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ABSTRACT 

Transgenic mice expressing human alpha-synuclein in noradrenergic neurons 
develop locus coeruleus pathology and non-motor features of Parkinson's 

disease  

By Laura MacQueen Butkovich 

 

Degeneration of locus coeruleus (LC) neurons and dysregulation of noradrenergic 

signaling are ubiquitous features of Parkinson’s disease (PD). The LC is among the first 

brain regions affected by α-synuclein (asyn) pathology, yet how asyn affects the function 

and survival of these neurons remains unclear. LC-derived norepinephrine (NE) can 

stimulate neuroprotective mechanisms and modulate immune cells; therefore, we posit 

that dysregulation of NE neurotransmission may exacerbate PD progression, particularly 

non-motor symptoms, and contribute to the chronic neuroinflammation associated with 

PD pathology. Although transgenic mice overexpressing asyn have previously been 

developed to investigate the toxic effects of asyn accumulation on neuronal function and 

survival, transgene expression is usually driven by pan-neuronal promoters and thus has 

not been selectively targeted to LC neurons. Here we report a novel transgenic mouse 

expressing human wild-type asyn under control of the noradrenergic-specific dopamine β-

hydroxylase promoter. These mice developed asyn inclusions in LC neurons, alterations 

in hippocampal and LC microglial abundance, upregulated GFAP expression, 

degeneration of LC fibers, decreased striatal dopamine metabolism, and age-dependent 

behaviors reminiscent of non-motor symptoms of PD. This new mouse model will provide 

novel insights into how asyn pathology affects LC neurons and how LC dysfunction may 

contribute to early PD pathophysiology; and may serve as an important tool to screen 

drugs that may delay onset or slow progression of the disease. 
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CHAPTER 1: BACKGROUND AND LITERATURE REVIEW 

This chapter contains previously published work (Butkovich et al., 2018) 

 
1.1 Parkinson’s Disease 

Approximately 60,000 Americans are diagnosed with Parkinson’s disease 

(PD) every year, and projections suggest there will be 930,000 people living with 

PD in the U.S. by the year 2020 (Marras et al., 2018). PD is an age-related 

progressive neurodegenerative disorder usually diagnosed ≥ 60 years of age 

(Tanner and Goldman, 1996; Pagano et al., 2016), It was originally identified as 

Shaking Palsy in 1817 by English surgeon, James Parkinson. Dr. Parkinson 

described patients with bradykinesia, muscle rigidity, tremor, postural imbalance, 

sleep disorders, and constipation, a characterization of PD that remains highly 

relevant today (Parkinson, 1817). The current diagnostic criteria for PD are 

based on three cardinal motor symptoms: bradykinesia, with resting tremor 

and/or muscle rigidity (Postuma et al., 2015). Atypical parkinsonian and primary 

gate disorders are sometimes misdiagnosed as PD, so the diagnosis must be 

confirmed by the presence of α-synuclein (asyn) aggregates and nigrostriatal 

degeneration at autopsy (Hughes et al., 1992; Litvan et al., 1998). Bradykinesia, 

or slowed movement, is one of the most debilitating motor symptoms of PD. 

Beyond limiting patient mobility, bradykinesia can cause loss of speaking volume, 

slowed blinking, flat affect, and drooling (Deuschl et al., 1998; Berardelli et al., 

2001; Espay et al., 2009). The onset of muscle rigidity can cause significant 

discomfort and compound the difficulties associated with bradykinesia 

(Rodriguez-Oroz et al., 2009).  
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While several risk factors for PD have been identified, such as family 

history, pesticide exposure, and head trauma, its etiology remains unclear 

(Priyadarshi et al., 2001). Only an estimated 10% of PD arises from monogenic 

mutations, yet studies of familial PD have been instrumental to advancing our 

understanding of the disease (Polymeropoulos et al., 1997; Zimprich et al., 2004; 

Lesage and Brice, 2009). The current consensus is that idiopathic PD is caused 

by an interaction between genetic predispositions and environmental exposures 

(Cannon and Greenamyre, 2013; Chuang et al., 2016); however, more 

investigation is needed. 

Since the original description of PD, several additional non-motor 

symptoms have been identified, many of which may appear decades prior to 

motor dysfunction, including anxiety, depression, and cognitive dysfunction. 

(Casacchia et al., 1975; Chui et al., 1986; Shulman et al., 2002; Sixel-Doring et 

al., 2011). The non-motor symptoms of PD will be discussed in detail below. 

 

1.2 Parkinson’s Disease Neuropathology 

Upon autopsy, PD brain tissue contains proteinaceous intracellular 

inclusions, known as Lewy bodies (LBs) or Lewy neurites (LNs) (Goedert et al., 

2017). While these dense core eosinophilic structures are predominantly 

comprised of the neuronal protein asyn, they contain numerous other proteins 

including many associated with cell clearance mechanisms, and protein refolding 

(Spillantini et al., 1997; Xia et al., 2008). In long-lived post-mitotic cells like 

neurons, cell health depends on the proper functioning of quality control 
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mechanisms, such as the proteasomal and lysosomal degradation systems, and 

the unfolded protein response (UPR) (Hartl and Hayer-Hartl, 2002). The UPR 

involves molecular chaperones that are responsible for refolding misfolded 

polypeptides back to their proper native state, and the level of asyn pathology is 

positively correlated with expression of UPR markers in synucleinopathies (Baek 

et al., 2016), suggesting an increase in protein misfolding in PD. Additionally, LBs 

are highly ubiquitinated and the presence of clearance-associated proteins in 

LBs suggests that aggregation state confers resistance to cell clearance 

mechanisms (Hasegawa et al., 2002). 

A major pathophysiological hallmark of PD is Lewy pathology (LP) and 

loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta 

(SNpc), resulting in depletion of striatal dopamine (DA) (Leenders et al., 1990; 

Fearnley and Lees, 1991; Parkinson, 2002; Jankovic, 2008). A diagnosis of PD is 

dependent on the motor symptoms that arise only after a substantial loss of 

SNpc neurons has occured (Bernheimer et al., 1973; Fearnley and Lees, 1991; 

Sulzer, 2007). Pharmacological treatments target mechanisms to enhance DA 

and alleviate motor symptoms (Fahn, 1999) with synthetic DA receptor agonists, 

or administration of the DA precursor levodopa (L-Dopa) (Parkinson Study, 

2002). However, these therapeutics only provide temporary relief and do not 

affect the rate of neurodegeneration and disease progression (Fahn and 

Parkinson Study, 2005), and the development of therapeutic interventions to 

slow, or even reverse PD progression will likely depend on identifying biomarkers 

that would facilitate  an earlier PD diagnosis.  
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LP and cell loss occur in multiple brain regions, some of which, notably, 

are affected before neurons in the SNpc (Gonera et al., 1997; Abbott et al., 2005; 

Ross et al., 2008). The Braak staging hypothesis divides the neuropathological 

progression of PD into five stages, proposing that Lewy pathology (LP) first 

appears in brainstem nuclei (stage 1), and continues along the caudo-rostral axis 

with SNpc involvement at stage 3, ultimately ascending into cortical regions. 

(Braak et al., 2003). The non-motor symptoms experienced early in PD are 

associated with brainstem LP, and degeneration in serotonergic, cholinergic, and 

noradrenergic nuclei (Gonera et al., 1997; Abbott et al., 2005; Ross et al., 2008). 

The significance of the spatial presentation of asyn pathology will be discussed 

more in detail below. 

In a healthy brain, the inflammatory response resolves relatively quickly, 

with normal brain function restored (Roth et al., 2014; Laumet et al., 2018). In 

neurodegenerative diseases, such as PD, sustained neuroinflammation can 

become cytotoxic, aggravating neuronal degeneration. It is unclear what triggers 

the initial inflammation in PD, but extracellular monomeric or aggregated asyn 

can be phagocytosed by microglia and induce activation (Zhang et al., 2005; 

Hoenen et al., 2016), and neuronal overexpression of asyn aggravates and 

prolongs neuroinflammation (Miller et al., 2007; Gao et al., 2011; Sanchez-

Guajardo et al., 2013). 

Neuroinflammation is a vital mechanism in restoring brain integrity 

following neuronal insult but is also a core component of PD pathology. In PD 

patients, immune mediators such as IL-1ß, TGFß, IFN𝛾, and IL-6 are increased 
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in the cerebral spinal fluid (CSF) and nigrostriatal regions (Mogi et al., 1994; 

Blum-Degen et al., 1995; Mount et al., 2007), and SNpc DA neurons appear 

particularly sensitive to pro-inflammatory cytokines (McGuire et al., 2001; Mount 

et al., 2007; Tansey and Goldberg, 2010). In fact, neuroinflammation is 

detectable prior to signs of neuronal degeneration, suggesting a potential early 

role for inflammation in PD pathogenesis (Theodore et al., 2008; Watson et al., 

2012).  

 

1.3 ⍺-synuclein  

Asyn, a 140-amino acid protein encoded by the SNCA gene, which is 

expressed in many tissue types, accounts for approximately 1% of cytosolic 

proteins in the central nervous system (CNS; Fig 1.1) (Shibayama-Imazu et al., 

1993; Iwai et al., 1995; Stefanis, 2012). While SNCA missense mutations cause 

familial PD, increased expression of wild-type asyn is also detrimental as 

individuals with SNCA multiplication mutations develop PD. In fact, SNCA 

duplication and triplication mutations have an average age of onset of 48.4 and 

34 years, respectively (Muenter et al., 1998; Singleton et al., 2003; Chartier-

Harlin et al., 2004)  

Although asyn pathology is critical to PD progression, surprisingly little is 

known about the normal functions of asyn. Asyn is highly expressed in 

presynaptic terminals where it acts as a molecular chaperone in SNARE 

formation and vesicular trafficking, though it has been detected in nearly every 

subcellular compartment (Burre et al., 2010; Unni et al., 2010; Guardia-Laguarta 

et al., 2015), indicating the likelihood of other cellular roles. However, other 
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functions of asyn are unclear, but asyn has been implicated in antioxidation, 

suppression of apoptosis, and regulation of DA synthesis (Hashimoto et al., 

2002; Peng et al., 2005; Zhu et al., 2006; Jin et al., 2011).  

While normal asyn functioning aids in cell signaling and other cellular 

functions, asyn aggregation is toxic to neurons (Winner et al., 2011). In PD, asyn 

forms pathological intracellular inclusions known as Lewy bodies (LB) or Lewy 

neurites (LN) (den Hartog and Bethlem, 1960; Spillantini et al., 1997). The 

initiating event in asyn aggregation is unclear, but asyn has long been 

considered an intrinsically disordered protein as soluble asyn has low 

hydrophobicity, “high” net charge, and lacks a stable, low energy secondary 

structure (Uversky, 2002). Under normal physiological conditions cytosolic asyn 

is believed to be an unfolded monomer, but when membrane bound, adopts an 

alpha-helical multimer conformation (Maroteaux et al., 1988; Kahle et al., 2000).  

Recent studies utilizing chemical crosslinking suggest that soluble asyn retains 

multimeric conformation and that dissociation into the monomeric form may be 

the initial pathological event in asyn aggregation, although the hypothesis 

remains controversial  (Bartels et al., 2011; Wang et al., 2011; Dettmer et al., 

2015). 
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Figure 1.1 The structure and oligomerization of ⍺-synuclein. A) ⍺-synuclein 

aggregation is proposed to occur as a multistep step process, with monomeric 

proteins interacting to form numerous species of highly toxic oligomers of 

varying size and composition, which in turn form protofibrils before maturing into 

fibrillar aggregates. B) ⍺-synuclein is comprised of 140 amino acids across three 

domains: the N-terminus (blue), NAC (yellow), and C-terminus (green). Five 

autosomal dominant SNCA mutations have been identified resulting in missense 

mutations within the N-terminus. 
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Asyn is comprised of three distinct domains: An N-terminus, central non-

amyloid component, and C-terminus. The conformational flexibility of asyn is 

demonstrated by the N-terminus (residues 1-95), as the helical tetramer 

conformation occurs with N-terminus-membrane interactions (Jao et al., 2008). 

The central non-amyloid component (NAC) region includes residues 61-95, and 

was first discovered in amyloid plaques in Alzheimer’s disease brain tissue, 

resulting in the designation as “non-amyloid component” (Ueda et al., 1993). The 

NAC is highly hydrophobic (Bertoncini et al., 2005b; Dedmon et al., 2005), and 

considered to be important in asyn oligomerization (Bodles et al., 2000). The C-

terminal region of asyn (aa 96-140) is negatively charged, largely unstructured, 

and may confer resistance to asyn aggregation as Lewy bodies are enriched in 

C-terminal truncated asyn (Li et al., 2005; Liu et al., 2005). 

Asyn binds preferentially to high curvature membranes (Chandra et al., 

2003; Bodner et al., 2009), and maintaining the ratio of unfolded versus helical 

asyn appears important in preventing aggregation in vitro and in vivo (Burre et 

al., 2010). Several groups have reported that membrane binding influences asyn 

aggregation (both by lipid to protein ratio and by lipid composition properties), 

and if membrane bound asyn is protective, then increased expression as seen in 

SNCA multiplication mutations could result in fewer available lipid binding sites 

and more free floating, less stable asyn protein.  
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The tight regulation required for the rapid and frequent conformational 

changes between soluble and membrane-bound asyn likely contributes to its 

potential for misfolding, as autosomal dominant familial PD mutations in SNCA 

are within the region encoding the membrane-interacting N-terminus 

(Polymeropoulos et al., 1997; Kruger et al., 1998; Zarranz et al., 2004; Appel-

Cresswell et al., 2013; Lesage et al., 2013). The resulting missense mutations 

can impact binding properties, long-range interactions, and protein conformation 

(Conway et al., 2000; Bertoncini et al., 2005a). These pathological SNCA 

mutations have been shown to decrease membrane binding affinity, accelerate 

oligomerization kinetics, destabilize asyn multimers, and even form pore-like 

structures that can change membrane permeability (Jensen et al., 1998; Conway 

et al., 2000; Lashuel et al., 2002; Khalaf et al., 2014; Tokutake et al., 2014; Li et 

al., 2018). It should be noted that there is significant variability in disease 

phenotype between families that carry these missense or multiplication 

mutations, likely arising from other genetic variants and environmental factors 

that are hypothesized to underlie idiopathic PD (Petrucci et al., 2016).  

 

1.4 The Locus Coeruleus in Parkinson’s Disease 

Extensive dysfunction of catecholaminergic neurons is a well-established 

feature of PD, and while a major hallmark is LP and loss of DA neurons in the 

SNpc, PD is a multifactorial disease with alterations in cholinergic, serotonergic, 
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and noradrenergic systems occurring years earlier and generally associated with 

PD’s non-motor symptoms (Halliday et al., 1990; Braak et al., 2003). The locus 

coeruleus (LC) is one of several small brainstem nuclei that release the 

catecholamine neurotransmitter norepinephrine (NE) (Szabadi, 2013). First 

described by anatomist Félix Vicq d’Azyr in the late 1700’s, it wasn’t until the 

1960’s that the LC was identified as the major source of NE to the CNS (Von 

Euler, 1946; Dahlstrom and Fuxe, 1964; Glowinski et al., 1966).  

In PD, loss of locus coeruleus (LC) neurons begins prior to nigral 

pathology and appears to be of greater magnitude (German et al., 1992; Zarow 

et al., 2003; Szot et al., 2006; Brunnstrom et al., 2011). PD brain tissue has 

marked LC denervation in many brain regions and loss of LC cell bodies that 

extend throughout its rostral-caudal axis (Javoy-Agid et al., 1984; German et al., 

1992; Pavese et al., 2011).  

The LC is comprised of bilateral pontine nuclei extending along the lateral 

floor of the fourth ventricle at the junction of the pons and midbrain (Robertson et 

al., 2013). The LC contains only about 50,000 neurons in the healthy adult, yet 

these neurons project far and wide innervating almost every region of the CNS 

(Sharma et al., 2010). Primarily comprised of large multipolar, and small fusiform 

cells, virtually all LC neurons express dopamine ß-hydroxylase (DBH), the 

enzyme involved in synthesis of NE from DA, and release NE (Swanson and 

Hartman, 1975; Swanson, 1976; Grzanna and Molliver, 1980). NE is unique in 

that DBH is found inside synaptic vesicles where the final synthetic step of NE 

occurs (Potter and Axelrod, 1963; Hartman and Udenfriend, 1972).  
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NE differentially affects target structures by activation of three 

metabotropic adrenergic receptors (ARs), allowing simultaneous excitation and 

inhibition of different neuronal populations (Strosberg, 1993; Berridge and 

Waterhouse, 2003). The excitatory Gq coupled α1-AR receptor class includes 

three subtypes: α1A, α1B, and α1D which mainly post-synaptic and are found on 

both central and peripheral tissues (Price et al., 1994; Day et al., 1997). The 

inhibitory Gi coupled α2-ARs consist of three subtypes: α2A, α2B, and α2C (Blaxall 

et al., 1994). While α2B receptors are more frequently expressed in peripheral 

tissues, α2A and α2C receptors are highly expressed in the CNS (Nicholas et al., 

1991) where they are primarily considered autoreceptors, as they are found on 

noradrenergic axons and dendrites and are involved in the suppression of NE 

release (Robertson and Biaggioni, 2012).  The β-ARs are comprised of β1, β2, 

and β3 receptors which are more commonly expressed in peripheral tissues, and 

are common pharmacological targets in treating heart and vascular conditions 

(Reznikoff et al., 1986; Wachter and Gilbert, 2012; Noh et al., 2017). LC neurons 

are constitutively active and innervate virtually every brain region via extensive 

and complex axonal arborization that facilitates the release of both synaptic NE 

and extra-synaptic NE at axonal varicosities (Freedman et al., 1975; Grzanna 

and Molliver, 1980; Jones and Yang, 1985; Agnati et al., 1995).  

Successful goal-directed behavior requires selective attention to relevant 

information, which is maximized by LC-NE modulation (Foote et al., 1980). A 

primary role of the LC-NE system is promoting arousal (Aston-Jones and Bloom, 

1981), and LC function is required for cognitive and behavioral flexibility, 
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particularly in challenging situations (Rajkowski et al., 1994; von der Gablentz et 

al., 2015), and dysregulated noradrenergic neurotransmission is associated with 

several of the non-motor symptoms of PD 

LC neuron activity tracks with sleep-wake cycles; firing is highest just prior 

to, and during wake (Hobson et al., 1975). Arousal state increases with 

stimulation of LC neurons, and decreases with depletion of NE (Hunsley and 

Palmiter, 2004; Carter et al., 2010). Sleep disturbances are one of the most 

common complaints from PD patients (Smith et al., 1997), and PD patients with 

disturbed sleep have more asyn pathology in LC neurons than those without 

(Kalaitzakis et al., 2013). Sleep-related symptoms can include insomnia 

(Gjerstad et al., 2007), excessive daytime sleepiness (Rye et al., 2000), and 

REM sleep behavioral disorder (RBD) (Comella et al., 1998; Gagnon et al., 

2002). In fact, RBD is the most predictive non-motor symptom of 

synucleinopathies, or disease involving asyn aggregation, with up to 92% of 

idiopathic RBD patients receiving a synucleinopathy diagnosis within 14 years 

(Iranzo et al., 2006; Postuma et al., 2009; Schenck et al., 2013).  

Sleep disturbances are closely associated with deficits in cognitive 

function (Scott et al., 2006), so it is not surprising that cognitive impairment has 

become recognized as a central feature of PD with an estimated 83% of PD 

patients experiencing some sort of cognitive dysfunction, including dementia 

(Hely et al., 2008). Dementia is characterized by memory loss, attention deficits, 

and loss of executive function (Elizan et al., 1986; Aarsland et al., 2003). While 

cognitive deficits in late-stage PD are generally associated with cholinergic 
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deficits, early executive disturbances may arise from deregulation of LC-NE, as 

cognitive decline is associated with decreased density of LC neurons in 

otherwise healthy aged individuals (Takahashi et al., 2015). LC-NE is essential 

for proper memory acquisition and retrieval (Devauges and Sara, 1991; Mello-

Carpes et al., 2016), and PD patients with dementia have more extensive loss of 

LC-NE in cortical regions than those without (Chan-Palay and Asan, 1989). In 

fact, degeneration of LC neurons and loss of cortical NE is a central component 

of dementia of Alzheimer’s type (Mann and Yates, 1983; Zarow et al., 2003), and 

loss of LC neurons disrupts memory formation and enhances cognitive deficits in 

animal models (Ohno et al., 1997; Chalermpalanupap et al., 2018).  

In PD disturbed sleep is positively correlated with anxiety and depression 

(Rana et al., 2018), indicating that these non-motor symptoms share neurological 

origins. Mood disorders are frequent comorbidities of PD, with approximately 

60% reporting anxiety, and 35% reporting depression (Reijnders et al., 2008; 

Chaudhuri and Schapira, 2009; Lin et al., 2015), negatively impacting patient and 

caregiver qualities of life (Hanna and Cronin-Golomb, 2012; Riedel et al., 2012). 

DA, serotonin, and NE have been implicated in PD anxiety, suggesting that its 

neurobiological origins are complex (Eskow Jaunarajs et al., 2011; Thobois et al., 

2017; Joling et al., 2018), but LC neurons are highly active during stress 

(Bingham et al., 2011; Curtis et al., 2012), and the severity of anxiety is inversely 

correlated with catecholamine transporter binding in the LC (Remy et al., 2005). 

In fact, when LC activity is blocked during a stressful event it abolishes anxiety-

like behavior resulting from the stress exposure (McCall et al., 2015).  
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The rate of depression in PD is approximately twice that of equivalently 

disabling diseases (Rodin and Voshart, 1986), and depression may even 

exacerbate the motor symptoms of PD (Papapetropoulos et al., 2006).  LC 

neurons innervate all limbic regions involved in regulating emotions (Drevets et 

al., 2002), and PD patients with depression have dysregulated catecholamine 

transporter binding in these regions as compared to non-depressed PD patients 

(Remy et al., 2005). Partial lesion of LC neurons which transiently increases LC 

firing, also causes depressive like behavior (Szot et al., 2016), and numerous 

antidepressant drugs are known to suppress LC firing (Szabo et al., 1999; West 

et al., 2009). Pharmacological treatments of depression frequently target 

serotonin and NE, and increasing extracellular NE significantly improves 

depression in PD patients (Pintor et al., 2006), suggesting that both excess and 

insufficient NE neurotransmission may contribute to depression.  

Together, these data link LC-NE to the non-motor symptoms of PD, and indicate 

that targeting LC dysfunction early in disease progression may improve of quality 

of life. 

It is unclear why certain neuronal populations like the LC are susceptible 

to asyn pathology, but sensitivity to oxidative stress, pacemaker activity, and 

extensive contact with blood vessels that may expose LC neurons to circulating 

toxins have been implicated (Jenner, 2003; Cho, 2014; Pamphlett, 2014). The 

degree of noradrenergic innervation to a brain region is negatively correlated with 

DA loss in PD, where DAergic areas known to contain more NE seem to be less 

affected in PD (Tong et al., 2006), indicating that the loss of central NE and its 
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neuroprotective actions may directly influence the rate of PD progression. 

Imaging and postmortem histological studies of PD patients reveal a progressive 

loss of central NE throughout the brain (Pifl et al., 2012) along with accumulation 

of asyn and loss of LC neurons (Halliday et al., 1990; Chen et al., 2014; Keren et 

al., 2015; Isaias et al., 2016). The surviving LC neurons exhibit a loss of 

dendrites and dendritic spines, and swollen cell bodies as compared to healthy 

individuals (Patt and Gerhard, 1993) indicating pervasive dysfunction in PD.  The 

effects of asyn pathology on LC neurons can be replicated experimentally. A 

recent model targeted viral vector-mediated overexpression of a familial PD 

mutant asyn variant to the murine LC region (Henrich et al., 2018). While 

transgene expression was not restricted to neuronal cells, the resulting 

progressive asyn aggregation, gliosis, and LC degeneration are reminiscent of 

LC pathology found in PD, suggesting that LC neurons are susceptible to the 

effects of pathological asyn, and that in turn, LC dysfunction may contribute to 

PD pathogenesis.  

Enzymes responsible for NE synthesis and NE metabolite levels are 

reduced in the CSF of PD patients, supporting these central changes in NE 

metabolism (Hurst et al., 1985; Goldstein et al., 2012). Evidence of early LC 

dysfunction can be found in patients who do not meet the diagnostic criteria for 

PD. In such individuals, decreased neuron density in the LC, but not VTA or 

dorsal raphe, corresponds to the severity of global parkinsonism (Buchman et al., 

2012), suggesting that this state may represent prodromal/preclinical PD. In fact, 

patients who had LP at autopsy but lacked any of the clinical signs of PD also 
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had reduced LC neuron density as compared to DA neurons in the SNpc, further 

highlighting the possible early role of LC neuron loss in PD (Dickson et al., 2008).  

There is also evidence that asyn may directly affect NE homeostasis by 

two separate mechanisms. First, norepinephrine transporter (NET)-expressing 

cells transfected for asyn expression reveal that high levels of asyn negatively 

regulate NET expression on the cell surface, while relatively lower levels 

increase NET expression (Wersinger et al., 2006). Second, when asyn is 

overexpressed in an NE-producing cell line or transgenic rodent model, it can 

translocate to the nucleus and directly interfere with transcription of dopamine ß-

hydroxylase (DBH), the enzyme involved in the final step of NE synthesis, 

reducing NE production (Kim et al., 2011; Kim et al., 2014). It is possible that 

interfering in NE neurotransmission could, in turn, impact asyn expression as ß-

adrenergic receptor (ß-AR) agonists reduce Snca mRNA and asyn protein 

expression in induced pluripotent stem cells derived from individuals carrying the 

SNCA triplication mutation (Mittal et al., 2017). Together, these data indicate that 

asyn can influence NE metabolism, and that this, in turn, could impact asyn 

expression, although additional work is required to determine if this is clinically 

relevant. 

 

1.5 Potential mechanisms of Locus Coeruleus Degeneration in Parkinson’s 

Disease 

It is unclear why LC neurons degenerate in PD, but several neuronal 

characteristics have been identified that could confer vulnerability. LC neurons 
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have more extensive contact with capillaries than any other brain region. In fact, 

it is estimated that each LC neuron innervates 20 meters of blood vessels 

(Pamphlett, 2014), potentially exposing them to environmental factors associated 

with increased risk of developing PD (Dick et al., 2007; Ahmed et al., 2017). The 

potential for LC neurons to be exposed to circulating toxins was highlighted by a 

case study describing an individual who had been injected with metallic mercury. 

Upon his death, several months later, post-mortem analysis revealed mercury 

deposits were present only in LC neurons (Pamphlett and Kum Jew, 2013). 

Catecholaminergic neurons in the human LC and SNpc contain a 

cytoplasmic pigmented polymer known as neuromelanin (NM) (Sulzer et al., 

2000). NM accumulates during aging, and excess cytosolic catecholamines 

contribute to NM synthesis.  (Fedorow et al., 2006; Zecca et al., 2008) Vesicular 

monoamine transporter 2 (VMAT2) packages cytosolic catecholamines into 

synaptic vesicles, and decreased VMAT2 expression, which increases cytosolic 

catecholamines, is associated with increased NM content (Liang et al., 2004). 

Although in young individuals, NM may be neuroprotective, removing toxic 

quinones and chelating iron and other metal toxicants, NM accumulation in the 

LC of aged individuals (Pamphlett et al., 2018) is believed to contribute to neuron 

vulnerability in PD  (Sulzer et al., 2000; Zecca et al., 2008). In fact, in a recent 

report, NM expression in rodent midbrain DAergic neurons was acheived by 

virally expressing an enzyme involved in the synthesis of peripheral melanins. 

The authors report remarkable PD-like pathology including age-dependent 

accumulation of the NM-like substance, formation of asyn aggragates, motor 
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deficits, and degeneration of the nigrostriatal pathway (Carballo-Carbajal et al., 

2019).  

Mitochondrial dysfunction and oxidative stress have been well 

characterized as pathogenic mechanisms in PD (Abou-Sleiman et al., 2006; 

Henchcliffe and Beal, 2008). While reactive oxygen species (ROS) are a product 

of normal cellular respiration, excessive production of ROS can have numerous 

detrimental effects on neurons, including disrupting lipid membranes (Girotti, 

1985), peptide fragmentation (Dean et al., 1985), and DNA damage (Marietta et 

al., 2002; Cooke et al., 2003). Several characteristics of LC neurons can increase 

the likelihood of excessive ROS production. LC neurons have long, poorly 

myelinated axons, with extensive branching and multiple sites of neurotransmitter 

release (Braak and Del Tredici, 2004; Matsuda et al., 2009; Orimo et al., 2011). 

Maintaining the complex arborization of LC neurons requires greater energy 

production than that for the shorter, myelinated axons, and may increase the risk 

of excess ROS production (Harris and Attwell, 2012; Pissadaki and Bolam, 

2013). Another potential source of mitochondrial oxidant stress is calcium entry 

by L-type voltage-gated calcium channels (McCormack and Denton, 1990; 

Guzman et al., 2010), and LC neurons exhibit intrinsic pacemaker activity that is 

dependent on L-type voltage gated calcium channels (Sanchez-Padilla et al., 

2014). Finally, excess cytosolic catecholamines can be oxidized to form ROS 

(Graham, 1978; Stokes et al., 1999; Chen et al., 2008). 

There is evidence that catecholamines and their metabolites can directly 

interact with asyn, affecting the kinetics of asyn aggregation. NE can bind to the 
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central non-amyloid component domain of asyn to potentiate aggregation, which 

negatively impacts cell viability (Lee et al., 2011; Fischer and Matera, 2015; 

Singh and Bhat, 2019), and similar effects have been observed with DA, the 

immediate precursor to NE in catecholamine synthesis (Conway et al., 2001; 

Bisaglia et al., 2010; Lee et al., 2011). Cytosolic catecholamines could accelerate 

asyn aggregation in LC neurons. 

 

 

1.6 Neuroprotective and Immunomodulatory Effects of Norepinephrine 

The temporal relationship between LC and SNpc pathology suggests that 

loss of LC-NE may leave SNpc neurons more vulnerable to asyn toxicity and 

potentiate the rate of PD progression. Experimentally, loss of LC-NE exacerbates 

6-OHDA- and MPTP-mediated nigral degeneration in rodent and primate models 

(Mavridis et al., 1991; Srinivasan and Schmidt, 2003; Rommelfanger et al., 2007; 

Yao et al., 2015), while increasing synaptic NE by genetic deletion or 

pharmacological blockade of the NE transporter (NET) confers resistance 

(Kilbourn et al., 1998; Rommelfanger et al., 2004). Indeed, individuals with a 

functional polymorphism in the promoter regions of the DBH gene have reduced 

risk of developing PD (Healy et al., 2004). In sum, these data demonstrate that 

loss of NE may exacerbate nigral pathology. 

NE can directly act as a neurotrophic factor but can also indirectly 

stimulate neurotrophic factor expression. Primary mesencephalic cultures treated 

chronically with NE have a significantly reduced rate of cell death, increased 
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neuritic processes, and reduced production of reactive oxygen species when 

compared to untreated cultures, and this phenotype resembles cultures treated 

with traditional antioxidants (Troadec et al., 2001; Troadec et al., 2002). 

Increasing synaptic NE was shown to be protective against neuron loss and 

inflammation in a model of hypoxic-ischemia (Toshimitsu et al., 2018). While NE 

ligation of adrenergic receptors (ARs) directly facilitates neuroprotection by 

several mechanisms, the neuroprotective effects are not always blocked by AR 

antagonists, suggesting NE-mediated protection may also occur indirectly. One 

candidate mechanism of interest is the neuropeptide brain-derived neurotrophic 

factor (BDNF), which is synthesized and released by astrocytes and neurons, 

including those in the LC (Castren et al., 1995). BDNF signalling is primarily 

mediated by binding to the high affinity tropomyosin-receptor kinase B (TrkB), 

which can protect SNpc neurons in experimental models, and BDNF mRNA is 

reduced in the SNpc in PD (Hyman et al., 1991; Spina et al., 1992; Howells et al., 

2000). NE can also enhance BDNF transcription and BDNF/TrkB kinetics (Chen 

et al., 2007b). Activation of the β1-adrenergic receptor stimulates BDNF 

transcription in astrocytes (Koppel et al., 2018). When BDNF binds to TrkB, 

signal transduction is mediated by TrkB dimerizing and autophosphorylating 

(Haniu et al., 1997). NE can induce autophosphorylation of TrkB and is protective 

against cell death in primary culture (Liu et al., 2015). In addition to loss of NE, 

asyn may also directly disrupt the neuroprotective effects of BDNF. A recent 

study demonstrated that asyn has the potential to bind the kinase domain on 

TrkB receptors, preventing the neurotrophic signaling of BDNF/TrkB, and that 
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this exacerbates degeneration of DA neurons (Kang et al., 2017). Collectively, 

these data strongly implicate dysregulated NE neurotransmission in neuronal 

dysfunction and death associated with PD. 

Research indicates that dysregulation of noradrenergic signalling may also 

play a role in driving inflammation. Like overexpression of neuronal asyn, 

lesioning LC neurons using a noradrenergic-specific toxin also induces 

inflammation (Theodore et al., 2008; Watson et al., 2012; Yao et al., 2015; Song 

et al., 2018). NE can have activating or inhibitory effects on immune cells 

depending on adrenergic receptor expression, which varies depending on the 

cellular environment (Khan et al., 1985; Tanaka et al., 2002). Therefore, LC 

degeneration and subsequent deficient brain NE may contribute to PD pathology 

by loss of normal immune cell modulation. Microglia, the brain-resident 

macrophages, are the sentinels of brain parenchyma, monitoring tissue integrity 

and responding to infection or injury (Nimmerjahn et al., 2005). When ramified 

(resting) microglia are activated, they adopt an amoeboid morphology, 

proliferate, and become phagocytic, releasing pro-inflammatory cytokines which 

can recruit central and peripheral immune cells to the site of insult (Hayes et al., 

1987). There is extensive evidence of sustained microglial over-activation in 

degenerating brain regions in PD (Kim and Joh, 2006; Tansey and Goldberg, 

2010), and inhibiting microglia activation with minocycline prevents DA neuronal 

loss in mice treated with a DA neuron-specific toxin (Wu et al., 2002). 

Microglia express many neurotransmitter receptors, including ARs 

(Pocock and Kettenmann, 2007). While more studies are required to understand 
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how AR activation affects microglial phenotypes, depletion of NE, as is found in 

PD, exacerbates microglial inflammatory responses (Heneka et al., 2002; 

Bharani et al., 2017). AR-mediated modulation of microglia is well documented, 

although reports of the functional outcome are inconsistent. In murine brain 

slices, resting microglia appear to preferentially express the excitatory ß2-AR, but 

shift towards the inhibitory ɑ2-AR receptor expression following activation with 

the canonical microglial activator lipopolysaccharide (LPS) (Gyoneva and 

Traynelis, 2013). However, microglial treatment with an ß2-AR agonist is 

reported to have anti- or pro-inflammatory effects. For example, cultured primary 

microglia treated with a ß2-AR agonist suppressed microglial proliferation (Fujita 

et al., 1998), while a subsequent study reported that priming microglia with a ß2-

AR agonist prior to LPS treatment significantly increased pro-inflammatory IL-1ß 

and IL-6 expression (Johnson et al., 2013). The functional outcome of microglial 

AR activation appears dependent on the physiological context, and further 

examination is needed to determine how this may influence PD pathology. 

 

1.7 Norepinephrine and peripheral inflammation 

Whether through direct effects of reduced signaling through endothelial β-

ARs or through increases in vascular permeability-promoting inflammation, LC 

neurodegeneration compromises the integrity of tight junctions (Kalinin et al., 

2006) and increases permeability of the blood-brain-barrier (BBB) (Nag and 

Harik, 1987). BBB leakiness enables greater interaction between central and 

peripheral immune activities, allowing exchange of cytokines, chemokines, and 
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other circulating molecules and potentially even facilitating infiltration of 

peripheral immune cells into the CNS where loss of central NE modulation could 

result in aberrant immune cell activity. Degradation of the BBB has been well 

documented in PD (Kortekaas et al., 2005; Pisani et al., 2012; Gray and Woulfe, 

2015), and it has been proposed that this impaired barrier function exposes the 

CNS to circulating factors that could promote asyn aggregation (Gray and 

Woulfe, 2015), immune cell infiltration, neuroinflammation, and, ultimately, 

neurodegeneration (Rite et al., 2007). 

As with brain-resident microglia, immune cells originating in the periphery 

can also be modulated by NE. Peripheral immune cells infiltrate the brain 

parenchyma in PD (Kannarkat et al., 2013), and these will likely be directly 

impacted by reduced levels of central NE. Peripheral NE levels may also play 

important immunomodulatory roles in PD. The NE deficiency found in the CNS in 

PD is not consistently recapitulated in the periphery, with several studies 

reporting no difference in NE levels in plasma from PD patients compared to 

healthy controls (Eldrup et al., 1995; Goldstein et al., 2003). It is likely, however, 

that at least a subset of PD patients is affected by peripheral NE dysregulation as 

evinced by the prevalence of neurogenic orthostatic hypotension (NOH) 

associated with this disease. NOH is a condition in which insufficient 

noradrenergic activity results in failure to appropriately increase blood pressure 

(BP) in response to a postural change such as sitting up or standing. This results 

in insufficient cerebral blood supply and can produce lightheadedness and 

dizziness, which increase fall risk (Merola et al., 2016). NOH occurs frequently in 
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conditions involving synucleinopathy, and roughly 30% of PD patients are 

affected. NOH in PD is attributed to noradrenergic postganglionic sympathetic 

denervation associated with LP and a subsequent failure to induce sufficient NE 

production when transitioning to an upright position [reviewed by (Loavenbruck 

and Sandroni, 2015)]. PD patients with orthostatic hypotension exhibit lower 

levels of NE in plasma compared to PD patients without NOH that reach levels 

significantly lower than non-PD controls (Senard et al., 1990; Niimi et al., 1999; 

Goldstein et al., 2005). This creates the potential for PD-associated NE 

deficiency to modulate peripheral immune responses as well as central. 

Nearly every lymphoid tissue in the body has postganglionic sympathetic 

innervation, and peripheral innate and adaptive immune cells express ARs, 

rendering them responsive to NE. Excitatory β2-ARs are the most highly 

expressed ARs on peripheral immune cells, and their activity likely dominates the 

immune response to NE. β-AR signaling has potent anti-inflammatory effects on 

innate immune cells [recently reviewed by (Qiao et al., 2018)]. In macrophages, 

which bear close functional resemblance to microglia, it suppresses pro-

inflammatory activity and promotes tolerogenic and homeostatic phenotypes. It 

also limits the number and the effector functions of natural killer (NK) cells. 

Adrenergic signaling has been shown to impair the functions of neutrophils and 

eosinophils as well. Dendritic cells connect the innate and adaptive immune 

responses by sampling antigens in the local environment and then presenting 

them with appropriate polarization signals to T cells. β2-AR activation profoundly 

suppresses dendritic cell functionality, inhibiting their maturation, migration, 
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antigen presentation including cross presentation, and proinflammatory cytokine 

production while inducing expression of anti-inflammatory factors (Qiao et al., 

2018). 

CD4+ T helper (Th) cells are indirectly affected by AR agonists due to their 

suppressive effects on dendritic cells which result in diminished differentiation of 

effector T cells, particularly Th1s. Th1 cells also express β2-ARs, and their 

proliferation and activity are inhibited upon ligation of this receptor. Since Th2 

cells do not express ARs, their functionality is not directly modulated by exposure 

to NE, but NE-mediated suppression of Th1 cells would relieve their negative 

regulatory pressure on Th2 cells, indirectly promoting Th2-mediated immune 

activity, which is canonically involved in anti-helminth and allergic immune 

responses but not classic inflammation. β2-AR signaling also impairs the activity 

of CD8+ memory and effector T cells (Cervi et al., 2014; Qiao et al., 2018). 

The consequences of AR ligation on other T cell subsets are less 

straightforward. The intricacies of the potential effects of NE on CD4+ Th17 cells 

are just beginning to be elucidated. These cells are important actors in normal 

mucosal immunity, but they are also implicated in autoimmune pathology. 

Several studies have reported that treatment of CD4+ cells with NE promotes 

differentiation of Th17 cells and increases their activity (IL-17 production) while 

simultaneously inhibiting Th1 differentiation and activity (IFNγ production) 

(Carvajal Gonczi et al., 2017; Xu et al., 2018). On the other hand, studies of Th17 

cells from both mice and humans with Th17-mediated autoimmune diseases 

found that treating CD4+ T cells with NE inhibited the differentiation and activity 
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of Th17 cells (IFNγ production was also still reduced) (Boyko et al., 2016; Liu et 

al., 2018). This indicates that the immunoregulatory effects of NE on Th17 cells 

are dependent on the physiological context. It is also possible that autoimmune 

conditions in which pathology is mediated in part by IL-17-producing cells might 

constitute a unique context in which this alternative regulatory action of NE is 

observed. For instance, in such conditions, a highly inflammatory cell type that 

exhibits characteristics of both Th1 and Th17 cells is typically present (Murphy et 

al., 2010), and it may be that the actions of NE on this particular cell type rather 

than on canonical Th17s dominate its observed effects in these autoimmune 

diseases. 

Findings on NE modulation of CD4+ T regulatory (Treg) cells, an anti-

inflammatory subset which counteracts effector functions of other types of T 

cells, are even more ambiguous. One study reports that treatment of Tregs with 

NE prior to transfer in an autoimmune arthritis mouse model rendered them 

pathological and worsened the disease (Harle et al., 2008).  In the same vein, 

another study found that NE exposure decreased the regulatory activity of Tregs 

and even induced their apoptosis (Wirth et al., 2014).  On the other hand, a study 

in humans reported that Treg frequencies were elevated under conditions which 

increased circulating NE levels and that treatment of Tregs with epinephrine, 

which is chemically similar to NE and binds the same receptors, stimulated Treg 

proliferation. This effect was blocked by treatment with a β-AR antagonist (Inoue 

et al., 2017). A final study reported no detectable effects of treatment with NE or 

epinephrine on human Tregs, though they did determine that they could express 
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three different types of adrenergic receptors (Cosentino et al., 2007). Obviously, 

more research is needed to determine the effect of NE on Tregs. 

B cells also express β2-ARs, and there is evidence that NE can negatively 

regulate the magnitude of antibody responses. The effects are highly varied, 

however, as they are influenced by the effects of NE on T cells, by the stimuli 

used to activate B cells, and by the immunological and physiological context of 

the experiment [extensively reviewed by (Kin and Sanders, 2006)]. Recent 

studies suggest that, under conditions of autoimmune disease in which B cells 

contribute to inflammatory activity and pathology, NE exerts a suppressive effect 

on these cells which is mediated by decreased IL-7 receptor signaling and 

enhanced production of anti-inflammatory IL-10 (Pongratz et al., 2012; Pongratz 

et al., 2014). 

The effects described here do not represent the full extent of peripheral 

NE-mediated neuroimmune interactions. Most studies to date have focused on 

the results of β2-AR signaling, but immune cells express other ARs as well which 

can mediate different effects (Lorton and Bellinger, 2015), and, as in the brain, 

the relative levels of these receptors change in different immune environments. 

Activation of the same AR can even produce distinct responses depending on 

the concentration of the ligand and its temporal relationship to immunogenic 

stimuli (reviewed by Lorton and Bellinger, 2015). This provides important 

plasticity for neuroimmune regulatory mechanisms.  

Nonetheless, many functional studies support the existing literature that 

indicates a primarily anti-inflammatory impact of peripheral NE. Vagus nerve 
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stimulation is known to have clear immunosuppressive effects (Inoue et al., 

2017), and these effects are mediated in large part by NE signaling through β-

ARs (Vida et al., 2011). A recent review (Bucsek et al., 2018) summarized 

numerous studies showing that chemical ablation of sympathetic neurons or β-

AR blockade enhanced immune response to different bacterial, viral, and 

parasitic infections while AR agonist treatment impaired anti-viral and anti-

parasite responses. Several of the studies found that these effects were specific 

to modulation of peripheral adrenergic activity, but it was also demonstrated that 

this could induce corresponding immune responses in the CNS. Similarly, 

another study found that ablation of peripheral and LC noradrenergic neurons 

prompted an exaggerated acute inflammatory response to peripheral LPS that 

was observed both in the brain and in the circulation (Bharani et al., 2017).  

Taken together, the data on peripheral immune cells and their function 

when challenged indicate that NE is immunosuppressive, and as such, 

postganglionic sympathetic denervation and NE deficiency in PD could stimulate 

pro-inflammatory immune activity. This has implications for PD pathogenesis and 

the progression of disease pathology. Peripheral and systemic inflammation have 

been well documented in PD, and it has been proposed that inflammatory 

mechanisms may contribute to non-motor symptoms and could also be 

responsible for the development and spread of synucleinopathy and the induction 

of neuroinflammation and neurodegeneration in this disorder (Qin et al., 2016; 

Houser and Tansey, 2017).  
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PD-associated gastrointestinal abnormalities and dysfunction are 

consistent with inflammatory conditions in the gut (Houser and Tansey, 2017), 

and levels of proinflammatory cytokines in the blood correlate positively with the 

severity of anxiety and depression in PD patients (Wang et al., 2016). Asyn 

levels increase in the context of immune activation, and some data suggest that 

peripheral inflammation can induce elevated asyn expression in the brain (Kelly 

et al., 2014) and that peripheral asyn can migrate to the brain through the vagus 

nerve (Holmqvist et al., 2014).  

Asyn has also been shown to exert chemoattractant properties on 

peripheral myeloid cells, including recruiting them into the brain in a rodent PD 

model (Stolzenberg et al., 2017; Harms et al., 2018). Infiltration of peripheral 

CD4+ and CD8+ T cells into the brain has also been observed in PD (Brochard 

et al., 2009), and it has been shown that these T cells (primarily the CD4+ 

subset) in peripheral blood from PD patients recognize and respond to peptides 

derived from asyn (Sulzer et al., 2017). In animal models of parkinsonian 

neuropathology, invading monocytes and CD4+ T cells have been identified as 

key mediators of neurodegeneration (Harms et al., 2018; Brochard et al., 2009). 

NE deficiency, centrally and/or in the periphery, could potentiate all of these 

immune-mediated effects in PD. It would impair anti-inflammatory regulatory 

functions, shifting immune cells toward more pro-inflammatory phenotypes. 

Innate immune cells affected in this way would be less able to clear asyn 

aggregates and neuronal debris effectively and in a toleragenic manner and 

more likely to recruit additional effector cells, stimulate their pro-inflammatory 
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activities, and perhaps even present asyn and other neuronal antigens in a 

context which could induce autoimmune responses. Furthermore, the activity of 

at least some T cell subsets that may be pathologically involved in PD could be 

potentiated by a loss of inhibitory NE signaling. Especially in the context of a 

compromised BBB, these pro-inflammatory immune cells and their products 

would have greater access to the CNS and could infiltrate and mediate damaging 

effects on neurons there. 

 

1.8 Experimental Models of Parkinson’s Disease 

While valuable information has been gained from imaging and biofluid 

analysis studies in human PD, access to brain tissue is limited and only informs 

researchers on the post-mortem state (Kaasinen and Rinne, 2002; Wang et al., 

2013; Sulzer et al., 2017). Since no other organism develops PD, cell and animal 

models of PD have been developed to examine the mechanisms involved in PD 

neuropathology (Hansen et al., 2013; Aldrin-Kirk et al., 2014). Early models 

utilized methods to induce striatal DA depletion by lesioning midbrain DAergic 

neurons, generally resulting in parkinsonism or other motor deficits in rodents 

and non-human primates (Ungerstedt, 1968; Langston et al., 1984; Ballard et al., 

1985; von Wrangel et al., 2015). While these models are still widely used, they 

largely lack asyn involvement, thus limiting their relevance to human PD 

(Langston et al., 1984; Mitra et al., 2011; Decressac et al., 2012).  

Asyn-mediated neurodegeneration was first demonstrated by viral vector-

mediated expression of SNCA in midbrain DAergic neurons in rodents 
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(Baekelandt et al., 2002; Kirik et al., 2002), revealing asyn as a potential cause of 

PD neuropathology. Subsequently, virus-mediated expression has been targeted 

to several brain regions to examine the regional selectivity of neurodegeneration 

observed in PD (Delenclos et al., 2017; Niu et al., 2018). While a valuable tool 

with considerable face validity, viral vector-based asyn overexpression models 

lack the emergence of non-motor symptoms, and degeneration is restricted to 

pathways related to the site of delivery (Ulusoy et al., 2010; Song et al., 2015; 

Albert et al., 2017).  

Transgenic rodent models expressing wild-type, or familial PD-associated 

mutant asyn, under pan-neuronal promoters can develop age-dependent asyn 

aggregates and PD-like behavioral abnormalities, including non-motor behaviors 

(Masliah et al., 2000; Giasson et al., 2002; Fleming et al., 2008; Yamakado et al., 

2012). However, inconsistent results present a major challenge of transgenic 

asyn overexpressing models (Giasson et al., 2002; Lee et al., 2002; Graham and 

Sidhu, 2010), likely due to broad-targeting genetic promoters, variable number of 

transgene copies inserted, species, and strain. In fact, successful asyn 

overexpression in midbrain DAergic neurons has been reported in only a single 

transgenic mouse model (Lin et al., 2012).  

Continued innovation in rodent models of PD to improve their construct 

and face validity should help elucidate the mechanisms underlying the apparent 

vulnerability of certain brain regions in PD. 
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1.9 Discussion 

Extensive dysfunction of catecholaminergic neurons is a well-established 

feature of PD, and while a major hallmark is LP and loss of DA neurons in the 

SNpc, PD is a multifactorial disease with alterations in cholinergic, serotinergic, 

and noradrenergic systems occurring years earlier (Schapira et al., 2017). 

Experimentally, depletion of NE renders SNpc neurons vulnerable in toxin 

models of PD, while NE enhancement is protective. Depletion of LC-NE, or 

overexpression of asyn results in neuroinflammation, a central component to PD 

pathogenesis. Additionally, NE modulates astrocyte and microglia activation, and 

microglia activation is necessary for LPS induced SNpc cell death. Initially the 

brain was believed to be “immune privileged,” the entry of immune cells into the 

brain from the periphery (where they are modulated by NE) through the BBB is 

now a well-established feature of PD. Could the loss of central NE modulation of 

these cells be contributing to the chronic inflammatory environment?  

Asyn pathology and a progressive decline in LC-NE has been well 

characterized, although less is known about how the deficits in LC-NE and the 

loss of its neuroprotective and neuroimmune modulatory effects could 

exacerbate PD pathology. Preclinical research has provided compelling evidence 

supporting the neuroprotective functions of NE, still it is unclear why these 

neurons are among the most affected in PD.  To address this knowledge gap, we 

have developed a novel transgenic mouse model expressing human wild-type 

asyn in noradrenergic neurons. The aims of this research were to examine 

whether expression in LC neurons is sufficient to 1) impact LC neuron health and 
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function, and 2) alter behaviors associated with LC dysfunction in an aging 

animal. We hypothesize that targeted expression of human asyn in LC neurons 

will result in age-dependent asyn inclusions in, and degeneration of LC neurons, 

neuroinflammatory alterations, and cause behavioral abnormalities relating to the 

non-motor symptoms of PD. We believe that degeneration of LC neurons may 

represent a “tipping point,” in PD progression and understanding the impact of 

dysregulated central NE will help inform the development of diagnostics and 

treatments in the early PD.  
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CHAPTER 2: THE CELLULAR AND PHYSIOLOGICAL IMPACTS OF HUMAN 
TYPE ALPHA-SYNUCLEIN COERULEUS NEURONS IN AN AGING ANIMAL 
MODEL 

This chapter contains previously published work (Butkovich et al., 2018) 

2.1: Abstract 

Degeneration of locus coeruleus (LC) neurons and dysregulation of 

noradrenergic signaling are ubiquitous features of Parkinson’s disease (PD). The 

LC is among the first brain regions affected by α-synuclein (asyn) pathology, yet 

how asyn affects these neurons remains unclear. LC-derived norepinephrine 

(NE) can stimulate neuroprotective mechanisms and modulate immune cells, 

while dysregulation of NE neurotransmission may exacerbate disease 

progression, particularly non-motor symptoms, and contribute to the chronic 

neuroinflammation associated with PD pathology. Although transgenic mice 

overexpressing asyn have previously been developed, transgene expression is 

usually driven by pan-neuronal promoters and thus has not been selectively 

targeted to LC neurons. Here we report a novel transgenic mouse expressing 

human wild-type SNCA cDNA open reading frame under control of the 

noradrenergic-specific dopamine β-hydroxylase promoter. These mice developed 

asyn aggregates in LC neurons, alterations in hippocampal and LC microglial 

abundance, upregulated GFAP expression, degeneration of LC fibers, and 

decreased striatal dopamine metabolism. These mice provide novel insights into 

how asyn pathology affects LC neurons and how LC dysfunction may contribute 

to early PD pathophysiology. 
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2.2 Introduction 

Brain regions affected in Parkinson’s disease (PD) exhibit proteinaceous 

inclusions (known as Lewy bodies) primarily composed of α-synuclein (asyn), 

chronic inflammation, and neuron loss (den Hartog and Bethlem, 1960; Spillantini 

et al., 1997; Tansey and Goldberg, 2010). A PD clinical diagnosis is based on 

striatal dopamine (DA) and DA transporter (DAT) deficiency by positron emission 

tomography (PET) scan, but other neurotransmitter systems are affected 

including acetylcholine, serotonin, and norepinephrine (NE) (Gonera et al., 1997; 

Abbott et al., 2005; Ross et al., 2008).  

The locus coeruleus (LC) is among the first brain regions affected in PD. 

The LC is a bilateral pontine nucleus at the lateral floor of the fourth ventricle, 

and is the main source of NE for the central nervous system (CNS) (Iversen et 

al., 1983; Mann et al., 1983; Braak et al., 2001). Asyn aggregates and neuronal 

degeneration in the LC are ubiquitous features of PD and are associated with 

non-motor symptoms including sleep disorders, mood disturbances, and 

cognitive deficits (Iversen et al., 1983; Chui et al., 1986; German et al., 1992; 

Braak et al., 2001; Zarow et al., 2003; Weinshenker, 2018). Imaging and 

histological studies show a progressive loss of central NE, noradrenergic 

neurons, and accumulation of asyn pathology in the LC early in PD (Halliday et 

al., 1990; German et al., 1992; Brunnstrom et al., 2011; Pifl et al., 2012; Keren et 

al., 2015) which may exacerbate degeneration of DA neurons in the midbrain 

substantia nigra pars compacta (SNpc) (Zarow et al., 2003; Chen et al., 2014).  
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Depletion of LC-NE exacerbates 6-hydroxydopamine (6-OHDA) or 1-

methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal 

pathology in rodents and primates (Mavridis et al., 1991; Srinivasan and Schmidt, 

2003; Rommelfanger et al., 2007), while increasing extracellular NE is protective 

(Kilbourn et al., 1998; Rommelfanger et al., 2004; Kreiner et al., 2019). 

Furthermore, lesioning LC neurons induces inflammation, and dysregulated NE 

neurotransmission may contribute to the chronic inflammation seen in PD (Kim 

and Joh, 2006; Tansey and Goldberg, 2010; Yao et al., 2015; Bharani et al., 

2017; Song et al., 2018).  

The initiating event in asyn aggregation in sporadic PD is unclear, but a 

candidate mechanism is increased expression of asyn triggered by 

environmental exposures, as individuals with a multiplication mutation in the 

gene encoding asyn (Snca) develop autosomal dominantly-inherited PD 

(Singleton et al., 2003; Chartier-Harlin et al., 2004; Ferese et al., 2015). Age is 

the primary risk factor for PD, and rodent models of asyn overexpression develop 

age-dependent asyn aggregates and PD-like behavioral abnormalities (Masliah 

et al., 2000; Giasson et al., 2002; Hansen et al., 2013). However, in most of 

these models, transgene expression is driven by a pan-neuronal promoter with 

asyn overexpression in multiple, and sometimes variable, regions of the CNS 

(Masliah et al., 2000; Giasson et al., 2002; Maskri et al., 2004; Schell et al., 2009; 

Koprich et al., 2010; Delenclos et al., 2017). Viral-mediated expression has been 

used to target asyn overexpression to specific brain regions (Baekelandt et al., 

2002; Kirik et al., 2002; Delenclos et al., 2017; Ip et al., 2017; Niu et al., 2018). 
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Notably, viral overexpression of a familial PD mutant asyn in LC neurons resulted 

in asyn aggregation, inflammation, and degeneration of LC neurons (Henrich et 

al., 2018).  

To investigate specifically how pathology induced by wild-type asyn 

affects noradrenergic neurons in the LC in an aging organism, we targeted 

expression of human wild-type asyn to LC neurons under control of the 

noradrenergic/adrenergic-specific dopamine β-hydroxylase (DBH) promoter 

using bacterial artificial chromosome (BAC) transgenesis. To determine the 

molecular, cellular, and behavioral age-dependent consequences of increased 

asyn expression in LC neurons, 3-, 14-, and 24-month (mo) old DBH-hSNCA 

transgenic (Tg) mice and non-transgenic (nTg) littermate controls were 

examined. 

2.3 Materials and Methods 

Generation of the DBH-hSNCA mouse model. Male and female mice 

expressing human wild-type α-synuclein (DBH-hSNCA) were engineered using a 

commercially available human bacterial artificial chromosomal (BAC) RP11-

746P3 (Cubells et al., 2016) encompassing the DBH gene. The wild-type hSNCA 

cDNA open reading frame (400bp) was targeted to the translational start site of 

DBH by standard BAC recombineering methods by the University of North 

Carolina – Chapel Hill Molecular Neuroscience Core (currently Animal Model 

Core). The BAC construct was injected into C57BL/6N pronuclei by the Emory 

University Mouse Transgenic and Gene Targeting Core Facility 

(http://www.cores.emory.edu/tmc/index.html), transgene expression in founder 
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pups was determined by PCR, and breeding lines were established. Mice 

carrying the hSNCA sequence were crossed with wild-type C57Bl/6N mice 

(Charles River) to establish the hemizygous transgenic DBH-hSNCA line. 

To improve efficiency and accuracy of LC tissue isolation for western blot and 

mRNA analysis, DBH-hSNCA mice were crossed with the TH-EGFP reporter 

mouse expressing enhanced green fluorescent protein (EGFP) under the 

tyrosine hydroxylase (TH) promotor (Sawamoto et al., 2001). 

Animals. Male and female DBH-hSNCA mice were maintained on a C57Bl/6 

background. Mice were group housed (maximum 5 mice per cage) until two 

weeks prior to the start of behavioral testing, when they were singly housed until 

euthanized. Animals were maintained on a 12/12h light/dark cycle with access to 

standard rodent chow and water ad libitum. Hemizygous animals served as 

experimental mice, with non-transgenic littermates as controls. Genotypes were 

determined by tail snip PCR with two sets of primers: Forward 5’ 

TGTCCAAGATGGACCAGACTC 3’ Reverse 3’ 

ACTGGTCTGAGGCAGGGAGCA 5’; Set Forward 5’ 

GCCCTCAGTCTACTTGCGGGA 3’ Reverse 3’ GCGAGAGCATCATAGGGAGT 

5’. Experimental procedures involving use of animals were performed in 

accordance with the NIH Guidelines for Animal Care and Use and approved by 

the Institutional Animal Care and Use Committee at Emory University School of 

Medicine.  

Tissue collection. Animals used in immunohistochemical and high-performance 

liquid chromatography (HPLC) analyses were anesthetized by injection of sodium 
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pentobarbital (Euthasol, Virbac) until unresponsive. Mice were transcardially 

perfused with phosphate-buffered saline (PBS; pH 7.4) until exiting blood ran 

clear. Brain tissue was removed, with one hemisphere post-fixed in 4% 

paraformaldehyde for immunohistochemistry, and the other dissected and flash 

frozen for HPLC. Animals used for qPCR or western blot analyses were 

euthanized by cervical dislocation under isoflurane anesthesia. Tissue was flash 

frozen and stored at -80°C until processing. 

Immunohistochemistry. Brain tissue was sectioned on a freezing microtome 

(Leica SM2010R, Buffalo Grove, IL) at 40µm and stored in cryoprotectant (30% 

ethylene glycol, 30% sucrose, 13.32mM NaH2PO4, 38.74mM Na2HPO4, 250µM 

Polyvinylpyrrolidone) solution at -20°C until staining. Sections were washed in 

PBS before blocking in 5% normal goat serum (Jackson ImmunoResearch 005-

000-121; NGS) with 0.05% Triton X-100 (Sigma #T9284100) in Tris-buffered 

saline pH 7.4 (TBS) for 1 h at room temperature. Sections were transferred 

directly to primary antibody solution containing 1% NGS, 0.05% Triton-X 100, 

and antibody at the concentrations described in Table 1 and incubated overnight 

at room temperature (05-02 Ms anti-NET, 1:1,000) or 4°C (all other primary 

antibodies). Fluorescently conjugated secondary antibodies (described in Table 

1) were diluted in 0.1% NGS with 0.05% Triton X-100, and tissue sections were 

incubated for 1 h at room temperature in the dark. Sections were mounted on 

Superfrost Plus slides (VWR) and were coverslipped with Vectashield with DAPI 

(Vector). All immunofluorescent images were acquired as z-stack images and the 

file compressed on a Keyence BZ-X700 microscope system (Itasca, IL). The 
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Allen Brain Atlas version 1 (2008) was used to identify regions of interest (ROIs). 

One section per mouse containing the dorsal hippocampus (near bregma -1.995 

mm) and one containing the LC (bregma -5.555 mm) were analyzed for percent 

immunoreactivity (IR) within a standard ROI. A detection threshold was set 

uniformly across images in each analysis, and % IR determined using the 

“Measure” feature of ImageJ. Percent IR was calculated as area of IR within the 

ROI divided by the total ROI area and multiplied by 100. Quantification of Iba1-

positive cells (microglia) was also analyzed with a standard threshold, ROI, and 

upper and lower size limits (pixel^2) using the “Analyze particles” function in 

ImageJ.  

Proximity ligation assay (PLA). Paraffin embedded tissue was rehydrated by 

consecutive incubations in Xylene, Histoclear, 100% ethanol, 95% ethanol, 70% 

ethanol and H2O. Samples were then incubated in 10% H2O2 in PBS to reduce 

background and heated in a microwave in citrate buffer (pH 6.0; Abcam) for 

antigen retrieval. After antigen retrieval, samples were processed for 

immunofluorescence:  1 h RT incubation in 10% Serum with 0.05% Tween-20 in 

TBS block, 1 h incubation in tyrosine hydroxylase primary antibody, TBS with 

0.05% Tween-20 (TBS-T) wash. Slides were then incubated for 1 h with 

secondary antibodies (Alexa488 Life Technologies), and washed again with TBS-

T. Samples were covered in manufacturers blocking solution (Sigma) for 1 h at 

37°C, and then incubated overnight with PLA conjugates (a-syn211; ab80627 

Abcam). On the next day, samples were washed with TBS-T, incubated in 

ligation solution for 1 h at 37C°, washed with TBS-T, incubated in amplification 
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solution for 2.5 h at 37C°, washed with TBS, counterstained with DAPI, 

and mounted with FluorSave (Calbiochem). All PLA reagents were used as per 

manufacturer’s instructions (Sigma; cat #92008). 

RNA Scope. In situ RNA analysis was performed using RNAScope Multiplex 

Fluorescent v2 kit (ACD Bio 3231000). Tissue prep and analysis were conducted 

as described in manufacturer’s protocol. Briefly, following transcardial perfusion 

with saline, brains were incubated in 4% paraformaldehyde (PFA) for 24 hours 

followed by a series of increasing sucrose concentrations before being frozen in 

optimal temperature cutting medium (Sakura) and stored at -80°C until 

sectioning. Tissue sections (12µm) were collected on a Leica CM1900 cryostat 

and mounted on Superfrost Plus slides. To prevent tissue detachment, slides 

were dried at 60°C for 30 min and fixed in 4% PFA for 15 min at 4°C before 

ethanol dehydration. Tissue was processed as described in ACD Bio protocol 

(acdbio.com/technical-support/user-manuals #323100-USM). 

RNA extraction and cDNA synthesis. mRNA was isolated as previously 

described (de Sousa Rodrigues et al., 2017). Briefly, the LC was dissected from 

3-mo old DBH-hSNCA mice that also expressed the TH-EGFP transgenic 

reporter transgene that enabled identification of the LC neurons under a 

fluorescent dissection scope (Leica). Tissue was flash frozen and stored at -80°C 

until RNA isolation using Trizol (Life Technologies) reagent, QIAshredder 

columns (QIAGEN), and Qiagen RNeasy mini columns. RNA yield was quantified 

by absorbance at 260 nm using the NanoDrop 2000 spectrophotometer (Thermo 

Fisher Scientific) and purity determined by the 260/280 nm ratio.  RNA was 
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reverse-transcribed using SuperScript II Reverse Transcriptase (Life 

Technologies), dNTPs (Life Technologies), and random hexamers (Integrated 

DNA Technologies) as described in the manufacturer’s protocol.  

Quantitative real-time PCR (qPCR). To confirm hSNCA mRNA in transgenic 

DBH-hSNCA LC neurons, qPCR analysis was conducted as previously 

described (de Sousa Rodrigues et al., 2017). mRNA was analyzed in triplicate, 

and cycle of threshold (Ct) values were normalized to values for the 

housekeeping gene hypoxanthine phosphoribosyltransferase 1 (HPRT1). Tissue 

from human and SNCA knockout mouse brain tissue were included as positive 

and negative controls, respectively. Human SNCA primer sequence: Forward 5’ 

CAG GAA GGA ATT CTG GAA GAT 3’, Reverse 3’ TAG TCT TGA TAC CCT 

TCC TCA 5’; Mouse HPRT1 primer sequence: Forward 5’ GCC TAA GAT GAG 

CGC AAG TTG 3’, Reverse 3’ TAC TAG GCA GAT GGC CAC AGG 5’. 

Western immunoblotting. Western blots were conducted as previously 

described (de Sousa Rodrigues et al., 2017). Flash frozen samples were stored 

at -80°C until processing. Protein was isolated from LC samples with RIPA buffer 

(1% Triton-X 100, 50mM Tris HCL, 0.1% sodium dodecyl sulfate, 150mM NaCL, 

pH 8.0), or Trizol (Life Technologies #15596-018). RIPA samples were 

centrifuged at 12,000 rpm for 20 min at 4°C. Supernatant was transferred to new 

tube for bicinchoninic acid protein assay (Pierce Scientific #23225). Trizol 

samples were resuspended in 1% SDS. Samples were diluted to 1µg/µl in 4x 

sample buffer (BioRad #1610747) and boiled at 90°C for 5 min. Electrophoresis 

was performed using 12% gels (BioRad #4568046; 5µl) and transferred to 
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0.45µm PVDF membrane using Trans-Blot Turbo Transfer System (BioRad). For 

asyn immunoblotting, the membrane was fixed in 0.4% PFA for 30 min following 

transfer. After a brief wash, blots were incubated in 5% milk blocking buffer 

(BioRad) for 1 hour at 4°C before primary antibody overnight at 4°C. Membranes 

were washed with TBST (0.01% Tween-20) and incubated in HRP-conjugated 

secondary antibodies in blocking buffer for 1 hour at room temperature. Images 

were acquired using Azure Biosystems and analyzed by ImageStudio Lite 

software. Protein expression was normalized to total protein on a Li-Cor Odyssey 

instrument (Li-Cor #926-11015). 

High performance liquid chromatography (HPLC).  

Monoamines were examined by high performance liquid chromatography with 

electrochemical detection as described previously (Song et al., 2012). For HPLC, 

an ESA 5600A CoulArray detection system, equipped with an ESA Model 584 

pump and an ESA 542 refrigerated autosampler was used. Separations were 

performed using an MD-150 × 3.2 mm C18 (3 µM) column at 25ºC. The mobile 

phase consisted of 8% acetonitrile, 75 mM NaH2PO4, 1.7 mM 1-octanesulfonic 

acid sodium and 0.025% trimethylamine at pH 2.9. Twenty-five microliters of 

sample were injected. The samples were eluted isocratically at 0.4 mL/min and 

detected using a 6210-electrochemical cell (ESA, Bedford, MA) equipped with 

5020 guard cell. Guard cell potential was set at 475 mV, while analytical cell 

potentials were −175, 150, 350 and 425 mV. The analytes were identified by the 

matching criteria of retention time and sensor ratio measures to known standards 

(Sigma Chemical Co., St. Louis MO.) consisting of dopamine, norepinephrine, 
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3,4-dihydroxyphenylacetic acid (DOPAC), and 4-Hydroxy-3-methoxyphenylglycol 

(MHPG). Compounds were quantified by comparing peak areas to those of 

standards on the dominant sensor. 

Statistical analysis. Student’s t-test was used to assess differences by 

genotype within each age group in western blot, and immunofluorescent 

analyses. Comparisons across age groups were not conducted, as behavioral 

assays, HPLC, and immunofluorescence of each cohort were conducted at 

separate time points. The analyses were performed using GraphPad Prism 7 

(GraphPad Software, Inc., La Jolla, CA) with a p-value threshold of <0.05.  

 

2.4: Results 

Generation of DBH-hSNCA mice 

The DBH-hSNCA mouse model was developed using a DBH-BAC construct 

carrying the wild-type human SNCA cDNA open reading frame at the 

translational start site of DBH (Fig. 1). Transgene integration was confirmed by 

PCR, and founder mice were bred with wild-type C57BL/6 mice to establish the 

hemizygous DBH-hSNCA line 
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Human Snca mRNA is expressed in DBH-hSNCA LC neurons 

Fluorescent in situ mRNA analysis revealed human Snca mRNA in Tg LC 

neurons (Fig 2.2), which co-localized with mouse Th and mouse Dbh mRNA, 

while human Snca mRNA expression was not detected in nTg LC neurons.  

 

Human asyn is expressed in LC neurons of DBH-hSNCA transgenic mice 

Human asyn protein was analyzed by immunofluorescence and western blot. 

Using an antibody specific for human asyn (Biolegend 807801), expression of 

human asyn was found to co-localize with TH-expressing LC neurons only in 

brain sections from DBH-hSNCA Tg mice (Fig. 2.3A).  No human asyn-specific 

immunofluorescence was detected in LC neurons of nTg littermates or in SNpc 

neurons regardless of genotype (Fig. 2.3A,C). Human asyn was also detectable 

specifically in LC protein lysate from Tg tissue by immunoblot and not in nTg 

lysates (Fig 2.3B; n=4). Quantitative western blot analysis of LC protein using a 

pan-asyn antibody to detect both human and mouse asyn protein revealed a 

significant ~30% increase of total asyn in Tg mice at 3-mo relative to that in nTg 

littermates (Fig 2.3D; t(6)=3.156, p=0.0197, n=4). Human SNCA mRNA 

expression in LC Tg neurons was confirmed by qPCR (Table 2.1). 
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Figure 2.1: hSNCA cDNA open reading frame was targeted to the translational 

start site of DBH by standard BAC recombineering methods. 
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Figure 2.2: Human Snca mRNA is expressed in DBH-hSNCA locus 

coeruleus neurons. Human Snca mRNA (hSnca; white) expression is 

detectable only in transgenic (Tg: bottom row) LC neurons, where it co-localizes 

with mouse Th mRNA (mTh, green), and mouse Dbh mRNA (mDbh; red) using 

RNA Scope Fluorescent Multiplex v2 assay. Scale bar = 50µm. 
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Figure 2.3: Analysis of asyn expression in locus coeruleus of young DBH-

hSNCA mice. A, Immunofluorescent detection of human asyn (red) with a 

species-specific antibody (Biolegend 807801) demonstrates co-localization with 

TH-expressing LC neurons (green) in Tg mice (lower panel) but not in nTg mice 

(upper panel), or in C, TH-expressing neurons (green) in the substantia nigra 

regardless of genotype. B, Human asyn protein is expressed selectively in LC 

neurons of Tg mice by western blot. D, Immunoblot of LC protein with an 

antibody against asyn that detects the mouse and human protein reveals a 

significant increase in total asyn protein expression in Tg LC neurons as 

compared to that in LC of nTg littermate mice. Immunoblot data graphed as 

arbitrary units (AU) normalized to total protein. All data are from 3-mo old nTg 

and Tg mice. Scale bar 50µm. Student’s t-test ± SEM *p<0.05. 
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Table 2.1: Real-time PCR analysis of locus coeruleus from non-transgenic (nTg) 

and transgenic (Tg) mice confirms expression of human Snca mRNA in Tg but 

not in nTg mice. Brain tissue from SNCA knockout (KO) mouse and human brain 

were utilized as negative and positive controls, respectively. Mouse Hprt1 was 

used as a housekeeping gene for mouse mRNA transcript expression and was 

therefore not detected in human brain samples. 
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Human asyn forms aggregates in LC neurons at 14-mos of age 

To determine whether transgenic expression of human asyn in LC neurons leads 

to formation of asyn aggregates, tissue sections containing the LC were analyzed 

using a human asyn proximity ligation assay (PLA). Asyn PLA has previously 

been shown to label oligomeric, but not monomeric asyn (Roberts et al., 2015; 

Almandoz-Gil et al., 2018), and in 14-mo old Tg mice (Fig 2.4), LC neurons 

displayed more asyn puncta per field than LC neurons from nTg mice (t(8)=2.532, 

p=0.0352; n=4-6). Aggregated asyn is highly phosphorylated at residue 129 

(pSer129), and this form of the protein is commonly used to identify asyn 

aggregates (Fujiwara et al., 2002; Wakamatsu et al., 2007; Schell et al., 2009). 

Therefore, we immunolabeled tissue sections with an antibody specific for asyn 

pSer129 and found no detectable signal (data not shown), suggesting that at 14 

mos of age the asyn-immunoreactive puncta are likely to represent intermediate 

asyn oligomers rather than mature aggregates.  
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Figure 2.4: At 14-months of age, DBH-hSNCA LC neurons display small 

asyn aggregates. At 14-mos of age, LC neurons in (TH; green) Tg mice contain 

significantly more oligomerized asyn (red) in LC neurons as determined by 

proximity ligation assay (PLA). In collaboration with Nora Bengoa Vergniory, 

Wade-Martins lab, Oxford University. Scale bar 25µm. Student’s t-test ± SEM.  

*p<0.05. 
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Human asyn expression in LC neurons impacts striatal dopamine 

metabolism in 24-mo old mice 

Dysregulated catecholamine metabolism and degeneration of catecholaminergic 

neurons are well-established features of PD (Iversen et al., 1983; Mann et al., 

1983; Hirsch et al., 1988; Fearnley and Lees, 1991). Therefore, we measured 

catecholamine levels using high-performance liquid chromatography (HPLC). 

Hippocampal and striatal tissue content of NE, the NE metabolite MHPG, DA, 

and the DA metabolite DOPAC were quantified, revealing that NE (Fig. 2.5A,B) 

and DA (Fig. 2.5E,F) were not significantly affected in the hippocampus or 

striatum at any age. Similarly, the ratio of the major NE metabolite MHPG to NE 

was unaffected (Fig, 2.5C,D). The ratio of the DA metabolite DOPAC to DA in the 

hippocampus was unaltered (Fig. 2.5G), but was significantly reduced in the Tg 

striatum at 24-mos (Fig 2.4H; t(10)=3.546, p=0.0046; n=5-7), consistent with 

decreased DA turnover.  
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Figure 2.5: Human asyn expression in LC neurons impacts striatal 

dopamine metabolism in aged DBH-hSNCA mice. Catecholamine and 

catecholamine metabolite tissue content from hippocampus and striatum was 

measured by HPLC. A, Hippocampal NE is not affected by genotype. B, Striatal 

NE is reduced at 24-mos but does not reach statistical significance. The NE 

metabolite MHPG to NE ratio does not differ at any age in the C, hippocampus, 

or D, striatum. Dopamine content is not affected at any age in E, hippocampus, 

or F, striatum. G, The ratio of the DA metabolite DOPAC to DA is unaffected in 

the hippocampus H, but is significantly reduced in the striatum of Tg mice at 24-

mos. Student’s t-test of genotype for each age group ± SEM. *p<0.05. 

StriatumHippocampus
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Human asyn expression does not affect LC neuronal integrity  

LC neurons were visualized using NET immunoreactivity (IR). NET is a reliable 

marker of LC neurons, and its expression is reduced in PD patients (Remy et al., 

2005). Using a standard ROI, no difference in the percent NET IR was detected 

between genotypes at 3- (Fig 2.6; t(17)=0.4537, p=0.6558; n=9-10), 14- 

(t(10)=0.8908, p=0.3939; n=5-7), or 24-mos (t(8)=0.8069, p=0.4430; n=5-7).  
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Figure 2.6: Human asyn expression does not affect LC integrity. NET-

expressing LC cell bodies (red) percent immunoreactivity (IR) does not differ by 

genotype at 3-, 14-, or 24-mos. Student’s t-test of mean IR by genotype for each 

age group, graphed as fold change Tg from nTg mean ± SEM. Scale bar 50µm, 

*p<0.05. 
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Elevation of tyrosine hydroxylase in the LC of DBH-hSNCA mice  

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in NE and DA synthesis, 

and its long-term activity depends on its expression levels  (Levitt et al., 1965; 

Haycock, 1993; Kumer and Vrana, 1996). To determine whether TH expression 

in the LC is affected by human asyn, we assessed TH IR in sections from 3-, 14-, 

and 24-mo old mice. TH IR was normalized to NET IR to control for potential 

differences in Bregma level between sections. TH expression was increased in 

Tg LC neurons (Fig 2.7A,B) at both 3- (t(17)=2.154, p=0.0459; n=9) and 14-mo 

(t(10)=2.463, p=0.0335; n=5-7) of age. Western blot analysis from 3-mo old TH-

EGFP-expressing LC neurons (Fig 2.7C,D) confirmed higher TH expression in 

Tg animals (t(10)=3.837, p=0.0033; n= 5-7).  
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Figure 2.7: DBH-hSNCA LC neurons in young Tg mice express more 

tyrosine hydroxylase. Tyrosine hydroxylase (TH: green) expression is 

increased in LC neurons (NET: red) at 3- and 14-mos of age. A, Representative 

immunofluorescent images. B, TH IR mean normalized to NET IR mean and 

expressed as fold change Tg from nTg mean % IR ± SEM. C, Western blot 

analysis of 3-mo old LC neurons confirms increased TH expression. Data 

graphed as arbitrary units (AU) normalized to total protein ± SEM. 

Representative image inset. Student’s t-test of nTg and Tg at each age. Scale 

bar, 50µm. *p<0.05. **p<0.01. 
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Human asyn expression in LC neurons promotes local inflammation  

A wealth of studies suggest that dysregulated noradrenergic neurotransmission 

is associated with inflammation (reviewed by Butkovich et al. 2018), and that 

dysregulation of the LC-NE system could contribute to the chronic 

neuroinflammation observed in PD (Fujita et al., 1998; Gyoneva and Traynelis, 

2013; Johnson et al., 2013; Butkovich et al., 2018). To determine whether human 

asyn expression in LC neurons affects the number of myeloid cells in the brain 

(both brain-resident microglia and potentially infiltrating monocytes), we 

quantified the number of Iba1-positive cells in the LC by immunofluorescence. At 

14-mo, there was a significant decrease in the number of Iba1-expressing cells in 

the LC of Tg animals (Fig 2.8A,B; t(13)=2.845, p=0.0138; n=8), with no changes at 

other ages. To determine astrocyte activation, we quantified glial fibrillary acidic 

protein (GFAP) IR, commonly used as a protein marker of astrogliosis (Eng and 

Ghirnikar, 1994), in the LC. At 24-mo, there was a significant increase in 

astrocytic GFAP expression in the LC of Tg animals (Fig 2.8C, D; t(10)=2.744, 

p=0.0207; n=5-7). 
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Figure 2.8: Iba1+ cell number decreases and astrogliosis increases in LC of 

older Tg mice There are fewer Iba1-positive cells (red) in the LC (TH: green) at 

14-mos. A, Representative immunofluorescent images. B, Microglial count in the 

LC graphed as fold change Tg from nTg Iba1+ cell count ± SEM. Student’s t-test 

of nTg and Tg for each age group. Expression of astrocytic GFAP (red) is 

increased in the Tg LC (TH: green) at 24-mos of age. C, Representative 

immunofluorescent images. D, Quantification of GFAP % IR in the LC as percent 

ROI graphed as fold change Tg IR from nTg mean IR ± SEM. Student’s t-test of 

nTg and Tg for each age group. Scale bar, 50µm. *p<0.05. 
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Hippocampal astrogliosis and changes in number of hippocampal Iba1-

expressing cells  

To determine whether degeneration of hippocampal LC projections is associated 

with inflammation, GFAP IR was visualized in the CA1, CA3, and dentate gyrus 

regions of the hippocampus. At 14-mos, there was a significant increase in GFAP 

expression in CA1 (Fig 2.9A,B; t(19)=2.723 ,p=0.0135, n=9-12) and CA3 (Fig 

2.9E,F; t(19)=2.275 ,p=0.0347), but not the dentate gyrus (Fig 2.8C,D; t(19)=1.607, 

p=0.1246), of Tg mice. Similar to what we observed in the LC, the number of 

Iba1-expressing cells in CA1 was reduced in Tg mice at 14-mos (Fig 2.10; 

t(16)=2.592, p=0.0196, n=9). 
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Fig 2.9: Hippocampal astrocytic GFAP expression is increased at 14-mos. 

At 14-mos, Tg mice have significantly more GFAP (red) expression than nTg in 

the CA1 region of the hippocampus.  Representative immunofluorescent images 

of A, CA1, C, dentate gyrus, and E, CA3 regions. Quantification of GFAP IR as 

% area of ROI in B, CA1, D, dentate gyrus, and F, CA3. Student’s t-test of nTg 

and Tg for each age group, graphed as fold change Tg from nTg mean ± SEM. 

Scale bar 50µm. *p<0.05. 
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Fig 2.10: Fewer Iba1-expressing cells in hippocampal CA1 region in 14-mo 

old Tg DBH-hSNCA mice. At 14-mos, Tg mice have fewer Iba1-expressing cells 

in hippocampal region CA1. A, Representative immunofluorescent images of 

Iba1-expressing cells (red). B, Quantification of Iba1-expressing cells in CA1 

graphed as Tg fold change from nTg mean ± SEM. Student’s t-test by genotype 

for each age group. Nuclear stain in blue. Scale bar 150µm. *p<0.05. 
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Human asyn expression in LC neurons is associated with loss of 

hippocampal LC fibers at 24-mos  

The LC is the sole source of hippocampal NE, which is necessary for proper 

memory formation and retrieval (Devauges and Sara, 1991). Noradrenergic LC 

fibers express NET, and PD brain tissue shows substantial LC denervation 

(Pavese et al., 2011). To determine whether hippocampal LC projections 

degenerate in DBH-hSNCA mice, we examined NET IR in the CA1, CA3, and 

dentate gyrus regions of the hippocampus. At 24-mos, we found a reduction in 

LC fibers in the dentate gyrus (Fig 2.11C,D;  t(10)=2.974, p=0.0156; n=5-7), with a 

trend for reduction in CA1 (Fig 2.11A, B; t(10)=1.899, p=0.0901) and CA3 (Fig 

2.11E,F; t(10)=1.538, p=0.1585). No differences were observed in mice at 3-, or 

14-mos. 
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Figure 2.11: Asyn expression in LC neurons results in age-dependent 

degeneration of hippocampal LC fibers. NET (red) IR is reduced in the 

dentate gyrus of Tg mice at 24-mos. Representative immunofluorescent images 

of A, CA1, C, dentate gyrus, and E, CA3 regions. Quantification of NET IR as 

percent area of ROI in B, CA1, D, dentate gyrus, and F, CA3. Student’s t-test of 

nTg and Tg for each age group, graphed as fold change Tg from nTg mean ± 

SEM. Scale bar 150µm. *p<0.05. 
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2.5: Discussion  

Based on a wealth of evidence (Mavridis et al., 1991; Srinivasan and 

Schmidt, 2003; Tong et al., 2006; Rommelfanger et al., 2007; Yao et al., 2015), 

we posited that asyn pathology and degeneration of LC neurons may represent a 

tipping point in PD progression; therefore, understanding how asyn accumulation 

in LC neurons affects their function and survival may help inform development of 

new therapeutics for earlier interventions. To this end, we developed a new BAC 

transgenic mouse expressing the human wild-type asyn cDNA open reading 

frame under the control of the noradrenergic-specific DBH promoter. 

Human asyn was detectable in Tg LC neurons by immunofluorescence 

and western blot at 3-mos. Analysis of total asyn (mouse + human) revealed that 

the total asyn burden is increased in Tg LC neurons at 3-mos.  

An estimated 90% of asyn within Lewy bodies (LBs) is phosphorylated at 

serine 129 (pSer129), and detection of this post-translational modification is 

commonly used as proxy for ß-sheet-rich asyn aggregates (Arawaka et al., 

2017). Asyn inclusions observed in DBH-hSNCA LC neurons at 14-mos were not 

pSer129-positive, suggesting that these inclusions are comprised of pre-fibrillar 

asyn (Tofaris and Spillantini, 2007). Asyn in crossed ß-sheets adopts stable, less 

reactive conformations (Miake et al., 2002; Chen et al., 2007a; Gath et al., 2012), 

while pronounced neurotoxic effects of pre-fibrillar asyn have been demonstrated 

in vitro and in vivo (Danzer et al., 2007; Outeiro et al., 2008; Rockenstein et al., 

2014). 
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While pSer129-positive inclusions were not detected in LC neurons at any 

age, increasing the burden of asyn expression in LC neurons resulted in the 

formation of putative oligomeric asyn aggregates. In PD, asyn aggregates appear 

prior to neuron degeneration (Chevalier-Larsen and Holzbaur, 2006; Chu et al., 

2012), and while we observed no effect on the integrity of LC cell bodies, very 

few transgenic rodent models expressing wild-type or familial PD mutant asyn 

have reported frank neuronal loss (Lin et al., 2012; Janezic et al., 2013; Chen et 

al., 2015). We reported that NET-expressing fibers were reduced in the 

hippocampus of 24-mo old mice. This finding resembles the pattern of neuron 

death observed in PD, with axon terminals degenerating prior to frank cell loss in 

the LC (Hornykiewicz, 1998). Interestingly, the selective loss of LC fibers in the 

dentate gyrus of DBH-asyn mice is reminiscent of what has been observed in 

TgF344-AD rat model of Alzheimer’s disease that accumulates tau pathology in 

the LC (Rorabaugh et al., 2017). 

To determine the functional outcome of asyn aggregates in LC neurons, 

we measured catecholamine levels in the hippocampus and striatum. Post-

mortem analyses report that neurodegeneration in PD is accompanied by 

neurotransmitter loss (Nagatsu and Sawada, 2007; Muller and Bohnen, 2013).  

However, PD-related motor impairments only become clinically evident once 50-

60% of dopamine-producing SNpc neurons have been lost (Bernheimer et al., 

1973; Fearnley and Lees, 1991), suggesting that substantial physiological 

compensation is required to maintain normal motor function during pre-
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symptomatic PD. While LC pathology is believed to develop in the pre-clinical 

stages PD, NE metabolism appears unchanged in the cerebrospinal fluid of PD 

patients at this stage (Eldrup et al., 1995; Goldstein, 2013), also suggesting the 

involvement of compensatory mechanisms, which could explain why no 

differences were detected in NE.  

Dysregulated DA metabolism is a central feature of PD (Leenders et al., 

1990), and midbrain dopaminergic innervation to the striatum is modulated by 

LC-NE (Lategan et al., 1990; Grenhoff et al., 1993; Rommelfanger et al., 2007; 

Rommelfanger and Weinshenker, 2007). Studies of catecholamine function in 

rodents show that enhancing LC-NE stimulates midbrain DA release in the 

striatum, whereas LC lesions or NE deficiency reduce striatal DA release 

(Lategan et al., 1990; Grenhoff et al., 1993; Schank et al., 2006). We found that 

at 24-mos, Tg mice had a reduced striatal ratio of the DA metabolite 3,4-

dihydroxyphenylacetic acid (DOPAC) to DA, suggesting that human asyn 

expression in aging LC neurons causes a reduction in striatal DA turnover. 

Considering the positive correlation between LC-NE and DA release in the 

striatum, this may indicate LC dysfunction or midbrain NE denervation.  

Future studies will determine whether NE innervation to midbrain DA 

neurons is reduced in 24-mo DBH-hSNCA mice, and whether loss of 

noradrenergic transmission impairs striatal DA release. While no significant 

differences were detected in hippocampal or striatal NE content at any age, Tg 

LC neurons had increased TH expression at 3- and 14-mos relative to nTg 

littermates, suggesting an increased capacity for NE synthesis. LC neurons 
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exhibit two modes of activity: tonic firing (2-5 Hz) during quiet wakefulness, with 

phasic firing (short bursts of 8-10 Hz) in situations requiring focused attention, 

and stress exposure (Foote et al., 1980; Usher et al., 1999; Devilbiss and 

Waterhouse, 2011; Curtis et al., 2012). It is possible that NE synthesis under 

basal neuron activity is unaffected in DBH-hSNCA mice, and that inducing a 

phasic firing of LC neurons by stress exposure immediately prior to tissue 

collection may reveal differences in NE content which are suggested by 

increased TH expression. Damage to LC neurons by chemical lesion or by 

expressing mutant SNCA can produce transient increases in LC firing rate (Szot 

et al., 2016; Henrich et al., 2018), suggesting that with degeneration, enhanced 

NE release from the remaining neurons may serve to normalize NE 

neurotransmission. 

Neuroinflammation is a central feature of PD pathology (McGeer et al., 

1988; Gerhard et al., 2006; Tansey and Goldberg, 2010), with extensive 

evidence of changes in microglial activation in brain regions that degenerate in 

PD (Kim and Joh, 2006; Tansey and Goldberg, 2010). Microglia are brain-

resident macrophages and the sentinels of brain parenchyma whose job is to 

migrate to the site of injury or degeneration to clear debris (Nimmerjahn et al., 

2005). Extracellular asyn can be phagocytized by microglia and engulfment 

induces their activation (Zhang et al., 2005); moreover, neuronal overexpression 

of asyn aggravates and prolongs neuroinflammation (Miller et al., 2007; Gao et 

al., 2011; Sanchez-Guajardo et al., 2013). There is extensive evidence of 
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sustained microglial over-activation in degenerating regions in PD (Kim and Joh, 

2006; Tansey and Goldberg, 2010).    

Unexpectedly, we observed fewer Iba1-expressing cells in the LC and 

CA1 region of the hippocampus of DBH-hSNCA mice at 14-mos compared to 

nTg littermates. Preclinical models have demonstrated that microglia express 

adrenergic receptors (ARs) (Pocock and Kettenmann, 2007) and that microglial 

function is modulated by NE (Fujita et al., 1998; Gyoneva and Traynelis, 2013; 

Johnson et al., 2013). Some studies suggest that naïve microglia preferentially 

express excitatory β2-ARs but following activation shift toward inhibitory α2-AR 

expression (Gyoneva and Traynelis, 2013). However, microglial treatment with a 

β2-AR agonist is reported to have anti- or pro-inflammatory effects depending on 

the study (Fujita et al., 1998; Johnson et al., 2013). The differential AR 

expression on microglia is likely influenced by physiological context, including 

previous inflammatory events or insults, and if noradrenergic neurotransmission 

is altered in DBH-hSNCA mice it could potentially impact microglial localization. 

Additional studies are required to determine the mechanisms and functional 

outcome of having fewer microglia in these regions. 

Astroctyes are the most abundant cells in the brain, actively 

communicating with neurons and microglia and regulating their function to 

maintain physiological homeostasis (Muller et al., 1995; Min et al., 2006; Chung 

et al., 2013). Astrocytes have multiple neuroprotective functions including taking 

up glutamate to prevent excitotoxicity, releasing trophic factors, and scavenging 

toxic compounds (Hirsch et al., 1999; Sortwell et al., 2000). Interestingly, 
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extracellular oligomeric asyn can also be taken up by astrocytes (Lee et al., 

2010), and oligomers have been reported to accumulate in early PD (Song et al., 

2009). This may indicate an additional neuroprotective mechanism where 

astrocytes sequester pre-fibrillized asyn to prevent neuronal uptake. Unlike 

microglia, the number of activated astrocytes, as determined by increased 

expression of glial fibrillary acidic protein (GFAP), is inversely correlated to the 

amount of DAergic cell loss in PD (Damier et al., 1993; Eng and Ghirnikar, 1994). 

In our studies with the DBH-hSNCA mice, there was a significant increase in 

hippocampal GFAP expression at 14-mos, an age where no loss of hippocampal 

LC projections was observed.  At 24-mos, when LC projections were lost in Tg 

hippocampus, there were no differences in hippocampal GFAP expression. While 

highly speculative, it is possible that the temporal relationship between 

hippocampal astrocyte activation and loss of LC projections may have been due, 

in part, to the neuroprotective functions of activated astrocytes.  

LC neurons are among the first affected in PD, and the features of DBH-

hSNCA mice may represent early pathology and non-motor components of PD 

that provide insight into the functional impact of human asyn expression in LC 

neurons during aging. Additionally, studies involving exposure to environmental 

factors that synergize with asyn expression to influence the risk of PD will likely 

elucidate the genetic and environmental interactions that contribute to LC 

involvement in the pre-clinical pre-motor stages of PD, as well as the impact of 

LC degeneration on the trajectory of PD pathogenesis. This new mouse model 
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may prove to be a useful tool for drug screening to identify interventions that can 

delay or mitigate the non-motor features of PD.  
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CHAPTER 3: THE BEHAVIORAL EFFECTS OF HUMAN WILD-TYPE ALPHA-
SYNUCLEIN EXPRESSION IN LOCUS COERULEUS NEURONS 

This chapter contains previously published work (Butkovich et al., 2018) 

 

3.1: Abstract 

Parkinson’s disease (PD) is the most common progressive neurodegenerative 

motor disorder, involving degeneration of discrete brain regions which contain 

abnormal aggregates of the protein ⍺-synuclein (asyn). While a clinical diagnosis 

of PD relies on the appearance of motor symptoms, neuropathology develops 

years prior to this stage, and is accompanied by the emergence of non-motor 

symptoms.  The locus coeruleus (LC) is the major source of norepinephrine (NE) 

to the central nervous system, and degeneration of LC neurons is an early, and 

ubiquitous feature of PD. Dysregulated noradrenergic neurotransmission is 

associated with anxiety, depression, sleep disorders, and cognitive dysfunction, 

all frequent comorbidities of PD. To examine how asyn-dependent dysregulation 

of noradrenergic neurotransmission affects LC-related behaviors, we developed 

a novel transgenic mouse that expresses human wild-type asyn under control of 

the noradrenergic-specific dopamine β-hydroxylase promoter. These mice 

develop robust, age-dependent behaviors resembling the non-motor features of 

PD, including increased sleep latency, anxiety-like behaviors, and enhanced 

freezing during fear conditioning.  
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3.2: Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder 

characterized by motor, and non-motor symptoms (Parkinson, 1817). Brain 

regions affected in PD contain intracellular inclusions known as Lewy bodies 

(LBs) and Lewy neurites (LNs) comprised primarily of the pre-synaptic protein, ⍺-

synuclein (asyn) (den Hartog and Bethlem, 1960; Spillantini et al., 1997). A major 

hallmark of PD is degeneration of midbrain dopaminergic (DAergic) neurons in 

the substantia nigra pars compacta (SNpc) underlying the presentation of motor 

symptoms (Deuschl et al., 1998). Bradykinesia (Deuschl et al., 1998), along with 

muscle rigidity (Rodriguez-Oroz et al., 2009), tremor (Rao et al., 2006), or both 

are required for a clinical diagnosis of PD (Postuma et al., 2015), however there 

are multiple lines of evidence that suggest that the neuropathological feature of 

PD are present up to a decade before diagnosis. First, motor symptoms of PD 

arise only after substantial cell death has occurred in the SNpc (Bernheimer et 

al., 1973; Fearnley and Lees, 1991; Sulzer, 2007; Postuma et al., 2015). Second, 

Lewy pathology (LP) appears in the brainstem prior to involvement of SNpc 

neurons (Casacchia et al., 1975; Chui et al., 1986; Braak et al., 2001) including 

cholinergic, serotonergic, and noradrenergic pontine and medullary nuclei 

(Gonera et al., 1997; Abbott et al., 2005; Ross et al., 2008). 

The locus coeruleus (LC) is the major source of norepinephrine (NE) to 

the central nervous system, and dysregulated noradrenergic neurotransmission 

is associated with many of the non-motor symptoms of PD including anxiety 
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(Casacchia et al., 1975; Stein et al., 1990; Nuti et al., 2004), depression 

(Shulman et al., 2002; Ravina et al., 2007), rapid eye movement (REM) sleep 

behavioral disorder (RBD) (Sixel-Doring et al., 2011; Kalaitzakis et al., 2013), and 

dementia (Chui et al., 1986).  

Up to 60% of PD patients report experiencing some form of anxiety 

(Chaudhuri and Schapira, 2009; Lin et al., 2015; Houser and Tansey, 2017). 

Dopamine, serotonin, and NE have been implicated in PD anxiety, suggesting 

that its neurobiological origins are complex (Eskow Jaunarajs et al., 2011; 

Thobois et al., 2017; Joling et al., 2018). LC neurons are highly active during 

stress exposure (Bingham et al., 2011; Curtis et al., 2012) and innervate all 

corticolimbic regions involved in the anxiety response (Aston-Jones et al., 1991; 

Aston-Jones et al., 1999). In PD patients, anxiety severity is inversely correlated 

with dopamine/NE transporter binding in the LC (Remy et al., 2005), and 

experimentally, selectively inhibiting LC neurons during stress exposure blocks 

the subsequent anxiety-like behavior (McCall et al., 2015). 

Around 35% of PD patients suffer from depression (Reijnders et al., 2008; 

Houser and Tansey, 2017). Dysfunction of LC-NE is known to be associated with 

depression (Moriguchi et al., 2017) and is a common pharmacological target in 

the treatment of depression (Ressler and Nemeroff, 2001; Remy et al., 2005). 

Indeed, early investigation of NET expression in the LC reported decreased NET 

in major depressive disorder (Klimek et al., 1997), although results from 

subsequent studies have been inconsistent (Moriguchi et al., 2017). While it is 

unclear if NET is downregulated due to lack of available NE or in order to 
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increase synaptic NE levels, it is clear that NE dysfunction can contribute to 

depressive symptoms.  

LC neuron activity fluctuates diurnally with increased activity immediately 

prior to waking and during waking hours (Hobson et al., 1975). Sleep 

disturbances are one of the most common complaints from PD patients (Smith et 

al., 1997) and can include insomnia (Gjerstad et al., 2007), excessive daytime 

sleepiness (Rye et al., 2000), and RBD (Comella et al., 1998; Gagnon et al., 

2002). A recent study reported that disturbed sleep is positively correlated with 

anxiety and depression in PD (Rana et al., 2018). In fact, RBD is the most 

predictive non-motor symptom of synucleinopathies with up to 92% of idiopathic 

RBD patients receiving a synucleinopathy diagnosis within 14 years (Iranzo et 

al., 2006; Postuma et al., 2009; Schenck et al., 2013). There is evidence that LC 

neurons in individuals that have PD with disturbed sleep contain more LP than in 

those without (Kalaitzakis et al., 2013), and mice lacking DBH (and subsequently, 

NE) have significantly disturbed sleep behavior (Hunsley and Palmiter, 2003). 

Together, these data suggest that loss of central NE may directly contribute to 

the development of sleep disturbances in PD. 

An estimated 83% of PD patients will experience some sort of cognitive 

dysfunction, including dementia (Hely et al., 2008). Dementia is characterized by 

cognitive impairment, including memory loss, attentional deficits, and loss of 

executive function (Elizan et al., 1986; Aarsland et al., 2003). While dementia is 

generally associated with cholinergic deficits and late-stage PD, early executive 

disturbances may arise from deregulation of LC-NE. PD patients with dementia 
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have more extensive loss of LC-NE in cortical regions than those without (Chan-

Palay and Asan, 1989). In fact, degeneration of LC neurons and loss of cortical 

NE is a central component of dementia of Alzheimer’s type (Mann and Yates, 

1983; Zarow et al., 2003). In animal models, hippocampal LC-NE is essential for 

proper memory acquisition and retrieval (Devauges and Sara, 1991; Mello-

Carpes et al., 2016), and loss of LC neurons can impact memory and enhance 

cognitive deficits (Ohno et al., 1997; Chalermpalanupap et al., 2018). 

To examine how asyn-mediated pathology in LC neurons affects LC-

related behaviors we developed a bacterial artificial chromosome (BAC)-

transgenic mouse that expresses the human wild-type asyn cDNA open reading 

frame under the control of the dopamine β-hydroxylase promoter. Mice 

underwent behavioral testing at 3-, 14-, or 24-months of age (mos), to assess 

wakefulness, anxiety-like behaviors, memory, and locomotor behavior. Here we 

report on an age-dependent behavioral phenotype observed in the DBH-hSNCA 

mouse model. 

3.3: Materials and Methods 

Animals. Male and female DBH-hSNCA mice were maintained on a C57Bl/6 

background. Mice were group housed (maximum 5 mice per cage) until two 

weeks prior to the start of behavioral testing, when they were singly housed until 

euthanized. Animals were maintained on a 12/12h light/dark cycle with access to 

standard rodent chow and water ad libitum. Hemizygous animals served as 

experimental mice, with non-transgenic littermates as controls. Genotypes were 

determined by tail snip PCR with two sets of primers: Forward 5’ 



 

 

77 
 

TGTCCAAGATGGACCAGACTC 3’ Reverse 3’ 

ACTGGTCTGAGGCAGGGAGCA 5’; Set Forward 5’ 

GCCCTCAGTCTACTTGCGGGA 3’ Reverse 3’ GCGAGAGCATCATAGGGAGT 

5’. Experimental procedures involving use of animals were performed in 

accordance with the NIH Guidelines for Animal Care and Use and approved by 

the Institutional Animal Care and Use Committee at Emory University School of 

Medicine.  

Sleep latency test. Latency to fall asleep was quantified as the duration of time 

following gentle handling until their first sleep bout, which was defined as 

sleeping continuously for 2 min, and for a total of 75% of the 10-min period that 

began at sleep onset (Hunsley and Palmiter, 2004). Sleep testing began at 9 AM, 

2 h into the light cycle when internal pressure to sleep is high. The sessions were 

video recorded and scored by an experienced observer blind to the genotype. 

We have validated this behavioral sleep scoring method with EEG (Porter-

Stransky et al., 2019).  

Marble burying test. Marble burying was conducted as previously described (de 

Sousa Rodrigues et al., 2017) to determine whether expression of human asyn in 

LC neurons promotes anxiety-like behavior. Mice were placed in a plastic tub 

(50.5 x 39.4 x 19.7 cm) containing 5 inches of lightly pressed bedding. Twenty 

marbles of uniform size and color were placed in 5 rows of 4 marbles each on top 

of the bedding. Mice were placed in the containers and allowed to roam freely for 

30 min. At the end of testing, the mice were placed back in home cages, and the 
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number of marbles buried at least two-thirds of their height were counted. Marble 

burying was conducted 2 weeks after sleep latency testing. 

Open Field testing. In the open field test, a mouse that spends less time in or 

hesitates to re-enter the open center of the testing chamber is considered to be 

exhibiting anxiety-like behavior (Britton and Britton, 1981). During the light phase 

of the light/dark cycle, mice were acclimated to a dark testing room under red 

light for 1 h before testing. Mice were placed into the open field (45 cm X 45 cm 

square box) and allowed to move freely for 10 min. Distance, velocity, center, 

and border statistics were measured using Noldus/Ethovision software. Center 

was defined as the central 22.5 cm X 22.5 cm. Open field was conducted 1 week 

after marble burying. 

Circadian locomotion. All testing mice were acclimated to the testing room for 2 

d prior to the experiment. Mice were each placed in a clear Plexiglas (15.75” L, 

13.25” L, 7.38” H) activity cage equipped with infrared photobeams (San Diego 

Instruments, La Jolla, CA). Food and water were available ad libitum during the 

23-h testing period. Ambulations (consecutive photobeam breaks) were recorded 

by PAS software. Circadian locomotion behavior was assessed 2 weeks after 

open field testing. 

Fear conditioning. Fear conditioning training and contextual and cued fear 

testing is a test of memory for the association of an aversive stimulus with an 

environment cue or context, and was conducted as previously described 

(Chalermpalanupap et al., 2018) over 3 consecutive days. Mice were placed in 

the fear conditioning apparatus (7” W, 7” D, 12” H, Coulbourn) with metal shock 
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grid floor and allowed to explore the enclosure for 3 min. Following habituation, 

three conditioned stimulus (CS)-unconditioned stimulus (US) pairings were 

presented with a one-min inter-trial interval. The CS was a 20 sec 85 db tone, 

and the US was a 2 sec 0.5mA footshock (Precision Animal Shocker, Colbourn) 

which co-terminated with CS presentation. The contextual test was conducted on 

the following day when animals were placed back into the same chamber. On 

day three, the animals were placed in a novel compartment and allowed to 

habituate for 2 min. Following habituation, the 85 db tone was presented, and the 

amount of freezing behavior recorded. No shocks were given during the 

contextual or cued tests. Fear conditioning was conducted 1 week after circadian 

locomotion behavior. 

Statistical analysis. Student’s t-test was used to assess differences by 

genotype within each age group sleep latency, open field, and marble burying 

tests. Repeated measures two-way ANOVA was used to analyze differences by 

genotype within each age group in fear conditioning, and circadian locomotor 

assay followed by Tukey’s post hoc test where applicable. Comparisons across 

age groups were not conducted as behavioral assays of each cohort were 

conducted at separate time points. The analyses were performed using 

GraphPad Prism 7 (GraphPad Software, Inc., La Jolla, CA) with a p-value 

threshold of <0.05.  
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3.4: Results 

DBH-hSNCA mice had significantly longer sleep latencies at 3- and 14-mo. 

A primary role of the LC-NE system is promoting arousal and wakefulness; LC 

activity is highest just prior to, and during wake (Hobson et al., 1975). Sleep 

disturbances are one of the most common non-motor PD symptoms, and PD 

patients with disturbed sleep have greater asyn pathology in the LC than PD 

patients without sleep complaints (Kalaitzakis et al., 2013). Thus, sleep latency 

was assessed to examine whether features of the sleep/wake cycle were 

affected by human asyn expression in the LC. Mice were gently handled and 

returned to their home cage, and video recording was scored by an observer 

blind to the genotype to determine latency to fall asleep. Our findings indicate 

that there was a significant increase in sleep latency in Tg mice at 3-mos, (Fig 

3.1; t(14)=4.36 p=0.0007; n=8) and 14-mos (t(17)=2.51, p=0.0225; n=9), indicative 

of an elevated arousal state. No differences were observed at 24-mos (t(8)=0.821, 

p=0.4354, n=7-8).  
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Figure 3.1 DBH-hSNCA exhibited increased sleep latency at 3-, and 14-mo. 

Latency to sleep testing was conducted to determine whether DBH-hSNCA mice 

have altered sleep behavior. 3-mo DBH-hSNCA mice had significantly increased 

sleep latency (left), which was still present at 14-mos (center). Sleep latency was 

unaffected by genotype at 24-mos (left). In collaboration with Kirsten Porter-

Stransky, Weinshenker lab, Emory University. *p<0.05, ***p<0.001. 
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DBH-hSNCA mice exhibited anxiety-like behavior in open field and marble 

burying assays 

LC neurons are activated by stress exposure, and blocking LC activity abolishes 

stress-induced anxiety-like behavior (McCall et al., 2015). In PD, anxiety severity 

is inversely correlated with LC function (Remy et al., 2005). To examine anxiety-

like behavior, DBH-hSNCA mice underwent marble burying and open field tests. 

In the marble burying assay, there was a significant increase in the number of 

marbles buried by Tg mice at 14- (Fig 3.2; t(18)=2.735, p=0.0136; n=8-12) and 24-

mos (t(13)=2.212, p=0.0455, n=7-8). While in open field tests, an age-dependent 

anxiety-like phenotype was also evident in 14-mo Tg mice, evinced by an 

increase in the latency to re-enter the center of the testing field (Fig 3.3; 

t(17)2.359, p=0.0305; n=7-12), with no differences in 3- (t(11)=0.1988, p=0.8460, 

n=7-8) or 24-mo old animals (t(11)=0.5075, p=0.6219, n=7-8). No changes in 

depressive-like behavior were detected by forced-swim, or sucrose preference 

test (data not shown) 
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Figure 3.2 DBH-hSNCA mice exhibited anxiety-like behavior in a marble 

burying test at 14-, and 24-mo. To determine whether DBH-hSNCA mice 

exhibit anxiety-like behavior, they were first subjected to a marble burying test. At 

3-mos (left) no difference was observed in the number of marbles buried, while 

DBH-hSNCA mice buried significantly more marbles at 14-, and 24-mos as 

compared to nTg littermates, indicating anxiety-like behavior. Conducted by 

Maria Elizabeth de Sousa Rodriguez, Tansey lab, Emory University. *p<0.05. 
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Figure 3.3 14-mo DBH-hSNCA display anxiety-like behavior in open field 

testing. As a second measure of anxiety-like behavior, DBH-hSNCA mice were 

tested in an open field assay.  Anxiety-like behavior was only present in 14-mo 

DBH-hSNCA mice as indicated by an increased latency to re-enter the center of 

the testing field. Conducted by Lori Eidson, Tansey lab, Emory University. 

*p<0.05. 
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14-mo DBH-hSNCA mice displayed enhanced freezing during training and 

contextual testing in fear conditioning 

Fear conditioning is a measure of hippocampal-dependent (contextual) or -

independent (cued) associative learning (Phillips and LeDoux, 1992), and mice 

lacking NE exhibit impaired contextual learning (Murchison et al., 2004). In a 

standard fear conditioning paradigm, 14-mo old DBH-hSNCA Tg mice exhibited 

increased freezing behavior during the fear training session (Fig 3.4A center; 

Interaction F(6, 120)=2.735, p=0.0159; n=8-14), as well as during the contextual 

test (Fig 3.4B center; effect of genotype F(1, 20)=5.566, p=0.0286), with no 

differences in freezing behavior during the cued test (Fig 3.3C center). No 

genotype differences were found in the fear training (Fig 3.4A), contextual test 

(Fig 3.4B), or cued test (Fig 3.4C) in 3- or 24-mo old mice. 
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Figure 3.4 14-mo DBH-hSNCA mice exhibited enhanced freezing behavior 

during fear training and contextual testing in a fear conditioning paradigm. 

DBH-hSNCA mice were subjected to a standard fear conditioning assay to 

assess fear memory and its associated with context or a salient environmental 

cue. The percent of time freezing by 14-mo DBH-hSNCA mice was significantly 

increased during fear training (A, center) and contextual testing (B, center) as 

compared to controls, with no affect of genotype during cued testing (C, center). . 

No differences were observed in 3-, or 24-mo DBH-hSNCA mice during any test 

of fear conditioning. Horizontal line above data points represents tone 

presentation in A and D. Lightning bolts represent foot shock administration in A. 

Conducted by Emory Univeristy Behavioral Core Facility. *p<0.05.  
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Human asyn expression in LC neurons did not affect basal locomotor 

activity in DBH-hSNCA mice 

Because disruption in locomotor activity can affect behavioral testing, we 

evaluated the locomotion over 24 h and found no genotype differences at 3- (F(1, 

12)=1.158, p=0.3031; n=7), 14- (F(1, 11)=0.1864, p=0.6743; n=7), or 24-mos (F(1, 

13)=0.0603, p=0.8099; n=7-8) of age (Fig. 3.5A). Initially, all groups had high 

levels of activity, as would be expected in a novel environment, which decreased 

as mice habituated to the test apparatus. Ambulations increased normally in all 

genotypes at commencement of the dark phase, when mice are typically more 

active, and decreased once the next light cycle began. However, the 14-mo old 

Tg mice exhibited significantly more rearing behavior during the dark phase than 

the nTg mice (Fig 3.5B center; Interaction F(21, 231)=1.911, p=0.0113). 
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Figure 3.5 Human asyn expression in LC neurons does not affect basal 

locomotion. To confirm that behavioral testing outcomes were not affected by 

motor abnormalities, locomotor behavioral was recorded over the light/dark cycle. 

DBH-hSNCA mice exhibit normal activity levels throughout the testing period as 

compared to nTg littermates at all ages (A). However, 14-mo Tg mice display 

more hind leg rearing behavior during the dark phase of the light/dark cycle (B, 

center). *p<0.05. 
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Figure 3.6: Asyn can directly affect neurotransmission. Asyn could enhance 

extracellular NE by several mechanisms. #1 – Increased expression of asyn can 

potentiate clustering of synaptic vesicles at the presynaptic membrane. #2 – 

Elevated asyn expression can reduce norepinephrine transporter (NET) 

expression at the plasma membrane. #3 – Asyn modulation of L-type voltage-

gated calcium channels can enhance neuronal excitability. #4 – Human asyn 

expression can enlarge the size of, and slow the closing of vesicular fusion 

pores, allowing more NE to spill into the extracellular space. 
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3.5: Discussion 

Historically, the LC has been implicated in arousal state and stress responses. 

For example, LC activity tracks with sleep cycles (with highest firing during wake 

and immediately preceding sleep-wake transitions), and chemogenetic or 

optogenetic activation of LC neurons increases wakefulness (Carter et al., 2010; 

Vazey and Aston-Jones, 2014; Porter-Stransky et al., 2019). LC neurons are 

activated by stress, and stimulation of LC neurons elicits anxiety-like behaviors 

(Valentino and Van Bockstaele, 2008; McCall et al., 2015). Additionally, NE 

enhances memory in preclinical models (Devauges and Sara, 1991; Mello-

Carpes et al., 2016), and depletion of NE results in memory deficits, specifically 

in contextual memory (Ohno et al., 1997; Murchison et al., 2011; 

Chalermpalanupap et al., 2018).DBH-hSNCA mice exhibited age-dependent 

behavioral phenotypes that peaked at 14-mos and are consistent with LC 

hyperactivity and increased NE transmission. Specifically, compared to nTg 

littermates, DBH-hSNCA mice displayed increased arousal (as measured by 

latency to fall asleep), anxiety (as measured by marble burying and latency to re-

enter the center of an open field), and stress responses (as measured by 

freezing during fear conditioning training and context re-exposure). These 

phenotypes are relevant to multiple non-motor symptoms of PD. Sleep 

disturbances are one of the most common complaints of PD patients, and 

patients who experience disturbed sleep appear to have greater LC asyn 

pathology than those who do not report sleep disturbances (Kalaitzakis et al., 

2013). Anxiety is also a common complaint, as up to 60% of PD patients report 
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experiencing anxiety (Chaudhuri and Schapira, 2009; Lin et al., 2015). 

Importantly, DBH-hSNCA mice did not display changes in the number or speed 

of ambulations relative to nTg mice at any age examined, ruling out a general 

locomotor abnormality that has been observed in more ubiquitous asyn 

overexpression mice (Giasson et al., 2002; Fleming et al., 2004; Graham and 

Sidhu, 2010).  

The behavioral phenotypes reported here were most prominent at 14-mos, 

while degeneration of LC fibers was not evident until 24-mos, a time when 

behavioral abnormalities abated. The behavioral changes observed at 14-mo are 

broadly associated with enhanced noradrenergic neurotransmission. LC 

pathology can affect neuron firing rate, as LC lesion using 6-hydroxydopamine 

transiently increases LC neuron activity, resulting in behavioral changes 

associated with the non-motor features of PD (Szot et al., 2016). Additionally, 

viral overexpression of a familial PD mutant asyn in LC neurons resulted in 

increased LC neuron firing rates (Henrich et al., 2018). We have previously 

speculated that asyn pathology may also promote LC hyperactivity and non-

motor symptoms during PD progression prior to the degeneration of 

noradrenergic neurons later in the disease (Weinshenker, 2018), and the present 

data support that idea. There is also evidence of mechanisms by which asyn may 

directly enhance NE neurotransmission (Fig 4.1). First, increased expression of 

asyn induces clustering of synaptic vesicles at the pre-synaptic terminal, in the 

readily releasable vesicular pool (Diao et al., 2013). Studies with norepinephrine 

transporter (NET)-expressing cells transfected to overexpress asyn reveal that 
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high levels of asyn negatively regulate NET expression on the cell surface, while 

relatively lower levels increase NET expression (Wersinger et al., 2006). 

Expression of human asyn in DBH-hSNCA LC neurons could modulate NET 

expression at the cell surface, thus altering extracellular NE (Hettiarachchi et al., 

2009). Additionally, LC neurons exhibit intrinsic pacemaker activity that is 

dependent on L-type voltage gated calcium channels (Sanchez-Padilla et al., 

2014), and asyn can traffic L-type calcium channels to the cell surface, which 

could enhance neuron activity (Hettiarachchi et al., 2009). Finally, 

overexpression of asyn in adrenal chromaffin cells, or in cultured rat hippocampal 

neurons, can enhance the size of, and slow the closing of the vesicular fusion 

pore, allowing more vesicular neurotransmitter to spill into the extracellular space 

(Larsen et al., 2006; Logan et al., 2017). However, when asyn is overexpressed 

in an NE-producing cell line or transgenic rodent model, it can translocate to the 

nucleus and directly interfere with transcription of dopamine ß-hydroxylase 

(DBH), the enzyme involved in the final step of NE synthesis, thereby reducing 

NE production (Kim et al., 2011; Kim et al., 2014). It is possible that interfering in 

NE neurotransmission could, in turn, impact asyn expression as ß-adrenergic 

receptor (ß-AR) agonists reduce SNCA mRNA and asyn protein expression in 

induced pluripotent stem cells derived from individuals carrying the SNCA 

triplication mutation (Mittal et al., 2017). These data indicate that asyn can 

influence NE metabolism, and that this, in turn, could impact asyn expression, 

however further studies are required to determine if 14-mo Tg LC neurons are 

hyperactive, and whether other cell mechanisms, such as pre-, or post-synaptic 
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receptor expression may be involved. Together, the data suggest that this novel 

transgenic mouse model may be a useful tool for drug screening to identify 

interventions that can delay or mitigate the non-motor features of PD.    
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CHAPTER 4: FUTURE DIRECTIONS 

4.1: Summary 

On post-mortem examination of brains from human subjects, locus 

coeruleus (LC) neurons contain α-synuclein (asyn) aggregates, and display signs 

of degeneration in virtually all subjects with a clinical diagnosis of Parkinson’s 

disease (PD) (German et al., 1992; Zarow et al., 2003). While LC degeneration is 

associated with the non-motor symptoms of PD (Gonera et al., 1997; Abbott et 

al., 2005; Ross et al., 2008), there is substantial preclinical evidence suggesting 

that dysregulated LC-norepinephrine (NE) may accelerate disease progression 

and exacerbate PD pathology (Chen et al., 2007b; Butkovich et al., 2018; Koppel 

et al., 2018; Toshimitsu et al., 2018). Still, relatively little is known about how 

increased levels of pathogenic asyn affect LC neurons. In the previous chapters, 

we described in detail the effects of human wild-type asyn expression in LC 

neurons in a novel transgenic mouse model of LC degeneration. 

4.2 Discussion of the DBH-hSNCA model 

Autosomal dominant SNCA mutations enhance expression of asyn which 

tends to promote misfolding and aggregation of the protein (Cannon and 

Greenamyre, 2013; Chuang et al., 2016), generally cause early-onset PD in 

humans (Polymeropoulos et al., 1997; Zarranz et al., 2004), and produce some 

of the most robust neuropathologies in rodent models (Giasson et al., 2002; 

Miller et al., 2007; Cannon et al., 2013; Pupyshev et al., 2018).  The wild-type 

SNCA variant was selected for the DBH-hSNCA model for two reasons: first, only 
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a very small percentage of familial PD cases are due to autosomal dominant 

SNCA mutations (Lesage and Brice, 2009), and second, accumulation of wild-

type asyn is sufficient to cause PD (Singleton et al., 2003; Chartier-Harlin et al., 

2004), as approximately 90% of PD cases cannot be attributed to a known 

genetic mutation (Halliday et al., 1990; Ramsden et al., 2001; Puschmann, 

2013).  

4.3 Future directions 

The data described in previous chapters strongly suggest that LC-NE 

neurotransmission is maximally dysregulated in DBH-hSNCA mice at 14-mos, as 

fewer differences were detected between DBH-hSNCA mice and controls at 3-, 

and 24-mos. Direct confirmation of dysregulated LC-NE will be necessary to fully 

characterize DBH-hSNCA mice. This could include electrophysiological 

recordings of LC activity, and/or biochemical detection methods. Additionally, 3-, 

and 24-mo LC neurons should be examined for asyn inclusions to determine 

whether the pSer129-negative aggregates observed at 14-mos represent a point 

on the aggregation continuum between monomeric and ß-sheet-rich asyn 

inclusions.  

In the DBH-hSNCA model LC projection fibers were only examined in 

hippocampal regions, but LC neurons innervate virtually every region of the CNS 

(Sharma et al., 2010). For example, noradrenergic innervation of cortical regions 

has been strongly implicated in cognitive flexibility, which is impaired in early PD, 

and is restored by enhancing cortical NE in preclinical models (Chan-Palay and 

Asan, 1989; Lapiz et al., 2007). Human asyn expression in LC neurons in DBH-
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hSNCA mice results in loss of hippocampal LC fibers at 24-mos, and while the 

LC is the sole source of NE to the hippocampus, LC projections innervate 

virtually every region of the CNS (Sharma et al., 2010). Future studies should 

examine NET-expressing LC fibers in other brain regions found to contain 

deficient NE in PD, including the cortex, to determine whether LC projections are 

lost throughout the brain, or is specific hippocampal regions (Vazey and Aston-

Jones, 2012). 

Age is the primary risk factor for PD (Tanner and Goldman, 1996; Pagano 

et al., 2016) and as such it is important to include age as a variable when 

modeling PD in animals. Neurodegeneration is a key feature of PD and in the 

DBH-hSNCA mouse, loss of LC projections was only observed in 24-mo mice. 

Aging mice for two years can be costly and impractical in the long-term, and if 

age-related pathology could be accelerated it could help to expedite subsequent 

studies. A straightforward approach would be to establish a line of hSNCA 

homozygous DBH-hSNCA mice. Alternatively, ‘second hit’ studies could be used 

to determine whether DBH-hSNCA mice may be differentially affected by known 

environmental factors associated with increased risk for PD.   

A notable difference between catecholaminergic neurons in the human 

and rodent is that unlike rodents, human LC and SNpc neurons contain 

neuromelanin (NM) (Marsden, 1961). NM is a cytosolic pigmented polymer, 

believed to confer vulnerability as cells with higher NM expression are more 

severely affected in PD than those with lower (Fedorow et al., 2006; Zecca et al., 

2008; Zucca et al., 2015). Recently NM expression was replicated in rodents 
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using viral-mediated expression of tyrosinase, an enzyme involved in the 

synthesis of peripheral melanins (Carballo-Carbajal et al., 2019). In the study, 

expression of tyrosinase in SNpc neurons resulted in an age-dependent 

accumulation of human-like NM substance, and a PD-like phenotype including 

asyn aggregation, degeneration of the nigrostriatal pathway, and pronounced 

motor deficits. This would suggest that expression of tyrosinase in LC neurons 

may also be toxic and may even exacerbate LC pathology observed in the DBH-

hSNCA mice. 

It has been proposed that the progression of PD neuropathology may be 

caused by the physical transfer of pathological asyn between neurons, and brain 

regions.  While somewhat controversial, the idea that pathological asyn could 

have prion-like actions was proposed when post-mortem analysis of PD patients 

revealed that fetal grafts, which had been implanted years earlier, contained asyn 

aggregates (Kordower et al., 2008a; Kordower et al., 2008b; Li et al., 2008). The 

theory hypothesizes that misfolded, or pre-fibrillar asyn can be released from one 

neuron, and taken up by another, where it could act as a template to initiate 

oligomer formation in the “recipient” neuron (Masuda-Suzukake et al., 2013). 

Heiko Braak’s staging hypothesis of PD neuropathology, which proposed that the 

general spatiotemporal trajectory of Lewy pathology follows a caudal to rostral 

path, was seen by some as further suggestion that pathological asyn could have 

prion-like actions (Braak et al., 2003; Visanji et al., 2013; Rietdijk et al., 2017). 

Asyn was traditionally considered an intracellular protein since it lacks a classical 

secretory signal (Lee et al., 2005), yet recent evidence suggests that asyn-
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containing exosomes in the plasma, which are increased in PD, may to be 

derived from the CNS (Shi et al., 2014).  In fact, there is evidence that exosomes 

containing oliomeric asyn are more rapidly internalized as compared to those 

containing monomeric (Delenclos et al., 2017). Whether asyn transfer between 

neurons occurs in PD brains remains controversial, but propagation and 

transmission of asyn has been demonstrated in in vitro and in vivo models 

(Emmanouilidou et al., 2010; Rey et al., 2013; Aulic et al., 2014; Reyes et al., 

2014; Bernis et al., 2015). Viral-mediated expression, intracerebral inoculation, 

and peripheral injections of fibrillar asyn have been used to demonstrate 

neuronal transfer of asyn in animal models, with exogenous asyn appearing in 

cells one or more synapse away from the injection site (Luk et al., 2012; Rey et 

al., 2013; Recasens et al., 2014; Peelaerts et al., 2015). Previously, multiple 

brain regions have been targeted in these models, including the SNpc, cortex, 

and olfactory bulbs, and dorsal motor nucleus of the vagus, all of which resulted 

in transfer of exogenous asyn (Rey et al., 2013; Delenclos et al., 2017; Niu et al., 

2018; Musgrove et al., 2019). The LC is a relatively small brain region, comprised 

of approximately 47,000 neurons in the healthy adult, yet it innervates virtually 

every region of the CNS (Sharma et al., 2010). As the LC is among the first 

structures to contain asyn pathology, it’s vast projections make it uniquely 

positioned as a potential source of pathological asyn spread (Braak et al., 2001). 

Inoculation of wild-type LC neurons with fibrillary asyn could reveal whether 

pathological asyn can be transferred from LC neurons.  
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Gastrointestinal (GI) dysfunction is one of the earliest and most common 

comorbidities of PD (Edwards et al., 1992; Byrne et al., 1994). In fact, individuals 

with a history of GI dysfunction are at increased risk of developing PD (Abbott et 

al., 2001). In the gut asyn is expressed in enteroendocrine cells and enteric 

neurons (Chandra et al., 2017) and in PD, pathological asyn is not restricted to 

the CNS, as Lewy pathology is also found in enteric neurons (Braak et al., 2006; 

Shannon et al., 2012; Barrenschee et al., 2017), yet it is unclear how asyn 

pathology may affect GI function in early PD.  Historically, the dopamine ß-

hydroxylase (DBH) promoter has been used to drive transgene expression in 

enteric neurons derived from the neural crest (Kapur et al., 1991; Mercer et al., 

1991; Bates et al., 2006), and human asyn is detectable in the enteric neurons of 

DBH-hSNCA mice. Preliminary data has not indicated GI dysfunction in DBH-

hSNCA mice at any age but in the future, exposing mice to a GI insult may reveal 

whether enteric human asyn expression could impact GI dysfunction.  

Finally, while the neuroprotective and immune modulatory actions of NE 

have been well established (Rommelfanger et al., 2004; Chen et al., 2007b; 

Theodore et al., 2008), the extent to which dysregulated NE may contribute to 

the broader pathology, and chronic inflammation observed in PD has yet to be 

explored. Pending direct confirmation of dysregulated NE neurotransmission in 

the DBH-hSNCA mouse as suggested by the existing data, this new transgenic 

mouse model could provide a unique opportunity to determine whether asyn 

pathology in LC neurons could represent a tipping point in the broader pathology 

and progression of PD and could also be used to screen interventions that may 
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delay or mitigate progression of asyn-dependent pathology to anatomically 

connected brain regions. 

4.4 Conclusions 

LC neurons appear to have multiple characteristics that potentially confer 

vulnerability to PD neuropathology relative to other neuronal populations in the 

brain, as LC neuron degeneration has been observed in virtually every case of 

PD (German et al., 1992; Braak et al., 2001; Zarow et al., 2003). In the studies 

herein, expression of human wild-type asyn was targeted to LC neurons in the 

DBH-hSNCA model to examine how asyn pathology affects LC neurons. The 

resulting neuropathology, and behaviors reminiscent of the non-motor features of 

PD support the idea that human asyn could promote LC neuropathology and 

contribute to the non-motor symptoms of PD in an age-dependent manner. 

Future efforts to enhance our understanding of how asyn pathology in the LC and 

its impact of dysregulated noradrenergic neurotransmission in PD is likely to 

provide key insights into how LC pathology influences the pathogenesis and 

progression of neuropathology in early PD. 
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