## Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

## Date

# Cell-type-specific analysis in Alzheimer's disease 

## By

## Can Li

Master of Science in Public Health

Biostatistics and Bioinformatics

> Hao Wu, PhD
> Thesis Advisor

Zhaohui Qin, PhD
Reader

# Cell-type-specific analysis in Alzheimer's disease 

## By

## Can Li

B.S.<br>The Ohio State University

2018

Thesis Committee Chair: Hao Wu, PhD

Reader: Zhaohui Qin, PhD

[^0]
#### Abstract

Cell-type-specific analysis in Alzheimer's disease

By Can Li


## Background:

Alzheimer's disease (AD) is one of the chronic neurodegenerative diseases which starts slowly but worsens over time. It has been found that distinct cell types in the brain play different roles in AD etiology and progression.

## Methods and Materials:

We estimated cell-type-specific proportions in the brain applying reference-free DNA methylation mixture deconvolution (R/CRAN package RefFreeEWAS) and the newly developed TOAST (Tools for the Analysis of Heterogeneous Tissues, an R/Bioconductor package) statistical method. We detected cell-type specific differential signals between patients with Alzheimer's and normal controls. Differential methylation calling without consideration of cell mixtures was conducted to compare the results using Bioconductor package Minfi. We conducted the downstream analysis, including pathway/GO analysis and motif analysis using EnrichR

## Results:

We assumed there are four brain cell types which are neuron, astrocyte, oligo, microglia during our analysis. We mainly focus on cell type 3 since both Reference-free DNA methylation mixture deconvolution and TOAST statistical method express the lowest average proportion on cell type 3. The average proportion of cell type 3 is 0.0809 ( $\mathrm{SD}=0.0049$ ) for AD patients and $0.0803(\mathrm{SD}=0.0042)$ for control groups resulted from the Reference-free DNA methylation mixture deconvolution. And the average proportion of cell type 3 generated from the TOAST statistical method is $0.0882(\mathrm{SD}=0.0043)$ for AD patients and 0.0803 ( $\mathrm{SD}=0.0035$ ) for control groups. The proportions of cell type 1 and 2 are highly negatively correlated to each other with correlation coefficients -0.94 indicating the possible cell type 1 and 2 might be neuron and oligo which are anticorrelated conducted from a recently published paper. The number of DMCs of cell type 3 identified by TOAST is less than that of RefFreeEWAS although it has the least proportions. The biological process regulation of adiponectin secretion has the highest combined score and the neurotransmitter receptor complex is the top cellular component GO term shown in the GO analysis.

## Conclusion:

The study reveals that differential analysis could provide insights for diagnostic biomarkers and therapeutic targets and both RefFreeEWAS and TOAST approaches should be encouraged in the practice that future studies could address cell-type-specific idea in AD area.

# Cell-type-specific analysis in Alzheimer's disease 

## By

## Can Li

B.S.<br>The Ohio State University

2018

Thesis Committee Chair: Hao Wu, PhD

Reader: Zhaohui Qin, PhD

[^1]
## Acknowledgements

First and foremost, I would like to express my great thanks to my parents and families for giving me opportunities to undertake my master's degree and bachelor's degrees, encouraging me to make any decisions with love. Whenever I get into trouble and desperately need a hand, they are always first to support me and never give me any pressure.

I could not have accomplished the steps toward my graduation without Dr. Hao Wu's guidance during my time at Emory University. I offer my profound gratitude to Dr. Wu helping me to reach my full potential and I learned a lot from him not only academically but also personally. Thanks for him always being my number one mentor especially when I confused after graduation. I am grateful to Dr. Ziyi Li patiently explained everything when I had questions in the thesis, for allowing me to capture my interests and ease my hesitation to study biostatistics. She has been my great friend by sharing her own experience. I also great thanks to Dr. Zhaohui Qin for being my thesis reader without hesitation and helping me revise the thesis draft. Their enthusiasm and expertise inspired me to pursue more possibilities and it is my luck to have gotten to work with them.
Table of Contents
Introduction ..... 1
Methods ..... 4
Description of subject and data ..... 4
Proportions Estimation ..... 5
Cell-type specific DM (csDM) test using TOAST ..... 7
Pathway and Gene Ontologies Analysis ..... 9
Results ..... 10
Data Description ..... 10
Estimated cell Proportions ..... 10
DMCs of four unknown cell types in brain, and joint signal analysis ..... 15
Comparison with existing results ..... 16
Pathway Analysis and GO Ontologies Analysis ..... 18
Discussion ..... 20
Conclusion ..... 21
Reference ..... 22
Appendix ..... 24

## Introduction

Alzheimer's disease (AD) is a progressive disease, starting with mild memory loss, which can lead to loss of ability to engage in conversation and respond to the environment, seriously impact daily activities. (Kukull, 2002) AD is one of the most prevalent forms of dementia which is a chronic neurodegenerative disease and is estimated to affect 36 million people worldwide. It accounts for $60 \%$ to $80 \%$ of cases of dementia. (Barnes, 2011) The incidence of AD, increasing exponentially, is not a normal part of aging and becomes a global burden and the majority of people with AD are 65 or older. (Qiu, 2009) While there are still approximately 200,000 Americans under the age of 65 develop younger-onset AD. (Alzheimer's Association, 2005) The most common early symptom of AD is short-term memory loss since AD changes the learning ability of the part of the brain typically. (Alzheimer's Association, 2005) In addition to memory problems, symptoms can be developed into problems with language, disorientation, changes in mood, personality or behavior. (Alzheimer's Association, 2005) The brain has 100 billion nerve cells(neurons) to connect with many others to form communication networks and store information through electrical and chemical signals. While AD disrupts the communication among nerve cells and characterized by developing amyloid plaque and neurofibrillary, or tau, tangles, and even the death of nerve cells. (National Institute on Aging, 2017)

The risk of AD is determined by genetics, lifestyle, environmental factors, as a combination among them to affect the brain over time. (Iatrou, 2017) Epigenetic mechanisms are acting as the mediation of genetic environment interactions and the
factors to cause long-lasting gene changes including cognition, memory, and mood. Tremendous efforts have been spent to look for molecular mechanisms through analyzing the epigenetic changes at the genome level aimed to provide new perceptions into the relationship between brain epigenome and AD. (Hoffmann, 2017) Epigenetics alter gene expression and genomic functions, stable and heritable without changes in the DNA sequence. (Bollati, 2011) Epigenetic modification such as DNA methylation functions to modulate gene expression and associates with many key cellular processes and human diseases. (Anna, 2015) Therefore, people hope to identify epigenetic biomarkers and therapeutic targets to give early detection, diagnosis, prognosis, and prediction and identify methylation differences related to diseases. (Gao, 2018) Recently, abnormal DNA methylation is approved to be related to the pathogenesis of AD. (Jankowska, 2015)

Differential methylation (DM) analysis is an effective way to identify the modification of DNA methylation in brain regions through conducting statistical tests on CpG sites and identifying the ones associated with the disease. (Li, 2019) However, the brain has several distinct cell types with highly heterogeneous functions and various genomic profiles. To account for the cell type mixture, we conducted in-depth analysis of the DNA methylation of AD in brains using two newly developed statistical methods with hopes to detect novel biological signals and account for the cellular heterogeneity. We assumed there are four brain cell types which are neuron, astrocyte, oligo, microglia during our analysis. (Possel, n, d)

In recent years, the problem of solving cellular heterogeneity in DM and epigenome-wide association studies (EWAS) which can identify the association between epigenetic variation and a particular identifiable phenotype has attracted a lot of interest. (Rakyan, 2011) Several deconvolution methods for dealing with specific proportions of cell types in complex tissues have been proposed. Two deconvolution algorithms divided into "reference-free" and "reference-based" have been proposed, based on whether the use of DNA methylation reference profiles to conducting deconvolution. Although the reference-based method is considered to be more accurate and stable with given reference datasets, this design is laborious or expensive to collect and some solid tissues in which cell types may not be known. (Houseman, 2014) In addition, if the sample size of the reference data is small with limited clinical conditions, the reference-based method is unable to provide an accurate cell composition estimation with mixed tissues. (Li, 2019) Therefore, a RefFreeEWAS (EWAS using reference-free DNA Methylation Mixture Deconvolution) package was applied to infer cell-type-specific proportions and also compared with a newly developed statistical method TOAST (TOols for the Analysis of heterogeneouS Tissues) (Li, 2019)

After obtaining the estimated cell-type-specific proportions, cell-type specific differential methylation (csDM) or cell-type-specific differential expression(csDE) analysis can be also conducted using TOAST between patients with Alzheimer's and normal controls. TOAST improves reference-free cell composition estimation by cross-cell type differential analysis and provides great flexibility for detecting csDE/csDM by characterizing the data from mixed samples using the linear model in a rigorous statistical
framework. The R package is available on GitHub (https://github.com/ziyili20/TOAST). The cell-type-specific proportions were conducted on the combination of AD patients and control groups. The csDM analysis is implemented of AD on four unknown types of brain cells in all samples. We also used the differential methylation calling without consideration of cell mixtures to compare the results using Bioconductor package Minfi. (Aryee, 2014) After that, we conducted the downstream analysis, including pathway/GO analysis and motif analysis using EnrichR to interpret the biological meaning of the results.(Kuleshov, 2016) As a follow-up, we hope to implement other methods to confirm my results and to detect specific brain cell types.

## Methods

## Description of subject and data

Our data set consists of the DNA methylation data of AD patients and controls which were generated on the samples collected from two prospective cohort studies at Rush University: The Religious Orders Study (ROS) and the Memory and Aging Project (MAP). (De Jager, 2014) These two cohort studies aimed to discover the difference of cognitive function in the aging brain. The dataset was obtained from De Jager et al. (2014) which studies a random selection of the older population with 734 subjects. The Infinium Human Methylation 450K BeadChip was used to measure the methylation profiles at $339,162 \mathrm{CpG}$ sites and transformed into beta values. The final input data is beta value matrix with 339,162 rows (CpG sites) and 734 columns (subjects). The AD status for all subjects were determined by Braak stages that the subjects with Braak stage $0-3$ were indicated as normal controls ( 368 subjects) and with Braak stage $4-6$ were indicated as AD patients (366 subjects).

## Proportions Estimation

## Notations

Given DNA methylation profiles of ROS/MAP, R package RefFreeEWAS and TOAST were applied to solve for cell-type specific proportions in comparison. Since brain is complex tissue of cells derived from at least two cell types with potentially distinct DNA methylation profiles, reference-free deconvolution is the most suitable method to provide accurate cell composition estimation. Reference-free DNA methylation mixture deconvolution method assumes the decomposition with a variant of non-negative matrix factorization: $Y=M \Omega{ }^{T}$ that $Y$ a $m$ by $n$ matrix that rows represent features and columns represent samples, denotes the observed DNA methylation. $M$ is the Cell-type specific DNA methylation profiles from the mixed tissue which is the ROS/MAP data in this analysis. It consists of an unknown $m \times K$ matrix indicating m CpG-specific methylation for each of $K$ cell types, i.e. four in this application. $\Omega$ denotes the unknown specimenspecific cell-type proportions consisted of unknown $n \times K$ matrix indicating the cell-type proportions for each subject. $\Omega$ is the interested variable in this analysis which entries lie between 0 and 1 and its rows sum to less than one. High values of the row-variance denoted as

$$
\operatorname{Var}\left(Y_{i} .\right)=\Sigma_{j}\left(Y_{i j}-\overline{Y_{l}} .\right)^{2}
$$

which include the influences of within-cell type variances, cross-cell type variances and variation from the mixing proportions.

## Model

TOAST statistical method was used to improve reference-free cell composition estimation by cross-cell type differential analysis. Based on the findings from recent published studies, good deconvolution is represented as low within-cell type variation but high cross-cell types variation. Therefore, TOAST introduces a method focus on data from mixed sample for cross-cell type differential analysis. First of all, the observe data are assumed as $Y_{m}=\left[Y_{m 1}, Y_{m 2}, \ldots, Y_{m n}\right]^{T}, m=1, \ldots, m$. The proportions of the samples are following denoted as $\theta_{s}=\left[\theta_{s 1}, \theta_{s 2}, \ldots, Y_{s k}\right]^{T}$.

TOAST method conducted a linear model:

$$
E\left(Y_{m}\right)=V \beta_{m}
$$

Where

$$
\begin{gathered}
V=\left[\begin{array}{cccc}
\theta_{11} & \theta_{12} & \ldots & \theta_{1 K} \\
\theta_{21} & \theta_{22} & \ldots & \theta_{2 K} \\
\vdots & \vdots & \vdots & \vdots \\
\theta_{N 1} & \theta_{N 2} & \ldots & \theta_{N K}
\end{array}\right], \\
\beta_{m}=\left[\begin{array}{llll}
\mu_{m 1} & \mu_{m 2} & \ldots & \mu_{m k}
\end{array}\right]^{T} .
\end{gathered}
$$

$\mu_{m k}$ represents the mean level for the $m$ - $t h$ feature in the $k$ - $t h$ cell type.

This model is used to test the difference between cell type $k$ versus other cell types under the hypothesis test that $H_{0}: \mu_{m k}-\frac{1}{K-1} \sum_{i \neq k} \mu_{m k}=0, k=1, \ldots, K$. which indicates the significant test results of features means the cell-type specific features. With this method, TOAST designs an iterative algorithm to improve feature selection in reference-free deconvolution.

Compare with reference-free DNA methylation mixture deconvolution, TOAST design a new algorithm for improve feature selection in RF deconvolution. $M_{0}$ is denoted as a list of initial features, choosing the top variable features from traditional methods. $Y_{M_{0}}$ a sub-matrix of $Y$ contains the corresponding rows of $Y$ for feature in $M_{0}$. Then $Y_{M_{0}}$ conducted RF deconvolution to estimate mixture proportions. The improved algorithm has been proved the improvements of proportion estimations that the RF deconvolution performs better with more accurate estimated results.

## Cell-type specific DM (csDM) test using TOAST

With estimated mixture proportions of AD patients and controls together, we detect four cell-types specific DM signals using TOAST package. Let $Z_{i}$ is a scaler or vector representing the subject's covariates (such as disease status, age, gender, etc.), TOAST assumes the pure cell-type profile $X_{i k}$ for sample $i$ and cell type $k$ satisfies:

$$
\mathrm{E}\left[\mathrm{X}_{i k}\right]=\mu_{k}+Z_{i}^{T} \beta_{k}
$$

Where $\mu_{k}$ is the baseline DNA methylation profile of cell type $k$, and $\beta_{k}$ are coefficients associated with covariate effect(s). Following the previous notation, we denote the estimated mixture proportions by $W_{i k}$. Although the cell-type specific pure profile $\mathrm{X}_{i k}$ is not directly observed, we can observe mixed signal $Y_{i}$ for subject $i$, is weighted average of $\mathrm{X}_{i k}$. Given the proportions of $W_{i}$, a linear model shows

$$
\mathrm{E}\left[\mathrm{Y}_{i} ; \theta_{i}\right]=\sum_{k} \theta_{i k} \mathrm{E}\left[\mathrm{X}_{i k}\right]=\sum_{k}\left(\theta_{i k} \mu_{k}+\theta_{i k} Z_{i}^{T} \beta_{k}\right) .
$$

In this model, $\mathrm{Y}_{i}, \theta_{i k}$ and $\mathrm{Z}_{i}$ are observed (or estimated), and $\mu_{k}$ and $\beta_{k}$ are unknown parameters to be solved. Since the observe data $Y$ from a total number of $N$ samples,
linear model can be denoted as matrix form $Y=\left[\mathrm{Y}_{1}, \mathrm{Y}_{2} \ldots \mathrm{Y}_{\mathrm{N}}\right]^{\mathrm{T}}$ and defined in a linear model: $E[Y]=W \beta$ where the design matrix $W$ and the covariate vector $\beta$ as

$$
\begin{gathered}
W=\left[\begin{array}{cccccccc}
\theta_{11} & \theta_{12} & \ldots & \theta_{1 K} & \theta_{11} \cdot Z_{1}^{T} & \theta_{12} \cdot Z_{1}^{T} & \ldots & \theta_{1 K} \cdot Z_{1}^{T} \\
\theta_{21} & \theta_{22} & \ldots & \theta_{2 K} & \theta_{21} \cdot Z_{2}^{T} & \theta_{22} \cdot Z_{2}^{T} & \ldots & \theta_{2 K} \cdot Z_{2}^{T} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
\theta_{N 1} & \theta_{N 1} & \ldots & \theta_{N K} & \theta_{N 1} \cdot Z_{N}^{T} & \theta_{N 1} \cdot Z_{N}^{T} & \ldots & \theta_{N K} \cdot Z_{N}^{T}
\end{array}\right] \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{gathered}
$$

TOAST detects cell-type specific differential signals through testing linear combinations of the regression coefficients with estimated parameters. The ROS/MAP DNA methylation data were used to solve mixture proportion as inputs for TOAST and to detect four cell type-specific DM sites between AD patients and controls together. We explore correlations between proportions of each cell types and perform one-way ANOVA to evaluate the significance of the AD status in each cell type proportions. Five null hypotheses generated as : $\beta_{1}=0$ for cell type one-specific signals, $\beta_{2}=0$ for cell type two-specific signals, $\beta_{3}=0$ for cell type three-specific signals, $\beta_{4}=0$ for cell type four-specific signals and $\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$ for the joint signals from four cell types. Permutation test was conducted to test the differential expression of the joint signals analysis with deriving empirical p-values since we interested in the sharp null hypothesis that no signals difference between four cell types. Statistical results are corrected by multiple-testing by Benjamini-Hochberg False Discovery Rate (FDR). CpG sites with FDR less than 0.2 are considered as cell-type specific DM.

Then a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays called Minfi was used to detect DM of AD patients and control groups without considering the cell mixture. Each differentially methylated CpG (DMC) is matched with associated gene using Illumina Infinium methylation 450 k methylation microarrays of human genome version 19 (hg19) using R/Cran package IlluminaHumanMethylation450kanno.ilmn12.hg19.

## Pathway and Gene Ontologies Analysis

We use identified DMCs of Cell Type 3 in TOAST to conduct pathway analysis and gene ontology (GO) analyses using genes enrichment analysis tool EnrichR (McDermott et al. 2016) web server (http://amp.pharm.mssm.edu/Enrichr/). We set maximum entry as 1000 genes and use hg19 as reference gene sets libraries. The table generated consists of three enrichment scores to represent the significance of overlapping input DMCs list and gene sets libraries. The first one is the p-value which is computed from the Fisher exact test that is a proportion test assuming a binomial distribution and the probability of each gene within gene sets are independent. The second one is based on the z -score to assess the deviation from the expected rank derived from the Fisher exact test for many random gene sets. The third one is combined score, what we based on in this analysis, which is computed through taking log of the p -value from the Fisher exact test and multiply to the z-score from the expected rank. Kyoto Encyclopedia of Genes and Genomes (KEGG) cell signaling pathway database in 2019 was conducted to provide pathway analysis. For the GO Ontological analysis, we focus on the GO biological process 2018.

## Results

## Data Description

DNA methylation data of ROS/MAP include 339,162 CpGs for 734 subjects with 366
AD patients and 388 control groups. The reference-free deconvolution processes with AD patients and Control groups together.

## Estimated cell Proportions

Top 10000 CpGs based on the coefficient of variation was selected as the most variant features among 339,162 CpGs. The cell-type-specific proportions for four unknown cell types in brains were measured applying reference-free DNA methylation mixture deconvolution (R/CRAN package RefFreeEWAS) and newly developed TOAST statistical method.

The boxplots of cell proportion for AD patients and control patients were generated under two methods with descriptive tables.

Reference-free DNA methylation mixture deconvolution (R/CRAN package RefFreeEWAS)


Figure 1: Cell Proportion for AD patients and Controls groups generated from Reference-free DNA methylation mixture deconvolution

Table1: The cell type, proportion and P-values of AD patients and Control groups by using Reference-free DNA methylation mixture deconvolution (R/CRAN package RefFreeEWAS) when $\mathrm{K}=4$

## AD Patients (Proportion $\pm \quad$ Control groups (Proportion $\pm$

| Cell Type | SE | SE) | P-values |
| :--- | :---: | :---: | :---: |
| Cell Type 1 | $0.3117(0.0412)$ | $0.2804(0.0388)$ | $0.0345^{*}$ |
| Cell Type 2 | $0.2982(0.0665)$ | $0.3451(0.0689)$ | $0.0148^{*}$ |
| Cell Type 3 | $0.0809(0.0049)$ | $0.0803(0.0042)$ | 0.904 |
| Cell Type 4 | $0.2934(0.0353)$ | $0.2767(0.0347)$ | 0.228 |

1. Abbreviations: $\mathrm{AD}=$ Alzheimer's Disease, $\mathrm{SE}=$ standard error.
2. A p-value less than 0.05 (typically $\leq 0.05$ ) is statistically significant and labeled with *.
3. K means the number of the cell types.

Based on the results shown on the Reference-free DNA methylation mixture deconvolution, the average proportion of the cell type 3 is $0.0809(\mathrm{SD}=0.0049)$ for AD patients and $0.0803(\mathrm{SD}=0.0042)$ for control groups, that expresses the lowest average proportion among four cell types. One-way ANOVA test was applied to compare the proportions of four cell types among AD patient and control groups. Considering the pvalues of each cell type, cell types 1 and 2 show the p-value equals to 0.0345 and 0.0148 , respectively less than 0.05 . Therefore, indicating cell type 1 and cell type 2 , there are significant differences in cell-type proportions between AD patients and control groups. The result shows non-significant p-values with 0.904 and 0.228 of cell types 3 and 4 respectively, indicating that there's no obvious cell proportion difference between AD patients and control groups.

## TOAST Statistical method



Figure 2: Cell Proportion for AD patients and Controls groups generated from TOAST statistical method
Table2: The cell type, proportion and P-values of AD patients and Control groups by using TOAST statistical method when $K=4$

|  | AD Patients (Proportion $\pm$ | Control groups (Proportion $\pm$ | P-values |
| :--- | :---: | :---: | :---: |
| Cell Type | SE) | SE) |  |
| Cell Type 1 | $0.3058(0.0634)$ | $0.3469(0.0650)$ | $0.0284^{*}$ |
| Cell Type 2 | $0.4752(0.0581)$ | $0.4407(0.0612)$ | 0.0557 |
| Cell Type 3 | $0.0882(0.0043)$ | $0.0830(0.0035)$ | 0.264 |
| Cell Type 4 | $0.1114(0.0054)$ | $0.1081(0.0044)$ | 0.531 |

1. Abbreviations: $\mathrm{AD}=$ Alzheimer's Disease, $\mathrm{SE}=$ standard error.
2. A p-value less than 0.05 (typically $\leq 0.05$ ) is statistically significant and labeled with *.
3. K means the number of the cell types.

Based on the results shown on the statistical method TOAST, the average proportion of the cell type 3 is $0.0882(\mathrm{SD}=0.0043)$ for AD patients and $0.0803(\mathrm{SD}=0.0035)$ for
control groups, that expresses the lowest average proportion among four cell types. Oneway ANOVA test was applied to compare the proportions of four cell types among AD patient and control groups. Considering the p-values of each cell type, cell type 1 show the p-value equals to 0.0284 less than 0.05 which means there is a significant difference in cell type proportion between AD patients and control groups. The result shows nonsignificant p-values with $0.0557,0.264$ and 0.531 of cell types 2,3 and 4 respectively, indicating that there's no obvious cell proportion difference between AD patients and control groups.

Compare the RefFreeEWAS method with TOAST, it can be shown that they both express cell type 3 and have the lowest average proportion among four cell types. Both of them given the result that cell type 1 has a significant difference in cell proportion between AD patients and control groups. While based on the boxplots, TOAST generated lower average proportion on cell type 4 than the results in RefFreeEWAS and TOAST also given an obvious higher average proportion on cell type 2 than those of in RefFreeEWAS method.

A correlation plot was generated to explore the correlation between each cell type proportions. Based on the plot, cell types 1 and 2 are highly negatively correlated to each other with correlation coefficients -0.84 from RefFreeEWAS and -0.94 from TOAST. From a recently published paper conducted that the neuron-enriched gene expression patterns are regionally anti-correlated with oligodendrocyte-enriched patterns. (Tan, 2013) Therefore, the opposite correlation between two cell types might be helpful in
further analysis to find the specific brain cell types for cell types 1 and 2 . In figure 3 and 4, the histograms indicate the distribution of each cell type proportion shown on the diagonal. On the bottom of the diagonal, the bivariate scatter plots with a fitted line are displayed shown the correlation between cell types.


Figure 3: Correlation between each cell type proportion generated from RefFreeEWAS


Figure 4: Correlation between each cell type proportion generated from TOAST

## DMCs of four unknown cell types in brain, and joint signal analysis

For 339,162 input CpGs, we apply both RefFreeEWAS and TOAST methods to look for cell type-specific DM in AD patients and control groups.

Table 3: The number of DMCs of AD patients and control groups under each cell types and joint signal analysis generated by Reference-free DNA methylation mixture deconvolution (R/CRAN package RefFreeEWAS) and TOAST statistical method when $\mathrm{K}=4$

|  | TOAST | RefFreeEWAS |
| :---: | :---: | :---: |
| Cell Types | FDR (<0.2) | FDR (<0.2) |
| Cell Type 1 | 1 | 0 |
| Cell Type 2 | 1 | 0 |
| Cell Type 3 | 501 | 1938 |
| Cell Type 4 | 0 | 162 |
| Joint Analysis | 0 | 0 |

The results show that both TOAST and RefFreeEWAS methods generated the largest number of DMCs at cell type 3. RefFreeEWAS methods generate 1938 DMCs at cell type 3 and TOAST generate 501 DMCs which is less than the RefFreeEWAS method did. (Appendix 1\&2) While the overlap DMCs at cell type 3 between the two methods is only 75 DMCs. (Appendix 3) There are no significant DMCs in the joint signal test ( $\beta_{1}=$ $\beta_{2}=\beta_{3}=\beta_{4}=0$ for testing difference between AD and control from each cell types).

We also conduct DM calling without consideration of cell mixtures and found 6755 DMCs using Minfi. (Appendix 4) Compare DMCs generated from RefFreeEWAS method with Minfi, there are 121 overlapping DMCs on cell type 3 and 3 overlapping DMCs on cell type 4. (Appendix 5\&6) Compare DMCs generated from TOAST with Minfi, there are 1 overlapping DMCs on cell type 2 and 18 overlapping DMCs on cell type 3. (Appendix 7\&8)

## Comparison with existing results

We compare results from TOAST of the cell type 3 with those from a published paper on ROS/MAP DNA methylation data (De Jager et al. 2014). For De Jager et al. study, the paper reported 71 associated CpGs from 415,848 input CpGs from ROS/MAP of 708 subjects. Out of their 71 identified DMCs, 64 are included in our input data, and among them, only 1 DMCs can match our results which is cg21644387 from De Jager.

Table 4: Overlap DMCs between DMCs generated from TOAST on cell type 3 and DMCs from De Jager.

| Target ID | Chr. | Position | Gene |
| :---: | :---: | :---: | :---: |
| cg21644387 | 2 | 663024 | TMEM18 |

Compare results from RefFreeEWAS of the cell type 3 with De Jager, there are 5 overlapping DMCs which are $\operatorname{cg} 04157161, \operatorname{cg} 22962123, \operatorname{cg} 02308560, \operatorname{cg} 21806242$ and cg15645660 with the following information from De Jager. (Table 7)

Table 5: Overlap DMCs between DMCs generated from RefFreeEWAS method on cell type 3 and DMCs from De Jager.

| Target ID | Chr. | Position | Gene |
| :---: | :---: | :---: | :---: |
| cg04157161 | 17 | 7906847 | GUCY2D, ALOX15B |
|  |  |  | HOXA1, HOTAIRM1, |
|  |  |  | HOXA2, AK291164, HOXA3, |
| cg22962123 | 7 | 27153605 | AK311383, BC035889, HOXA4, |
|  |  |  | LOC100133311, HOXA5, |
|  |  |  | HOXA6, DQ655986, HOXA7, |
|  |  |  | HOXA9, HOXA10-HOXA9 |
| $\mathbf{c g 0 2 3 0 8 5 6 0}$ | 19 | 1071176 | CNN2, ABCA7, HMHA1, |


|  |  |  | POLR2E, GPX4, SBNO2 |
| :---: | :---: | :---: | :---: |
| cg21806242 | 11 | 72532891 | STARD10, MIR4692, ARAP1, |
| cg15645660 | 1 | 55247356 | ATG16L2, FCHSD2 |
|  |  |  | HEATR8-TTC4, TTC4, PARS2, |
|  |  | TTC22, C1orf177 |  |

## Pathway Analysis and GO Ontologies Analysis

Since the cell type 3 given the enrichment of the DMCs in TOAST, we conduct KEGG pathway analysis for DMCs of the cell type 3 signals and GO Ontologies analysis using EnrichR. From the KEGG pathway, the enriched terms sorted by combined score ranking while there is no significant association between AD pathway and DMCs generated on cell type 3 (rank=187, Combined scores=0.49).

We conducted the GO biological process 2018 analysis on the enrichment of the DMCs on cell type 3 generated by the TOAST method. The biological process regulation of adiponectin secretion has the highest combined score.

Table 6: GO biological process 2018 of the corresponding genes

| Name | P-value | Adjusted <br> p-value | Odds <br> Ratio | Combined <br> Score | Genes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| regulation of adiponectin secretion <br> (GO:0070163) | 0.00 | 0.20 | 27.47 | 249.24 | C1QTNF3; <br> RAB11FIP1; IL1B |
| positive regulation of heterotypic <br> cell-cell adhesion (GO:0034116) | 0.00 | 0.16 | 19.98 | 206.67 | IL10; IL1B; GCNT2; |
| negative regulation of membrane <br> protein ectodomain proteolysis <br> (GO:0051045) | 0.00 | 0.14 | 23.55 | 200.78 | IL10; TIMP2; TIMP3 |
| adenylate cyclase-inhibiting G- <br> protein coupled glutamate <br> receptor signaling pathway <br> (GO:0007196) | 0.00 | 1.00 | 18.32 | 98.09 | GRM4; GRM6 |
| regulation of heterotypic cell-cell <br> adhesion (GO:0034114) | 0.00 | 0.21 | 11.57 | 92.49 | IL10; IL1B; GCNT2; |
| CD44 |  |  |  |  |  |


| negative regulation of chemokine <br> production (GO:0032682) <br> regulation of monocyte | 0.00 | 0.63 | 12.68 | 82.51 | IL10; C1QTNF3; <br> ELANE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| chemotactic protein-1 production <br> (GO:0071637) | 0.01 | 1.00 | 15.70 | 78.99 | C1QTNF3; IL1B |
| brown fat cell differentiation <br> (GO:0050873) | 0.01 | 1.00 | 15.70 | 78.99 | PRDM16; METRNL |
| leukocyte aggregation <br> (GO:0070486) | 0.01 | 1.00 | 15.70 | 78.99 | IL1B; CD44 |
| regulation of calcidiol 1- <br> monooxygenase activity <br> (GO:0060558) | 0.01 | 1.00 | 15.70 | 78.99 | CYP27B1; IL1B |

We followed up the GO Cellular Component 2018 analysis on the enrichment of the
DMCs on cell type 3 generated by the TOAST method. Neurotransmitter receptor complex is top one cellular component with the highest combined score.

Table 7: GO Cellular Component 2018 of the corresponding genes

| Name | P- <br> value | Adjusted <br> p-value | Odds <br> Ratio | Combined <br> Score | Genes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| neurotransmitter <br> receptor complex <br> (GO:0098878) | 0.00 | 0.52 | 13.74 | 92.80 | DLG2; HTR3A; SHANK2 |
| spindle pole centrosome <br> (GO:0031616) | 0.02 | 0.73 | 9.99 | 41.13 | TBCCD1; DLGAP5 |
| ionotropic glutamate <br> receptor complex | 0.01 | 0.80 | 5.64 | 29.45 | GRIN2A; DLG2; CACNG3; |
| (GO:0008328) | SHANK2 |  |  |  |  |

## Discussion

There are certain limitations in this project such as the datasets don't show a significant difference in proportion between AD patients and control groups. The reason why the lowest proportion of cell type 3 but with the highest DMCs from the results of both RefFreeEWAS and TOAST is still unclear and needs further analysis. From the correlation plots, cell type 1 and cell type 2 shown a highly negative correlation and the possible brain cells of these two cell types would be neuron and oligodendrocyte from the former study. To detect specific brain cell types in this project, biomarker genes will be needed to classify the cells. Based on the limited number of DMCs generated by RefFreeEWAS and TOAST methods, the DNA methylation in the brain shows attenuation with a possible reason that the DNA methylation may be mediated by unknown cell types leading inaccurate results. We assumed $\mathrm{K}=4$ that four types of brain cells in the application that may overestimate the heterogeneity of the brain cells that the glia differentiated from neuron while in the glia family, the astrocyte does not highly differentiate from other cell types such as oligo and microglia. The reference-free approach accounts for more cell types than reference-based approaches which focus on csDM analyses on two brain cell neuron and glia. RefFreeEWAS detected more DMCs than TOAST with the potential reason that TOAST focus more on data from the mixed sample for cross-cell type differential analysis.

After pathway analysis using the enrichment DMCs in cell type 3 generated from the TOAST method, we clarify the enrichment of disease-related pathways and cell processes in corresponding gene groups. However, Alzheimer's disease is not an enrichment term
with a very small combined score. GO enrichment analysis provides the biological processes information and also the cellular component. The genes C1QTNF3, RAB11FIP1 and IL1B are ranked top on the regulation of adiponectin secretion biological processes in GO enrichment analysis. And the genes DLG2, HTR3A, and SHANK2 indicate the neurotransmitter receptor complex in the cellular component during the analysis. This project provides the study on epigenetic modification in AD by estimating the cell composition and conducting cell-type-specific DM analysis. Since brain tissue has many different cell types, which exhibit highly heterogeneous functions, it is necessary to identify changes in specific cell types involved in the pathogenesis and progression of the disease at different levels and roles.

## Conclusion

According to our study, cell-type-specific DM analysis provides a new version to study epigenetic modification in AD through conducting a statistical test on CpG sites to identify potential disease. Several natural extensions would be looking forward to identifying epigenetic biomarkers and therapeutic targets to validate new treatments on AD.

## Reference

[1] Kukull, W. A., Higdon, R., Bowen, J. D., Mccormick, W. C., Teri, L., Schellenberg, G. D., ... Larson, E. B. (2002). Dementia and Alzheimer Disease Incidence. Archives of Neurology, 59(11), 1737. doi: 10.1001/archneur.59.11.1737
[2] Barnes, D. E., \& Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer's disease prevalence. The Lancet. Neurology, 10(9), 819-828. doi:10.1016/S1474-4422(11)70072-2
[3] Qiu, C., Kivipelto, M., \& von Strauss, E. (2009). Epidemiology of Alzheimer's disease: occurrence, determinants, and strategies toward intervention. Dialogues in clinical neuroscience, 11(2), 111-128.
[4] 2015 Alzheimers disease facts and figures. (2015). Alzheimers \& Dementia, 11(3), 332-384. doi: 10.1016/j.jalz.2015.02.003
[5] What Happens to the Brain in Alzheimer's Disease? (n.d.). Retrieved from https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease
[6] Iatrou, A., Kenis, G., Rutten, B. P., Lunnon, K., \& van den Hove, D. L. (2017). Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time?. Cellular and molecular life sciences : CMLS, 74(3), 509-523. doi:10.1007/s00018-016-2361-4
[7] Hoffmann, A.; Sportelli, V.; Ziller, M.; Spengler, D. Driver or Passenger: Epigenomes in Alzheimer's Disease. (2017). Epigenomes, 1(1), 5. doi: 10.3390/epigenomes1010005
[8] Bollati, V., Galimberti, D., Pergoli, L., Dalla Valle, E., Barretta, F., Cortini, F., ... Baccarelli, A. (2011). DNA methylation in repetitive elements and Alzheimer disease. Brain, behavior, and immunity, 25(6), 1078-1083. doi:10.1016/j.bbi.2011.01.017
[9] Anna M Jankowska, Carl L Millward \& Charles W Caldwell (2015) The potential of DNA modifications as biomarkers and therapeutic targets in oncology, Expert Review of Molecular Diagnostics, 15:10, 1325-1337, DOI: $\underline{10.1586 / 14737159.2015 .1084229}$
[10] Gao, Z., Fu, H. J., Zhao, L. B., Sun, Z. Y., Yang, Y. F., \& Zhu, H. Y. (2018). Aberrant DNA methylation associated with Alzheimer's disease in the superior temporal gyrus. Experimental and therapeutic medicine, 15(1), 103-108. doi:10.3892/etm.2017.5394
[11] Jankowska, A. M., Millward, C. L., \& Caldwell, C. W. (2015). The potential of DNA modifications as biomarkers and therapeutic targets in oncology. Expert Review of Molecular Diagnostics, 15(10), 13251337. doi: 10.1586/14737159.2015.1084229
[12] Li, Z., Wu, Z., Jin, P., \& Wu, H. (2019). Dissecting differential signals in high-throughput data from complex tissues. Bioinformatics, 35(20), 3898-3905. doi: 10.1093/bioinformatics/btz196
[13] Possel, H. (n.d.). Cell Types in the CNS. Retrieved from https://www.body-and-brain.com/braincells.html
[14] Rakyan, V. K., Down, T. A., Balding, D. J., \& Beck, S. (2011). Epigenome-wide association studies for common human diseases. Nature reviews. Genetics, 12(8), 529-541. https://doi.org/10.1038/nrg3000
[15] Houseman, E. A., Molitor, J., \& Marsit, C. J. (2014). Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics (Oxford, England), 30(10), 1431-1439.
doi:10.1093/bioinformatics/btu029
[16] Li, Z., \& Wu, H. (2019). TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis. Genome Biology, 20(1). doi: 10.1186/s13059-019-1778-0
[17] Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., \& Irizarry, R. A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics (Oxford, England), 30(10), 1363-1369. https://doi.org/10.1093/bioinformatics/btu049
[18] Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., \& Ma'ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic acids research, 44(W1), W90-W97. https://doi.org/10.1093/nar/gkw377
[19] Tan, P. P., French, L., \& Pavlidis, P. (2013). Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain. Frontiers in neuroscience, 7, 5. https://doi.org/10.3389/fnins.2013.00005

## Appendix

Appendix 1: Top 100 DMCs defined at lowest 100 FDR for Cell Type 3 generated by RefFreeEWAS
method

| CpGs | beta | beta_var | mu | effect_size | f_statistics | p_value | fdr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cg05929755 | -0.1463018 | 5.83E-04 | 0.77799395 | -0.2075665 | 36.6974073 | 2.21E-09 | 7.51E-04 |
| cg22777249 | -0.1683412 | $9.14 \mathrm{E}-04$ | 0.75547722 | -0.2507665 | 30.9998691 | 3.63E-08 | 0.00435673 |
| cg16186938 | -0.213742 | 0.00151205 | 0.37110844 | -0.8089015 | 30.2143507 | 5.36E-08 | 0.00435673 |
| cg21921016 | -0.1085983 | 3.94E-04 | 0.78911051 | -0.1477906 | 29.9479156 | 6.12E-08 | 0.00435673 |
| cg07623567 | -0.1154369 | $4.56 \mathrm{E}-04$ | 0.8077396 | -0.1539115 | 29.2336993 | $8.71 \mathrm{E}-08$ | 0.00435673 |
| cg12616935 | -0.0937486 | $3.01 \mathrm{E}-04$ | 0.71285711 | -0.1407673 | 29.1947782 | 8.88E-08 | 0.00435673 |
| cg01231381 | -0.1027783 | 3.62E-04 | 0.8567129 | -0.1276236 | 29.1701242 | 8.99E-08 | 0.00435673 |
| cg20240091 | -0.073896 | $1.97 \mathrm{E}-04$ | 0.83271862 | -0.092861 | 27.7084207 | 1.86E-07 | 0.00695393 |
| cg16350446 | -0.1112975 | 4.53E-04 | 0.79857192 | -0.1498102 | 27.3349511 | $2.24 \mathrm{E}-07$ | 0.00695393 |
| cg14138235 | -0.0840136 | $2.59 \mathrm{E}-04$ | 0.89465147 | -0.098533 | 27.2003983 | $2.39 \mathrm{E}-07$ | 0.00695393 |
| cg17706411 | -0.0793617 | 0.0002319 | 0.83631175 | -0.0996217 | 27.1594076 | $2.44 \mathrm{E}-07$ | 0.00695393 |
| cg27338202 | -0.0879929 | $2.85 \mathrm{E}-04$ | 0.85163283 | -0.1089511 | 27.1462418 | $2.46 \mathrm{E}-07$ | 0.00695393 |
| cg19863740 | -0.1332481 | 6.73E-04 | 0.77793502 | -0.1873275 | 26.3776906 | 3.61E-07 | 0.00929578 |
| cg11380128 | -0.103034 | 4.04E-04 | 0.65818401 | -0.1698362 | 26.2558922 | 3.84E-07 | 0.00929578 |
| cg12002745 | -0.1003094 | $3.88 \mathrm{E}-04$ | 0.77142773 | -0.1390727 | 25.965011 | 4.44E-07 | 0.00956458 |
| cg17471062 | -0.1099461 | $4.66 \mathrm{E}-04$ | 0.63309428 | -0.1901783 | 25.9317561 | $4.51 \mathrm{E}-07$ | 0.00956458 |
| cg02258534 | -0.0912237 | $3.25 \mathrm{E}-04$ | 0.83744834 | -0.1152052 | 25.6178767 | $5.28 \mathrm{E}-07$ | 0.01053267 |
| cg18720803 | -0.0989348 | $3.84 \mathrm{E}-04$ | 0.73730177 | -0.1438353 | 25.4824793 | 5.65E-07 | 0.01064516 |
| cg07092805 | -0.0976773 | 3.87E-04 | 0.8356627 | -0.1241412 | 24.633624 | $8.65 \mathrm{E}-07$ | 0.0153733 |
| cg26957187 | -0.1317257 | $7.08 \mathrm{E}-04$ | 0.74537519 | -0.1938533 | 24.4969114 | $9.26 \mathrm{E}-07$ | 0.0153733 |
| cg25095518 | -0.093442 | $3.58 \mathrm{E}-04$ | 0.7399703 | -0.1347884 | 24.3612805 | $9.91 \mathrm{E}-07$ | 0.0153733 |
| cg14016236 | -0.1608819 | 0.00106591 | 0.7448123 | -0.2421566 | 24.2826106 | $1.03 \mathrm{E}-06$ | 0.0153733 |
| cg09809672 | -0.0940245 | $3.64 \mathrm{E}-04$ | 0.91907629 | -0.1078183 | 24.2608914 | $1.04 \mathrm{E}-06$ | 0.0153733 |
| cg17636309 | 0.12461323 | 6.45E-04 | 0.72802855 | 0.15767137 | 24.0930647 | 1.13E-06 | 0.016029 |
| cg17785515 | -0.0692483 | $2.00 \mathrm{E}-04$ | 0.81606307 | -0.0886164 | 23.9625381 | $1.21 \mathrm{E}-06$ | 0.01643133 |
| cg26889879 | -0.0765394 | $2.45 \mathrm{E}-04$ | 0.85658299 | -0.0935332 | 23.8778999 | 1.26E-06 | 0.01648627 |
| cg04157161 | 0.24202467 | 0.00246504 | 0.03717216 | 1.53001509 | 23.7626975 | $1.34 \mathrm{E}-06$ | 0.01682272 |
| cg23997365 | -0.0625651 | $1.66 \mathrm{E}-04$ | 0.85212281 | -0.0762208 | 23.6214189 | $1.44 \mathrm{E}-06$ | 0.017417 |
| cg20924136 | -0.0865565 | 3.19E-04 | 0.81805139 | -0.1117185 | 23.4828317 | $1.54 \mathrm{E}-06$ | 0.01744912 |
| cg01234251 | -0.115262 | $5.66 \mathrm{E}-04$ | 0.85786424 | -0.1440356 | 23.4806914 | $1.54 \mathrm{E}-06$ | 0.01744912 |
| cg00280235 | -0.1920428 | 0.00158321 | 0.46057391 | -0.5267905 | 23.2947114 | 1.69E-06 | 0.01854417 |
| cg27658026 | -0.0886959 | $3.39 \mathrm{E}-04$ | 0.80086561 | -0.1172423 | 23.175281 | 1.80E-06 | 0.01888543 |
| cg26336265 | -0.0771545 | $2.58 \mathrm{E}-04$ | 0.89345351 | -0.0902522 | 23.0555158 | 1.91E-06 | 0.01888543 |
| cg09796170 | -0.102284 | $4.55 \mathrm{E}-04$ | 0.83845728 | -0.1299149 | 22.9970154 | $1.97 \mathrm{E}-06$ | 0.01888543 |


| cg06942814 | 0.2548858 | 0.00283204 | -0.0060037 | 2.09887553 | 22.9399271 | 2.03E-06 | 0.01888543 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cg09889997 | -0.0972064 | 4.12E-04 | 0.90123528 | -0.1140075 | 22.9253505 | 2.04E-06 | 0.01888543 |
| cg21543346 | -0.0928429 | $3.76 \mathrm{E}-04$ | 0.89249906 | -0.1097333 | 22.9074773 | 2.06E-06 | 0.01888543 |
| cg03684062 | -0.1690763 | 0.00125309 | 0.77196669 | -0.2459547 | 22.8131111 | $2.16 \mathrm{E}-06$ | 0.01928478 |
| cg11772020 | -0.1051437 | 4.87E-04 | 0.65056498 | -0.1758277 | 22.7130612 | $2.27 \mathrm{E}-06$ | 0.01976307 |
| cg02097616 | -0.1301155 | $7.48 \mathrm{E}-04$ | 0.80264871 | -0.176406 | 22.6348197 | $2.36 \mathrm{E}-06$ | 0.01992696 |
| cg19856263 | -0.0662377 | $1.94 \mathrm{E}-04$ | 0.86857371 | -0.0792835 | 22.5975988 | $2.41 \mathrm{E}-06$ | 0.01992696 |
| cg13266773 | -0.1356056 | 8.20E-04 | 0.7191861 | -0.2081809 | 22.4356058 | $2.61 \mathrm{E}-06$ | 0.02069199 |
| cg18900271 | -0.1140559 | $5.81 \mathrm{E}-04$ | 0.85000899 | -0.1438319 | 22.3877965 | $2.68 \mathrm{E}-06$ | 0.02069199 |
| cg11328127 | -0.0990378 | $4.39 \mathrm{E}-04$ | 0.78862601 | -0.1339966 | 22.3637062 | $2.71 \mathrm{E}-06$ | 0.02069199 |
| cg02879960 | -0.1169589 | 6.12E-04 | 0.74531919 | -0.1702855 | 22.3386282 | 2.75E-06 | 0.02069199 |
| cg25228737 | -0.0757416 | $2.59 \mathrm{E}-04$ | 0.89559362 | -0.0883055 | 22.1346781 | $3.04 \mathrm{E}-06$ | 0.02155624 |
| cg04781580 | -0.0937265 | 3.97E-04 | 0.86012097 | -0.1152482 | 22.1196278 | 3.07E-06 | 0.02155624 |
| cg02965078 | -0.1187415 | 6.39E-04 | 0.73736011 | -0.1751377 | 22.0534881 | 3.17E-06 | 0.02155624 |
| cg24411075 | -0.0744754 | $2.52 \mathrm{E}-04$ | 0.82401469 | -0.0946589 | 22.0012097 | 3.26E-06 | 0.02155624 |
| cg11794384 | -0.097315 | $4.30 \mathrm{E}-04$ | 0.78385609 | -0.1323656 | 22.001143 | 3.26E-06 | 0.02155624 |
| cg25313447 | -0.101233 | 4.67E-04 | 0.84383348 | -0.1276233 | 21.9607039 | 3.32E-06 | 0.02155624 |
| cg15911153 | 0.21664957 | 0.00213983 | 0.0870901 | 1.1086646 | 21.9349308 | 3.37E-06 | 0.02155624 |
| cg21520613 | -0.0717477 | $2.35 \mathrm{E}-04$ | 0.88128554 | -0.0848672 | 21.9339346 | 3.37E-06 | 0.02155624 |
| cg14050954 | -0.100813 | 4.65E-04 | 0.77855771 | -0.1384506 | 21.8795589 | 3.46E-06 | 0.021747 |
| cg06389019 | -0.1326777 | 8.10E-04 | 0.65472978 | -0.2254923 | 21.7427362 | $3.71 \mathrm{E}-06$ | 0.022882 |
| cg08747557 | -0.094765 | 4.14E-04 | 0.78643601 | -0.1282248 | 21.6702361 | 3.85E-06 | 0.02331331 |
| cg10548978 | -0.085672 | $3.40 \mathrm{E}-04$ | 0.84555526 | -0.1067272 | 21.6089926 | 3.97E-06 | 0.02362551 |
| cg24964103 | -0.0801999 | 2.99E-04 | 0.84239764 | -0.0999627 | 21.4992363 | 4.20E-06 | 0.02454503 |
| cg22998020 | -0.0889099 | 3.71E-04 | 0.82604423 | -0.1137553 | 21.3141085 | 4.61E-06 | 0.02650135 |
| cg14878852 | -0.0705091 | $2.35 \mathrm{E}-04$ | 0.80963041 | -0.0910528 | 21.1686919 | 4.96E-06 | 0.02779146 |
| cg24499605 | -0.106393 | 5.35E-04 | 0.82685647 | -0.137519 | 21.1497038 | 5.01E-06 | 0.02779146 |
| cg16860686 | -0.1286245 | 7.84E-04 | 0.46605834 | -0.3201637 | 21.1034151 | 5.13E-06 | 0.02779146 |
| cg01951274 | -0.088468 | $3.71 \mathrm{E}-04$ | 0.76570666 | -0.1226215 | 21.0699172 | 5.22E-06 | 0.02779146 |
| cg00078456 | -0.0901124 | 3.86E-04 | 0.87595629 | -0.1084516 | 21.0598723 | 5.24E-06 | 0.02779146 |
| cg01816936 | -0.1297733 | 8.03E-04 | 0.86421075 | -0.1623538 | 20.9812312 | 5.46E-06 | 0.0284774 |
| cg15048480 | -0.060937 | $1.77 \mathrm{E}-04$ | 0.87473948 | -0.072177 | 20.9242161 | 5.62E-06 | 0.02886897 |
| cg07060794 | -0.1037478 | 5.16E-04 | 0.83067158 | -0.1332153 | 20.8500394 | 5.83E-06 | 0.02952884 |
| cg25693349 | -0.0658868 | $2.09 \mathrm{E}-04$ | 0.85019084 | -0.0806204 | 20.793941 | 6.00E-06 | 0.02993485 |
| cg07814707 | -0.0860839 | $3.57 \mathrm{E}-04$ | 0.77002998 | -0.1184117 | 20.7581184 | 6.11E-06 | 0.02999699 |
| cg14945086 | -0.1813645 | 0.00158653 | 0.75094858 | -0.2746839 | 20.7327498 | 6.19E-06 | 0.02999699 |
| cg07251887 | -0.1313929 | 8.35E-04 | 0.76835698 | -0.1869934 | 20.6782353 | 6.36E-06 | 0.02999876 |
| cg08530760 | -0.0615479 | 1.83E-04 | 0.86390849 | -0.0738752 | 20.6771473 | 6.37E-06 | 0.02999876 |
| cg19403909 | -0.165252 | 0.00133101 | 0.33427452 | -0.656678 | 20.5169466 | 6.91E-06 | 0.03209585 |


| cg00422624 | -0.0702428 | $2.41 \mathrm{E}-04$ | 0.89200969 | -0.0819743 | 20.4893159 | 7.01E-06 | 0.03210971 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cg12036735 | -0.099416 | $4.85 \mathrm{E}-04$ | 0.81785584 | -0.129423 | 20.3765929 | 7.42E-06 | 0.03354933 |
| cg03557950 | -0.0642252 | 2.03E-04 | 0.84731484 | -0.0787844 | 20.2900712 | 7.75E-06 | 0.03417814 |
| cg21829239 | -0.092415 | $4.22 \mathrm{E}-04$ | 0.78384405 | -0.1252853 | 20.2534455 | 7.90E-06 | 0.03417814 |
| cg07243366 | -0.140643 | $9.77 \mathrm{E}-04$ | 0.66342043 | -0.2371324 | 20.2432811 | 7.94E-06 | 0.03417814 |
| cg19048532 | 0.23469166 | 0.00272438 | 0.08354948 | 1.16822869 | 20.2175084 | 8.04E-06 | 0.03417814 |
| cg03409108 | -0.0905196 | $4.05 \mathrm{E}-04$ | 0.67991487 | -0.142628 | 20.2131211 | 8.06E-06 | 0.03417814 |
| cg25143652 | -0.1177383 | 6.87E-04 | 0.75506709 | -0.1691162 | 20.1742019 | $8.22 \mathrm{E}-06$ | 0.03434958 |
| cg15031685 | -0.0867616 | $3.74 \mathrm{E}-04$ | 0.76499476 | -0.1202327 | 20.1199561 | 8.45E-06 | 0.03434958 |
| cg03463994 | -0.1073418 | 5.73E-04 | 0.81633216 | -0.1407463 | 20.1035768 | 8.52E-06 | 0.03434958 |
| cg15596913 | -0.0558203 | $1.55 \mathrm{E}-04$ | 0.83417621 | -0.0692331 | 20.0892024 | 8.59E-06 | 0.03434958 |
| cg24254196 | -0.0826777 | $3.40 \mathrm{E}-04$ | 0.8756159 | -0.099101 | 20.0840945 | 8.61E-06 | 0.03434958 |
| cg02555923 | -0.122869 | 7.54E-04 | 0.81366286 | -0.16334 | 20.0349084 | 8.83E-06 | 0.0348105 |
| cg05106502 | -0.0838506 | 3.54E-04 | 0.80450516 | -0.1099564 | 19.8547876 | 9.67E-06 | 0.03771424 |
| cg25844471 | -0.1527387 | 0.00118073 | 0.83468357 | -0.2014187 | 19.7582724 | $1.02 \mathrm{E}-05$ | 0.03780236 |
| cg18885125 | -0.0747756 | 2.83E-04 | 0.80838025 | -0.0969862 | 19.7545217 | 1.02E-05 | 0.03780236 |
| cg05862438 | -0.0789603 | 3.16E-04 | 0.81522888 | -0.1017859 | 19.7242848 | 1.03E-05 | 0.03780236 |
| cg07059469 | -0.1094629 | 6.08E-04 | 0.66784567 | -0.1785359 | 19.722045 | 1.04E-05 | 0.03780236 |
| cg19607229 | -0.0865507 | 3.81E-04 | 0.85432351 | -0.1067146 | 19.6825299 | 1.06E-05 | 0.03780236 |
| cg06758644 | -0.0996613 | 5.05E-04 | 0.77921871 | -0.1366369 | 19.6630648 | $1.07 \mathrm{E}-05$ | 0.03780236 |
| cg03186440 | -0.1069414 | 5.82E-04 | 0.67787213 | -0.1712702 | 19.6476878 | 1.08E-05 | 0.03780236 |
| cg06011086 | -0.1004126 | 5.13E-04 | 0.77634763 | -0.1382824 | 19.6353605 | $1.08 \mathrm{E}-05$ | 0.03780236 |
| cg15829665 | -0.1032676 | $5.44 \mathrm{E}-04$ | 0.83499461 | -0.1318264 | 19.5952046 | 1.10E-05 | 0.03780236 |
| cg11525052 | -0.1009547 | $5.20 \mathrm{E}-04$ | 0.84023541 | -0.1278299 | 19.5937223 | 1.11E-05 | 0.03780236 |
| cg16942327 | -0.0864429 | 3.82E-04 | 0.80807729 | -0.1130185 | 19.5731407 | 1.12E-05 | 0.03780236 |
| cg12787209 | -0.0821845 | 3.45E-04 | 0.73388385 | -0.118628 | 19.5670268 | 1.12E-05 | 0.03780236 |
| cg05283597 | -0.0871727 | $3.88 \mathrm{E}-04$ | 0.80851503 | -0.1139618 | 19.5643951 | $1.12 \mathrm{E}-05$ | 0.03780236 |

Appendix 2: Top 100 DMCs defined at lowest 100 FDR for Cell Type 3 generated by RefFreeEWAS
method

| CpGs | beta | beta_var | mu | effect_size | f_statistics | p_value | fdr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cg07174627 | 0.02161298 | 1.76E-05 | 0.12567784 | 0.15835502 | 26.5992005 | $3.23 \mathrm{E}-07$ | 0.07734656 |
| cg04001090 | 0.02300005 | $2.04 \mathrm{E}-05$ | 0.14902737 | 0.14327805 | 25.9101859 | 4.56E-07 | 0.07734656 |
| cg11142333 | 0.02066705 | $1.79 \mathrm{E}-05$ | 0.92714485 | 0.02204536 | 23.8153586 | $1.30 \mathrm{E}-06$ | 0.11616838 |
| cg11503710 | 0.02389047 | 2.53E-05 | 0.89828696 | 0.02624657 | 22.5890551 | $2.42 \mathrm{E}-06$ | 0.11616838 |
| cg07202981 | 0.04083999 | 7.48E-05 | 0.16170165 | 0.22424565 | 22.3120366 | $2.78 \mathrm{E}-06$ | 0.11616838 |
| cg09096234 | 0.02370158 | $2.52 \mathrm{E}-05$ | 0.92313352 | 0.02534971 | 22.2493883 | $2.87 \mathrm{E}-06$ | 0.11616838 |
| cg23250910 | 0.02673554 | $3.23 \mathrm{E}-05$ | 0.12404785 | 0.1945597 | 22.1198179 | $3.07 \mathrm{E}-06$ | 0.11616838 |
| cg16189217 | 0.03913417 | 6.94E-05 | 0.88294803 | 0.04336123 | 22.076217 | $3.13 \mathrm{E}-06$ | 0.11616838 |
| cg14453509 | 0.03270709 | 4.88E-05 | 0.25235836 | 0.12171804 | 21.9384163 | $3.36 \mathrm{E}-06$ | 0.11616838 |
| cg16658579 | 0.02435646 | $2.74 \mathrm{E}-05$ | 0.91018902 | 0.02640647 | 21.6581818 | 3.87E-06 | 0.11616838 |
| cg09431416 | -0.0305494 | $4.34 \mathrm{E}-05$ | 0.10889385 | -0.326316 | 21.4979346 | 4.20E-06 | 0.11616838 |
| cg26438665 | 0.05229318 | $1.28 \mathrm{E}-04$ | 0.86887246 | 0.05842689 | 21.4396405 | $4.33 \mathrm{E}-06$ | 0.11616838 |
| cg16237262 | 0.02420046 | $2.74 \mathrm{E}-05$ | 0.90195293 | 0.02647598 | 21.3826806 | $4.45 \mathrm{E}-06$ | 0.11616838 |
| cg20305610 | 0.02009378 | $1.96 \mathrm{E}-05$ | 0.15414001 | 0.12238358 | 20.6153563 | 6.57E-06 | 0.15919705 |
| cg03653601 | 0.03093112 | 4.69E-05 | 0.88845973 | 0.03421867 | 20.3838149 | 7.39E-06 | 0.15946096 |
| cg20733250 | 0.02642014 | $3.44 \mathrm{E}-05$ | 0.9098468 | 0.02862244 | 20.264845 | 7.85E-06 | 0.15946096 |
| cg03469057 | 0.01749861 | $1.54 \mathrm{E}-05$ | 0.93305076 | 0.01857996 | 19.8954663 | $9.48 \mathrm{E}-06$ | 0.15946096 |
| cg17007693 | 0.02221914 | $2.48 \mathrm{E}-05$ | 0.92971611 | 0.02361664 | 19.878018 | $9.56 \mathrm{E}-06$ | 0.15946096 |
| cg06927343 | 0.02221993 | 2.49E-05 | 0.93094072 | 0.02358676 | 19.8498155 | 9.70E-06 | 0.15946096 |
| cg00959883 | 0.03249926 | 5.33E-05 | 0.87160166 | 0.0366044 | 19.8038473 | 9.93E-06 | 0.15946096 |
| cg17439660 | 0.0360619 | 6.57E-05 | 0.20471654 | 0.16189588 | 19.7903155 | $1.00 \mathrm{E}-05$ | 0.15946096 |
| cg03557950 | 0.0179819 | 1.65E-05 | 0.9327861 | 0.01909358 | 19.6463964 | $1.08 \mathrm{E}-05$ | 0.15946096 |
| cg01154241 | 0.02302545 | $2.71 \mathrm{E}-05$ | 0.20406906 | 0.10680609 | 19.5836861 | $1.11 \mathrm{E}-05$ | 0.15946096 |
| cg02205181 | -0.0424521 | 9.22E-05 | 0.19880653 | -0.2390584 | 19.5526577 | 1.13E-05 | 0.15946096 |
| cg13325346 | -0.0462601 | 1.10E-04 | 0.30146092 | -0.1662055 | 19.4362908 | 1.20E-05 | 0.16243827 |
| cg00155609 | 0.01927032 | $1.92 \mathrm{E}-05$ | 0.13005939 | 0.13794609 | 19.3351525 | $1.26 \mathrm{E}-05$ | 0.16445789 |
| cg09353251 | 0.02407713 | 3.02E-05 | 0.88329173 | 0.0268919 | 19.2029978 | $1.35 \mathrm{E}-05$ | 0.16680417 |
| cg10355997 | 0.01746462 | $1.59 \mathrm{E}-05$ | 0.1098609 | 0.14726488 | 19.1621386 | $1.38 \mathrm{E}-05$ | 0.16680417 |
| cg05951763 | 0.02181333 | $2.49 \mathrm{E}-05$ | 0.9144091 | 0.02357393 | 19.0798446 | $1.44 \mathrm{E}-05$ | 0.16714407 |
| cg04561804 | -0.0616076 | 2.00E-04 | 0.46790452 | -0.1409461 | 18.9784575 | 1.51E-05 | 0.16714407 |
| cg19834711 | 0.01585707 | 1.33E-05 | 0.9172401 | 0.01713966 | 18.8801992 | 1.59E-05 | 0.16714407 |
| cg02984092 | 0.044279 | $1.04 \mathrm{E}-04$ | 0.8571299 | 0.05035886 | 18.8529115 | 1.61E-05 | 0.16714407 |
| cg08140542 | 0.01566003 | $1.31 \mathrm{E}-05$ | 0.91769204 | 0.01692021 | 18.7427486 | 1.71E-05 | 0.16714407 |
| cg04452534 | 0.0407007 | 8.87E-05 | 0.86815792 | 0.0458079 | 18.6749274 | 1.77E-05 | 0.16714407 |
| cg23380672 | 0.05497318 | $1.64 \mathrm{E}-04$ | 0.53385241 | 0.09793222 | 18.4757293 | $1.96 \mathrm{E}-05$ | 0.16714407 |


| cg13775005 | -0.0353465 | $6.77 \mathrm{E}-05$ | 0.13875498 | -0.2919224 | 18.4436912 | 1.99E-05 | 0.16714407 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cg02389292 | 0.02186543 | $2.60 \mathrm{E}-05$ | 0.15081347 | 0.13518361 | 18.3821974 | $2.05 \mathrm{E}-05$ | 0.16714407 |
| cg03408271 | 0.02905428 | 4.59E-05 | 0.28813628 | 0.09599533 | 18.3748598 | 2.06E-05 | 0.16714407 |
| cg00557354 | 0.02536402 | $3.51 \mathrm{E}-05$ | 0.13096729 | 0.17656906 | 18.3451156 | 2.09E-05 | 0.16714407 |
| cg02147126 | 0.02508671 | $3.46 \mathrm{E}-05$ | 0.90491603 | 0.02734368 | 18.2078377 | $2.24 \mathrm{E}-05$ | 0.16714407 |
| cg23188547 | 0.02019327 | $2.24 \mathrm{E}-05$ | 0.12951967 | 0.14463404 | 18.1812675 | 2.27E-05 | 0.16714407 |
| cg11974710 | -0.0402925 | 8.95E-05 | 0.23686039 | $-0.1859247$ | 18.1371538 | 2.33E-05 | 0.16714407 |
| cg25195960 | 0.01893906 | $1.98 \mathrm{E}-05$ | 0.1590816 | 0.11236387 | 18.089188 | $2.38 \mathrm{E}-05$ | 0.16714407 |
| cg02202589 | 0.01910423 | 2.02E-05 | 0.9325161 | 0.02027903 | 18.0889066 | 2.38E-05 | 0.16714407 |
| cg22050705 | -0.0350039 | $6.78 \mathrm{E}-05$ | 0.24339608 | -0.1549569 | 18.0795006 | 2.40E-05 | 0.16714407 |
| cg01862641 | 0.05625015 | $1.75 \mathrm{E}-04$ | 0.42469505 | 0.12422184 | 18.075965 | 2.40E-05 | 0.16714407 |
| cg26119330 | 0.01781358 | $1.76 \mathrm{E}-05$ | 0.93327591 | 0.01890672 | 18.0716063 | $2.41 \mathrm{E}-05$ | 0.16714407 |
| cg04572898 | 0.0268639 | 4.00E-05 | 0.14296487 | 0.17176757 | 18.0306779 | $2.46 \mathrm{E}-05$ | 0.16714407 |
| cg17735631 | 0.01839706 | $1.88 \mathrm{E}-05$ | 0.93664458 | 0.01945044 | 18.0294219 | $2.46 \mathrm{E}-05$ | 0.16714407 |
| cg08159743 | 0.02754514 | $4.21 \mathrm{E}-05$ | 0.92033194 | 0.02948828 | 18.0244185 | $2.46 \mathrm{E}-05$ | 0.16714407 |
| cg14692768 | -0.045117 | 1.14E-04 | 0.31989861 | -0.1517353 | 17.9184181 | 2.60E-05 | 0.17145486 |
| cg06977900 | 0.01498265 | $1.25 \mathrm{E}-05$ | 0.93219007 | 0.01594439 | 17.8975208 | 2.63E-05 | 0.17145486 |
| cg15937634 | -0.0257273 | $3.71 \mathrm{E}-05$ | 0.10299309 | -0.2854481 | 17.8610885 | $2.68 \mathrm{E}-05$ | 0.17145486 |
| cg20147920 | 0.04107093 | $9.54 \mathrm{E}-05$ | 0.88139939 | 0.04553647 | 17.6788186 | $2.94 \mathrm{E}-05$ | 0.17762896 |
| cg00480429 | 0.01847555 | 1.93E-05 | 0.93463119 | 0.01957428 | 17.6744968 | 2.95E-05 | 0.17762896 |
| cg22123784 | 0.03186761 | 5.80E-05 | 0.88996619 | 0.03517784 | 17.5062297 | $3.21 \mathrm{E}-05$ | 0.17762896 |
| cg23431851 | -0.0258804 | 3.83E-05 | 0.18972883 | -0.1463916 | 17.4849138 | 3.25E-05 | 0.17762896 |
| cg18840832 | -0.0418668 | 1.00E-04 | 0.1880016 | -0.2505973 | 17.4650708 | $3.28 \mathrm{E}-05$ | 0.17762896 |
| cg23689219 | 0.02111245 | $2.55 \mathrm{E}-05$ | 0.9223155 | 0.02263167 | 17.457697 | 3.30E-05 | 0.17762896 |
| cg02877269 | 0.02104391 | $2.54 \mathrm{E}-05$ | 0.91827295 | 0.02265721 | 17.4500021 | $3.31 \mathrm{E}-05$ | 0.17762896 |
| cg26248552 | -0.0364368 | 7.61E-05 | 0.24258228 | -0.1624003 | 17.4455177 | $3.32 \mathrm{E}-05$ | 0.17762896 |
| cg22694931 | 0.01744741 | $1.75 \mathrm{E}-05$ | 0.92503257 | 0.01868519 | 17.4297041 | $3.34 \mathrm{E}-05$ | 0.17762896 |
| cg23002708 | 0.01929693 | $2.14 \mathrm{E}-05$ | 0.9242231 | 0.02066336 | 17.4181082 | $3.36 \mathrm{E}-05$ | 0.17762896 |
| cg23851026 | 0.01979062 | $2.26 \mathrm{E}-05$ | 0.92084288 | 0.02126336 | 17.3583171 | 3.47E-05 | 0.17762896 |
| cg10916459 | 0.01931279 | $2.15 \mathrm{E}-05$ | 0.89241547 | 0.02140937 | 17.3515391 | $3.48 \mathrm{E}-05$ | 0.17762896 |
| cg12488005 | 0.01597951 | $1.48 \mathrm{E}-05$ | 0.93689938 | 0.01691152 | 17.2976583 | $3.58 \mathrm{E}-05$ | 0.17762896 |
| cg20052751 | 0.01931643 | $2.16 \mathrm{E}-05$ | 0.13256758 | 0.13581522 | 17.2647511 | 3.64E-05 | 0.17762896 |
| cg26289450 | -0.0455373 | 1.20E-04 | 0.24386738 | -0.205959 | 17.2490475 | 3.67E-05 | 0.17762896 |
| cg03808001 | 0.03190991 | 5.90E-05 | 0.88821911 | 0.03529178 | 17.246522 | 3.67E-05 | 0.17762896 |
| cg03345925 | 0.02242948 | 2.92E-05 | 0.93756201 | 0.02364042 | 17.2176346 | $3.73 \mathrm{E}-05$ | 0.17762896 |
| cg16461729 | 0.01825611 | $1.94 \mathrm{E}-05$ | 0.14047107 | 0.12203353 | 17.2049739 | $3.75 \mathrm{E}-05$ | 0.17762896 |
| cg16117757 | 0.0265084 | $4.09 \mathrm{E}-05$ | 0.9158103 | 0.02853236 | 17.1955379 | $3.77 \mathrm{E}-05$ | 0.17762896 |
| cg07215975 | 0.0188441 | $2.07 \mathrm{E}-05$ | 0.94116547 | 0.01982364 | 17.1304118 | $3.90 \mathrm{E}-05$ | 0.17900601 |
| cg00284511 | 0.01594263 | $1.49 \mathrm{E}-05$ | 0.94268147 | 0.0167702 | 17.0710708 | $4.02 \mathrm{E}-05$ | 0.17900601 |


| cg14138235 | 0.01893034 | 2.10E-05 | 0.92391782 | 0.02028143 | 17.0581665 | 4.05E-05 | 0.17900601 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cg03604573 | 0.01583878 | 1.47E-05 | 0.10326481 | 0.14245533 | 17.052466 | 4.06E-05 | 0.17900601 |
| cg00078456 | 0.02306822 | 3.12E-05 | 0.92089731 | 0.02473985 | 17.0472317 | 4.07E-05 | 0.17900601 |
| cg16421621 | 0.01556516 | $1.42 \mathrm{E}-05$ | 0.92772171 | 0.01663825 | 17.0249014 | 4.12E-05 | 0.17900601 |
| cg24403959 | 0.02229881 | 2.93E-05 | 0.1642313 | 0.12714516 | 16.9536735 | 4.27E-05 | 0.17954669 |
| cg18454045 | 0.02222529 | 2.92E-05 | 0.89709783 | 0.02447152 | 16.9435526 | 4.29E-05 | 0.17954669 |
| cg22025064 | 0.02548673 | $3.84 \mathrm{E}-05$ | 0.7884031 | 0.03181283 | 16.9308782 | $4.32 \mathrm{E}-05$ | 0.17954669 |
| cg04324999 | -0.0406999 | 9.79E-05 | 0.2740969 | -0.1603955 | 16.9218627 | $4.34 \mathrm{E}-05$ | 0.17954669 |
| cg06710735 | 0.02284425 | $3.11 \mathrm{E}-05$ | 0.9244425 | 0.02440978 | 16.7955285 | 4.63E-05 | 0.18019205 |
| cg19737540 | 0.03560797 | 7.56E-05 | 0.86998249 | 0.04010871 | 16.7710206 | 4.69E-05 | 0.18019205 |
| cg16333262 | 0.03489976 | 7.26E-05 | 0.87896383 | 0.03893265 | 16.7705424 | 4.69E-05 | 0.18019205 |
| cg18033671 | 0.01902868 | $2.16 \mathrm{E}-05$ | 0.92715484 | 0.02031526 | 16.7542022 | 4.73E-05 | 0.18019205 |
| cg08304525 | 0.01754178 | 1.84E-05 | 0.9356415 | 0.01857428 | 16.7500556 | 4.74E-05 | 0.18019205 |
| cg23389776 | 0.017426 | 1.82E-05 | 0.87398405 | 0.01974176 | 16.7293699 | $4.79 \mathrm{E}-05$ | 0.18019205 |
| cg23426002 | 0.01997076 | $2.38 \mathrm{E}-05$ | 0.92685046 | 0.02131725 | 16.7289916 | 4.79E-05 | 0.18019205 |
| cg11142013 | 0.01590007 | 1.51E-05 | 0.90385174 | 0.01743808 | 16.7017418 | $4.86 \mathrm{E}-05$ | 0.18019205 |
| cg17729694 | 0.01477212 | $1.31 \mathrm{E}-05$ | 0.92876319 | 0.01577966 | 16.6777211 | $4.92 \mathrm{E}-05$ | 0.18019205 |
| cg05401312 | 0.01970514 | 2.33E-05 | 0.9199216 | 0.02119347 | 16.6663196 | 4.95E-05 | 0.18019205 |
| cg27128984 | 0.02225455 | 2.97E-05 | 0.14490634 | 0.14262664 | 16.6560957 | $4.98 \mathrm{E}-05$ | 0.18019205 |
| cg02865149 | 0.02143912 | 2.76E-05 | 0.13469311 | 0.14743638 | 16.6497128 | 4.99E-05 | 0.18019205 |
| cg20240091 | 0.01628251 | 1.60E-05 | 0.92571056 | 0.01743586 | 16.6169611 | 5.08E-05 | 0.18075359 |
| cg16942327 | 0.02265271 | 3.09E-05 | 0.91760009 | 0.0243859 | 16.602824 | 5.12E-05 | 0.18075359 |
| cg02879960 | 0.02864182 | 4.96E-05 | 0.86629003 | 0.03252494 | 16.5474445 | 5.26E-05 | 0.18313254 |
| cg17034181 | 0.02435813 | $3.59 \mathrm{E}-05$ | 0.32005856 | 0.07331538 | 16.5205284 | $5.34 \mathrm{E}-05$ | 0.18313254 |
| cg00382463 | -0.0409347 | 1.02E-04 | 0.25439072 | -0.174992 | 16.5003754 | 5.39E-05 | 0.18313254 |
| cg21293902 | 0.01870735 | $2.12 \mathrm{E}-05$ | 0.93729295 | 0.0197617 | 16.496621 | 5.40E-05 | 0.18313254 |

Appendix 3: Overlap DMCs at cell type 3 in two methods.

| CpGs |
| :---: |
| cg14138235 |
| cg26957187 |
| cg09809672 |
| cg09889997 |
| cg21543346 |
| cg18900271 |
| cg02879960 |
| cg25228737 |
| cg04781580 |
| cg25313447 |
| cg24499605 |
| cg01816936 |
| cg07060794 |
| cg15829665 |
| cg16942327 |
| cg05283597 |
| cg00903584 |
| cg00476955 |
| cg00153919 |
| cg12299361 |
| cg11442608 |
| cg00255726 |
| cg16611352 |
| cg03103850 |
| cg07420362 |
| cg27641961 |
| cg05102794 |
| cg19692322 |
| cg08237401 |
| cg26749306 |
| cg22514173 |
| cg13882285 |
| cg08474901 |
| cg13798621 |
| cg11241278 |
| cg03429643 |


| cg00980649 |
| :---: |
| cg18657389 |
| cg22322277 |
| cg02370707 |
| cg24248680 |
| cg08616585 |
| cg14145338 |
| cg20038477 |
| cg11733245 |
| cg24055461 |
| cg13069237 |
| cg19677267 |
| cg03699843 |
| cg19819912 |
| cg27573991 |
| cg19223119 |
| cg25032968 |
| cg03062454 |
| cg13494191 |
| cg00235484 |
| cg01787084 |
| cg04685387 |
| cg07749597 |
| cg08688659 |
| cg05767404 |
| cg13385220 |
| cg19532942 |
| cg03039701 |
| cg13185177 |
| cg18148349 |
| cg21750887 |
| cg18545991 |
| cg09096234 |
| cg09620718 |
| cg17852032 |
| cg12405265 |
| cg23166250 |
| cg14083015 |
| cg25314284 |

Appendix 4: Top 100 DMCs defined at lowest 100 q-value generated without consideration of cell
mixtures.

| CpGs | intercept | f | pval | qval |
| :---: | :---: | :---: | :---: | :---: |
| cg05066959 | 0.76036119 | 71.7341942 | 1.34E-16 | 3.72E-11 |
| cg03169557 | 1.16924804 | 68.7646999 | $5.31 \mathrm{E}-16$ | $7.35 \mathrm{E}-11$ |
| cg26102082 | 1.14170563 | 65.7245187 | $2.18 \mathrm{E}-15$ | $2.01 \mathrm{E}-10$ |
| cg22883290 | 1.14111998 | 63.1648882 | 7.19E-15 | $4.98 \mathrm{E}-10$ |
| cg11823178 | 0.95797137 | 62.1400243 | 1.16E-14 | $6.43 \mathrm{E}-10$ |
| cg25018458 | 1.135116 | 61.3575209 | 1.67E-14 | 7.73E-10 |
| cg13076843 | 0.83317312 | 60.093504 | 3.03E-14 | 1.20E-09 |
| cg05810363 | 1.02065989 | 58.969209 | 5.14E-14 | $1.78 \mathrm{E}-09$ |
| cg23968456 | 1.16964579 | 56.8128413 | 1.42E-13 | 4.37E-09 |
| cg12163800 | 0.91641289 | 53.9983547 | $5.37 \mathrm{E}-13$ | $1.49 \mathrm{E}-08$ |
| cg19803550 | 1.14662602 | 53.4901888 | 6.84E-13 | $1.72 \mathrm{E}-08$ |
| cg12309456 | 1.01446987 | 52.6225561 | 1.03E-12 | $2.38 \mathrm{E}-08$ |
| cg16588649 | 0.95798283 | 52.1808396 | $1.27 \mathrm{E}-12$ | $2.71 \mathrm{E}-08$ |
| cg22639325 | 1.15593989 | 51.1537157 | $2.07 \mathrm{E}-12$ | $4.10 \mathrm{E}-08$ |
| cg17693222 | 0.79520598 | 47.8439016 | $1.01 \mathrm{E}-11$ | 1.86E-07 |
| cg06436667 | 1.22155839 | 47.0909522 | $1.45 \mathrm{E}-11$ | $2.50 \mathrm{E}-07$ |
| cg25285237 | 0.89036337 | 46.6224678 | 1.81E-11 | $2.95 \mathrm{E}-07$ |
| cg10120897 | 0.90724417 | 45.8320823 | $2.64 \mathrm{E}-11$ | $4.07 \mathrm{E}-07$ |
| cg12305431 | -0.5307214 | 45.182388 | $3.61 \mathrm{E}-11$ | 5.27E-07 |
| cg13327545 | -0.399089 | 44.6360161 | 4.70E-11 | 6.51E-07 |
| cg22373622 | 0.93565327 | 44.1289507 | $6.00 \mathrm{E}-11$ | 7.91E-07 |
| cg22962123 | -0.530836 | 43.8223287 | 6.95E-11 | $8.41 \mathrm{E}-07$ |
| cg21775279 | 1.02860944 | 43.8129812 | 6.99E-11 | $8.41 \mathrm{E}-07$ |
| cg04027736 | -0.7389092 | 43.5361865 | 7.98E-11 | $9.21 \mathrm{E}-07$ |
| cg07207652 | -0.676042 | 43.4520119 | 8.31E-11 | $9.21 \mathrm{E}-07$ |
| cg02798280 | -0.4329402 | 42.5882054 | 1.26E-10 | $1.34 \mathrm{E}-06$ |
| cg16406967 | -0.6447337 | 42.1787227 | $1.54 \mathrm{E}-10$ | $1.58 \mathrm{E}-06$ |
| cg20535966 | 1.11009278 | 42.0599381 | 1.63E-10 | $1.61 \mathrm{E}-06$ |
| cg09221482 | 0.65885695 | 41.7301797 | $1.91 \mathrm{E}-10$ | $1.77 \mathrm{E}-06$ |
| cg20618448 | 1.05893867 | 41.721337 | 1.92E-10 | $1.77 \mathrm{E}-06$ |
| cg07104958 | -0.2251312 | 41.3027857 | $2.35 \mathrm{E}-10$ | $2.10 \mathrm{E}-06$ |
| cg03776506 | 1.0615208 | 41.1776367 | $2.50 \mathrm{E}-10$ | $2.16 \mathrm{E}-06$ |
| cg19240213 | -0.6612199 | 41.0755493 | 2.62E-10 | $2.20 \mathrm{E}-06$ |
| cg21806242 | -0.5858235 | 40.8441211 | $2.93 \mathrm{E}-10$ | $2.39 \mathrm{E}-06$ |
| cg07012687 | 0.67025544 | 40.7766018 | $3.03 \mathrm{E}-10$ | $2.40 \mathrm{E}-06$ |


| cg25594100 | 0.56627369 | 40.4202981 | $3.60 \mathrm{E}-10$ | $2.77 \mathrm{E}-06$ |
| :---: | :---: | :---: | :---: | :---: |
| cg05845757 | 0.40277369 | 40.3653098 | $3.70 \mathrm{E}-10$ | $2.77 \mathrm{E}-06$ |
| cg01217984 | -0.4303959 | 39.9682479 | $4.49 \mathrm{E}-10$ | 3.26E-06 |
| cg14830003 | -0.5561937 | 39.9192142 | $4.59 \mathrm{E}-10$ | 3.26E-06 |
| cg19153828 | -0.8195715 | 39.7948728 | 4.88E-10 | 3.38E-06 |
| cg01463828 | -0.4866292 | 39.7461814 | $5.00 \mathrm{E}-10$ | 3.38E-06 |
| cg04157161 | -0.4669351 | 39.5822106 | $5.41 \mathrm{E}-10$ | 3.57E-06 |
| cg20457732 | -1.0251614 | 39.4339301 | 5.82E-10 | 3.73E-06 |
| cg15821544 | 0.83610923 | 39.3957932 | 5.92E-10 | $3.73 \mathrm{E}-06$ |
| cg19940077 | 0.44883952 | 39.0857864 | 6.89E-10 | 4.24E-06 |
| cg24524285 | -0.8194689 | 38.8905898 | 7.57E-10 | 4.56E-06 |
| cg05800416 | -0.7738871 | 38.6618128 | $8.47 \mathrm{E}-10$ | $4.98 \mathrm{E}-06$ |
| cg03760191 | 0.6567395 | 38.6240153 | 8.62E-10 | 4.98E-06 |
| cg18680977 | -0.5478798 | 38.4869631 | 9.22E-10 | 5.21E-06 |
| cg07679492 | 0.84864164 | 38.4278863 | $9.49 \mathrm{E}-10$ | 5.26E-06 |
| cg15755240 | 0.98067185 | 38.3709779 | $9.75 \mathrm{E}-10$ | 5.30E-06 |
| cg17636309 | 0.92555282 | 38.1160248 | 1.10E-09 | $5.88 \mathrm{E}-06$ |
| cg23279355 | -0.7772917 | 38.0362475 | 1.15E-09 | 6.00E-06 |
| cg12561474 | 1.16445301 | 37.9946688 | 1.17E-09 | 6.01E-06 |
| cg15374751 | -0.8262674 | 37.2088598 | $1.72 \mathrm{E}-09$ | 8.65E-06 |
| cg26600753 | 0.89155446 | 37.1060144 | $1.81 \mathrm{E}-09$ | 8.80E-06 |
| cg20056593 | 1.10993222 | 37.0712928 | 1.84E-09 | 8.80E-06 |
| cg05118960 | -0.1739906 | 37.0648741 | $1.84 \mathrm{E}-09$ | 8.80E-06 |
| cg07883124 | 0.39959471 | 37.0189466 | 1.89E-09 | 8.85E-06 |
| cg02317313 | -0.6855155 | 36.8760225 | 2.02E-09 | 9.33E-06 |
| cg22245494 | 1.13857542 | 36.8403631 | $2.06 \mathrm{E}-09$ | 9.34E-06 |
| cg00228891 | -0.2725399 | 36.5817386 | 2.33E-09 | $1.03 \mathrm{E}-05$ |
| cg11532431 | -1.0099219 | 36.5710179 | $2.35 \mathrm{E}-09$ | $1.03 \mathrm{E}-05$ |
| cg08202399 | -0.7704307 | 36.471786 | 2.46E-09 | $1.07 \mathrm{E}-05$ |
| cg07923390 | 0.85514085 | 36.3366094 | 2.63E-09 | 1.12E-05 |
| cg24379915 | 0.73137433 | 35.9627172 | $3.16 \mathrm{E}-09$ | 1.33E-05 |
| cg15974867 | 0.78438924 | 35.9138765 | 3.24E-09 | 1.34E-05 |
| cg06804344 | 0.69454848 | 35.7260652 | 3.55E-09 | 1.44E-05 |
| cg23669081 | -0.9513941 | 35.4731963 | $4.01 \mathrm{E}-09$ | $1.61 \mathrm{E}-05$ |
| cg10895952 | 0.27784158 | 35.3056016 | $4.36 \mathrm{E}-09$ | $1.72 \mathrm{E}-05$ |
| cg01964852 | -0.8341977 | 35.2389181 | 4.50E-09 | 1.76E-05 |
| cg22904711 | -0.7784089 | 35.1759618 | 4.64E-09 | 1.79E-05 |
| cg06902698 | -0.7712576 | 34.9107323 | $5.29 \mathrm{E}-09$ | $2.01 \mathrm{E}-05$ |
| cg26247646 | 0.87258023 | 34.8156408 | 5.54E-09 | $2.07 \mathrm{E}-05$ |


| cg11652496 | 0.62938917 | 34.7759928 | 5.65E-09 | 2.09E-05 |
| :---: | :---: | :---: | :---: | :---: |
| cg11666770 | 0.49512177 | 34.6440831 | 6.03E-09 | 2.20E-05 |
| cg19138865 | 0.57965719 | 34.3677306 | 6.90E-09 | $2.48 \mathrm{E}-05$ |
| cg13154057 | 1.00429006 | 34.32644 | 7.04E-09 | $2.50 \mathrm{E}-05$ |
| cg11236550 | -0.6860774 | 34.2244732 | 7.40E-09 | 2.60E-05 |
| cg25749512 | -0.0369449 | 34.0716339 | 7.98E-09 | $2.75 \mathrm{E}-05$ |
| cg02803819 | -0.7988239 | 34.0574665 | 8.04E-09 | $2.75 \mathrm{E}-05$ |
| cg05851442 | -0.3070148 | 33.8926201 | 8.71E-09 | 2.94E-05 |
| cg24550149 | -0.6773301 | 33.7006239 | 9.58E-09 | $3.20 \mathrm{E}-05$ |
| cg24402332 | 0.86819011 | 33.5655849 | 1.02E-08 | 3.37E-05 |
| cg04972348 | 0.27027851 | 33.4229035 | 1.10E-08 | $3.58 \mathrm{E}-05$ |
| cg06381803 | -0.7527142 | 33.3560706 | 1.13E-08 | 3.65E-05 |
| cg17104258 | -0.9071068 | 33.2240916 | $1.21 \mathrm{E}-08$ | 3.85E-05 |
| cg23995914 | -0.2431463 | 33.1390137 | $1.26 \mathrm{E}-08$ | 3.97E-05 |
| cg06768599 | -0.2272962 | 33.0213331 | $1.34 \mathrm{E}-08$ | 4.16E-05 |
| cg11724984 | 0.55979098 | 32.9970132 | $1.35 \mathrm{E}-08$ | 4.17E-05 |
| cg00979931 | -0.4651405 | 32.9392184 | $1.39 \mathrm{E}-08$ | 4.24E-05 |
| cg26587870 | -0.2537288 | 32.9118954 | $1.41 \mathrm{E}-08$ | 4.25E-05 |
| cg16672810 | 0.6946911 | 32.7286054 | $1.54 \mathrm{E}-08$ | $4.58 \mathrm{E}-05$ |
| cg04717895 | -0.5351243 | 32.7169888 | $1.55 \mathrm{E}-08$ | 4.58E-05 |
| cg17474422 | 0.38204212 | 32.6514465 | 1.60E-08 | 4.60E-05 |
| cg07061298 | -0.6151077 | 32.6511812 | 1.60E-08 | 4.60E-05 |
| cg18102633 | 0.82168182 | 32.6435956 | $1.61 \mathrm{E}-08$ | 4.60E-05 |
| cg00921266 | -0.8342793 | 32.5896718 | $1.65 \mathrm{E}-08$ | 4.64E-05 |
| cg09825979 | -0.5978436 | 32.573364 | 1.67E-08 | 4.64E-05 |
| cg17804348 | 0.38302948 | 32.5560612 | $1.68 \mathrm{E}-08$ | 4.64E-05 |

Appendix 5: Overlap DMCs without considering cell mixture and DMCs generated on cell type 3 by
RefFreeEWAS method.

| CpGs |
| :---: |
| cg22962123 |
| cg07207652 |
| cg02798280 |
| cg19240213 |
| cg21806242 |
| cg01217984 |
| cg14830003 |
| cg01463828 |
| cg04157161 |
| cg24524285 |
| cg17636309 |
| cg00228891 |
| cg05851442 |
| cg06381803 |
| cg06768599 |
| cg00979931 |
| cg26587870 |
| cg00921266 |
| cg15911153 |
| cg07522913 |
| cg22090150 |
| cg19048532 |
| cg01301319 |
| cg09490371 |
| cg20591728 |
| cg03503871 |
| cg15645660 |
| cg02308560 |
| cg04917446 |
| cg00452882 |
| cg08101036 |
| cg19875532 |
| cg08441803 |
| cg01287088 |
| cg08056778 |


| cg27317046 |
| :---: |
| cg01478234 |
| cg19827875 |
| cg25595793 |
| cg22595230 |
| cg04874795 |
| cg05398321 |
| cg08027484 |
| cg18383668 |
| cg06942814 |
| cg05258935 |
| cg11629889 |
| cg08230957 |
| cg09482050 |
| cg24670552 |
| cg27624319 |
| cg09595050 |
| cg07184237 |
| cg09830866 |
| cg07060794 |
| cg24636368 |
| cg21080562 |
| cg09482093 |
| cg02879960 |
| cg04345034 |
| cg04301614 |
| cg15967278 |
| cg 14496753 |
| cg22660933 |
| cg09809672 |
| cg16308533 |
| cg08203284 |
| cg21757872 |
| cg17606183 |
| cg10380221 |
| cg14083015 |
| cg25143652 |
| cg14166284 |
| cg15488009 |


| cg00994629 |
| :---: |
| cg20839206 |
| cg23377551 |
| cg25167447 |
| cg09889997 |
| cg 18180783 |
| cg24466241 |
| cg09475796 |
| cg07136133 |
| cg07450210 |
| cg01016592 |
| cg16450309 |
| cg11442608 |
| cg26619671 |
| cg27616541 |
| cg20273670 |
| cg04798016 |
| cg25730428 |
| cg24026619 |
| cg04533276 |
| cg25551168 |
| cg10359157 |
| cg13185177 |
| cg24114014 |
| cg06721393 |
| cg04279801 |
| cg25382900 |
| cg12461930 |
| cg05767404 |
| cg11067407 |
| cg03684062 |
| cg27573991 |
| cg23588605 |
| cg26881102 |
| cg20781880 |
| cg17757980 |
| cg08688659 |
| cg07420362 |
| cg19863740 |


| $\operatorname{cg} 04781580$ |
| :---: |
| $\operatorname{cg} 07749597$ |
| $\operatorname{cg} 04005059$ |
| $\operatorname{cg} 02158978$ |
| $\operatorname{cg} 26053066$ |
| $\operatorname{cg} 07871971$ |
| $\operatorname{cg} 03240301$ |
| $\operatorname{cg} 07623567$ |

Appendix 6: Overlap DMCs without considering cell mixture and DMCs generated on cell type 4 by RefFreeEWAS method.

| CpGs |
| :---: |
| cg02879960 |
| cg00959883 |
| cg26417346 |

Appendix 7: Overlap DMCs without considering cell mixture and DMCs generated on cell type 2 by
TOAST method

CpGs cg08101036

Appendix 8: Overlap DMCs without considering cell mixture and DMCs generated on cell type 3 by
TOAST method.

| CpGs |
| :---: |
| cg23392845 |
| cg07060794 |
| cg02879960 |
| cg09809672 |
| cg14083015 |
| cg09889997 |
| cg23652026 |
| cg17696044 |
| cg11442608 |
| cg04147621 |
| cg13185177 |
| cg05767404 |
| cg27573991 |
| cg08688659 |
| cg07420362 |
| cg04781580 |
| cg07749597 |
| cg23201812 |


[^0]:    An abstract of
    A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of

    Master of Science in Public Health
    in Biostatistics and Bioinformatics
    2020

[^1]:    An abstract of
    A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Science in Public Health in Biostatistics and Bioinformatics

    2020

