial heterogeneity in the two 

sets of comparisons (I2 = 77% and 55%, respectively, p < 0.01 both). (Figure 3-C)  

Approximately half (nine out of 20) of studies reported significant results in this category 

(Supplemental Table 1). The favorable findings were as follows: one protein-energy trial 

reported lower augmentation index (26). One single micronutrient trial reported marginally lower 

diastolic blood pressure, but only in overweight children (38). Two IYCF trials reported lower 

blood pressure, and one reported marginally lower heart rate (24, 39, 40). Two dietary 

counseling studies (both from the STRIP study) reported lower blood pressure and better 

endothelial functions (mainly in boys for the latter) (41, 42). The unfavorable findings included 

the following: one LCPUFA study reported higher blood pressure in boys; one IYCF trial 

reported higher blood pressure in the intervention group, but only in girls (43, 44). All other 

results were null (Supplemental Table 1). 

Outcome category 3: body size and body composition 
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Based on meta-analysis, the intervention groups had higher body mass index than the 

control groups, but the estimate was not statistically significant (SMD = 0.04, 95% CI: -0.04, 

0.11). There was moderate heterogeneity in this group (I2 = 45%, p = 0.01). (Figure 3-D)  

Several studies reported higher risk for obesity based on anthropometry measurements, 

including one maternal LCPUFA trial and six IYCF trials (high- versus low-protein formula, 

milk supplementation versus no supplementation, baby-friendly hospital versus control, enriched 

vs. un-enriched formula) (44-51) (Supplemental Table 1). Some potentially positive outcomes 

were reported as well, including larger head circumference and lower waist circumference 

reported two LCPUFA trials. One multiple-micronutrient trial reported lower body mass index-

for-age z score, whereas one IYCF trial (breastfeeding versus formula feeding) reported lower 

level of early rapid growth (27, 29, 33, 43). All other results were null (Supplemental Table 1). 

Outcome category 4: subclinical and clinical outcomes 

because of the xx studies in this category, only eight studies reported subclinical or clinical 

cardiometabolic outcomes, and the findings were inconsistent (Supplemental Table 1). One IYCF 

trial (high- versus low-protein formula) reported higher risk for obesity (51). On the contrary, 

findings from the STRIP study (dietary counselling) reported lower overweight prevalence among 

girls (52). Both Nupponen et al. 2015 (dietary counselling) and Stewart et al. 2009 (folic acid plus 

vitamin A supplementation versus vitamin A alone) reported lower risk for metabolic syndrome 

(53, 54). In addition, Pahkala et al. 2013 (dietary counselling) reported lower risk for poor 

cardiovascular health. (55) The remaining studies reported null findings (Supplemental Table 1).  

Available data for this outcome category is not suitable for meta-analysis. 

Timing of intervention 
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Two studies directly examined the difference in timing of the interventions. Ekström et 

al. 2016 observed that, when the same supplementary food item was administered immediately 

after detection of pregnancy, instead of at 20 weeks of gestion, there was improved lipid profile 

(56) (Table 1, Supplemental Table 1). Hawkesworth et al. 2011 reported that delivering the same 

maternal protein-energy biscuit pre- versus post-delivery was associated with marginally lower 

fasting glucose concentration in the offspring (25) (Table 1, Supplemental Table 1). 

Across different LCPUFA supplementation studies, we observed that, providing 

LCPUFA supplementation to mothers appeared to have  minimal impact on with cardiometabolic 

indicators in offsprings (39, 57-61) (Table 1, Supplemental Table 1). Vinding et al. 2018 

reported that offspring in the maternal fish oil supplementation group, compared with placebo 

group, had higher body mass index from birth to 6 years of age (50). In contrast, when LCPUFA 

was provided directly to the infants, there was an association with lower insulin resistance and 

lower waist circumference later in life (27) (Table 1, Supplemental Table 1). 

 

2.5 Discussion 

We conducted this systematic review and meta-analysis as an effort to synthesize up-to-

date information regarding the long-term cardiometabolic impact of nutrition interventions 

(randomized controlled trials) in early life. The primary findings of this review include: 1) 

Across different types of interventions, there was an overall favorable effect on glucose 

homeostasis. There was also a marginally favorable effect on total cholesterol and a borderline 

unfavorable effect on obesity risk. 2) Ongoing and personalized dietary counselling was the only 

intervention that reported predominantly beneficial cardiometabolic outcomes. 3) Among IYCF 

studies, breastfeeding was more beneficial than formula feeding, although breastfeeding-
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promotion alone did not yield observable long-term benefits. 4) Timing of intervention have 

direct effect on outcome, and earlier exposure to improved nutrition was more beneficial than 

later.  

In this review, we observed mostly null to modest findings in terms of long-term 

cardiometabolic impacts, unlike the relatively clear associations drawn from famine studies (12, 

62, 63). It is possible that the human body is rather resilient: unless undergoing severe energy 

and nutrient deprivation early in life, metabolic programming either would not occur, or the 

programming effects could be offset or compensated for in the long term. It is plausible to 

assume that most cardiometabolic disturbances in early life do not persist into adulthood, 

although some evidence suggested the lifelong tracking of blood pressure level (64). The 

underlying mechanisms of early-life nutrition and long-term impact is not fully elucidated (5). A 

few possible mechanisms include in-utero growth restriction, ontogenic alterations, metabolic 

adaptation, and epigenetic modifications (5, 65). Factors in the broader social, economic, and 

environmental context should be taken into consideration as well (5, 66).  

Glucose homeostasis appeared to have benefited from various types of early-life nutrition 

interventions, the most prominent being protein-energy supplementation in relatively 

malnourished populations (25, 26). The availability of sufficient amount of protein in early life 

likely supports the development of essential metabolic organs, especially the pancreas, where 

insulin, glucagon, and other key glycemic regulators are produced (67). Research showed that 

protein supplementation promotes brain development, which is a major organ that relies solely 

on glucose as fuel (68). A few other types of interventions also improved glucose homeostasis. 

Dietary counselling reduced fasting glucose concentration and insulin resistance (69, 70). 

Gestational supplementation with multiple micronutrients versus only iron and folic acid, as well 
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as LCPUFA supplementation during infancy also had beneficial effects on glucose 

concentration, indicating the importance of a balanced micronutrient profile and improved lipid 

intake (27, 56).  

The increased risk for obesity was mainly observed in interventions that provided 

“enriched” supplements, which provided either higher energy or key macronutrients beyond 

average needs (49, 51). In well-nourished populations, higher protein intake in infancy may 

increase the availability of branched-chain amino acids that can enhance the release of insulin-

like growth factor 1 (IGF-1), which is known to stimulate weight gain and body fat deposition 

(51). One study, however, provided body composition data with short intervals over the follow-

up period (birth to 6y). They reported that despite the increase in body mass index, there was a 

proportional increase in lean, bone, and fat mass in the intervention group (LCPUFA) (50). Since 

BMI does not directly measure lean mass and fat mass (48), results based solely on BMI should 

be interpreted with caution. It is possible that these interventions stimulated growth 

proportionally in different types of tissues, without compromising metabolic functions. More 

research is needed to ascertain this finding and investigate the underlying mechanisms.  

The STRIP study of dietary counselling  in Finland was the only cohort that reported 

consistently positive results across all categories of cardiometabolic outcomes, including lower 

insulin resistance, favorable lipid profile, lower blood pressure, better endothelial function, lower 

risk for metabolic syndrome, and better indicators for cardiovascular health (35, 37, 41, 52, 53, 

55, 69-71). It is possible that only intensive interventions such as STRIP can ensure long-term 

benefits, especially given its behavioral-change nature and personalized design. All other 

interventions involved changes in one or several nutritional components directly provided 

through the study, without requiring additional lifestyle modifications. Chronic diseases are 
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usually the result of cumulative exposures, which may not be sufficiently prevented through 

interventions that start and end early in life (72). However, it is important to note that the STRIP 

cohort received continuing intervention from infancy till young adulthood, making the 

“longitudinal” nature of the outcome less compelling (73).  

Protein-energy supplementation trials are a common type of nutrition intervention, 

especially in low- and middle-income countries, where the need for maternal and child nutrition 

investments is high (74). For instance, the Institute of Nutrition of Central America and Panama 

(INCAP) Longitudinal Study reported numerous positive health and human capital outcomes 

associated with protein-energy supplementation in early life (74, 75). In a recent follow-up study, 

however, INCAP researchers observed diverging effect of the supplementation on 

cardiometabolic outcomes, including protective effect against diabetes but increased risk for 

obesity (76). In this review, we have observed similar conflicting impacts of protein-energy 

supplementations on cardiometabolic outcomes in various studies (25, 26). Similar to the quasi-

experimental nature of famine studies (which focus on deprivation), the INCAP study could be 

viewed as a quasi-experimental trial with a focus on remediating chronic undernutrition. Its 

various findings are, by nature of the context, different from those obtained in high-income 

countries. It is important to further investigate the effect of relatively higher protein and energy 

intake in early life, and to compare the results between malnourished and well-nourished 

populations.  

IYCF was a major category in this review, because we combined behavior change trials 

and supplementation trials. The one IYCF behavior change trial (PROBIT in Belarus), reported 

mainly null results after implementing policies based on the Baby-Friendly Hospital Initiative 

(47, 77-79). Across supplementation trials with IYCF focus, infants who were breastfed, 
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compared with those fed with formula, had lower C-reactive protein, cholesterol, heart rate, and 

blood pressure later in life, regardless of the baseline characteristics of the cohorts, formula 

composition, or duration of follow-up (33, 39, 40, 80). Among formula-fed groups, participants 

receiving high-protein or nutrient-enriched (versus low-protein or standardized) formula had 

higher level of early rapid growth and higher fat mass during follow-up (46, 48, 49, 51). This is 

possibly due to the relatively higher percentage of protein and lower percentage of fat in the 

formula, which is rather different from breastmilk that typically contains 3-5% fat and 0.8-0.9% 

protein (81). High protein intake in early life may alter fat distribution in healthy children during 

developmental processes, including potentially higher subcutaneous fat layer (46). We therefore 

urge public health researchers and practitioners to strictly follow evidence-based programming. 

Most studies with a single micronutrient supplementation showed no clear long-term 

cardiometabolic benefits, except for reduced risk of metabolic syndrome in the group receiving 

folic acid supplementation (54). Multiple micronutrient supplementations seemed to be 

associated with better lipid profile and glycemic status, lower concentration of inflammation 

markers, and lower body mass index (29, 56). Micronutrients are essential in early-life 

development, and it has been reported that antenatal micronutrient supplementation increases 

birth weight, which in itself has long-term implications (54). It is possible that, despite short-

term benefits of single micronutrient trials, the effects are overshadowed by life-long exposure in 

other aspects. In contrast, multiple micronutrient supplementations may promote growth and 

early development in a holistic way for the effects to be long-lasting. Given the relative ease and 

convenience of micronutrient-centered trials, we should continue investigating their long-term 

benefits. 
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Regarding the timing of interventions, we have observed that earlier than later enrollment 

in the trials had more beneficial effects on lipid profile and glucose homeostasis (25, 56, 82, 83). 

However, when comparing different studies with LCPUFA supplementation, interventions 

targeting infants, compared with maternal interventions, had more cardiometabolic benefits (24, 

39, 43, 44, 50, 59-61). We did not observe a clear pattern regarding timing in this review due to 

the limited number of studies with relevant information. There is some evidence in the literature 

to support the differential impact of nutrition at various time points during pregnancy, in infancy 

and early childhood. The most well studied famine is the Dutch Famine, which helped 

distinguish famine exposure at different trimesters of pregnancy and in infancy for relatively 

accurate analysis. Earlier exposure to famine (e.g., in the 1st trimester) than later exposure (e.g., 

after birth) had associations with more severe long-term outcomes including insulin resistance 

and increased adiposity (10-13). Similarly, researchers reported that prenatal exposure 

(compared with later exposure) to the Chinese Famine was associated with significantly higher 

risk for hyperglycemia in two consecutive generations (84-86). Famine research from 

Bangladesh reported underweight as an outcome following in utero famine exposure, but 

overweight following postnatal famine exposure (87). Observations based on the Ukraine 

Famine also identified early gestation as a critical window of development (63).  

There are a few limitations in this review. We combined different types of interventions 

as an effort to summarize the impact early-life nutrition interventions as conducted by 

researchers around the world. This may lead to over generalization of the results. The trials in 

high-income settings may differ from those in low-resource settings, because the populations did 

not have the same potential to benefit from nutrition interventions. We did, however, provide 

details in the results and discussion sections to help interpret the results. The studies were also 
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conducted at different time points in early life, with varying lengths of follow-up periods. We 

encourage the readers to refer to the tables and supplemental materials, whenever necessary, for 

details in study design and outcome. We also caution against unfounded extrapolation of the 

results.   

This review is the first to summarize information related to early-life nutrition 

interventions and long-term cardiometabolic impacts with a focus on randomized controlled 

trials. We emphasized both the type and the timing of interventions in association with different 

categories of outcomes. In addition, we did not restrict publication year or the language of the 

articles, hence providing wide coverage of relevant results. In sum, this systematic review and 

meta-analysis serves both as a reference manual to refine and improve nutrition interventions to 

yield more long-term gains, and as a preventative measure to identify any intervention that may 

have unintended negative effects.  

From a public health programming point of view, it may not be feasible to implement 

long-term, intensive, and individualized dietary counselling in most settings. However, it is 

possible to incorporate dietary counseling into other types of study designs, including various 

types of macro- and micro-nutrient supplementations. It is also advisable to incorporate 

individualized dietary and lifestyle counselling into primary healthcare to ensure sustainability. 

We suggest that researchers and public health practitioners shift their point of view regarding 

nutrition interventions from disease-centered prevention to long-term, sustainable, health 

promotion strategies.  
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2.6 Tables, figures, and supplemental materials 

Table 1. Description of studies included in this systematic review 

Type Study 

(n = 55) 1 

Year Country 

(n = 20) 

Cohort 2 

(n = 38) 

Sample size 

(% Female)3 

Intervention 

age range 

 

Durati

on of 

follow 

up 

Description of the 

intervention 

[Individual or cluster 

randomization] 4 

Cardio-

metabolic 

outcomes 

Protein-energy supplementation 

1 Hawkeswor

th et al. 

(Trial 1) 5 

(25) 

2011 Gambia [U] 

Gambia (2 

trials) 

Trial 1: 1317 

(47.9%) 

(Trial 2 see 

single 

micronutrient

) 

20-week 

gestation to 

delivery 

(Mothers) 

 

17 y [Cluster: NINT = 16, NCON = 16] 

Intervention group: Pre-

delivery (20-week gestation till 

delivery) provision of protein-

energy biscuit (2 biscuits/day, 

max 1015 kcal energy, 22g 

protein, 56g fat, 47mg calcium, 

and 1.8mg iron) 

Control group: Post-delivery 

(delivery till 20 weeks 

postpartum) provision of the 

same protein-energy biscuit 

Biomarkers 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

2 Hawkeswor

th et al. 

(82) 

2009 Gambia [U] 

Gambia (1 

trial) 

1317 (47.9%) 20-week 

gestation to 

delivery 

[Mothers]  

17 y Same as Hawkesworth et al. 

2011 

Cardiovascul

ar 

physiology 

3 Hawkeswor

th et al. 

(83) 

2008 Gambia [U] 

Gambia (1 

trial) 

 

1317 (47.9%) 20-week 

gestation to 

delivery 

[Mothers]  

17 y Same as Hawkesworth et al. 

2011 

Body size & 

composition 

4 Kinra et al. 

(26) 

2008 India [U] ICDS 1131 (46.1%) In utero to 6 y 

[Mothers, 

infants, and 

18 y [Cluster: NINT = 15, NCON = 14] 

Intervention group: Protein-

calorie supplement “upma", a 

Biomarkers 
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young 

children] 

 

local preparation providing 

2.51 MJ and 20 g protein to the 

women and half this amount to 

the children. No other 

nutrients. Plus integrated child 

development services (ICDS) 

Control group: "Control group 

has similar ICDS services 

equivalent to intervention 

group (uptake was lower) 

Cardiovascul

ar 

physiology 

Body size & 

composition 

5 Macleod et 

al. (88) 

2013 UK Sorrento 

Study 

65 (53.5%) In utero 

[Mothers] 

23 y [Individual: NINT = 44, NCON = 

21] 

Intervention group 1: Protein, 

energy, and vitamins: vitamins 

plus 1810 KJ daily, 90% of 

energy as carbohydrate 

(glucose syrup) and 10% as 

protein  

Intervention group 2: Energy 

and vitamins: vitamins plus 

1810 KJ daily of carbohydrate  

Control group: Vitamins only 

(vitamin A 0.75mg, thiamine 

1.4mg, riboflavin 1,7mg, 

pyridoxine 2.0mg, 

nicotinamide 18mg, ascorbic 

acid 60mg, calciferol 2.5 μg 

daily delivered in sachets for 

dissolving in water) 

Biomarkers 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

Long-chain polyunsaturated fatty acids supplementation 
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1 Asserhøj et 

al. (43) 

2009 Denmark [U] 

Maternal 

lactation 

fish oil 

98 (44.9%) 0 to 4 months 

postpartum 

(during 

lactation) 

[Mothers] 

7 y [Individual: NINT = 64, NCON = 

34] 

Intervention group: Fish-oil 

supplement (0.6 g/d 

eicosapentaenoic acid and 0.8 

g/d DHA)   

Control group: Olive oil 

supplement 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

2 Brei et al. 

(57) 

2016 Germany INFAT  114 (NA) In utero 

[Mothers] 

5 y [Individual: NINT = 58, NCON = 

56] 

Intervention group: Daily, 1200 

mg long-chain polyunsaturated 

fatty acids, LCPUFAs (1020mg 

DHA + 180mg EPA + 9mg 

vitamin E) as fish oil capsules. 

Plus individualized dietary 

counselling aimed at reducing 

n-6:n-3 ratio 

Control group: General 

recommendations regarding 

healthy nutrition during 

pregnancy 

Body size & 

composition 

 

3 Foster et al. 

(89) 

2017 United 

States 

[U] Obese 

pregnancy  

63 (41.3%) 26.6-week 

gestation to 

delivery 

[Mothers] 

4 y [Individual: NINT = 34, NCON = 

29] 

Intervention group: DHA (800 

mg/day) supplementation, from 

25–29 weeks gestation (mean 

26.6 weeks) till end of 

pregnancy 

Control group: placebo 

(corn/soy oil), same timing 

Body size & 

composition 
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4 Gutierrez-

Gomez et 

al. (58) 

2017 Mexico POSGRA

D 

524 (45.8%) 18- to 22-

week 

gestation to 

delivery 

[Mothers] 

 

4 y [Individual: NINT = 276, NCON 

= 248] 

Intervention group: 400 mg/day 

DHA (LCPUFA) in capsules  

Control group: placebo (a 

mixture of corn and soy oils) 

Biomarkers 

5 Muhlhausle

r et al. (90) 

2016 Australia DOMInO 1531 (50.0%) In utero 

[Mothers] 

5 y [Individual: NINT = 770, NCON 

= 761] 

Intervention group: Three 500-

mg capsules DHA-rich fish 

oil/d (w800 mg DHA/d and 

100 mg EPA/d) 

Control group: Three 500-mg 

vegetable-oil capsules (without 

DHA)/d 

Biomarkers 

Body size & 

composition 

6 Rytter et al. 

(60) 

2012 Denmark [U] 

Maternal 

pregnancy 

fish Oil  

180 (54.4%) 30-week 

gestation to 

delivery 

[Mothers] 

19 y [Individual: NINT = 108, NCON 

= 72] 

Intervention group 1: Fish-oil 

capsules (2.7g n-3 LCPUFA/d)  

“Intervention” group 2: No 

capsule 

Control group: Olive oil 

capsules 

Cardiovascul

ar 

physiology 

7 Rytter et al. 

(59)  

2011 

(1) 

Denmark [U] 

Maternal 

pregnancy 

fish Oil  

135 (54.8%) 30-week 

gestation to 

delivery 

[Mothers] 

19 y Same as Rytter et al. 2012 

 

Biomarkers 

Body size & 

composition 

 

8 Rytter et al. 

(61) 

2011 

(2) 

Denmark [U] 

Maternal 

pregnancy 

fish Oil  

180 (53.9%) 30-week 

gestation to 

delivery 

[Mothers] 

19 y Same as Rytter et al. 2012 

 

Biomarkers 
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9 See et al. 

(27) 

2018 Australia [U] Infant 

fish oil  

322 (51.6%) 0 to 6 months 

postpartum 

[Infants] 

5 y [Individual: NINT = 165, NCON 

= 157] 

Intervention group: Daily 650 

mg encapsulated n-3 LCPUFA 

in the form of ethyl esters (280 

mg DHA and 110 mg EPA)  

Control group: Olive oil 

(66.6% omega-9 oleic acid) 

Biomarkers 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

10 Vinding et 

al. (50) 

2018 Denmark COPSAC2

010 

523 (49.0%) 24-week 

gestation to 1-

week 

postpartum 

[Mothers] 

6 y [Individual: NINT = 263, NCON 

= 260] 

Intervention group: Fish oil: 

2.4 g n-3 LCPUFA 

Control group: Placebo were 

lookalike control 

supplementation capsules of 

olive oil (72% n-9 oleic acid 

and 12% n-6 linoleic acid 

Body size & 

composition 

 

Single micronutrient supplementation 

1 Belizan et 

al. (38) 

1997 Argentina [U] 

Maternal 

calcium  

518 (46.2%) 20-week 

gestation to 

delivery 

7 y [Individual: NINT = 257, NCON 

= 261] 

Intervention group: 2g/day of 

elemental calcium 

Control group: Placebo 

Cardiovascul

ar 

physiology 

Body size & 

composition 

2 Hawkeswor

th et al. 

(Trial 2) 5  

(25) 

 2011 Gambia [U] 

Gambia (2 

trials) 

Trial 2: 389 

(NA)  

(Trial 1 see 

protein-

energy) 

20-week 

gestation to 

delivery 

[Mothers] 

 

17 y [Individual: NINT = 193, NCON 

= 196] 

Intervention group: Calcium 

supplementation (1500 mg/day 

elemental calcium as 3750 mg 

calcium carbonate) 

Control group: Placebo 

Cardiovascul

ar 

physiology 

Body size & 

composition 
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3 Palmer et 

al. (91) 

2019 Nepal NNIPS-2 290 (47.9%) In utero till 

lactation 

[Mothers] 

13 y [Cluster: NINT = 180, NCON = 

90] 

Intervention group 1: Vitamin 

A (700ug retinol equivalent) 

Intervention group 2: Beta-

carotene (42mg) 

Control group: Placebo 

Biomarkers 

 

4 Taylor et 

al. (92) 

2015 UK Aberdeen 

Folic Acid 

Suppleme

ntation 

Trial  

2928 (NA) In utero 

[Mothers] 

73 y [Individual: NINT = 951, NCON 

= 1977] 

Intervention group 1: 0.2mg 

folic acid per day 

Intervention group 2: 5 mg 

folic acid per day 

Control group: Placebo 

Clinical and 

sub-clinical 

outcomes 

Multiple micronutrient supplementation 

1 Ekström et 

al. (Trial 1) 

6  (56)  

2016 Banglades

h 

MINIMat Trial 1: 

1335 (47.0%) 

(Trial 2 see 

other 

intervention) 

In utero 

[Mothers] 

4.5 y [Individual: NINT = 435, NCON 

= 900] 

Intervention group: Multiple 

micronutrient supplementation 

(MMS) 

Control group: Iron (60mg) and 

folic acid (400 ug) (IFA) 

Biomarkers 

 

2 Hiller et al. 

(93) 

2007 Australia ACT 179 (NA) Less than 24-

week 

gestation to 

delivery 

[Mothers] 

8 y [Individual: NINT = 91, NCON = 

88] 

Intervention group: 1.8g/day of 

calcium 

Control group: Placebo 

Cardiovascul

ar 

physiology 

 

3 Mannan et 

al. (29) 

2016 Banglades

h 

MINIMat 540 (42.0%) In utero 

[Mothers] 

9 y [Individual: NINT = 167, NCON 

= 373] 

Biomarkers 

Body size & 

composition 
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Intervention group: Multiple 

micronutrient supplementation 

(MMS) – 60mg iron, 400 ug 

folic acid, plus 15 

micronutrients 

Control group: Iron (60mg) and 

folic acid (400 ug) (IFA) 

 

4 Stewart et 

al. (94) 

2011 Nepal [U] 

Antenatal 

MMS 

545 (NA) In utero 

[Mothers] 

8 y [Cluster: 426 total units for 5 

arms] 

Intervention group 1: Folic acid 

(400 ug) 

Intervention group 2: Folic acid 

+ iron (60mg ferrous fumarate)  

Intervention group 3: Folic acid 

+ iron + zinc (30mg zinc 

sulfate);  

Intervention group 4: Folic acid 

+ iron + zinc + 11 vitamins and 

minerals (10 mg vitamin D as 

cholecalciferol, 10 mg vitamin 

E as d-a tocopherol, 1.6 mg 

thiamine, 1.8 mg riboflavin, 20 

mg niacin, 2.2 mg vitamin B-6, 

2.6 mg vitamin B-12, 100 mg 

vitamin C, 65 mg vitamin K as 

phylloquinone, 2.0 mg Cu, 100 

mg Mg 

Control group: vitamin A 

(retinyl palmitate) 1000 ug RE 

of preformed vitA 

Biomarkers 
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5 Stewart et 

al. (54) 

2009 Nepal [U] 

Antenatal 

MMS 

3524 (NA) In utero 

[Mothers] 

8 y Same as Stewart et al. 2011 

 

Clinical and 

sub-clinical 

outcomes 

Infant and young child feeding, and milk supplementation 

1 De Jong et 

al. (39) 

2011 Netherlan

ds 

The 

Groningen 

LCPUFA 

study 

341 (48.1%) 0 to 8 months 

postpartum 

[Infants] 

9 y [Individual: NINT = 91, NCON = 

250] 

Intervention group: 

Breastfeeding (BF) 

Intervention/control group: 

LCPUFA-supplemented 

formula group (LF): The 

LCPUFAs were provided as 

mix of phospholipids (15%) 

and triglycerides (85%) to 

mimic the composition of 

breast milk. 

Control group: Standard 

formula group (CF): Standard 

formula consisted of Nutrilon 

Premium 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

2 Forsyth et 

al. (24) 

2003 4 

European 

countries: 

UK, Italy, 

Belgium, 

& 

Germany 

[U] 

LCPUFA 

infant 

formula 

147 (46.9%) 0 to 4 months 

postpartum 

[Infants] 

5 y [Individual: NINT = 71, NCON = 

76] 

Intervention group: LCPUFA-

supplemented infant formula 

Control group: Un-

supplemented infant formula 

Cardiovascul

ar 

physiology 

 

3 Gruszfeld 

et al. (46) 

2016 5 

European 

countries: 

CHOP 183 (48.6%) 0 to 12 

months 

postpartum 

5 y [Individual: NINT = 86, NCON = 

97] 

Body size & 

composition 



36 
 

 
 

Belgium, 

Germany, 

Italy, 

Poland, & 

Spain 

[Infants] Intervention group: high-

protein formula (2.05 g/dl for 

infants, and 3.2 g/dl as follow-

up formula) (HP) 

Control group: low-protein 

formula (1.25 g/dl for infants, 

and 1.6 g/dl as follow-up 

formula) (LF), equal energy as 

HP group  

Also has breastfeeding (BF) as 

observational group 

Clinical and 

sub-clinical 

outcomes 

4 Gruszfeld 

et al. (95) 

2015 5 

European 

countries: 

Belgium, 

Germany, 

Italy, 

Poland, & 

Spain 

CHOP 183 (48.6%) 0 to 12 

months 

postpartum 

[Infants] 

5 y [Individual: NINT = 92, NCON = 

91] 

Same as Gruszfeld et al. 2016 

 

Biomarkers 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

5 Kennedy et 

al. (44) 

2010 UK [U] UK 

preterm 

LCPUFA 

107 (47.7%) 0 to 9 months 

postpartum 

[Preterm 

infants] 

10 y [Individual: NINT = 50, NCON = 

57] 

Intervention group: LCPUFA-

supplemented infant formula 

Control group: Un-

supplemented infant formula 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

6 Kramer et 

al. (77)  

2007 Belarus PROBIT 13889 

(48.3%) 

During 

postpartum 

stay in 

hospitals 

[Mothers] 

6.5 y [Cluster: NINT = 16, NCON = 16] 

Intervention group: Based on 

the Baby-Friendly Hospital 

Initiative to promote and 

support breastfeeding, 

Cardiovascul

ar 

physiology 

Body size & 

composition 
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particularly among mothers 

who have chosen to initiate 

breastfeeding 

Control group: The control 

maternity hospitals and 

polyclinics continued the 

practices and policies in effect 

at the time of randomization 

 

7 Martin et 

al. (47) 

2017 Belarus PROBIT 13557 

(48.5%) 

During 

postpartum 

stay in 

hospitals 

[Mothers] 

16 y Same as Kramer et al. 2007 

 

Cardiovascul

ar 

physiology 

Body size & 

composition 

 

8 Martin et 

al. (79) 

2014 Belarus PROBIT 13616 

(48.5%) 

During 

postpartum 

stay in 

hospitals 

[Mothers] 

11.5 y Same as Kramer et al. 2007 

 

Biomarkers 

Cardiovascul

ar 

physiology 

Clinical and 

sub-clinical 

outcomes 

9 Martin et 

al. (78) 

2013 Belarus PROBIT 13879 

(48.5%) 

During 

postpartum 

stay in 

hospitals 

[Mothers] 

11.5 y Same as Kramer et al. 2007 

 

Body size & 

composition 

 

10 Singhal et 

al. (48) 

2010 UK [U] SGA 

cohort  

243 (55.2%) Trial 1 – 0 to 

9 months 

postpartum; 

8 y Trial 1: [Individual: NINT = 70, 

NCON = 83] 

Intervention group 1: Nutrient-

enriched formula, 28% more 

protein and 6% more energy 

Body size & 

composition 
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Trial 2 – 0 to 

6 months 

postpartum 

[Small for 

gestational 

age infants] 

than control formula, plus more 

micronutrients  

Control group 1: Standard term 

formula 

 

Trial 2: [Individual: NINT = 41, 

NCON = 49] 

Intervention group 2: Nutrient-

enriched formula, 43% more 

protein and 12% more energy 

than control formula, plus more 

micronutrients 

Control group 2: Standard term 

formula 

Also has breastfeeding group 

as an observational reference 

11 Singhal et 

al. (80) 

2004 UK [U] 

Preterm 

cohort 

216 (50.5%) Postpartum 

till weight 

reached 2000 

g or was 

discharged 

home (median 

4 weeks) 

[Preterm 

infants] 

16 y Trial 1: [Individual: NINT = 66, 

NCON = 64] 

Intervention group 1: Banked 

breastmilk from donation 

Control group 1: Nutrient-

enriched preterm formula, 

enriched in protein (20g) and 

fat (45g) but not carbohydrate 

(70g/L) 

 

Trial 1: [Individual: NINT = 44, 

NCON = 42] 

Intervention group 2: Standard 

term formula (15g protein, 38 g 

fat, 70g/L carb) 

Biomarkers 
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Control group 1: Nutrient-

enriched preterm formula, 

enriched in protein (20g) and 

fat (45g) but not carbohydrate 

(70g/L) 

12 Singhal et 

al. (96) 

2003 UK [U] 

Preterm 

cohort 

216 (50.5%) Postpartum 

till weight 

reached 2000 

g or was 

discharged 

home (median 

4 weeks) 

[Preterm 

infants] 

16 y Same as Singhal et al. 2004 

 

Biomarkers 

 

13 Singhal et 

al. (32) 

2002 UK [U] 

Preterm 

cohort 

216 (50.5%) Postpartum 

till weight 

reached 2000 

g or was 

discharged 

home (median 

4 weeks) 

[Preterm 

infants] 

16 y Same as Singhal et al. 2004 

 

Biomarkers 

 

14 Singhal et 

al. (40) 

2001 UK [U] 

Preterm 

cohort 

216 (50.5%) Postpartum 

till weight 

reached 2000 

g or was 

discharged 

home (median 

4 weeks) 

16 y Same as Singhal et al. 2004 

 

Cardiovascul

ar 

physiology 
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15 Toftlund et 

al. (33) 

2018 Denmark [U] 

Preterm 

cohort 

235 (48.5%) 0 to 4 moths 

postpartum 

[Preterm 

infants] 

6 y [Individual: NINT = 71, NCON = 

164] 

Intervention group: 

Breastfeeding  

Control group: preterm formula 

feeding 

Also have comparison within 

breastfeeding group: fortified 

vs. unfortified human milk 

Biomarkers 

Cardiovascul

ar 

physiology 

Body size & 

composition 

16 Totzauer et 

al. (49) 

2018 5 

European 

countries 

(Belgium, 

Germany, 

Italy, 

Poland, & 

Spain) 

CHOP 440 (47.6%) 0 to 12 

months 

postpartum 

[Infants] 

6 y Same as Gruszfeld et al. 2016 

 

Body size & 

composition 

 

17 Weber et 

al. (51) 

2014 5 

European 

countries: 

Belgium, 

Germany, 

Italy, 

Poland, & 

Spain 

CHOP 518 (NA) 0 to 12 

months 

postpartum 

[Infants] 

6 y Same as Gruszfeld et al. 2016 

 

Body size & 

composition 

Clinical and 

sub-clinical 

outcomes 

18 Williams et 

al. (97) 

2012 UK BCG  569 (45.4%) 0 to 5 y 

[Mothers and 

infants] 

27 y [Individual: NINT = 531, NCON 

= 38] 

Intervention group: Free (cow) 

milk supplements [through the 

provision of tokens equating to 

a half-pint (284 ml) of milk per 

Biomarkers 
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day] for pregnant women and 

their infants up to 5 years 

Control group: Breastfeeding 

only 

Dietary counselling 

1 Costa et al. 

(98) 

2017 Brazil [U] São 

Leopoldo 

dietary 

counselin

g  

305 (43.6%) 0 to 1 y 

[Mothers] 

8 y [Individual: NINT = 126, NCON 

= 179] 

Intervention group: During 

each home visit, mothers 

received dietary advice in 

accordance with the baby’s 

age. 

Control group: standard care 

Biomarkers 

 

2 Hakanen et 

al. (52) 

2006 Finland STRIP 585 (NA) 7 months to 

10 y 

[Mother and 

children] 

10 y [Individual: original NINT = 

540, NCON = 522] 

Intervention group: received 

individualized dietary 

counseling at 1- to 3-month 

intervals until the child was 2y 

and biannually thereafter. The 

main focus was on replacing 

intake of saturated fat with 

unsaturated fat 

Control group: Basic health 

education routinely given at 

Finnish well-baby clinics and 

by school health care. 

Biannually until 7y and 

annually thereafter 

Clinical and 

sub-clinical 

outcomes 
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3 Kaitosaari 

et al. (69) 

2006 Finland STRIP 167 (50.9%) 7 months to 9 

y 

[Mother and 

children] 

9 y Same as Hakanen et al. 2006 

 

Biomarkers 

 

4 Lehtovirta 

et al. (35) 

2018 Finland STRIP 450 (48.4%) 7 months to 

20 y 

[Mother and 

children] 

20 y Same as Hakanen et al. 2006 

 

Biomarkers 

 

5 Niinikoski 

et al. (71) 

2012 Finland STRIP 446 (46.8%) 7 months to 

19 y 

[Mother and 

children] 

19 y Same as Hakanen et al. 2006 

 

Biomarkers 

 

6 Niinikoski 

et al. (41) 

2009 Finland STRIP 524 (48.1%) 7 months to 

15 y 

[Mother and 

children] 

15 y Same as Hakanen et al. 2006 

 

Cardiovascul

ar 

physiology 

 

7 Nupponen 

et al. (53) 

2015 Finland STRIP 514 (49.0%) 7 months to 

20 y 

[Mother and 

children] 

20 y Same as Hakanen et al. 2006 

 

Clinical and 

sub-clinical 

outcomes 

8 Oranta et 

al. (70) 

2013 Finland STRIP 518 (48.1%) 7 months to 

20 y 

[Mother and 

children] 

20 y Same as Hakanen et al. 2006 

 

Biomarkers 

Body size & 

composition 

9 Pahkala et 

al. (55) 

2013 Finland STRIP 394 (45.2%) 7 months to 

19 y 

[Mother and 

children] 

19 y Same as Hakanen et al. 2006 

 

Clinical and 

sub-clinical 

outcomes 

10 Raitakari et 

al. (42) 

2005 Finland STRIP 369 (50.7%) 7 months to 

19 y 

19 y Same as Hakanen et al. 2006 

 

Biomarkers 
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[Mother and 

children] 

Cardiovascul

ar 

physiology 

Body size & 

composition 

11 Simell et al. 

(37) 

1999 Finland STRIP 748 (48.1%) 7 to 36 

months 

[Mother and 

children] 

3 y Same as Hakanen et al. 2006 

 

Biomarkers 

Body size & 

composition 

Other interventions 

1 Ekström et 

al. (Trial 2) 

6  (56) 

2016 Banglades

h 

MINIMat Trial 2: 

1335 (47.0%) 

(Trial 1 see 

multiple 

micronutrient

s) 

In utero 

[Mothers] 

4.5 y  [Individual: NINT = 672, NCON 

= 663] 

Intervention group: Early 

timing of invitation 

(immediately after detection of 

pregnancy) to food supplement, 

608 kcal/day, 6 days a week  

Control group: Usual timing of 

invitation (around 20-week 

gestation) to food 

supplementation  

 

Biomarkers 

2 Luoto et al. 

(99) 

2010 Finland [U] 

Probiotics 

Study 

113 (39.8%) 4 weeks 

before 

delivery till 6 

months 

postpartum 

[Mothers and 

infants] 

10 y [Individual: NINT = 54, NCON = 

59] 

Intervention group: Probiotic 

supplementation: 1 1010 

colony-forming units of 

Lactobacillus rhamnosus in 

capsules once a day for 4 

weeks before expected 

Body size & 

composition 

Clinical and 

sub-clinical 

outcomes 
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delivery. After delivery, given 

either to the mothers (if 

breastfeeding), or to the 

children mixed in water for 6 

months 

Control group: microcrystalline 

cellulose 

3 Videhult et 

al. (100) 

2015 

(1) 

Sweden [U] 

Probiotics 

Study 

120  

(56.6%) 

4 to 13 

months 

postpartum 

[Infants] 

8.8 y [Individual: NINT = 58, NCON = 

62] 

Intervention group: daily intake 

of cereals with probiotic LF19 

(Lactobacillus paracasei ssp. 

paracasei strain F19)  

Control group: daily intake of 

cereals without LF19 

Biomarkers 

Body size & 

composition 

 

4 Videhult et 

al. (101) 

2015 

(2) 

Sweden [U] 

Probiotics 

Study 

120 

(56.6%) 

4 to 13 

months 

postpartum 

[Infants] 

8.8 y Same as Videhult et al. 2015 

(1) 

Biomarkers 

 

1 The studies were ordered by type of intervention, then listed in alphabetical order (A to Z), followed by chronological order 

(newer to older). Some studies were in more than one intervention categories, but they were only included in one category based 

on the most dominant feature of the study (e.g., infant feeding with LCPUFA-enriched infant formula could be in categories 

infant formula and macronutrient supplementation, but was only presented as IYCF study) 

2 Cohort abbreviations: when marked “[U]”, it means unofficial study name for the purpose of this review only. The rest are 

official cohort study names, including: ACT, Australian Calcium Trial; BCG, the Barry-Caerphilly Growth Study; CHOP, the 

European Childhood Obesity Project; COPSAC2010, Mother-child cohort Copenhagen Prospective Studies on Asthma in 

Childhood 2010; DOMInO: DHA to Optimize Mother Infant Outcome Trial; ICDS, Integrated Childhood Development Services; 

INFAT, Impact of Nutritional Fatty Acids during Pregnancy and Lactation on Early Human Adipose Tissue Development; 

MINIMat, Maternal and Infant Nutrition Interventions in Matlab Trial; NNIPS-2, Nepal Nutrition Intervention Project – Sarlahi; 
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POSGRAD, the Prenatal Omega-3 Fatty Acid Supplementation, Growth, and Development Trial; PROBIT, the Promotion of 

Breastfeeding Intervention Trial; STRIP, Special Turku Coronary Risk Factor Intervention Project for Children. 

3 Sample size refers to the main cohort whose cardiometabolic outcomes were assessed (e.g., if maternal intervention, it refers to 

the offspring). Sample size may differ for different sets of analysis within the same cohort population.  

4 NINT, sample size in intervention group (or number of intervention clusters in cluster randomization; NCON, sample size in 

control group (or number of control clusters in cluster randomization). 

5 This study reported results of two trials within the same population: 1) protein energy biscuits and 2) calcium supplementation 

6 This study has two sets of interventions: 1) multiple micronutrient supplement, 2) a food-based intervention  
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Table 2. Risk of bias assessment for included studies 

Study 

Domains of bias evaluation (low, moderate, or high risk of bias) * 

Study 

participants 

Study 

attrition 

Prognostic 

factor 

measurement 

Outcome 

measurement 

Study 

confounding 

Statistical 

analysis 

and 

reporting 

Asserhøj 2009 Moderate Moderate Low Low Low Low 

Belizan 1997 Low Moderate Low Low Moderate Low 

Brei 2016 Low Moderate Low Low Moderate Low 

Costa 2017 Low Moderate Low Low Low Low 

de Jong 2011 Low Low Low Low Moderate Moderate 

Ekström 2016 Low Low Low Low Moderate Moderate 

Forsyth 2003 Low Moderate High High High High 

Foster 2017 Moderate Low Low Low Moderate Moderate 

Gruszfeld 2015 Low Moderate  Low Low High Moderate 

Gruszfeld 2016 Low High Low Low Low Low 

Gutierrez-Gomez 2017 Low Moderate Low Low Moderate Low 

Hakanen 2006 Low Moderate Low Low Moderate Low 

Hawkesworth 2008 Low Moderate  Low Low Low Low 

Hawkesworth 2009 Low Moderate Low Low Low Low 

Hawkesworth 2011 Low Moderate Low Low Low Low 

Hiller 2007 Moderate High Low Low Moderate Moderate 

Kaitosaari 2006 Low Low Low Low Low Moderate 

Kennedy 2010 Low Moderate Low Low Moderate Low 

Kinra 2008 Low Low Low Low Low Low 

Kramer 2007 Low Low Low Low Low Moderate 

Lehtovirta 2018 Low Moderate Low Low Low Moderate 
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Luoto 2010 Moderate Low Low Low Moderate Low 

Macleod 2013 High Moderate Low Low Low Moderate 

Mannan 2016 Low High Low Low Low Moderate 

Martin 2013 Low Low Low Low Low Low 

Martin 2014 Low Low Low Low Low Low 

Martin 2017 Low Low Low Low Low Low 

Muhlhausler 2016 Low Low Low Low Low Low 

Niinikoski 2009 Low Moderate Low Low Moderate Moderate 

Niinikoski 2012 Low Moderate Low Low Moderate Moderate 

Nupponen 2015 Low Moderate Low Low Moderate Low 

Oranta 2013 Low Moderate Low Low Moderate Moderate 

Pahkala 2013 Low Moderate Low Low Moderate Low 

Palmer 2019 Low High Low Low Low Low 

Raitakari 2005 Low Moderate Low Low Moderate Moderate 

Rytter 2011 Low Moderate Low Low Low Low 

Rytter 2011 Low Moderate Low Low Low Low 

Rytter 2012 Low Moderate Low Low Low Low 

See 2018 Moderate Moderate Low Low Moderate Moderate 

Simell 1999 Low Low Low Low High Moderate 

Singhal 2001 Moderate High Low Low Low Low 

Singhal 2002 Moderate High Low Low Low Moderate 

Singhal 2003 Moderate High Low Low Low Low 

Singhal 2004 Moderate High Low Low Low Low 

Singhal 2010 Low Moderate Low Low Low Low 

Stewart 2009 Low Low Low Low Low Low 

Stewart 2011 Low Moderate Low Low Low Low 

Taylor 2015 Low Low Low Low Low Low 
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Toftlund 2018 Moderate Moderate Low Low Moderate Moderate 

Totzauer 2018 Low Moderate Low Low Low Low 

Videhult 2015 (1) Low Low Low Low Moderate Moderate 

Videhult 2015 (2) Low Low Low Low Moderate Low 

Vinding 2018 Low Low Low Low Low Low 

Weber 2014 Low Moderate Low Low Low Low 

Williams 2012 Low Moderate Low Low Low Low 

* Bias assessment followed specific criteria by each domain: 

1. Study participants: high bias – the relationship between predictor and outcome is very likely to be different for 

participants and eligible nonparticipants. Moderate bias – the relationship may be different. Low bias – the relationship 

is unlikely to be different. 

2. Study attrition: high bias – the relationship between predictor and outcome is very likely to be different for completing 

and non-completing participants. Moderate bias – the relationship may be different. Low bias – the relationship is 

unlikely to be different. 

3. Prognostic factor measurement: high bias – the measurement of the predictor is very likely to be different for different 

levels of the outcome of interest. Moderate bias – the measurement may be different. Low bias – the measurement is 

unlikely to be different. 

4. Outcome measurement: high bias – the measurement of the outcome is very likely to be different related to the baseline 

level of the predictor. Moderate bias – the measurement may be different. Low bias – the measurement is unlikely to be 

different. 

5. Study confounding: high bias – the observed effect of the predictor on the outcome is very likely to be distorted by 

another factor related to the predictor and outcome. Moderate bias – the effect may be distorted. Low bias – the effect 

is unlikely to be distorted. 

6. Statistical analysis and reporting: high bias – the reported results are very likely to be spurious or biased related to 

analysis or reporting. Moderate bias  may be spurious or biased. Low bias – unlikely to be spurious or biased. 
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Figure 1. PRISMA flow chart study inclusion/exclusion 

 

Legend: 

1. Reasons for exclusion: not original research article (n = 19); observational studies nested within original RCT cohort (n = 6); 

exposure was not nutritional intervention (n = 1); exposure not randomized (n = 8); follow-up too short (< 3y) (n = 13); no 

primary outcome of interest (n = 5); reported maternal outcome but not children’s outcome (n = 1); previously un-identified 

duplicates (n = 3); similar outcomes in a previously included study, but from an earlier time point (n = 1); famine studies or 

follow-up study of several acute malnutrition in childhood (n = 20); insufficient number of unit in cluster randomization and 

without appropriate statistical methods (n = 2); the analysis was not based on original assignment (n = 2). 

2. For each category of outcome, the number of included studies varied in meta-analysis. 

3. PRISMA flow diagram template from:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.   
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Figure 2. Map of the world indicating the countries and cohorts included 
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Figure 3. Meta-analysis forest plots by cardiometabolic outcomes 

 

A) Fasting glucose concentration 

 

Legend:  

• Ekström: timing referred to timing of invitation to food trial (early vs. late); MMS referred to multiple micronutrient vs. 

iron and folic acid supplementation 

• Hawkesworth: only the first trial (protein-energy biscuits) reported fasting glucose, and not the second trial (calcium 

supplementation) in this paper 

• Macleod: protein referred to protein, carbohydrate, and vitamin vs. vitamin only; carb referred to carbohydrate and 

vitamin vs. vitamin only 

• (1) means the same study identifier, but not a duplicate. See Table 1 for studies with the same IDs.  
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B) Total cholesterol concentration 

 

Legend:  

• Ekström: timing referred to timing of invitation to food trial (early vs. late); MMS referred to multiple micronutrient vs. 

iron and folic acid supplementation 

• Gruszfeld: high protein vs. low protein infant formula 

• Hawkesworth: only the first trial (protein-energy biscuits) reported fasting glucose, and not the second trial (calcium 

supplementation) in this paper 

• Macleod: protein referred to protein, carbohydrate, and vitamin vs. vitamin only; carb referred to carbohydrate and 

vitamin vs. vitamin only 

• (1) or (2) means the same study identifier, but not a duplicate. See Table 1 for studies with the same IDs.  

• Singhal: BF referred to banked breastmilk vs. preterm formula; SF referred to standardized term formula vs. preterm 

formula 
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C) Systolic (left) and diastolic (right) blood pressure 
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Legend:  

• De Jong: LF referred to long-chain PUFA supplemented formula; CF referred to standardized control formula; BF 

referred to breastfeeding 

• Gruszfeld: high protein vs. low protein infant formula 

• Hawkesworth 2011: protein referred to the first trial, which was protein-energy biscuits (early vs. late 

supplementation); calcium referred to the second trial, which was calcium supplementation vs. placebo 

• Macleod: protein referred to protein, carbohydrate, and vitamin vs. vitamin only; carb referred to carbohydrate and 

vitamin vs. vitamin only 

• Singhal: BF referred to banked breastmilk vs. preterm formula; SF referred to standardized term formula vs. preterm 

formula 
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D) Body mass index 

 

Legend:  

• Gruszfeld: high protein vs. low protein infant formula 

• Hawkesworth: only the first trial (protein-energy biscuits) reported BMI, and not the second trial (calcium 

supplementation) in this paper 

• Macleod: protein referred to protein, carbohydrate, and vitamin vs. vitamin only; carb referred to carbohydrate and 

vitamin vs. vitamin only 

• (1) means the same study identifier, but not a duplicate. See Table 1 for studies with the same IDs.  

• Singhal: combined two trials, both compared standardized formula (with different protein and energy content) vs. 

enriched preterm formula 
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Supplemental Figure 1: Funnel plots to assess publication bias 

 

 

 

 

Supplemental Table 1 (See Appendix II of the dissertation) 
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CHAPTER 3: LITERATURE REVIEW PART II  

Cardiometabolic biomarkers 

3.1 Introduction  

A biological marker, or biomarker, is defined as “a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic processes, 

or pharmacologic responses to an intervention” (31, 32). Biomarkers could be biochemical, 

functional, or clinical indices of status. In nutrition and health sciences research, biomarkers 

serve to assist in the assessment of dietary exposure, nutritional status, interactions among 

nutrients, metabolic processes, and nutrition-related health outcomes (26, 33). In this field of 

research, biomarkers fall into two broad domains: those used to assess the “input” – nutrient 

intake and nutritional status, and those used to assess the associated “outcomes” – health and 

disease status. Biomarkers in the latter domain are useful in investigating health status, 

supporting clinical diagnosis, or predicting future disease risks (26). 

The objective nature of biomarkers gives it advantage over self-reported or questionnaire-

based data collection (34). To assess nutritional status, for instance, it is much more accurate to 

measure biomarker levels than to rely on food consumption data (34). Serum hemoglobin, 

ferritin, or transferrin saturation are much better indicators of iron status than dietary data, even 

the ones collected though repeated 24-hour recall (35). Similarly, it is more reliable to confirm 

clinical diagnosis for cardiometabolic diseases based on biomarker cut-off points than to rely 

solely on clinical symptoms (26). For example, abnormally high glucose concentration 

(specifically, fasting glucose of 126 mg/dL or higher, or two hours following an oral glucose 

tolerance test, 200 mg/dL or higher) is regarded as the key diagnostic criteria for diabetes, 

instead of symptoms alone, such as excessive thirst and frequent urination (36).  
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In this dissertation work, I mainly focused on biomarkers for health and diseases (the 

“outcomes” domain). With the global burden of cardiometabolic diseases steadily on the rise, it 

is necessary to characterize cardiometabolic profiles, detect sub-clinical cardiometabolic 

perturbations, and to distinguish “healthy” and “unhealthy” cardiometabolic phenotypes through 

various biomarkers (4). Measuring biomarkers can help fill the gaps in conventional population 

studies through elucidating underlying biological mechanisms (26, 27). Research hitherto has 

drawn associations among inflammation, oxidative stress, and an array of cardiometabolic 

conditions (37-39). For instance, with respect to cardiovascular diseases, not only have we 

identified key biomarkers (such as oxidized low-density lipoprotein-cholesterol), but also 

relevant inflammation markers (such as C-reactive protein) (26, 27). My goal is to build upon the 

existing knowledge to further investigate a panel of cardiometabolic biomarkers. 

Many gaps remain unfilled in using biomarkers to assess and predict cardiometabolic 

diseases. There is a need to further explore the association between early nutrition and long-term 

health from a perspective of life course epidemiology, with the assistance of existing and 

emerging biomarkers. We need to elucidate the pathways through which early nutritional 

exposure affect cardiometabolic health later in life. Biomarkers are well suited in this type of 

analysis, especially when they have known biological functions. The predictive power of 

condition-specific biomarkers needs to be evaluated as well, both from fasting steady-state 

condition and after acute stress condition such as physical activity or meal consumption, and can 

be used to assess systemic responses (30). Before an individual develop a cardiometabolic 

condition, their body may go through ‘latent’ phases when the pathophysiological changes are 

subclinical. These subclinical changes could be captured in the form of a dynamic response to 

external stress signals, and may not be detected through a single measurement in the fasted state 
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(30). Therefore, many researchers proposed that measuring biomarker responses to external 

metabolic stress is more accurate in predicting cardiometabolic conditions than is measuring the 

biomarkers from fasting biospecimens (29, 40). This aspect of biomarker needs to be assessed at 

the population level as well. 

In this chapter, I provided an overview of selected cardiometabolic biomarkers. The 

second section of this chapter presented a brief summary of conventional and emerging 

biomarkers that, at the fasted state, are indicative of cardiometabolic health and disease status. In 

the third section, I discussed the importance and added benefit of testing changes in biomarker 

concentrations in response to external stress signals, such as a meal challenge. In the last section 

of this chapter, I presented and explained three major conceptual frameworks that guided my 

dissertation research, at both the population level and the molecular level.  

3.2 Cardiometabolic Biomarkers at the Fasted State 

Cardiometabolic diseases are interwoven conditions with overlapping biochemical 

mechanisms, including but were not limited to abdominal adiposity, insulin resistance, 

dyslipidemia, inflammation, and oxidative stress (4). In my dissertation work, I focused on three 

major categories of biomarkers are of interest: lipids and apolipoproteins, glycemic markers, and 

(pro- and anti-) inflammation markers. I would also like to highlight a specific category of 

markers under the umbrella of inflammation markers: adipose tissue-derived cytokines, or 

adipokines. The first two columns of Table 3.1 briefly summarized the significance of these 

cardiometabolic biomarkers.  
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3.2.a Lipids and Apolipoproteins  

Lipids are an important category of cardiometabolic biomarkers due to their predictive 

strength in cardiovascular disease risks (29, 41). Lipoproteins are transporters of lipids that have 

an external hydrophilic layer and an inner hydrophobic space that contains varying proportions 

of triglycerides (TG) and cholesterol esters. As the primary system for the transport and delivery 

of dietary and endogenously synthesized triglycerides and cholesterol to peripheral tissues, 

lipoprotein metabolism is highly dynamic in fasted as well as fed states (42).  

Lipoproteins are a heterogeneous group of particles. With meal consumption, all newly 

absorbed fats, including triglycerides (TG), cholesterol, and phospholipids, are packaged into 

chylomicrons for the delivery of exogenous TG to peripheral tissue. With the unloading of TG, 

the resulting chylomicron remnants have been suggested to have downstream atherogenic 

implications (43, 44). In the fasted state, the liver continuously synthesized TG and cholesterol 

for secretion in the form of very low-density lipoproteins (VLDL), low-density lipoproteins 

(LDL), and high-density lipoproteins (HDL). As VLDL delivers endogenous TG to peripheral 

tissues, it is converted to cholesterol-rich LDL. Clinical conditions that are characterized by 

elevated intrahepatic fatty acids, for instance obesity, type 2 diabetes, and non-alcoholic fatty 

liver diseases, are associated with increased production of VLDL with subsequent elevations in 

plasma levels of VLDL and LDL (45). While VLDL and LDL contribute to the delivery of lipids 

to peripheral tissues, HDL is responsible for the transport of cholesterol from the periphery to the 

liver, the so-called reverse cholesterol transport. It should be noted that the lipid contents of the 

various lipoprotein classes are in a dynamic equilibration under the action of several plasma 

enzymes, including lipoprotein lipase, hepatic triglyceride lipase, cholesteryl ester transfer 

protein, lecithin-cholesterol acyl transferase and lipoprotein-associated phospholipase A2.  
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Apolipoproteins (apo) are specific proteins that are part of the hydrophylic coat of 

lipoproteins and are responsible for mediating the interactions of lipoproteins with various 

enzymes and surface receptors. ApoA-I is needed to form HDL, which in turn allows for the 

binding of other antioxidant enzymes. It is notable that apoA-I itself does not have antioxidant 

properties. ApoB is the major structural apolipoprotein of the class of atherogenic lipoproteins 

that include VLDL and LDL in the fasted state and chylomicrons in the fed state. There are two 

forms of apoB, with apoB-100 being synthesized in the liver as part of VLDL/LDL and apoB-48 

being synthesized primarily in the intestine as part of chylomicrons. Since apoB-48 is a truncated 

form of apoB-100 with only 48% of its amino acids, most immunoassays for apoB cannot 

distinguish between these two forms. Research in apolipoproteins as biomarkers gained 

popularity due to their disease-specific predictive strengths, and the high population-attributable 

risks of cardiovascular diseases associated with them (46). Researchers have found that, not only 

are apolipoprotein better indicators of coronary heart disease risks than any cholesterol index, but 

the apoB-to-apoA-I ratio is also superior than total cholesterol-to-HDLc ratio in predicting 

vascular risks (47). This is due to the high variability of the cholesterol contents in lipoproteins, 

apoB and apoA-I levels therefore reflect the true number of particles available for transport. 

Non-esterified fatty acids (NEFA) are free fatty acids that usually have dose-response 

relationship with insulin signaling. TG must be hydrolyzed into NEFA and monoglycerides in 

order to go across the endothelium for storage. In the context of high TG concentration (e.g., 

following a high-fat meal), not all NEFA can move through the endothelium. This can lead to 

high plasma NEFA, which are bound to albumin and transported back to the liver and become 

substrate for more hepatic TG and VLDL synthesis. In fasted state, low insulin in plasma means 

that hormone-sensitive lipase (HSL) promotes the utilization of stored TG. This leads to the 
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release of NEFA and monoglycerides into the circulation, which is then transported back to the 

liver. In fed state, high plasma insulin inhibits HSL, which contributes to net movement for 

NEFA from chylomicrons to enter the cells for storage. Therefore, NEFA concentration typically 

reduces following a meal. However, when there is increased insulin resistance, HSL is not 

sufficiently inhibited in fed state, and the plasma would contain both new NEFA and stored 

NEFA. Therefore, among individuals with insulin resistance, postprandial NEFA reduction is 

attenuated, and there may even be an increase in NEFA. This feeds back to the negative cycle: 

more NEFA flux back to the liver, providing more substrate for endogenous VLDL and TG 

production. Elevated or insufficient reduction in postprandial NEFA is usually a result of chronic 

exposure to hypercaloric diet. High NEFA can activate pro-inflammatory genes and serve a 

potent stimulator of systemic oxidative stress and inflammation, which is core elements to the 

onset and development of metabolic syndrome and other cardiometabolic conditions (28).  

It is important to note that, TG and cholesterol are essential agents to support normal 

biological functions. It is under abnormal conditions that subsequent cardiometabolic 

consequences may emerge, such as when the transportation is disturbed, the proportion of 

“good” (e.g., HDLc) versus “bad” cholesterol (e.g., LDLc) is reduced, the remnants are not 

efficiently cleared from the circulation (e.g., fasting hyperlipidemia), or when the lipoproteins 

are chemically altered (e.g., oxidized LDL). For example, LDL remnants, when encounter free 

radicals in the body, can be altered into oxidized LDL (oxLDL) (48, 49). OxLDL can initiate the 

atherogenic processes by first causing endothelial injury, which will then recruit monocytes as 

protective inflammatory responses to the injured sites (49). Afterwards, monocytes morph into 

macrophages to release inflammatory cytokines and to accumulate cholesterol esters to form 
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foam cells (48). The long-term downstream consequences include an array of cardiometabolic 

conditions, such as atherosclerosis, heart attack, and stroke (49).  

In sum, assessing the concentrations of lipids and apolipoproteins can provide us with 

important diagnostic and prognostic information about cardiometabolic status and future risks.  

3.2.b Glycemic Measurements  

Glucose, the most abundant form of monosaccharide, is a subcategory of carbohydrates, 

which is one of three major sources of energy for the human body. While many tissues can 

utilize fat, protein, and carbohydrate as energy sources, a few vital organs such as the brain and 

red blood cells rely solely on glucose (42).  

Glucose metabolism involves multiple metabolically active tissues, including (but is not 

limited to) the endocrine pancreas, liver, muscle, and the brain. Pancreatic α-, β- and δ-cells 

secrete glucagon, insulin, and somatostatin, respectively, to participate in intricate glucose 

regulation. Liver is where the most glucose metabolic processes take place, including 

gluconeogenesis, glucose storage in the form of glycogen, and pentose phosphate pathway. 

Uptake of glucose by muscle is important in adjusting glucose concentration in the circulation, 

and glucose can also be stored as glycogen in the skeletal muscle tissues. Brain consumes 

approximately 20% of glucose-derived energy to support its vital functions – both neuronal and 

non-neuronal. Peripheral tissues also use glucose to generate adinosine triphosphate (ATP) to 

support their respective functions. The update of glucose by peripheral tissue is another essential 

element in systematic glucose regulation.  

Due to its indispensable role as the main source of energy in the human body, blood 

glucose concentrations are tightly regulated by a complex system. At the fasted state, the 

concentration is usually 70 to 100 mg/dL (36). Glucose concentration fluctuates after food 
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consumption, and the fluctuation can be predicated based on empirical data, thus forming the 

basis for oral glucose tolerance tests (OGTT). Our study design also selected 0h and 2h in 

relation to a meal challenge as time points for observation based on the OGTT rationale (More 

details in Chapter 4). While hypoglycemia (low blood sugar) can have a wide range of symptoms 

and require prevention or treatment, it is beyond the scope of the current work. I mainly focused 

on the harmful impacts of hyperglycemia and diabetes in this dissertation, as they are among the 

most common cardiometabolic conditions and are of growing global health concern (50). In 

population studies, researches can refer to the normal distribution of glucose concentration to 

identify cut-off points for high blood glucose. According to the American Diabetes Association, 

hyperglycemia (or pre-diabetes) is defined as fasting plasma glucose ≥ 100 mg/dL and ≤ 125 

mg/dL, or two-hour post-challenge plasma glucose level ≥ 140 mg/dL and < 200 mg/dL among 

participants who were not using diabetic medication. Type 2 diabetes mellitus is defined as a 

fasting plasma glucose of 126 mg/dL or more, two-hour postprandial glucose of 200 mg/dL or 

more, or use of diabetes medication (36).  

Why is excess glucose detrimental to cardiometabolic health? Apart from the overt 

symptoms of diabetes (including polyphagia, polyuria, fatigue, and weight loss) that interfere 

with the normal lives of the patients, the long-term consequences are serious or even fatal (51). 

Diabetes-related complications range from damage to large and small blood vessels (which can 

lead to cardiovascular diseases), to kidney failure, ophthalmological symptoms (and even 

blindness), amputation of limbs due to tissue infection and cell death, and even damage to the 

nerves (51, 52). At the molecular and biochemical level, excess glucose harms health through 

many pathways through glucose metabolites: fructose 1,6-bisphosphate can activate the protein 

kinase C and hexosamine metabolism pathways to accumulate reactive oxygen species (ROS); 



77 
 

 
 

glyceraldehyde 3-phosphate can trigger downstream oxidative phosphorylation and glycation; 

excess glucose itself can also be utilized in the sorbitol metabolism pathway and lead to ROS 

generation. These pathways converge in apoptosis, oxidative stress, and inflammation, all of 

which lead to cardiometabolic perturbations and diseases (42).  

Insulin is an anabolic hormone that is essential in glucose homeostasis. It is a peptide 

protein that is synthesized and secreted by the pancreatic β-cells (53). Unlike the tightly 

controlled range of glucose concentration, the concentration of insulin varies considerably. Its 

secretion is acutely responsive to elevated blood concentrations of glucose. In healthy 

individuals, insulin promotes cellular glucose uptake, suppresses hepatic gluconeogenesis, and 

regulates carbohydrate, lipid, and protein metabolism. Insulin resistance refers to attenuated or 

diminished biological responses to a normal or even increased insulin level (53). Insulin 

resistance at the cellular level usually manifests as deficient glucose uptake by muscle and 

adipose tissue, and increase free fatty acid flux in the liver, which can then be linked to 

perturbation in lipoprotein production and regulation (see section 3.2.a for more details). 

Because of the dynamic relationship between insulin and glucose, a classic mathematical model 

was developed to quantify this association, namely the homeostasis model assessment (HOMA) 

(54). Insulin resistance (IR) could be reflected by HOMA-IR, and pancreatic β-cell function by 

HOMA-B. Both indices require fasting glucose and insulin measurements and are useful tools in 

population studies.  

3.2.c Biomarkers for Inflammation 

Inflammation biomarkers are of interest in nutrition research because they are a 

barometer of general inflammatory status. They can both be influenced by dietary components, 
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as well as in turn affect nutritional biomarker measurements (such as elevating serum ferritin 

concentration) (55).  

Acute inflammation is part of the normal immune response of human body to combat 

infection, wounds, and any tissue damage (26). The typical signs of acute inflammation include 

redness, swelling, heat, pain, and loss of function. These symptoms are the results of a common 

set of cellular pathways that involve the release of inflammatory cytokines. Under normal 

circumstances, these cytokines perform intended function to assist in tissue repair. They also 

should be effectively cleared from local tissue and from the circulation in order to prevent further 

damage to local tissue from the destructive side effects of inflammation. Nevertheless, when the 

trigger of inflammation is not eliminated or properly controlled, the ongoing inflammation may 

become pathological.  

Chronic inflammation can leave varying degrees of health consequences and is 

recognized as a key player in the development of cardiometabolic diseases (28, 39). When 

chronic inflammation is marked by significantly activated inflammatory cells at the site of tissue 

damage and in the circulation, the resulting diseases have severe clinical manifestations, 

including inflammatory bowel disease and rheumatoid arthritis. However, when chronic 

inflammation is of a “lower grade”, with a moderate (but persistent) elevation in systemic 

inflammatory responses, the resulting cardiometabolic perturbations could take years or decades 

to manifest in clinical outcomes such as insulin resistance and atherosclerosis (56). This 

progressive development, difficult to detect in the earlier stages, is usually irreversible in the 

later stages when clinically diagnosable (26).  

Inflammation state is a balance between pro- and anti-inflammatory cytokines, some of 

which could be altered acutely by environmental stress signals. Pro-inflammatory cytokines 
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initiate and sustain inflammation. C-reactive protein, a protein of hepatic origin, is essential in 

host defense and activating acute-phase responses. It is a predictor of cardiovascular diseases, 

independent of other factors (57). Persistent elevation in CRP can induce oxidation of LDL, 

activate pro-inflammatory genes, and lead to atherogenic developments. Interleukin-6 (IL-6), an 

interleukin promptly produced at the site of infection or tissue injury, has potent inflammatory 

function, including the induction of acute-phase proteins like CRP in the liver (26). Circulating 

concentration of IL-6 is usually elevated in obesity. Hepatic elevation of IL-6 and free fatty acids 

influx collectively contribute to systemic inflammation and hepatic insulin resistance. Tumor 

necrosis factor-α (TNF-α), a cell signaling protein that makes up part of the “acute phase 

reaction”, strongly promotes systemic inflammation. It is expressed on a wide variety of cells 

and organs to activate acute-phase protein synthesis. It is central to activating the NF-κB 

pathway (26). Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that regulates 

migration of monocytes and macrophages in the early stage of endothelial infiltration. It is highly 

expressed at the site atherosclerotic plaques and is responsive to various pro-inflammatory 

cytokine. It is thus predictive of atherogenic risk and plays an important role in obesity and type 

2 diabetes (58). Resistin, a peptide produced by adipose tissue, immune cells, and epithelial cells, 

serves as an important link between obesity and insulin resistance. Its name originated from 

‘resistance to insulin’, and it has since emerged as a biomarker for assessing a range of 

cardiometabolic risks including insulin resistance, inflammation, and metabolic disturbances 

(59). 

IL-10 is an important anti-inflammation cytokine that is also known as “human cytokine 

synthesis inhibitory factor”. As the name suggests, IL-10 can inhibit cytokine synthesis via 

inhibition of the NF-κB pathway. It helps decrease obesity, insulin resistance, and leptin 
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resistance. Interestingly, IL-6 can up-regulate IL-10 secretion, which serves as feedback 

inhibition to control systemic inflammation (26). The TNF receptors are also protective against 

(TNF-inducted) inflammation processes. At relatively high concentrations, soluble TNF 

receptors (e.g., TNFsR II) inhibits TNF functions by competing with membrane-bound TNF 

receptors. Adiponectin (more details in the following paragraph), a versatile cytokine produced 

by the adipose tissue, also exert anti-inflammatory effects. 

Adipokines are adipose tissue-derived cytokines. Leptin and adiponectin are the most 

widely studied adipokines (60). A few cytokines mentioned previously are also derived from 

adipose tissue, including TNF-α, MCP-1, and resistin (61). When leptin was first discovered in 

animal models, the scientific community hoped that it would be the ultimate “cure” for obesity, 

resembling how the discovery of insulin transformed the treatment for diabetes (62, 63). 

Nevertheless, leptin is a versatile hormone that bridges the immune system and neuroendocrine 

system. Apart from its anorexigenic function in energy homeostasis that decreases energy intake 

and increases energy consumption, it is also now recognized as inflammatory mediator (64). 

Circulating level of leptin increase in proportion to overall adiposity, but it is also affected by the 

type and location of adipose tissue. In normal conditions, leptin participates in glucose 

homeostasis, improves insulin function, and decreases dyslipidemia. When leptin resistance is 

developed (usually in obesity), however, there is a lack of anticipated salutary metabolic 

outcomes due to the inability of leptin to send appropriate signals to the brain (65).  

Adiponectin circulates in much higher concentrations than leptin. Contrary to leptin, 

adiponectin has negative correlation with adiposity. It is observed that the concentration of 

adiponectin also decreased before the development of type 2 diabetes. Adiponectin enhances 

insulin sensitivity and has anti-inflammatory and anti-atherogenic effects (66). Measuring the 



81 
 

 
 

concentrations of leptin and adiponectin together can help established a balanced view of the 

adipokines in the system. Leptin-to-adiponectin ratio is also regarded as a marker for atherogenic 

risks (67). 

Under pathological conditions such as obesity and insulin resistance (the former can also 

lead to the latter), there is increased fatty acid flux that can trigger inflammatory pathways and 

increase the circulating concentrations of pro-inflammatory cytokines. When accompanied by 

decrease in adipokines (adiponectin and leptin), we may observe decreased insulin sensitivity. 

Additionally, the accumulation of pro-inflammatory macrophages around adipose tissue also 

activates the NF-κB pathway and cause atherogenic effects. Taken together, the long-term 

consequences of such prolonged inflammation include type 2 diabetes, cardiovascular diseases, 

non-alcholic steatohepatitis, and other cardiometabolic conditions. Measuring circulating levels 

of inflammation biomarkers can be informative in determining systemic inflammation status and 

in predicting future cardiometabolic risks (26).  

3.3 Stress-Induced Responses in Biomarkers 

A nutritionally balanced diet supports growth, promotes physical strength, enhances 

mental health, and positively influences the psycho-neuro-endocrinological processes (30). On 

the flip side of this coin is the pathophysiological damage an imbalanced diet can cause. 

Researchers have postulated that, repeated exposure to fat- and sugar-containing diets (e.g., the 

dietary patterns characterized as “Western”) may accumulate systemic insults. Oxidative stress 

and inflammation may be triggered by remnants of macronutrients in excess, or the inability to 

perform intended functions due to deficiency in essential micronutrients (28).  
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How does nutrition determine health or diseases? Four major mechanisms have been 

identified that link nutrition and cardiometabolic disturbances: metabolism, inflammation, 

oxidative stress, and psychological stress (30). International scientific organizations have set 

forth standards to help diagnose diseases and identifying future disease risks using many 

biomarkers (36, 68). The cut-off points for disease classification, however, is often debated, 

especially given the associated implications. For instance, hyperglycemia, when referred to as 

‘pre-diabetes’, may be interpreted by the patients as an irreversible first step in developing type 2 

diabetes (69). This may obstruct the lifestyle changes and medical attention needed to attenuate 

the condition (69). Apart from the convenience for clinical diagnosis, it is unadvisable to 

characterize cardiometabolic profiles using solely biomarkers at the fasted state. Fasting 

biomarkers tend to reflect a snapshot of the “resting” status without accounting for the regulatory 

and compensatory mechanisms that maintain system homeostasis (70). 

Fixed cut-off points do not take into consideration the phenotypic flexibility of the human 

body, which refers to the metabolic adaptation that allows changes within a reasonable range in 

response to external stress signals (71). These adaptive responses have considerable clinical 

implications. For example, our blood pressure is considered normal so long as it is more than 120 

over 80 mmHg and less than 140 over 90 mmHg. Similar to the long-standing recognition of 

homeostasis in medical research, phenotypical flexibility is more appropriate in nutrition 

research because it can help identify an acceptable range of certain biomarkers. It is also useful 

in characterizing healthy and resilient cardiometabolic phenotypes(70, 71). The responses of 

biomarkers to external stress is in line with the concept of phenotypic flexibility. It is not the 

resting status that matters the most, it is whether, and how fast, can the body return to 

homeostasis. The changes, both in amount and in timing, can provide rich information on the 
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cardiometabolic health and readiness of the body to respond to external stress while maintaining 

homeostasis (30). 

Relatively little is known, even under controlled clinical conditions, about the dynamic 

responses of various biomarkers and their indication of health (28, 29). In controlled laboratory 

settings, stress-based methods have been developed to test the range of phenotypic flexibility, 

such as metabolic stress models (for instance a meal challenge), infectious stress models (such as 

an early-response vaccination test), and tissue damage models (such as an physical activity and 

ultraviolet exposure test) (71, 72). A meal challenge model that mimics external dietary stress is 

particularly ideal in studying metabolic responses (71). A meal challenge commonly involves 

administering a meal of known nutritional composition and assessing biomarker changes from 

pre- to post-meal challenge. In this type of dynamic models, information at several levels are of 

value – the fasting status, the peak of reaction, and the time course trajectory (if data from 

multiple time points are available) (71). 

In conventional metabolic stress models, researchers usually focus on one nutrient and 

collect biomarkers known to be directly affected by intake of this nutrient, such as the glucose 

tolerance test (73). Mounting evidence suggests that researchers need to sufficiently characterize 

responses in the whole metabolic system to mixed-component (and not just single-nutrient) meal 

challenges (30). For one, humans rarely consume one nutrient at a time, but rather a meal of 

composite macro- and micro-nutrient profile. For another, even the observed response in a single 

biomarker may be a reflection of interaction among a few nutrients (74). It is necessary to focus 

on interlinked biomarkers representing major pathways to characterize the overall metabolic 

responses, such as lipid and glycemic pathways (75-78). More research is needed to investigate 

the shift in these biomarkers under disease conditions. We also lack definitive evidence when it 
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comes to markers of inflammation, a process that leads to various cardiometabolic conditions 

under pathological circumstances.  

In response to a high-fat and high-sugar diet, postprandial hyperglycemia and 

hyperlipidemia are the core components contributing to unfavorable cardiometabolic changes, 

involving mechanisms such as inflammation and oxidative stress (28, 40). Postprandial 

hyperglycemia may be more predictive of future cardiometabolic events than fasting plasma 

glucose or fasting HbA1c value alone (40). Postprandial lipemia was also proposed as a better 

alternative to fasting triglyceride concentrations as predictor for cardiovascular disease risks 

(28). Table 3.1 is a brief summary of the cardiometabolic biomarkers introduced in this chapter. I 

also summarized potential mechanisms of their expected postprandial responses.  

Table 3.1 Summary of cardiometabolic biomarkers and expected two-hour postprandial 

responses 

Biomarker 

Significance in 

Cardiometabolic 

health 

Expected 

Postprandial 

Response * 

Potential Mechanisms  

Lipids 

Total 

cholesterol 

• Predictive of 

cardiovascular 

disease (CVD) 

events 

= 

• The fat content in our meal challenge is not large 

enough (compared to dietary average of approx. 

500 grams) to acutely change total cholesterol 

concentration.  

Triglycerides 
• Predictive of 

CVD events 

↑ 
• Postprandial triglycerides usually show 

pronounced elevation within an hour  
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• Can remain elevated for 5-8 hours following a 

fat-containing meal.  

HDL-

cholesterol 

• Protective 

against CVD 

events 

• Limits oxidant 

and 

inflammatory 

processes 

Slight ↓ 

• In the short term (e.g., 1-2h) as chylomicrons 

enter the circulation, they tend to pull apoC-II 

and C-III away from HDL, leading to HDL 

clearance.  

LDL-

cholesterol 

• Predictive of 

CVD events 

Slight ↑ or = 

• Depending on the fat content, metabolism 

efficiency, and cholesterol transportation, LDL 

may have slight two-hour elevation, but more 

subtle than TG.  

• At the two-hour time point, we may not capture 

peak response of LDLc 

Non-HDLc 

• Predictive of 

CVD events 

• Higher 

postprandial 

response may 

indicate 

increased 

atherogenic 

risks 

Slight ↓ or = 

• If TC and HDLc did not change dramatically, 

non-HDLc would remain the same.  

• Higher postprandial response may indicate 

increased atherogenic risks 
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Apolipoprotein 

A-I 

• Protective 

against CVD 

events 

Slight ↑ or = 

• As apolipoprotein specific to HDLc, apoA-I 

should display similar pattern in postprandial 

change as that of HDLc 

Apolipoprotein 

B 

• Predictive of 

CVD events 

Slight ↑ 
• It may increase with the secretion of 

chylomicrons, and delayed clearance of VLDL 

Non-esterified 

fatty acids 

• Predictive of 

CVD events 

• Activates pro-

inflammatory 

genes 

↓ or ↑ 

• In healthy individuals, Postprandial release of 

free fatty acids from adipocyte is usually 

suppressed by hormone sensitive lipase (acutely 

responsive to insulin).  

• In individuals with insulin resistance, the 

reduction may be attenuated, and there may even 

be postprandial increase in NEFA  

Glycemic Measurements 

Insulin 

• Diabetes/pre-

diabetes 

assessment 

• Anabolic 

functions 

↑↑ 

• As a major metabolism regulating hormone, 

insulin should respond significantly to the meal 

challenge to achieve glucose lowering effects.  

• Different patterns were observed by other 

researchers. The two-hour postprandial time point 

may not capture the highest level of insulin 

response. Responses may differ by disease 

phenotypes 

Glucose 

• Diabetes/pre-

diabetes 

assessment 

↑ 

• Two-hour postprandial glucose level should 

gradually return to fasting state.  

• It may still be elevated but not significantly, so at 

the two-hour time point we may not capture peak 

response of glucose 
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Pro-Inflammation Markers 

Note: these markers would likely respond depending on the state of the individuals (e.g., those with poor 

metabolic flexibility would expect an increase in pro-inflammation cytokines); It may also depend on the 

quantity and quality of the experimental meal, compared with their usual diet. The trigger we provided may or 

may not be sufficient to induce observable changes.  

High-sensitivity 

C-Reactive 

Protein 

• Acute phase 

protein 

• Inflammation 

marker 

• Predictive of 

CVD events 

↑ 

• Rapid reaction to stress signal: it may react to the 

meal challenge in our study rapidly, and the two-

hour time point may not capture peak response of 

hsCRP 

• The response also differs by the type of diet (e.g., 

high fat versus high fiber) 

Interleukin-6 

• Inflammation 

marker 

• Associated with 

CRP level 

↑ 

• Released by neutrophils & macrophages; partly 

induced by TNF-a 

• It triggers liver to release acute phase proteins, 

such as CRP 

• Timing for the assessment of IL-6 response is 

critical, and it varied in previous studies. The 

two-hour time point may not capture peak 

response 

Leptin 

• Catabolic 

hormone 

• Satiety 

regulation 

(central nervous 

system) 

↑ or = 

• As a satiety hormone with catabolic function and 

pro-inflammatory effects, its level may increase 

in response to the meal. But exact time frame is 

unclear 
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• Proportional to 

adiposity mass 

• Glucose 

homeostasis 

Resistin 

• Important link 

between obesity, 

insulin 

resistance, and 

type 2 diabetes 

↑ 

• Resistin is an adipocyte-specific hormone, and is 

an important link between obesity, IR, and 

diabetes 

• The two-hour time point may not have captured 

peak response 

Monocyte 

Chemoattractant 

Protein-1 

• Several diseases 

are 

characterized by 

monocytic 

infiltration 

• Important role 

in obesity and 

diabetes  

↑ 

• As an important chemoattractant, MCP-1 

regulates migration and infiltration of monocytes 

and macrophages, thus is predictive of 

atherogenic risk 

• The two-hour time point may not have captured 

peak response 

Anti-Inflammation Markers 

Interleukin-10 

• Anti-

inflammation  

• Inhibits the 

NFkB pathway 

↑ 

• IL-10 is a potent anti-inflammatory cytokine that 

can inhibit the NFkB pathway 

o It helps decrease obesity, insulin 

resistance, and leptin resistance 

• May be up regulated to counter postprandial 

inflammation 

Adiponectin 
• Anti-

inflammation 

↓ 
• As another important adipose tissue-derived 

cytokine, works together with leptin in 
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• Anti-obesity 

hormone 

• Sensitive to 

insulin 

metabolism control, and can counter insulin 

resistance 

• It may also act against leptin’s inflammatory 

effects, thus is anti-inflammatory 

• The two-hour time point may not have captured 

the peak response of adiponectin 

Soluble TNF 

receptor II 

• Anti-

inflammation 

• TNF-α is central 

to activating 

NF-κB pathway, 

and its receptor 

is protective 

against 

inflammation 

↓ 

• Soluble TNF receptors act as TNF antagonists, 

inhibiting TNFa-mediated proinflammatory 

effects  

• It may have reduced due to meal-induced 

inflammation  

• Maybe related to immunological functions too 

* Symbols: “=” no significant change; “↑” postprandial increase (double-arrow denoted significant increase); “↓” 

postprandial decrease (double arrow denoted significant decrease)  

Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein cholesterol; LDLc, low 

density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-esterified fatty acid; hsCRP, high sensitivity C-

reactive protein; IL, interleukin; MCP-1, monocyte chemoattractant protein 1; TNFsR, soluble TNF receptor II. 

3.4 Biomarker-Centered Conceptual Frameworks  

 I developed three central conceptual frameworks to guide this work. Framework 1 is an 

overview of the impact of early-life nutritional exposure on current cardiometabolic profile, 

which was characterized by fasting and postprandial biomarkers that are summarized in this 

chapter. Framework 2 has a specific focus on the role of leptin in the pathway between early-life 
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nutritional exposure and long-term risks for obesity and diabetes, using biomarkers assessed at 

the fasted state. Framework 3 focuses on postprandial hyperglycemia and hyperlipidemia and the 

associated pathways that eventually lead to cardiometabolic disturbances. I have provided 

detailed narrative for each of the framework in this section.  

3.4.a Conceptual Framework 1 

 
Figure 3.1 Conceptual framework of the cardiometabolic impact of early-life exposure to 

improved nutrition 

This is the core conceptual framework for my dissertation work. At the bottom of the 

framework is a timeline incorporating the concept of life course epidemiology: early-life 

exposure to improved nutrition can have life-long impact, and other life course factors also play 

a role in affecting cardiometabolic outcomes in adulthood. It is a gradual and cumulative process, 

with early life being a critical period for nutritional investment to achieve long-term health 

improvements. On the left side, the “exposure” box indicated the nutritional exposure in this 
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research, which is the timing and the type of early-life nutritional supplementation. More details 

about the exposure can be found in Chapter 4. Our Main focus for current outcome is 

cardiometabolic profile, which is both a direct gauge of the cardiometabolic profile and a 

surrogate indicator for future clinical outcomes. To quantify current cardiometabolic profile, we 

used information based on both fasting biomarker data and postprandial responses of the 

biomarkers, individually and collectively. In this framework, we also paid attention to potential 

mediators and confounders, and the details of statistical methodology used to account for these 

factors can be found in Chapter 4.  

 

3.4.b Conceptual Framework 2 

 

Figure 3.2 Conceptual framework ontogenic impact of early-life nutritional exposure, and 

the role of leptin in mediating long-term differential impacts on cardiometabolic diseases 
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The second conceptual framework was designed with a focus on the role of fasting 

biomarkers. I used this framework to elucidate the differential impact of early-life exposure to 

improved nutrition on two long-term cardiometabolic diseases: obesity (increased risk associated 

with the exposure) and type 2 diabetes (reduced risk associated with the exposure), which was 

observed in a previous study in the same population (16). From left to right, this framework 

connected four main factors including early-life nutritional exposure, ontogeny (organ 

development) and its impact on three fasting biomarkers (leptin, insulin, and glucose), the 

mechanisms through which leptin performs glucose regulation, and cardiometabolic outcomes 

(obesity and type 2 diabetes).  

The “exposure” box referred to early-life (the first 1000 days) exposure to atole 

supplementation (improved nutrition) (17). Exposure to improved nutrition can affect the 

development of metabolically active tissues: adipose tissue (inside the first set of square brackets 

component in the graph), the endocrine pancreas (inside the second set of square brackets, with 

three cell types), hepatic tissue, skeletal muscle, and the brain (the bottom left square brackets) 

(19, 79-84). 

Early life adipose tissue development can be affected by improved nutrition, and changes 

could be made in the depot (location), size of fat cells, and type of adipose tissue (white versus 

brown). Adiposity, in combination with nutritional signaling, can affect leptin level, as well as 

pre-determine future obesity risk. Therefore, leptin could be an indicator for overall adiposity in 

adulthood. Pancreatic β-cells, important for insulin secretion and indispensable in glucose 

control, are sensitive to maternal diet. Exposure to improved nutrition in early life may improve 

insulin function, and insulin can chronically up-regulate leptin levels in both production and 

secretion. Improved early nutrition can facilitate the development of pancreatic α- and δ-cells as 
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well, which exerted glycemic regulation through glucagon and somatostatin, respectively. 

Glucagon raises blood glucose level, whereas somatostatin is a pituitary-secreted hormone that 

can locally inhibit glucagon release from the pancreas. Skeletal muscle actively participates in 

glucose storage and utilization. It follows a different development trajectory from that of adipose 

tissue, and is actually ‘in competition’ against adipose tissue in early stages because of shared 

origins from stem cells. It is plausible that exposure to improved nutrition in early life helped 

guide more stem cells to prioritize the path of myogenesis over adipogenesis, which 

predetermined adulthood muscle mass and intramuscular fat content. Improved nutrition in early 

life can affect hepatic tissue as well, which is central to gluconeogenesis and glucose storage. 

Brain and other peripheral tissues that actively utilize (or depend solely on) glucose may have 

also benefited from early life exposure to improved nutrition (19, 79-84).  

Leptin actively participates in glucose homeostasis and counters insulin resistance 

through a few mechanisms that are independent of food intake (indicated by the numbers 1 to 5 

in the framework). Leptin can reduce lipolysis in the entire body, which leads to lower rates of 

hepatic gluconeogenesis by reducing substrates to liver. Leptin also has impact on skeleton 

muscle and other peripheral tissues to increase glucose uptake. Further, based on results from 

animal studies, leptin may have effects on pancreatic α-cells as an antagonist to glucagon, thus 

lowering blood glucose concentration. It has also been reported that, through hypothalamic 

pathways, leptin regulates the release of somatostatin from pancreatic δ-cells, which may 

indirectly affect glucose concentration. Leptin can also affect glucose metabolism through its 

direct effects on the central nervous system (19, 79-84). 

The other components in the framework were introduced in grey shaded areas. They were 

not the focus of our biomarker analyses but should be taken into consideration to form a holistic 
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view. The grey arrow at the top of the graph indicated “other pathways” that are related to social, 

economic, and lifestyle factors. The grey oval area surrounding the cardiometabolic outcomes 

indicated that there are many other contributors to obesity and type 2 diabetes. More details 

about the methods and results related to this conceptual framework can be found in Chapter 5.  

3.4.c Conceptual Framework 3 

 
Figure 3.3 From postprandial hyperlipidemia and hyperglycemia to cardiometabolic 

diseases 

Abbreviations: TRL – triglyceride-rich lipoprotein; FFA – free fatty acids; ROS – reactive oxygen species; oxLDL – 

oxidized low-density lipoprotein; DAG – diacylglyceride; PKC – protein kinase C; NF-κB – nuclear factor kappa-

light-chain-enhancer of activated B cells; AGEs – advanced glycation end-products; MAPK – mitogen-activated 

protein kinase; CMDs – cardiometabolic diseases. 

The third conceptual framework focuses on the role of postprandial hyperglycemia and 

hyperlipidemia in the development of cardiometabolic diseases, through potential mechanisms 

such as inflammation, oxidative stress, insulin resistance, and endothelial processes. Postprandial 
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hyperlipidemia and hyperglycemia is normal metabolic responses to a meal challenge. However, 

if the levels are too high, of if the remnants are not efficiently and effectively cleared from the 

circulation within a regular time frame, the remnants can trigger downstream pathways (28, 85). 

Hyperlipidemia can produce remnants including triglyceride-rich lipoprotein (TRL, the 

hypertriglyceridemia observed postprandially reflects a collective elevation in chylomicrons, 

very low-density lipoproteins, and remnants of these particles) and free fatty acids (FFA). They 

can induce the production of reactive oxygen species (ROS), which when come in contact with 

low-density lipoprotein, can chemically alter it into oxidized LDL (oxLDL). TRL and FFA can 

also initiate the protein kinase C (PKC) pathway, which can trigger the nuclear factor kappa light 

chain enhancer of activated B cells (NFκB) pathway – a potent pro-inflammatory pathway. 

Similarly, the remnants from hyperglycemia can also produce ROS (which may induce insulin 

resistance), and can initiate the NFκB processes through both PKC and MAP Kinase signaling 

pathways. Another message in this framework is that hyperlipidemia and hyperglycemia have 

additive effects on endothelial and oxidative processes.  

The NFκB pathways is multifaceted and complex, and in this framework I only focused 

on the downstream effects relevant to cardiometabolic perturbations: it can recruit chemokines, 

adhesion molecules, and cytokines. These agents then lead to endothelial stimulation, monocyte 

adhesion, and inflammation, all of which contribute to subsequent formation of foam cells in the 

endothelial wall. Long-term consequences include athersclerosis and associated cardiovascular 

diseases. Inflammation, which is increasingly recognized an important component of 

cardiometabolic perturbations, can also contribute to insulin resistance, oxidative stress, 

mitochondrial dysfunction. The red arrows in the graph indicated the biochemical pathways 

represented by cardiometabolic-sensitive biomarkers in this research.  
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CHAPTER 4: METHODOLOGY 

4.1 Overview of Methodology 

This dissertation work was nested within the Institute of Nutrition of Central America 

and Panama (INCAP) Longitudinal Study in Guatemala (86). There were four main components: 

1) Laboratory assays: fasting and postprandial plasma samples were collected from consented 

participants (1,112 fasting, 1,027 postprandial samples were included in the final analyses). I was 

responsible for the analysis of all biomarkers under the auspices of the Biomarker Core 

Laboratory at Atlanta Veterans Affairs Health Care System. 2) Statistical analyses using fasting 

biomarkers: We used the difference-in-difference modeling strategy to investigate the impact of 

early life exposure to improved nutrition on fasting biomarker concentrations in adulthood. We 

explored pathways that could potentially mediated the early nutrition and adulthood 

cardiometabolic disease association. We also provided some explanations regarding the 

differential effect of early nutrition reported by previous studies, with a focus on the diverging 

impact on obesity (early life exposure to improved nutrition increased the odds for adulthood 

obesity) and type 2 diabetes (decreased risk). Through this set of analysis, we identified leptin – 

an adipose tissue-derived hormone – as a key player in glucose homeostasis. 3) Statistical 

analyses using postprandial responses of biomarkers: we are among the first study in low- and 

middle-income settings to have collected data on meal challenge-induced changes in biomarkers. 

We described the dynamic and varied responses of each biomarker to this external stress in 

controlled lab setting, and further investigated the differences in biomarker responses across 

strata of cardiometabolic phenotypes. 4) Data-driven exploratory analysis of biomarkers: we 

used data-driven approaches to reduce the dimensionality of biomarker data, and to identify and 

ascertain biochemical processes (e.g., glucose metabolism and inflammation). We characterized 
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the patterns and structural relationships of postprandial biomarker changes. We compared these 

observations of meal-induced responses across strata of cardiometabolic phenotypes.   

4.2 Study Population 

This dissertation work is a follow-up study of the Institute of Nutrition of Central 

America and Panama (INCAP) Longitudinal Study initiated in 1969-77 in Guatemala. The study 

cohort included residents from four villages (San Juan, Conacaste, Espiritu Santo, and Santo 

Domingo) in the eastern region of Guatemala (87). These four villages were selected based on 

population size, relative population density (to allow for adequate sample size and access to 

centrally located feeding stations), homogeneity in population, and language (due to the language 

constraints of initial psychometric testing instruments) (86). Guatemala is a lower-middle income 

country in Central America, bordering Mexico, Belize, Honduras, and El Salvador. Chronic 

undernutrition in the study area was prevalent in the 1960s to 70s, resulting in high prevalence 

(45%) of stunting in the participating villages (88). Over the past four to five decades, there has 

been considerable economic development in the villages where our participants reside, but a 

nutrition transition was also underway, parallel to the economic advancements in the same areas 

(89).  

The original INCAP study was a randomized controlled trial (1969-77) conducted in the 

era when protein deficiency was the focus of research on malnutrition in resource-poor settings 

(86). In the initial trial, a total of 2,392 children were recruited as the core cohort members (our 

current work has also focused on this core cohort). They were either under the age of seven years 

at study launch or were born into the villages to mothers who have been enrolled during their 

pregnancy (87). The randomization was at the village level, and one large village and one small 
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village were paired per each randomization arm, for a total of four villages. In each village, a 

nutritional supplement was provided throughout the study duration. The two ‘intervention 

villages’ received atole, which was a protein- and energy-containing nutritional made from dry 

skimmed milk, sugar, and Incaparina (a vegetable protein mixture developed by INCAP). The 

two ‘control villages’ received fresco, which was a refreshing beverage that did not contain 

protein and had low calorie content, with matching micronutrient profile to that of atole (86). 

The supplements were provided twice a day (mid-morning and mid-afternoon to facilitate access 

and to avoid replacing main meals of the participants), seven days a week for a total of seven 

years in the selected villages. Study participants could have been exposed to either atole or 

fresco through maternal intake (prenatally), breastmilk (younger infants who were breastfed), or 

through the child’s own consumption (no longer exclusively breastfed). Relevant information 

was fastidiously collected and recorded in this study (86).  

Through seven successive follow-up studies (conducted within five study periods), a rich 

dataset is available from the INCAP Longitudinal Study (16, 25). The most recent study period 

(2015-17) was initiated by core INCAP researchers upon observing the high prevalence of 

obesity and diabetes (as well as ‘pre-diabetes’). This study period involved the collection of 

biological samples to assess cardiometabolic disease risks. The hypothesis is that early nutrition 

investment is associated with long-term cardiometabolic profiles, as assessed by biomarkers.  

4.3 Sources of Data 

In this dissertation work, we defined improved nutrition in early life as those who 

received atole during the full first 1000 days (from conception to two years of age) (16). Data on 

timing and type of exposure to the nutritional supplements were available at baseline (1969-77 
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data), which allows for assessing the effects of different early nutrition exposures on long-term 

health outcomes, as well as investigating associations of other non-randomized exposures with 

the outcomes. Determination of the timing of exposure (full exposure during the first 1000 days, 

partial or no exposure – either too old or too young for full first 1000 day exposure) was 

presented in Table 4.1. With the open-cohort nature of the initial cluster-randomized controlled 

trial, cohort members entered the study at different ages, and were exposed for different length of 

time. To account for this complexity of exposure variable, INCAP researchers have developed a 

modeling strategy, based on the concept of difference-in-difference (DD) estimation strategy that 

is commonly used in the field of economics. More details about DD modeling is described in this 

statistical analysis section) (90).  

Table 4.1: Timing of exposure to nutritional supplementations 

Start date of trial based 

on village size 

Too old for full exposure 

in the first 1000 days 

Full exposure in the first 

1000 days 

Too young for full 

exposure in the first 

1000 days 

Large villages: Jan 1, 

1969 

DOB earlier than Sep 24, 

1969 

DOB between Sep 24, 

1969 and Feb 28, 1975 

DOB later than Feb 28, 

1975 

Small villages: May 1, 

1969 

DOB earlier than Jan 22, 

1970 

DOB between Jan 22, 

1970 and Feb 28, 1975 

DOB later than Feb 28, 

1975 

Note: The trial ended in all four villages (large and small) on Feb 28, 1977. First 1000 days was calculated as from 

conception to two years of age; and conception was assumed to be 9 months before DOB in exact number of days  

We investigated the following cardiometabolic outcomes, including metabolic syndrome, 

obesity, hyperglycemia (pre-diabetes), and type 2 diabetes mellitus.  metabolic syndrome (MetS) 

was defined as having ≥ 3 of the following five components: 1) abdominal obesity (waist 

circumference ≥ 88 cm for women; ≥ 102 cm for men); 2) fasting glucose ≥ 100 mg/dL or 
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diabetic medication use; 3) triglycerides ≥ 150 mg/dL or statin use; 4) HDL-cholesterol < 40 

mg/dL in men or < 50 mg/dL in women, and; 5) systolic blood pressure (SBP) > 130 mmHg, 

diastolic blood pressure (DBP) > 85 mmHg, and/or hypertension medication use (91). Normal 

weight was defined as body mass index (BMI) between 18.5 and 25 kg/m2; overweight was BMI 

between 25 and 30 kg/m2; and obesity status was defined as BMI ≥ 30 kg/m2 (92). 

Hyperglycemia (prediabetes) was defined as fasting plasma glucose ≥ 100 mg/dL and ≤ 125 

mg/dL, or two-hour post-challenge plasma glucose level ≥ 140 mg/dL and < 200 mg/dL among 

participants who were not using diabetic medication (36). Type 2 diabetes was defined as a 

fasting plasma glucose of 126 mg/dL or more, post-challenge glucose of 200 mg/dL or more, or 

use of diabetes medication (36).  

Relevant sociodemographic data and health information, including age, sex, lifestyle 

factors, and current health and disease status, are also available from the baseline and subsequent  

5 follow-up visits over the past 45 years. Anthropometry and body composition data were 

collected during the most recent study period and, include weight and height, tricipital, 

abdominal and subscapular skinfolds, and hip, thigh, and abdominal circumferences. Body mass 

index (BMI) was calculated as Quetelet Index (weight in kg/ height in m2). In addition, a more 

accurate, independentmeasurement of body composition was also available based on total body 

water measurement as assessed by deuterium oxide dilution. After an overnight fast, the 

participants were given 30 g dose (safe for all types of patients) of deuterium oxide, which are 

stable tracers to be tested. The basic assumption of this methodology is that neutral fat does not 

bind water, nitrogen, or electrolytes, hence allowing for the separated assessment of lean body 

mass and fat mass (93).  
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The main domains of data were collected for three generations of cohort members and 

included: G1 – pregnant and lactating women enrolled in the initial study, whose children were 

considered the main cohort members; G2 – the main study participants were enrolled as children 

0-7 years of age; and G3 – the offsprings of G2. The initial study (1969-77) was designed as a 

RCT focusing on the influence of intrauterine and preschool malnutrition on behavior, and 

mental and physical development. The second data collection period (1989-99) focused on 

adolescents and young adult health. The third data collection period (1991-99) included three 

sub-studies to investigate birthweight, generational effects, and cardiovascular risk factors. The 

fourth period (2002-2004) studied human capital and economic productivity, The fifth period 

(2005-2007) investigated the flow of resources across three generations (87). 

The current study (2015-17) includes a comprehensive physical examination with plasma 

and urine collection to assess cardiometabolic conditions and risk factorsin all available 

participants of the originalcohort  . All living members of the cohort were contacted and invited 

to join in the current study period, and there were no a priori exclusion criteria (except for 

pregnant women, who were rescheduled to 6 months after delivery). Biological samples are 

available from 1,115 participants (67% of a traceable sample of 1,661 at the beginning of this 

study period). A unique feature of the current study period is the ability to assess the acute 

response to a physiologic meal challenge of mixed composition.  Analysis of plasma samples 

collected at 2hr after meal consumption allows for concurrent assessment of oral glucose 

tolerance and meal-induced oxidative stress. The freshly prepared challenge was in the form of a 

liquid shake and consisted of  25 g safflower oil, 52 g sugar, 12 g Incaprina powder (a plant-

based protein mixture developed by INCAP), and 170 ml lactose-free skim milk.  The shake was 

selected to minimize variability in absorption rate among participants.  As quality controls, 
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several batches of individual shakes prepared on different days were sent to a commercial 

reference laboratory for detailed composition analysis (Covance Inc., https://www.covance.com).  

On average each 100 g of the shake had 164.7 cal (31% from fat), containing 3.4 g protein, 25.2 

g carbohydrate, and 5.7 g fatty acids, including 1.8 g saturated fatty acids, 3.0 g monounsaturated 

fatty acids and 0.9 g polyunsaturated fatty acids. Exactly two hours after the meal challenge, the 

phlebotomist drew venous blood a second time. According to study protocol, those with glucose 

> 180 mg/dL at fasting state (n =85) were not given the meal challenge for safety consideration.  

4.4 Laboratory Methods 

The fasting and postprandial plasma samples were aliquoted into cryovials, stored at 4°C 

and transported on ice to the central laboratory at -80°C within eight hours. All samples were 

shipped on dry ice to Atlanta, GA, US and stored at -80°C until analysis. One aliquot for 1,115 

fasting plasma samples and one aliquot for 1,030 postprandial plasma samples were available for 

the current analysis. Three women were excluded due to lactation or pregnancy status (which 

tend to influence body adiposity measurements and biomarker concentrations). The final sample 

size was 1,112 for fasting plasma and 1,027 for postprandial plasma. 

 Prior to laboratory assays, we sorted plasma samples into 28 batches in a randomized 

manner, balanced by residence, location of data collection, and timing of exposure to atole or 

fresco (Table 4.2 presented the sorting results). This sorting step prevented overlaying potential 

systematic bias in the location of data collection (with different personnel) with bias in 

laboratory batches. It should be noted that while most participants were enrolled at the village of 

their birth, several were seen at the clinic in Guatemala City or in other villages.  

 

https://www.covance.com/
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Table 4.2: Sample size based on the laboratory sorting step  

Fasting Plasma 

Location of data 

collection (Hechoen) 

Timing of exposure 

Too old for full exposure 

Full exposure in first 

1000 days 

Too young for full 

exposure 

n % n % n % 

Village 1 54 4.84 54 4.84 31 2.78 

Village 2 110 9.87 113 10.13 37 3.32 

Village 3 88 7.89 75 6.73 37 3.32 

Village 4 68 6.1 55 4.93 28 2.51 

5 (Capital) 

Birth 

village = 6 

or 14 

45 4.04 45 4.04 13 1.17 

Birth 

village = 3 

or 8 

14 1.26 21 1.88 7 0.63 

6 

(Sanarate) 

Birth 

village = 6 

or 14 

54 4.84 43 3.86 14 1.26 

Birth 

village = 3 

or 8 

48 4.3 52 4.66 9 0.81 

Postprandial Plasma 

Location of data 

collection (Hechoen) 

Timing of exposure 

Too old for full exposure 

Full exposure in first 

1000 days 

Too young for full 

exposure 

n % n % n % 
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Note: the sorting process included: 1) calculate the sample size in each category as presented in this table; 2) 

balancing the characteristics by ensuring in each new batch (total batch=28), we included individuals from almost 

all cells above; 3) we did the sorting step for fasting sample first, then paired the postprandial samples for the same 

individual. Therefore, in each batch, sample size may vary (max=80), depending on the availability of postprandial 

samples. 

We characterized cardiometabolic profile using selected biomarkers, including lipid 

profiles, glycemic markers, and inflammation markers deemed pertinent to the research 

questions. We assayed lipid profile, glycemic status, and inflammatory status in all available 

plasma samples. Lipid profile included the following biomarkers: total cholesterol (TC, mg/dL), 

triglycerides (TG, mg/dL), high-density lipoprotein cholesterol (HDLc, mg/dL), low-density 

Village 1 52 5.02 54 5.22 30 2.9 

Village 2 97 9.37 102 9.86 34 3.29 

Village 3 77 7.44 69 6.67 34 3.29 

Village 4 62 5.99 53 5.12 28 2.71 

5 (Capital) 

Birth 

village = 6 

or 14 

43 4.15 44 4.25 13 1.26 

Birth 

village = 3 

or 8 

13 1.26 19 1.84 6 0.58 

6 

(Sanarate) 

Birth 

village = 6 

or 14 

46 4.44 42 4.06 13 1.26 

Birth 

village = 3 

or 8 

48 4.64 48 4.64 8 0.77 
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lipoprotein cholesterol (LDLc, mg/dL), non-HDLc (subtracting HDLc from TC concentration, 

mg/dL), non-esterified fatty acids (NEFA, Eq/L), apolipoprotein A-I (apoA-I, mg/dL), and 

apolipoprotein B (apoB, mg/dL). All lipids were assessed using the AU480 Chemical Analyzer 

(Beckman Coulter Diagnostics, Fullerton CA, US), but the specific methods varied: TC and TG 

– enzymatic methods (Sekisui Diagnostics P.E.I. Inc., Canada); HDLc and LDLc – 

homogeneous methods (Sekisui Diagnostics P.E.I. Inc. Canada); ApoA-I and ApoB – 

immunoturbidimetric assays (Kamiya Biomedical Company, WA, US); NEFA – colorimetric 

methods (Wako Chemicals Corporation, Richmond VA, US). Glycemic status was assessed by 

glucose (mg/dL) (enzymatic methods, Sekisui Diagnostics, PA, US), insulin (mIU/L) 

(immunoturbidimetric assay, Kamiya Biomedical Company, WA, US). Inflammatory status was 

assessed by fasting plasma levels of several biomarkers, including pro-inflammatory markers 

such as high-sensitivity C-reactive protein (hsCRP, mg/dL), interleukin-6 (IL-6, pg/mL), leptin 

(ng/mL), resistin (ng/mL), and monocyte chemoattractant protein-1 (MCP-1, pg/mL); as well as 

anti-inflammatory biomarkers including interleukin-10 (IL-10, pg/mL), adiponectin (μg/mL), 

and soluble tumor necrosis factor receptor II (TNFsR, ng/mL). HsCRP was assayed using 

immunoturbidimetric assay (Kamiya Biomedical Company, WA, USA), and all other cytokines 

(IL-6, leptin, resistin, MCP-1, IL-10, adiponectin, and TNFsR) were assayed with ELISA kits 

(Boster Biological Technology, CA, USA). Among these inflammatory markers, leptin, 

adiponectin, and resistin were adipose tissue-derived cytokines. Table 4.3 summarized the 

biomarkers assayed in our study.  
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Table 4.3: List of biomarkers assayed in our study 

Biomarker Unit Lab Method Final sample size, n (%) 

Lipids 

Total cholesterol (TC) mg/dL Enzymatic methods 

Fasting: 1112 (99.7 %) 

Postprandial: 1030 (99.5%) 

Triglycerides (TG) mg/dL Enzymatic methods 

Fasting: 1113 (99.8 %) 

Postprandial: 1030 (99.5%) 

High-density lipoprotein 

cholesterol (HDLc) 

mg/dL 

Homogeneous 

method 

Fasting: 1113 (99.8 %) 

Postprandial: 1030 (99.5%) 

Low-density lipoprotein 

cholesterol (LDLc) 

mg/dL 

Homogeneous 

method 

Fasting: 1113 (99.8 %) 

Postprandial: 1030 (99.5%) 

Non-HDLc mg/dL 

Calculated as TC 

minus HDLc 

Fasting: 1112 (99.7 %) 

Postprandial: 1030 (99.5%) 

Apolipoprotein A-I 

(ApoA-I) 

mg/dL 

Immunoturbidimetric 

method 

Fasting: 1113 (99.8 %) 

Postprandial: 1030 (99.5%) 

Apolipoprotein B (ApoB) mg/dL 

Immunoturbidimetric 

method 

Fasting: 1112 (99.7 %) 

Postprandial: 1030 (99.5%) 

Non-esterified fatty acids 

(NEFA) 

Eq/L Calorimetric method 

Fasting: 1113 (99.8 %) 

Postprandial: 1030 (99.5%) 

Glycemic markers 

Insulin mIU/L 

Immunoturbidimetric 

assay 

Fasting: 1113 (99.8 %) 

Postprandial: 1030 (99.5%) 

Glucose mg/dL Enzymatic method Fasting: 1112 (99.7 %) 
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Postprandial: 1030 (99.5%) 

Pro-inflammation markers 

High sensitivity C-reactive 

protein (hsCRP) 

mg/dL 

Immunoturbidimetric 

assay 

Fasting: 1113 (99.8 %) 

Postprandial: 1030 (99.5%) 

Interleukin-6 (IL-6) pg/mL 

Enzyme-linked 

immunosorbent 

assay (ELISA) 

Fasting: 347 (31.1 %) 

Postprandial: 315 (30.4 %) 

Leptin ng/mL ELISA 

Fasting: 1115 (100.0 %) 

Postprandial: 746 (72.1%) 

Resistin ng/mL ELISA 

Fasting: 1033 (92.6 %) 

Postprandial: 615 (59.4 %) 

Monocyte chemoattractant 

protein-1 (MCP-1) 

pg/mL ELISA 

Fasting: 974 (87.4 %) 

Postprandial: 900 (87.0 %) 

Anti-inflammation markers 

IL-10  pg/mL ELISA 

Fasting: 845 (75.8 %) 

Postprandial: 741 (71.6 %) 

Adiponectin μg/mL ELISA 

Fasting: 1034 (92.7 %) 

Postprandial: 616 (59.5 %) 

Soluble TNF receptor II 

(TNFsR) 

ng/mL ELISA 

Fasting: 718 (64.4 %) 

Postprandial: 616 (59.5 %) 

4.5 Safety and Confidentiality  

Since the work involved only laboratory assays and data analysis, and did not involve 

direct contact with human subjects, there was no direct potential harm to study participants. 

Confidentiality was ensured by the following means: all data were de-identified for analytical 
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purposes; data were electronically shared through secured online portals (mainly through Emory 

Box or on a flash drive between IRB-approved researchers); data analysis were all conducted by 

me (IRB approved doctoral candidate), and were be stored on a password-secured computer that 

only I could access.  

In addition, I received CITI training in laboratory safety, and completed additional 

certification in various safety protocols required by the Veterans Affairs Medical Center - 

VAMC Research Safety/Biosafety course and a one-year refresher, including training modules in 

biological hazards, chemical hazards, physical hazards, emergency response for research, and 

security in research areas. I also completed additional training through the Talent Management 

System (TMS), including Intellectual Property Agreement, Occupational Health and Safety 

training, VA Privacy and Information Security Awareness and Rules of Behavior Course, and 

the Information 201 course. Because my work involved human studies and contact with human 

samples, I received safety training in Bloodborne Pathogens. I used laboratory protection when 

processing human plasma samples.  

4.6 Ascertainment of Data Quality  

Laboratory Data Quality Control: To ensure strict quality assurance and control of the 

plasma samples, the following standard quality control (QC) procedures were performed in the 

laboratory (after samples are received and properly stored): 1) we used a quality control product 

(pooled plasma sample that was aliquoted and stored at -80oC, and were run together with each 

batch of study samples) to track potential drift in the analysis over different reagent lots. A 

quality control log was maintained daily to document routine steps, outliers, abnormal 

observation, or any mistakes and subsequent corrective measures; 2) QC statistics were 

calculated daily, by batch, and across every eight batches. Outliers were identified using two sets 
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of scatterplots: pre-post scatterplot; and %-delta change plot based on fasting concentrations. All 

outliers were either confirmed (if biologically plausible and reproduceable) or discarded (if 

implausible or unable to reproduce) by repeating lab procedures for the specific samples. 3) 

Reliability was examined for the repeated measures of TC, TG, HDLc, LDLc, fasting and 

postprandial glucose for a random subset of samples in each batch. See Figure 4.1 for a set of 

Bland-Altman plots to ensure reliability (< 5% of outliers in each plot) between measurements 

taken in the field sites in Guatemala versus at the VA laboratory in the US.  

 

Note: TG, FBG, and 2hPG data were log-transformed to correct for skewness. 

Figure 4.1 Bland-Altman plot for reliability assessment: field measurements compared 

with VA measurements.  

Other Data Quality Control: Electronic data was shared by the Guatemala INCAP team 

with Emory. I was granted access to the secure shared drive that contained all waves of historical 

INCAP data. Data quality assurance included the following methods: 1) For data based on field 
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questionnaires, I first flagged implausible values, and then communicate with the Guatemala data 

team to compare the electronic data values with those recorded on the paper forms. 2) I 

performed exploratory data analysis to check ranges and distributions of variables in the data. 3) 

For all data (including questionnaire and lab-based data), I examined them for plausibility. I was 

assisted by the field team and Emory colleagues (including the previous doctoral student 

working with the datasets) to ensure the consistency in our selected variables.  

4.7 Statistical Analysis 

4.7.a Missing Data 

Merged laboratory and field data were checked for missingness for each variable. An 

Excel file will be maintained to document data missingness. For outcome variables (e.g., all 

biomarkers), the missingness were used as is in subsequent analyses in order to not bias or 

neutralize the results. For fasting biomarkers, the ones with over 5% missing included 69.5% for 

IL-6, 35.6% for TNFsR, 25.7% for IL-10, 13.6% for MCP-1, and 7.4% for resistin. For 

postprandial biomarkers, missingness (> 5.0%) in women included 71.0% for IL-6, 38.0% for 

TNFsR, 26.4% for IL-10, 12.7% for MCP-1, 8.8% for resistin, and 8.6% for adiponectin; In 

men: 69.1% for IL-6, 33.3% for TNFsR, 25.2% for IL-10, 12.7% for MCP-1, 5.0% for resistin, 

and 5.0% of adiponectin.  

For control variables, I used multiple imputation method (“Hmisc” package in R) to 

account for missingness for the following variables: maternal height (missing 20.5%), maternal 

age at child birth (missing 1.6%), and maternal education (missing 3.5%). It is notable that in the 

INCAP study, attrition has been reported in the most recent study wave. Albeit missing not 
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completely at random, attrition was not shown to bias the association between early-life 

nutritional exposure and a range of long-term outcomes (16). 

4.7.b Power calculation 

Power calculation based on expected sample size and modeling assumptions: Since the 

work was nested within an existing cohort with fixed sample size, we conducted post hoc power 

calculation as follows: we assumed a type I error of 0.05 and specify conservative, two-tailed 

tests for all calculations. We based the estimation of effect sizes on Cohen’s suggestions: 0.02, 

0.15, and 0.35 represent small, medium, and large effect sizes (94). We used the G*Power 3 

software for the power calculations (95). Based on an expected sample size of 1,112 in with 10 

independent variables and an effect size of 0.02, we can expect to achieve 92% power with an F 

test. Overall conclusion related to power calculation: The focus was to perform post hoc power 

calculation of the interaction term: atole/fresco * timing of exposure. All markers except IL-6 

had >80% power for the interaction term to detect at least medium effect size (0.5), for most of 

the markers, small effect size (0.2). For IL-6, even with full sample (1,112), we are not powered 

to detect the small effect size.  

4.7.c Data Inspection, Transformation, and Univariate Data Analysis 

All data were inspected for distributions and ranges. Appropriate presentation methods 

for distribution were used (mean ± standard deviation for normally distributed variables, and 

median, inter-quartile range for skewed variables). Transformation (log transformation and z-

score calculation) were used when appropriate to: 1) improve distribution; 2) fulfill linear model 

assumption ( “ggfortify” package in R); and 3) convert postprandial biomarker responses (%-

delta, calculated as the difference between pre- and post-prandial concentration of each 
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biomarker divided by their pre-prandial level, presented as a percentage) into z-score (values 

minus mean, divided by standard deviation) to make the changes comparable across all 

biomarkers. We refrained from performing multiple transformations on the same variables to 

ensure interpretability of the outcomes. 

In addition, we describe the population in terms of their sociodemographic characteristics 

and CMD profiles. First, descriptive analyses to summarize key characteristics of the study 

participants were performed. Comparisons among groups (by sex or by early-life nutritional 

exposure status) were conducted using the Student’s t test, χ2 test, or non-parametric tests 

(Mann-Whitney U test), depending on the type of data. Both fasting concentrations of 

biomarkers and two-hour changes following the meal challenge were also described.  

4.7.d Modeling Strategies 

To investigate the association of early-life nutritional exposure and cardiometabolic 

profile, the selected biomarkers were treated as outcome variables in the following analyses. 

Crude and adjusted regression analyses were constructed to explore the association. Linear least 

squared regression was used for continuous outcomes including body adiposity measurements 

(body mass index, waist circumference, and percent body fat, fasting biomarker concentrations, 

and postprandial biomarker responses). Logistic regression was used for cardiometabolic 

diseases and associated phenotypes (obesity, glycemic gradient including normal glycemia, 

hyperglycemia, and type 2 diabetes, and metabolic syndrome). The modeling strategy is as 

follows: 1) variable specification; 2) check regression assumptions and assess collinearity among 

variables; 3) interaction assessment; 4) confounding assessment (following ‘10%’ rule, 

comparing coefficients with and without confounding terms in the models); and 5) precision 

assessment (compare confidence intervals). In addition, pooled and stratified (by sex) analysis 
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were conducted to account for sex-specific differences. In the pooled models, we also tested 

stratum heterogeneity by adding an interaction term between sex and the key independent 

variable: the independent (exposure) variable is described in detail in the following paragraph. 

Because the initial randomized control trial in the four Guatemalan villages was an open 

cohort for seven years, the cohort members have entered the study at different time points in 

their childhood. They were exposed to the two supplements for varying durations, and previous 

studies found time-dependent differences in the timing (and relatively length) of exposure, 

emphasizing the window from conception to two years of age. Therefore, a difference-in-

difference estimation strategy was used to model the exposure variable based on intent-to-treat 

analytical principles. For each cohort member, three variables were used for exposure status: 1) 

exposure to atole or fresco (because the randomization was at village level, to simultaneously 

capture the randomization status and village-level effects, we used village identifier in place of 

the binary variable); 2) timing of exposure: full exposure during the first 1000 days, or partial to 

no exposure in this period of time; and 3) the interaction term between variables #1 and #2, 

which estimates the difference-in-difference effect of atole vs. fresco for a given duration and 

timing of exposure. Figure 4.2 showed the DD method in the INCAP study.  

 

Figure 4.2 Difference-in-difference (DD) modeling strategy in the INCAP study 
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The model could be represented by the following formula: 

Yi,j= α + β1Xi + β2Zj + (γ1V1 + … + γmVm) + δXi×Zj + ε   (1)     

P(X)= α + β1Xi + β2Zj + (γ1V1 + … + γmVm) + δXi×Zj + ε  (2) 

Logit P(X) = ln (
𝑃(𝑋)

1−𝑃(𝑋)
) 

Formula (1) represents linear models, and formula (2) represents logistic models in log 

odds, or logit form, where Logit P(X) = ln (
𝑃(𝑋)

1−𝑃(𝑋)
). Yi,j is continuous outcome variables to be 

modeled (e.g., biomarker levels and postprandial changes) (Eq. 1). P(X) is categorical outcome 

variables to be modeled (e.g., disease phenotypes) (Eq 2). Xi  is variable 1 (atole vs. fresco 

treatment), Zj is variable 2 (timing of exposure), ε is the error term that captures residual 

variances. Xi×Zj is variable 3, which is the exposure variable of interest. Our focus in this model 

is to test the significance of coefficient δ for variable 3. The V1-Vm terms are potential covariates 

to be included in the model (described further below).  For logistic models, Logit P(X) was used 

(Eq. 3). 

It is worth noting that in previous studies conducted by the INCAP researchers, 

sensitivity analyses were conducted to test whether it is reasonable to combine those who were 

partially exposed. Some of these individuals were conceived prior to the beginning of the RCT in 

1969 (thus were ‘too old’ to have exposure for the whole first 1,000 days), whereas some were 

born after 1975 (thus were ‘too young’ to have full exposure during the first 1,000 days) (See 

Table 4.1 for exact dates used in our calculation). It is reasonable to assume that these two 

groups of individuals may have considerable differences in sociodemographic characteristics, 

and the treatment itself may impact their growth differently. Through sensitivity analyses, 
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however, INCAP researchers have not found significant difference in previous study outcomes 

when treating the exposure group differently (90). In addition, the sample sizes are small in these 

two partially exposed groups, hence making combining them more statistically reasonable when 

comparing to the full exposure group.  

Both formulas above included potential covariates in parenthesis (the V terms). The DD 

modeling strategy already accounts for the following effects: secular trends (by including 

variable 2), and fixed inter-group differences (by including variable 1). The following 

characteristics may affect the early nutrition-CMD association, thus will be controlled for: 

childhood characteristics (socioeconomic status, or SES, tertiles in childhood, maternal age at 

childbirth, maternal height, and maternal grades); adulthood characteristics (SES in 2015, grades 

of schooling completed by the participant, and residence in Guatemala City); and adiposity 

measurements (BMI for total adiposity and waist-to-height ratio for central distribution of 

adiposity). Anthropometry was not controlled for when the outcome assessed were adiposity. 

The selection of covariates to be included in the final models will depend on both statistical 

testing and empirical evidences from previous INCAP study and other relevant studies.  

Building upon the difference-in-difference modeling strategies, mediation analysis was 

used to ascertain potential mediators, featuring the adipokine leptin. Mediation analyses were 

conducted separately for men and 

women, because leptin level is 

known to differ by sex, and the 

outcomes of interest (in this case, 

obesity and glycemic measurements 

including glucose concentration and Figure 4.3 Mediation 

AnalysisAnalysiss 
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homeostasis assessment models, or HOMA) are sex-dependent. The conventional mediation 

method was used (see Figure 4.3 for graphic illustration) (96). X is our exposure variable (early-

life exposure to improved nutrition), Y is outcome variables (glycemic measurements), and M is 

mediator (leptin concentration). Graph (A) shows the relationship between X and Y without 

mediation, whereas graph (B) illustrates a mediated effect between X and Y. The formula of 

mediation analysis could be written as follows: 

Y = i1 + cX + ε1         (3) 

Y = i1 + c’X + bM + ε2 

M = i3 + aX + ε3 

All terms in formula (3) are the same as shown in Figure 4.3 (The error terms, ε, denotes 

residuals). The testing of mediation effect will follow these steps first proposed by Baron and 

Kenny in 1986 (97). First, we will test whether the relationship between X and Y is significant 

(test coefficient c). This step is controversial because when mediation effect is strong, c may not 

be significant (96). Therefore, regardless of the significance of c, the analysis continues. Second, 

we will test whether X significantly predicts the hypothesized M (test coefficient c’). 

Subsequently, we will test whether M is significantly related to Y, when both X and M are in the 

model (test coefficient b). Finally, we will check whether c is larger in absolute value than c’. If 

the regressions are linear, then mediation effect equals to either âb̂ or ĉ- ĉ’ (the hat denotes 

observed values), and they are algebraically equivalent.  

4.7.e Data Reduction Technique 

 Data dimensionality reduction techniques were used, including principal component 

analysis (PCA), exploratory and confirmatory factor analysis (EFA and CFA, respectively).  
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Confirmatory factor analysis was also assessed using structural equation modeling, SEM), multi-

variate analysis of variance (MANOVA), linear discriminatory analysis (LDA) to analyze the 

postprandial biomarker changes. This set of analysis is data-driven and exploratory in nature. 

For biomarkers using fasting specimen, we used principal component analysis (PCA) will 

be used to first inspect whether there are a few principal components that can explain most 

variances in the dataset. PCA is an ideal exploratory data analysis methodology in this context, 

which helps reduce the dimensionality of data through identifying linear combinations of 

existing variables (in our case, multiple biomarkers that potentially assess similar underlying 

biochemical processes) (98).  

We then used Exploratory factor analysis (EFA) to first derive hypothesis regarding 

biomarker clusters (factors), because factor analysis is a measurement model that can identify 

latent variables that may simultaneously explain multiple variables (99). Confirmatory factor 

analysis (CFA, in the form of structural equation modeling, SEM) in this dissertation for instance 

maximum likelihood testing, will then be used to validate that the number of factors selected fits 

the data well. We split the data into two random halves, using the first half to ‘train’ the model 

and the remaining half to validate the trained model. The factor analysis model can be presented 

as follows (99). 

x1 = μ1 + β11f1 + β12f2 + … + β1mfm + ε1    (4) 

x2 = μ2 + β21f1 + β22f2 + … + β2mfm + ε2 

... 

xp = μp + βp1f1 + βp2f2 + … + βpmfm + εp 
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In the formula above, x1 to xp are the first through the pth observed variables (biomarker 

levels), whereas f1 to fm are the first through mth latent factors that were not directly measured. 

The β  values are factor loadings, which could be interpreted as correlations that associate each 

latent factor with the observed variables (100). The ε values represent the residual variance of 

each observed variable that are not completely explained by latent factors after loading. Through 

this process, we aim at identifying m factors (m << p) to characterize metabolic flexibility and 

cardiometabolic profile in the population, as assessed by meal-induced biomarker responses.  

Multivariate analysis of variance (MANOVA) was used to test mean differences in 

postprandial biomarker responses between exposure groups, by cardiometabolic processes (lipid, 

glycemic, or inflammatory domain) and by global (all biomarkers) comparison (101). We used 

linear discriminant analysis (LDA) to predict group membership (e.g., nutrition exposure group) 

based on collective biomarker responses (102, 103). For LDA, we partitioned the data into two 

random parts, 80% of the data were used to train the LDA models, and the remaining 20% were 

used to test the established models. We obtained one linear discriminant (LD) that is a linear 

combination of the multivariate data to maximize the between-group differences. Prior to 

conducting the multivariate analyses, we examined the correlation matrix across all biomarker 

responses. 

4.8 Methodologies in the Core Chapters 

The subsequent three chapters each expands on the methodologies used in the specific 

research context: Chapter 5 involved DD modeling strategy and mediation analysis to 

investigate selected fasting biomarkers in the early-life nutrition-cardiometabolic profile 

associations; Chapter 6 presented cross-sectional analysis of the dynamic responses of all 
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biomarkers, as well as the structural relationship among all biomarkers. We compared the 

individual biomarker responses across strata of cardiometabolic phenotypes to identify “healthy” 

and “unhealthy” stress responses; Chapter 7 combined DD, MANOVA, and LDA to compare 

individual, domain-specific, and global biomarker responses between those who were exposed to 

atole in the full first 1000 days versus other exposure status. 
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CHAPTER 5: MANUSCRIPT FOR SPECIFIC AIM 1 

Leptin partially mediates the association between early-life nutritional 

supplementation and long-term glycemic status among women in a 

Guatemalan longitudinal cohort 

5.1 Abstract  

Background: Early-life exposure to improved nutrition was associated with decreased risk for 

diabetes but increased risk for obesity. Leptin positively correlates with adiposity and has 

glucose lowering effects, thus may mediate the association of early-life nutrition and long-term 

glycemic status.  

Objective: To investigate the role of leptin in the differential association between early-life 

nutrition and the risks for obesity and diabetes. 

Design: We analyzed data from a Guatemalan cohort who were randomized at the village level 

to receive nutritional supplements as children. We conducted mediation analysis to examine the 

role of leptin in the associations of early-life nutrition and adult cardiometabolic outcomes. 

Results: Among 1,112 study participants aged (mean ± standard deviation) 44.1 ± 4.2 years, 

60.6% were women. Cardiometabolic conditions were common: 40.2% of women and 19.4% of 

men were obese, and 53.1% of women and 41.0% of men were hyperglycemic or diabetic. 

Leptin concentration (median and interquartile range) was 15.2 ng/mL (10.2-17.3 ng/mL) in 

women and 2.7 ng/mL (1.3-5.3 ng/mL) in men. Leptin was positively correlated with body mass 

index (Spearman’s ρ was 0.6 in women, 0.7 in men). Women exposed to improved nutrition in 

early life had 2.8 ng/mL (95% confidence interval: 0.3, 5.3 ng/mL) higher leptin and tended to 
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have lower fasting glucose (-0.8 mmol/L; -1.8, 0.2 mmol/L, NS) than unexposed women. There 

were no significant differences in leptin (-0.7 ng/mL; -2.1, 0.8 ng/mL) or fasting glucose (0.2 

mmol/L; -0.5, 0.9 mmol/L) in men exposed to improved nutrition in early life compared with 

unexposed men. Leptin mediated 34.9% of the pathway between early-life nutrition and fasting 

glucose in women. The mediation in women was driven by improved pancreatic β-cell function. 

We did not observe the mediation effect in men.  

Conclusions: Leptin mediated the glucose-lowering effect of early-life nutrition in women but 

not in men.  

 

A Note on Copyright: 

This article has been published as: He S, Le NA, Ramírez-Zea M, Martorell R, Narayan 

KMV, Stein AD. Leptin partially mediates the association between early-life nutritional 

supplementation and long-term glycemic status among women in a Guatemalan longitudinal 

cohort. Am J Clin Nutr 2020 Feb 18. doi: 10.1093/ajcn/nqaa001. [Epub ahead of print] 

The authors retained the right to include the full article in this dissertation as per the 

copyright agreement with Oxford Academic: 

https://academic.oup.com/journals/pages/access_purchase/rights_and_permissions/publication_rights. 
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5.2 Introduction 

The period from conception to two years of age (the first 1000 days) is a critical window 

of early-life development (1). Nutritional status during this window has been reported to affect 

health status in later years. Sub-optimal nutrition in the first 1000 days is associated with 

increased risk for obesity, type 2 diabetes, and cardiovascular diseases (1-4). This cluster of 

interwoven cardiometabolic diseases is an emerging contributor to the global disease burden and 

has becoming increasingly prevalent in low- and middle-income countries (5). For instance, 

recent data from Guatemala ranked cardiovascular diseases and diabetes as the first and third 

leading causes of mortality, respectively, and together they account for one third of total deaths 

(5).  

Early-life nutritional exposure affects long-term cardiometabolic health through 

epigenetic, pathophysiological, and other mechanisms (1). Many of these mechanisms are not 

well understood. From a developmental perspective, early-life nutrition affects the ontogeny of 

metabolically active tissues (6). Animal models have provided relevant evidence: malnutrition 

caused structural and functional changes in the placenta and metabolic organs, and these changes 

were associated with long-term cardiometabolic disturbances (7). In human studies, it is 

challenging to distinguish the impact of early-life nutrition from other determinants of 

cardiometabolic perturbations. Longitudinal cohort studies are valuable resources in meeting this 

challenge (8). More than 40 years following a nutrition trial, Ford et al reported that, although 

early-life exposure to improved nutrition was associated with reduced risk of diabetes, odds of 

obesity were increased (9). Previous research explored the linkages between early-life nutrition 

and long-term risks for increased adiposity (10). However, the same factors could not explain the 

observed reduction in diabetes risk (9). 
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Cardiometabolic diseases including obesity and diabetes share underlying biochemical 

pathways (11). Leptin, an adipose-tissue derived hormone, is proportional to body fat mass. 

Leptin also participates in the programming of obesity through a leptin-dependent feedback loop 

(12). Leptin concentration in early life is important in the development of metabolic profile (13). 

Leptin is a key signaling molecule in glucose homeostasis (14-16). As a catabolic agent in 

metabolism, leptin reduces hepatic gluconeogenesis by limiting substrates to liver (14, 15). It has 

impact on skeletal muscle and other peripheral tissues to increase glucose uptake (15). Leptin 

can also regulate glucose homeostasis through pancreatic-secreted hormones (17). Because of the 

versatile functions of leptin, it is important to investigate the specific mechanisms – whether 

leptin mainly reduces insulin resistance (assessed by the homeostasis assessment model, HOMA-

IR) or improves pancreatic β-cell function (HOMA-B) (18). 

We therefore assessed the contribution of leptin to glucose homeostasis in a group of 

adults who participated in a randomized nutritional supplementation trial in early life. We 

postulated that leptin might help explain the differential effects of early-life nutrition on long-

term risks for diabetes and obesity.  

5.3 Subjects and methods 

Study population 

From Jan 1, 1969 to Feb 28, 1977, investigators at the Institute of Nutrition of Central 

America and Panama (INCAP) carried out a randomized controlled trial in four villages in 

southeastern Guatemala. Details of the initial trial and successive follow-up studies have been 

reported elsewhere (9, 19). Briefly, participants in four villages were randomized to receive 

either atole (the treatment group) or fresco (the control group) twice daily for the duration of the 
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study. Atole is a protein- and energy-containing supplementation, whereas fresco is a low-energy 

drink with no protein. A total of 2,392 children were included either because they were under 7 y 

at study launch or were born during the original study period. In the follow-up conducted from 

2015 to 2017, 1,661 cohort members (69.4 % of the original cohort) were eligible for 

participation. The remaining cohort members had died (15.4 %), emigrated (10.4 %), or were 

lost to follow up (4.7 %). Of the 1,661 eligible cohort members, 500 (30.1%) could not be 

contacted or declined to participate in this wave. An additional 49 (2.9%) individuals were 

excluded during the current wave because they either did not attend scheduled clinical exams, 

did not have plasma samples required for this set of analysis, or were pregnant or lactating at the 

time of data collection. The final sample size was 1,112. (Supplementary Figure 1) As 

previously reported, the loss-to-follow up at this examination was not differential in terms of the 

randomization (9). 

Data Collection 

Cohort members were invited to attend centralized clinics (one in each study site) after an 

overnight fast. After obtaining informed consent in Spanish, trained phlebotomists collected 

venous blood in ethylenediaminetetraacetic acid (EDTA) from each participant. Blood samples 

were kept on ice and centrifuged within two hours of collection. On the day of sample collection, 

we aliquoted plasma samples and stored them at -20 oC. Once a month, these samples were 

transported on dry ice to INCAP headquarters in Guatemala City, where we assayed fasting and 

postprandial glucose concentrations (mg/dL, converted to mmol/L for analysis) using enzymatic 

colorimetric methods (Cobas C111 analyzer, ROCHE, Indianapolis, IN, USA). The remaining 

plasma samples were immediately stored at -80°C, and were shipped on dry ice in three 
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installments to Atlanta, GA, US and stored at -80oC until analysis. For laboratory assays 

conducted in the Biomarker Core Laboratory (Foundation for Atlanta Veterans Education and 

Research, Atlanta Veterans Affairs Medical Center), samples were thawed at 4oC over a 

weekend in batches of 40 participants. The plasma samples were randomized into 28 batches, 

balanced by location of data collection, village of birth at the beginning of the INCAP 

Longitudinal Study, and timing of exposure to the nutritional supplements to prevent overlaying 

potential systematic bias in study design with bias in laboratory batches. We assayed insulin 

(mIU/L) using immunoturbidimetric methods (Kamiya Biomedical Company, WA, US). We 

assayed fasting leptin (ng/mL) in duplicates by ELISA (Boster Biological Technology, 

Pleasanton, CA, USA). For quality assurance, we repeated the assays for samples with 

implausible values, usually between one to eight samples per batch (2.5% to 20%), and the 

frequency was once every other week. Overall, across all batches, approximately 5% of all 

samples were re-analyzed. We plotted the concentrations to identify outliers within each batch 

and examined batch effects. In addition, we performed quality check collectively for the first half 

and the second half of the data by examining their comparability, and by identifying outliers and 

re-running the selected samples.  

Anthropometry: Trained research staff measured body weight (kg), height (cm), and 

waist circumference (cm) of all study participants in duplicates using standardized methods. 

Body mass index (BMI) was calculated as weight (kg) divided by height (m) squared. Waist-to-

height ratio (WHtR) was calculated as waist (cm) divided by height (cm). Body composition was 

assessed using the deuterium oxide (D2O) dilution technique (20). (Fourier Infrared analysis, 

FTIR, Shimadzu 8400S). Total body water was determined based on mathematical models from 

the D2O dilution, and fat free mass was calculated using a hydration constant of 0.732 (21). Fat 
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mass, calculated as the difference between body mass and fat free mass, is presented as body fat 

percentage.  

Cardiometabolic outcomes: We focused on obesity, central obesity, hyperglycemia, and 

type 2 diabetes mellitus (T2DM) to characterize cardiometabolic status in the study population. 

Obesity was defined as BMI ≥ 30kg/m2. Central obesity was defined as waist circumference ≥ 88 

cm for women and ≥ 102 cm for men (22). Hyperglycemia was defined as fasting plasma 

glucose ≥  100 mg/dL and ≤ 125 mg/dL, or two-hour post-challenge plasma glucose level ≥ 140 

mg/dL and < 200 mg/dL among participants who were not using diabetic medication (23). (The 

two-hour postprandial plasma glucose was obtained after a mix-component meal challenge 

designed to mimic an oral glucose tolerance test.) T2DM was defined as a fasting plasma glucose 

of 126 mg/dL or more, post-challenge glucose of 200 mg/dL or more, or use of diabetes 

medication.(23) We calculated HOMA-IR as the product of fasting glucose (mmol/L) and fasting 

insulin (mIU/L) divided by 22.5, and HOMA-B as the product of fasting insulin and 20, divided 

by the value of fasting glucose minus 3.5 (24). 

Statistical analysis 

We had over 80% statistical power to detect medium effect size (Cohen’s d = 0.5) for the 

difference-in-difference exposure variable for all biological markers. We described the 

sociodemographic characteristics of the population, pooled and separately by sex. We used 

Student’s t-test or Mann-Whitney U test, when appropriate, for comparisons of characteristics 

(sociodemographic information, cardiometabolic risk factors, and biomarker concentrations) 

between male and female participants. We treated missingness for the following variables using 
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bootstrapped multiple imputation: maternal height (missing 20.6%), maternal age at childbirth 

(missing 1.6%), and maternal schooling (missing 3.5%).  

Following previously described modeling strategies, we constructed difference-in-

difference models to investigate the intention-to-treat impact of exposure to atole in the full first 

1000 days versus partial or no exposure on cardiometabolic disease risk factors (9). The primary 

outcome variables were fasting glucose, HOMA-IR, HOMA-B, and leptin concentration, and the 

secondary variables were body mass index, waist circumference, percent body fat, and fasting 

insulin concentration. As there are multiple sibling sets in our data, we controlled for clustering 

at the household level by generating cluster-robust estimate of the variance matrix. We built a 

series of models. Our base model (Model 1) included three independent variables: (a) the 

treatment variable: receiving either atole or fresco during the nutritional supplementation trial. 

Because the randomization was at the village level, we used birth village in place of the binary 

‘atole versus fresco’ variable to control for village-level random effects (controlling for 

differences between the villages at baseline); (b) timing of exposure: exposed to the either atole 

or fresco during the full first 1000 days versus otherwise; and (c) the interaction term between 

the treatment and timing of exposure, which is our target difference-in-difference exposure 

variable. This variable represented participants who were exposed to atole during the full first 

1000 days versus those with partial or no exposure in this timeframe. We controlled for birth 

year and sex in the base models. When biomarkers and T2DM were the dependent variables in 

the base models, we also adjusted for body mass index and waist-to-height ratio.  

The difference-in-difference approach controls for within-village fixed effects that might 

otherwise differ between individuals. However, there were still potential between-group 
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differences using this approach. We therefore built adjusted models that sequentially added 

childhood characteristics (socioeconomic status, or SES, tertiles in early life, maternal age at 

childbirth, maternal height, and maternal schooling – Model 2), adulthood characteristics (SES in 

2015, grades of schooling completed by the participant, and residence in Guatemala City – 

Model 3), and adiposity measurements (BMI for total adiposity and waist-to-height ratio for 

central distribution of adiposity – Model 4). We presented Model 3 (for anthropometric 

measurements as dependent variables) and Model 4 (for biomarkers as dependent variables) as 

the adjusted models. For pooled models, we assessed stratum heterogeneity by sex through 

testing an interaction term between sex and the difference-in-difference exposure variable. Even 

when stratum heterogeneity was not detected, we also conducted sex-specific analysis due to the 

biological differences between the two sexes, especially due to the significantly higher leptin 

concentration in women than men.  

We conducted sex-specific mediation analysis to investigate the role of leptin in the 

difference-in-difference models. We used the Baron & Kenny method (25). (Refer to Figure 2 in 

the results section for annotations) The direct model included the glycemic measurements 

(fasting glucose, HOMA-IR, and HOMA-B, respectively) as the outcome and the difference-in-

difference exposure variable as the predictor [Glycemic measurement = ĉ *(Exposure to atole in 

the full first 1000 days) + (control variables) + ε1]. The standardized regression coefficient of the 

exposure variable was the total effect ĉ. The mediation model has the same outcome and 

predictor with leptin being added as a mediator [Glycemic measurement = ĉ’ * (Exposure to 

atole in the full first 1000 days) + b̂ * (Fasting leptin) + (control variables) + ε2]. Then, treating 

leptin as the outcome, the exposure variable has a coefficient â [Leptin = â * (Exposure to atole 

in the full first 1000 days) + (control variables) + ε3]. The mediation effect is the product of â 
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and b̂, which represents the indirect pathway between exposure and outcome. The mediation 

percentage is indirect effect âb̂ divided by the total effect ĉ. When the indirect pathway âb̂ 

suppresses the total direct effect ĉ (e.g., the sign flipped), we did not report the mediation 

percentage. Control variables were included as in the unmediated difference-in-difference 

models. We ruled out moderated mediation by testing potential moderating effect by leptin 

through adding an interaction term between leptin and the exposure variable. We confirmed the 

results through simulation exercises using the statistical package “mediation” in R, bootstrapped 

1,000 times (25, 26). We used the “RMediation” package to obtain the 95% confidence interval 

of the mediation effect (27).  

We also conducted a sensitivity analysis to account for potential hormonal impact on 

biomarker concentrations: we compared the mediation results between post-menopausal women 

and other women. We categorized women who did not have menstruation for ≥ 12 consecutive 

months at the time of data collection as postmenopausal (28).  

We conducted all analyses in R version 3.6.0 (R Core Team 2018, Foundation for 

Statistical Computing, Vienna, Austria). Statistical significance was set a priori at p value < 0.05. 

All p-values were two-sided.  

Research ethics: The study was approved by the Institutional Review Board at Emory 

University and the Ethics Review Committee of INCAP. All study participants provided written 

informed consent in Spanish.  
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5.4 Results 

The sample included 1,112 Guatemalan adults (60.6% women) with a mean (± standard 

deviation) age of 44.2 y (± 4.3 y) for women and 43.9 y (± 4.1 y) for men (Table 1). 

Approximately one in five participants were exposed to atole during the full first 1000 days. Men 

and women were similar in most sociodemographic factors investigated. Women had higher 

BMI, waist circumference, and percent body fat than men (Table 1). Based on BMI, 

approximately 40% of women and 20% of men were obese. Based on sex-specific waist 

circumference standards, almost 90% of women and 20% of men were centrally obese. Over 

30% of all participants were hyperglycemic. More women than men (16.5% and 9.2%, 

respectively) had T2DM, and more women than men (less than 10% for both) were taking 

medications to manage their diabetic condition (Table 1). Compared with men, women had 

higher fasting concentrations of insulin, glucose, HOMA-IR, HOMA-B, and leptin. Leptin 

concentration was positively correlated with both BMI (Spearman’s ρ was 0.6 for women and 

0.7 for men) and waist circumference (Spearman’s ρ was 0.6 for women and 0.8 for men) 

(Figure 1). 

Based on results from adjusted models, the mean concentration of glucose was 0.8 

mmol/L lower (95% CI: -1.8, 0.2 mmol/L) in women who were exposed to atole in early life 

than unexposed women. Among women, leptin concentration was 2.8 ng/mL higher (95% CI: 

0.3, 5.3 ng/mL) and HOMA-IR was 0.5 lower (95% CI: -1.5, 0.6) in the exposed group than in 

the unexposed group (Table 2). Among men, being in the exposure group was associated with 

lower leptin concentration (-0.7 ng/mL; 95% CI: -2.1, 0.8 ng/mL) and higher fasting glucose 

concentration (0.2 mmol/L; 95% CI: -0.5, 0.9 mmol/L). Exposure to atole during the first 1000 

days was positively associated with a few measurements of fatness (Table 2). In pooled analysis, 
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exposure group was associated with 1.3 kg/m2 higher BMI (95% CI: 0.2, 2.3 kg/m2) and 2.7 cm 

(95% CI: 0.1, 5.2 cm) larger waist circumference. Among men, exposure group was associated 

with 1.7 kg/m 2 higher BMI (95% CI: 0.3, 3.1 kg/m2), 5.2 cm (95% CI: 2.0, 8.5 cm) larger waist 

circumference, and 2.8% increased body fat percentage (95% CI: 0.4, 5.1 %). We did not 

observe significant stratum heterogeneity by sex in pooled models.  

Among women, leptin mediated the pathway between early-life atole exposure and 

fasting glucose concentration (Figure 2). In adjusted models for women, leptin mediated 34.9 % 

of the nutrition exposure-glucose association (mediation effect = -0.3 mmol/L; 95% CI: -0.5, -0.1 

mmol/L) (Figure 2A). Leptin did not mediate the pathway between early-life nutritional 

exposure and HOMA-IR in women (Figure 2B), but it did mediate the pathway to HOMA-B: 

indirect effect through leptin was 8.1 mmol/L (95% CI: 1.8, 14.9 mmol/L) and direct effect in the 

mediation model was -7.6 mmol/L (95% CI: -36.6, 21.4 mmol/L) (Figure 2C). We did not 

observe any mediation effect of leptin on fasting glucose, HOMA-IR, or HOMA-B in men 

(Figure 2A to 2C). We confirmed the results of mediation analysis by bootstrapped simulation: 

as shown in Supplementary Figure 2, average causal mediation effect (ACME) was consistent 

in bootstrapped simulation results for all three glycemic measurements by sex.  

In sensitivity analyses, mediation analysis showed significant mediating effect of leptin 

between early-life atole exposure and fasting glucose concentration in all other women (38.7% 

mediated), but not in postmenopausal women. Nevertheless, the coefficients (a, b, c, and c’) in 

the two sets of mediation models were similar between postmenopausal women and other 

women. (Supplementary Figure 3). 
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5.5 Discussion 

To our knowledge, this study is among the first to use biomarker data at the population 

level to investigate potential biochemical mechanisms through which early-life nutritional 

exposure can have long-term cardiometabolic impacts. Previous papers from the INCAP study 

have documented associations between early-life exposure to atole and positive health and 

human capital outcomes (1). In the current paper, we showed that leptin partially mediated the 

association of early-life nutritional exposure and glycemic measurements in women. We did not 

observe the same mediation effect in men. The mediation in women was mainly driven by 

improved pancreatic β-cell function (leptin was associated with increase in HOMA-B via the 

indirect pathway in mediation analysis), and not by reduction in insulin resistance (no mediation 

for HOMA-IR). We confirmed that the protein- and energy-containing nutritional supplement, 

atole, had mixed effects on long-term cardiometabolic risk factors: early-life exposure to atole 

was associated with lower fasting glucose concentration (in women). The same exposure, 

however, was also associated with increased odds for overall and central adiposity (mainly in 

pooled models). As hypothesized, we observed a positive correlation between leptin and 

adiposity measurement in both sexes, both overall adiposity and central adiposity. We also 

observed significantly higher leptin concentration in women than in men.  

This set of analysis was guided by a conceptual framework to draw linkages between 

early-life nutrition, human ontogeny, and relevant cardiometabolic pathways, emphasizing the 

role of leptin (Figure 3). Previous research suggested that early-life exposure to improved 

nutrition affects the development of metabolically active tissues, including adipose tissue, 

skeletal muscle, pancreas, liver, and the brain (6, 7, 29). Nutritional exposure influences leptin 

concentration through adipose tissue and other pathways, including nutrition signaling, hormonal 

regulation, and psycho-neurological regulations (30). Measurements of overall and central 
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adiposity in adulthood reflected two different sources of adiposity: adipose tissue influenced by 

early-life nutritional exposure (cell size, depot, and the type of adipose tissue), and increase in 

adiposity due to an obesogenic environment. All of these factors predicted obesity risk and 

determined circulating leptin concentrations (30, 31). Conversely, increased leptin level may also 

increase later adiposity through the leptin-dependent feedback loop, especially when there is 

physiologic leptin insensitivity (12). Indeed, we observed a positive association between leptin 

concentration and measurements of overall and central adiposity for both men and women.  

As a catabolic hormone, leptin plays a central role in glucose regulation: It promotes 

glucose uptake by skeletal muscle and other peripheral tissues, reduces hepatic gluconeogenesis, 

and has direct effects on the central nervous system (14-16). Researchers have found that early-

life exposure to improved nutrition can help guide more stem cells to prioritize myogenesis over 

adipogenesis, which predetermines adulthood muscle mass and intramuscular fat content (32). 

Improved nutritional exposure in early life also supports the development of hepatic tissue, 

which is central to gluconeogenesis and glucose storage. Brain and other peripheral tissues that 

actively utilize glucose also benefit from early-life exposure to improved nutrition. This is 

consistent with earlier reports of strong association between atole supplementation and increased 

lean mass and larger head circumference in the INCAP population (33, 34). Our current data 

suggest that exposure to atole in early life may have positively affected tissue development in 

this chronically malnourished population by providing the basis for leptin to exert euglycemic 

regulation.  

 Leptin also participates in glucose homeostasis through its effects – both acute and 

chronic – on the pancreas (17, 35, 36). Leptin can lower glucose concentration through inhibiting 

glucagon release from pancreatic α-cells, countering its glucose-raising effect (17). Pancreatic β-
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cells are sensitive to maternal diet and in utero nutritional environment and can play an important 

role in insulin secretion (37). Insulin can, in turn, chronically up-regulate both the production and 

secretion of leptin (38). However, in obese individuals with chronic leptin resistance, leptin can 

impair pancreatic β-cell function and disrupt insulin secretion (36). In this study we observed a 

positive association between leptin and HOMA-B, suggesting that this population may not be 

leptin resistant despite the high prevalence of obesity.  

Consistent with a recent meta-analysis that reported difference in the association of leptin 

and diabetes between men and women, we also noted that leptin had sex-specific mediation 

effects in our study (39). Previous research indicated that, due to differences in metabolic 

programming, women are predisposed to obesity and metabolic syndrome and men to diabetes – 

although this difference was not observed in our study (40). Sensitivity analysis between 

postmenopausal women and all other women indicated that the observed sex-specific differences 

may not be explained merely by hormonal differences. Although the leptin pathway is partially 

explanatory in the sex-specific differences, other factors may play a role as well, including 

potential impact of early-life nutrition on myogenesis and adipogenesis, which contribute to 

differences in body composition between men and women. Adiposity is not only affected by 

early-life nutritional status, but also by external factors such as occupational, environmental, and 

lifestyle differences between the two sexes (40, 41). Men are engaged in more manual work and 

physical activity than women in this study population. Long-term improvements in work 

capacity and wages were also documented among men who received improved nutrition in early 

childhood in this population (1). These factors can affect adiposity, circulating leptin 

concentration, and glycemic status. 
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Our observation that leptin statistically mediated the pathways between early nutrition 

and long-term glycemic status supports the biological postulations. Nevertheless, population-

level data have not shown a consistent association between leptin and diabetes or fasting glucose 

concentration: leptin was used in animal models to reverse diabetes, but epidemiological data in 

human populations mainly reported a null to positive correlation between leptin and diabetes, 

with only a few exceptions (39, 42-45). It is possible that the participants who were exposed to 

atole in early life did not develop resistance to leptin even when their risk for obesity increased, 

thus allowing leptin to perform its expected catabolic functions. This postulation warrants further 

investigation.  

There are a few limitations to our current analysis. First, there was missingness in several 

confounding factors. We used multiple imputation methods to attenuate any potential bias. 

Second, the biomarker data reflect a cumulative effect of early-life nutritional exposure and 

ensuing lifestyle and environmental factors over a span of close to 50 years. We do not have 

ontogeny information and all relevant exposure data throughout the life course to confirm several 

assumptions made in the conceptual framework, but we have reviewed literature in animal 

models to help discuss the biological plausibility. In addition, although the ‘first 1000 days’ is an 

important concept, the actual developmental processes do not follow this exact timeframe. 

Lastly, our study population included only Guatemalan adults within a relatively narrow age 

range (born during 1962-77). When considering the generalizability of our study, findings from 

other similar studies should be taken into consideration to properly interpret the results.  

At a mean age of 44 years, both men and women in this Guatemalan cohort had high 

prevalence of cardiometabolic conditions. We identified a positive association between leptin 

and body adiposity in both sexes, as well as the mediation effect of leptin on long-term glucose 
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regulation among female participants. The underlying reasons for the observed sex-specific 

differences in leptin mediation effect should be further investigated.  
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5.6 Tables and figures 

Table 1: Selected characteristics of the study population by sex  

 Women (n = 674) Men (n = 438) 

Characteristics 1-4 Mean (SD) or % Mean (SD) or % 

Sociodemographic Characteristics   

Age, y 44.2 (4.3) 43.9 (4.1) 

Exposure to atole in the first 1000 days, % 22.4  21.9 

Maternal height, cm 148.9 (5.0) 149.0 (4.9) 

Maternal age at child birth, y 26.8 (7.0) 27.1 (7.4) 

Maternal education level, y 1.2 (1.6) 1.4 (1.7) 

Socioeconomic status tertiles in childhood, %   

Poorest 34.3  31.7 

Middle 33.7  33.3  

Wealthiest 32.1  34.9  

Socioeconomic status tertiles in 2015, %   

Poorest 32.5  33.3  

Middle 34.7  30.4  

Wealthiest 32.8  36.3  

Total grades completed, y 3.3 (2.2) 3.6 (2.1) 

Residing in Guatemala City, % 18.3  19.2  

Anthropometry   

Height, cm 151.5 (5.3) 163.9 (6.1) *** 
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1 Medians and interquartile range are provided for continuous variables with skewed 

distributions, including insulin, glucose, leptin, HOMA-IR, and HOMA-B 

2 Total sample size is 1,112, except the following variables: maternal height (n=883, missing 

20.6%), maternal age at child birth (n=1094, missing 1.6%), maternal education (n=1073, 

missing 3.5%). 

3 Definitions: Obesity is defined as body mass index of 30 kg/m2 or higher. Hyperglycemia is 

defined according to the American Diabetes Association (ADA) diagnostic criteria as a fasting 

BMI, kg/m2 29.3 (5.3) 26.6 (4.2) *** 

Obese, %  40.2  19.4  *** 

Waist Circumference, cm 101.8 (12.4) 94.2 (10.2) *** 

Central Obesity, % 89.7  21.0  *** 

Waist-to-height ratio 0.7 (0.1) 0.6 (0.1) *** 

Body fat, percentage 42.2 (5.9) 28.8 (6.7) *** 

Glycemic Conditions   

Hyperglycemia, %  36.6 31.8 

Type 2 Diabetes, %  16.5  9.2 ***  

Diabetes medication, %  9.5  4.3 ** 

Biomarkers, Median (IQR)    

Fasting Insulin, mIU/L 14.7 (9.1 – 22.2)  9.6 (6.2 – 16.4)*** 

Fasting Glucose, mmol/L 5.6 (5.2 – 6.1) 5.4 (5.2 – 5.8) ** 

HOMA-IR 3.9 (2.3 – 6.3) 2.4 (1.5 – 4.4) *** 

HOMA-B 135.0 (82.6 – 199.4) 93.1 (61.2 – 152.0)***  

Fasting Leptin, ng/mL 15.2 (10.2 – 17.3) 2.7 (1.3 – 5.3) *** 
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plasma glucose of 100–125 mg/dL or 2-h post-challenge glucose of 140–199 mg/dL among 

participants not reporting use of diabetes medication. HOMA-IR = fasting insulin (μIU/L) × 

fasting glucose (mmol/L)/22.5. HOMA-B = 20 × fasting insulin (μIU/L)/fasting glucose 

(mmol/L) − 3.5]. 

4 P-values were based on Student’s t-test between men and women, and Independent 2-group 

Mann-Whitney U test were used to compare biomarkers between men and women. * < 0.05, ** < 

0.01, *** < 0.001.  

Abbreviations: BMI, body mass index (kg/m2); HOMA, the homeostasis model assessment; 

HOMA-B, HOMA for β-cell function; HOMA-IR, HOMA for insulin resistance; IQR, 

interquartile range; SD, standard deviation. 
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Table 2: Difference-in-difference estimates for exposure to atole during the full first 1000 

days versus partial or no exposure in predicting cardiometabolic risk factors 

  Women  Men  Pooled 1-3 

  β (95% CI) β (95% CI) β (95% CI) 

Anthropometry     

BMI, kg/m2 Base 1.0 (-0.4, 2.5) 1.4 (-0.1, 2.9) 1.2 (0.1, 2.2) 

 Adjusted 0.9 (-0.6, 2.4) 1.7 (0.3, 3.1) * 1.3 (0.2, 2.3) * 

Waist circumference, cm Base 1.1 (-2.5, 4.6) 4.6 (1.1, 8.0) * 2.3 (-0.2, 4.9) 

 Adjusted 1.0 (-2.6, 4.6) 5.2 (2.0, 8.5) ** 2.7 (0.1, 5.2) 

Body fat % Base 0.8 (-0.9, 2.5) 2.3 (-0.2, 4.7) 1.3 (-0.2, 2.8) 

 Adjusted 0.7 (-1.0, 2.4) 2.8 (0.4, 5.1) * 1.4 (-0.03, 2.9) 

Biomarkers     

Fasting Insulin, mIU/L Base 0.8 (-2.8, 4.4) -1.5 (-4.4, 1.3) -0.2 (-2.8, 2.4) 

 Adjusted 0.7 (-3.1, 4.5) -0.8 (-3.7, 2.2) -0.02 (-2.8. 2.7) 

Fasting Glucose, mmol/L Base -0.8 (-1.7, 0.1) 0.2 (-0.6, 0.9) -0.4 (-1.1, 0.2) 

 Adjusted -0.8 (-1.8, 0.2) 0.2 (-0.5, 0.9) -0.4 (-1.0, 0.3) 

HOMA-IR Base -0.2 (-1.3, 0.8) 0.2 (-0.9, 1.3) -0.1 (-0.9, 0.7) 

 Adjusted -0.5 (-1.5, 0.6) -0.1 (-1.0, 0.8) -0.3 (-1.1, 0.4) 

HOMA-B Base 4.5 (-26.6, 35.6) 0.3 (-34.4, 35.1) 1.5 (-22.5, 25.5) 

 Adjusted -7.6 (-36.6, 21.4) -10.2 (-39.5, 19.2) -9.0 (-30.8, 12.7) 

Fasting Leptin, ng/mL Base 2.6 (0.2, 5.1) * -0.8 (-2.3, 0.6) 1.2 (-0.4, 2.8) 
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 Adjusted 2.8 (0.3, 5.3) * -0.7 (-2.1, 0.8) 1.2 (-0.4, 2.8) 

1 For anthropometric measurements each as a dependent variable, the base models were: 

Anthropometry = birth villages + timing of exposure + (atole versus fresco) * (timing of 

exposure) + birth year + sex. The adjusted models controlled for childhood characteristics 

(childhood socioeconomic status tertiles dummy variables, maternal age at childbirth, maternal 

height, and maternal schooling) and adult characteristics (2015 socioeconomic status tertiles 

dummy variables, grades of schooling completed, and Guatemala city residence). The 

coefficients presented were for the interaction term (atole versus fresco) * (timing of exposure). 

2 For biomarkers each as a dependent variable, the base models were: Biomarker = birth villages 

+ timing of exposure + (atole versus fresco) * (timing of exposure) + birth year + sex. The 

adjusted models controlled for childhood characteristics (childhood socioeconomic status tertiles 

dummy variables, maternal age at childbirth, maternal height, and maternal schooling), adult 

characteristics (2015 socioeconomic status tertiles dummy variables, grades of schooling 

completed, and Guatemala city residence), and measurements of overall and central adiposity 

(body mass index and waist-to-height ratio. The coefficients presented were for the interaction 

term (atole versus fresco) * (timing of exposure).  

3 For pooled models, we tested stratum heterogeneity by sex through constructing the interaction 

term between sex and the difference-in-difference exposure variable. None of these tests had a p-

value <0.05. We did not adjust for sex in sex-specific models.  

P-values: * < 0.05, ** < 0.01, *** < 0.001 

Abbreviations: BMI, body mass index; CI, confidence internal; HOMA, the homeostasis model 

assessment; HOMA-B, HOMA for β-cell function; HOMA-IR, HOMA for insulin resistance.  
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Figure 1. Correlation between fasting leptin concentration measurements of overall and 

central adiposity 

 

Legend: 

1. Spearman’s ρ for leptin and BMI (n = 1,112): women = 0.6, men = 0.7 

2. Spearman’s ρ for leptin and waist circumference (n = 1,112): women = 0.6, men = 0.8  

3. Fitted lines were based on simple linear regression models  

4. Abbreviation: BMI, body mass index 
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Figure 2. Mediation analysis of leptin in the pathway between exposure to atole in the full 

first 1000 days and three glycemic measurements  
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Legend: 

1. Total effect c = c’ + ab; Mediation effect = ab; Percentage mediated = ab/c * 100% 

2. Direct model: Glycemic measurements = c * (Exposure to atole in the full first 1000 

days) + (control variables) + ε 
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3. Mediation model: (i) Glycemic measurements = c’ * (Exposure to atole in the full first 

1000 days) + b * (Fasting leptin) + (control variables) + ε’; (ii) Leptin = a * (Exposure 

to atole in the full first 1000 days) + (control variables) + ε” 

4. Control variables included birth villages, timing of exposure, birth year, childhood 

characteristics (socioeconomic status, or SES, in childhood, maternal age at childbirth, 

maternal height, and maternal schooling), adult characteristics (SES in 2015, grades of 

schooling completed, Guatemala city residence), and anthropometry (BMI and waist-

to-height ratio) 

5. P-values: * < 0.05, ** < 0.01, *** < 0.001  

6. Abbreviations: HOMA, the homeostasis model assessment; HOMA-B, HOMA for β-

cell function; HOMA-IR, HOMA for insulin resistance 
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Figure 3. Conceptual framework centering leptin in pathways between early nutrition and 

long-term cardiometabolic outcomes 

 

Legend: The conceptual framework mapped out simplified pathways between exposure to 

improved nutrition in early life and the ontogenic effects on metabolically active tissues, 

including adipose tissue, hepatic tissue, pancreas, skeletal muscle, and brain tissue. Leptin is 

proportional to adipose tissue mass. Leptin is a key glucose lowering agent in this conceptual 

framework, which helped elucidate the differential associations between early nutrition and two 

cardiometabolic outcomes, obesity and type 2 diabetes. Other non-biological determinants were 

summarized in the shaded ovals, following the grey shaded arrow, but were not the focus of our 

analysis. 
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CHAPTER 6: MANUSCRIPT FOR SPECIFIC AIM 2 

Meal challenge-induced biomarker responses differed by cardiometabolic 

phenotypes in a Guatemalan adult population 

6.1 Abstract  

Objective: To describe the responses of biomarkers induced by a mixed-component meal 

challenge, and to compare them across cardiometabolic phenotypes. 

Methods: In this study of 1,027 participants (mean ± SD age 44.0 ± 4.2 y, 59.4% women), 

fasting and two-hour postprandial plasma were assayed for lipids, glycemic, and inflammatory 

biomarkers. We compared individual biomarker responses (postprandial relative change, %Δ) 

across strata of glycemic and adiposity phenotypes using linear regression models. We also 

investigated the relationships among all %Δ using structural equation modeling. 

Results: Meal-induced increase in glucose was higher in participants who had nondiabetic 

hyperglycemia (3.9%; 95% confidence interval: 1.4, 6.4%) or diabetes (21.3%; 16.6, 26.0%), 

compared with normoglycemia (%Δ = 11.1). Overweight and obese participants also exhibited 

greater postprandial increase in glucose (4.5%; 1.7, 7.3% and 5.1%; 2.1, 8.1% more, 

respectively), compared with normal weight group (%Δ = 9.2). Postprandial insulin response 

was blunted in diabetic participants (-49.6%; -91.5, 7.8%), but not in hyperglycemic participants, 

compared with normoglycemic participants (%Δ = 238.0). Insulin responses were also attenuated 

in the obese group (-54.6%; -83.1, -26.2%) compared with normal weight participants (%Δ = 

247.6). Leptin concentration decreased after meal (%Δ = -17.7 and -18.5 in normoglycemic and 

normal weight participants, respectively), and the reduction was attenuated in hyperglycemia 
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(4.3%; 0.04, 8.4%) and in obesity (6.2%; 0.9, 11.5%). We identified three latent variables for 

postprandial %Δ (F1 to F3). F1 and F3 were lipid-dominant, whereas F2 was glycemic response-

dominant. 

Conclusions: Meal-induced biomarker responses, especially glycemic responses, differed among 

participants, as stratified by cardiometabolic phenotypes. Structurally, lipids and glycemic 

markers clustered separately. These findings may help elucidate the mechanisms for the 

development of cardiometabolic conditions.  
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6.2 Introduction 

Major cardiometabolic phenotypes are associated with the most common non-

communicable diseases, such as obesity, cardiovascular disease, and diabetes (1). Globally, the 

prevalence of adulthood obesity has doubled since 1980, reaching 603.7 million in 2015 (2). 

Cardiometabolic mortality is high: cardiovascular diseases account for almost a half of global 

non-communicable disease mortality (17.5 out of 38 million), and diabetes contributed to 1.5 

million deaths (3, 4). Key molecular mechanisms that contribute to the onset and progression of 

cardiometabolic conditions include inflammation and oxidative stress (1). Among the many 

different stress signals that can initiate these biochemical processes, a recurring daily activity that 

is directly linked to inflammation and oxidative stress is meal consumption (5).  

Following the consumption a meal containing fat and sugar, acute and transient 

hyperlipidemia and hyperglycemia are key metabolic perturbations that determine the extent of 

cardiometabolic insults (5, 6). The impact of postprandial hyperlipidemia and hyperglycemia on 

inflammation and oxidative stress has been reported to be independent and cumulative (7). Acute 

increases in lipids during the post-absorptive period may induce a state of inflammation (8). 

Non-esterified fatty acids released by hydrolysis of dietary triglycerides can also trigger 

endothelial cells to express adhesion molecules and produce inflammatory cytokines (9). 

Similarly, meal-induced elevations in glucose also play a role in inducing inflammation and 

oxidative stress (10, 11). In vivo studies have demonstrated that consumption of glucose resulted 

in increased production of tumor necrosis factor alpha (TNF-α) and interleukin-6 by peripheral 

blood mononuclear cells (12, 13). In addition, exposure to high glucose can result in 

modification of proteins, leading to the formation of pro-inflammatory advanced glycation end 

products (10). However, under ideal conditions, homeostasis would be readily restored with the 

stimulation of anti-inflammatory and antioxidant processes (14, 15).  
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The ability to maintain homeostasis, in the context of intermittent and recurrent exposure 

to a high-fat and high-sugar environment, is a measure of overall cardiometabolic health (16) 

This ability is referred to as phenotypic flexibility (17). Failure to maintain homeostasis may 

eventually lead to chronic metabolic perturbation. In controlled laboratory settings, stress-based 

methods have been developed to test the range of phenotypic flexibility (17-19). A meal 

challenge model that mimics dietary stress is particularly ideal in studying metabolic responses 

(17, 18). As an effort to maximize the acute responses, many in vivo acute studies have chosen 

meal challenges that provide large doses of fat, glucose, and calories (7, 20, 21). It is our 

hypothesis that responses to meals that contain physiologic amounts of fat and glucose may 

provide a better understanding of the cumulative metabolic disturbances leading to abnormal 

cardiometabolic conditions. We also hypothesized that these responses may differ by various 

cardiometabolic phenotypes.  

In this sample of 1,027 adults, we assessed the effect of a mixed-component meal 

challenge on responses in biomarkers that represent four cardiometabolic processes, including 

lipids, glycemic responses, as well as pro- and anti-inflammatory responses. We compared the 

differences in biomarker responses across strata of cardiometabolic phenotypes. We then 

described the structural relationships amongst these responses from a data-driven perspective to 

confirm empirically recognized cardiometabolic pathways.  

6.3 Material and methods 

Study population 

This is an assessment of meal-induced changes in biomarkers in a cohort of 1,027 (59.4% 

women) free-living adults in Guatemala. The study participants were a subset of individuals who 
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were enrolled in the Institute of Nutrition of Central America and Panama (INCAP) Longitudinal 

study initiated in 1969 (22). Excluded from the current study (2015-17) are individuals who were 

not fasted at the time of the clinic visit (n = 27), or who had known diabetes diagnosis or had 

fasting glucose of 180 mg/dL or higher (n = 85).   

Meal challenge procedure 

After obtaining informed consent, a trained phlebotomist drew venous blood from each 

participant upon verifying fasting state (eight hours or more).  Participants were given a freshly 

prepared milkshake, consisting of 25 g safflower oil, 52 g sugar, 12 g Incaparina powder (a soy 

and maize-based protein mixture developed by INCAP), in 170 ml lactose-free skim milk. Each 

100 g of the shake provided 164.7 cal (31% from fat), containing 3.4 g protein, 25.2 g 

carbohydrate, and 5.7 g fatty acids, including 3.0 g monounsaturated fatty acids and 0.9 g 

polyunsaturated fatty acids (fatty acids were calculated as triglycerides). Exactly two hours after 

the consumption of the shake, the phlebotomist drew a second venous blood sample.  

Laboratory methods 

Pre- and post-prandial glucose concentrations were assayed using enzymatic colorimetric 

methods (Cobas C111 analyzer, ROCHE, Indianapolis, IN, USA), before the samples were 

frozen for storage at -80 oC. Plasma samples were shipped in dry ice to the US and fasting and 

post-challenge plasma samples were assayed for lipids, glycemic markers, and inflammation 

markers. The samples were thawed at 4 oC in batches, each containing approximately 40 pairs of 

samples.  

All other measurements were performed on the AU480 automatic chemistry analyzer 

(Beckman Coulter Diagnostics, Fullerton CA, US). We assayed total cholesterol (TC) and 
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triglycerides (TG) using enzymatic methods (Sekisui Diagnostics, PA, US). We assayed high-

density lipoprotein cholesterol (HDLc) and low-density lipoprotein cholesterol (LDLc) using 

homogeneous method (Sekisui Diagnostics, PA, US). Non-HDLc concentration was calculated 

as subtracting HDLc from TC concentration. Apolipoproteins (apoA-I and apoB) were assayed 

using immunoturbidimetric assay (Kamiya Biomedical Company, WA, US). We assayed non-

esterified fatty acids (NEFA) using calorimetric methods (Wako Chemicals Corporation, 

Richmond VA, US). Insulin and hsCRP were assayed using immunoturbidimetric method 

(Kamiya Biomedical Company, WA, US). Cytokines, including leptin, resistin, monocyte 

chemoattractant protein-1 (MCP-1), interleukin-10 (IL-10), and adiponectin, were determined in 

duplicates by ELISA (Boster Biologicals Technology, CA, USA). 

Stratification by cardiometabolic phenotypes  

Hyperglycemia was defined as fasting plasma glucose ≥ 100 mg/dL and ≤ 125 mg/dL, or 

two-hour post-challenge plasma glucose level ≥ 140 mg/dL and < 200 mg/dL among participants 

who were not using diabetic medication (23). Type 2 diabetes was defined as a fasting plasma 

glucose of 126 mg/dL or more, post-challenge glucose of 200 mg/dL or more, or use of diabetes 

medication. (23)  

Normal weight was defined as body mass index (BMI) between 18.5 and 24.9 kg/m2. 

Overweight was BMI between 25 and 29.9 kg/m2. Obesity status was defined as BMI ≥ 30 kg/m2 

(24). Abdominal obesity was defined as waist circumference larger than 88 cm in women and 

more than 102 cm in men (25). 

Statistical analysis 
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We examined the reliability between biomarkers assayed on the day of blood draw at 

each site in Guatemala (all assayed at the same time as glucose with the Cobas C111 analyzer, 

ROCHE, Indianapolis, IN, USA) and those assayed in the US (described in this article) for TC, 

TG, HDLc, and LDLc using Bland-Altman plots (26). We observed less than 5% of outliers in 

each plot, indicating high reliability. Missingness of biomarkers included: 25.8% of IL-10, 

12.8% of MCP-1, 7.3% of resistin, and 7.2% of adiponectin.  

We used Student’s t-test for comparisons between men and women. For each biomarker, 

we described fasting concentrations and two-hour postprandial changes in concentration by sex. 

Postprandial relative change (%Δ) was expressed as: 

𝑃𝑜𝑠𝑡𝑝𝑟𝑎𝑛𝑑𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛−𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
𝑥 100%  

We compared the postprandial biomarker changes across two sets of cardiometabolic 

phenotypes, including glycemic phenotypes and overall adiposity phenotypes. There were three 

glycemic phenotypes, including normoglycemia (reference group), hyperglycemia, and type 2 

diabetes. For adiposity phenotypes, we included three groups based on BMI categories, including 

those who were normal weight (reference group), those who were overweight, and those who 

had obesity. %Δ of each biomarker was modelled as the dependent variable in linear regression 

models. We controlled for age and sex. We added BMI to the glycemic phenotype models, and 

added fasting glucose concentration to the adiposity phenotype models (except for glucose 

response outcome). To illustrate the response patterns in figures, we replaced the dependent 

variables (%Δ) with the standardized Z-scores to improve visual comparability across markers. 

For %Δ of each biomarker, the Z-scores was calculated as: 
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 (%Δ)−𝑀𝑒𝑎𝑛 (%Δ)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (%Δ)
    

To describe the relationships among postprandial changes, we first calculated the 

correlation matrix among the %Δ. Subsequently, we divided the dataset into two random halves. 
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Using the first half, we conducted exploratory factor analysis (EFA) to identify the number of 

factors (latent variables) and to select manifest variables (%Δ) that loaded onto each factor 

(Supplemental Table 1). Using the second half of the data, we tested the EFA-identified latent 

variables and corresponding manifest variables (the cut point for inclusion in the confirmatory 

analysis was loading > |0.3|) by constructing a structural equation model (“lavaan” and 

“semPlot” packages in R) (27, 28). Both latent and manifest variables were standardized. We 

presented the completely standardized solution but omitted the residuals for visual clarity. 

We carried out all analyses in R version 3.6.0 (R Core Team, Foundation for Statistical 

Computing, Vienna, Austria). Statistical significance was set at p value < 0.05. All p-values were 

two-sided.  

Research ethics 

The study was approved by the Institutional Review Board at Emory University and the 

Ethics Review Committee of INCAP. All study participants provided written informed consent 

in Spanish.  

6.4 Results 

Characteristics and fasting cardiometabolic profile of the study population, by sex 

Among the 1,027 participants in our study, 610 (59.4%) were women (Table 1). The 

mean (standard deviation) age was 44.1 (4.3) years for women and 43.9 (4.1) years for men. 

Abnormal glucose was more prevalent in women than in men, 40% of women versus 30% of 

men had hyperglycemia (p = 0.03), and 8% of women versus 5% of men had type 2 diabetes (p = 

0.03). The prevalence of overweight was similar in both sexes (38.5% of women and 44.4% of 

men, NS). However, more than 40% of women were obese as compared to only 20% men (p < 
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0.001). In addition, 90.0% of women and 20.1% of men had abdominal obesity (p < 0.001) 

(Table 1).  

Fasting concentrations of most lipids differed between men and women (p < 0.001 for 

TC, HDLc, LDLc, non-HDLc, apoA-I, apoB, and NEFA; p = 0.05 for TG) (Table 2). Fasting 

insulin and glucose concentrations were higher in women than in men (p < 0.001 and p = 0.01, 

respectively). Among pro-inflammation biomarkers, hsCRP and leptin differed by sex (p < 

0.001) and both were higher in women than in men. The anti-inflammatory cytokine adiponectin 

was higher in women than in men (p < 0.001) (Table 2). 

Postprandial changes in biomarker concentrations 

TG, insulin, glucose, and IL-10 had the highest relative increase in both men and women 

(Table 2). Two biomarkers (NEFA and leptin) had relatively large magnitude of reductions in 

their levels for both men and women. Postprandial biomarker responses differed between men 

and women for NEFA (larger reduction in women than in men), insulin and glucose (larger 

increased in women than in men), and leptin (larger reduction in men than in women) (p < 0.001 

for all) (Table 2). The overall correlations among biomarker responses are shown in Figure 1: 

lipids (all except TG and NEFA) had positive correlations in postprandial responses, and the 

response for hsCRP was positively correlated with those of the lipids. Insulin and glucose 

responses were positively correlated, whereas glucose responses had negative correlations with 

that of all lipids. There were weak (< |0.10|) correlations among most cytokines.  

Postprandial changes in biomarkers across strata of cardiometabolic phenotypes  

The interpretation of the linear regression coefficients depends on the direction of the 

postprandial change in the reference groups (Tables 3 and 4). For biomarkers that had 

postprandial increase in the reference group (for instance TG), a positive coefficient (β) in %Δ 
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showed that the comparison group had a larger magnitude of increase than the reference group 

did, whereas a negative β meant a smaller magnitude of increase than the reference group. For 

biomarkers that had postprandial reduction in the reference group (for instance NEFA), a 

positive β should be interpreted as a smaller magnitude of reduction in the comparison group 

than in the reference group, whereas a negative β showed a larger magnitude of reduction in the 

comparison group than in the reference group.  

Insulin responded positively to the meal challenge in all three glycemic phenotypes, but 

the response was 49.6% less in magnitude (95%CI: -91.5, -7.8%) in diabetic participants than in 

the normoglycemic reference group (Table 3, Figure 2). Glucose responses increased in a 

gradient manner in hyperglycemia (3.9%, 95%CI: 1.4, 6.4%) and in diabetes (21.3%, 95%CI: 

16.6, 26.0%) (Figure 2). Leptin decreased across all three groups, but the reduction was 

attenuated in participants with hyperglycemia (4.3%, 95%CI: 0.04, 8.4%) and diabetes (2.1%, 

95%CI: -6.0, 10.2%, NS). MCP-1 reduction was larger in magnitude in hyperglycemic 

participants (-5.6%, 95%CI: -10.9, -0.2%) and in diabetic individuals (-7.6%, 95%CI: -17.4, 

2.2%, NS) (Table 3, Figure 2). 

Across strata of adiposity, TC had higher response (1.5%, 95%CI: 0.4, 2.7%) in obese 

participants, compared with the normal weight reference group (Table 4, Figure 3). Insulin 

response was lower in both overweight (-9.4%, 95% CI: -35.5, 16.7%) and obese group (-54.6%, 

95% CI: -83.1, -26.2%), compared with the reference group. Glucose was significantly higher in 

both overweight (4.5%, 95% CI: 1.7, 7.3%) and obese groups (5.1%, 95% CI: 2.1, 8.1%), 

comparing with the reference group (Figure 3). Leptin responses decreased in all three strata, but 

it decreased less in magnitude in obese participants (6.2%, 95%CI: 0.9, 11.5%) (Table 4, Figure 
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3). Obese participants had an increased response tendency in all lipids and pro-inflammatory 

markers, compared with the reference group. (Figure 3) 

Structural relationships among biomarker responses 

The structural equation model (guided by EFA results) showed three main latent 

variables. (Figure 4) %Δ of several lipids (TC, HDLc, LDLc, apoA-I, and apoB, standardized 

parameter values all > 0.50) and hsCRP loaded on latent variable 1 (F1). TC and hsCRP 

responses had negative correlation of -0.41. The %Δ of insulin and glucose (standardized 

parameter values > 0.50), as well as NEFA (-0.23) loaded on latent variable 2 (F2). TG (0.10) 

and leptin (0.01) responses loaded on latent variable 3 (F3). There was positive correlation 

between F1 and F3 (1.98) and between F1 and F2 (0.11). We observed a negative correlation 

between F2 and F3 (-2.33). Fit indices showed that, although this structure fitted the data well in 

EFA (Supplemental Table 1), it is less so in the confirmatory analysis (Figure 4), with 

comparative fit index (CFI) of 0.889, Tucker Lewis Index (TLI) of 0.849, root mean square error 

of approximation (RMSEA) of 0.100, and standardized root mean square residual (SRMR) of 

0.071. 

6.5 Discussion 

Through a standardized, mixed-component meal challenge, we assessed the relationship 

among meal-induced lipid, glycemic, and inflammatory responses, as well as their differences 

based on cardiometabolic phenotypes in the present study. When comparing the individual 

biomarker responses across two sets of cardiometabolic phenotypes, we observed larger 

magnitude in postprandial insulin increase, lower glucose response, and greater reduction in 

leptin concentration in the metabolically healthy reference groups. Glycemic responses, 
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especially insulin response, were the most pronounced differences across the phenotypes. Using 

data-driven technique, we also confirmed empirically recognized cardiometabolic pathways in 

response to the meal challenge. These results are important in characterizing the impact of a meal 

containing physiologic amount of macronutrients on cardiometabolic disturbances.  

In our study, postprandial insulin relative elevation was significantly higher in reference 

groups, compared with their unhealthy counterparts. Interestingly, we observed a gradient effect 

in insulin responses across strata of cardiometabolic phenotypes: although the glucose response 

was already greater in hyperglycemic participants, their insulin response was actually greater 

than the reference group, indicating reasonable insulin sensitivity. It was among diabetic 

participants that we observed significantly lower insulin response, accompanied by further 

elevated glucose response. Postprandial insulin response was also attenuated in a gradient 

manner from overweight to obesity status, compared with normal weight participants. These two 

sets of gradient patterns support the concept of phenotypic flexibility: at pre-clinical stage, 

despite some signs of cardiometabolic disturbances, the body maintained homeostasis through 

other pathways. Only when the disturbances proceeded to clinical stage did we observe 

significant differences in biomarker responses (30).  

We examined the postprandial changes as stratified by glycemic phenotypes. After 

adjusting for age, sex, and BMI, we observed that responses in lipids were comparable for 

individuals who had normoglycemia, hyperglycemia, and type 2 diabetes. As expected, meal-

induced increases in glucose were higher in individuals with hyperglycemia and highest in 

individuals with type 2 diabetes. At two-hour after meal consumption, insulin increases were 

comparable for participants with either normoglycemia or hyperglycemia but was significantly 

blunted in individuals with newly identified type 2 diabetes, consistent with impaired insulin 
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metabolism. All three groups stratified by glycemic status had reduction in leptin levels, which 

was attenuated in hyperglycemia (significant) and diabetes (not significant). Similarly, while 

both groups of participants who had hyperglycemia and diabetes exhibit further reduction in 

MCP-1 levels after meal consumption, statistical significance was not demonstrated in type 2 

diabetes. The variability in response in this smaller group of diabetic individuals may account for 

the lack of statistical significance. A previous study reported that postprandial glycemia triggered 

acute increase in the biomarkers associated with vascular remodeling (and hence future 

cardiovascular diseases) in diabetic patients who were overweight but healthy (31). We suggest 

that future studies investigate the associations among these markers in both metabolically healthy 

and unhealthy adults.  

We then examined the postprandial responses as stratified by adiposity phenotypes. After 

adjusting for age and sex, there was a modest increase in TC in individuals with increased BMI 

as compared to individuals with normal BMI. However, statistical significance was observed 

only in obese and not in overweight participants. This may reflect the delayed clearance of 

intestinal chylomicrons transporting newly absorbed triglycerides and cholesterol (32).  

Postprandial increases in plasma TG were also higher in overweight and obese individuals as 

compared to normal weight participants. Among obese participants, there was significantly 

greater meal-induced increase in glucose and reduction in insulin, although the difference in 

insulin response was significant only in obese individuals. While postprandial reduction in leptin 

was comparable for normal and overweight individuals, it was blunted in obese individuals.  

With respect to anti-inflammatory response, meal-induced increase in IL-10 was reduced with 

higher BMI (significant in overweight but not in obese participants).  
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Despite a lack of statistical significance, we also observed higher overall lipid responses 

and pro-inflammatory responses among participants with obesity. The pronounced decrease in 

insulin response and higher glucose response among obese participants supports a close linkage 

between obesity and glucose dysregulation (33). However, inflammatory responses in each 

biomarker varied considerably. MCP-1 is a potent atherogenic chemoattractant that regulates 

migration and infiltration of monocytes and macrophages, and it is an important agent in the 

obesity-diabetes association (34). The observed reduction in MCP-1 in hyperglycemia and 

diabetes, as well as the increase in the same cytokine in overweight and obesity was not readily 

interpretable. Further investigation is needed to explain the lack of pattern in the inflammatory 

responses.  

As expected, the difference in cardiometabolic characteristics between men and women 

in our cohort translated into significant differences in fasting levels for all of the metabolites with 

the exception of TG, resistin, MCP-1, and IL-10. However, meal-induced responses (%Δ) were 

different for only a select subset of biomarkers, including NEFA, insulin, glucose, and leptin. 

Meal-induced increases in both insulin and glucose were greater in women as compared to men. 

Postprandial reduction in NEFA was more pronounced in women while the reduction in leptin 

was greater for men. Meal consumption was associated with a reduction in MCP-1 among men 

but an increase among women. Previous research have reported that women had higher 

postprandial glucose uptake rate, better insulin secretion, and lower oxidative stress than men 

(35, 36). The different outcomes observed in our study may be due to the significantly higher 

prevalence of central obesity in women than men in our study, the use of different doses of fat 

and glucose in the meal challenge, or the time point for data collection.    
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With respect to the relationship among postprandial changes in biomarkers, we identified 

two lipid-dominant latent variables (F1 and F3) and one glucose-dominant latent variable (F2). 

Except for hsCRP and leptin, none of the pro- and anti-inflammatory markers contributed to the 

model. We noted a positive correlation between F1 and F3, which may be due to the close 

association of postprandial changes in TG and all other lipid responses. We observed that lipid 

responses correlated among themselves (except TG and NEFA), and were associated with 

inflammatory response as represented by hsCRP. A possible molecular process behind lipid-

induced inflammation is the activation of NF-κB, which induces the transcription of genes 

encoding several pro-inflammatory cytokines and chemokines (10). We also observed a negative 

correlation between F2 and F3, which may reflect the difference in time to maximum response 

between lipids and glycemic markers. Previous studies have reported that TG elevation can 

sustain for 5-8 hours following a fat-containing meal (37, 38). Insulin and glucose responses may 

occur earlier than lipids, with the maximum changes occurring around the two-hour mark, based 

on a study in a diabetic population (39). In addition, previous research found that adding glucose 

to a fat-abundant meal delayed chylomicron response, which may account for the modest 

changes in TG in our study as well (40).  

A few more observations from the structural models were noteworthy: F2 underscored 

close association between glycemic markers and NEFA. The release of NEFA from adipose 

tissue is usually suppressed by hormone sensitive lipase that is acutely inhibited to insulin 

level.(5) Therefore in a physiological state, NEFA is expected to fall rapidly after a mix-

component meal due to the suppression of fat mobilization by insulin.(41) We indeed observed 

this reduction in our study. The unexpected negative correlation between TG and hsCRP 

responses, might be accounted for by the differences in time course of TG and hsCRP changes 
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after meal consumption. Based on a previous study, maximal changes in hsCRP occurred earlier 

than the peak change in chylomicron-TG, which was in line with our observation (39).  

Adipokines were previously found to be important in predicting future cardiometabolic 

risks due to their effects on insulin sensitivity and inflammation (42). Leptin, a versatile 

adipokine, decreased significantly two hours after the meal challenge, which was plausible based 

on its catabolic functions, but was unexpected in terms of its pro-inflammatory effect (43). In our 

study, postprandial leptin was higher in obese participants, compared with normal weight ones. 

This may be attributable to the positive correlation between leptin and adiposity, and to the 

common presence of leptin resistance in the obesity status (44). The smaller magnitude of 

postprandial leptin reduction among hyperglycemic participants was worth noting, especially 

that it was not observed among diabetic participants. A few possible mechanisms may explain 

this phenomenon. First, higher glucose concentration in the “unhealthy” groups required more 

leptin to perform its catabolic effects (45). Second, leptin response differed by body fatness, and 

by disease status (46). It is possible that the reaction time and the extent to which leptin exerts its 

impact differ between hyperglycemic and diabetic conditions. 

There were a few limitations to this study. We only obtained two time points of 

biomarker responses, which may not characterize the exact response trajectory of the biomarkers. 

The lack of response in some biomarkers may be due to a true resilience to stress, or perhaps the 

peak functioning time was not captured at the two-hour time point. In addition, the reference 

groups within each cardiometabolic disease category may contain other cardiometabolic 

phenotypes. For instance, normoglycemic participants may be categorized as overweight. We 

recognized this possibility for overlapping categorization, and controlled for relevant variables 

(e.g., BMI in glycemic models) in the regression models to minimize the effect. Similarly, we 
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did not carry out the same analysis for metabolic syndrome, despite it being a widely studied 

cardiometabolic condition. This is because metabolic syndrome is a complex, non-clinical 

definition that includes both measurements of adiposity and glucose intolerance. 

To our knowledge, this is the first study in low- and middle-income country setting to test 

meal-induced stress response in a cohort of adults. Very few studies in similar settings have 

comprehensive panel of cardiometabolic biomarkers as ours, let alone testing a metabolic stress 

model to assess phenotypic flexibility. Our study is also relatively large-scale with sufficient 

statistical power to detect significant changes (over 80% power for most biomarkers to detect a 

medium effect size, except IL-10 and MCP-1). Another strength of our study is that the meal 

challenge provided macronutrients within a physiological (and not pathologically high) range, 

which enabled us to observe biologically plausible responses. This may also explain the modesty 

in the response levels in a few biomarkers, since we did not artificially magnify the external 

stress to trigger responses that may lack clinical implication. In addition, we conducted the 

analyses and interpreted the data based on both individual biomarker responses and overall 

patterns.  

Daily exposure to fat- and sugar-containing diets may gradually contribute to 

cardiometabolic disturbances. We tested an overall response in the metabolic system following a 

mix-component meal challenge that provided physiologic amount of macronutrients. We 

observed that the postprandial responses, particularly glycemic responses, differed across strata 

of cardiometabolic phenotypes. We also documented the structural relationships amongst the 

biomarker responses. We emphasized the concept of phenotypic flexibility, especially through 

the observed gradient effect in glycemic responses from pre-clinical to clinical conditions. 

Building upon these results, researchers should adopt a holistic view to understand how the 
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pathways overlap and compensate for each other in response to external stress signals. Future 

studies with larger sample sizes should aim to compare the structural equation models across 

cardiometabolic phenotypes to further elucidate the nutritional mechanisms for the onset and 

progression of cardiometabolic conditions. We also consider it valuable to identify an “ideal” 

range of responses across multiple cardiometabolic pathways, which provides a more dynamic 

assessment model for cardiometabolic health.  
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6.6 Tables, figures, and supplemental materials 

Table 1: Selected sociodemographic and cardiometabolic characteristics 1 of the study 

population, by sex  

  

 

 

 

 

 

 

 

 

 

 

 

1 Definitions: Hyperglycemia: fasting plasma glucose of 100–125 mg/dL or two-hour post-

challenge glucose of 140–199 mg/dL among participants not reporting use of diabetes 

medication. Type 2 diabetes: fasting plasma glucose > 125 mg/dL, or two-hour post-challenge 

glucose ≥ 200 mg/dL, or reporting use of diabetes medication. Overweight: BMI ≥ 25 kg/m2 & 

 Women (n = 610) Men (n = 417) p value 2 

 Mean (SD) or % 

Mean (SD) or 

% 

 

Age, years 44.1 (4.3) 43.9 (4.1) 0.26 

Glycemic status, %    

Hyperglycemia 40.2 33.4 0.03 

Type 2 diabetes 8.4 4.8 0.03 

Body mass index, kg/m2 29.3 (5.8) 26.6 (4.7) <0.001 

Weight status, %    

Overweight 38.5 44.4 0.07 

Obesity 41.3  19.4  <0.001 

Waist Circumference, cm 101.7 (13.6) 93.9 (11.3) <0.001 

Abdominal obesity, % 90.0  20.1  <0.001 
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BMI < 30 kg/m2; Obesity: BMI ≥ 30 kg/m2. Abdominal obesity: waist circumference > 88 cm 

for women; > 102 cm for men.  

2 P-values based on Student’s t-test (continuous variables) or chi-squared test (categorical 

variables) 

Abbreviation: SD, standard deviation. 
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Table 2. Fasting and two-hour postprandial changes in concentrations of biomarkers, by 

sex 

Biomarkers Fasting concentration 1 Postprandial change (%Δ) 2 

Mean (standard deviation) 

Women  

(n = 610)  

Men  

(n = 417) 

p-value 3 

Women  

(n = 610)  

Men  

(n = 417) 

p-value 4 

Lipids 

TC (mmol/L) 4.7 (1.0) 4.4 (1.0) <0.001 0.3 (6.3) 0.1 (7.6) 0.68 

TG (mmol/L) 4.3 (2.3) 4.6 (3.0) 0.05 15.2 (18.9) 15.9 (18.2) 0.56 

HDLc (mmol/L) 1.1 (0.2) 1.0 (0.2) <0.001 1.3 (6.3) 0.8 (7.0) 0.27 

LDLc (mmol/L) 3.0 (0.8) 2.7 (0.9) <0.001 0.1 (7.7) 0.5 (11.4) 0.54 

Non-HDLc (mmol/L)  3.7 (0.9) 3.4 (0.9) <0.001 -0.04 (7.4) 0.6 (10.6) 0.26 

ApoA-I (g/L) 1.1 (0.3) 1.0 (0.3) <0.001 0.5 (6.3) 0.9 (8.5) 0.37 

ApoB (g/L) 0.9 (0.3) 0.8 (0.3) <0.001 -0.5 (8.4) 0.2 (9.9) 0.23 

NEFA (mEq/L) 1.0 (0.4) 0.8 (0.4) <0.001 -52.5 (28.0) -42.2 (31.6) < 0.001 

Glycemic measurements 

Insulin (pmol/L) 122.0 (73.9) 90.4 (72.5) <0.001 264.2 (170.8) 196.0 (167.6) < 0.001 

Glucose (mmol/L)  5.7 (0.9) 5.5 (0.7) 0.01 19.7 (18.5) 7.3 (20.8) < 0.001 

Pro-inflammation markers 

hsCRP (mg/L) 3.8 (3.7) 2.1 (2.9) <0.001 0.6 (12.1) 1.5 (17.2) 0.35 

Leptin (ng/mL) 17.9 (10.1) 4.1 (4.7) <0.001 -10.4 (25.0) -22.0 (29.7) < 0.001 

Resistin (ng/mL) 2.2 (2.5) 2.3 (3.8) 0.56 -4.0 (18.7) -2.2 (23.5) 0.30 

MCP-1 (pg/mL) 93.7 (98.6) 99.1 (70.2) 0.34 15.8 (111.2) -6.3 (35.4) 0.01 

Anti-inflammation markers 

IL-10 (pg/mL) 70.0 (190.0) 93.8 (235.8) 0.14 15.8 (111.2) 15.3 (110.1) 0.95 

Adiponectin (µg/mL)  12.5 (8.7) 9.1 (7.4) <0.001 -1.3 (24.8) 4.4 (103.4) 0.38 

1 Missingness (> 5.0%): 25.8% of IL-10, 12.8% of MCP-1, 7.3% of resistin, and 7.2% of 

adiponectin. 



173 
 

 
 

2 Postprandial change (%Δ) equals the difference between postprandial and fasting biomarker 

concentrations, divided by fasting concentrations, presented as percentages.  

3 Student’s t-test, comparing the fasting biomarker concentrations between men and women.  

4 Student’s t-test, comparing the postprandial changes (%Δ) between men and women.  

Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein 

cholesterol; LDLc, low density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-

esterified fatty acid; hsCRP, high sensitivity C-reactive protein; MCP-1, monocyte 

chemoattractant protein 1; IL-10, interleukin 10. 
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Table 3. Comparison of postprandial changes in biomarkers among people differing by 

glycemic phenotypes  

Postprandial 

Changes in 

Biomarkers 

Reference: 

Normoglycemia 

n = 570 

Hyperglycemia 

n = 384 

Type 2 Diabetes 

n = 71 

 %Δ 1 Mean (SD) Mean (SD) 

In relation to reference 

β (95% CI) 2 

Mean (SD) 

In relation to reference 

β (95% CI) 2 

Lipid responses 

TC 0.0 (6.6) 0.6 (7.5) 0.4 (-0.5, 1.3) -0.1 (4.9) -0.3 (-2.0, 1.4) 

TG 15.0 (18.2) 15.9 (19.8) 0.6 (-1.9, 3.1) 17.0 (15.6) 1.7 (-2.9, 6.4) 

HDLc 0.9 (6.4) 1.4 (7) 0.4 (-0.5, 1.2) 0.7 (5.4) -0.3 (-2.0, 1.3) 

LDLc 0.2 (9.5) 0.6 (9.6) 0.5 (-0.7, 1.8) -0.6 (5.8) -0.5 (-2.9, 1.8) 

Non-HDLc 0.2 (8.7) 0.4 (9.7) 0.1 (-1.0, 1.3) -0.2 (5.3) -0.3 (-2.5, 1.9) 

ApoA-I 0.6 (7.7) 0.8 (7.1) 0.1 (-0.9, 1.0) 0.2 (5.1) -0.4 (-2.3, 1.4) 

ApoB 0.0 (9.1) -0.3 (9.3) -0.4 (-1.6, 0.8) -1.4 (6.3) -1.3 (-3.6, 0.9) 

NEFA -47.9 (29.9) -49.4 (30.2) -1.2 (-5.1, 2.7) -46.8 (29) 2.1 (-5.5, 9.3) 

Glycemic responses 

Insulin 238 (179.8) 243 (168.8) 8.9 (-13.4, 31.2) 188.7 (123.8) -49.6 (-91.5, -7.8) * 

Glucose 11.1 (16.1) 16.3 (19.8) 3.9 (1.4, 6.4) ** 34.8 (36) 21.3 (16.6, 26.0) *** 

Pro-inflammatory responses 

hsCRP 1.4 (15.3) 0.3 (12.7) -1.1 (-3.0, 0.8) 1.7 (15.7) 0.5 (-3.1, 4.1) 

Leptin -17.7 (27.5) -11.1 (26.7) 4.3 (0.04, 8.4) * -12.8 (30) 2.1 (-6.0, 10.2) 

Resistin -3.4 (21.8) -3.1 (19.8) 0.5 (-3.1, 4.2) -3.1 (19) 0.8 (-6.1, 7.8) 

MCP-1 0.3 (40.0) -5.0 (34.2) -5.6 (-10.9, -0.2) * -6.9 (31.6) -7.6 (-17.4, 2.2) 

Anti-inflammatory responses 

IL-10 15.6 (100.7) 14.8 (116.2) 2.0 (-16.0, 20.0) 20 (148.3) 7.8 (-24.7, 40.4) 

Adiponectin 2.6 (91.4) -0.8 (19.6) -3.6 (-15.7, 8.4) -0.9 (19.3) -3.2 (-26.5, 20.1) 
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1 Postprandial change (%Δ) equals the difference between postprandial and fasting biomarker 

concentrations, divided by fasting concentrations, presented as percentages.  

2 Regression models adjusted for sex, age, and body mass index 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Abbreviations: β, regression coefficient; CI, confidence interval; TC, total cholesterol; TG, 

triglycerides; HDLc, high density lipoprotein cholesterol; LDLc, low density lipoprotein 

cholesterol; apo, apolipoprotein; NEFA, non-esterified fatty acid; hsCRP, high sensitivity C-

reactive protein; MCP-1, monocyte chemoattractant protein 1; IL-10, interleukin 10. 
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Table 4. Comparison of postprandial changes in biomarkers among people differing by 

adiposity phenotypes  

Postprandial Changes 

in Biomarkers  

Reference: 

Normal weight   

(n = 262) 

Overweight 

(n = 420) 

Obese 

(n = 333) 

 %Δ 1 Mean (SD) Mean (SD) 

In relation to 

reference 

β (95% CI) 2 

Mean (SD) 

In relation to 

reference 

β (95% CI) 2 

Lipid response 

TC -0.6 (7.3) 0.3 (6.3) 0.8 (-0.2, 1.9) 1.0 (7.2) 1.5 (0.4, 2.7) ** 

TG 13.6 (19.4) 16.4 (20) 2.9 (-0.01, 5.8)  16.1 (16) 2.8 (-0.3, 6.0) 

HDLc 0.6 (6.7) 1.3 (6.8) 0.6 (-0.4, 1.7) 1.3 (6.3) 0.5 (-0.6, 1.6) 

LDLc 0.2 (10.9) 0.4 (9.3) 0.2 (-1.2, 1.7) 0.2 (8) 0.1 (-1.5, 1.7) 

Non-HDLc -0.2 (10.5) 0.3 (7.9) 0.5 (-0.8, 1.9) 0.7 (8.7) 1.1 (-0.4, 2.6) 

ApoA-I -0.1 (9.4) 1.0 (6.6) 1.1 (0.01, 2.3) * 0.9 (6.2) 1.1 (-0.2, 2.3) 

ApoB -0.6 (9.7) 0.1 (8.6) 0.8 (-0.6, 2.2) -0.3 (9) 0.6 (-0.9, 2.2) 

NEFA -49.7 (32) -46.3 (30.2) 5.0 (0.4, 9.6) * -49.9 (27.7) 3.3 (-1.6, 8.4) 

Glycemic responses 

Insulin 247.6 (203.8) 247.2 (171.6) -9.4 (-35.5, 16.7) 212.8 (141.2) -54.6 (-83.1, -26.2) *** 

Glucose 9.2 (21.6) 14.9 (18.6) 4.5 (1.7, 7.3) ** 17.9 (16.9) 5.1 (2.1, 8.1) ** 

Pro-inflammatory responses 

hsCRP 0.8 (17.1) 1.1 (15) 0.4 (-1.9, 2.6) 1.2 (10.6) 0.9 (-1.6, 3.3) 

Leptin -18.5 (34.9) -17.7 (26.5) 0.3 (-4.7, 5.3) -9.7 (20.9) 6.2 (0.9, 11.5) * 

Resistin -5.8 (21.8) -1.7 (21.5) 4.3 (-0.01, 8.6) -3.6 (19.4) 3.0 (-1.7, 7.6) 

MCP-1 -6.7 (37.5) -0.7 (36.8) 5.0 (-1.2, 11.2) -1.1 (38.3) 4.1 (-2.7, 10.9) 

Anti-inflammatory responses 

IL-10 24.4 (121.5) 4.8 (85.4) -21.4 (-41.8, -1.0) * 17.3 (116.9) -9.2 (-31.0, 12.6) 
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Adiponectin -4.2 (20.2) 5.3 (106.2) 10.1 (-4.3, 24.5) -0.4 (22.3) 5.7 (-9.8, 21.2) 

 

1 Postprandial change (%Δ) equals the difference between postprandial and fasting biomarker 

concentrations, divided by fasting concentrations, presented as percentages  

2 Regression models adjusted for sex and age 

* p < 0.05, ** p < 0.01, *** p < 0.001  

Abbreviations: β, regression coefficient; CI, confidence interval; TC, total cholesterol; TG, 

triglycerides; HDLc, high density lipoprotein cholesterol; LDLc, low density lipoprotein 

cholesterol; apo, apolipoprotein; NEFA, non-esterified fatty acid; hsCRP, high sensitivity C-

reactive protein; MCP-1, monocyte chemoattractant protein 1; IL-10, interleukin 10. 
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Figure 1. Correlation matrix of postprandial biomarker changes   

 

Legend:  

1. The values in each cell represented Pearson’s correlation coefficient.  

2. Postprandial change (%Δ) of each biomarker equals the difference between postprandial 

and fasting biomarker concentrations, divided by fasting concentrations, presented as 

percentages. 

Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein 

cholesterol; LDLc, low density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-

esterified fatty acid; hsCRP, high sensitivity C-reactive protein; MCP-1, monocyte 

chemoattractant protein 1; IL-10, interleukin 10.  
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Figure 2. Standardized comparison of postprandial biomarker changes among participants 

differing by glycemic phenotypes  

 

 

Legend: 

1. Sample sizes: 570 normoglycemia, 384 hyperglycemia, and 71 diabetes.  

2. This figure presented linear regression results to compare postprandial biomarker 

responses across strata of glycemic phenotypes (those with normal glycemia served as 

reference group) Each regression model had one biomarker as the dependent variable, 

and the three-level glycemic phenotype variable (dummy variables) as the independent 

variable. We controlled for age, sex, and body mass index in each model. 

3. Postprandial change (%Δ) equals the difference between postprandial and fasting 

biomarker concentrations, divided by fasting concentration. Standardized Z-scores were 

calculated as postprandial response (%Δ) minus the mean and divided by the standard 

deviation for each biomarker.  
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Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein 

cholesterol; LDLc, low density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-

esterified fatty acid; hsCRP, high sensitivity C-reactive protein; MCP-1, monocyte 

chemoattractant protein 1; IL-10, interleukin 10. 
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Figure 3. Standardized comparison of postprandial biomarker changes among participants 

differing by adiposity phenotypes  

 

Legend: 

1. Sample sizes: 262 normal weight, 420 overweight, and 333 obese.  

2. This figure presented linear regression results to compare postprandial biomarker 

responses across strata of adiposity phenotypes (those with normal weight served as 

reference group) Each regression model had one biomarker as the dependent variable, 

and the three-level adiposity phenotype variable (dummy variables) as the independent 

variable. We controlled for age and sex in each model. 

3. Postprandial change (%Δ) equals the difference between postprandial and fasting 

biomarker concentrations, divided by fasting concentration. Standardized Z-scores were 

calculated as postprandial response (%Δ) minus the mean and divided by the standard 

deviation for each biomarker.  
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Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein 

cholesterol; LDLc, low density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-

esterified fatty acid; hsCRP, high sensitivity C-reactive protein; MCP-1, monocyte 

chemoattractant protein 1; IL-10, interleukin 10. 
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Figure 4. Structural equation modeling for postprandial biomarker changes in the study 

 

Legend: 

1. Model fit statistics:  CFI = 0.889, TLI = 0.847; RMSEA = 0.100 (90%CI: 0.079, 0.122); 

SRMR = 0.071 

2. All manifest variables (boxes) were postprandial biomarker changes, or %Δ values. All 

latent variables (circles) were derived from loadings in exploratory factor analysis (EFA) 

on the other random half of the data (refer to Supplemental Table 1).  

3. Dashed lines indicated fixed parameters, and continous lines indicated free parameters.  

4. The residuals were omitted in the graph for visual clarity. Values were standardized 

parameter values. 

Abbreviations: F, factor (latent variable), TC, total cholesterol; TG, triglycerides; HDLc, 

high density lipoprotein cholesterol; LDLc, low density lipoprotein cholesterol; apo, 



184 
 

 
 

apolipoprotein; FFA, free fatty acids, same as NEFA or non-esterified fatty acid; hsCRP, 

high sensitivity C-reactive protein; MCP-1, monocyte chemoattractant protein 1; IL-10, 

interleukin 10. 
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Supplemental Table 1. Exploratory factor analysis loadings   

Manifest variables 

(%Δ) 

(proportional variance) 

Factor 1 

(0.213) 

Factor 2 

(0.075) 

Factor 3 

(0.063) 

TC 0.696 -- 0.192 

TG -- -- 0.730 

HDLc 0.890 -- -0.115 

LDLc 0.862 -- -- 

ApoA-I 0.832 -- 0.111 

ApoB 0.500 -- 0.242 

NEFA -- -0.305 -- 

Insulin -- 0.770 -- 

Glucose -- 0.644 -- 

hsCRP 0.369 -- -- 

Leptin 0.174 -- -0.380 

Resistin -- -- 0.209 

MCP-1 -- -- 0.254 

IL-10 0.172 -- 0.146 

Adiponectin -- -- -- 

1. Cut-off for including the items in subsequent confirmatory factor analysis/structural 

equation modeling: loading ≥ |0.3| 



186 
 

 
 

2. EFA model fit: TLI = 0.93, RMSEA = 0.05 (90%CI: 0.02, 0.07) 

Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein 

cholesterol; LDLc, low density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-

esterified fatty acid; hsCRP, high sensitivity C-reactive protein; MCP-1, monocyte 

chemoattractant protein 1; IL-10, interleukin 10. 
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CHAPTER 7: MANUSCRIPT FOR SPECIFIC AIM 3 

Postprandial glycemic response differed by early-life nutritional exposure in a 

longitudinal cohort: a single- and multi-biomarker approach 

7.1 Abstract 

Purpose: Populations malnourished in early life are at increased risk for cardiometabolic 

diseases. We assessed if improved nutrition predicts cardiometabolic function, as assessed by 

postprandial biomarker responses. 

Methods: Participants had been randomized at the village level to receive one of two nutritional 

supplements as children. At mean age 44 y (range 37 – 53 y), we obtained plasma samples 

before and 2h after a mixed-component meal challenge. We assayed biomarkers including lipids, 

glycemic measurements, and inflammatory cytokines. We compared postprandial biomarker 

responses among those who received the improved nutrition intervention from conception 

through to their second birthday (the first 1000 days) to those with other exposure status, 

including those who received the improved nutrition intervention at other ages, and those who 

received the less nutritious supplement. 

Results: Among 1,027 participants (59.4% female), 22.9% were exposed to improved nutrition 

in the first 1000 days. Insulin increased the most in response to the meal challenge (over two 

folds), and non-esterified fatty acids decreased the most (by half). Glucose increased 

postprandial by 11.4% in the exposed group, compared with 15.7% in the unexposed group (p < 

0.05), which remained significant after adjusting for confounders (-4.7%; 95% confidence 
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interval: -9.3%, -0.01%). Responses to the prandial challenges for the other biomarkers did not 

differ by intervention group (all p > 0.05). 

Conclusion: Early-life exposure to improved nutrition was associated with more favorable 

postprandial glucose response in this population. We did not observe a difference in overall 

cardiometabolic responses between the exposure groups. 

Key words: early life, nutritional intervention, cardiometabolic diseases, diabetes, obesity, 

inflammation 
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7.2 Introduction 

The first 1000 days from conception to the second birthday is a critical window for 

growth and development [1,2]. During this period of time, balanced maternal diet and optimal 

infant and young child feeding is essential in supporting growth and developing the psycho-

neuro-endocrinological systems [3]. The developmental origins of health and disease (DOHaD) 

paradigm centers around the lifelong consequences of exposures in early life [4]. An important 

aspect of DOHaD is identifying the mismatch between early-life factors (genetic predisposition, 

epigenetic modification, and early-life environment) and the environment later in life [5]. For 

instance, undernutrition in the first 1000 days signals the need for nutrient and energy 

preservation, thus shaping the metabolic system accordingly. When later encountering an 

obesogenic environment, the metabolic system is ill-equipped to respond to cardiometabolic 

disturbances and properly restore homeostasis [5].  

The phenomenon of developmental mismatch is observed in populations around the 

world that are undergoing nutrition transition [6,7]. Nutrition transition is a concept that 

describes the shift in dietary trends, along with changes in activities and body composition, at the 

population level over long periods of time [7]. In low- and middle-income countries, nutrition 

transition is usually observed in the dietary changes from traditional, local, majority plant-based 

diets to processed, energy-dense but nutrient-poor diets [8]. Parallel to the global nutrition 

transition is a shift in disease patterns: from the early 1990s till recent years, there has been a 

41% decrease in communicable diseases and neonatal disorders worldwide [9]. However, a 

simultaneous 40% increase in non-communicable diseases was observed, with cardiometabolic 

diseases being the most important subset therein [9].  
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The association of early-life nutrition and adulthood cardiometabolic diseases is difficult 

to ascertain if we focus solely on the clinical diagnosis. Pre-clinical cardiometabolic 

perturbations, such as the cardiometabolic syndrome, may occur well before clinical diagnosis 

could be made [10]. These perturbations can manifest as altered or impaired phenotypic 

flexibility, which is a more sensitive measure of overall cardiometabolic status than assessments 

at the fasted state [11]. The global burden of pre-clinical cardiometabolic conditions is rapidly 

increasing and should be a target for prevention of future cardiometabolic diseases and 

associated complications. For example, intermediate hyperglycemia affected one in five men and 

one third of women in Guatemala, a country that is undergoing nutrition transition [12]. 

Hyperglycemia and other forms of glucose dysregulation, if left uncontrolled, are known to 

progress to type 2 diabetes (8). 

We have previously reported that exposure to improved nutrition in the first 1000 days 

was associated with long-term cardiometabolic status at the fasted state, including reduced 

glucose concentration [13,14]. We do not, however, have any information on how early-life 

nutritional improvements may impact phenotypic flexibility, which could be assessed via 

metabolic challenge models [15]. A mixed-component meal challenge simultaneously tests 

several cardiometabolic pathways, and may provide valuable insights into stress response 

capacity of the cardiometabolic system [15,16]. Hence, we tested the hypothesis that early-life 

nutritional exposure modifies meal-induced biomarker responses in a population that is 

undergoing nutrition transition.  
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7.3 Methods 

Study population  

We conducted a follow-up study of the Institute of Nutrition of Central America and 

Panama (INCAP) Longitudinal Study (17). Between 1969 and 1977, a total of 2,392 children 

were randomized at the village level to receive either atole (the “improved nutrition” 

supplement) or fresco (the “control” supplement). Atole is a dietary supplement in the form of 

porridge that provides 6.4 g protein, 0.4 g fat, and 90 kcal per 100 mL. Fresco is a low-calorie 

drink (all calories from carbohydrates, 33 kcal per 100 mL) that does not contain protein. The 

consumption of the supplements was meticulously documented for each participant, and more 

details were reported elsewhere (17).  

In the current analysis, we dichotomized the participants into “exposed group” and 

“unexposed group”, considering both the type and the timing of early-life nutritional exposure. 

We used the first 1000 days as proxy for early life, calculated as 266 days before birth (the 

average length of pregnancy) till two years after birth. The exposed group included participants 

who received atole during the full first 1000 days. The unexposed group included the rest of the 

participants, who either received atole but not during the entire period of first 1000 days or 

received fresco. 

The participants were followed up in several subsequent study waves to track the growth 

and development of the children, as well as human capital-related information in their 

adolescence and adulthood (18). Attrition was as follows: at the time of data collection, 369 

(15.4%) cohort members have died, 249 (10.4%) emigrated, and 113 (4.7%) were been lost to 

follow up. Out of the 1,661 eligible members, 134 could not be reached, and 366 declined to 

participate. Of the remaining participants who provided consent, 16 did not attend the scheduled 
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clinical exam, 6 women were pregnant or lactating at the scheduled time for data collection, 27 

did not have fasting plasma samples required for this set of analysis, and an additional 85 did not 

have postprandial samples. Our final sample size for this analysis is 1,027 (42.9% of the original 

cohort) (Supplemental Figure 1). 

Meal challenge procedure 

During the 2015-17 data collection, we administered a standardized, mixed-component 

meal challenge to test the metabolic stress response among the participants. For each study 

participant who provided informed consent, a trained phlebotomist drew venous blood after 

confirming fasting status (an overnight fast of eight hours or longer). Following a safety 

protocol, we did not give participants the meal challenge if their fasting glucose concentration 

was >180 mg/dL. For all other participants, we administered the meal challenge in the form of a 

milk shake, which has macronutrient composition within the physiological range. The shake was 

a mixture of 25 g safflower oil, 52 g sugar, 12 g Incaparina powder (a plant-based protein 

mixture developed by INCAP), and 170 ml lactose-free skim milk. Each 100 g of the meal 

challenge contained 164.7 calories (31% from fat), 3.4 g protein, 25.2 g carbohydrate, and 5.7 g 

fatty acids (fatty acids were calculated as triglycerides). At the two-hour mark after the meal 

challenge, the phlebotomist drew venous blood a second time.  

We collected additional relevant data during this study wave, including anthropometry 

measurements and cardiometabolic status. Body mass index (BMI) was calculated as weight (kg) 

divided by height-squared (m2) (19). All cardiometabolic conditions and risk factors were 

defined according to established standards, including overweight, obesity, central obesity, 

metabolic syndrome (MetS), hyperglycemia, and type 2 diabetes (19-21). 

Cardiometabolic biomarkers 
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We assayed 17 biomarkers that represented four cardiometabolic pathways. Lipids 

included total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDLc), 

low-density lipoprotein cholesterol (LDLc), apolipoprotein A-I and B (apoA-I, apoB), and non-

esterified fatty acids (NEFA). Glycemic markers included insulin and glucose. Pro-inflammation 

markers included high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), leptin, 

resistin, and monocyte chemoattractant protein 1 (MCP-1). Anti-inflammation markers included 

IL-10, adiponectin, and soluble TNF receptor II (TNFsR).  

Fasting and postprandial glucose concentrations were assayed in Guatemala, before the 

plasma samples were frozen for storage at -80 °C. The samples were shipped in dry ice to a 

biomarker core laboratory in the US, where a trained lab personnel thawed the samples at 4 °C in 

28 batches for all other assays to be performed (one batch at a time). Samples in each batch 

included pre- and post-challenge samples from the same individuals, balanced on the location of 

data collection, village of birth during the INCAP trial, and timing of exposure to the nutritional 

supplements. We presented the details of laboratory methods for each biomarker in 

Supplemental Table 1.   

Statistical methods 

We describe selected sociodemographic information, cardiometabolic conditions, and 

cardiometabolic risk factors in the study population. We compared these characteristics between 

the two early-life nutritional exposure groups, using Student’s t-test, chi-squared test, or Mann-

Whitney U test, where appropriate. 

The main outcome variables are meal-induced biomarker responses. For each biomarker, 

we designated meal-induced response as %Δ, calculated as: 
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𝑃𝑜𝑠𝑡𝑝𝑟𝑎𝑛𝑑𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛−𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐹𝑎𝑠𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
𝑥 100%. To ensure visual comparability of the 

responses, we then calculated standardized Z-scores for each %Δ:  
Observed (%Δ)−𝑀𝑒𝑎𝑛 (%Δ)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (%Δ)
. 

We first analyzed the postprandial responses using single-biomarker approach. We 

constructed difference-in-difference (DD) models for each %Δ (comparison of raw values) and 

corresponding Z-scores (visual comparison). In each DD model, the exposure variable is an 

interaction term between the type of exposure (atole versus fresco) and the timing of exposure 

(in the full first 1000 days versus other). We controlled for birth village (since it was village-

level randomization, this variable can account for the type of supplementation and control for 

undocumented characteristics at the village level), timing of exposure, age, sex, and BMI. In 

models with lipid responses (TC, TG, HDLc, LDLc, apoA-I, apoB, and NEFA) as outcomes, we 

also controlled for lipid-lowering medication use. In models with glycemic responses, we also 

controlled for diabetes medication use. We tested sex-specific stratum heterogeneity by adding 

an interaction term between the DD exposure variable and sex. We reported significant 

interactions by sex, but the final models did not include this variable. 

We then used multi-biomarker approaches to analyzed overall (global) and domain-

specific postprandial responses. Prior to conducting the multivariate analyses, we examined the 

correlation matrix across all biomarker responses. To extract multivariate information and reduce 

the data dimensionality in postprandial biomarker responses, we conducted two sets of analysis. 

Multivariate analysis of variance (MANOVA) was used to test mean differences in postprandial 

biomarker responses between exposure groups, and linear discriminant analysis (LDA) was used 

to predict group membership based on collective biomarker responses.  

We used MANOVA (base R), in combinations with DD modeling (previously described) 

to compare differences in %Δ between exposure groups. We conducted both domain-specific 
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(separately for lipid, glycemic, pro-inflammatory, and anti-inflammatory responses) and global 

(all biomarker responses combined) comparisons. We then conducted LDA (package “MASS”) 

to test whether the global biomarker responses adequately predict group separation by early-life 

nutritional exposure status [22]. We partitioned the data into two random parts, 80% of the data 

were used to train the LDA models, and the remaining 20% were used to test the established 

models. For the first set of LDA model, we obtained one linear discriminant that is a 

combination of the multivariate data of all postprandial %Δ to maximize between-group 

differences. We removed IL-6 in this model to improve sample size. For the second set of LDA 

model, we only retained the glycemic domain (insulin and glucose responses) to calculate the 

linear discriminant to distinguish the two exposure groups. 

We used R version 3.6.1 (R Core Team, Foundation for Statistical Computing, Vienna, 

Austria) for all our analyses. Statistical significance was set a priori at p value < 0.05. All p-

values were two-sided.  

Research ethics: The study was approved by the Institutional Review Board at Emory 

University and the Ethics Review Committee of INCAP. All study participants provided written 

informed consent in Spanish.  

7.4 Results 

Description of the study population   

One fifth of the population were exposed to atole during the full first 1000 days (235, 

22.9%), and 60.4% and 59.1% were women in the exposed and unexposed group, respectively 

(not statistically significant, or NS). Due to the nature of the study design, those in the exposed 

group were younger than in the unexposed group (mean ± standard deviation 42.2 ± 1.6 y and 

44.6 ± 4.6 y, respectively, p < 0.001) (Table 1). Cardiometabolic conditions and risk factors were 
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similar between the two groups, with slightly over one third of the participants categorized as 

obese in both groups (NS). Type 2 diabetes affected 5.1% of the exposed and 7.5% of the 

unexposed participants (NS), whereas over half in each group (53.4% of exposed and 56.2% of 

unexposed) had metabolic syndrome (NS) (Table 1). The fasting concentrations of the 

biomarkers were similar between the two early-life nutritional exposure groups (Table 1). 

Glucose, resistin, adiponectin, and TNFsR concentrations were significantly lower in the 

exposed group than in the unexposed group (p = 0.03, < 0.001, 0.02, and < 0.001, respectively) 

(Table 1).  

Comparison between exposure groups at the single-biomarker level 

Early-life exposure to atole was associated with attenuated postprandial glucose 

response. The exposed group had 4.7% (95%CI: -9.3% to -0.01%) smaller magnitude of 

postprandial glucose increase than the unexposed group (the %Δ was 11.4 ± 17.3 in exposed 

group, compared with 15.7 ± 21.2 in the unexposed group, p < 0.05). The remaining biomarker 

responses were non-differential between the two exposure groups (Table 2, Figure 1). The most 

pronounced differences between the two groups was in glycemic responses and pro- and anti-

inflammatory responses, but no clear pattern was observed in terms of inflammatory responses 

(Figure 1). 

Biomarkers that had postprandial increase in both exposure groups: Insulin increased the 

most after the meal challenge in both exposure groups, and the %Δ was 232.4 ± 163.5 in the 

exposed group, compared with 237.7 ± 175.5 in the unexposed group (NS). TG and IL-10 

increased by approximately 15% in both exposure groups. The %Δ of TG was slightly higher in 

the exposed group (16.0 ± 19.2) than in the unexposed group (15.3 ± 18.5, NS), whereas the %Δ 

of IL-10 was slightly lower in the exposed group (14.8 ± 84.3) than in the unexposed group (15.8 
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± 116.9). hsCRP increased more in the exposed group (1.6 ± 14.9) than in the unexposed group 

(0.8 ± 14.3, NS) (Table 2, Figure 1). 

Biomarkers that had postprandial decrease in both exposure groups: NEFA decreased 

the most in both exposure groups, with %Δ of -45.1 ± 31.9 in exposed group and -49.3 ± 29.3 in 

unexposed group (NS). Postprandial leptin reduction was milder in the exposed group (-13.5 ± 

31.7) than in the unexposed group (-15.3 ± 26.2, NS). TNFsR also decreased less in the exposed 

(-8.1 ± 16.9) than in the unexposed group (-9.6 ± 14.2, NS) (Table 2, Figure 1).   

Biomarkers that had mixed postprandial changes in two exposure groups: In addition, 

IL-6 decreased in the exposed group (-1.4 ± 68.8) but increased in the unexposed group (9.7 ± 

81.3, NS). MCP-1 increased in the exposed group (1.1 ± 37.1) but decreased in the unexposed 

group (-3.3 ± 37.5, NS). Adiponectin increased by 11.4% in the exposed group but decreased by 

1.4% in the unexposed group (NS) (Table 2, Figure 1).  

We did not observe any stratum heterogeneity by sex except for MCP-1 (p = 0.04 for the 

interaction between exposure variable and sex) (Table 2). 

Comparison between exposure groups at the multi-biomarker level 

MANOVA results indicated that the multivariate mean of glycemic biomarker responses 

differed by early-life nutritional exposure (p = 0.03). Apart from a borderline significant 

difference observed in the lipid response domain (p = 0.06), we did not observe any other 

domain-specific or global difference between the two groups (p > 0.05 for all) (Table 3). LDA 

results confirmed that neither the global multivariate biomarker responses nor responses in the 

glycemic domain alone predicted exposure group. Figure 2 indicated that the center and spread 

of the two groups significantly overlapped in both sets of LDA models. 
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7.5 Discussion 

Our study is the first of its kind in linking early-life nutrition to long-term 

cardiometabolic status through a combination of single- and multi-biomarker approaches. 

Testing biomarker responses to meal challenge can help gauge the phenotypic flexibility of the 

cardiometabolic system. Cumulative disturbances throughout the life course, similar to the meal 

challenge in this study, eventually lead to cardiometabolic diseases such as type 2 diabetes and 

cardiovascular diseases. Therefore, it is important to assess whether and how early-life exposure 

to improved nutrition can attenuate such disturbances later in life. Regarding our main 

hypothesis, we did not observe an overall difference in postprandial biomarker responses 

between those who were exposed to improved nutrition in the first 1000 days and those who 

were unexposed. We did, however, observe a modest reduction in the glucose response in the 

exposed group, compared with the unexposed. This finding was consistent at both the single-

biomarker and the multi-biomarker levels.  

The one favorable difference that we observed is worth noting – the exposed group 

differed in the domain of glycemic responses from the unexposed group. At the individual 

biomarker level, the exposed group had a smaller magnitude of postprandial glucose response. In 

previous studies within the same population, researchers reported that early-life exposure to 

improved nutrition was associated with lower fasting glucose concentration [13,23]. We consider 

it equally, if not more, important that postprandial glucose response was also attenuated among 

participants with improved nutrition in the first 1000 days. The smaller magnitude in 

postprandial glucose response indicated improved capacity of the metabolic system to regulate 

glucose within a tight range. This finding further substantiated the euglycemic effect of having 

improved early-life nutrition in our study population. Mechanisms that link early-life nutritional 
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exposure with long-term glycemic regulation is not yet fully elucidated. We postulate that 

potential mechanisms include positive effects of improved nutrition on ontogeny, especially on 

the development of metabolically active tissues [2,24-26]. Based on results from animal studies, 

pancreas may be the key metabolic organ in this linkage [27,28].  

Overall, participants who were exposed to improved nutrition in the first 1000 days did 

not differ significantly from the unexposed group in phenotypic flexibility, as assessed by 

collective biomarker responses in our study. Chronic malnutrition was prevalent in our study 

population when they were enrolled in the initial INCAP trial [29]. The improved protein and 

calorie content provided in the form of atole was hypothesized to attenuate the mismatch 

between undernutrition signals in early life and the increasingly obesogenic environment that 

they later encountered. The fact that we did not observe significant improvements in terms of 

adulthood cardiometabolic health among the exposed group may be a result of multiple factors. 

First, we know that atole improved early growth and development, and the benefits extended to 

human capital gains and intellectual capacities in early adulthood [2]. The lack of benefit in 

cardiometabolic health may be due to different pathways that additional protein and energy 

affect growth and development. Gruszfeld et al. reported that high-protein (versus low-protein) 

infant formula was associated with increased body mass in childhood, perhaps due to increasing 

availability of long-chain amino acids, which stimulates IGF-1 and thus promotes fat distribution 

[30]. Higher protein and energy may improve early linear growth, cognitive development, but 

may not directly benefit the metabolic tissues. In addition, cardiometabolic perturbations are a 

result of both early-life nutrition and cumulative exposures in subsequent years, with the latter 

being more indicative of current status. Therefore, it is possible that early protective effects of 
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improved nutrition in the first 1000 days is insufficient to fend off long-term negative impact due 

to lifestyle factors and obesogenic environment. 

Insulin increased two hours after the meal challenge by more than two folds, but the 

increase did not differ significantly between the two exposure groups. Nevertheless, glucose 

response was attenuated in the exposed group. This is interesting because insulin is the major 

glycemic regulating hormone that rapidly respond to postprandial glucose signals [31]. It is 

possible that in our study population, glycemic regulation was improved by early nutrition 

through other mechanisms, such as the leptin-mediated glucose-lowering pathways [32,33]. 

Since glucose concentration is strictly regulated under physiological conditions, it is possible that 

the cardiometabolic system mobilized other compensatory pathways to improve glycemic 

regulation [34]. Despite the potential of nutritional improvements in early life to promote the 

growth and development of endocrine pancreas, its effect on insulin production and secretion 

may be limited in the long term. On the other hand, our observation may have been limited by 

the availability of only two data points surrounding the meal challenge. Postprandial insulin 

response varies greatly and can be influenced by numerous factors [31]. It is possible that insulin 

reached peak reaction sooner than the two-hour time point, hence helped reduce glucose 

concentration. But our assessment did not capture the highest level of such response. This 

postulation warrants further investigation, preferably through trajectory analysis with multiple 

data points following the meal challenge.           

Most lipid responses were modest or null, except a 15% increase in TG and a 50% in 

NEFA. There were no statistically significant differences the lipid domain between two exposure 

groups. After a fat-containing meal, such as the meal challenge in this study, postprandial TG 

usually elevate within an hour, and can remain elevated for 5 to 8 hours [35,36]. Postprandial 
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increase in TG is a predictor of future cardiovascular diseases [37]. In physiological state, NEFA 

is excepted to fall rapidly after a mix-component meal due to the suppression of fat mobilization 

by insulin [38]. We indeed observed this sharp decrease of NEFA. In both of the exposure 

groups, NEFA reduced to approximately half of the fasting concentration two hours after the 

meal challenge, which adequately reflected the insulin-driven suppression of postprandial release 

of free fatty acids from adipocyte [38].  

Leptin and adiponectin showed interesting patterns in this study. At the fasted state, 

leptin was lower in exposed than unexposed group (NS), whereas adiponectin was higher in 

exposed than unexposed group (NS). Two hours after the meal challenge, we observed that 

adiponectin increased more in the exposed than unexposed group, but the decrease of leptin was 

abated in the exposed group. Evidence is mounting that, apart from their main functions of 

regulating feeding behaviors, these two adipokines have important role in inflammation and 

insulin resistance [39]. Leptin and adiponectin have opposing effects, with leptin being pro-

inflammatory and adiponectin being anti-inflammatory [40]. Leptin-to-adiponectin ratio is 

positively associated with metabolic syndrome and other cardiometabolic disturbances. 

Therefore, we postulate that early-life exposure to improved nutrition may help reduce leptin-to-

adiponectin ratio, both at the fasted state and through dynamic assessment. In addition, leptin has 

complex biological functions beyond appetite control and pro-inflammation, therefore the 

attenuation in postprandial leptin response in the exposed group is not necessarily an unfavorable 

observation. More research is needed to elucidate the mechanisms behind this observation. 

We tested the sex-specific stratum heterogeneity in postprandial responses and concluded 

that the association of early nutrition and adulthood cardiometabolic responses did not differ by 

sex, except for MCP-1. This is notable because at the fasted state, concentrations of many 
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cardiometabolic biomarkers differ between the two sexes at physiological state [41]. Leptin, for 

example, is significantly higher in women than in men due to hormonal regulation of the 

production and secretion of leptin [42]. These findings, if replicable in other populations, may 

have clinical implications: despite the sex-specific differences of cardiometabolic mechanisms 

and outcomes, early nutrition-associated long term phenotypic flexibility may be non-differential 

between the two sexes [43].  

There were a few limitations in our study. Despite the innovative challenge model, we 

only had two time points available. We did not observe any pattern in the postprandial responses 

in pro- and anti-inflammation markers. It is possible that we did not observe the peak action of 

these biomarkers at exactly two hours after the meal challenge. There is limited information in 

the literature to indicate whether there is great inter- and intra-person variability throughout the 

day regarding postprandial biomarker responses. In our study, we tested the responses in all 

participants following an overnight fast as an attempt to attenuate inter-person variability. 

Another limitation is the varying degrees of missingness across the selected biomarkers. Because 

of the limited funds, certain assays were discontinued when interim analysis failed to show 

significant changes between fasting and postprandial samples within the same individuals. 

Nevertheless, the samples were processed in randomly grouped batches, and the missingness was 

batch-based. Therefore, the overall results should be representative of the study population 

despite the missingness. In addition, glucose response may be slower after a mixed-component 

meal than a standardized oral glucose tolerance test [44]. This may have unmeasured effect on 

glucose response in this study. Lastly, because of our focus on the metabolic processes and 

mechanistic investigation, we did not examine the role of economic and sociocultural factors in 

the association between early-life nutrition and long-term health outcomes. Previous INCAP 
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studies have reported favorable outcomes in human capital and economic productivity in those 

who were exposed to atole in early life [2,45]. Socioeconomic changes inevitably alter lifestyle 

choices that have health implications, which may have influenced the outcomes we observed in 

this study [46,47].  

This is a longitudinal study with a randomized controlled trial as the starting point, which 

enables us to provide strong measurements of association between the exposure and the 

outcomes. We also further distinguished four cardiometabolic pathways, including lipid 

response, glycemic response, as well as pro- and anti-inflammatory responses [15]. Previously, 

researchers have suggested that multiple biomarkers should be used in concordance for each 

chronic disease, and even for different stages of the same disease [11,15]. We therefore tested the 

stress responses of the whole cardiometabolic system using key biomarkers, instead of focusing 

on clinically diagnosed disease status. At the multivariate level, we summarized the information 

of biomarker responses from two mutually compensatory aspects: we first compared between-

group differences in the overall responses (MANOVA), then used the multivariate information to 

predict group membership (LDA).  

Our study population were malnourished in childhood and have been undergoing a 

nutrition transition. Despite the cumulative benefits that were observed in this population in 

terms of physical growth, cognitive development, and human capital gains, a recent study from 

this population reported mixed association between early-life nutritional exposure and 

cardiometabolic risk factors [2,23]. We considered it urgent and necessary to test the DOHaD  
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7.6 Tables, figures, and supplemental materials 

Table 1: Selected characteristics of the study population, between participants exposed to 

atole in the full first 1000 days versus unexposed  

Characteristics 1 

Exposed  

(n = 235) 

Unexposed  

(n = 792) 

p value 2 

Age (years), Mean (SD) 42.2 (1.6) 44.6 (4.6) < 0.001 

Female, % 60.4  59.1 0.77 

Body mass index (kg/m2), Mean (SD) 28.3 (4.6) 28.2 (5.2) 0.76 

Obesity, % 31.9 32.6 0.92 

Type 2 diabetes, % 5.1 7.5 0.27 

Metabolic syndrome, % 53.4 56.2 0.50 

Fasting lipids, Median (IQR) 

TC (mmol/L) 4.6 (3.9, 5.3) 4.6 (3.9, 5.2) 0.43 

TG (mmol/L) 1.7 (1.2, 2.4) 1.7 (1.2, 2.4) 0.72 

HDLc (mmol/L) 1.0 (0.9, 1.2) 1.0 (0.9, 1.2) 0.88 

LDLc (mmol/L) 2.8 (2.2, 3.5) 2.8 (2.3, 3.4) 0.84 

ApoA-I (g/L) 1.1 (0.9, 1.3) 1.7 (0.9, 1.2) 0.14 

ApoB (g/L) 0.8 (0.7, 1.0) 0.8 (0.6, 0.84) 0.17 

NEFA (mEq/L) 0.8 (0.6, 1.1) 0.8 (0.6, 1.1) 0.44 

Fasting glycemic markers, Median (IQR) 

Insulin (pmol/L) 78.5 (49.3, 133.7) 88.2 (54.2, 139.6) 0.09 

Glucose (mmol/L) 5.4 (5.0, 5.7) 5.5 (5.2, 5.8) 0.03 



209 
 

 
 

1 Definitions: Obesity: BMI ≥ 30 kg/m2; Metabolic syndrome: having three or more of the following five 

components: 1) abdominal obesity (waist circumference ≥ 88 cm for women; ≥ 102 cm for men); 2) fasting glucose 

≥ 110 mg/dL or diabetic medication use; 3) triglycerides ≥ 150 mg/dL or statin use; 4) HDL-cholesterol < 40 mg/dL 

in men or < 50 mg/dL in women, and; 5) systolic blood pressure (SBP) > 130 mmHg, diastolic blood pressure 

(DBP) > 85 mmHg, and/or hypertension medication use. Hyperglycemia: fasting plasma glucose of 100–125 mg/dL 

or two-hour post-challenge glucose of 140–199 mg/dL among participants not reporting use of diabetes medication. 

Type 2 diabetes: fasting plasma glucose > 125 mg/dL, or two-hour post-challenge glucose ≥ 200 mg/dL, or reporting 

use of diabetes medication 

2 P-values based on Student’s t-test (continuous variables with normal distribution), Mann-Whitney U test 

(continuous variables with skewed distribution), or chi-squared test (categorical variables)  

Abbreviations: Apo, apolipoprotein; HDLc, high-density lipoprotein cholesterol; hsCRP, high sensitivity C-reactive 

protein; IL, interleukin; IQR, interquartile range; LDLc, low density lipoprotein cholesterol; MCP-1, monocyte 

chemoattractant protein 1; NEFA, non-esterified fatty acid; SD, standard deviation; TC, total cholesterol; TG, 

triglycerides; TNFsR, soluble TNF receptor II. 

  

Fasting pro-inflammation markers, Median (IQR) 

hsCRP (mg/L) 1.8 (0.9, 3.7) 1.9 (0.9, 4.0) 0.34 

IL-6 (pg/mL) 5.5 (2.1, 12.2) 5.1 (2.4, 13.0) 0.99 

Leptin (ng/mL) 11.6 (3.2, 19.8) 9.8 (3.3, 18.5) 0.62 

Resistin (ng/mL) 1.3 (0.8, 2.1) 1.7 (1.0, 2.7) < 0.001 

MCP-1 (pg/mL) 82.0 (54.8, 126.3) 80.2 (51.1, 120.6) 0.22 

Fasting anti-inflammation markers, Median (IQR) 

IL-10 (pg/mL) 14.2 (4.6, 56.3) 22.6 (6.7, 67.6) 0.10 

Adiponectin (μg/mL) 7.9 (4.7, 12.0) 9.0 (4.9, 15.9) 0.02 

TNFsR (ng/mL) 2.2 (1.6, 3.0) 2.6 (2.0, 3.3) <0.001 
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Table 2. Comparison of postprandial changes in biomarkers between participants exposed 

to atole in the full first 1000 days versus unexposed  

Postprandial biomarker 

responses (%Δ) 1 

Unexposed  

Mean (SD) 

Exposed 

Mean (SD) 

β (95% CI) 2,3 

Lipid responses    

TC  0.2 (6.2) 0.6 (8.7) 1.2 (-0.6, 2.9)   

TG  15.3 (18.5) 16.0 (19.2) 1.7 (-2.9, 6.4)    

HDLc  0.9 (6.5) 1.7 (6.9) 0.4 (-1.2, 2.1)  

LDLc  0.4 (9.2) -0.1 (9.9) -0.2 (-2.6, 2.1)  

ApoA-I  0.6 (7.2) 1.0 (7.6) 0.5 (-1.4, 2.3)  

ApoB  -0.1 (8.7) -0.8 (10.1) 0.6 (-1.7, 2.8)  

NEFA  -49.3 (29.3) -45.1 (31.9) -2.9 (-10.2, 4.4)    

Glycemic responses    

Insulin  237.7 (175.5) 232.4 (163.5) 3.6 (-38.4, 45.5)    

Glucose  15.7 (21.2) 11.4 (17.3) -4.7 (-9.3, -0.01) *    

Pro-inflammatory responses    

hsCRP  0.8 (14.3) 1.6 (14.9) 3.1 (-0.5, 6.7)   

IL-6  9.7 (81.3) -1.4 (68.8) -28.7 (-67.7, 10.4) 

Leptin -15.3 (26.2) -13.5 (31.7) 1.4 (-6.5, 9.2)    

Resistin -3.1 (20.9) -4.0 (21.1) -1.1 (-7.9, 5.8) 

MCP-1 -3.3 (37.5) 1.1 (37.1) 4.4 (-5.6, 14.4)   

Anti-inflammatory responses    

IL-10  15.8 (116.9) 14.8 (84.3) 5.3 (-28.9, 39.5)   
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Adiponectin  -1.4 (23.5) 11.4 (149.3) 3.6 (-4.1, 11.4) 

TNFsR  -9.6 (14.2) -8.1 (16.9) 3.5 (-1.4, 8.3)    

1 Postprandial change (%Δ) equals the difference between postprandial and fasting biomarker concentrations, 

divided by fasting concentrations, presented as percentages.  

2 Exposed vs. unexposed (reference group). Each model had the %Δ of one biomarker as dependent variable, and the 

independent variable is an interaction term between the type (atole or fresco) and the timing (full first 1000 days 

versus other) of exposure, and adjusted for age, sex, body mass index, type of exposure (used birth village instead of 

the binary variable), and timing of exposure. We also adjusted for usage of lipid-lowering medication in the lipid 

response models, and adjusted for usage of anti-diabetic medication in the glycemic response models.  

3 To test stratum heterogeneity by sex, we added the interaction term between sex and the exposure variable (sex * 

type of exposure * timing of exposure) to the model. Only significant for MCP-1 (p = 0.04). 

* p < 0.05 

Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein cholesterol; LDLc, low 

density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-esterified fatty acid; hsCRP, high sensitivity C-

reactive protein; IL, interleukin; MCP-1, monocyte chemoattractant protein 1; TNFsR, soluble TNF receptor II. 
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Table 3. Multivariate analysis of variance (MANOVA) of postprandial biomarker 

responses, between participants exposed to atole in the full first 1000 days versus 

unexposed  

Type of comparison 1 Hotelling-

Lawley 

Trace 

F statistic df df 

error 

p value 

Domain-specific comparisons      

Lipid responses 0.02 1.93 7 612 0.06 

Glycemic responses 0.01 3.49 2 614 0.03 

Pro-inflammatory responses 0.05 1.34 5 121 0.25 

Anti-inflammatory responses 0.01 1.81 3 458 0.14 

Global comparison 2 0.22 1.38 17 108 0.16 

1 Each MANOVA model had early-life nutritional exposure variable (type of exposure * timing of exposure), age, 

sex, type of exposure, timing of exposure, body mass index, and smoking status.  

2 Global comparisons referred to an overall comparison across all four domains (lipid, glycemic, and pro- and anti-

inflammatory biomarker responses) 
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Figure 1. Standardized regression results of postprandial biomarker responses, between 

participants exposed to atole in the full first 1000 days versus unexposed  

 

 

Legend: 

1. This figure presents linear regression results to compare postprandial biomarker responses between the 

participants who were exposed to atole in the full first 1000 days (n=235) versus other (n=792). Each 

regression model had one biomarker response z-score as the dependent variable. The independent 

(exposure) variable is an interaction term between the type (atole or fresco) and the timing (full first 1000 

days versus other) of exposure, and adjusted for age, body mass index, village of birth (in place of type of 
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exposure), and timing of exposure. We also adjusted for lipid-lowering medication in the lipid models, and 

adjusted for anti-diabetic medication in the glycemic models. 

2. Postprandial change (%Δ) equals the difference between postprandial and fasting biomarker concentrations, 

divided by fasting concentration. Standardized Z-scores were calculated as %Δ minus the mean and divided 

by the standard deviation for each biomarker.  

Abbreviations: TC, total cholesterol; TG, triglycerides; HDLc, high density lipoprotein cholesterol; LDLc, low 

density lipoprotein cholesterol; apo, apolipoprotein; NEFA, non-esterified fatty acid; hsCRP, high sensitivity C-

reactive protein; IL, interleukin; MCP-1, monocyte chemoattractant protein 1; TNFsR, soluble TNF receptor II.  
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Figure 2. Linear discriminant analysis based on postprandial biomarker responses to 

predict group membership  

 

Legend:  

1. The graphs were based on linear discriminant analysis to predict group membership by early-life nutrtional 

exposure status (exposed to atole in the full first 1000 days versus unexposed) 

2. The histograms represent linear combination of the multivariate biomarker responses that allow for the 

greatest separation between groups. The x-axis shows distribution of the linear combination by each group, 

and the y-axis represents density.  

3. A, postprandial responses in all markers: coefficients of linear discriminant (LD) for the prediction of 

early-life nutritional exposure = 0.49*TC – 0.38*TG – 0.11*HDLc + 0.47*LDLc – 0.85*ApoA1 – 

0.26*ApoB + 0.23*NEFA + 0.16*Insulin – 0.33*Glucose + 0.10*hsCRP – 0.29*Leptin – 0.08*Resistin + 

0.73*MCP1 – 0.18*IL10 + 0.14*Adiponectin + 0.02*TNFsR 

4. B, glycemic domain (glucose and insulin responses): LD = -0.21*Insulin – 0.90*Glucose  
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Supplemental Figure 1: Participant flow chart  

 

 

Figure legend: 

This figure is an updated version of the participant flow chart, entitled ‘Figure: Trial Profile’ in 

the published paper: Ford ND, Behrman JR, Hoddinott JF, Maluccio JA, Martorell R, Ramirez-

Zea M, Stein AD. Exposure to improved nutrition from conception to age 2 years and adult 

cardiometabolic disease risk: a modelling study. Lancet Glob Health 2018;6(8):e875-e84.  
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Supplemental Table 1: Methods used in the determination of biomarker concentrations 

from plasma samples 

Biomarker Metric 

unit 

SI unit  

(conversion 

factor) 

Laboratory method 

Lipids    

Total cholesterol (TC) 1 mg/dL mmol/L  

(0.02586) 

Enzymatic method (Sekisui 

Diagnostics, PA, US) 

Triglycerides (TG) 1 mg/dL mmol/L 

(0.01129) 

Enzymatic method (Sekisui 

Diagnostics, PA, US) 

High-density lipoprotein 

cholesterol (HDLc) 1 

mg/dL mmol/L  

(0.02586) 

Homogeneous method 

(Sekisui Diagnostics, PA, US) 

Low-density lipoprotein 

cholesterol (LDLc) 1 

mg/dL mmol/L  

(0.02586) 

Homogeneous method 

(Sekisui Diagnostics, PA, US) 

Apolipoprotein A-I (ApoA-I) 1 mg/dL g/L  

(0.01) 

Immunoturbidimetric assay 

(Kamiya Biomedical 

Company, WA, US) 

Apolipoprotein B (ApoB) 1 mg/dL g/L  

(0.01) 

Immunoturbidimetric assay 

(Kamiya Biomedical 

Company, WA, US) 
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Non-esterified fatty acids 

(NEFA)1 

mEq/L mmol/L  

(1.0) 

Calorimetric methods (Wako 

Chemicals Corporation, 

Richmond VA, US). 

Glycemic markers    

Insulin 1 mIU/L pmol/L  

(6.9444) 

Immunoturbidimetric method 

(Kamiya Biomedical 

Company, WA, US). 

Glucose 2 mg/dL mmol/L  

(0.0555) 

Enzymatic colorimetric 

methods (Cobas C111 

analyzer, ROCHE, 

Indianapolis, IN, USA)  

Pro-inflammation markers    

High-sensitivity C-reactive 

protein (hsCRP) 1 

mg/L Same as 

metric unit 

Immunoturbidimetric method 

(Kamiya Biomedical 

Company, WA, US). 

Interleukin-6 (IL-6) pg/mL N/A Enzyme-linked 

immunosorbent assay, ELISA 

(Boster Biologicals 

Technology, CA, USA) 

Leptin ng/mL N/A ELISA (Boster Biologicals 

Technology, CA, USA) 

Resistin ng/mL N/A ELISA (Boster Biologicals 

Technology, CA, USA) 
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Monocyte chemoattractant protein 

(MCP-1) 

pg/mL N/A ELISA (Boster Biologicals 

Technology, CA, USA) 

Anti-inflammation markers    

Interleukin-10 (IL-10) pg/mL N/A ELISA (Boster Biologicals 

Technology, CA, USA) 

Adiponectin μg/mL N/A ELISA (Boster Biologicals 

Technology, CA, USA) 

Soluable TNF receptor II 

(TNFsR) 

ng/mL N/A ELISA (Boster Biologicals 

Technology, CA, USA) 

1 These markers were assayed simultaneously for each batch through the AU480 automatic chemical analyzer 

(Beckman Coulter Diagnostics, Fullerton CA, US) 

2 Glucose was assayed in field laboratory in Guatemala, the rest in the US biomarker core laboratory 
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CHAPTER 8: SUMMARY AND CONCLUSIONS 

8.1 Summary of Main Findings  

8.1.a Overview  

In order to critically evaluate the findings presented in the previous chapters, let us re-

visit the aims of the research that I presented in the first chapter. The overarching goal of this 

work is to investigate whether early-life exposure to improved nutrition is associated with 

cardiometabolic health in adulthood, as characterized by biomarkers, in the Institute of Nutrition 

of Central America and Panama (INCAP) population. Cohort members in the INCAP study were 

chronically malnourished in early life, as reflected by high stunting prevalence (17, 88). They 

also underwent nutrition transition that gradually exposed them to a more obesogenic 

environment (16). The combination of early-life malnutrition and cumulative exposure to a 

transitional food environment makes them highly susceptible to cardiometabolic disturbances.  

Through a systematic review and meta-analysis (Chapter 2), we summarized the most up-

to-date global evidence on the long-term cardiometabolic impact of nutritional interventions in 

early life. This systematic review and meta-analysis highlighted that, despite tremendous efforts 

in  research on early life nutrition, the long-term gain was difficult to measure, except for an 

ongoing intervention in the form of personalized dietary counselling in a high-income setting 

(104). There was, however, an overall favorable effect on glucose homeostasis and an overall 

unfavorable effect on obesity risk. Among studies that focused on infant and young child 

feeding, breastfeeding was more beneficial than formula feeding in terms of long-term 

cardiometabolic benefits. However, breastfeeding-promotion alone – if not coupled with actual 

behavioral change strategies – did not yield observable benefits later in life. Lastly, although 
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rarely investigated or reported in the selected trials, timing of the nutritional interventions may 

have an impact on outcome with earlier exposure being more beneficial than later in life. 

8.1.b Specific Aim 1 Summary and Discussion 

Through Specific Aim 1, we investigated the role of leptin in the diverging association of 

early nutrition with cardiometabolic conditions observed in this study population, including 

decreased risk for type 2 diabetes and increase risk for obesity. In Chapter 5, we first confirmed 

the proportional association between leptin and adiposity. We then established that leptin has 

glucose-lowering effects and partially mediates the pathway between early-life nutritional 

exposure and long-term glycemic status (only observed in women). The mechanism may be 

through improving pancreatic β cell function, and not through countering insulin resistance. 

Admittedly, although we did find evidence in mediation effect by leptin between early nutrition 

and adulthood glycemic status, it is insufficient to fully elucidate the diverging impact of early-

life nutrition.  

The diverging association between early nutrition and adulthood cardiometabolic 

conditions featured a decreased risk for Type 2 diabetes and an increase risk for obesity in our 

study population. This observation was first made by Ford and colleagues, using data from the 

same study population (16). The beneficial effects in glucose regulation and detrimental effects 

on body size and composition have also been reported by other studies based on protein-energy 

supplementation in early life (105, 106). We could view this diverging association from two 

perspectives.  

First, we could assume that increased body mass index and body fat percentage indeed 

represent unfavorable changes in body composition. From this perspective, it is peculiar that the 

average glycemic status was better in the “improved nutrition” group, since obesity is a known 
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risk factor for hyperglycemia and that adipose tissue plays a key role in this association (56, 

107).  

Alternately, the different sources of adiposity may explain the inconsistency of early life 

nutrition intervention on obesity and diabetes. By “different sources of adiposity”, I am referring 

to adipose tissue gained through early-life exposure to improved nutrition versus adiposity 

accumulated through a later obesogenic environment. I postulated that, early-life exposure to 

improved nutrition may have beneficial effects on fat depot (more subcutaneous and less 

visceral), the types of fat (more brown than white adipose tissue), and fat cell mass (smaller, less 

inflammatory-prone adipocytes). In this chronically malnourished population, it is possible that 

early exposure to supplements with better energy and protein content affected the developmental 

processes of adipose tissue and other metabolically active tissues. Therefore, despite having 

higher amount of overall fat mass (higher BMI), the exposed individuals may have lower grades 

of chronic inflammation and may be less leptin resistant, which can also contribute to 

euglycemia. Early nutrition-related gain in adiposity may be metabolically healthier than obesity 

attributable to a later obesogenic environment, especially given the mismatch between the in 

utero and later nutritional environment in this population. This hypothesis warrants further 

investigation, as we do not have all relevant data to investigate it.  

8.1.c Specific Aim 2 Summary and Discussion 

Through Specific Aim 2, we described adulthood cardiometabolic health status of the 

study population through assessment of metabolic flexibility, as characterized through meal-

induced biomarker responses in this population. Prior to the dynamic assessment, we first 

observed that this population had high prevalence of cardiometabolic conditions such as diabetes 
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and obesity. They were also at increased risk for future cardiometabolic perturbations, as 

indicated by the prevalence of pre-clinical conditions such as of metabolic syndrome.  

In Chapter 6, we described the postprandial relative changes in selected biomarkers in 

terms of their respective meal-induced responses, and the structural relationships among the 

responses. Interestingly, despite the differences across most fasting biomarkers between men and 

women, no significant sex-specific differences were observed in the postprandial responses other 

than in non-esterified fatty acids, glucose, insulin, and leptin. We then compared the individual 

biomarker responses across strata of cardiometabolic conditions to identify “healthy” versus 

“unhealthy” characteristics. We found that, in individuals with relatively “healthy” 

cardiometabolic phenotypes, their responses to the prandial challenge involved larger magnitude 

in postprandial insulin increase, lower glucose response, and greater reduction in leptin 

concentration. There was also a gradient effect of gradually increased disturbance in glycemic 

responses from “healthy” to “pre-clinical”, and to “clinical” phenotypes.  

Through structural equation modeling, we found that lipids and glycemic markers 

clustered separately. Inflammatory responses (represented by CRP) was associated with lipid 

responses, whereas the substantial reduction in non-esterified fatty acids was strongly correlated 

with glycemic responses. Two-hour postprandial responses in triglycerides and leptin were 

inversely correlated, and the latent variable formed by triglycerides and leptin was negatively 

correlated with the glycemic responses. These structural associations may be valuable in 

characterizing “ideal” cardiometabolic responses through systematic biomarker assessment, 

instead of merely relying on a single marker.  
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8.1.d Specific Aim 3 Summary and Discussion 

Through Specific Aim 3, we investigated the association of early-life nutrition with 

adulthood metabolic flexibility in cardiometabolic pathways, using a single- and multi-biomarker 

approach.  In Chapter 7, we compared the biomarker responses between those who were exposed 

to improved nutrition in early life versus the unexposed. We did not observe a statistically 

significant difference between the exposed and unexposed participants other than a modest and 

favorable change in glycemic response, both at the individual biomarker level (glucose response) 

and at the multi-variate domain level (glucose and insulin response, collectively): those who 

were exposed to improved nutrition in early life showed attenuation in two-hour glucose 

elevation. This is meaningful because it provides more evidence supporting the euglycemic 

regulation among the participants who were exposed to improved nutrition in early childhood. 

We have already found a favorable association between this exposure and glucose concentration 

at the fasted state (16). The current results strengthened the previous findings by showing 

beneficial effects of early nutrition in dynamic glucose control, not just at the fasted state, which 

should be further explored in future studies.  

8.2 Limitations 

The research presented in this dissertation has several limitations. First, this is a set of 

follow-up study nested within the INCAP Longitudinal Study cohort (86). The original cohort 

had 2,392 individuals, whereas our current sample size is 1,112 (46.5% of original cohort) for 

fasting biomarker-based analysis, and 1,027 (42.9%) for postprandial analyses. For a 50-year 

longitudinal study, attrition of more than half is common (please refer to Chapter 2, systematic 

review and meta-analysis for attribution in other studies), but this level of attrition significantly 
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reduced our statistical power and affected the overall interpretation of the findings. According to 

a recent study by INCAP researchers, the attrition appeared to be non-differential regarding the 

initial randomization (16). Therefore, it is possible that the findings in this dissertation work 

were unbiased regarding early-life nutritional exposure. 

There were varying degrees of missingness in cytokines, including 70.1% missing for IL-

6, 36.1% for TNFsR, 25.8% for IL-10, 12.8% for MCP-1, 7.3% for resistin, and 7.2% for 

adiponectin (See Chapter 4, Table 4.3). The differences in missingness was due to the laboratory 

method used (ELISA), which was carried out on a need-based schedule. Because of the limited 

funds, certain assays were discontinued when the interim analysis failed to show significant 

changes between fasting and postprandial samples within the same individuals. We stopped 

assaying IL-6 after 12.5 (out of 28) batches, because we did not obtain biologically plausible 

data for IL-6. We stopped assaying the postprandial samples for these TNFsR, resistin, and 

adiponectin after Batch 17, because we did not observe significant meal-induced changes in 

these markers. In order to generate preliminary data for future studies, we added MCP-1, a 

biomarker not considered in the initial research proposal. Since the samples were processed in 

randomly grouped batches, the overall results should be representative of the study population, 

despite the missingness. While this did not interfere with neither the descriptive analysis nor the 

linear and logistic models, the lack of complete case did not allow for multivariate analysis using 

data reduction techniques. We meticulously documented and reported sample sizes in all 

analyses for clear interpretation of the results.  

In view of the large number of participants in this field study, we were limited by the 

availability of only one timed sample after the meal challenge.  The study observed significant 

meal-induced differences in only TG, INS, NEFA and leptin. The lack of significant postprandial 
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changes in other biomarkers could be due to the time points selected, as each marker may have 

followed different time-course trajectory in response to the meal challenge. Future studies should 

aim at collecting repeated samples at additional time points to allow for trajectory analysis of the 

biomarker responses to capture peak action, slope of response, and time to return to homeostasis 

(108). 

We did not distinguish the depot and type of adipose tissue in the current work. It has 

been previously reported that all abdominal adiposity are not created equal – hepatic adiposity 

and subcutaneous adiposity have significantly different metabolic implications. The former is 

associated with insulin resistance and dyslipidemia including heightened endogenous fatty acids 

synthesis. Future research should ideally provide information about the different sources of 

adipose tissues to facilitate the interpretation of the results.  

Another source of bias may come from the nutrient content (particularly energy and 

micronutrients) in the two supplements, atole and fresco. In this dissertation, our emphasize was 

largely on protein content. The micronutrient profile actually changed in fresco supplements on 

from none to the same amount as in atole on Oct. 1, 1977 (Martorell R. Food Nutr Bull, article 

under review)(109). Second, the pattern of consumption of the two supplements by mothers and 

children was not homogeneous due to differences in community perception, consistency, serving 

temperature, and other factors. In addition, younger children consumed more atole than fresco 

(approx. 3y and younger) versus older children (3-7y), and the pattern reversed in older children. 

Pregnant women, on the other hand, consumed more fresco and had higher micronutrient 

consumption associated with it, although atole still contributed more energy for pregnant women 

(Martorell R. Food Nutr Bull, article under review). Micronutrient deficiencies and disease 

implications are increasingly recognized in nutrition research and policy (110). Future analyses 
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using this dataset should take these variances into account for more accurate interpretation of the 

outcomes.  

Due to the longitudinal nature of this work that spanned five decades since the initiation 

of the original trial, it is possible that many confounding factors affected the key association we 

investigated. These factors may be difficult or impossible to measure, including pathogen load, 

obesogenic environment assessment, and various lifestyle factors across five decades of their 

lives. Because we analyzed the impact of early-life nutrition through difference-in-difference 

modeling strategy, this could introduce new confounders that were not balanced by the initial 

randomization of atole versus fresco. We have, however, attempted to control for potential 

confounders in all our models to minimize these observable biases. In addition, data in genetics, 

epigenetics, and ontogeny were not collected in this cohort. These data, although beyond the 

scope of this dissertation work, may help reveal key information in the mechanistic association 

between early-life nutritional exposure and subsequent developmental impacts.  

In this dissertation work, we focused on the biochemical and metabolic aspects of the 

associations between early life and cardiometabolic functions, and did not investigate the impact 

of socioeconomic and lifestyle factors in the association. INCAP researchers have previously 

reported the impact of atole exposure on socioeconomic status (higher wages among men in the 

exposure than unexposed group), human capital and economic productivity (particularly 

improved among those exposed to atole before 3y) (17, 111). Lifestyle factors and the increased 

likelihood of exposure to calorie-dense diet in this LMIC setting among those with better 

socioeconomic status may contribute to the progression of cardiometabolic diseases (112, 113). 

It will be necessary in the next phase of this study to incorporate the biochemical findings with 

economic and sociocultural aspects to investigate the cumulative impact of these factors.  
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The results in this dissertation are also limited by external validity, or generalizability, 

because it was conducted within a relatively homogeneous group of individuals with similar 

cultural background and environmental exposure. These Guatemalan individuals also lacked 

ethnical diversity due to a challenge at the beginning of the study to translate the instruments 

from Spanish to Mayan, resulting in the omission of any non-Ladino communities (86). The 

results in this dissertation should be interpreted with caution, especially when there is need to 

extrapolate the outcomes to other populations.    

8.3 Strengths and Innovations 

Our major strengths lie in the fact that we not only have cardiometabolic markers at the 

fasted state, but also gathered meal challenge-induced biomarker responses for dynamic 

assessment of sub-clinical disturbances and metabolic flexibility (71). We have selected markers 

that represent four cardiometabolic pathways, including lipids, glycemic markers, and pro- and 

anti-inflammatory markers. Even within controlled laboratory setting in high-income countries, 

this level of large-scale pre-post biomarker data is rare. We consider it increasingly important in 

elucidating what is inside the “black box” of biological pathways when designing, implementing, 

and evaluation public health programs, especially given the ubiquitous biochemical functions of 

nutritional supplements.  

All analyses in this dissertation were guided by conceptual frameworks central to our 

hypotheses (refer to Chapter 3). We analyzed fasting biomarkers directly in association with 

early-life nutritional exposure, because most biomarkers at the fasted state are well studied. 

Subsequently, we investigated the postprandial changes in biomarkers for the individual markers, 

and collectively by cardiometabolic pathways. We then used multivariate and data reduction 
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techniques (MANOVA and structural equation modeling) to analyze the postprandial biomarker 

responses. We also conducted principal component analysis and cluster analysis in support of the 

core strategies (data not presented in this dissertation). We believe that this comprehensive set of 

analytical strategies strengthened the hypothesis testing.  

This study is relatively large-scale, including over a thousand community dwelling 

individuals in the setting of a low- and middle-income country (at the initiation of the original 

INCAP study in the 1960s, Guatemala was a low-income country, and it has risen to be a higher-

middle income economy as of 2019). Building upon strong community rapport, we were able to 

not only collect and meticulously document early-life nutritional exposure data, but also 

continuously follow up with this population to glean insights into the changes across five 

decades of their lives. In the 2015-17 data collection wave, we obtained biological samples, 

which made this dissertation work possible. These data are unique and valuable, especially 

considering the resource-restricted setting in the earlier phases of this study.  

The population is ideal for our study from a “developmental origins of health and 

diseases (DOHaD)” perspective, especially regarding the mismatch between early and later 

nutritional contexts in this population. This chronically malnourished population had one of the 

highest stunting prevalence in the world in early childhood and the protein-energy 

supplementation was important in supporting their growth and development (114). Despite the 

supplementation, it is possible that the cohort members underwent in utero (and during early 

infancy) metabolic programming to prepare them for a nutrition-limited environment. 

Unfortunately, this population has also experienced an ongoing nutrition transition, rendering 

them more vulnerable to the detrimental effects of an obesogenic environment. Based on our 

assessment, 40% of women and 20% of men in our cohort were obese, and approximately 40% 
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of all were pre-diabetic, with other cardiometabolic risk factors predicting future diseases. This 

work is therefore very timely and critical. We consider it essential at the current stage to study 

the determinants of cardiometabolic perturbations to both understand the developmental 

mechanisms and explore future preventive options.  

8.4 Public Health Implications  

Nutrition matters. Public health nutritionists are (naturally) in agreement with this 

statement. However, I often found it difficult to explain why and how nutrition matters to the lay 

audiences, beyond the body of common knowledge people already harbor. For instance, most 

people seem to be familiar with concepts such as “loading half of your plate with vegetables is 

good for you”, but it does not stop a completely healthy person from purchasing, unnecessarily, 

bottles of multi-vitamin supplements instead of improving his/her overall diet quality. The acute 

effects of nutrition are well known, and one may argue that these direct associations (e.g., 

treating scurvy with ascorbic acid) made the early phase of nutrition research possible (115). 

However, I wish to drive home this message that, yes, nutrition matters, and its impacts are so 

profound that early-life nutritional exposure can shape health in adulthood, and even the health 

of future generations (116). Through this work, I would like to emphasize the importance of 

nutrition as a life-long determinant of health and diseases, rather than merely a matter of short-

term or within-day dietary choices. 

Prior to this work, there were a few major gaps in the literature in terms of maternal and 

child health and nutrition, as well as in life course epidemiology. First, we did not have a 

consensus regarding the global evidence of long-term impact of early-life nutritional 

interventions. Through a systematic review and meta-analysis, we filled this gap and provided 
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insights into the long-term cardiometabolic impact of various types of maternal and child 

nutritional interventions (Chapter 2). Second, researchers reported inconsistent cardiometabolic 

outcomes associated with nutritional interventions in early life, and the mechanisms have yet 

been thoroughly explored. Through this dissertation work, we offered several potential 

mechanistic explanations, for instance through leptin-mediated pathways (Chapter 5). Third, to 

our knowledge, no large-scale study in resource-limited settings have collected dynamic data 

related to a meal challenge. We filled this gap and provided both cross-sectional and longitudinal 

analysis of the postprandial response data, individually and combined, for the selected 

cardiometabolic biomarkers.  

Our work emphasized the importance of evidence-based design and implementation of 

public health programs. For instance, our work showed the long-term euglycemic effect of early-

life supplementation of a protein- and energy-containing supplementation, and offered 

mechanistic explanation of how this benefit may be achieved (Chapter 5). There is a wealth of 

knowledge for us to learn and explore. As an example, prior to providing large dosage of vitamin 

A supplementation to mothers and neonates in a low-resource setting, it is advisable to consider 

vitamin A as a bio-activator that may upregulate other biological functions and lead to sub-

clinical toxicity, even in malnourished populations (117). It is extremely important to consult the 

literature about the global evidence regarding the positive and negative impact of vitamin A 

supplementation, and in which populations, under what circumstances were the interventions 

implemented. Different populations have vastly different baseline nutritional status and may 

contribute to the heterogeneity of intervention outcomes (118). As public health professionals, 

we must always prioritize evidence-based interventions to avoid unintended consequences on the 

growth, development, and long-term health outcomes of the target population. 
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We should pay more attention to the nutritional composition in maternal and child health 

interventions. In the INCAP study, the nutritional exposure of interest was atole, a protein- and 

energy-containing supplement (86). In our systematic review (Chapter 2), we discussed in details 

about the importance of protein in early life, as well as recent controversies surrounding the 

unintended effects that excessive protein (and energy) may have on growth and development. 

The cohort members in the INCAP study were malnourished in childhood, therefore a nutritional 

supplement that did not replace their main meals served to promote growth and development 

(111). I presume that we could reach a consensus about the importance of protein in early life, 

particularly in chronically malnourished populations. However, recent evidence from well-

nourished populations suggested that high protein intake in early infancy may affect later 

abdominal fat distribution, and increase the risk for cardiovascular diseases in adulthood (119). 

High-protein and low-fat diet, which is often assumed to be “healthier” than the opposite 

composition, may lead to higher level of early rapid growth and higher fat mass in childhood. 

This may be a result of metabolic programming that contributes to a more energy-preserving, or 

“thrifty” body type (120). In addition, it is important to shifted from a single-nutrient view to the 

promotion of appropriate food consumption and improved diet quality (121).  

Aging populations around the world is increasingly facing challenges of non-

communicable diseases (6). Many of these diseases are preventable, and it is essential to first 

recognize the disease phenotypes and their underlying linkages. For example, obesity and Type 

2 diabetes are two different cardiometabolic conditions based on their clinical diagnostic criteria. 

Nevertheless, scientific evidence pointed to the intricate associations between these two 

conditions, with the former also serving as a risk factor for the latter (56). They share many 

underlying pathways, and it is important to investigate these shared pathways and their 
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implications on assessing systematic phenotypic flexibility and cardiometabolic capacities (see 

Chapter 6). In public health (and preventive medicine) work, we should pay more attention to 

homeostasis when we consider the onset and development of cardiometabolic conditions. By 

understanding homeostasis, it is more likely that we modify and improve public health nutrition 

programs to support and improve systemic phenotypic flexibility. We should focus on what our 

body can maintain and achieve, and not on what needs to be fixed after it is already “broken”.  

Our work also displayed how public health programs could benefit from the rich 

information in biomarkers. Chapter 3 of this dissertation provided a brief review of 

cardiometabolic biomarkers (and their expected postprandial responses) that can serve to enrich 

studies at the population level. Despite the value that biomarkers add to nutrition and health 

sciences research, it is necessary to recognize the difficulty in collecting biomarker data rather 

than using other non-invasive data collection methods (such as self-reported health status). This 

difficulty is further magnified in large-scale population studies in low-resource settings (122). 

For one, the collection process of many biological samples is either invasive (e.g., plasma) or 

inconvenient (e.g., breast milk) for the participants. It not only adds more barriers for 

participation, but also carries higher risk in terms of research ethics. For another, in resource-

poor settings, it is difficult to conform to the stringent protocol required to preserve biological 

samples, including sterilization practice to avoid point-of-contact contamination, proper 

laboratory tools and equipment for sample collection, storage, transportation, and performing lab 

assays (122). In the long term, there are also barriers in sample storage and proper disposition 

following biohazard protocols. Nonetheless, we can overcome these barriers through meticulous 

planning and good collaboration. Numerous researchers in resource-limited settings successfully 
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implemented projects and programs involving biological samples – including the INCAP study, 

on which this dissertation work is based (25). 

I would like to emphasize a caveat regarding maternal and child nutrition. Based on our 

findings (and findings from many other studies with a maternal and child health component), it 

certainly appears that mothers and associated factors (maternal nutritional status, maternal 

behavior, and their sociodemographic characteristics) are among the most important 

determinants of the health of their children. However, it is important to avoid criticizing, 

shaming, or stigmatizing women who cannot breastfed, those who were obese, those who had 

gestational diabetes, or those who do not have the knowledge or resource to provide optimal 

nutrition to their children and themselves. Public health professionals should strive to view these 

circumstances as opportunities for improvement, and not as sources of failure.  

8.5 Future Directions 

In line with the Lancet series on “double burden of malnutrition”, results presented in this 

dissertation work emphasized a holistic view on the spectrum of under- to over-nutrition (123). I 

recommend future studies to adopt a life course perspective and understand that, double burden 

of malnutrition does not just co-exist within the same population across different individuals; it 

could also be viewed as a continuum of conditions with interlinked underlying mechanisms 

within the same individuals. By investing in early-life nutrition and to support a life course, 

repeated, and individualized intervention regime, it is more likely that we can simultaneously 

tackle under- and over-nutrition (124).  

Big data analytics should be applied to this body of work. If companies like Target can 

(very accurately) predict consumer behavior through their purchase history, we should strive to 
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adapt similar analytical strategies to predict long-term health outcomes through early-life factors. 

Scientific evidence is sound in terms the “critical window” (e.g., the first 1000 days) for 

nutritional investment to yield long-term benefits (17, 125). More research is now needed to 

understand the interaction between genetic predisposition and environmental factors, including 

the epigenetic mechanisms associating early-life nutrition and long-term cardiometabolic status. 

It is empirical to fully grasp when and what the “critical windows” are for nutritional investment. 

For one, different nutrients affect the growth and development at various stages of fetal and early 

childhood stages. For another, different genetic disposition determines that individuals react to 

nutritional investments in early life to a different extent (125).  

Another area where big data analytics are increasingly applied include metabolomics 

(126). Metabolomics can help us understanding the metabolic systems to further elucidating the 

nutrition-health longitudinal associations. By investigating the networks of metabolites, we are 

more likely to understand the intricate pathways associated with the early nutrition-chronic 

condition paradigm, including the psycho-neuro-endocrine network (71).  

There is growing interest in the research community in Mendelian randomization, which 

is a methodology that controls for genetic factors related to study outcomes but not related to 

other behavioral and environmental factors (127). Should we incorporate this method into our 

future research, it will help remove confounders that are conventionally difficult to account for 

(e.g., apoB level associated with genetic variants), reduce the risk of reverse causality, as well as 

strengthen the association between exposure and outcome (should there be one). In addition, the 

concept of “intergenerational Mendelian randomization” is highly relevant to our work, as it 

takes into account the mother’s genotype as a determinant for the health of her offspring (127).  



242 
 

 
 

As for myself, I would like to pursue advanced epidemiology training, especially in 

longitudinal data analysis. Given the broad, long-term goal of my research (to clarify whether 

improved nutrition in early life can improve short- and long-term health outcomes), I believe that 

advanced training in longitudinal data analysis is conducive to continuing and supplementing my 

work in this area. In addition, parallel to my dissertation work, I have started learning and 

practicing cluster analysis, principal component analysis, factor analysis, and structural equation 

modeling. I would like to systematically improve my skills in the realm of big data analytics, 

including machine learning. I believe that these analytical skills can help predict long-term health 

outcomes based on exposures in early life.  

8.6 Conclusions 

In summary, this dissertation contributed to the literature by highlighting the following: 

first, we provided the most up-to-date global evidence on the potential of early-life nutritional 

investments to reduce adulthood disease burden and to promote cardiometabolic health later in 

life. Second, we confirmed the significant associations between early-life nutritional factors and 

cardiometabolic health in middle age. We should continue investigating the underlying 

mechanisms and apply the knowledge to public health work. Last but not least, biomarker 

assessment – both at the fasted state and as a dynamic assessment tool in response to metabolic 

challenges – offers great potential in future public health work, especially in this era of non-

communicable disease “epidemic”. We believe that our work holds value in multiple disciplines, 

including nutrition research, public health, and laboratory sciences.  
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APPENDIX I: Lay Summary of the Dissertation 

Cardiometabolic diseases, such as diabetes and heart diseases, are on the rise globally. 

There may be a link between nutrition in early life (for instance, during pregnancy or early 

infancy) and cardiometabolic diseases in adulthood. During the early phases of one’s life, good 

nutrition plays an important role in supporting the physical and functional developments; poor 

nutrition, on the other hand, can hinder growth and may lead to future cardiometabolic diseases. 

In addition, there has been a shift in diets around the world, and populations are increasingly 

exposed to high-fat and high-sugar meals, which may exacerbate the process of developing 

cardiometabolic diseases. It is critical to understand possible mechanisms that link nutrition in 

early life and long-term cardiometabolic diseases.  

In our work, we studied cohort members of the Institute of Nutrition of Central America 

and Panama (INCAP) Longitudinal Study, who were enrolled in the study in their childhood 

(1969-77) and were followed up for five decades since then. In the initial study, the members 

were given one of two nutrition supplements – an “improved nutrition” gruel that contains 

protein and energy, or a drink with no protein and lower energy. In the current analyses using 

data from 2015-17, we focused on analyzing markers in the blood to understand cardiometabolic 

mechanisms. We collected two sets of blood samples: 1) fasting samples (from 1,112 

participants), or blood collected after they ceased eating overnight (eight or more hours), and 2) 

postprandial samples (from 1,027 participants), or blood collected two hours after they were 

given a fluid meal, which mimics the nutrient content of a regularly available diet (moderate 

amount of protein, fat, and sugar). The changes of markers in blood from fasting to postprandial 

samples within the same individuals are used to assess how well their systems maintain 

cardiometabolic balance when facing external challenges (i.e., the meal). 
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We found that: 1) If the participants received the “improved nutrition” gruel very early in 

life (from the mother’s pregnancy to their two-year birthday), they had better blood sugar levels 

but also higher body mass index in adulthood, compared with the other participants. Leptin, a 

hormone that is produced by fat tissue, may play a role in the association between early nutrition 

and lower blood sugar in adulthood. 2) When assessing the capacity of their systems to maintain 

balance, we found that the extent of postprandial changes in many markers were different across 

participants who had various health conditions (e.g., obese versus normal weight participants). 

The differences were the most pronounced in markers related to blood sugar control. 3) The 

participants who were exposed to improved nutrition in early life had better blood sugar control. 

We did not observe impact on other markers, such as in cholesterol responses or in inflammatory 

processes.  

Overall, our study suggested that, nutrition in early life indeed has long-term impact on 

cardiometabolic health. The impacts are nuanced due to the human body’s ability to maintain 

balance despite external changes. More studies should be conducted to elucidate the mechanisms 

behind why or why not maternal and child nutrition interventions are effective in promoting 

long-term cardiometabolic health.  
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APPENDIX II: Supplemental Table for Chapter 2 

Supplemental Table 1 for Chapter 2: Summary of main findings of included studies, by 

type of cardiometabolic outcomes  

Study Categories of Cardiometabolic Outcome 

Intervention 

type 

Biomarkers  

(n = 28) 

Cardiovascular 

physiology 

(n = 20) 

Body size & 

composition 

(n = 29) 

Clinical and sub-

clinical outcomes 

(n = 8) 

Protein-energy supplementation 

Hawkesworth et 

al. 2011 (Trial 1)  

 

Mean age at 

follow up: 14y 

 

• Main treatment 

effects: 

marginally 

LOWER fasting 

glucose in pre-

delivery group, 

NULL for the 

rest 

• Measurements: 

Total cholesterol, 

HDLc, LDLc, 

triglycerides, 

glucose, insulin, 

low HDLc 

• Main 

treatment 

effects: 

NULL  

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure 

• Main treatment 

effects: NULL  

• Measurements: 

BMI, fat mass 

index, and lean 

mass index 

N/A 

Hawkesworth et 

al. 2009  

 

N/A • Main 

treatment 

effects: 

NULL  

N/A N/A 
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Mean age at 

follow up: 14y 

 

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, 

pulse 

pressure, and 

mean arterial 

pressure 

Hawkesworth et 

al. 2008  

 

Mean age at 

follow up: 14y 

 

N/A N/A • Main treatment 

effects: NULL  

• Measurements: 

height, weight, 

BMI, percent 

body fat, trunk 

fat, fat mass 

index, fat-free 

mass index, by 

sex 

N/A 

Kinra et al. 2008  

 

Mean age at 

follow up: 16y 

 

• Main treatment 

effects: LOWER 

insulin and 

HOMA score 

• Measurements: 

total cholesterol, 

• Main 

treatment 

effects: 

LOWER 

augmentation 

index, NULL 

• Main treatment 

effects: 

HIGHER 

height, 

marginally 

N/A 
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LDLc, HDLc, 

triglycerides, 

glucose, insulin, 

HOMA score 

for blood 

pressure 

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, and 

augmentation 

index 

LOWER fat-

free mass index 

• Measurements: 

height, BMI, 

fat mass index, 

fat-free mass 

index, central-

peripheral 

skinfold ratio 

Macleod et al. 

2013  

 

Mean age at 

follow up: 23y 

 

• Main treatment 

effects: all 

NULL 

• Measurements: 

Fasting glucose, 

30min post load 

glucose, 120min 

post load 

glucose, fasting 

insulin, 30 min 

post load insulin, 

120 min post 

load insulin, 

HbA1c, fasting 

C-peptide, beta 

cell function, 

insulin 

• Main 

treatment 

effects: all 

NULL 

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure 

• Main treatment 

effects: all 

NULL 

• Measurements: 

BMI, total fat 

(EDXA) 

N/A 
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sensitivity, 

insulin 

resistance, total 

cholesterol, 

HDLc, 

triglycerides, 

IGF-1, IGFBP3 

Long-chain polyunsaturated fatty acids supplementation 

Asserhøj et al. 

2009  

 

Mean age at 

follow up: 5y 

 

N/A • Main 

treatment 

effects: 

HIGHER 

blood 

pressure 

(boys)  

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, and 

mean arterial 

pressure 

• Main treatment 

effects: 

HIGHER head 

circumference, 

otherwise 

NULL  

• Measurements: 

head 

circumference, 

height, weight, 

BMI, body fat 

percentage, 

waist-to-height 

ratio  

N/A 

Brei et al. 2016  

 

N/A N/A • Main treatment 

effects: NULL 

N/A 
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Mean age at 

follow up: 5y 

 

• Measurements: 

sum of 4 

skinfold 

thickness, fat 

mass, weight, 

height, BMI 

percentile, 

head 

circumference, 

arm 

circumference, 

and waist 

circumference 

Foster et al. 2017  

 

Mean age at 

follow up: 4y 

 

N/A N/A • Main treatment 

effects: NULL  

• Measurements: 

BMI z-score, 

arm 

circumference, 

arm skinfold z-

score 

N/A 

Gutierrez-

Gomez et al. 

2017 

 

Mean age at 

follow up: 4y 

• Main treatment 

effects: NULL 

• Measurements: 

insulin, glucose, 

triglycerides, 

total cholesterol, 

N/A N/A N/A 
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 HDLc, LDLc, 

non-HDLc, 

apoB, total 

cholesterol-to-

HDLc 

 

Muhlhausler et 

al. 2016 

 

Mean age at 

follow up: 3y 

(body size & 

composition), 5y 

(biomarkers, 

body size & 

composition) 

 

• Main treatment 

effects: HIGER 

insulin 

resistance, 

insulin (boys and 

girls), fasting 

glucose (boys)  

• Measurements: 

Fasting glucose, 

insulin, HOMA-

IR, combined 

and by sex 

N/A • Main treatment 

effects: NULL  

• Measurements: 

BMI, BMI z 

score, BMI 

percentile, 

body fat 

percentage, 

body weight, 

weight z score, 

total fat mass, 

fat-free mass, 

total body 

water, 

impedance 

index, height 

and z score, 

height increase, 

head 

circumference, 

waist 

circumference, 

N/A 
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hip 

circumference, 

wait-to-hip 

ratio 

Rytter et al. 2012  

 

Mean age at 

follow up: 19y 

 

N/A • Main 

treatment 

effects: 

NULL  

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, 

heart rate, 

heart rate 

variability 

(RR, SDNN, 

SDNNindex, 

RMSSD, 

PNN50, and 

HREA) 

N/A N/A 

Rytter et al. 2011 

(1)  

 

Mean age at 

follow up: 19y 

• Main treatment 

effects: all 

NULL  

N/A • Main treatment 

effects: all 

NULL  

N/A 
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 • Measurements: 

insulin, glucose, 

HbA1c, HOMA-

IR, leptin, 

adiponectin, 

hsCRP, IGF-1 

• Measurements: 

BMI, waist 

circumference 

Rytter et al. 2011 

(2)  

 

Mean age at 

follow up: 19y 

 

• Main treatment 

effects: all 

NULL  

• Measurements: 

Total cholesterol, 

HDLc, LDLc, 

triglycerides, 

apoA-1, apoB, 

sdLDL 

N/A N/A N/A 

See et al. 2018  

 

Mean age at 

follow up: 5y 

 

• Main treatment 

effects: LOWER 

insulin 

concentration 

and insulin 

resistance 

• Measurements: 

glucose, insulin, 

HOMA-IR, 

cholesterol, 

HDLc, LDLc, 

triglycerides, 

• Main 

treatment 

effects: 

NULL 

• Measurement

s: heart rate, 

systolic blood 

pressure, and 

diastolic 

blood 

pressure 

• Main treatment 

effects: 

LOWER waist 

circumference 

• Measurements: 

Waist 

circumference, 

arm 

circumference, 

weight, height, 

BMI, head 

circumference, 

N/A 
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hsCRP, 

adiponectin, 

leptin,  

abdominal 

skinfold, 

suprailiac 

skinfold, 

subscapular 

skinfold, 

triceps skinfold 

Vinding et al. 

2018  

 

Mean age at 

follow up: 6y 

 

N/A N/A • Main treatment 

effects: 

HIGHER BMI 

from 0 to 6 

years, NULL 

for obesity risk 

at 6y (authors: 

proportional 

increase in 

lean, bone, and 

fat mass at 6y) 

• Measurements: 

BMI z score, 

total body fat, 

percent body 

fat, percent 

trunk fat, lean 

mass, lean 

mass 

percentage, 

trunk lean 

N/A 
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mass, total 

bone mineral 

content, total 

bone mineral 

density 

Single micronutrient supplementation 

Belizan et al. 

1997  

 

Mean age at 

follow up: 7y 

 

N/A • Main 

treatment 

effects: 

NULL, with 

marginally 

LOWER 

diastolic 

blood 

pressure in 

overweight 

children only 

(BMI > 17.5) 

• Outcomes: 

systolic blood 

pressure, 

diastolic 

blood 

pressure, 

blood 

pressure by 

• Main treatment 

effects: all 

NULL 

• Outcomes: 

Weight, height, 

BMI  

N/A 
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different BMI 

group 

Hawkesworth et 

al. 2011 (Trial 2)  

 

Mean age at 

follow up: 14y 

N/A • Main 

treatment 

effects: 

NULL  

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure 

• Main treatment 

effects: NULL 

• Measurements: 

BMI, fat mass 

index, and lean 

mass index 

N/A 

Palmer et al. 

2019  

 

Mean age at 

follow up: 24y 

• Main treatment 

effects: NULL   

• Measurements: 

thymulin  

N/A N/A N/A 

Taylor et al. 

2015  

 

Mean age at 

follow up: 73y 

N/A N/A N/A • Main 

treatment 

effects: all 

NULL 

• Outcomes: 

All-cause 

mortality, 

cardiovascula

r mortality, all 
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cancer 

mortality, 

breast cancer 

mortality, all 

cancer 

morbidity, 

breast cancer 

morbidity  

Multiple micronutrient supplementation 

Ekström et al. 

2016 (Trial 1)  

 

Mean age at 

follow up: 4.5y 

• Main treatment 

effects: LOWER 

total cholesterol, 

LDLc, and ApoB 

in early invitation 

group 

• Measurements: 

ApoA-1, apoB, 

total cholesterol, 

HDLc, LDLc, 

LDL-to-HDL 

ratio, 

triglycerides, 

glucose, insulin, 

HOMA-IR, IGF-

1, IGFBP-1, IGF-

1/IGFBP-1, CRP, 

Oxidative stress 

N/A N/A N/A 
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Hiller et al. 2007  

 

Age range at 

follow up: 4-8y 

N/A • Main 

treatment 

effects: 

NULL 

• Outcomes: 

systolic blood 

pressure and 

diastolic 

blood 

pressure 

N/A N/A 

Mannan et al. 

2016  

 

Mean age at 

follow up: 9y 

• Main treatment 

effects: LOWER 

inflammation 

marker (sTfR, 

hepcidin), 

LOWER 

vitamin A 

concentration 

(mainly boys) 

• Measurements: 

sTfR, ferritin, 

folate, vitamin 

B12, hepcidin, 

zinc, vitamin A,  

N/A • Main treatment 

effects: 

LOWER body 

mass-for-age z 

score 

• Measurements: 

height-for-age 

z-score, BMI-

for-age z score  

N/A 

Stewart et al. 

2011  

 

• Main treatment 

effects: overall 

NULL 

N/A N/A N/A 
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Mean age at 

follow up: 7y 

• Measurements: 

HOMA-IR 

Stewart et al. 

2009  

 

Mean age at 

follow up: 7y 

N/A N/A N/A • Main 

treatment 

effects: 

LOWER 

metabolic 

syndrome 

(MetS) in the 

folic acid 

group, and 

LOWER risk 

for 

microalbumin

uria in folic 

acid group 

and folic acid 

+ iron + zinc 

group, vs. 

control 

• Outcomes: 

MetS and 

MetS 

components, 

including 

high glucose, 

low HDLc, 

high 
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triglycerides, 

high blood 

pressure, and 

high waist 

circumference

; 

Microalbumin

uria 

Infant and young child feeding, and milk supplementation 

De Jong et al. 

2011  

 

Mean age at 

follow up: 9y 

N/A • Main 

treatment 

effects: 

marginally 

LOWER 

heart rate in 

breastfed than 

formula-fed 

children, 

overall 

considered 

NULL  

• Measurement

s: heart rate 

(all null: 

blood 

pressure) 

 

• Main treatment 

effects: NULL  

• Measurements: 

weight, body 

length, BMI, 

and head 

circumference 

N/A 
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Forsyth et al. 

2003  

 

Mean age at 

follow up: 6y 

N/A • Main 

treatment 

effects: 

LOWER 

blood 

pressure 

[conflict of 

interest alert] 

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, and 

mean blood 

pressure 

N/A N/A 

Gruszfeld et al. 

2016  

 

Mean age at 

follow up: 5y 

N/A N/A • Main treatment 

effects: 

HIGHER pre-

peritoneal fat 

layer (tissue 

accumulation), 

NULL for the 

rest 

• Measurements: 

subcutaneous 

• Main 

treatment 

effects: 

NULL  

• Measurement

s: overweight, 

obesity 
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fat layer, 

peritoneal fat 

layer, 

subcutaneous 

fat area, 

peritoneal fat 

area, ratio of 

subcutaneous/p

eritoneal fat 

area, waist 

circumference, 

and BMI 

Gruszfeld et al. 

2015  

 

Mean age at 

follow up: 5y 

• Main treatment 

effects: overall 

NULL 

• Measurements: 

IGF-1, insulin, 

total cholesterol, 

LDLc, HDLc, 

triglyceride, 

apoA-1, apoB, 

apoB to A1 ratio 

• Main 

treatment 

effects: 

overall 

NULL 

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure 

• Main treatment 

effects: overall 

NULL  

• Measurements: 

BMI, weight, 

height 

N/A 

Kennedy et al. 

2010  

 

N/A • Main 

treatment 

effects: 

• Main treatment 

effects: 

HIGHER 

N/A 
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Mean age at 

follow up: 10.8y 

HIGHER 

blood 

pressure (girls 

only) 

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, and 

mean arterial 

blood 

pressure 

weight and 

adiposity (girls 

only) 

• Measurements: 

Weight SD 

scores, height, 

head 

circumference, 

biceps 

skinfold, Ln 

sum of 

skinfolds 

Kramer et al. 

2007  

 

Mean age at 

follow up: 6.5y  

N/A • Main 

treatment 

effects: 

NULL 

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure 

• Main treatment 

effects: NULL 

• Measurements: 

BMI, BMI 

percentile, 

height, leg 

length, head 

circumference, 

waist 

circumference, 

hip 

circumference, 

waist-to-hip 

ratio, mid-thigh 

N/A 
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circumference, 

mid-upper arm 

circumference, 

triceps skinfold 

thickness 

Martin et al. 

2017  

 

Mean age at 

follow up: 16y 

N/A • Main 

treatment 

effects: 

NULL 

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure 

• Main treatment 

effects: 

HIGHER risk 

for overweight 

and obesity, 

including more 

rapid growth in 

height 

followed by 

more rapid 

weight gain 

• Measurements: 

BMI, fat mass 

index, fat-free 

mass index, 

percent body 

fat, waist 

circumference, 

waist-to-height 

ratio, standing 

height, BMI 

percentile, 

birth weight, 

N/A 
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birth length, 

birth BMI, 

weight gain, 

statue gain, & 

BMI gain 

Martin et al. 

2014  

 

Mean age at 

follow up: 11.5y 

• Main treatment 

effects: NULL 

• Measurements: 

fasting glucose, 

insulin, HOMA-

IR, HOMA-B, 

adiponectin, 

apoA-1 

• Main 

treatment 

effects: 

NULL 

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure 

N/A • Main 

treatment 

effects: 

NULL 

• Measurement

s: metabolic 

syndrome 

Martin et al. 

2013  

 

Mean age at 

follow up: 11.5y 

 

N/A N/A • Main treatment 

effects: NULL 

• Measurements: 

BMI, BMI 

percentile fat 

mass index, 

fat-free mass 

index, percent 

body fat, waist 

circumference, 

hip 

N/A 
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circumference, 

waist-to-hip 

ratio, leg 

length, head 

circumference, 

mid-upper arm 

circumference, 

triceps 

skinfold, 

subscapular 

skinfold, 

insulin-like 

growth factor 

(IGF-1) 

Singhal et al. 

2010  

 

Mean age at 

follow up: 6.5y 

N/A N/A • Main treatment 

effects: 

HIGHER fat 

mass in both 

nutrient-

enriched 

formula groups 

that promoted 

faster weight 

gain in infancy 

• Measurements: 

BMI, adjusted 

BMI, fat mass, 

fat-free mass, 

N/A 
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sum of skinfold 

thickness, 

measured with 

different 

methods 

Singhal et al. 

2004  

 

Mean age at 

follow up: 14.8y 

 

• Main treatment 

effects: LOWER 

C-reactive 

protein and 

LDLc-to-HDLc 

ratio in banked 

breastmilk group 

vs. preterm 

formula 

• Measurements: 

total cholesterol, 

LDLc, HDLc, 

LDLc-to-HDLc 

ratio, total/HDLc 

ratio, apoA-1, 

apoB, apoB to 

A1 ratio, C-

reactive protein 

N/A N/A N/A 

Singhal et al. 

2003  

 

Mean age at 

follow up: 14.8y 

• Main treatment 

effects: 

HIGHER insulin 

resistance (32-23 

N/A N/A N/A 
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split insulin) in 

combined 

intervention 

group (banked 

breastmilk and 

term formula, vs. 

preterm formula) 

• Measurements: 

Insulin, 

proinsulin, 32-23 

split proinsulin, 

and glucose 

Singhal et al. 

2002  

 

Mean age at 

follow up: 14.8y 

• Main treatment 

effects: LOWER 

leptin 

concentration 

relative to fat 

mass in 

combined 

intervention 

group (banked 

breastmilk and 

term formula, vs. 

preterm formula) 

• Measurements: 

Leptin 

concentration, 

leptin/fat mass, 

N/A N/A N/A 
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leptin/percentage 

of fat mass 

Singhal et al. 

2001  

 

Mean age at 

follow up: 14.8y 

N/A • Main 

treatment 

effects: 

LOWER 

blood 

pressure in 

banked 

breastmilk 

group vs. 

preterm 

formula 

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, and 

mean arterial 

blood 

pressure 

N/A N/A 

Toftlund et al. 

2018  

 

Mean age at 

follow up: 6y 

• Main treatment 

effects: LOWER 

cholesterol in 

breastmilk than 

• Main 

treatment 

effects: 

NULL  

• Main treatment 

effects: 

LOWER level 

of early rapid 

N/A 
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in preterm 

formula group; 

NULL otherwise 

• Measurements: 

Fasting glucose, 

fasting insulin, 

HbA1c, total 

cholesterol, 

triglycerides, 

HDLc, LDLc, 

creatinine  

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, and 

mean arterial 

blood 

pressure 

growth in 

breastfeeding 

than formula 

group 

• Measurements: 

BMI, fat mass, 

fat-mass index, 

fat free mass, 

fat free mass 

index, 

abdominal fat 

mass  

Totzauer et al. 

2018  

 

Mean age at 

follow up: 6y 

N/A N/A • Main treatment 

effects: 

HIGHER fat 

mass (also 

higher values 

at 1y follow-

up, with a 

continuous 

increase over 

time)  

• Measurements: 

Sum of 2 

skinfold 

thickness, 

percent body 

fat, fat mass 

N/A 
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index, fat-free 

mass index, 

and BMI 

Weber et al. 

2014  

 

Mean age at 

follow up: 6y 

N/A N/A • Main treatment 

effects: 

HIGHER BMI  

• Measurements: 

weight, height, 

and BMI (raw 

and imputed 

values) 

• Main 

treatment 

effects: 

HIGHER 

risk for 

obesity  

• Outcomes: 

obesity (raw 

and imputed 

values) 

Williams et al. 

2012  

 

Mean age at 

follow up: 25y 

• Main treatment 

effects: NULL  

• Measurements: 

Fasting glucose, 

fasting insulin, 

insulin sensitivity 

index, corrected 

insulin responses 

(insulin 

secretion)  

N/A N/A N/A 

Dietary Counselling 

Costa et al. 2017  

 

• Main treatment 

effects: NULL 

N/A N/A N/A 
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Mean age at 

follow up: 8y 

• Measurements: 

fasting glucose, 

fasting insulin, 

and HOMA-IR 

Hakanen et al. 

2006  

 

Mean age at 

follow up: 10y 

N/A N/A N/A • Main 

treatment 

effects: 

LOWER 

overweight 

prevalence 

(girls only) 

• Measurement

s: Overweight 

and obesity 

(and growth 

trend over the 

years)   

Kaitosaari et al. 

2006  

 

Mean age at 

follow up: 9y 

• Main treatment 

effects: LOWER 

insulin resistance  

• Measurements: 

HOMA-IR 

N/A N/A N/A 

Lehtovirta et al. 

2018  

 

Mean age at 

follow up: 20y 

• Main treatment 

effects: LOWER 

circulation fatty 

acids and 

lipoprotein 

N/A N/A N/A 
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subclass lipids 

(especially in 

boys). HIGHER 

serum PUFA  

• Measurements: 

lipid 

concentration in 

medium-sized 

VLDL particles 

and in small-

sized VLDL 

particles, serum 

PUFA-to-SFA 

ratio 

Niinikoski et al. 

2012  

 

Mean age at 

follow up: 19y 

• Main treatment 

effects: LOWER 

LDLc (boys and 

girls), total 

cholesterol 

(boys), 

triglycerides 

(boys), VLDL-

TG (boys) 

• Measurements: 

triglycerides, 

total cholesterol, 

LDLc, HDLc, 

IDLc, VLDL-

N/A N/A N/A 
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TG, apoA-1, 

apoB, apoB to 

apoA-1 ratio 

Niinikoski et al. 

2009  

 

Mean age at 

follow up: 15y 

N/A • Main 

treatment 

effects: 

LOWER 

blood 

pressure (with 

a meaningful 

population-

attributable 

amount)  

• Measurement

s: systolic 

blood 

pressure and 

diastolic 

blood 

pressure  

N/A N/A 

Nupponen et al. 

2015  

 

Mean age at 

follow up: 20y 

N/A N/A N/A • Main 

treatment 

effects: 

LOWER 

relative risk 

of metabolic 

syndrome 
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(MetS, boys 

and girls), 

blood 

pressure 

(boys and 

girls), and 

triglycerides 

(boys) 

• Measurement

s: MetS and 

MetS 

components, 

including 

high waist 

circumference 

(with 

different cut-

off points), 

high fasting 

glucose, high 

blood 

pressure, high 

triglycerides, 

and low 

HDLc, by sex   

Oranta et al. 

2013  

 

• Main treatment 

effects: LOWER 

insulin resistance  

N/A • Main treatment 

effects: NULL 

N/A 
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Age range at 

follow up: 15-

20y 

• Measurements: 

glucose, insulin, 

HOMA-IR 

• Measurements: 

BMI, waist 

circumference 

Pahkala et al. 

2013  

 

Mean age at 

follow up: 19y 

N/A N/A N/A • Main 

treatment 

effects: 

LOWER risk 

of poor 

cardiovascula

r health, 

including 

LOWER 

blood 

pressure 

• Measurement

s: American 

Heart 

Association 

definition of 

“Ideal 

Cardiovascula

r Health” 

Matrices, 

including no 

smoking, 

good BMI, 

physically 

active, 
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healthy diet, 

low total 

cholesterol, 

blood 

pressure, and 

glucose 

Raitakari et al. 

2005  

 

Mean age at 

follow up: 11y 

• Main treatment 

effects: NULL 

• Measurements: 

triglycerides, 

total cholesterol, 

LDLc, HDLc 

• Main 

treatment 

effects: 

BETTER 

endothelial 

function 

(mainly in 

boys) 

• Measurement

s: systolic 

blood 

pressure, 

diastolic 

blood 

pressure, 

brachial 

artery 

diameter, 

increase in 

blood flow 

after cuff 

release, 

• Main treatment 

effects: NULL 

• Measurements: 

weight, height, 

BMI 

N/A 
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nitrate-

mediated 

dilation, area 

under dilation 

vs time curve, 

maximum 

flow-

mediated 

dilation 

Simell et al. 

1999  

 

Mean age at 

follow up: 19y 

• Main treatment 

effects: LOWER 

serum cholesterol 

(total, HDL, non-

HDL, mainly in 

girls) 

• Measurements: 

total cholesterol, 

HDLc, LDLc, 

non-HDLc 

N/A • Main treatment 

effects: NULL  

• Measurements: 

weight, height 

N/A 

Other interventions 

Ekström et al. 

2016 (Trial 2)  

 

Mean age at 

follow up: 4.5y 

• Main treatment 

effects: LOWER 

HDLc, glucose, 

and IGF-1 in 

MMS than IFA 

group 

N/A N/A N/A 
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• Measurements: 

ApoA-1, apoB, 

total cholesterol, 

HDLc, LDLc, 

LDL-to-HDL 

ratio, 

triglycerides, 

glucose, insulin, 

HOMA-IR, IGF-

1, IGFBP-1, IGF-

1/IGFBP-1, CRP, 

Oxidative stress 

Luoto et al. 2010  

 

Mean age at 

follow up: 10y 

N/A N/A • Main treatment 

effects: all 

NULL 

(authors: early 

gut microbiota 

modulation 

with probiotics 

may restrain 

excessive 

weight gain 

during the first 

years of life) 

• Measurements: 

BMI (ages 2y, 

4y, 7y, 10y, 

and overall 

• Main 

treatment 

effects: 

NULL  

• Outcomes: 

overweight 

and obesity 
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ANCOVA 

results for 

growth pattern) 

Videhult et al. 

2015 (1)  

 

 

Mean age at 

follow up: 10y 

• Main treatment 

effects: all 

NULL  

• Measurements: 

total cholesterol, 

triglycerides, 

HDLc, LDLc, 

apoA-1, apoB, 

apoB to A1 ratio, 

AST, ALT, 

insulin, glucose, 

HOMA-IR 

N/A • Main treatment 

effects: all 

NULL  

• Measurements: 

weight, height, 

sagittal 

abdominal 

diameter, BMI 

z score, trucal 

fat percentage, 

android fat 

percentage, 

gynoid fat 

percentage, fat-

free mass 

N/A 

Videhult et al. 

2015 (2)  

 

Mean age at 

follow up: 10y 

• Main treatment 

effects: all 

NULL  

• Measurements: 

C-peptide, 

ghrelin, GIP, 

GLP-1, 

glucagon, 

insulin, leptin, 

N/A N/A N/A 
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HMW 

adiponectin, PAI-

1, resistin, 

visfatin, hsCRP 
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