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Abstract 

 

A Computational Analysis of the Black-Scholes Equations 

 

by Yifan Wang 

 

 This paper explores the most decorated option pricing model in recent history of 

the financial industry: the Black-Scholes Equation. We will first study the framework 

of the Black-Scholes Equation in detail by introducing its object of evaluation, 

distinguished assumptions, and deduction of the Black-Scholes partial differential 

equation. Although Black and Scholes(1973) has proposed the famous Black-Scholes 

formula to evaluate the European option, the PDE form has proposed struggle in 

finding the exact analytical solution, thus giving rise to the enormous interest in the 

numerical approach. In the second part of this paper, we will introduce three primary 

numerical and simulation methods including Finite Element Method(FEM), Finite 

Difference Method(FDM) and Monte Carlo Simulation(MC). We will discuss 

extensively about each method and present its advantages and shortcomings. In 

general, FEM are better founded mathematically on extensive theoretical analysis. 

Nevertheless, FDM and MC can have some advantages, in particular in terms of the 

easiness of implementation. We will consider some of these aspects in the present 

paper.  
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Outline of the work 

 

 I chose to write this paper because of my genuine interest in option pricing. The 

first chapter will cover the essential components in the Black-Scholes Pricing Model. 

It begins with the concept of an option, its category and characteristics. Then we 

introduce the Brownian Motion and Ito's Lemma to lay the foundation for our 

eventual deduction of the famous Black-Scholes Equation. Finally, we observe a 

specific case of plain vanilla European option and derive the analytical solution using 

the Black-Scholes Formula. The chapter will be followed by our discussion of 

preferable numerical methods to solve the Black-Scholes PDE. We show the 

discretization of the Black-Scholes equation using FEM and FDM and test them in 

specific given cases; meanwhile, we will analyze and compare the error behavior of 

both methods. In particular, we have created a code to test two proposed 

techniques--domain truncation and domain transformation-- in FEM in the Matlab 

environment. We will also show how the general Monte Carlo method can applied in 

the specific Black-Scholes framework and test various cases with our solver.  

 

1.Introduction to Black-Scholes Pricing Model 

 

 The idea of options originated a long way back, but it was not until 1973 that 

options were officially traded in the financial market. Before the establishment of the 

Black-Scholes pricing model[2], there was little knowledge on how to price an option. 
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The risk and randomness in the derivative market were determined that it cannot be 

tamed until the appearance of Fischer Black and Myron Scholes's historical finding of 

the option pricing formula. They together developed the Black-Scholes model. Robert 

Merton, inspired by Japanese scientist Ito, confirmed the equation and added extra 

mathematical understanding to the celebrated Black-Scholes Option Pricing 

framework.  

 

1.1 Basics about options 

 An option is a contract first and foremost, and is normally sold at a negotiated 

price. Investors, who has the right to an option, can buy or sell its underlying assets, 

which can be in varied forms. The option has a strike price, and the investor can 

exercise their rights to claim the assets or cash. Every option contract sets an 

expiration date, namely maturity. Generally speaking, there are two kinds of options, a 

call and a put. A call option gives the holder the right to buy the underlying asset by a 

certain date for a certain price. A put option grants the right to sell the underlying.  

 There are several basic elements of an option that we ought to know. Strike price, 

denoted as  , is the fixed price at which investor can buy or sell the underlying. Time 

to expiration,    , is tied to the notion that an option expires if not exercised. 

Exercising the option means using the right to buy or sell the underlying.  

   We now introduce two primary options categorized by their exercise styles. 

European option, which is our primary research object of the Black-Scholes model, is 

a contract that can only be exercised at pre-determined expiration date. American 
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option, on the other hand, can be exercised on that date or any date before the maturity. 

Some more complicated derivatives like Asian option can have varied pre-specified 

strike price or final price.  

 Option price is also called option premium. The amount is paid when the option 

contract is established. The payoff value changes over time for American options, but 

both option types have the same payoff at time of expiration because they are 

equivalent at that point. The final price is denoted as   .  

 For European and American call, at expiration, its value is denoted as 

                                                                     

 For European and American put, at expiration, its value is denoted as 

                                                                             

 In the next chapters, we will see more precisely the mathematical foundation of 

the problem.  

 

1.2  Black-Scholes Pricing 

  To study the theoretical background for Black-Scholes equation, we need to have 

1)  a methodology to measure the price movement of a claim on the asset as a 

function of the price movement of the asset,  

2)  a model for the price movement of the underlying asset. 

 

1.2.1  Brownian Motion 

 Brownian Motion is our model for price movements. It is a stochastic model 



4 
 

which gives probability for stock price being in a certain range at a certain time. The 

concept of random walk was used to explain the behavior of Brownian Motion. We 

are not going to details of discrete random walk, but the assumptions are the same[7]. 

We will have a continuous random walk if we move    per h units of time when we 

take    .      is the symbol for Brownian Motion. The properties of Brownian 

Motion are listed below 

1.        

2.                         

3                                                

                                      

4.                       

 For example, if the price of a stock follows Brownian Motion and is 58 at time 4, 

the probability that the price of the stock is at least 60 at time 8 is the following.  

             
     

    
                

 We will further discuss Geometric Brownian Motion(GBM). Geometric model 

denotes that the logarithm of the variable better defines the pattern of the data than the 

original variable does. We attempt to describe the behavior of the underlying stock, so 

we choose Geometric model to make sure that stock price cannot go negative and 

move proportionally along with the stock price.  

 We say      follows GBM if        follows Arithmetic Brownian Motion. 

     is a lognormal random variable,   is the drift rate,   is the volatility,  
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where             is continuously compounded interest rate.   

 

1.2.2  Ito's Lemma 

Ito's Lemma introduces a stochastic differential equation 

                                                                            

          and           can vary with S and t or be constant,      follows 

Brownian Motion described by 1.2.1. The SDE is also called an Ito process, and 

describes a variable    that changes on a deterministic trend over time, but also 

entertains randomness going forward. In this equation,           and           can 

be either constant or variables that relies on     , the price at time   and time   

itself.  

 This equation is found very convenient in our evaluation of stock price, which 

follows a GBM. As investors would certainly expect a growth rate over a period of 

time, the randomness of the stock market is unpredictable and is fairly captured by the 

inclusion of      . In this case,          would be the product of drift rate 

multiplied by the stock price, and           is the volatility times the underlying 

stock price.  

             

             

  

 
                                                                    

This differential equation is widely known as one of the more accurate model for the 

stock price behavior. 
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Derivation 

 Ito's Lemma states that a function       of underlying stock price( ) and time(t) 

can be written in the form of  

                                                                   

Using Taylor expansion, we have  

   
  

  
   

  

  
      

   

   
       

   

   
    

   

    
        

In ordinary calculus, the second order terms such as      ,       . Normally, 

We replace    with the stochastic partial differential equation(1.4), but       do 

not equal to 0 since    is a stochastic term. Surprisingly, according to one of the 

property of Brownian Motion, the expectation of variance of       

        

         

Thus,  

   
  

  
   

  

  
      

   

   
           

Expand the parentheses, we will derive 

   
  

  
   

  

  
       

   

   
                                        

or we can write in the form of a Ito process(1.8) 

   
  

  
          

  

  
      

   

   
       

    
  

  
    

  

  
    

   

   
          

  
                                 

 The universal property of the Ito's lemma depends on the fact that C is a function 

of its underlying asset, no matter it is one stock, a collection of stocks, or an 
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investment portfolio.   

 With Ito's lemma, we prove that traditional derivatives like futures and forward 

options follows the GBM. Whenever we have a derivative whose underlying asset 

follows GBM, we can infer that the derivative follows Ito's lemma. One interesting 

phenomenon is that we can calculate the expected growth of the option if we can 

predict the growth rate of the underlying stock. This relationship is widely applied in 

derivative pricing, which we will further discuss in the next section.  

 

1.2.3  Assumptions of Black-Scholes Equation 

 

 Before Black, Scholes and Merton proceeded to derive the actual Black-Scholes 

partial differential equation, they made important assumptions that validify the 

statement. Hull(2011) has listed seven assumptions before he derives the equation. 

However, this paper will integrate the assumptions with another approach.  

 We cannot compute the value of an option, namely C, if the eventual partial 

differential equation has    as a component. As a result, the idea is to construct a 

risk-free portfolio and cancel out the randomness of   . Techniques like delta 

hedging are applied in such portfolio construction. Delta is the sensitivity of the 

option price to the price movement of the underlying asset. Delta hedging is a specific 

technique that aims at reducing the risk of the price movement of the underlying asset, 

namely keeping the delta to zero or as close to zero as possible[7]. Assumptions will 

be put in the context of those steps. 
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1. Buy the option.  

Assume      is the value of the option, and      is the value of the underlying 

asset. We mentioned the mostly known stock price model 

  

 
                                                                   

The stock price follows a geometric Ito process. The assumption we made here by 

using this model is that the expected rate of return   and volatility   are constant. 

In this step, we will buy positive asset     .  

 

2. Hedge the option by selling delta shares of the asset 

We intend to erase the randomness by hedging certain amount of underlying assets. To 

eliminate the stochastic component   , we sell delta shares of stocks, which is    . 

   is delta. 

 

3. Net proceeds(Sum of step 1 and 2) are lent at the risk-free rate 

Net proceeds of previous two steps is their net lending, which is       in this case. 

The risk-free loan will pay            over the time difference. 

 The most essential assumption of Black-Scholes pricing model is built on the 

no-arbitrage principle. It essentially defines the portfolio that we constructed as a 

risk-free portfolio. Thus, no matter how the price of assets in the portfolios changes 

over time, the overall portfolio should still worth zero.  

 

 

1.3  The Black-Scholes Equation 
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Assume the value of portfolio is f, we sum up step 1,2 and 3, for a risk-free portfolio, 

                                                                

If the underlying asset S pays dividend at the rate of  ,  

                                                               

We apply Ito's Lemma on   ,  

                                

Then we plug in (1.6) the equation of   , now we have  

                                                               

Since we can calculate second derivative       as we previously examined in our 

discussion of Brownian Motion, 

             

We finally get the Black-Scholes Equation,  

                                                                 

or the more renown form  

                                                                  

Adding the dividend , we will have 

                                                              

This is the model we will be utilizing for our computational analysis in the later 

chapters.  

 

1.4 The Black-Scholes Formula 

 The Black-Scholes Formula can be observed as a specific solution of the general 
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Black-Scholes Equation that evaluates the plain vanilla European option. The general 

formulas for calls and puts are 

                                                                  

                                                                  

where  

   
   

  

 
     

  

 
  

   
                                                 

   
   

  

 
     

  

 
  

   
                                                 

    In the solution, function       and       are Gaussian cumulative 

probability function[10]. Particularly,       is the probability of the call option 

being in the money at expiration. An interpretation of this formula can be derived 

from put-call parity, which has the below identity function at the end time,  

                                                                 

    At expiration, we exercise either call or put. Consider a call is in the money at 

expiration, the risk-neutral expectation of the option holder making the payment is 

      , and correspondingly, the risk neutral expectation of the asset price would be 

   
       . Thus the call value at the end time would be  

    
               

Discounted back in time, we have  

                                                                 

We remind readers that C and P are functions of the underlying asset price and time; 

thus, Ito's Lemma is applicable as we discussed previously.  
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 Further details about the derivation of the Black-Scholes Formula can be found in 

Hull(2011, Ch14)[7] and Wilmott(2000)[11].  
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2. Finite Difference Method 

Introduction to Numerical Methods 

 

 In real life, we always have problems that we cannot solve using an analytic 

approach, which means we cannot achieve analytical result. However, in the field of 

physics, applied mathematics and engineering, we can approximate results by 

applying numerical schemes. Partial differential equations, which are constructed for 

such problems, are primary objects to which we apply those numerical methods. 

 We have introduced the Black-Scholes equation and have derived the equation 

using analytical methods; as a result, we are focused on introducing the numerical 

approach to the Black-Scholes problem in the second part of the paper. In terms of the 

field of mathematical finance, the Finite Difference Method(FDM) and Finite 

Element Method(FEM) are well suited for the Black-Scholes option pricing model, 

and has proved to have better approximation than other numerical schemes[5]. In the 

next two chapters, we are going to discuss extensively about these two methods and 

later compare their results when we attempt to examine the test cases.  

 

 

2.1 Basics of Finite Difference(basic schemes, errors). 

 The basic idea of FDM is to "collocate" the PDE only in some points of the 

region of interest and then to replace the derivatives with incremental quotients. This 

leads in general to an algebraic system of equations. The size of the system depends 

on the number of nodes selected. For example, we attempt to evaluate      , the first 

derivative of function      at point   . The first order finite difference 
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approximation of        would be 

             

 
                                                                 

or an alternate second-order approximation 

 

               

  
                                                           

 In approximation(1),    and      are two adjacent nodes that we take. When   

is small enough, we learn from basic calculus that the approximation would be almost 

accurate as the analytical solution of the derivative.   is the step size in our 

discussion of the numerical approximation, which has several properties and 

deductions that we ought to remember in convenience for our later discussion.  

1.   is assumed to be very small 

2.   can be either positive or negative 

Finite difference (2.1),  

 When     , we refer our approximation as forward difference 

   When    , we refer the approximation as backward difference 

Finite difference (2.2),  

 is centered difference approximation 

For more details, see e.g. Quarteroni(2010)[9] 

 Numerical approximation results have errors, which is defined as the difference 

between the analytical solution and our approximations. The source of error can be 

divided in two major categories: round-off error and truncation error or discretization 

error.  

 Round-off error is strictly from the need of truncating numbers when string them 
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in the computer[3]. Since most computers are 64 bits nowadays, rounding error is 

mostly considered insignificant. However, one of the consequences are that when 

discretization error decreases, it may be more apparent.  

 Discretization error, or truncation error results from the omission of Taylor's 

series approximation of the exact derivatives. Taylor expansion of forward difference 

is 

                    
      

  
  

       

  
     

      

  
                      

or  

               
   

   
 
    

  

 

   

                                       

 For the approximation of first order accuracy, we ignored the remainder of the 

series after the second term.  

              
      

  
         

 Last error term indicates that the error is proportionate to   ; thus we say that 

this numerical approximation is first order accurate. If we apply centered difference 

scheme, we have Taylor expansion,  

              
      

  
  

       

  
    

        

  
                                    

 

              
      

  
   

       

  
    

        

  
                             

By substituting (5) to (4), we have  
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 From (2.7), we know that centered difference scheme is second order consistent 

approximation of the first derivative of given function      at point   .  

 In principle, we can use the Taylor expansion to derive the accuracy of high order 

numerical approximation as long as the function is still differentiable at that point. 

That is  

         

 

 Detailed discussion can be found in e.g. [FSV][5]. In this paper, we will focus on 

how the Finite Difference Method is applied in the numerical approximation of the 

Black-Scholes Equation.  

 

2.2 Finite Difference Method in Black-Scholes Equation 

 

 In this section, we will examine a specific case in European call option to further 

interpret the application of FDM in finance.  

 We construct the problem as an initial boundary value problem(IBVP). To solve 

such problem, we ought to have an initial condition, boundary condition and domain 

of our variables. In this case, we have a terminal condition at the time of expiration 

from (1.1), but we do not have an initial condition at the time 0. Since we know the 

final value of   at the time of expiration, we can solve the Black-Scholes equation 

by reversing the time variable, which essentially makes the final condition become 

our new initial condition. The boundary condition is 0 on the left, and on the right side, 

we have boundary condition of               according to put-call parity at the 
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time of expiration. The second boundary condition also marks an exponential growth 

from the initial time to expiration. To sum up, we have the Black-Scholes equation as 

we previously discussed,  

                                                                   

Final condition(expiration time):   

                                                                       

Boundary Condition:         

                                                                         

                                                                    

Since we cannot solve the case of    , we manually set up a domain          

      to solve for values of  . The finite difference method essentially allow us to 

divide our domain space into several subspaces. For example, we take    nodes and 

   time steps,  

   
 

  
       

 

  
 

 

We let  

  
 

                        

                        

We will see later that depending on the choice of time advancing scheme, we may 

have some restrictions on the time step   .  

 

2.3 Explicit Euler Discretization for Time Advancing and Space Discretization 
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 There are several way for implementing FDM. Explicit Euler, Implicit Euler and 

Crank-Nicholson schemes are obtained by forward, backward and centered difference.  

 In this section, we will focus on Explicit Euler Method for the time-advancing 

parabolic problems, which is the most common method in transforming the original 

Black-Scholes Equation.  

 We use forward difference at time    

   

  
 
      

 
  

 
   

   

  
                                                            

 The second part of the equation is the diffusion term, we use the centered 

difference of second order  

  
  

   
 
  

 
    

 
    

 
     

 

   
                                                 

The third part of the equation is the advection term.  

   

  
 
  

 
    

 
     

 

   
                                                        

Now, we rewrite the Black-Scholes Equation 

  
 
   

   

  
         

    
 

     
 

    
 

   
 

    
 

     
 

   
        

 
   

       

or in the matrix form 

   
 

  
                                                                 

for                             since we have inverted the time and 

consider the final condition as the new initial condition.  

 

2.4. Possible Alternatives 
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 Readers may wonder how effective the application of other numerical schemes in 

the Finite Difference are on the Black-Scholes equations.  

 The implicit method, the Backward Euler method is unconditionally stable. That 

means we are not restricted in the use of    and   , and we can take a large number 

of nodes so that we do not need as many time steps as we do in the explicit methods. 

The main drawback is computational efficiency. A linear system of partial differential 

equations need to be solved at each time step instead of simple iterations given the 

initial node value in the explicit scheme.  

 Crank-Nicholson method is numerically stable in solving heat equation. It is 

based on centered difference scheme in space, and the trapezoidal rule in time. The 

biggest advantage of Crank-Nicholson method minimized systematic discretization 

error: it is in fact second order accurate. Backward Euler or Forward Euler all 

exclusively use derivatives evaluated at a time point like      or   to approximate 

the next node. Even though the general rule is that error tends to be 0 if we choose a 

very large number of time steps, we realize that a weighted average of the two 

methods may makes more sense in terms of accuracy because the backward and 

forward scheme produce errors in opposite directions.  
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3. Finite Element Method 

 

3.1  Basics of the Finite Element Method 

 

 We discuss the Finite Element Method(FEM) because we believe it may be an 

alternative or better numerical approach to the Finite Difference Method(FDM) in 

solving the Black-Scholes equation. The idea of the Finite Element Method is to cut 

the entire space or structure into several pieces or elements, where we postulate the 

solution to have a manageable mathematical form(e.g. linear or polynomial). 

Comparable ideas are present everywhere in life; LEGO products are built upon 

simple building blocks that are small and manageable. The Finite Element 

Method(FEM) manages to divide the structure into elements with nodes, which is 

defined by local continuous polynomials that connects the nodes. The finite elements 

ought to cover the domain completely and are connected so that the entire domain is 

interpolated as a overall piecewise function. To simplify the notion, we take an 

example of a one-dimensional(1D) case; a straight line is divided into a certain 

number of subintervals. Those intervals are the finite elements that constructed the 

line.  

 There are two general steps in applying the FEM. We mentioned that the first is to 

create non-overlapping elements. Through selective cutting and choice of geometry, 

we can easily make the interpolation of local polynomial given its basic shape. More 

advantages of FEM will be discussed later in the chapter. A more mathematical 

analysis and foundational theory of FEM is well-documented in Chapter 2 of 
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[FSV][5]. 

 Then we rewrite the approximate function    as the following  

         

   

   

                                                                

    is the basis function or shape function.     are the weights to be determined 

that satisfies (3.1). We choose    in the hopes of accurately approximating the local 

polynomials that we choose to cut out. A possible choice of polynomial here would be 

the piecewise linear functions. The major success of FEM is due to the fact that we 

can approximate a smooth function locally using polynomials without losing much 

approximation property.  

 One important feature is that adjacent elements share the degree of freedom at the 

connecting nodes across the edge of the gird. In the particular case of Lagrangian 

finite elements, the degree of freedom are values of function    at a specific node 

  .[5]  

 

3.2 Finite Element Method in Black-Scholes Equation 

 After time inversion, the Black-Scholes equation has the parabolic form  

       ，        Ω                                                    

with the initial condition                   .   is a given function and   is 

a linear differential operator that is defined on         .  

 We mentioned the similarity between the heat equation and the Black-Scholes 

equation. In the one-dimensional case, we can solve the Black-Scholes equation by 

applying similar approach. We introduce weak formulation. or variational from, which 
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is more general to its strong counterpart in the purpose of reducing the regularity 

required for the unknown solution   (Quarteroni, 2011).  

 To derive the variational form, we multiply the entire differential equation by a 

test function       and integrate the function on the domain Ω . We denote 

                 
Ω

, Given that   is a Hilbert space and our initial condition is 

the final payoff of an European call option, we have a general form,   

 

  
                                                                      

                                

or an alternative form in different notation, 

 

  
                                                                        

where          
Ω

 and               , which is a bilinear form. V is a 

Hilbert space that contains the test functions     .  

 In the particular case of Black-Scholes Equation,  

          
    

 
                                                      

We can see the weak formulation eliminates the term of second derivative through 

integration by parts.    

 Then we impose the finite element method, and perform the discretization. We 

can simply replace   with finite dimensional space   . In this case, we will consider 

simple linear finite elements. Thus,    is, for instance, a space of piecewise linear 

functions. The corresponding finite element problem is therefore,  

find       
 

  
                                                        

Now we define              } as basis of   . Every function in    can be 



22 
 

denoted as a linear combination of   . For instance,                        

Since       
 
   , we can thus rewrite the above problem:  

 

  
    

 
             

 
                                                 

We can extract a system of equations, which is differential in time and algebraic in 

space.   and   are both             matrix. A is stiffness matrix and B is 

the mass matrix[1].  

 
  

  
                                                                     

The next step is to discretize time. Therefore we slice the time       to   intervals, 

as we did in FDM. We denote each time step as subinterval  

               , and             

If we use the Euler implicit scheme, we have  

 
         

   
                                                      

If we use Crank-Nicholson scheme, we have 

 
         

   
 

 

 
                                            

or explicit Euler scheme 

 
         

   
                                                      

 A and B are tridiagonal matrices such that we can use the Thomas algorithm in 

the LU factorization to solve the linear system at each time step. Due to the length of 

the paper, I will leave the triagonal property of matrices for interested readers to 

further explore.  

 Another very important and interesting conclusion is: when the mesh is uniform, 

the finite element method with mass-lumping is equivalent to the finite difference 
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centered scheme. Further numerical results will be presented later in this paper, and 

we will verify this conclusion.[1] 

 

3.3 Advantages of the FEM & Comparison with FDM  

 

 The most obvious advantage for FEM over FDM is that the solution of FEM 

computes the entire domain space while FDM only computes solution at selected 

nodes. While the space domain is finite for both FEM and FDM, FEM allows us to 

choose between techniques like domain truncation and domain transformation, which 

will be discussed later in the numerical test cases.  

 Another shortcoming of FDM is that the boundary condition involves derivatives 

would be more complicated to treat. FEM can handle more complex boundary 

condition fairly easily. Furthermore, the domain of the partial differential equation can 

be of various shapes, sometimes even irregular. With FEM, we would have no 

problem incorporating nonuniform meshes by choosing appropriate finite elements 

and using local parameters. The mesh does not need to be cohesive as it is in finite 

difference analysis. Furthermore, FEM allows more room for mesh refinement. In 2D 

and 3D case, adaptive mesh and local refinement techniques can be employed to solve 

the Black-Scholes equation with more accuracy.  
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4. Numerical Results 

 

 In this chapter, we will focus on how we can handle the semi-infinite domain in 

option pricing problems, in particular the Black-Scholes equation, using techniques 

like domain truncation and domain transformation in FEM. Since the underlying stock 

can be priced from zero to infinity, we naturally consider truncating the unbounded 

domain to a bounded one so that we can apply standard numerical methods. Domain 

transformation is another intriguing technique that supposedly maintain the property 

of the boundary condition. As Duffy(2009) points out, domain truncation is quite 

simple, but it lacks certain theoretical support in the academics of numerical methods 

while domain transformation create a new space variable and represents possible 

improvement[4].  

 

4.1  A Test Case  

 

 In this section, we will consider a test case of European call option to achieve 

numerical results for comparison purpose. We have all the information about this 

particular European option below: 

                           

and we attempt to solve the problem numerically. To compute errors, we calculate the 

exact solution using the Black-Scholes formula(1.16).  

 

4.1.1 Domain Truncation 
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 Techniques around how to replace semi-infinite domain with a bounded interval 

[a,b] has been developed for quite some time in the study of the FEM. Far field and 

near field boundary are defined to legitimize the choice of the artificial boundary. In 

our test case, we take examples of arbitrary boundary [0,70], [0,100] and [0,200] to 

compare and determine the trend of errors. Interested readers can explore Kangro 

(2000) for further verification and techniques of domain truncation[8]. In our test case, 

we will first compare the L2 error of the domain truncation between FEM and FDM, 

which has the same boundary. Then we observe the its error performance compared to 

that of domain transformation technique. 

 

Error Expectation 

 The error here should come from two major sources: the boundary truncation 

error and the numerical error or so-called dicretization error.  

                                                

 Refinement of time and space discretization should lower the numerical error, but 

such error may be worsened by extended boundary that we trialed in attempt to 

decrease the boundary error, the other component of the error equation. Thus, we 

expect mixed results with the change of variables: time intervals(   ), space 

intervals(  ), and boundary point(    ). We will examine the error between FEM 

and FDM as well.  

 

4.1.2 Domain Transformation 
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 Besides domain truncation, domain transformation is the other viable option since 

we are interested in solving the Black-Scholes PDE. In this case, we transform the 

semi-infinite domain into a unit domain [0,1] by mapping technique. Duffy(2009) has 

found a mapping function 

  
 

   
                                                                 

  is a factor that can be chosen by us. For convenience, we choose    . 

 To rewrite the Black-Scholes equation, we need variables 

  
 

   
                                                                  

  

  
 

        

  
                                                          

   

   
       

 

  
       

  

  
                                          

The new transformed PDE is  

                                                            

            

 The initial condition       is the payoff of the option at maturity, which is 

known to us. The trick lies in how we can define the boundary condition in order to 

solve the PDE.  

 We are faced with several layers of difficulties in dealing with the domain 

transformation approach. First, in (4.2), y cannot equal to 1. Ideally, we are not losing 

the entire domain space as the limit of shows 

   
   

 

   
                                                             

 However, when we try to solve (4.5) numerically, we are taking linear uniform 
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mesh on the 1-D domain[0,1], and we inevitably suffer from the loss of the very last 

part of the domain since we cannot generate the last part of the mesh. If we map our 

solution back to the supposedly real space domain, it translates into a large 

number       instead of infinity on the right bound. Before we find a better solution, 

we use a number that we consider large enough to replace infinity.  

 This defect has some knock-on effects, and we would apply some numeric 

operation in the hopes of refinement. The initial condition, which is the final payoff as 

we mentioned in 2.2, is         for European call. The transformation (4.2) 

eliminates the chance of S to become infinity. Thus, we create a very small number 

   , which is smaller than any number you can possibly take in the domain. and 

change (4.2) into 

   
 

     
                                                                  

The initial condition becomes  

 
 

     
   

 

                                                           

 In terms of the exact solution, we replace the S with new S'(x in the new code) for 

the error comparison purpose. For the asymptotic boundary condition, which is 

                 , will be in the form of a large fixed number       minus the 

discounted payoff of the strike price. Since we have defined      we can use    , 

and we will get (4.9) for our new boundary condition,   

 

 
                                                                             

 With new initial and boundary condition, we can solve the Black-Scholes 

equation in the solver using FEM.  
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Error Expectation 

 Ideally, we expect the error of domain transformation to be better than that of 

domain truncation in the sense of y. The boundary error would almost be non-existent, 

and discretization error would be also small as we discretize in a small local domain 

like [0,1]. However, since we are converting back the solution to the semi-infinite  

domain, we should expect an additional error caused by the rounding error, which is a 

magnifying factor of the total error in the domain of y. One can argue the 

transformation is theoretically sound. Suppose 

  
 

   
    

   

     
  

We take the limit of the quotient,  

  

 
 

  
 

 

  
 

   

        
     

  

 
   

The transformation suffers numerically however. Since 
 

   
 can be very large, we 

suffer from the amplification of numerical errors in computing S form y. Furthermore, 

more error may stem from the ill-conditioning of the matrices in associated linear 

system that we included in the solver. This kind of error is also well documented in 

section 4.2 of FSV[5]. Thus, we summarize,  

                                                                 

 

 Besides the magnifying factor, our conundrum can be further complicated by our 

struggle to generate an accurate mesh for the y domain. Thus, we are not surprised 

that we would some discouraging results.  
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4.2 Numerical Results and Error Analysis  

Domain Truncation 

 First, we will exploit the code(see Appendix A) and test the error in domain 

truncation(see Table 3). There are several critical component to our analysis. In a 

bigger picture, we are trying to compare the pattern of errors between FEM and FDM. 

In our code, we implemented theta method, which allows us to further explore 

different numerical methods in Implicit Euler( =1), Crank-Nicholson (     ) and 

Forward Euler(   ). Further division marks our use of exact solution as the 

boundary condition and asymptotic final payoff function as our right boundary.  

In our test case, left boundary is always zero. The asymptotic solution is        

          , and the exact solution is computed by the Black-Scholes Formula(1.16). 

ErrLil2 is the L2 Error Norm.                        

                                     

 
 

   

. 

The time domain is [0,2]. The first batch of test will apply FDM and implicit Euler 

scheme.  

Trial dt dx U(n) X domain ErrLil2 

1 1/16 1/16 Exact solution (0,70) 0.4604 

2 1/16 1/16 Asymptotic solution (0,70) 15.0578 

3 1/32 1/32 Exact solution (0,70) 0.2860 

4 1/32 1/32 Asymptotic solution (0,70) 15.0670 

5 1/16 1/16 Exact solution (0,100) 0.4828 

6 1/16 1/16 Asymptotic solution (0,100) 3.9007 

7 1/16 1/16 Exact solution (0,200) 0.4828 

8 1/16 1/16 Asymptotic solution (0,200) 0.4828 

FDM,  =1, Table 3 

 Comments:  
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 With exact solution defined on the boundary, trials of odd numbers show very 

small error. Trial 3 shows the expected improvement of error over Trial 1 when we 

take more nodes and time steps. Trial 5 and 7 extend the boundary of the underlying 

asset, and the discretization error naturally increases. Thus, overall error grows 

despite the diminishing boundary truncation error. At this point, the major source of 

error is the numerical error. For asymptotic boundary condition, Trial 2 and 4 presents 

an interesting problem in our numerical approximation. As we take smaller time steps, 

the matrices tend to be singular and become ill-conditioned, thus the overall error 

does not improve. In Crank-Nicholson scheme for FDM, we did not achieve much 

improvement. We proceed and test the FEM in the domain truncation(See Table 4) 

Trial dt dx U(n) X domain ErrLil2 

1 1/16 1/16 Exact solution (0,70) 0.4603 

2 1/16 1/16 Asymptotic solution (0,70) 15.0577 

3 1/32 1/32 Exact solution (0,70) 0.2859 

4 1/32 1/32 Asymptotic solution (0,70) 15.0670 

5 1/16 1/16 Exact solution (0,100) 0.4827 

6 1/16 1/16 Asymptotic solution (0,100) 3.9007 

7 1/16 1/16 Exact solution (0,200) 0.4827 

8 1/16 1/16 Asymptotic solution (0,200) 0.4827 

FEM  =1, Table 4 

 As we expect, FEM barely presents an improvement on FDM in the case of 

implicit Euler scheme. The refinement is less than 0.1 percent, if not negligible. The 

pattern of error almost completely mirrors that of the FDM implicit scheme.  

Domain Transformation 

 Now we will consider the error of domain transformation(See Table 5). If we 

consider absolute error, the error would be fairly large, but more discretization results 
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in improvement as expected(See Table 6). 

Trial Dt Dx U(n) ErrLil2 

1 1/16 1/16 Asymptotic solution 104.0192 

2 1/32 1/16 Asymptotic solution 104.0192 

3 1/32 1/32 Asymptotic solution 76.6261 

4 1/64 1/64 Asymptotic solution 54.1274 

5 1/128 1/128 Asymptotic solution 37.4959 

6 1/256 1/256 Asymptotic solution 25.0406 

7 1/512 1/512 Asymptotic solution 15.5317 

8 1/1028 1/1028 Asymptotic solution 8.0920 

        FEM,  =1, Table 5 

As we expected, error is large compared to domain truncation due to the reasons that 

we have listed in our error prediction. However, the interpolation(see Graph 1) shows 

an intuitive comparison that the numerical solution(red) we approximated is actually 

close to the exact solution. 

 

Graph 1 

 To attain more appropriate result, we analyze normalized error, which is the 
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percentage of our error with respect to the true value. The error percentage shows an 

asymptotic pattern of decrease(See Table 6).  

 

FEM,  =1, Table 6 

 Considering the flaw that we have in numerical approximation, the results of its 

normalized error is certainly desirable, and the results of normalized error in domain 

truncation technique is apparently not as good if we conduct some computation in 

Table 4.  

 While domain transformation does not draw the same accuracy as we expected, 

we can predict that the technique would accomplish better results if we can overcome 

the numerical difficulties in including the last subinterval in the domain towards the 

right boundary and extend physical boundary to virtually infinity.  

 

 

 

 

 

Trial dt Dx U(n) ErrLil2 

1 1/16 1/16 Asymptotic solution 0.0104 

2 1/32 1/16 Asymptotic solution 0.0104 

3 1/32 1/32 Asymptotic solution 0.0077 

4 1/64 1/64 Asymptotic solution 0.0054 

5 1/128 1/128 Asymptotic solution 0.0037 

6 1/256 1/256 Asymptotic solution 0.0025 

7 1/512 1/512 Asymptotic solution 0.0016 

8 1/1028 1/1028 Asymptotic solution 8.0874e-004 
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5 . Monte Carlo methods for option pricing 

 

 Monte Carlo method(MC) is first applied to option pricing by Phelim Boyle(1976) 

and is a quiet different numerical approach in valuing the options. Its advantage is 

proven by the fact that it is a popular computational tool for almost all the financial 

options, especially complex options with no close-formed solution or entertaining 

various underlying assets. Simply put, it always provide some type of answer. 

Glassermann(2004) has further documented Monte Carlo method in exotic options 

like Asian options and American options. Monte Carlo method is not as efficient as 

the actual Black-Scholes equations in valuing the one-factor model for European 

option, but increasing number of simulations and time steps should improve the 

accuracy of the results since they both employ geometric Brownian motion as their 

random process. In this chapter, we will give a simple example of Monte Carlo 

simulation in valuing one-factor European put option using assumptions in the 

Black-Scholes equation. We will utilize an existent solver to simulate several test 

cases and compare the pattern of errors.  

 

5.1 Basics of Monte Carlo Simulation 

 The core of a Monte Carlo simulation is the generation of a large number of 

random samples according to a chosen probability distribution. The methodology of 

generating random observations will be documented later. In the discipline of option 

pricing, the probability distribution also stands for its pattern of risk in the system. We 
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have shown that in Ito's process(1.2.2) of a normal European vanilla option, term    

is the lone risk factor. In fact, a given simulation can easily have multiple source of 

risks if we consider more complex derivatives. The law of large numbers is another 

foundational theory in MC simulations: the strong version ensures that our estimate of 

random sampling converges to the expected value as we conduct infinite number of 

simulations with the probability of 1.  

  
    

    
                                                            

 

5.2 An illustrative example of Monte Carlo method on European option 

 We will profile a general case of European vanilla put option. From (1.2), we 

discount back the final payoff by factor      and derive the payoff function, 

                
 
                                                 

 Monte Carlo method is built on the foundation of risk-neutral pricing. The price 

of underlying asset in a risk-neutral world follows Ito process, same as (1.8) 

                                                                       

   is the risk-neutral expected return on the option and   is a standard Brownian 

motion and also the risk factor in the process. Thus, we compute the solution of 

stochastic differential equation (5.2), and the underlying asset follows  

                  
  

 
                                         

         

 We factor out random variable          ;   is a standard normal random 

variable. The stock price is thus lognormal as we expected. Obviously, we can use the 
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Black-Scholes formula (1.16) for put option to compute the expected payoff, but we 

will take advantage of this simple example and illustrate the Monte Carlo approach. 

 Ideally, we take a large number of trials of (5.3) to generate a sequence of 

simulated paths for future underlying assets for each              . Since we have 

known the               . We can compute n results of underlying price by the time 

of expiration. Then we apply the payoff function (5.1) to achieve the option price. The 

last step is average the derived option price for each projected path of the underlying 

asset. We will sum up this simple process and show possible improvement using the 

Finite Difference Method in the next section.  

 

5.3 Monte Carlo Simulation in Model, and Methodology:  

 

Step 1  

Generate a random process of stock based on the Brownian assumption 

 Usually, a random number generator of some sort would do the job. It produces a 

sequence of uniformly distributed random numbers in the range [0,1]. Some most 

distinguished algorithms are linear congruential generator, lagged Fibonacci generator 

and etc. In our simulation, lagged Fibonacci is used to generate such numbers.  

Our purpose is to generate random variables             for simulations of (5.3). 

They are randomly drawn standard normal variable and are mutually independent. 

Methods like Box-Muller and inverse transformation are widely used[6]. Inverse 

transformation is used here and its idea is very simple. Suppose we have random 

discrete variable 
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and its cumulative function     , the uniformly generated number is within [0,1]. 

We take inverse function        to get a random observation of variable  . 

Boyle(1973) searched extensively in the tricks of converting the random number to 

random variables. After all, we take advantage of (5.3) and plug in our random 

variable             

 

Step 2 

Get an expected payoff for the given derivative based on this walk  

 After calculation of (5.3), we have   results of     . We then plug into (5.1), 

discount back and achieve   values of payoff.  

 In this simulation process, we notice that we are only considering two boundary 

value      and     . For a long duration T, considerable time discretization error is 

highly likely besides the sizable numerical error. Naturally, we can take more time 

steps by partitioning the total time to expiration(T) to   discrete time intervals(    

                , and approximate the option price for each time step to reduce 

the time discretization error. We recall the most common approximation method, 

FDM. We rewrite process (4.2) with Explicit Euler scheme of 
  

  
 

             

   
,  

  

  
      

     

  
 

 

             

   
          

        

   
        

 

where               
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where            is the initial condition             (5.5) 

Thus, we will compute                                                             .  

 

3) Repeat steps 1 and 2 a large number of times 

 We pick our number of simulations(NSIM) and iterates through first two steps.  

 

4) Achieve the present value for each results and average the cumulative results.  

 We use equation (5.1) to discount back the each simulated final price of our 

underlying asset. Then we average the simulation results,  

   
         

 
                                                            

  

5.4 Simulations and Expected Results:  

 As we run more and more simulations(NSIM), we expect that we can have more 

accurate results that are closer to the exact solution. Given the same time step, we 

expect error to be reduced a rate of      when we take   times of simulations. The 

convergence happens much slower than FEM and FDM. In order to simulate a path 

we shall consider the price of an asset on a finite set of m + 1 evenly-spaced dates 0 = 

  ,   , . . . ,    = T, where    =     =      is the time of the jth observation.  

 As we take smaller time steps in each simulation(NT), we expect the results to 

track the path independent options more accurately. The confidence interval should be 

narrower when smaller steps are applied.  
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 We consider Batch 1 of our data, T = 0.25, K = 65, sig = 0.30, r = 0.08, S = 60, 

Table 1 presents the value of this European call option given various time steps and 

number of simulations, The exact solution is 2.13293 by the Black-Scholes equation 

     NT 

NSIM 
300 600 1200 

      2.13163(0.00130) 2.13286 2.13149 

      2.13124 2.13274 2.13247 

      2.13215 2.13318 2.13244(0.00049) 

Table 1 

 We obviously see improvement from 300 time steps to 600 steps, but oddly 

enough, we see the simulated results shift away from exact solution when we take 

1200 time steps. However, the overall accuracy of two places behind the decimal 

point is satisfying. We later found the same degree of accuracy in nearly every one of 

our test cases. We further explore the pattern of standard error in the table below. The 

pattern is very much discernible: the standard error decreases at the same rate as the 

increase of NSIM, which is expected.  

     NT 

NSIM 
300 600 1200 

      2.212e-006 2.212e-006 2.212e-006 

      1.106e-006 1.106e-006 1.106e-006 

      5.529e-007 5.533e-007 5.529e-007 

Table 2 

 Like Batch 1, We have gathered a total of eight sets of data of European call and 

put. Detailed results are listed in Appendix B. The result overall is fairly accurate, but 

it is not quite what we expected. The error between the simulation and exact solution 
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does not display a steady pattern with the increase of time steps and number of 

simulations. While the standard deviation explicitly follows the expectation and is 

reduced by half when number of simulations is 4 times as many, some of the standard 

deviation are still pretty large(Batch 3 Call).  

 

5.5 Advantages and Shortcoming of Monte Carlo Method in option pricing 

 We have mentioned that MC method applies to a wide range of problems. For 

instance, the Asian option has no closed-form solution, and its payoff relies on the 

intermediate price of underlying asset. The utilization of finite difference method can 

record the price for each intermediate time to help compute the average price of 

underlying asset. Its universal methodology is easy to understand and program. Even 

in cases of plain European option, we can consider MC method as a second opinion 

for other numerical methods or a method to check the exact solution. The most 

glaring disadvantage of the MC method is that it is slow to compute. The theory states 

that the time discretization error can be eliminated if we divide the time interval into 

smaller subintervals, but the cost is not proportional to the refinement of the results. A 

much longer time is taken in last several trials of each test cases, but results barely get 

better, if not worse.  
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6.  Conclusion 

 

 In summary, we revisited the foundational work of the Black-Scholes framework 

and derived the Black-Scholes equation and its analytical solution of European 

options. We then examined the numerical approach to solve the model including the 

Finite Difference Method(FDM), Finite Element MethodFEM), and Monte Carlo 

Method(MC). MC method is a general process that can apply to a variety of 

derivatives given the probability distribution and can be modified to accommodate 

various processes for the underlying asset. The numerical results are fairly accurate 

and encouraging, but a large number of simulation is required to reach the desired 

results. More importantly, traditional MC Method does not track the Black-Scholes 

model and is not able to show dynamical information about the option price. If we 

apply FD time discretization, we are able to achieve intermediate data and find better 

final results. On the other hand, FDM proves to be a fairly fast and robust numerical 

scheme for pricing plain vanilla option, especially in the 1-D case. As we have 

observed in domain truncation cases(Table 1 and 2), FEM is barely an improvement 

over FDM in evaluating the one-dimensional Black-Scholes equation. However, we 

can speculate that FEM may represent an substantial upgrade over FDM if we 

consider nonlinear case in high dimensional space since FEM is able to cover the 

domain space significantly better than FDM. Domain transformation lacks theoretical 

foundation, but it presents an interesting attempt to include the entire semi-infinite 

domain space. Although this idea may be faced with multiple source of error, 

including the amplification effect of the rounding error, the normalized error is fairly 
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desirable and shows improvement over the counterpart of the domain truncation. An 

obvious improvement can be made by applying a non-uniform mesh to the domain 

space[0,1] instead of a uniform mesh for our test cases. We may be able to obtain 

better approximation by employing FEM with a suitably graded mesh near infinity. 

However, a realistic issue with the domain transformation in the case of option pricing 

is that the participants in the derivatives market are using the physical price of the 

underlying asset, so the conversion of nodes requires a linear interpolation in the 

transformed domain, which may cause significant error and call for further error 

analysis.  
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Appendix A 

Test Case Solver 

 

clear; 

%rs=70;%truncated domain 

rs=1; %transformed domain  

Tf=2;%expiration 

ref=10; 

%dx=1/2^ref; 

dy=1/2^ref; 

dt=1/2^10; 

sigma=0.3; 

r=0.08; 

  

%x=[0:dx:rs]; 

y=[0:dy:rs]; 

n=length(y); 

e=ones(n,1); 

ze=zeros(n,1); 

  

%g1=(-0.045*x.^2)'; %-0.5*sigma^2*x.^2/dx^2; 

g1=(-0.045*(y.^2).*((1-y).^2));%tranformation coefficient 

%g2=(-0.08*x)'; 

g2=(-0.08*y.*(1-y)+0.09*(y.^2).*(1-y))';%transformation coeff 

G1=sparse(diag(g1)); 

G2=sparse(diag(g2)); 

e=ones(n,1); 

  

%M=sparse(eye(n,n)); % FD 

M=spdiags([1/6*e 2/3*e 1/6*e], -1:1,n,n); % Linear FEM 

K=spdiags(1/dy^2*[e -2*e e], -1:1,n,n);%generate second derivative 

K=G1*K; 

% upwind 

% C=spdiags(1/dy*[ze -e   e], -1:1,n,n); 

C=spdiags(1/dy*[-0.5*e  ze  0.5*e], -1:1,n,n);%generate first 

derivative 

C=G2*C; 

  

theta=1; %implicit Euler 

%theta=0 %explicit Euler 

%theta=0.5 %Crank-Nicholson 

  

A=1/dt*M+theta*(K+C+r*M);%adding time-advancing term 

B=1/dt*M-(1-theta)*(K+C+r*M); 
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u=zeros(n,1); 

  

disp('Assembling done'); 

  

  

trun=10^4; 

u=(y./(1+(trun)^(-1)-y)-65).*(y./(1+(trun)^(-1)-y)>=65); 

x=y./(1-y+(trun)^(-1)); 

  

u=u'; 

bbc=zeros(n-2); 

j=1; 

  

disp('Time loop starting'); 

uey(:,j)=u;u(end-1,j), max_sol(j)=norm(uey(1:end-1,j)) 

sol(:,j)=u; 

  

for t=dt:dt:Tf 

        t 

    u(1)=0; % left b.c. 

    u(n) = trun-65*exp(-r*t);%asymptotic right bc. 

    b=B*u; 

    bbc=b(2:n-1); 

    bbc=bbc-A(2:n-1,1)*u(1)-A(2:n-1,n)*u(n); 

    Abc=A(2:n-1,2:n-1); 

    ur=Abc\bbc; 

    u=[u(1);ur;u(n)]; 

    j=j+1; 

    uey(:,j)= 

0.5*x.*(1+erf((log(x/65)+0.125*t)/(0.3*sqrt(2*t))))-0.5*65*exp(-0.08*

t)*(1+erf((log(x/65)+0.035*t)/(0.3*sqrt(2*t)))); 

    sol(:,j)=u; 

    max_sol(j)=norm(uey(1:end-1,j)); 

     

end; 

sol(:,j)=u; 

  

  

rel_err=1; 

end_err=n;%rel_err/dx+1;  

  

for i=1:j, 
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 %plot(sol(2:end_err-1,i)-uey(2:end_err-1,i),'k'), pause(0.1) 

    aux=(sol(1:end_err-1,i)-uey(1:end_err-1,i)).^2;  

    err(i)=sqrt(0.5*dy*(aux(1)+aux(end))+dy*sum(aux(2:end-1))); %L2 

error 

end; 

errLiL2=max(err)/rs %/max(max(max_sol)) 

  

for i=1:j, plot(y,sol(:,i),'r',y,uey(:,i),'g'),pause(0.1); end; 
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Appendix B 

Monte Carlo simulation results 

 

Batch 1 

Call(2.13293) 

1)NT =300, NSIM = 2000000; P = 2.13163, Std = 0.00312858, SE = 2.21224e-006 

2)NT =300, NSIM = 4000000; P = 2.13124, Std = 0.00221191, SE = 1.10595e-006 

3)NT =300, NSIM = 8000000; P = 2.13215, Std = 0.00156385, SE = 5.52903e-007 

4)NT = 600,NSIM = 2000000; P = 2.13286, Std = 0.00312872, SE = 2.21234e-006 

5)NT = 600,NSIM = 4000000; P = 2.13274, Std = 0.00221213, SE = 1.10607e-006 

6)NT = 600,NSIM = 8000000; P = 2.13318, Std = 0.0015649, SE = 5.532976e-007 

7)NT = 1200, NSIM = 2000000; P = 2.13149, Std = 0.00312852,SE= 2.2122e-006 

8)NT = 1200, NSIM = 4000000; P = 2.13247, Std = 0.00221263, SE = 1.10631e-006 

9)NT = 1200, NSIM = 8000000; P = 2.13244, Std = 0.00156385, SE = 5.52903e-007 

 

Comment: Simulation 4 has the most accurate result compared to the exact solution, 

which is quite unexpected. The odd thing is that between simulation 8 and 9, the error 

grew bigger.  

 

Put(5.84584) 

1)NT = 300, NSIM = 2000000; P = 5.84439, Std = 0.00419261, SE = 2.96462e-006 

2)NT = 300, NSIM = 4000000; P = 5.84427, Std = 0.00296357, SE = 1.48178e-006 

3)NT = 300, NSIM = 8000000; P = 5.84553, Std = 0.00209586, SE = 7.40998e-007 

4)NT = 600, NSIM = 2000000; P = 5.84565, Std = 0.00419022, SE = 2.96293e-006 

5)NT = 600, NSIM = 4000000; P = 5.84619, Std = 0.00296349, SE = 1.48175e-006 

6)NT = 600, NSIM = 8000000; P = 5.84419, Std = 0.00209495, SE = 7.406773-007 

7)NT = 1200, NSIM = 2000000; P = 5.84528, Std = 0.00419027, SE = 2.96297e-006 

8)NT = 1200, NSIM = 4000000; P = 5.84278, Std = 0.00296225, SE = 1.48113e-006 

9)NT = 1200, NSIM = 8000000; P = 5.84616, Std = 0.0020957, SE = 7.40941e-007 

 

Comments: Simulation 4 gives the most accurate result. Between 7, 8, 9, the results 

oscillates and does not have a clear pattern to show its improvement towards the exact 

solution.  

 

Batch2 

Call(7.96632) 

1)NT = 300, NSIM = 2000000; P = 7.96431, Std = 0.00929421, SE = 6.572e-006 

2)NT = 300, NSIM = 4000000; P = 7.96236 Std = 0.00657135, SE = 3.28568e-006 

3)NT = 300, NSIM = 8000000; P = 7.96427, Std = 0.00464637, SE = 1.64274e-006 

4)NT = 600, NSIM = 2000000; P = 7.96478, Std = 0.00929554, SE = 6.57294e-006 

5)NT = 600, NSIM = 4000000; P = 7.9646, Std = 0.00657232, SE = 3.28616e-006 

6)NT = 600, NSIM = 8000000; P = 7.96623 Std = 0.00464878, SE = 1.64359-006 

7)NT = 1200, NSIM = 2000000; P = 7.96043, Std = 0.00929452, SE = 6.57221e-006 

8)NT = 1200, NSIM = 4000000; P = 7.96469, Std = 0.00657322, SE = 3.28661e-006 
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9)NT = 1200, NSIM = 8000000; P = 7.96425, Std = 0.00464652, SE = 1.64279e-006 

 

Comments: Simulation 6 is the most accurate. The others are not as accurate and 

shows no pattern.  

 

Put(7.96632) 

1)NT = 300, NSIM = 2000000; P = 7.96398, Std = 0.00735991, SE = 5.20424e-006 

2)NT = 300, NSIM = 4000000; P = 7.96287 Std = 0.00520205, SE = 2.60103e-006 

3)NT = 300, NSIM = 8000000; P = 7.96541, Std = 0.00367899, SE = 1.30072e-006 

4)NT = 600, NSIM = 2000000; P = 7.96476, Std = 0.00735385, SE = 5.19996e-006 

5)NT = 600, NSIM = 4000000; P = 7.96565 Std = 0.00520127, SE = 2.60063e-006 

6)NT = 600, NSIM = 8000000; P = 7.96225 Std = 0.00367666, SE = 1.2999-006 

7)NT = 1200, NSIM = 2000000; P = 7.96278, Std = 0.00735458, SE = 5.20047e-006 

8)NT = 1200, NSIM = 4000000; P = 7.95944, Std = 0.00519834, SE = 2.59917e-006 

9)NT = 1200, NSIM = 8000000; P = 7.96626, Std = 0.00367791, SE = 1.30034e-006 

 

Comments: Simulation 9 is the most accurate. It is expected because it takes most 

simulations and subintervals. Other than this desired result, the others do not show a 

clear pattern.  

 

 

Batch3  

Call(92.1749) 

1)NT = 300, NSIM = 2000000; P = 91.2047, Std = 0.0228614, SE = 1.61655e-005 

2)NT = 300, NSIM = 4000000; P = 91.1992 Std = 0.0161788, SE = 8.08938e-006 

3)NT = 300, NSIM = 8000000; P = 91.0868, Std = 0.0112461, SE = 3.97608e-006 

4)NT = 600, NSIM = 2000000; P = 91.6321, Std = 0.02325, SE = 1.64402e-005 

5)NT = 600, NSIM = 4000000; P = 91.5422, Std = 0.0162482, SE = 8.1241e-006 

6)NT = 600, NSIM = 8000000; P = 91.6098, Std = 0.0114195, SE = 4.03741e-006 

7)NT = 1200, NSIM = 2000000; P = 91.9614, Std = 0.0247095, SE = 1.74723e-005 

8)NT = 1200, NSIM = 4000000; P = 92.0465, Std = 0.0172252, SE = 8.61258e-006 

9)NT = 1200, NSIM = 8000000; P = 91.9474, Std = 0.0127421, SE = 4.505e-006 

 

Comment: Simulation 8 is the most accurate, but doubling the simulation after that 

does not show improvement.  

 

Put(1.24651)  

1)NT = 300, NSIM = 2000000; P = 1.26174, Std = 0.000158334, SE = 1.11959e-007 

2)NT = 300, NSIM = 4000000; P = 1.26069, Std = 0.000111916, SE = 5.59582e-008 

3)NT = 300, NSIM = 8000000; P = 1.2611, Std = 7.91473e-005, SE = 2.79828e-008 

4)NT = 600, NSIM = 2000000; P = 1.2537, Std = 0.000157689, SE = 1.11503e-007 

5)NT = 600, NSIM = 4000000; P = 1.25438, Std = 0.000111516, SE = 5.5758e-008 

6)NT = 600, NSIM = 8000000; P = 1.25333, Std = 7.88265e-005, SE = 2.78694e-008 

7)NT = 1200, NSIM = 2000000; P = 1.25012, Std = 0.000157434, SE = 1.11323e-007 
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8)NT = 1200, NSIM = 4000000; P = 1.24901, Std = 0.000111291, SE = 5.56454e-008 

9)NT = 1200, NSIM = 8000000; P = 1.25085, Std = 7.87431e-005, SE = 

2.78399e-008 

 

Comment: Simulation 8 is the most accurate, and overall 1200 subintervals are more 

accurate than the results we derive from 600 subinterval simulations.   

 

Batch4  

Call(0.204121) 

1)NT = 300, NSIM = 2000000; P =0.203385, Std = 0.000639082, SE = 4.51899e-007 

2)NT = 300, NSIM = 4000000; P = 0.203146, Std = 0.000451978, SE = 2.25989e-007 

3)NT = 300, NSIM = 8000000; P = 0.203057, Std = 0.000318938, SE = 1.12762e-007 

4)NT = 600, NSIM = 2000000; P = 0.20334, Std = 0.00063982, SE = 4.52421e-007 

5)NT = 600, NSIM = 4000000; P = 0.20329, Std = 0.000451983, SE = 2.25991e-007 

6)NT = 600, NSIM = 8000000; P = 0.203597, Std = 0.000319988, SE = 1.13133e-007 

7)NT = 1200, NSIM = 2000000; P = 0.203514, Std = 0.000640914, SE = 

4.53194e-007 

8)NT = 1200, NSIM = 4000000; P = 0.203576, Std = 0.000453537, SE = 

2.26769e-007 

9)NT = 1200, NSIM = 8000000; P = 0.203299, Std = 0.000320095, SE = 

1.13171e-007 

 

Comment: Simulation 6 is the more accurate one. Simulations 7,8,9 shows overall 

improvement, but they are all very far from the actual results.  

 

Put(4.0733) 

1)NT = 300, NSIM = 2000000; P =4.07277, Std = 0.00131428, SE = 9.29339e-007 

2)NT = 300, NSIM = 4000000; P = 4.07278, Std = 0.000929328, SE = 4.64664e-007 

3)NT = 300, NSIM = 8000000; P = 4.07272, Std = 0.000657301, SE = 2.32391e-007 

4)NT = 600, NSIM = 2000000; P = 4.07282, Std = 0.00131443, SE = 9.29445e-007 

5)NT = 600, NSIM = 4000000; P = 4.07291, Std = 0.000929478, SE = 4.64739e-007 

6)NT = 600, NSIM = 8000000; P = 4.07258, Std = 0.000657143, SE = 2.32335e-007 

7)NT = 1200, NSIM = 2000000; P = 4.07334, Std = 0.00131387, SE = 9.29044e-007 

8)NT = 1200, NSIM = 4000000; P = 4.07252, Std = 0.00092911, SE = 4.64555e-007 

9)NT = 1200, NSIM = 8000000; P = 4.07301, Std = 0.000657165, SE = 2.32343e-007 

 

Comments: Simulation 7 is the most accurate, but the error does not improve with the 

growing simulation numbers.  
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