
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for

an advanced degree from Emory University, I hereby grant to Emory University and

its agents the non-exclusive license to archive, make accessible, and display my thesis

or dissertation in whole or in part in all forms of media, now or hereafter known,

including display on the world wide web. I understand that I may select some access

restrictions as part of the online submission of this thesis or dissertation. I retain

all ownership rights to the copyright of the thesis or dissertation. I also retain the

right to use in future works (such as articles or books) all or part of this thesis or

dissertation.

Signature:

Warren Shull Date





On Spanning Trees with few Branch Vertices

By

Warren Shull

Doctor of Philosophy

Mathematics

Ronald Gould

Advisor

Vojtech Rodl

Committee Member

Dwight Duffus

Committee Member

Hao Huang

Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.

Dean of the James T. Laney School of Graduate Studies

Date



On Spanning Trees with few Branch Vertices

By

Warren Shull

B.A., St. Olaf College, 2013

Advisor: Ronald Gould, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Mathematics

2018



Abstract

On Spanning Trees with few Branch Vertices

By Warren Shull

Hamiltonian paths, which are a special kind of spanning tree, have long been of

interest in graph theory and are notoriously hard to compute. One notable feature

of a Hamiltonian path is that all its vertices have degree at most two in the path. In

a tree, we call vertices of degree at least three branch vertices. If a connected graph

has no Hamiltonian path, we can still look for spanning trees that come “close,” in

particular by having few branch vertices (since a Hamiltonian path would have none).

A conjecture of Matsuda, Ozeki, and Yamashita posits that, for any positive integer

k, a connected claw-free n-vertex graph G must contain either a spanning tree with at

most k branch vertices or an independent set of 2k+ 3 vertices whose degrees add up

to at most n−3. In other words, G has this spanning tree whenever σ2k+3(G) ≥ n−2.

We prove this conjecture, which was known to be sharp.
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Chapter 1

Introduction

For this thesis we assume a basic knowledge of graph theory; for terms and concepts

not defined see [2]. Also, we consider only simple graphs. For a graph G the graph

H is a subgraph, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). We call

H a spanning subgraph if V (H) = V (G), and we call H an induced subgraph if

E(H) = {xy : x ∈ H, y ∈ H, xy ∈ E(G)}. The set of neighbors in G of a vertex

v is called the neighborhood of v and is denoted N(v). The degree of v is |N(v)|,

denoted deg(v). For two vertices u and v in a graph G, a u− v path P is a sequence

of vertices in G beginning with u and ending at v such that consecutive vertices in

P are adjacent in G and no vertex is repeated. A graph G is connected if there is

a u − v path for every pair of vertices u, v ∈ V (G). The graph in which every two

distinct vertices are adjacent is the complete graph of order n, denoted Kn, having(
n
2

)
edges. The path Pn is a graph of order n and size n − 1 whose vertices can be

labeled by v1, v2, . . . , vn and whose edges are vivi+1 for i = 1, 2, . . . , n− 1. The cycle

Cn is a graph of order n and size n, for integer n ≥ 3, whose vertices can be labeled

by v1, v2, . . . , vn and whose edges are v1vn and vivi+1 for i = 1, 2, . . . , n− 1.

If a graph T is connected, and no subgraph of T is a cycle, we say T is a tree. If T

is a spanning subgraph of some other graph, we call it a spanning tree. We invite the
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reader to verify that every connected graph has a spanning tree. Note that paths are

a special kind of tree; if a spanning tree is a path, we call it a Hamiltonian path. The

problem of checking a graph for Hamiltonian paths is well known to be NP-complete.

Consequently, sufficient conditions for the existence of such a path are widely sought.

One condition that has helped repeatedly is if a graph is claw-free, meaning it has

no claw as an induced subgraph. (A claw consists of four vertices a, b, c, d with edges

ab, ac, ad.)

In a tree, vertices of degree one and vertices of degree at least three are called leaves

and branch vertices, respectively. A Hamiltonian path can be regarded as a spanning

tree with maximum degree at most two, a spanning tree with at most two leaves,

or a spanning tree with no branch vertex. Sufficient conditions for a Hamiltonian

path may, therefore, be extendable to sufficient conditions for a spanning tree that is

“almost” a Hamiltonian path in one or more of these ways.

We denote by σm(G) the smallest possible sum of degrees of an independent set

of m vertices in G. If there is no such independent set, we say σm(G) = ∞. This

parameter will be central to our own results and those leading up to them. We also

denote by G[V ] = G[v1, v2, . . . , vt] the subgraph induced by V = {v1, v2, . . . , vt} for

any V ⊆ V (G), as will be helpful in our proofs.

Many researchers have investigated conditions for spanning trees with low maxi-

mum degree [4, 11, 13, 15, 17]; we give a good example below.

Theorem 1. [17] Let k ≥ 2 and let G be a connected graph. If G − S has at most

(k−2)|S|+2 components for all S ⊂ V (G), then G has a spanning tree with maximum

degree at most k.

Spanning trees with few leaves have also been widely sought [1, 10, 14, 16]. The

following such instance is particularly useful to us.

Theorem 2. [10] Let k be a non-negative integer and let G be a connected claw-free

graph. If σk+3(G) ≤ n− k− 2, then G has a spanning tree with at most k + 2 leaves.
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Km Km

Km Km Km Km Km

k + 1

Figure 1.1: Any spanning tree of this graph G must contain more than k branch
vertices, while a maximum independent set contains 2k + 3 vertices with degrees
adding up to at least |V (G)| − 3.

From this point forward, we turn our attention to bounds on the number of branch

vertices in a graph. Examples can be found in [3, 5, 6, 7, 12]. In particular, a paper of

Matsuda, Ozeki, and Yamashita [12] conjectures a condition on connected claw-free

graphs which ensures the existence of a spanning tree with at most k branch vertices.

Conjecture 1. [12] Let k be a non-negative integer and let G be a connected claw-free

graph of order n. If σ2k+3(G) ≥ n − 2, then G has a spanning tree with at most k

branch vertices.

A weaker version of this result, which requires just as large an independent set

(α denotes independence number) but ignores its degree sum, was shown in the same

paper:

Theorem 3. [12] Let k be a non-negative integer. A connected claw-free graph G has

a spanning tree with at most k branch vertices if α(G) ≤ 2k + 2.

Both of the above statements are shown to be best possible by the example in

Figure 1.1.

The k = 0 case of Conjecture 1 follows from Theorem 2. The conjecture’s authors

prove the k = 1 case in the same paper.

Theorem 4. [12] Suppose that a connected claw-free graph G of order n satisfies

σ5(G) ≥ n− 2. Then G has a spanning tree with at most one branch vertex.
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eTv

uTv

vuv

g(e, v) ev evv
u

e

Figure 1.2: A path between vertices u and v within some tree T , as described in
Definition 2, showing g(e, v) as described in Defintion 1. If T is a spanning tree of
some graph G, note that v is an oblique neighbor of e with respect to T if and only
if vg(e, v) ∈ E(G).

In Chapter 2, we prove the k = 2 case.

Theorem 5. [8] Suppose that a connected claw-free graph G of order n satisfies

σ7(G) ≥ n− 2. Then G has a spanning tree with at most two branch vertices.

The proofs of Theorem 4 and Theorem 5 make use of Theorem 2. It was not,

however, needed for our proof of the entire conjecture.

Theorem 6. [9] Let G be a connected, claw-free graph on n vertices, and let k be a

non-negative integer. If σ2k+3 ≥ n − 2, then G has a spanning tree with at most k

branch vertices.

An essential concept for the above result is that of pseudoadjacency and pseudoin-

dependence, which mean something very particular in this context. These require a

concept of oblique neighbors ; the three terms are defined below along with some use-

ful notation. These concepts are new, to our knowledge, and only make sense with

respect to a fixed spanning tree.

Definition 1. Let T be a spanning tree of a graph G and let v ∈ V (G) and e ∈ E(T ).

Denote g(e, v) as the vertex incident to e farthest away from v in T . We say v and

e are oblique neighbors with respect to T if vg(e, v) ∈ E(G). See Figure 1.2.
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Definition 2. Any two vertices of a tree T , say u and v, are joined by a unique path,

denoted uTv, and we denote dT (u, v) = |E(uTv)|. Now if e ∈ E(T ), then eTv denotes

the unique shortest path containing v and one of the vertices incident to e, but not

the edge e itself. We also denote uv := V (uTv)∩NT (u) and ev as the vertex incident

to e in the direction toward v. If ev 6= v, then we denote evv := V (evTv) ∩ NT (ev),

similar to the uv notation. See Figure 1.2.

Note that both vertices incident to a given edge of T are among its oblique neigh-

bors.

Definition 3. Let T be a spanning tree of a graph. Two vertices are pseudoadja-

cent with respect to T if there is some e ∈ E(T ) which has them both as oblique

neighbors. Similarly, a vertex set is pseudoindependent with respect to T if no two

vertices in the set are pseudoadjacent with respect to T .

Note that pseudoadjacency (with respect to any tree) is implied by adjacency and

is thus a weaker condition, while pseudoindependence is a stronger condition than

independence. We also include an equally useful, but less novel, set of notations for

trees:

Definition 4. Let B = B(T ) denote the set of branch vertices of a tree T , and let

L(T ) denote the set of leaves. Let Bn(T ) denote the set of branch vertices of T with

degree exactly n, and let B≤n(T )
(
B≥n(T )

)
denote the set of branch vertices of T

with degree at most (at least) n. Lastly, we call the set ST =
⋃

u,v∈B

uTv the internal

subtree of T .
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Chapter 2

Proof for k = 2

In this chapter, we prove Theorem 5 which proves the k = 2 case of Conjecture 1.

We restate the theorem below.

Theorem 5 [8] Suppose that a connected claw-free graph G of order n satisfies σ7(G) ≥

n− 2. Then G has a spanning tree with at most two branch vertices.

We separate this result into more specific ones based on the structure of a carefully

chosen “minimal” spanning tree, as we explain below. All notations given in Definition

4 apply here. Also, in this proof, [t] refers to the set of all positive integers less than

or equal to t. Some additional notation will be helpful.

Definition 5. Let v ∈ V (T ) \ V (ST ). The induced subgraph of T given by those

vertices in the same component of T [V (T ) \ V (ST )] as v must form a path, which we

call Mv. We denote the end of this path which is a leaf in T as lv, and the other end

as uv. We define bv = NT (uv) ∩ V (ST ). Furthermore, we define v+ = NT (v) ∩ vTbv,

and if v is not a leaf we define v− = NT (v) ∩ vT lv. See Figure 2.1.

To prove Theorem 5, let G be a connected claw-free graph. Assume σ7(G) ≥ n−2.

By way of contradiction, assume every spanning tree of G has at least 3 branch

vertices.
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v

Mv

lvuvbv v+ v−

Figure 2.1: A vertex v outside the internal subtree ST and some nearby vertices. In
this diagram, only degT (bv) ≥ 3 while degT (lv) = 1, and all other vertices in the
diagram have degree 2. The only vertex of ST shown in this diagram is bv.

By Theorem 2 with k = 4, G has a spanning tree with at most 6 leaves. Among

all spanning trees of G with at most 6 leaves, choose a spanning tree T also satisfying:

(T1) T has as few branch vertices as possible.

(T2) T has as few leaves as possible, subject to (T1).

Given that T has at most six leaves, it must have at most four branch vertices.

Define the derived tree τ = τ(T ) by homeomorphically reducing T (so there are no

more degree two vertices) and deleting all leaves. It is not hard to show that τ is also

a tree, as any cycle in τ would correspond to a cycle in T , of which there are none.

Now since T has at most six leaves, it can have either three or four branch vertices.

If T has only three branch vertices, then necessarily τ ∼= P3, and at most one of the

branch vertices of T has degree four in T . If one vertex of T has degree 4, it can

correspond to either the middle vertex of τ(T ) or an end vertex. We can thus impose

two more conditions (the second of which applies regardless of the structure of T ):

(T3) Suppose two trees A and B exist satisfying (T2), each with exactly one vertex

of degree 4, and suppose the middle vertex of τ(A) corresponds to the degree 4

vertex of A, while an end vertex of τ(B) corresponds to the degree 4 vertex of

B. We select A over B.

(T4) ST is as small as possible, subject to (T3) if applicable or (T2) otherwise.

Once this T is chosen, several lemmas follow.
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2.1 Lemmas

Lemma 1. If NT (v) = {a, b, c} and a, b 6∈ ST , then ab ∈ E(G).

Proof. Let v ∈ V (G) such that NT (v) = {a, b, c}, and assume a, b 6∈ ST . Since T has

more than one branch vertex, c ∈ ST . Now if ac ∈ E(G), then T ′ := T −{va}+ {ac}

either has fewer branch vertices than T (if c ∈ B(T )) or else it has the same number

of branch vertices and leaves as T , with the same structure, but a smaller internal

subtree. Thus either (T1) or (T4) is violated.

Lemma 2. If v ∈ V (T ) \ V (ST ) and v+lv ∈ E(G), then vl 6∈ E(G) if l is any leaf of

T other than lv. In particular, L(T ) is an independent set.

Proof. Let v ∈ V (T ) \ V (ST ), and assume v+lv ∈ E(G). Let l be a leaf of T other

than lv. Then T ′ := T −{vv+, bvuv}+ {vl, lvv+} has no more branch vertices than T

and fewer leaves, violating either (T1) or (T2).

Lemma 3. If v ∈ V (T ) \ V (ST ), v+lv ∈ E(G), and degT (bv) = 3, then vb 6∈ E(G)

if b is any branch vertex of T other than bv. In particular, if b ∈ B(T ) and l ∈ L(T )

such that degT (bl) = 3 and b 6= bl, then lb 6∈ E(G).

Proof. Let v ∈ V (T ) \ V (ST ), and assume v+lv ∈ E(G) and degT (bv) = 3. Let b be a

branch vertex of T other than bv. Then T ′ := T − {vv+, bvuv}+ {vb, lvv+} has fewer

branch vertices than T , violating (T1).

Lemma 4. Let v ∈ V (T )\V (ST ) such that degT (bv) = 3, vbv ∈ E(G), and |NT (bv)∩

ST | = 1. Then v+lv 6∈ E(G). In particular, if l ∈ L(T ) such that degT (bl) = 3 and

|NT (bl) ∩ ST | = 1, then lbl 6∈ E(G).

Proof. Suppose v+lv ∈ E(G). Define u′ = NT (bv)\(ST ∪{uv}), so Lemma 1 gives that

uvu
′ ∈ E(G). It follows that T ′ := T − {vv+, bvuv, bvu′} + {vbv, v+lv, uvu′} violates

(T1).



9

Lemma 5. If a, c ∈ L(T ) and v ∈ V (T ) \ V (ST ) and c 6= lv 6= a, then v 6∈ NG(a) ∩

NG(c).

Proof. Suppose av, cv ∈ E(G) for some a, c, v as above. Since v is not a leaf (by

Lemma 2), there exists v−. Since G[v, v−, a, c] is not a claw and Lemma 2 ensures

that ac 6∈ E(G), it follows that either av− ∈ E(G) or cv− ∈ E(G). Without loss of

generality, assume av− ∈ E(G). Then T ′ := T −{vv−, uvbv}+ {av−, cv} has no more

branch vertices than T and fewer leaves, violating either (T1) or (T2).

Lemma 6. Let l ∈ L(T ), b ∈ B(T ), and v ∈ V (T ) \ V (ST ) such that l 6= lv,

bl 6= b 6= bv, lb 6∈ E(G), and degT (bv) = 3. Then v 6∈ NG(l) ∩NG(b).

Proof. Assume lv, bv ∈ E(G) for some l, b, v as above. Lemma 2 ensures that v is

not a leaf, so there exists v−. Since G[v, v−, l, b] is not a claw and lb 6∈ E(G), either

lv− ∈ E(G) or bv− ∈ E(G). If lv− ∈ E(G), then T ′ := T − {vv−, bvuv} + {lv−, bv}

has fewer branch vertices than T , violating (T1). Otherwise bv− ∈ E(G), so T ′ :=

T −{vv−, bvuv}+ {lv, bv−} has fewer branch vertices than T , still violating (T1).

Lemma 7. Let u ∈ V (T )\V (ST ) such that ubu ∈ E(T ), and let lu 6= l ∈ L(T ). Then

ul 6∈ E(G).

Proof. Suppose ul ∈ E(G) for some u, l as above. Then T ′ := T − {ubu} + {ul} has

no more branch vertices than T and fewer leaves, violating either (T1) or (T2).

Lemma 8. Let u ∈ V (T ) \ V (ST ) such that ubu ∈ E(T ) and degT (bu) = 3, and let

bu 6= b ∈ B(T ). Then ub 6∈ E(G).

Proof. Suppose ub ∈ E(G). Then T ′ := T − {ubu} + {ub} has fewer branch vertices

than T , violating (T1).

We now prove several results about T , ruling out one at a time the possible

structures it could have.
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b3b1 b2w1u1l1 l2w2 u2

u5u6u3u4

l4 l3 l6 l5

M1 Q1 Q2 M2

M4
M3 M6 M5

Figure 2.2: If τ ∼= P3, T may have a degree 4 vertex corresponding to the middle
vertex of τ . Each vertex labeled bi is also called bi+3.

2.2 First Structure

Proposition 1. It is not the case that τ(T ) ∼= P3 with its middle vertex corresponding

to a degree 4 vertex of T .

Proof. By contradiction, suppose τ(T ) ∼= P3 with its middle vertex corresponding

to a degree 4 vertex of T . Then we may represent T with Figure 2.2. As shown

in Figure 2.2, we select two leaves with the same nearest branch vertex, which has

degree three, and call them l1 and l4. We then call the other two such l2 and l5. We

also call the two leaves whose nearest branch vertex has degree four l3 and l6, and

we then abbreviate uli as ui, and bli as bi, and Mli as Mi, for each i ∈ [6]. We also

define wj = NT (b3) ∩ V (b3Tbj) and Qj = wjTbj for each j ∈ [2]. Note that b3 = b6 is

in none of the labeled paths.

Since G is claw-free, there can be no induced claw centered at b3. Among the four

vertices of NT (b3), therefore, there must be two disjoint cliques whose union is all

of NT (b3). If these are a singleton and a triplet, the singleton cannot be u3i for any

i ∈ [2], since otherwise T ′ := T − {u9−3ib3, b3w2} + {u9−3iw1, w1w2} violates either

(T1) or (T4). Therefore either u3u6 ∈ E(G) or u3w1, u6w2 ∈ E(G) or u3w2, u6w1 ∈

E(G). Also, u1, u2, u4, u5 6∈ ST are neighbors of b1 and b2, so Lemma 1 gives that

u1u4, u2u5 ∈ E(G).

Claim 1. The vertex set X := {l1, l2, l3, l4, l5, l6, b3} is independent.
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Proof. By Lemmas 2 and 3 and symmetry, we need only show that l3b3 6∈ E(G), so

suppose l3b3 ∈ E(G). If u3u6 ∈ E(G), then T ′ := T − {b3u3, b3u6} + {u3u6, b3l3}

has the same number of branch vertices as T but fewer leaves, violating (T2). On

the other hand, if u3u6 6∈ E(G), then without loss of generality we may assume

u3w1 ∈ E(G), so T ′ := T −{b3u3, b3w1}+{u3w1, b3l3} has the same number of branch

vertices as T but fewer leaves, still violating (T2).

Claim 2. For every h ∈ [6], (NG(lh) ∩ V (Mh))− ∩NG(b3) = ∅.

Proof. Suppose some v ∈ (NG(lh)∩V (Mh))−∩NG(b3). By Lemma 3, we may assume

3 | h. Now if u3u6 ∈ E(G), then we may assume h = 3 without loss of generality,

so T ′ := T − {vv+, u3b3, u6b3} + {vb3, v+l3, u3u6} has the same number of branch

vertices as T and one less leaf, violating (T2). Otherwise, either u3w1, u6w2 ∈ E(G)

or u3w2, u6w1 ∈ E(G). Without loss of generality, we may assume h = 3 and u3w1 ∈

E(G). Then T ′ := T − {vv+, b3u3, b3w1}+ {b3v, l3v+, u3w1} has the same number of

branch vertices as T and one less leaf, violating (T2).

Claim 3. If i 6= h, then NG(li) ∩ V (Mh) ∩NG(b3) = ∅.

Proof. Suppose v ∈ NG(li) ∩ V (Mh) ∩NG(b3). Lemma 6 ensures that either 3 | h or

3 | i. Consider cases:

Case 1: Suppose 3 - h. Then 3 | i, and since v 6= lh by Lemma 2, there exists v−.

Since G[v, v−, b3, li] is not a claw and b3li 6∈ E(G) by Claim 1, either b3v
− ∈ E(G)

or liv
− ∈ E(G). If b3v

− ∈ E(G), then T ′ := T − {vv−, bhuh} + {vli, b3v−} has

fewer branch vertices than T , violating (T1). Otherwise liv
− ∈ E(G), so T ′ :=

T − {vv−, bhuh}+ {vb3, liv−} has fewer branch vertices than T , still violating (T1).

Case 2: Suppose 3 - i. Then 3 | h, and since v 6= lh by Lemma 2, there exists v−.

Since G[v, v−, li, b3] is not a claw and lib3 6∈ E(G), it follows that either liv
− ∈ E(G)

or b3v
− ∈ E(G). If b3v

− ∈ E(G), then T ′ := T − {vv−, uibi} + {b3v−, liv} has
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fewer branch vertices than T , contradicting (T1). On the other hand, if liv
− ∈

E(G), we consider whether or not u3u6 ∈ E(G). If u3u6 ∈ E(G), then T ′ := T −

{vv−, b3u3, b3u6}+ {liv−, b3v, u3u6} has the same number of branch vertices as T but

fewer leaves, contradicting (T2). If u3u6 6∈ E(G), then uhwj ∈ E(G) for some j ∈ [2],

and T ′ := T − {b3uh, b3wj, vv
−} + {uhwj, b3v, liv

−} has the same number of branch

vertices as T but fewer leaves, contradicting (T2).

Case 3: Suppose both 3 | i and 3 | h. Without loss of generality, assume h = 3 and

i = 6, so v ∈ V (M3) and vb3, vl6 ∈ E(G) (and there exists v−, as before). Consider

cases:

Case 3a: Suppose wiu3 ∈ E(G) for some i ∈ [2]. Since G[v, v−, b3, l6] is not a

claw and b3l6 6∈ E(G), either l6v
− ∈ E(G) or b3v

− ∈ E(G). If l6v
− ∈ E(G), then

T ′ := T −{vv−, b3u3, b3wi}+{l6v−, b3v, u3wi} has the same number of branch vertices

as T and fewer leaves, contradicting (T2). On the other hand, if b3v
− ∈ E(G), then

T ′ := T −{vv−, b3u3, b3wi}+{b3v−, l6v, u3wi} has the same number of branch vertices

as T but fewer leaves, still contradicting (T2).

Case 3b: Suppose wiu6 ∈ E(G) for some i ∈ [2]. Since G[v, v−, b3, l6] is not a

claw and b3l6 6∈ E(G), either l6v
− ∈ E(G) or b3v

− ∈ E(G). If l6v
− ∈ E(G), then

T ′ := T −{vv−, b3u6, b3wi}+{l6v−, l6v, u6wi} has the same number of branch vertices

as T and fewer leaves, contradicting (T2). On the other hand, if b3v
− ∈ E(G), then

T ′ := T −{vv−, b3u6, b3wi}+{b3v−, l6v, u6wi} has the same number of branch vertices

as T but fewer leaves, still contradicting (T2).

Case 3c: Suppose w1u3, w1u6, w2u3, w2u6 6∈ E(G). In this case, sinceG[b3, w1, u3, u6]

is not a claw and u3w1, u6w1 6∈ E(G), it follows that u3u6 ∈ E(G). Also, since

G[b3, w1, w2, u3] is not a claw and w1u3, w2u3 6∈ E(G), it follows that w1w2 ∈ E(G).

As before, since G[v, v−, b3, l6] is not a claw and b3l6 6∈ E(G), either l6v
− ∈ E(G) or

b3v
− ∈ E(G). If l6v

− ∈ E(G), then T ′ := T −{b3u3, b3u6, vv−}+{u3u6, b3v, l6v−} has
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the same number of branch vertices as T but one less leaf, contradicting (T2). We

consider separately the case where b3v
− ∈ E(G):

Case 3c′: Suppose u3u6, w1w2, b3v
− ∈ E(G). For each i ≡ 0 (mod 3), j ∈ [2], since

G[b3, v
−, ui, wj] is not a claw and uiwj 6∈ E(G), it follows that either v−ui ∈ E(G)

or v−wj ∈ E(G). In other words, there does not exist a pair (i, j) such that

v−ui, v
−wj 6∈ E(G). Therefore either v−w1, v

−w2 ∈ E(G), or else v−u3, v
−u6 ∈ E(G).

If v−w1, v
−w2 ∈ E(G), then T ′ := T−{vv−, b3w2, b3u3, b3u6}+{w1v

−, w1w2, b3v, u3u6}

is a tree with the same number of branch vertices (barring w1 = b1, which would vio-

late (T1)) and leaves, with the same structure, but |V (ST ′)| < |V (ST )|, contradicting

(T4). On the other hand, if v−u3, v
−u6 ∈ E(G), then T ′ := T − {vv−, b3u3} +

{l6v, v−u3} has the same number of branch vertices at T and fewer leaves, contra-

dicting (T2) and completing the proof of Claim 3.

Claim 4. If i ≡ j(mod 3), then NG(li) ∩ V (Qj) = ∅.

Proof. Suppose v ∈ NG(li)∩ V (Qj). Then v 6= bi by Lemma 4, so T ′ := T −{biui}+

{vli} has the same number of branch vertices and leaves as T , still with the same

structure, but |V (ST ′)| < |V (ST )|, violating (T4).

Claim 5. If i+ j ≡ h ≡ 0(mod 3), then NG(li) ∩ V (Qj) ∩NG(lh) = ∅.

Proof. Suppose some v ∈ NG(li) ∩ V (Qj) ∩NG(lh). Lemma 3 ensures that v 6= bj, so

T ′ := T −{biui, b3uh}+ {liv, lhv} matches the structure of T but |V (ST ′)| < |V (ST )|,

violating (T4).

Claim 6. If i+ j ≡ 0(mod 3), then (NG(b3) ∩ V (Qj))
− ∩NG(li) = ∅.

Proof. Suppose some v ∈ (NG(b3) ∩ V (Qj))
− ∩NG(li). Then v+b3 ∈ E(G), so T ′ :=

T − {vv+, biui}+ {v+b3, liv} violates (T1).

Claim 7. If i+ j = 3, then NG(li) ∩ V (Qj) ∩NG(li+3) = ∅.
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Proof. Suppose some v ∈ NG(li) ∩ V (Qj) ∩NG(li+3). Then T ′ := T − {biui, b3wi} +

{liv, li+3v} violates (T4) since |V (ST ′)| < |V (ST )|.

Claim 8. For every j ∈ [2], NG(l3) ∩ V (Qj) ∩NG(l6) = ∅.

Proof. Suppose v ∈ NG(l3) ∩ V (Qj) ∩ NG(l6). Now if u3u6 ∈ E(G), then T ′ :=

T − {b3u3, b3u6} + {vl3, u3u6} has no more branch vertices than T and fewer leaves,

violating either (T1) or (T2). Otherwise, either u3w1, u6w2 ∈ E(G) or u3w2, u6w1 ∈

E(G). Without loss of generality, assume u3w1, u6w2 ∈ E(G) and j = 1. Then

T ′ := T − {b3u6, b3w2} + {vl6, u6w2} has at most as many branch vertices as T and

fewer leaves, again violating (T1) or (T2).

Claim 9. If 3|i, then (NG(b3) ∩ V (Qj))
− ∩NG(li) = ∅.

Proof. Suppose v ∈ (NG(b3) ∩ V (Qj))
− ∩ NG(li). Then v+b3 ∈ E(G), so T ′ :=

T − {vv+, b3wj}+ {liv, v+b3} violates (T4) since |V (S ′T )| < |V (ST )|.

Claim 1 gives an independent 7-vertex set X := {l1, l2, l3, l4, l5, l6, b3}. For every

h, i ∈ [6] with i 6= h, (NG(lh) ∩ V (Mh))− is disjoint from both NG(li) ∩ V (Mh) and

NG(b3) ∩ V (Mh), by Lemma 2 and Claim 2, respectively. Lemma 5 gives that the

five sets NG(li) ∩ V (Mh) are disjoint from each other, and Claim 3 ensures that

NG(b3) ∩ V (Mh) is disjoint from any of them. Therefore, for every h ∈ [6], the seven

sets (NG(lh) ∩ V (Mh))−, NG(b3) ∩ V (Mh), and NG(li) ∩ V (Mh) for each i 6= h are all

disjoint. Furthermore, Lemmas 7 and 8 show that uh is in none of these sets if 3 - h.

Therefore:
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∑
v∈X

|NG(v) ∩ V (Mh)|

= |NG(b3) ∩ V (Mh)|+ |NG(lh) ∩ V (Mh)|+
∑
i 6=h

|NG(li) ∩ V (Mh)|

= |NG(b3) ∩ V (Mh)|+ |(NG(lh) ∩ V (Mh))−|+
∑
i 6=h

|NG(li) ∩ V (Mh)|

≤

 |V (Mh)| h ≡ 0(mod 3)

|V (Mh)| − 1 h 6≡ 0(mod 3).

Claim 4, meanwhile, shows that for each j ∈ [2] the only possible neighbors

of vertices in V (Qj) in X are l3−j, l6−j, l3, l6, and y3; Claims 5-9 show that for

each j ∈ [2], the five sets NG(l3−j) ∩ V (Qj), NG(l6−j) ∩ V (Qj), NG(l3) ∩ V (Qj),

NG(l6) ∩ V (Qj), and (NG(b3) ∩ V (Qj))
− are all disjoint. Therefore, for each j ∈ [2]:∑

v∈X

|NG(v) ∩ V (Qj)| = |NG(l3−j) ∩ V (Qj)|+ |NG(l6−j) ∩ V (Qj)|+ |NG(l3) ∩

V (Qj)|+ |NG(l6) ∩ V (Qj)|+ |(NG(b3) ∩ V (Qj))
−| ≤ |V (Qj)|.

Since b3 ∈ X, no vertex ofX is adjacent to b3 inG, so we can sum these inequalities

to
∑
v∈X

degG(v) ≤ n− 4, contradicting the assumption that σ7(G) ≥ n− 2.

2.3 Second Structure

Proposition 2. There is no degree 4 vertex in T .

Proof. Suppose there is a degree 4 vertex in T . Proposition 1 gives that it cannot

correspond to the middle vertex of τ(T ), so it must correspond to an end vertex. We

call the degree 4 vertex b, and we call the middle branch vertex x and the remaining

one y. The three leaves whose nearest branch vertex is b shall be called l1, l2, and
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xb yx1u1l1 y1x2 w1

w2u3 x−u2

l2 wl3 y2

M1 Q1 Q2 R1

M2 M3 P R2

Figure 2.3: If τ ∼= P3, T may have a degree 4 vertex corresponding to an end vertex
of τ .

l3, and we abbreviate uli as ui and Mli as Mi for each i ∈ [3]. The other leaves and

branch vertex neighbors are labeled as shown in Figure 2.3, with the labeled paths

running only between nearest labeled vertices, similar to Figure 2.2 (for example,

Q1 = bTx1), with one important exception: P = wTx.

Recall condition (T3), which prefers trees whose middle branch vertex has degree

4 over trees with an “end” branch vertex of degree 4. This condition, together with

our choice of T , rules out the existence of any spanning tree of G whose middle branch

vertex (of three) has degree 4.

Once this T is chosen, since G is claw-free, there can be no induced claw centered

at b. Define b+ := NT (b) ∩ V (bTx). If there are two distinct i, j ∈ [3] such that

uib
+, ujb

+ ∈ E(G), then consider T ′ := T−{bui, buj}+{uib+, ujb+}. If b+ = x, then T ′

has fewer branch vertices than T , violating (T1). Otherwise T ′ has the same number

of branch vertices and leaves as T , with the same structure, but |V (ST ′)| < |V (ST )|,

violating (T4). Therefore there is at most one i ∈ [3] such that uib
+ ∈ E(G). If such

an i exists, let {j, k} = [3] \ {i}, so it is easily seen that ujuk ∈ E(G). Otherwise, it

is easily seen that {u1, u2, u3} is a clique. Also, Lemma 1 gives that w1w2 ∈ E(G).

Claim 1. The vertex set X := {l1, l2, l3, w, y1, y2, b} is independent.

Proof. By Lemmas 2 and 3, we need only show that lib 6∈ E(G) for each i ∈ [3].

Assume lib ∈ E(G). Then either uib
+ ∈ E(G) or uiuj ∈ E(G) for some j 6= i. If
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uib
+ ∈ E(G), then T ′ := T − {bb+, bui}+ {b+ui, lib} has the same number of branch

vertices as T but fewer leaves, violating either (T1) or (T2). Otherwise uiuj ∈ E(G)

for some j 6= i, so T ′ := T − {bui, buj} + {bli, uiuj} has the same number of branch

vertices as T but fewer leaves, violating (T2).

Claim 2. For every h ∈ [3], (NG(lh) ∩ V (Mh))− ∩NG(b) = ∅.

Proof. Suppose v ∈ (NG(lh) ∩ V (Mh))− ∩ NG(b). Then v+ ∈ NG(lh) ∩ V (Mh), and

either uhb
+ ∈ E(G) or uhui ∈ E(G) for some i 6= h. If uhb

+ ∈ E(G), then T ′ :=

T − {bb+, buh, vv+} + {v+lh, vb, b+uh} has the same number of branch vertices as

T and fewer leaves, violating (T2). Otherwise uhui ∈ E(G) for some i 6= h, so

T ′ := T − {vv+, buh, bui} + {vb, v+lh, uhui} has the same number of branch vertices

as T and fewer leaves, violating (T2).

Claim 3. For every i ∈ [3], NG(li) ∩ V (P ) ∩NG(b) = ∅.

Proof. Suppose v ∈ NG(li)∩V (P )∩NG(b). Now if v = x, then consider G[x, x−, b, li].

We have bli 6∈ E(G) by Claim 1, x−li 6∈ E(G) by Lemma 7, and x−b 6∈ E(G) by

Lemma 8. This makes G[x, x−, b, li] an induced claw, which is a contradiction. On

the other hand, if v 6= x, then since v 6= w, there exists v−. Since G[v, v−, b, li] is

not a claw and bli 6∈ E(G), it follows that either v−b ∈ E(G) or v−li ∈ E(G). If

v−b ∈ E(G), then T ′ := T − {vv−, xx−} + {v−b, vli} has fewer branch vertices than

T ; otherwise v−li ∈ E(G), so T ′ := T − {vv−, xx−} + {bv, liv−} has fewer branch

vertices than T . Either way (T1) is still violated.

Claim 4. For every i ∈ [3] and h ∈ [2], NG(li) ∩ V (Rh) ∩NG(b) = ∅.

Proof. Suppose v ∈ NG(li) ∩ V (Rh) ∩ NG(b). Since v 6= yh, there exists v−. Since

G[v, v−, b, li] is not a claw and bli 6∈ E(G), either bv− ∈ E(G) or liv
− ∈ E(G). If

bv− ∈ E(G), then T ′ := T − {vv−, ywh} + {bv−, liv} has fewer branch vertices than
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T ; otherwise liv
− ∈ E(G), so T ′ := T − {vv−, ywh} + {bv, liv−} has fewer branch

vertices than T . Either way (T1) is violated.

Claim 5. For every h ∈ [3], NG(w) ∩ V (Mh) ∩NG(b) = ∅.

Proof. Suppose v ∈ NG(w)∩V (Mh)∩NG(b). Now either uhb
+ ∈ E(G) or there exists

some i ∈ [3] \ {h} such that uhui ∈ E(G). Consider two cases:

Case 1: Suppose uhb
+ ∈ E(G). Now if b+ = x, then T ′ := T − {buh} + {xuh}

corresponds to Figure 2.2, violating (T3). If b+ 6= x, then T ′ := T −{buh, bb+, xx1}+

{vw, vb, b+uh} corresponds to Figure 2.2, violating (T3).

Case 2: Suppose uhui ∈ E(G). Since v 6= lh, there exists v−, and sinceG[v, v−, b, w]

is not a claw and bw 6∈ E(G), it follows that either bv− ∈ E(G) or wv− ∈ E(G). Now

if bv− ∈ E(G), then T ′ := T −{vv−, buh, bui}+ {bv−, wv, uhui} has the same number

of branch vertices as T but fewer leaves, violating (T2). Otherwise wv− ∈ E(G), so

T ′ := T − {vv−, buh, bui} + {uhui, bv, wv−} has the same number of branch vertices

as T but fewer leaves, violating (T2).

Claim 6. For every h ∈ [3] and i ∈ [2], NG(yi) ∩ V (Mh) ∩NG(b) = ∅.

Proof. Suppose v ∈ NG(yi)∩V (Mh)∩NG(b). Now either uhb
+ ∈ E(G) or there exists

some j ∈ [3] \ {h} such that uhuj ∈ E(G). Consider two cases:

Case 1: Suppose uhb
+ ∈ E(G). Now if b+ = x, then T ′ := T − {buh} + {xuh}

corresponds to Figure 2.2, violating (T3). Otherwise, T ′ := T − {buh, bb+, xx2} +

{vyi, vb, b+uh} corresponds to Figure 2.2, again violating (T3).

Case 2: Suppose uhuj ∈ E(G). Since v 6= lh, there exists v−, and sinceG[v, v−, b, yi]

is not a claw and byi 6∈ E(G), it follows that either bv− ∈ E(G) or yiv
− ∈ E(G). Now

if bv− ∈ E(G), then T ′ := T −{vv−, buh, buj}+{bv−, yiv, uhuj} has the same number

of branch vertices as T but fewer leaves, violating (T2). Otherwise, yiv
− ∈ E(G), so
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T ′ := T − {vv−, buh, buj} + {uhuj, bv, yiv−} has the same number of branch vertices

as T but fewer leaves, again violating (T2).

Claim 7. If h 6= i, then NG(li) ∩ V (Mh) ∩NG(b) = ∅.

Proof. Suppose v ∈ NG(li)∩V (Mh)∩NG(b). Choose j ∈ [3] \{h, i} and consider two

cases:

Case 1: Suppose ujb
+ 6∈ E(G). Then either ujui ∈ E(G) or ujuh ∈ E(G).

If ujui ∈ E(G), then T ′ := T − {bui, buj} + {ujui, vli} has the same number of

branch vertices as T but fewer leaves, violating (T2). Otherwise ujuh ∈ E(G), so

T ′ := T − {buh, buj} + {uhuj, vli} has the same number of branch vertices as T but

fewer leaves, still violating (T2).

Case 2: Suppose ujb
+ ∈ E(G). Then uhui ∈ E(G), and since v 6= lh, there exists

v−. Since G[v, v−, b, li] is not a claw and bli 6∈ E(G), it follows that either liv
− ∈ E(G)

or bv− ∈ E(G). If liv
− ∈ E(G), then T ′ := T − {buh, bui, vv−} + {bv, uhui, liv−} has

the same number of branch vertices as T but fewer leaves, violating (T2). Otherwise

bv− ∈ E(G), and since G[b, uh, v
−, b+] is not a claw and uhb

+ 6∈ E(G), it follows

that either uhv
− ∈ E(G) or b+v− ∈ E(G). If uhv

− ∈ E(G), then T ′ := T −

{vv−, buh}+{liv, uhv−} has the same number of branch vertices as T but fewer leaves,

violating (T2). Otherwise b+v− ∈ E(G), so consider T ′ := T − {vv−, buh, buj} +

{b+v−, b+uj, liv}. If b+ = x, then T ′ has fewer branch vertices than T , violating (T1).

Otherwise, T ′ has the same number of branch vertices and leaves as T , with the same

structure, but |V (ST ′)| < |V (ST )|, violating (T4).

Claim 8. If h, i ∈ [2], then NG(yi) ∩ V (Qh) = ∅.

Proof. Suppose v ∈ NG(yi) ∩ V (Qh). Choose j ∈ [2] \ {i} and consider T ′ := T −

{ywi, ywj} + {vyi, wiwj}. If v = b or v = y, then T ′ has fewer branch vertices than
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T , violating (T1). Otherwise, T ′ has the same number of branch vertices and leaves

as T , both matching Figure 2.3, but |V (ST ′)| < |V (ST )|, violating (T4).

Claim 9. If i 6= j, then NG(li) ∩ V (Q1) ∩NG(lj) = ∅.

Proof. Suppose v ∈ NG(li) ∩ V (Q1) ∩NG(lj). Then v 6= b, so T ′ := T − {bui, buj} +

{vli, vlj} has the same number of branch vertices and leaves as T , with the same

structure, but |V (ST ′)| < |V (ST )|, violating (T4).

Claim 10. If i 6= j, then NG(li) ∩ V (Q2) ∩NG(lj) = ∅.

Proof. Suppose v ∈ NG(li) ∩ V (Q2) ∩ NG(lj). Then consider T ′ := T − {bui, buj} +

{vli, vlj}. If v = y, then T ′ has fewer branch vertices than T , violating (T1). Other-

wise T ′ corresponds to Figure 2.2, violating (T3).

Claim 11. If i ∈ [3] and h ∈ [2], then NG(li) ∩ V (Qh) ∩NG(w) = ∅.

Proof. Suppose v ∈ NG(li)∩V (Qh)∩NG(w). Then v 6= b, and it is easily verified that

v 6= y, so T ′ := T − {bui, xx−} + {vw, vli} has corresponds to Figure 2.2, violating

(T3).

Claim 12. If i ∈ [3], then (NG(b) ∩ V (Q1))
− ∩NG(li) = ∅.

Proof. Suppose v ∈ (NG(b) ∩ V (Q1))
− ∩ NG(li). Then v+ ∈ NG(b) ∩ V (Q1), so

T ′ := T − {vv+, bb+}+ {liv, bv+} has the same number of branch vertices and leaves

as T , with the same structure, but |V (ST ′)| < |V (ST )|, violating (T4).

Claim 13. We have (NG(b) ∩ V (Q1))
− ∩NG(w) = ∅.

Proof. Suppose v ∈ (NG(b) ∩ V (Q1))
− ∩ NG(w). Then v+ ∈ NG(b) ∩ V (Q1), so

T ′ := T−{vv+, xx−}+{vw, v+b} has fewer branch vertices than T , violating (T1).

Claim 14. If i ∈ [3], then (NG(b) ∩ V (Q2))
− ∩NG(li) = ∅.
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Proof. Suppose v ∈ (NG(b) ∩ V (Q2))
− ∩ NG(li). Then v+ ∈ NG(b) ∩ V (Q2), so

T ′ := T−{vv+, xx2}+{bv+, liv} has fewer branch vertices than T , violating (T1).

Claim 15. We have (NG(b) ∩ V (Q2))
− ∩NG(w) = ∅.

Proof. Suppose v ∈ (NG(b) ∩ V (Q2))
− ∩ NG(w). Then v+ ∈ NG(b) ∩ V (Q2), so

T ′ := T−{vv+, xx2}+{wv, bv+} has fewer branch vertices than T , violating (T1).

Claim 16. We have wx 6∈ E(G).

Proof. Suppose wx ∈ E(G). Since G[x, x−, x1, x2] is not a claw, either x−x1 ∈ E(G)

or x−x2 ∈ E(G) or x1x2 ∈ E(G). If x−x1 ∈ E(G), then T ′ := T − {xx−, xx1} +

{wx, x−x1} violates (T1). If x−x2 ∈ E(G), then T ′ := T − {xx−, xx2}+ {wx, x−x2}

violates (T1). Otherwise x1x2 ∈ E(G), so T ′ := T−{xx1}+{x1x2} violates (T4).

Lemma 2 ensures that (NG(w)∩V (P ))− is disjoint from NG(yi)∩V (P ) for each i ∈

[2] and from NG(lj)∩V (P ) for each j ∈ [3]. Lemma 3 ensures that (NG(w)∩V (P ))−

is disjoint from NG(b)∩ V (P ). Lemma 5 ensures that the five sets NG(yi)∩ V (P ) for

each i ∈ [2] and NG(lj)∩V (P ) for each j ∈ [3] are all disjoint. Lemma 6 ensures that

NG(b) ∩ V (P ) is disjoint from NG(yi) ∩ V (P ) for each i ∈ [2], and Claim 3 ensures

that NG(lj) ∩ V (P ) is disjoint from NG(b) ∩ V (P ) for each j ∈ [3]. Therefore the

seven sets (NG(w)∩V (P ))−, NG(yi)∩V (P ) for i ∈ [2], NG(lj)∩V (P ) for j ∈ [3], and

NG(b) ∩ V (P ) are all disjoint. Furthermore, Lemmas 7 and 8 and Claim 16 ensure

that none of them contain x−, so the sum of their cardinalities is at most |V (P )| − 1.

Similarly, for each h ∈ [2], Lemma 2 ensures that (NG(yh) ∩ V (Rh))− is disjoint

from any of NG(y3−h)∩V (Rh), NG(w)∩V (Rh), and NG(lj)∩V (Rh) (for j ∈ [3]), and

Lemma 3 ensures that (NG(yh)∩ V (Rh))− is disjoint from NG(b)∩ V (Rh). Lemma 5

ensures that the five sets NG(y3−h)∩V (Rh), NG(w)∩V (Rh), and NG(lj)∩V (Rh) are all

disjoint. Lemma 6 ensures that NG(b)∩V (Rh) is disjoint from both NG(y3−h)∩V (Rh)

and NG(w) ∩ V (Rh), while Claim 4 ensures that NG(b) ∩ V (Rh) is disjoint from
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NG(lj) ∩ V (Rh). Therefore the seven sets (NG(yh) ∩ V (Rh))−, NG(y3−h) ∩ V (Rh),

NG(w)∩ V (Rh), NG(lj)∩ V (Rh) for j ∈ [3], and NG(b)∩ V (Rh) are all disjoint. Now

Lemmas 7 and 8 ensure that none of them contain wh, so the sum of their cardinalities

is at most |V (Rh)| − 1.

Similarly, for each h ∈ [3], Lemma 2 ensures that (NG(lh) ∩ V (Mh))− is disjoint

from any of NG(li) ∩ V (Mh) (for i 6= h), NG(w) ∩ V (Mh), and NG(yj) ∩ V (Mh) (for

j ∈ [2]), and Claim 2 ensures that (NG(lh)∩V (Mh))− is disjoint from NG(b)∩V (Mh).

Meanwhile, Lemma 5 ensures that the five sets NG(li) ∩ V (Mh) for i 6= h, NG(w) ∩

V (Mh), and NG(yj) ∩ V (Mh) are all disjoint. Now NG(b) ∩ V (Mh) is disjoint from

NG(yj) ∩ V (Mh) (by Claim 6), NG(w) ∩ V (Mh) (by Claim 5), and NG(li) ∩ V (Mh)

(by Claim 7). Therefore the seven sets (NG(lh)∩V (Mh))−, NG(li)∩V (Mh) for i 6= h,

NG(w) ∩ V (Mh), NG(yj) ∩ V (Mh) for j ∈ [2], and NG(b) ∩ V (Mh) are all disjoint, so

the sum of their cardinalities is at most |V (Mh)|.

Finally, for each h ∈ [2], Claim 8 gives that the two sets NG(yi) ∩ V (Qh) are

empty, and Claims 9-15 give that the five sets NG(li) ∩ V (Qh), NG(w) ∩ V (Qh), and

(NG(b)∩V (Qh))− are all disjoint, so the sum of their cardinalities is at most |V (Qh)|.

Summing these inequalities gives
∑
v∈X

degG(v) ≤ n− 3, contradicting the assump-

tion of the theorem.

We now know that T has no degree 4 vertices.

2.4 Third Structure

Proposition 3. Our tree T has at least four branch vertices.

Proof. By contradiction, suppose T has only three branch vertices. Since Proposition

2 requires that they all have degree 3, we label vertices and paths as shown in Figure
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xb1 b2w1u1l1 l2w2 u2

u5x−u4

l4 l3 l5

M1 Q1 Q2 M2

M4 M3
M5

Figure 2.4: If τ ∼= P3, T may have no degree 4 vertices. Each vertex labeled bi is also
called bi+3.

2.4, with each labeled path connecting only the nearest labeled vertices, as with

the other figures, with one important exception: M3 = xT l3. Lemma 1 gives that

u1u4, u2u5 ∈ E(G). Furthermore, (T4) gives that w1w2 6∈ E(G), so either w1x
− ∈

E(G) or w2x
− ∈ E(G).

Claim 1. The vertex set X := {l1, l2, l3, l4, l5, b1, b2} is independent.

Proof. By Lemmas 2, 3, and 4, we need only show that b1b2 6∈ E(G). If b1b2 ∈ E(G),

then T ′ := T − {w1x}+ {b1b2} has fewer branch vertices than T , violating (T1).

Claim 2. If h 6= i and j ∈ [2], then NG(li) ∩ V (Mh) ∩NG(bj) = ∅.

Proof. Suppose v ∈ NG(li) ∩ V (Mh) ∩ NG(bj). Lemma 6 requires that either h ≡

j(mod 3) or i ≡ j(mod 3), and since v 6= lh, there exists v−. Consider cases:

Case 1: Suppose h ≡ i ≡ j(mod 3). Since G[v, v−, li, bj] is not a claw and

libj 6∈ E(G), it follows that either liv
− ∈ E(G) or bjv

− ∈ E(G). If liv
− ∈ E(G),

then T ′ := T − {bjuh, bjui, vv−}+ {liv−, bjv, uhui} has fewer branch vertices than T ,

violating (T1). Otherwise bjv
− ∈ E(G), so since G[bj, v

−, uh, b
+
j ] is not a claw and

uhb
+
j 6∈ E(G), it follows that either b+j v

− ∈ E(G) or uhv
− ∈ E(G). If b+j v

− ∈ E(G),

then T ′ := T − {vv−, bjuh} + {liv, b+j v−} either has fewer branch vertices than T

(if b+j = x) or else the same number of branch vertices and leaves, with the same

structure, but with a smaller internal subtree. Otherwise uhv
− ∈ E(G), so T ′ :=
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T −{vv−, bjuh}+ {liv, uhv−} has fewer branch vertices than T . In each case, (T1) or

(T4) is violated.

Case 2: Suppose h ≡ j 6≡ i(mod 3). If i = 3, then T ′ := T − {xx−, bjuj,

bjuj+3} + {ujuj+3, vli, vbj} has fewer branch vertices than T . If i 6= 3, then T ′ :=

T − {biui, bjuj, bjuj+3} + {ujuj+3, vli, vbj} has fewer branch vertices than T . Either

way (T1) is violated.

Case 3: Suppose h = 3. Then i ≡ j(mod 3), so T ′ := T − {xx−, bjuj, bjuj+3} +

{bjv, liv, ujuj+3} has fewer branch vertices than T , violating (T1).

Case 4: Suppose 3 6= h 6≡ j ≡ i(mod 3). Then T ′ := T − {bjuj, bjuj+3, xwj} +

{vbj, vli, ujuj+3} has fewer branch vertices than T , violating (T1) and proving the

claim.

Claim 3. For every h ∈ [5], NG(b1) ∩ V (Mh) ∩NG(b2) = ∅.

Proof. Suppose v ∈ NG(b1) ∩ V (Mh) ∩NG(b2). Since v 6= lh by Claim 1, there exists

v−. Consider cases:

Case 1: Suppose h 6= 3. Without loss of generality, suppose h = 1. Since

G[v, v−, b1, b2] is not a claw, either v−b1 ∈ E(G) or v−b2 ∈ E(G). If v−b1 ∈ E(G), then

T ′ := T − {vv−, b1u1, b1u4}+ {b2v, b1v−, u1u4} has fewer branch vertices than T , vio-

lating (T1). Otherwise v−b2 ∈ E(G), so T ′ := T−{vv−, b1u1, b1u4}+{b1v, b2v−, u1u4}

similarly violates (T1).

Case 2: Suppose h = 3. If v = x, then without loss of generality, assume x−w1 ∈

E(G), so it is easily seen that b1 6= w1, so T ′ := T − {xx−, xw1} + {xb1, x−w1} has

fewer branch vertices than T , violating (T1). If v 6= x, then since G[v, v−, b1, b2] is

not a claw, and b1b2 6∈ E(G), either v−b1 ∈ E(G) or v−b2 ∈ E(G). Without loss of

generality, assume v−b1 ∈ E(G), so T ′ := T − {vv−, xx−} + {v−b1, vb2} has fewer

vertices than T , violating (T1) and proving the claim.
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Claim 4. If i 6= 3, then NG(li) ∩ V (Qj) = ∅.

Proof. Suppose v ∈ NG(li) ∩ V (Qj) for some i 6= 3. For T ′ := T − {biui}+ {vli}, we

have |V (ST ′)| < |V (ST )|, violating (T4).

Claim 5. For every j ∈ [2], (NG(bj) ∩ V (Qj))
− ∩NG(l3).

Proof. Suppose v ∈ (NG(bj)∩V (Qj))
−∩NG(l3). Then v+ ∈ NG(bj)∩V (Qj), so T ′ :=

T − {vv+, xx−}+ {v+bj, vl3} has fewer branch vertices than T , violating (T1).

Claim 6. If {i, j} = {1, 2}, then (NG(bj) ∩ V (Qj))
− ∩NG(bi) = ∅.

Proof. Suppose v ∈ (NG(bj) ∩ V (Qj))
− ∩ NG(bi). Then v+ ∈ NG(bj) ∩ V (Qj), so

T ′ := T−{vv+, xwi}+{v+bj, vbi} has fewer branch vertices than T , violating (T1).

Claim 7. If {i, j} = {1, 2}, then NG(bi) ∩ V (Qj) ∩NG(l3) = ∅.

Proof. Suppose v ∈ NG(bi)∩V (Qj)∩NG(l3). Then since bjl3 6∈ E(G), v 6= bj so there

exists v−. Since G[v, v−, bi, l3] is not a claw and bil3 6∈ E(G), either v−bi ∈ E(G)

or v−l3 ∈ E(G). If v−l3 ∈ E(G), then T ′ := T − {vv−, xwj} + {biv, l3v−} has

fewer branch vertices than T , violating (T1). Otherwise v−bi ∈ E(G), so T ′ :=

T−{vv−, xwj}+{l3v, biv−} has fewer branch vertices than T , again violating (T1).

Claim 8. We have xl3 6∈ E(G).

Proof. We already know x−wi ∈ E(G) for some i ∈ [2], so if xl3 ∈ E(G), then T ′ :=

T − {xx−, xwi}+ {x−wi, xl3} has fewer branch vertices than T , violating (T1).

Claim 9. If {i, j} = [2], then wj 6∈ NG(bi) ∪NG(l3).

Proof. Suppose wj ∈ NG(bi) ∪ NG(l3). Then either wj ∈ NG(bi) (in which case

T ′ := T − {xwj} + {biwj} violates (T1)) or else wj ∈ NG(l3) (in which case T ′ :=

T − {xwj}+ {l3wj} violates (T1)).
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For every i 6= h ∈ [5], Lemma 2 ensures that (NG(lh) ∩ V (Mh))− is disjoint

from NG(li) ∩ V (Mh). Lemma 3 ensures that (NG(lh) ∩ V (Mh))− is disjoint from

NG(bj) ∩ V (Mh) when h 6≡ j(mod 3), and Lemma 4 ensures the same when h ≡

j(mod 3). Lemma 5 ensures that the four sets NG(li) ∩ V (Mh) are all disjoint,

and Claim 2 ensures that each NG(li) ∩ V (Mh) with i 6= h is disjoint from each

NG(bj) ∩ V (Mh). Finally, Claim 3 ensures that NG(b1) ∩ V (Mh) does not intersect

NG(b2) ∩ V (Mh), so the seven sets (NG(lh) ∩ V (Mh))−, NG(li) ∩ V (Mh) (for each

i 6= h), and NG(bj)∩V (Mh) (for j ∈ [2]) are disjoint, so the sum of their cardinalities

equals the cardinality of their union, which cannot exceed the cardinality of V (Mh).

Furthermore, none of these contain x− by Lemmas 7 and 8 and Claim 8, so:

∑
v∈X

|NG(v) ∩ V (Mh)|

=
5∑

i=1

|NG(li) ∩ V (Mh)|+
2∑

j=1

|NG(bj) ∩ V (Mh)|

= |NG(lh) ∩ V (Mh)|+
∑
i 6=h

|NG(li) ∩ V (Mh)|+
2∑

j=1

|NG(bj) ∩ V (Mh)|

=
∣∣(NG(lh) ∩ V (Mh))−

∣∣+
∑
i 6=h

|NG(li) ∩ V (Mh)|+
2∑

j=1

|NG(bj) ∩ V (Mh)|

≤ |V (Mh) \ {x−}| =

 |V (Mh)| h 6= 3

|V (Mh)| − 1 h = 3.

Meanwhile, for each j ∈ [2] (and {i} = [2] \ {j}), Claim 4 gives that b1, b2,

and l3 are the only vertices in X that can be adjacent to any vertex of V (Qj), and

Claims 5, 6, and 7 give that the three sets (NG(bj) ∩ V (Qj))
−, NG(l3) ∩ V (Qj), and

NG(bi) ∩ V (Qj) are disjoint, and none of them contain wj by Claim 9, so the sum of
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PQ3M1 Q6 M2

b1l1 l2b3 b6 b2u1 w3 w6 u2

u5u6

l5l6

u4 u3

l4 l3

M4 M3 M6 M5

Figure 2.5: If T has 4 branch vertices, we may have τ ∼= P4. Here, b1 is also called
b4, while b2 is also called b5.

their cardinalities is at most |V (Qj) \ {wj}| = |V (Qj)| − 1, so

∑
v∈X

|NG(v) ∩ V (Qj)|

=
5∑

h=1

|NG(lh) ∩ V (Qj)|+
2∑

k=1

|NG(bk) ∩ V (Qj)|

= |NG(l3) ∩ V (Qj)|+ |NG(bi) ∩ V (Qj)|+ |NG(bj) ∩ V (Qj)|

= |NG(l3) ∩ V (Qj)|+ |NG(bi) ∩ V (Qj)|+
∣∣(NG(bj) ∩ V (Qj))

−∣∣
≤ |V (Qj)| − 1.

Summing these inequalities gives
∑
v∈X

degG(v) ≤ n− 3, contradicting the assump-

tion of the theorem.

Therefore T must have at least 4 branch vertices (all with degree 3 of course), so

either τ ∼= P4 or τ is a claw.

2.5 Fourth Structure

Proposition 4. The derived tree τ(T ) 6∼= P4.

Proof. By contradiction, suppose τ(T ) ∼= P4. We then label vertices and paths as
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shown in Figure 2.5. Note that each vertex is in exactly one labeled path. Once this

T is chosen, we choose a (potentially different, but still with τ ∼= P4) T such that

(T5) P is as short as possible.

By Lemma 1, u1u4 ∈ E(G) and u2u5 ∈ E(G). Similarly, since no induced claw is

centered at b3i for any i ∈ [2], (T4) and (T5) give that u3iw3i ∈ E(G). Meanwhile,

Lemmas 2, 3, and 4 ensure that X := {l1, l2, l3, l4, l5, l6, b1} is an independent set.

Define b+1 = NT (b1) ∩ V (ST ).

Claim 1. If h 6= i, then NG(li) ∩ V (Mh) ∩NG(b1) = ∅.

Proof. Suppose v ∈ NG(li) ∩ V (Mh) ∩ NG(b1). By Lemma 6, we may assume h ≡

1(mod 3) or i ≡ 1(mod 3). Consider several cases:

Case 1: Suppose i 6≡ 1 ≡ h(mod 3). Then T ′ := T − {biui, b1u1, b1u4} +

{u1u4, vb1, vli} has fewer branch vertices than T , violating (T1).

Case 2: Suppose i ≡ 1 6≡ h(mod 3). Then T ′ := T − {bhuh, b1u1, b1u4} +

{u1u4, vb1, vli} has fewer branch vertices than T , violating (T1).

Case 3: Suppose i ≡ 1 ≡ h(mod 3). Since v 6= lh, there exists v−. Since

G[v, b1, li, v
−] is not a claw and b1li 6∈ E(G), either v−li ∈ E(G) or v−b1 ∈ E(G). Now

if v−li ∈ E(G), then T ′ := T − {vv−, b1u1, b1u4} + {u1u4, vb1, v−li} has fewer branch

vertices than T , violating (T1). Otherwise v−b1 ∈ E(G), then since G[b1, b
+
1 , v

−, uh]

is not a claw and b+1 uh 6∈ E(G), it follows that either b+1 v
− ∈ E(G) or uhv

− ∈ E(G).

If b+1 v
− ∈ E(G), then T ′ := T − {vv−, b1uh} + {b+1 v−, liv} either has fewer branch

vertices than T (if b+1 = b3) or else has the same number of branch vertices and leaves

as T with |V (ST ′)| < |V (ST )|, so either (T1) or (T4) is violated. On the other hand,

if uhv
− ∈ E(G), then T ′ := T − {b1uh, vv−} + {liv, uhv−} has fewer branch vertices

than T , violating (T1).
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Claim 2. The following statements hold:

Part 1. If i 6≡ 0(mod 3), then NG(li) ∩ V (Qj) = ∅.

Part 2. We have NG(b1) ∩ V (Q6) ∩NG(l3) = ∅.

Part 3. We have NG(b1) ∩ V (Q6) ∩NG(l6) = ∅.

Part 4. If i ∈ [2], then NG(l3) ∩ V (Q3i) ∩NG(l6) = ∅.

Part 5. We have (NG(b1) ∩ V (Q3))
− ∩NG(l3) = ∅.

Part 6. We have (NG(b1) ∩ V (Q3))
− ∩NG(l6) = ∅.

Part 7. We have NG(li) ∩ V (P ) = ∅ for each i ∈ [6].

Proof. To prove Part 1, suppose v ∈ NG(li) ∩ V (Qj). By symmetry, v 6= bj/3, so

T ′ := T −{biui}+ {liv} has the same number of branch vertices and leaves as T with

|V (ST ′)| < |V (ST )|, violating (T4). To prove Part 2, suppose v ∈ NG(b1) ∩ V (Q6) ∩

NG(l3). By symmetry, v 6= b2, so T ′ := T −{w3b3, w6b6}+{vl3, vb1} has fewer branch

vertices than T ′, violating (T1). To prove Part 3, suppose v ∈ NG(b1)∩V (Q6)∩NG(l6).

By symmetry, v 6= b2, so T ′ := T −{w3b3, w6b6}+{vl6, vb1} has fewer branch vertices

than T ′, violating (T1). To prove Part 4, let i ∈ [2] and suppose v ∈ NG(l3)∩V (Q3i)∩

NG(l6). Then T ′ := T − {u3b3, u6b6} + {vl3, vl6} has fewer branch vertices than T ,

violating (T1). To prove Part 5, suppose v ∈ (NG(b1) ∩ V (Q3))
− ∩ NG(l3). Then

v+ ∈ NG(b1)∩V (Q3), so T ′ := T −{vv+, b3u3}+{l3v, b1v+} has fewer branch vertices

than T , violating (T1). To prove Part 6, suppose v ∈ (NG(b1) ∩ V (Q3))
− ∩ NG(l6).

Then v+ ∈ NG(b1) ∩ V (Q3), so T ′ := T − {vv+, b6u6}+ {l6v, b1v+} has fewer branch

vertices than T , violating (T1). To prove Part 7, suppose v ∈ NG(li)∩ V (P ). Now if

v ∈ {b3, b6}, Lemma 3 ensures that i ≡ 0(mod 3) and v = bi, so T ′ := T−{biwi, biui}+

{bili, uiwi} has fewer branch vertices than T , violating (T1). Otherwise, b3 6= v 6= b6,

so T ′ := T − {biui}+ {vli} has the same number of branch vertices and leaves as T ,
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and |ST | = |ST ′|, but P is shorter for T ′ than it is for T , violating (T5) and proving

the claim.

Lemma 2 ensures that (NG(lh)∩V (Mh))− is disjoint from NG(li)∩V (Mh) (for each

i 6= h). Lemma 3 ensures that (NG(lh)∩V (Mh))− is disjoint from NG(b1)∩V (Mh) for

h 6≡ 1(mod 3). Lemma 4 ensures the latter for h ≡ 1(mod 3). Lemma 5 and Claim 1

ensure that the five sets NG(li) ∩ V (Mh) are disjoint from each other and NG(b1) ∩

V (Mh), respectively. Therefore the seven sets (NG(lh) ∩ V (Mh))−, NG(b1) ∩ V (Mh),

and NG(li)∩ V (Mh) for i 6= h are all disjoint, and by Lemmas 7 and 8, none of them

contain uh if h 6≡ 1 (mod 3). Therefore:

∑
v∈X

|NG(v) ∩ V (Mh)|

= |NG(b1) ∩ V (Mh)|+
6∑

i=1

|NG(li) ∩ V (Mh)|

= |NG(b1) ∩ V (Mh)|+ |NG(lh) ∩ V (Mh)|+
∑
i 6=h

|NG(li) ∩ V (Mh)|

= |NG(b1) ∩ V (Mh)|+ |(NG(lh) ∩ V (Mh))−|+
∑
i 6=h

|NG(li) ∩ V (Mh)|

≤

 |V (Mh)| − 1 h 6≡ 1(mod 3)

|V (Mh)| h ≡ 1(mod 3).

By Claim 2 Part 1, for i ∈ [2], the only vertices of X that can be adjacent to Q3i

are l3, l6, and b1. By Parts 2, 3, and 4, the three sets NG(l3)∩V (Q6), NG(l6)∩V (Q6),

and NG(b1)∩V (Q6) are disjoint. By Parts 4, 5, and 6, the three sets NG(l3)∩V (Q3),

NG(l6) ∩ V (Q3), and (NG(b1) ∩ V (Q3))
− are disjoint. Therefore:
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∑
v∈X

|NG(v) ∩ V (Q6)|

= |NG(l3) ∩ V (Q6)|+ |NG(l6) ∩ V (Q6)|+ |NG(b1) ∩ V (Q6)|

≤ |V (Q6)|

and:

∑
v∈X

|NG(v) ∩ V (Q3)|

= |NG(l3) ∩ V (Q3)|+ |NG(l6) ∩ V (Q3)|+ |NG(b1) ∩ V (Q3)|

= |NG(l3) ∩ V (Q3)|+ |NG(l6) ∩ V (Q3)|+ |(NG(b1) ∩ V (Q3))
−|

≤ |V (Q3)|

By Claim 2 Part 7, b1 is the only vertex of X that can be adjacent to any of P , so∑
v∈X

|NG(v) ∩ V (P )| = |NG(b1) ∩ V (P )| ≤ |V (P )|.

Summing these inequalities gives
∑
v∈X

degG(v) ≤ n− 4, contradicting the assump-

tion of the theorem.

2.6 Fifth Structure

Proposition 5. The derived tree τ is not a claw.

Proof. By contradiction, suppose τ is a claw. We label vertices and paths as shown

in Figure 2.6. Since uibi ∈ E(T ) and ui 6∈ ST for every i ∈ [6], Lemma 1 gives that
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M4 M5

M1 M2

l1

l4
l5

b1

l3 l6

b2 l2u2

u3

M3 M6b3
u6

u1

u4 u5

Figure 2.6: If T has 4 branch vertices, τ may be a claw. Each vertex labeled bi is also
called bi+3.

uiui+3 ∈ E(G) for each i ∈ [3]. Furthermore, the vertex set X := {l1, l2, l3, l4, l5, l6, b3}

is independent by Lemmas 2, 3, and 4.

Claim 1. If i 6= h, then NG(li) ∩ V (Mh) ∩NG(b3) = ∅.

Proof. Suppose v ∈ NG(li)∩V (Mh)∩NG(b3). By Lemma 6, we may assume that either

3|i or 3|h. Now if i ≡ 0 6≡ h(mod 3), then T ′ := T−{b3u3, b3u6, bhuh}+{vli, vb3, u3u6}

has fewer branch vertices than T , violating (T1). On the other hand, if h ≡ 0 6≡

i(mod 3), then T ′ := T −{b3u3, b3u6, biui}+ {vb3, vli, u3u6} has fewer branch vertices

than T , violating (T1). Otherwise, h ≡ i ≡ 0(mod 3), so since v 6= lh, there exists v−.

Since G[v, v−, b3, li] is not a claw and b3li 6∈ E(G), it follows that either v−li ∈ E(G)

or v−b3 ∈ E(G). If v−li ∈ E(G), then T ′ := T − {vv−, b3uh, b3ui} + {vb3, uhui, liv−}

has fewer branch vertices than T , violating (T1). Otherwise, v−b3 ∈ E(G), and since

G[b3, b
+
3 , uh, v

−] is not a claw and uhb
+
3 6∈ E(G), it follows that either v−uh ∈ E(G)

or v−b+3 ∈ E(G). If v−uh ∈ E(G), then T ′ := T − {b3uh, vv−} + {vli, v−uh} has

fewer branch vertices than T , violating (T1). Otherwise, v−b+3 ∈ E(G), so T ′ :=

T − {vv−, b3ui} + {v−b+3 , vli} either has fewer branch vertices than T (if b+3 = x) or

else has the same number of branch vertices and leaves as T , but |V (ST ′)| < |V (ST )|,

so either (T1) or (T4) is violated, so we have proven our claim.

Claim 2. If i ∈ [6], then NG(li) ∩ V (ST ) = ∅.
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Proof. Suppose v ∈ NG(li)∩V (ST ). By Lemma 4, v 6= bj, so T ′ := T −{biui}+ {vli}

may have fewer branch vertices than T , violating (T1), or the same number of branch

vertices and leaves, violating (T4) since |V (ST ′)| < |V (ST )|.

For any h ∈ [6], Lemma 2 ensures that (NG(lh)∩V (Mh))− is disjoint from NG(li)∩

V (Mh) for i 6= h. Lemma 3 ensures that (NG(lh)∩V (Mh))− is disjoint from NG(b3)∩

V (Mh) for h 6≡ 0(mod 3). Lemma 4 ensures that the latter are disjoint for h ≡

0(mod 3). Lemma 5 and Claim 1 ensure that the five sets NG(li)∩V (Mh) with i 6= h

are disjoint from each other and from NG(b3) ∩ V (Mh) respectively. Therefore the

seven sets (NG(lh) ∩ V (Mh))−, NG(b3) ∩ V (Mh), and NG(li) ∩ V (Mh) for i 6= h are

all disjoint. Furthermore, if 3 - h, Lemmas 7 and 8 give that uh is not in any of these

sets. Therefore:

∑
v∈X

|NG(v) ∩ V (Mh)|

= |NG(b3) ∩ V (Mh)|+
6∑

i=1

|NG(li) ∩ V (Mh)|

= |NG(b3) ∩ V (Mh)|+ |NG(lh) ∩ V (Mh)|+
∑
i 6=h

|NG(li) ∩ V (Mh)|

= |NG(b3) ∩ V (Mh)|+ |(NG(lh) ∩ V (Mh))−|+
∑
i 6=h

|NG(li) ∩ V (Mh)|

≤

 |V (Mh)| 3|h

|V (Mh) \ {uh}| = |V (Mh)| − 1 3 - h.

Meanwhile, Claim 2 gives that b3 is the only vertex of X that can be adjacent to

any vertex of ST . Therefore∑
v∈X

|NG(v) ∩ V (ST )| = |NG(b3) ∩ V (ST )| ≤ |V (ST ) \ {b3}| = |V (ST )| − 1
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Summing these inequalities gives
∑
v∈X

degG(v) ≤ n− 5, contradicting the assump-

tion of the theorem.

By Propositions 3, 4, and 5, the T we have chosen must have four branch vertices

but cannot have any of the possible structures on four branch vertices, and therefore

cannot exist. This is a contradiction, so Theorem 5 is proven. Thus Conjecture 1

holds when k = 2.
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Chapter 3

General Case

In this chapter, we prove Conjecture 1 in full as Theorem 6, which we now restate:

Theorem 6 [9] Let G be a connected, claw-free graph on n vertices, and let k be a

non-negative integer. If σ2k+3 ≥ n − 2, then G has a spanning tree with at most k

branch vertices.

Our proof uses the concept of pseudoadjacency mentioned in the introduction.

We also make use of definition 4.

Suppose some G as described in the theorem has no spanning tree with at most

k branch vertices. Choose some spanning tree T of G such that:

(T1) B(T ) is as small as possible.

b1 b2

Figure 3.1: An example of a tree T . Its internal subtree, in this case, is the path
b1Tb2.
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(T2) We select trees with at least one degree 3 vertex over those with none, subject

to (T1).

(T3) If (T2) allows no trees with a degree 3 vertex, L(T ) is as small as possible.

(T4) If (T2) allows a tree with at least one degree 3 vertex, the sum total of the

degrees in T of the vertices of B≥5(T ) is as small as possible. That is,

∑
v∈B≥5(T )

degT (v)

is as small as possible.

We begin by showing that T must have at least one vertex of degree 3. Suppose

T has no vertices of degree 3. The number of leaves in T is therefore:

|L(T )| = 2 +
∑

b∈B(T )

(degT (b)− 2) ≥ 2 +
∑

b∈B(T )

(2) ≥ 2 + (k + 1)(2) = 2k + 4.

We will first establish that L(T ) is independent, and then that it is pseudoinde-

pendent.

Suppose two leaves s and t are adjacent in G. Then s has some nearest branch

vertex b, so T ′ := T − {bbs} + {st} has fewer leaves than T , violating either (T2) or

(T3) depending on degT (b). Therefore L(T ) must be independent in G.

Suppose two leaves s and t are pseudoadjacent with respect to T . Then there is

some edge e ∈ E(T ) such that sg(e, s), tg(e, t) ∈ E(G). Consider two cases.

Case 1: Suppose g(e, s) = g(e, t). Define a = g(e, s) = g(e, t), so V (sT t) ∩

V (sTa)∩V (tTa) =: w 6∈ {s, t, a}. Since G[a, ew, s, t] is not a claw, either sew ∈ E(G)

or tew ∈ E(G) (we know st 6∈ E(G) since L(T ) is independent). We may assume the

first by symmetry, so T ′ := T −{e, wws}+{sew, ta} violates either (T2) or (T3) since

two leaves are lost (s and t) while at most one is gained (ws).
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Case 2: Suppose g(e, s) 6= g(e, t). The es = g(e, t) and et = g(e, s), so set, tes ∈

E(G). This implies that es, et ∈ V (sT t). Choose an arbitrary branch vertex b ∈

V (sT t); assume b ∈ V (eT t) by symmetry. Then T ′ := T − {e, bbt} + {set, tes}

violates either (T2) or (T3) since two leaves are lost (s and t) while at most one is

gained (bt).

Therefore L(T ) is pseudoindependent with respect to T , so no edge of T has more

than one leaf of T as an oblique neighbor. We next find two edges of T that have no

leaves of T as oblique neighbors. Choose a leaf of ST (note that it is a branch vertex

of T ) and call it b. As T has no vertices of degree exactly 3, then degT (b) ≥ 4 and

|NT (b) ∩ ST | = 1, so |NT (b) \ ST | ≥ 3. Choose three of these vertices and call them

u, v, w. Since G[b, u, v, w] is not a claw, {u, v, w} cannot be independent in G. By

symmetry, assume uv ∈ E(G). We will show that bu and bv have no leaves as oblique

neighbors.

Since u 6∈ ST , there is some z ∈ L(T ) such that u = bz. If some leaf l 6= z

is an oblique neighbor of bu, then lu ∈ E(G), so T ′ := T − {bu} + {lu} violates

either (T2) or (T3) via l. If z is an oblique neighbor of bu, then bz ∈ E(G), so

T ′ := T − {bu, bv}+ {bz, uv} violates either (T2) or (T3) via z. Therefore bu has no

leaves as oblique neighbors, and by the same argument, neither does bv.

For any v, x ∈ V (G), we have vx ∈ E(G) if and only if v is an oblique neighbor of

xxv. Therefore the number of edges with v as an oblique neighbor equals the degree

of v. Since no edge has more than one leaf as an oblique neighbor, and two of them

have no leaves as oblique neighbors, the degrees of the leaves can add up to at most

|E(T )| − 2 = (n− 1)− 2 = n− 3, contradicting the assumption of the theorem.

Therefore T must have at least one vertex of degree 3, so we can choose a root

r ∈ B3(T ), denoting NT (r) =: {r1, r2, r3}. Since no claw can be centered at r, we

may assume by symmetry that r1r2 ∈ E(G). We denote the branch vertex closest
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to any e ∈ E(T ) toward the root as p = p(e), and denote the branch vertex or leaf

closest to e the opposite direction as x = x(e). For each i ∈ [3], define xi = x(rri).

We will need one more definition.

Definition 6. For any rooted spanning tree T with root r ∈ B3(T ), denoted (T, r),

each branch vertex x ∈ B(T ) \ {r} has a distance-degree pair (d(x, r), degT (x)).

We define a pair sequence on the entire set B(T ), which contains the distance-degree

pairs of all vertices of B(T ) in lexicographically increasing order (shortest distance

first, and smallest degree first given equal distance).

Since such an r must exist, choose (T, r) such that:

(T5) The sequence of distance-degree pairs of B(T ) \ {r}, as defined above, is lexico-

graphically as small as possible. That is, given a tree TA with its root rA, and

another tree TB with its root rB, we select (TA, rA) over (TB, rB) if and only if the

earliest entry that differs in their pair sequences is “smaller” (lexicographically,

as described in Definition 6) for (TA, rA) than it is for (TB, rB).

Before completing the proof of Conjecture 1, we introduce three useful lemmas.

Lemma 9. If a is a child of b ∈ B(T ), then a is adjacent in G to some c ∈ NT (b)\{a}.

Proof. Suppose there is no such c. To avoid claws centered at b, NT (b) \ {a} must be

a clique in G, so T ′ := T − {bd : b = dr, d 6= a} + {brd : b = dr, d 6= a} violates (T1)

if br ∈ B(T ), or (T5) otherwise since d(br, r) < d(b, r).

Lemma 10. Let a, x, y ∈ V (G). If degT (x) = 3, degT (y) 6= 2, a ∈ V (rTx), and

x ∈ V (rTy), then ya 6∈ E(G).

Proof. If ya ∈ E(G), then T ′ := T − {xxy} + {ya} violates (T1) if a ∈ B(T ) or

xy ∈ B(T ), or (T5) otherwise.

Corollary 1. If x ∈ B3(T ) \ {r}, then the two children of x are adjacent in G.
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r

r1
r2

r3

Figure 3.2: An example of a rooted spanning tree (T, r) of a connected claw-free graph
G with pair sequence ((3, 4), (4, 3), (4, 5), (5, 4), (7, 6)). Since G[r, r1, r2, r3] cannot be
a claw, we assume by symmetry that r1r2 ∈ E(G) (shown as a squiggly line segment).

Note that
∑

v∈B≥5(T )

degT (v) = 11.
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Proof. By Lemma 10, neither child of x is adjacent to xr. Since no claw can be

centered at x, this requires that the two children are adjacent.

Lemma 11. If y, z ∈ L(T )∪B3(T )\{r} are both oblique neighbors of some e ∈ E(T ),

then p = p(e) 6= r.

Proof. Suppose p = r, implying x = xi for some i ∈ [3]. If both y and z are separated

from x by r, we consider whether or not e = rri. If so, then T ′ := T − {e} + {yri}

violates (T1) via r. Otherwise, since G[ex, er, y, z] is not a claw, either yer ∈ E(G) or

zer ∈ E(G). We may assume the first by symmetry, so T ′ := T −{e, rrx}+{yer, zex}

violates (T1) via r. Now if exactly one of the two (say y) is separated from x by r,

then we again consider whether or not e = rri. If so, then T ′ := T − {e} + {yri}

violates (T1) via r. Otherwise T ′ := T − {e, rrx} + {yex, zer} violates (T1) via r.

The remaining possibility is that neither y nor z is separated from x by r. Then

r 6∈ V (yTz), and Lemma 10 ensures that y 6∈ V (rTz) and z 6∈ V (rTy). We may

therefore denote V (rTy) ∩ V (rTz) ∩ V (yTz) =: w 6∈ {r, y, z}. Now Lemma 10 also

requires that degT (w) ≥ 4. If degT (w) = 4, then T ′ := T − {xxy, xxz} + {yer, zer}

violates (T1) if e = rri, or (T5) if not. Otherwise degT (w) ≥ 5, and since {er, ex, y, z}

is not a claw, either yex ∈ E(G) or zex ∈ E(G). We assume the first by symmetry,

so T ′ := T − {e, wwy}+ {yex, zer} violates (T4).

Lemma 12. If y, z ∈ L(T ) ∪ B3(T ) \ {r} are both oblique neighbors of e ∈ E(T ),

then ep = ey = ez (where p = p(e) as described above).

Proof. If this is not the case, then either ex = ey = ez (where x = x(e) as described

above), or {ey, ez} = {ep, ex}. Note that x ∈ B≥4(T ) by Lemma 10 in both cases.

Consider both these cases.

Case 1: Suppose ex = ey = ez. Then either y ∈ V (xTz), or z ∈ V (xTy), or

neither, so consider both cases.
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Subcase 1a: Suppose neither inclusion is true, meaning V (xTy) ∩ V (xTz) ∩

V (yTz) =: w 6∈ {y, z} (though it could be that w = x), and degT (w) ≥ 4 by Lemma

10. If w ∈ B4(T ), then T ′ := T − {wwy, wwz} + {yep, zep} violates (T1) if ep = p

or (T5) if not. Otherwise w ∈ B≥5(T ), and then we note that G[ep, ex, y, z] is not a

claw, so either yex ∈ E(G) or zex ∈ E(G). We may assume the first by symmetry, so

T ′ := T − {e, xxy}+ {yex, zep} violates (T4) via w.

Subcase 1b: Suppose one of the two inclusions is true, say y ∈ V (xTz). We

define y∗ = NT (y) \ {yr, yz}. Corollary 1 requires that yzy
∗ ∈ E(G), and then

T ′ := T − {xxy, yyz, yy∗} + {yep, zep, yzy∗} violates (T1) if ep = p, or else it violates

(T4) if x ∈ B≥5(T ), or (T5) if x ∈ B4(T ).

Case 2: Suppose ey = ep but ez = ex (or vice versa, by symmetry). Depending

on the location of y, we may have r ∈ V (yTp), or p ∈ V (rTy), or y ∈ V (rTp),

or none of the above. If r ∈ V (yTp), then T ′ := T − {e, rrp} + {yex, zep} violates

(T1) via r. If p ∈ V (rTy), then T ′ := T − {e, ppy} + {yex, zep} violates (T1) if

p ∈ B3(T ), or (T4) if p ∈ B≥5(T ), or (T5) if p ∈ B4(T ). If y ∈ V (rTp), we can define

y∗ = NT (y)\{yr, yp}; we then have from Corollary 1 that ypy
∗ ∈ E(G), implying that

T ′ := T −{e, yyp, yy∗}+ {yex, zep, ypy∗} violates (T1) via y. Since we’ve ruled out all

three inclusions, we may denote V (rTp)∩V (rTy)∩V (pTy) =: w 6∈ {r, p, y}, and then

T ′ := T − {e, wwp} + {yex, zep} violates (T1) if w ∈ B3(T ), or (T4) if w ∈ B≥5(T ),

or (T5) if w ∈ B4(T ).

Lemma 13. If y, z ∈ L(T )∪B3(T )\{r} are both oblique neighbors of some e ∈ E(T ),

then neither y nor z is separated from p = p(e) by r.

Proof. Suppose at least one of y and z is separated from p by r. If they both are,

then to avoid a claw centered at ex, we must have either yep ∈ E(G) or zep ∈ E(G).

We may assume the first by symmetry; therefore T ′ := T − {e, rrp} + {yep, zex}

violates (T1) via r. Therefore only one of them is separated from p by r (say r ∈



42

V (pTz)\V (pTy)), and we note that ex 6= x (otherwise T ′ := T−{rrp}+{zx} violates

(T1)), so exx exists. We will categorize the location of y by its relation to p and r

(noting that r 6∈ V (pTy)).

Case 1: Suppose V (rTp)∩V (rTy)∩V (pTy) =: w 6∈ {r, p, y}. Since G[ex, exx, y, z]

is not a claw, either yexx ∈ E(G) or zexx ∈ E(G). If yexx ∈ E(G), then T ′ :=

T −{exexx, rrp}+ {yexx, zex} violates (T1) via r. Otherwise zexx ∈ E(G), and either

z ∈ L(T ) or z ∈ B3(T ). If z ∈ B3(T ), then T ′ := T−{exexx, rrp}+{zex, zexx} violates

(T1) via r. Otherwise z ∈ L(T ) and then T ′ := T−{exexx, wwy}+{yex, zexx} violates

either (T1) if w ∈ B3(T ), or (T4) if w ∈ B≥5(T ), or (T5) if w ∈ B4(T ).

Case 2: Suppose y ∈ V (rTpr). Define y∗ = NT (y)\{yr, yp}, so Corollary 1 requires

that ypy
∗ ∈ E(G), so T ′ := T − {yyp, yy∗, rry} + {yex, zex, ypy∗} violates (T1) since

at least two branch vertices are lost (r and y) while only one is gained (ex).

Case 3: Suppose y = p (ensuring p ∈ B3(T )). Define p∗ = NT (p) \ {pr, px}, so

Corollary 1 ensures that pxp
∗ ∈ E(G), so T ′ := T − {ppx, pp∗, rrp}+ {pex, zex, pxp∗}

violates (T1) since at least two branch vertices are lost (r and p) while only one is

gained (ex).

Case 4: Suppose p ∈ V (rTy). Note that Lemma 12 guarantees that p ∈ V (xTy).

Since G[ex, exx, y, z] is not a claw, either yexx ∈ E(G) or zexx ∈ E(G). If yexx ∈ E(G),

then T ′ := T −{exexx, rrp}+{yexx, zex} violates (T1) via r. Otherwise zexx ∈ E(G),

and either z ∈ L(T ) or z ∈ B3(T ). If z ∈ B3(T ), then T ′ := T − {exexx, rrp} +

{zex, zexx} violates (T1) via r. Otherwise z ∈ L(T ), and then T ′ := T−{exexx, ppx}+

{yex, zexx} violates (T1) if p ∈ B3(T ), or (T4) if p ∈ B≥5(T ), or (T5) if p ∈ B4(T ).

Define X = L(T ) ∪ B3(T ) \ {r}. We first show that |X| ≥ 2k + 3. Define

m = |B3(T )|, so |B≥4(T )| ≥ k + 1−m. Now:
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|L(T )| = 2+
∑

b∈B(T )

(degT (b)−2) ≥ 2+m+2(k+1−m) = 2+m+2k+2−2m = 2k+4−m

hence:

|X| = |L(T )|+ |B3(T ) \ {r}| ≥ (2k + 4−m) + (m− 1) = 2k + 3.

We next show that X is independent. Let u, v ∈ X and assume uv ∈ E(G).

Now if r ∈ V (uTv), then T ′ := T − {rru} + {uv} violates (T1). If u ∈ V (rTv) (or,

symmetrically, v ∈ V (rTu)), then u ∈ B3(T ), so define u∗ := NT (u) \ {ur, uv}. Now

Corollary 1 gives that uvu
∗ ∈ E(G), so T ′ := T − {uuv, uu∗} + {uv, uvu∗} violates

(T1). The remaining possibility is that V (rTu) ∩ V (rTv) ∩ V (uTv) =: w 6∈ {r, u, v}.

Now consider T ′ := T − {wwu}+ {uv}. If w ∈ B3(T ), then T ′ violates (T1) since w

is no longer a branch vertex. If w ∈ B≥5(T ), then T ′ violates (T4) since w decreases

the sum total but neither u nor v increase it (their degrees were originally at most

3 and are now at most 4). The remaining case is that w ∈ B4(T ), in which case T ′

violates (T5) since w, which is closer to r than either u or v, has its distance-degree

pair decreased.

To limit the degree sum of X, we will show that X is pseudoindependent, and

then find two edges of T with no oblique neighbors in X, as we did for the case

B3(T ) = ∅. Suppose some y, z ∈ X are pseudoadjacent with respect to T , so they

are both oblique neighbors of some e ∈ E(T ). As before, we denote p = p(e) and

x = x(e). Now either both y and z are on the path rTp, or exactly one of them is, or

neither of them is, so consider all three cases.

Case A: Suppose y, z ∈ V (rTp). Then y, z ∈ B3(T ). By symmetry, we may

assume y ∈ V (rTz). Define y∗ = NT (y) \ {yr, yp} and z∗ = NT (z) \ {zr, zp}, so

Corollary 1 requires that ypy
∗, zpz

∗ ∈ E(G). Now T ′ := T − {yyp, yy∗, zzp, zz∗} +

{yex, zex, ypy∗, zpz∗} violates (T1) since two branch vertices are lost (y and z) while

at most one is gained (ex). (See Figure 3.3.)
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path path path path

r y z p x

r y z p x

r y yp

y∗

y∗

z∗

z∗

exep

e
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e

z zp

zp

p x

Figure 3.3: These pictures show how one might visualize Case A. The first picture
shows the relative positions of important vertices, as they are assumed in this case.
In the second picture, the straight-line edges are part of the tree, while the curved
and jagged edges are known to exist in the graph. The third picture shows T ′, which
has one less branch vertex than T .



45

Case B: Suppose y ∈ V (rTp) but z 6∈ V (rTp). Either y = p or y 6= p, so consider

both cases.

Subcase B1: Suppose y = p (ensuring p ∈ B3(T )). Define p∗ = NT (p) \ {pr, px},

so Corollary 1 requires that pxp
∗ ∈ E(G). Now either p ∈ V (rTz) or p 6∈ V (rTz), so

consider both cases.

Subcase B1a: Suppose p ∈ V (rTz), so pz = p∗. We can see that e 6= ppx (otherwise

T ′ := T − {ppx}+ {zpx} violates (T1)), and ep 6= px (otherwise T ′ := T − {ppz, e}+

{pxpz, zex} violates (T1)). Since G[ex, ep, p, z] is not a claw, either pep ∈ E(G) or

zep ∈ E(G). If pep ∈ E(G), then T ′ := T − {e, ppx, ppz} + {pep, zex, pxpz} violates

(T1) via p. Otherwise zep ∈ E(G). Since G[p, pr, px, ex] is not a claw and Lemma

10 implies prpx 6∈ E(G), either prex ∈ E(G) or pxex ∈ E(G). If prex ∈ E(G), then

T ′ := T −{e, ppx}+ {prex, zep} violates (T1) if pr ∈ B(T ), or (T5) if not. Otherwise

pxex ∈ E(G), so T ′ := T − {e, ppx}+ {pxex, zep} violates (T1) via p.

Subcase B1b: Suppose p 6∈ V (rTz). Lemma 13 implies that r 6∈ V (pTz) and we

began Case B by assuming z 6∈ V (rTp). We may therefore denote V (rTp)∩V (rTz)∩

V (pTz) =: w 6∈ {r, p, z}. If e = ppx, then T ′ := T − {e} + {zpx} violates (T1) via

p. Otherwise, since G[ex, ep, p, z] is not a claw, either pep ∈ E(G) or zep ∈ E(G).

If pep ∈ E(G), then T ′ := T − {e, ppx, pp∗} + {pep, zex, pxp∗} violates (T1) via p.

Otherwise zep ∈ E(G), so T ′ := T − {e, ppx, pp∗}+ {pex, zep, pxp∗} violates (T1) via

p.

Subcase B2: Suppose y 6= p. Define y∗ = NT (y) \ {yr, yp}, so Corollary 1 requires

that ypy
∗ ∈ E(G). If ex = x, then T ′ := T −{yyp, yy∗}+ {xy, ypy∗} violates (T1) via

y, so we may assume exx exists. Recalling that r 6∈ V (pTz) by Lemma 13, and that

x 6∈ V (pTz) by Lemma 12, consider two cases for the location of z.

Subcase B2a: Suppose p ∈ V (rTz). By Lemma 12, pz 6= px. Since G[ex, exx, y, z]



46

is not a claw, either yexx ∈ E(G) or zexx ∈ E(G). If zexx ∈ E(G), then T ′ :=

T − {exexx, yyp, yy∗}+ {yex, zexx, ypy∗} violates (T1) via y. Otherwise yexx ∈ E(G),

and we consider degT (p). If p ∈ B≥5(T ), then T ′ := T − {exexx, ppx} + {yexx, zex}.

Otherwise p ∈ B≤4(T ), and then Lemma 9 requires that px has some neighbor in

G among the remaining vertices of NT (p). If this neighbor is pr, then T ′ := T −

{exexx, ppx, ppr}+{yexx, zex, pxpr} violates (T1) if p ∈ B≤4(T ), or (T4) if p ∈ B≥5(T ).

If this neighbor is pz, then T ′ := T −{exexx, ppx, ppz}+{yex, yexx, pxpz} violates (T1)

via p. Otherwise this neighbor must be p∗, where NT (p) =: {pr, px, pz, p∗}, and then

T ′ := T − {exexx, ppx, pp∗}+ {yexx, zex, pxp∗} violates (T1) via p.

Subcase B2b: Suppose p 6∈ V (rTz). Lemma 13 implies that r 6∈ V (pTz), and we

began Case B by assuming z 6∈ V (rTp). We may therefore denote V (rTp)∩V (rTz)∩

V (pTz) =: w 6∈ {r, p, z}. Consider three cases for the location of w relative to y.

Subcase B2b (i): Suppose w ∈ V (rTyr). Then T ′ := T − {wwp, yyp, yy
∗} +

{yex, zex, ypy∗} violates (T1) if w ∈ B3(T ), or (T4) if w ∈ B≥5(T ), or (T5) if w ∈

B4(T ), since at least one branch vertex is lost (y) while exactly one is gained (ex).

Subcase B2b (ii): Suppose w = y. Note that y∗ = yz. Since G[ex, exx, y, z]

is not a claw, either yexx ∈ E(G) or zexx ∈ E(G). If zexx ∈ E(G), then T ′ :=

T − {exexx, yyp, yyz}+ {yex, zexx, ypyz} violates (T1) via y. Otherwise yexx ∈ E(G),

so since G[y, yr, yp, exx] is not a claw, either yrexx ∈ E(G) or ypexx ∈ E(G). If

ypexx ∈ E(G), then T ′ := T−{exexx, yyp}+{ypexx, zex} violates (T1) via y. Otherwise

yrexx ∈ E(G), and then T ′ := T − {exexx, yyz} + {yrexx, zex} violates (T1) if yr ∈

B(T ), or (T5) otherwise.

Subcase B2b (iii): Suppose w ∈ V (ypTp). Since G[ex, exx, y, z] is not a claw, either

yexx ∈ E(G) or zexx ∈ E(G). If zexx ∈ E(G), then T ′ := T − {exexx, yyp, yy∗} +

{yex, zexx, ypy∗} violates (T1) via y. Otherwise yexx ∈ E(G), and then we consider

degT (w). If w ∈ B≥5(T ), then T ′ := T −{exexx, wwz}+ {yexx, zex} violates (T4) via
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w. Otherwise w ∈ B≤4(T ), so Lemma 9 requires that wz must have some neighbor

in G among the remaining vertices of NT (w). If this neighbor is wr, then T ′ := T −

{exexx, wwr, wwz}+{yexx, zex, wrwz} violates (T1) via w. If, instead, this neighbor is

wp, then T ′ := T −{exexx, wwp, wwz}+ {yex, yexx, wpwz} violates (T1) via w. If this

neighbor is neither wr nor wp, then it must be w∗, where NT (w) =: {wr, wp, wz, w
∗},

and then T ′ := T − {exexx, wwz, ww
∗}+ {yexx, zex, wzw

∗} violates (T1) via p.

Case C: Suppose y, z 6∈ V (rTp). Recall that p 6= r by Lemma 11, and that

r 6∈ V (pTy) ∪ V (pTz) by Lemma 13. Now either both y and z are separated from r

by p, or one of them is, or neither of them is, so consider all three cases.

Subcase C1: Suppose both y and z are separated from r by p, so p ∈ V (rTy) ∩

V (rTz). Since G[ep, ex, y, z] is not a claw, either yep ∈ E(G) or zep ∈ E(G). We

may assume the first by symmetry, so T ′ := T −{e, ppx}+ {yep, zex} violates (T1) if

p ∈ B3(T ), or (T4) if p ∈ B≥5(T ), or (T5) if p ∈ B4(T ).

Subcase C2: Suppose exactly one of y and z is separated from r by p. By symmetry,

we may assume p ∈ V (rTz) but p 6∈ V (rTy). Note that Lemma 13 implies that r 6∈

V (pTy), while in Case C we began by assuming y 6∈ V (rTp). We may therefore denote

V (rTp)∩V (rTy)∩V (pTy) =: w 6∈ {r, p, y}. If ex = x, then T ′ := T −{wwy}+ {xy}

violates (T1) if w ∈ B3(T ), or (T4) if w ∈ B≥5(T ), or (T5) if w ∈ B4(T ). We may

therefore assume exx exists. Since G[ex, exx, y, z] is not a claw, either yexx ∈ E(G) or

zexx ∈ E(G). If zexx ∈ E(G), then T ′ := T −{exexx, wwp}+{yex, zexx} violates (T1)

if w ∈ B3(T ), or (T4) if w ∈ B≥5(T ), or (T5) if w ∈ B4(T ). Otherwise yexx ∈ E(G),

and then we consider degT (p). If p ∈ B≥5(T ), then T ′ := T−{exexx, ppx}+{yexx, zex}

violates (T4) via p. Otherwise p ∈ B≤4(T ), and then Lemma 9 ensures that px is

adjacent in G to at least one other vertex of NT (p). If prpx ∈ E(G), then T ′ :=

T − {exexx, ppr, ppx}+ {yexx, zex, prpx} violates (T1) via p. If pxp
∗ ∈ E(G) for some

p∗ ∈ NT (p) \ {pr, px, pz}, then T ′ := T − {exexx, ppx, pp∗}+ {yexx, zex, pxp∗} violates
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(T1) via p. Otherwise pxpz ∈ E(G). Now if y ∈ L(T ), then T ′ := T − {exexx, ppx}+

{yexx, zex} violates (T1) if p ∈ B3(T ), or (T5) if p ∈ B4(T ). Otherwise y ∈ B3(T ),

and then T ′ := T − {exexx, ppx, ppz}+ {yex, yexx, pxpz} violates (T1) via p.

Subcase C3: Suppose neither y nor z is separated from r by p. This means p 6∈

V (rTy), V (rTz), while Lemma 13 implies that r 6∈ V (pTy), V (pTz). Furthermore,

we began Case C by assuming y, z 6∈ V (rTp). We may therefore denote V (rTp) ∩

V (rTy) ∩ V (pTy) =: w 6∈ {r, p, y} and V (rTp) ∩ V (rTz) ∩ V (pTz) =: u 6∈ {r, p, z}.

Suppose u = w. Since G[ex, ep, y, z] is not a claw, either yep ∈ E(G) or zep ∈ E(G).

We may assume the first by symmetry, so T ′ := T − {e, wwp} + {yep, zex} violates

either (T1), (T4), or (T5), depending on degT (w). Otherwise u 6= w, and we may

assume u ∈ V (rTw) by symmetry. If ex = x, then T ′ := T − {uuz} + {xz} violates

(T1) if u ∈ B3(T ), or (T4) if u ∈ B≥5(T ), or (T5) if u ∈ B4(T ). We may thus assume

exx exists, and since G[ex, exx, y, z] is not a claw, either yexx ∈ E(G) or zexx ∈ E(G).

If yexx ∈ E(G), then T ′ := T−{exexx, uup}+{yexx, zex} violates either (T1), (T4), or

(T5), depending on degT (u) as before. Otherwise zexx ∈ E(G), and then we consider

degT (w). If w ∈ B≥5(T ), then T ′ := T −{exexx, wwy}+ {yex, zexx} violates (T4) via

w. Otherwise w ∈ B≤4(T ), and then Lemma 9 ensures that wy is adjacent in G to at

least one other vertex of NT (w). If wrwy ∈ E(G), then T ′ := T −{exexx, wwr, wwy}+

{yex, zexx, wrwy} violates (T1) via w. If wpwy ∈ E(G), we consider degT (z). If

z ∈ L(T ), then T ′ := T − {exexx, wwy} + {yex, zexx} violates (T1) if w ∈ B3(T ),

(T4) if w ∈ B≥5(T ), or (T5) if w ∈ B4(T ). Otherwise z ∈ B3(T ), and then T ′ :=

T −{exexx, wwp, wwy}+ {zex, zexx, wpwy} violates (T1) via w. Suppose wyw
∗, where

NT (w) = {wr, wp, wy, w
∗}. Then T ′ := T − {exexx, wwy, ww

∗} + {yex, zexx, wyw
∗}

violates (T1) via w.

Therefore X is a pseudoindependent set. We will now show that rr1 (and rr2,

by symmetry) has no oblique neighbors in X. Suppose some x ∈ X is an oblique
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neighbor of rr1. Now either r ∈ V (r1Tx) or r1 ∈ V (rTx). If r ∈ V (r1Tx), then

xr1 ∈ E(G), so T ′ := T − {rr1}+ {xr1} violates (T1) via r. Otherwise r1 ∈ V (rTx),

and then xr ∈ E(G), so T ′ := T − {rr1, rr2}+ {xr, r1r2} violates (T1) via r.

Therefore rr1 and rr2 have no oblique neighbors in X. As before, the number of

edges with any v ∈ X as an oblique neighbor equals the degree of v, so the degrees of

X add up to at most |E(T )| − 2 = (n− 1)− 2 = n− 3, contradicting the assumption

of the theorem. Therefore the theorem is proven.
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Chapter 4

Future Work

Looking at the sharpness example in Figure 1.1, one might notice that many of its

vertices have degree 3 (in the whole graph). A natural question is: how much stronger

is our result if we require the graph to have a minimum degree of 4 or larger? If our

graph must have minimum degree at least t, then Figure 4.1 shows that we cannot

guarantee an independent set any larger than before, though we might be able to

make their degrees add up to a smaller number.

Given the above example, the following corollary to Theorem 3 and new conjecture

are sharp, no matter how high a minimum degree we require:

Kt+1 Kt+1 Kt+1 Kt+1 Kt+1

Kt+1 Kt+1 Kt+1 Kt+1 Kt+1 Kt+1 Kt+1

k + 1

Figure 4.1: This graph has minimum degree t and contains no spanning trees with
at most k branch vertices. A maximum independent set contains 2k + 3 vertices as
before, and their degrees must add up to at least |V (G)| − 2k − 3.
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Corollary 2. Let G be a connected claw-free graph with minimum degree at least

4. Then G contains either a spanning tree with at most k branch vertices or an

independent set of 2k + 3 vertices.

Conjecture 2. Let G be a connected claw-free n-vertex graph with minimum degree

at least 4. Then G contains either a spanning tree with at most k branch vertices or

an independent set of 2k + 3 vertices whose degrees add up to at most n− 2k − 3.

Going forward, I will be considering ways to modify our argument so as to reduce

this sum of degrees from its current level at n− 3, or to prove Conjecture 2 for small

values of k. An instrumental tool for the small cases of Conjecture 1 was Theorem

2. This result, either in its current form or improved for graphs of larger minimum

degree, is likely to be helpful toward Conjecture 2 at least for small values of k.
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