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Abstract 

Associations between Schistosomiasis Intermediate Host Snail’s Recent Migration 

Rates and Geographical Distances in Sichuan, China 

By Qunna Li 

Schistosomiasis is a parasitic disease caused by several species of trematode. More than 200 
million people are infected worldwide. China had made great efforts to control schistosomiasis 
and 60% of endemic counties had achieved interruption of Schistosoma transmission. However, 
the disease has reemerged in previously controlled regions in Sichuan, China. S. japonicum is the 
causal agent of schistosomiasis in this region. And O. hupensis snail is the sole intermediate host 

for S. japonicum. Understanding how environmental factors influencing O. hupensis snail 
migration may offer insights on strategy for in controlling schistosomiasis transmission. In this 

study, a Bayesian multilocus genotyping method was first used to estimate O. hupensis snail 
recent migration rates between populations. Mixed models were then used to assess the 

association between geographic distances and snail recent migration rates. Four geographic 
distances were modeled, namely, Euclidean distance, incline distance, stream-only distance and 

land-use distance. 833 O. hupensis snails from 29 villages of Sichuan province, China were 
sampled. The estimated median migration rate between two villages was 0.0072(IQR: 0.0034). 

Also 12 (2.24%) out of 536 pairwise migration rates were greater than 10%. Overall, the 
association between snail recent migration rates and each of the four geographical distances were 
very similar. All models indicate that as the geographic distances increase, snail recent migration 
rates decreased. There was considerable village specific heterogeneity in migration rates, which 

indicates that village characteristics might play an important role on snail recent migration. 
Further study will need to address the effect of village specific characteristics on snail recent 
migration. Furthermore, it will be valuable to investigate the combined effects of geographic 

distances, hydrological connections between villages, land-use, as well as social network on O. 
hupensis snail’s recent migration rates.



Associations between Schistosomiasis Intermediate Host Snail’s Recent Migration Rates 
and Geographical Distances in Sichuan, China 

 

By  

Qunna Li 

B.M., Peking University, 2000 

M.MS. Peking University, 2003 

MSPH Emory University 

Rollins School of Public Health 

 2014 

 

Advisor: Howard H. Chang, PhD 

 

 

 

A thesis submitted to the Faculty of the  

Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of  
Master of Science in Public Health 
 in Biostatistics and Bioinformatics 

2014 

  



Acknowledgments 

I would like to express my sincere appreciation to my thesis advisor, Dr. Howard H. Chang 

for his guidance, inspiration and continuous support throughout the course of this work. The 

extensive knowledge, cheerful heart and creative thinking have inspired me along the way. I 

would also like to thank my thesis reader, Dr. Yijuan Hu for her valuable time and insightful 

advice. I would also like to thank Dr. Justin Remais and Jessica H. Belle for their kindly sharing 

the data and explaining the project. I would like to give my special thanks to Dr. Edmund K. 

Waller for his continuous support, encouragement and opportunities for my career development. 

I am very grateful to my colleagues, Hilary Rosenthal, Wayne Harris, Chunzi Huang, Lauren 

Owens and all the members from Dr. Waller’s lab, for their help when I was in classroom and 

encouragement while I was busy between classes and work. I would also like to thank all the 

faculties, staff members and fellow students from the Department of Biostatistics and 

bioinformatics for their help in my study and research. I thank Dr. Quyyumi and his group from 

Cardiology for their understanding and support. Last but not least, I would like to extend my 

deepest appreciation to my family for their unconditional love and support.  

  



Table of Contents 

Introduction ..................................................................................................................................... 1 

Methods........................................................................................................................................... 8 

Data collection ............................................................................................................................. 8 

Recent migration rates estimation ............................................................................................. 10 

Statistical analysis ..................................................................................................................... 13 

Sensitivity analysis .................................................................................................................... 15 

Results ........................................................................................................................................... 15 

Descriptive analyses .................................................................................................................. 15 

Modeling results ........................................................................................................................ 17 

Discussion ..................................................................................................................................... 18 

Conclusion .................................................................................................................................... 21 

Tables ............................................................................................................................................ 22 

Figures........................................................................................................................................... 27 

Supplement tables ......................................................................................................................... 28 

Supplement figures ....................................................................................................................... 37 

References ..................................................................................................................................... 39 

APPENDIX ................................................................................................................................... 41 

BAYESASS CODE .................................................................................................................. 41 

 



List of tables 

Table 1. Large migration rates computed from BayesAss .......................................................................... 22 

Table 2. Non-migration rates computed from BayesAss ............................................................................ 23 

Table 3. Model fit for snail migration rates and environmental models ..................................................... 25 

 

Supplement table 1. Summary of sampling counties, villages and snails ................................................... 28 

Supplement table 2. Summary of Oncomelania hupensis snail microsatellite genotypes .......................... 30 

Supplement table 3. Summary of cost-path values for different cost models ............................................. 34 

Supplement table 4. Correlation coefficients of median of EGD between different environmental models

 ..................................................................................................................................................................... 35 

Supplement table 5. Correlation coefficients of 25th percentile of EGD between different environmental 

models ......................................................................................................................................................... 36 

 

  



List of figures 

Figure 1. Scatter plots of logit of migration rates and cost function ............................................. 27 

 

Supplement figure 1. Correlation of median of EGD between different environmental models	
  ...............	
  37	
  

Supplement figure 2. Correlation of 25th percentile of EGD between different environmental models	
  ...	
  38	
  

Supplement figure 3. Observed versus predicted logit of migration rates from "to and from" random effect 

model for EGD log25th	
  .............................................................................................................................	
  39	
  



1	
  
	
  	
  

Associations between Schistosomiasis Intermediate Host Snail’s Recent 

Migration Rates and Geographical Distances in Sichuan, China 

Introduction	
  
	
  

Schistosomiasis is a parasitic disease caused by several species of trematode belonging to the 

genus Schistosoma. More than 200 million people are infected worldwide and it is considered 

one of the neglected tropical diseases[1]. China had made great efforts to control schistosomiasis 

where 5 of 12 endemic provinces and 60% of endemic counties in China had achieved 

interruption of Schistosoma transmission. Currently, China is aiming to eliminate the disease. If 

its program is successful, China’s program may serve as a model for schistosomiasis control 

elsewhere. However, schistosomiasis has reemerged in previously controlled regions. In Sichuan 

province, schistosomiasis was identified in 8 of 46 counties that had met transmission control [2]. 

Little is known about the epidemiology of reemerging schistosomiasis, including how infections 

are distributed across human populations, as well as the distribution of intermediate host snails 

and other mammalian reservoirs. Snail surveys such as assessment of snail densities and 

detection of Schistosoma japonicum infected snails are one of the strategies of schistosomiasis 

surveillance in controlled area [3]. Therefore, studies that examine snail migration between 

different regions and the environmental determinant of snail migration may play an important 

role in understanding schistosomiasis epidemiology and control. 

In order to better understand snail’s role in the transmission of schistosomiasis, we first 

briefly summarize schistosoma’s life cycle. There are three main species that infect humans 

including Schistosoma haematobium, S. japonicum, and S. mansoni. S. japonicum is the causal 
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agent of the schistosomiasis in East and Southeast Asia. Mainly three genera of snails serve as 

intermediate hosts of human Schistosoma parasites including Biomphalaria, Bulinus and 

Oncomelania hupensis. Oncomelania hupensis is the sole intermediate host for S. japonicum. 

Oncomelania live in water as well as out of water. Humid areas such as sluggish streams, swamp, 

poorly tilled rice fields, secondary and tertiary canals of irrigation systems and roadside ditches 

are most suitable for snail, but they can also survive periods of drought. Schistosoma infection 

occurs when skin comes in contact with contaminated freshwater in which the intermediate 

snails that carry the parasite are present. Freshwater becomes first contaminated by Schistosoma 

eggs when infected individuals’ wastes excrete into the water. Then the eggs hatch to miracidium, 

which infect the appropriate species of snails. The miracidium then infect and reproduce many 

times asexually inside the snails until thousands of new form (cercariae) break out of the snail 

into the water.  The cercariae can live for up 48 hours outside of the snail. Within that time they 

must penetrate the skin of a human being in order to continue their life cycle. People who come 

in contact with contaminated freshwater, typically when wading, swimming, bathing, or washing 

become infected. Over several weeks, the parasites migrate through host tissue and develop into 

adult worms inside the blood vessels of the body. Once mature, the worms mate and females 

produce eggs. Some of these eggs travel to the bladder or intestine and are passed into the urine 

or stool. Only about half of the eggs leave the body in the feces or urine; the rest remain 

embedded in the body where they cause damage to organs [4] 

The O. hupensis snails are amphibious and largely inhabit the margins of irrigation canals, 

rice fields, and small streams where they are subject to advective transport as well as active 

dispersal. The vegetation in these sites serves to maintain suitable microenvironment, including 

temperature, humidity and food resources. They are seldom found in large rivers and fast-
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flowing streams. Juveniles are submerged in water during early stages of development, while 

adults are often found above water line on vegetation and on moist soil[5, 6]. Adult snails have 

coping mechanisms to resist dry conditions. The snail can migrate both upstream and 

downstream directions. Lab observations of O. hupensis have confirmed that snails actively 

move against an elevation gradient when threatened by simulated flooding. And O. hupensis has 

been observed to spread via irrigation systems that link one village to next. Akullian et al. carried 

out a mass mark release (MMR) study in Gongqiao village, Sichuan province, China to direct 

estimate the distribution of distances dispersed by O. hupensis from a source population per unit 

time. They then use this MMR data to simulate the passive downstream diffusion of cercariae, 

the waterborne, human-infective parasite stage of O. hupensis. The simulation results suggested 

that O. hupensis migration can substantially increase the concentration of cercariae reaching 

downstream locations, relative to no snail dispersal, and putting downstream sites at increased 

risk of exposure to cercariae from upstream sources[7]. The above study indicates that O. 

hupensis snail migration plays a role of spreading schistosomiasis. 

 

There is other evidence showing that vector dispersal plays an important role of infectious 

diseases control. Killeen et al. studied the migration of mosquitoes and the effectiveness of 

insecticide-treated nets on malaria. The efficacy measurements of insecticide-treated nets are 

much lower when assessed in the field than in the experimental settings. That is because adult 

mosquitoes are capable of travelling several kilometers. If the intervention of insecticide-treated 

nets are only implemented in an isolated village, the effectiveness of intervention can be 

underestimated, which indicates that high coverage of nets is necessary for maximizing the 

effectiveness of such powerful malaria-control tools[8]. 
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The main objective of this thesis is to (1) estimate recent snail migration rates between 29 

villages in Sichuan, China using microsatellite genotypes, and (2) examine associations between 

snail migration rates and functional variables that characterize ecological distance between 

villages.  

There are variety ways to estimate gene flow between populations. One way is direct 

estimates of migration rates based on mark-recapture[9]. This method estimates the actual 

“instantaneous” migration rate of individual and can be time consuming and impractical for large 

populations that exchange small numbers of migrants because the expected number of recaptures 

is too low. Another way of estimate gene flow is indirect estimates by using genetic data such as 

restriction fragment length polymorphisms (RFLPs), microsatellite markers, single-nucleotide 

polymorphisms (SNPs) and DNA sequencing data. The indirect methods include the fixation-

index FST, examining rare alleles, and using gene frequency distributions. In a review by Slatkin 

and Barton[10], the authors argued that the gene frequency distributions methods tend to yield 

biased estimates when relatively small numbers of locations are sampled.  FST and rare alleles 

yield comparable estimates, but FST is preferred since it uses all of the gene-frequency data and 

thereby making it less sensitive to particular loci. However, both FST and rare alleles methods 

require the populations to reach genetic equilibrium within population and do not utilize all the 

information that molecular data provided in order to infer the levels of gene flow more 

accurately. The development of coalescent theory[11] , which traces the ancestral genealogy of a 

sample can be used in developing indirect estimates of gene flow with less restrictive models. 

Some new methods have been developed based on coalescent theory to accommodate recent 

population expansion, nonsymmetrical migration, and other complexities that are typical of 
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biological process[12-14]. However, even those new methods assume that population size and 

migration rates did not change over time, which may not be reasonable for snail migration study, 

since snail population and migration rates may change because of snail controlling efforts, land 

use and other social activities. However, methods based on coalescent theory have focused on 

the long-term effects of immigration on allele frequency distribution and do not measure 

contemporary migration rates, which are more relevant for developing disease control strategies. 

Recently, non-equilibrium approaches have been proposed to estimate recent migration from 

transient disequilibrium observed at individual multilocus genotypes of migrants or individuals 

who have recent immigrant ancestry[15, 16]. Bayesian inference has been used and focus was put 

on identifying individual migrants and their source populations but not on migration rates 

between populations. All above indirect approaches assume genotypes are in Hardy-Weinberg 

equilibrium within populations. 

In this study, a Bayesian multilocus genotyping method proposed by Wilson and Rannala [17] 

was used to estimate recent migration rates between populations. This method assumes linkage 

equilibrium but relaxes Hardy-Weinberg equilibrium. It allows arbitrary genotype frequency 

distribution within populations by incorporating population-specific inbreeding coefficients. 

Migration rates among populations can be asymmetric but are constant over short periods of time 

(within the last one to three generations). In addition, it also assumes that migration rates are 

small (<1/3). Thus it imposes a constraint that nonmigrant proportions must be in the interval of 

2/3 to1. The method also assumes that genetic drift and migration during the last few generations 

do not change subpopulation allele frequency. Moreover missing genotype data are allowed. The 

software BayesAss was developed using Markov chain Monte Carlo (MCMC) to implement this 

method. Faubet et al. [18] validated this method by using multi-allelic markers and scenarios with 
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varying number of populations. They found that if the assumptions of negligible change in allele 

frequencies due to migration and/or genetic drift over a few generations are not violated, and if 

the genetic differentiation is not too low (FST≥0.05) then the method can give fairly accurate 

estimate of migration rates even when they are close to the threshold (about 0.1). However, when 

the above assumptions are violated, accurate estimates are obtained only if migration rates are 

very low (m = 0.01) and genetic differentiation is high (FST ≥ 0.10). BayesAss was used by 

Anderson[19] to estimate generalist rodents’ migration rates between 18 forest patches. They 

demonstrated that the migration rates estimated by BayesAss (~20%) were smaller than the ones 

estimated by GENECLASS (~50%). The reason could be that BayesAss restricts the migration 

rates to be less than 1/3, and GENECLASS assumes that population reach Hardy-Weinberg 

equilibrium which was probably violated in that study. Bertrand et al. also used BayesAss to 

estimate migration rates in an island bird and  found that the migration rates were small which 

agree with their expectations[20]. Finally, Howes et al. found that gene flow estimated by 

BayesAss was smaller than the ones estimated by FST for black ratsnake and Blanding’s turtle. 

The authors claimed that the different estimate of migration rates was attributed to the 

assumptions applied to the methods[21]. 

 

As discussed above, snail migration may play an important role in Schistosomiasis 

transmission between regions (nodes). Identifying measures of distance between two nodes that 

are associated with snail migration can be used to predict snail migration from an endemic region 

develop appropriate monitoring and control strategies. Several previous studies have focused on 

measuring the degree of connection between nodes. The Euclidean model is a useful tool for the 

measurement of distance and simple connections, but it may not sufficiently represent social 



7	
  
	
  	
  

distances that mediate transmission processes[22] . Furthermore, Euclidean model alone cannot 

measure epidemiological distance when environmental pathways lie on heterogeneous 

landscapes. Therefore, other models have been proposed, such as overland distance model and 

watershed model. Overland distance model is a Euclidean distance model corrected for the 

distance travelled when moving over sloped topography. Watershed model considers the distance 

along flow paths to stream. Remais et al.[23] used those models to test if Schistosomiasis re-

emergent in one village is close to another re-emergent village in terms of Euclidean distance 

and watershed distance in Sichuan, China. It was found that the watershed model performs better 

than Euclidean model. For schistosomiasis, there is evidence that land use can change the disease 

transmission. Diama dam in Senegal serves as an example where the development of irrigation 

channels following the construction of the dam resulted in increased transmission of S. 

haematobium and the introduction of S. mansoni. On the contrary, the destruction of the Dabara 

dam in Madagascar and its associated irrigation network resulted in reductions of S. mansoni 

transmission in the absence of any systematic chemotherapy treatment[24]. Schistosomiasis 

transmission can attribute to the larval forms of the parasite dispersal or vector migration. Since 

water is essential for S. japonicum’s life cycle and indispensable for its intermediate host O. 

hupensis snails, hydrological connections between villages are important for transmission of 

schistosomiasis and migration of snails. 

 

Modeling of O. hupensis snail is rare. There are some studies focused on O. hupensis snail 

seasonal abundance fluctuations and temperature change or precipitation[25, 26]. In this study, we 

will use mixed model to test the following hypotheses: (1) are estimated O. hupensis snail 

migration rates between villages associated with Euclidean distance? (2) Are O. hupensis snail 
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migration rates better associated with a modified distance measure that accounts for topography, 

streams, or land use? Random intercepts were used to account for village-specific propensity to 

act as a source, as well as its propensity to act as a target. As indicated by Remais[5], some 

villages might serve as “sinks” in the environmental network where they lie at the bottom of a 

watershed of numerous connected upstream villages. And some villages might reside on the 

upstream of hydrological network.  

The thesis is organized as following. Firstly, descriptions of data collection including study 

sites, multilocus information and environmental function were presented. Secondly, migration 

rates estimation using BayesAss were described. Thirdly, statistical modeling between migration 

rates and environmental geographic distance was presented. Fourthly, presented the results. 

Finally, further steps were discussed in conclusions. 

Methods	
  
 

Data	
  collection	
  
 

The study was conducted in 32 villages within 3 counties in the Chuanbei region of Sichuan 

Province, People’s Republic of China. Most villages within each county are connected by rivers. 

The stream flows from north to south. The characteristics of this region and selection of villages 

were described in detail elsewhere[23]. The villages lie on the mountainous area where intense, 

irrigated agricultural cultivation is the dominant landscape. Use of human waste (termed 

nightsoil) for crop fertilization is pervasive in this region which facilitates schistosomiasis 

transmission.  According to Chinese Ministry of Health guidelines, Schistosoma japonicum has 

re-emerged in these areas that had previously attained transmission control[2]. Villages were not 
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selected at random, but focus was first placed on the availability of data on the presence of 

schistosomiasis infection in snails, acute human cases or infected children under 12 years old 

since control status was attained. 

Snail and its locus information: From April 2008 to April 2010, snails were sampled from 29 

out of those 32 villages. 833 snails were sampled and microsatellite genotyped. Microsatellite 

genotyping was done for 11 loci of Oncomelania hupensis snail DNA. Those 11 loci were OH12, 

OH150, OH157, OH211, OH212, OH235, OH47, OH573, OH68, OH73 and OH08.  

Functional environmental models were used to obtain measures of distance between each 

pair of villages, accounting for potential environmental determinants of snail migrations. 

Specifically, each measure was developed based on a cost-path using the isoclines method. The 

method utilizes geographical information system (GIS) software to calculate a set of least-cost 

paths from village i to village j. This method works by drawing a line that represents the halfway 

point for all possible paths from village i to village j within the area of calculation. This line is 

known as the isoclines or allocation boundary. Then, the lowest-cost path value known as 

‘effective’ geographic distance (EGD) value was calculated for the path that passes through a 

single point along isoclines on its way from village i to village j taking into account for 

topography and additional resistance to movement which may be associated with various aspects 

of the local environment. This process is then repeated for all points along the isoclines. Thus 

create a distribution of EGD values between village i and village j. The larger the EGD values, 

the more resistance for snails to migrate. EGD distribution for each pair of 32 villages (n=496) 

were calculated.  

Cost path processing were used to calculate EGD values for nine different functional 

environmental models, namely, Euclidean model, topography model, incline model, land use 
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model, distance from watershed model, wetness model, stream only model, stream velocity 

model, and streams and channels model. Each model accounts for different environmental 

variables that will encourage or limit snail migration. For example, the Euclidean model gives 

equal resistance to all cells and generates straight line distances between villages.  Whereas the 

incline model is a Euclidean distance corrected for the distance travelled when moving over 

sloped topography. Incline model, land use model, stream only model, stream velocity model 

and streams and channels model is bi-directional. Euclidean model, topography model, distance 

from watershed model and wetness model has no direction. Median and 25th percentile of all 

EGD values along isoclines between each pair of villages was used to predict snail migration 

between each pair of villages. 

Recent	
  migration	
  rates	
  estimation	
  
	
  

Snail migration rates were estimated from microsatellite genotype data by using Bayesian 

inference[17]and they were bidirectional between villages. We assume there was no migration 

between county AN and JI, and between AN and ZH because of large distance and boundary 

barrier. The recent migration approach relaxes the Hardy-Weinberg equilibrium assumption 

within population. This method assumes that some proportion of an individual’s alleles originate 

via a single migrant ancestor that arrived at the current (or past) generation. And populations 

only include non-immigrants, first-generation migrants and second-generation migrants. If the 

individual itself is a migrant, then 100% of its genome is of migrant origin. It also assumes that 

the loci are unlinked because individuals are sampled randomly. Assume the populations are 

large enough that there is negligible genetic drift over two, or three generations. The method also 

assumes that the total migration rate out of a village is 1/3. 
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Let matrix m={mlq} be the migration rates between villages, where mlq is the fraction of 

snails in population q that are migrants from village l. Let M={Mh}, where Mh is the source of 

migrant ancestry for snail h. Let t={th}, where th is the generation at which a migrant ancestor of 

snail h arrived. If th=0 then the snail has no migrant ancestry (non-migrant), if th=1 then the snail 

itself is the migrant, and if th=2 then the snail is a descendant of a migrant. Let F={Fl}, where Fl 

is the inbreeding coefficient for population l and -1≤Fl≤1. Let p={pijl} be the population 

frequencies of marker alleles, where pijl is the frequency of allele i at locus j in population l. Let 

X={Xhj} be the multilocus genotypes observed at J marker loci in a random sample of n diploid 

snail, where Xhj is the genotype of snail h at locus j. Let S={Sh} be the population source for 

each sampled snail, wher Sh is the population that snail h was sampled from. Finally, nl is the 

number of individuals sampled from the lth population. M, t, p, m and F are unobserved 

variables, and X and S are the observed data. In our analysis, the parameter of interest is the 

matrix m of migration rates between populations. 

The likelihood function of the data is Pr(X|S; M,t,F,p)= !"!
!!!

!
!!! (Xhj|Sh;Mh,th,F,p)    (1)  

where   

Pr(Xhj|Sh;Mh,th,F,p)=

Φ !!! , g                                                                                                                                                   if  !! = !! = g  and    !! = 0
0                                                                                                                                                                                if  !! ≠ !! = g  and    !! = 0

Φ !!! , r                                                                                                                                                               if  !! = r, !! = g, and    !! = 1

1− 1 2
!!!! Φ !!! , g + 1

2
!!!! φ !!! , r, g             if  !! = r, !! = g, and    !! > 1    

 

 

Φ !!! , r =
1− !! p!"#! + F!p!"#                                                                                                  if  !!!(1) =   !!!(2) = i
2 1− !! p!"#  p!"#                                            if  !!! 1 = i  and  !!! 2 = k  for  i ≠ k

 

 



12	
  
	
  

φ !!! , r, g =

p!"#p!"#                                                                                                                                                                                                                                            !"    !!! 1 =   !!! 2 =   i
    p!"#p!"# + p!"#p!"#                              !"    !!! 1 = i  and  !!! 2 = k  or    !!! 2 = i  and  !!! 1 = k  for  i ≠ k 

and  !!! 1  denotes the allele present on the maternal chromosome and   !!! 2  denotes the allele 

present on the paternal chromosome. If   !! = !!, then the individual h does not have immigrant 

ancestry and !! = 0. 

Prior distributions of parameters:  

Pr(M,t|m)= !!!!
!!! ( ((!

!!!!!")
!!"#

!!"#!
!
!!!

!
!!! ))× (!!!

!!!!
!!!!!

!
!!! )                                            (2) 

where !!!=1- 2!!!!!!
!
!!! !!" 

!!"#= ℑ!
!!! (!! , !!, !!) 

ℑ(!! , !!, !!)= 1    !"  !! = !, !! = !,!"#  !! = !  
0                                                                            !"ℎ!"#$%!

 

Uniform uninformative priors were used for !!(!)  !"#  !!(!) subject to the constraints: 

!!"#
!!"
!!! =1, for all j =1,2,…, J and l=1,2,…,I, where klj is the total number of alleles at locus j in 

population l and !!"
!
!!! =1, for all l=1,2,…,I. For  !!(!), a uniform prior on the interval (-1,1) 

is used. 

Posterior distributions of parameters using Bayes’ theorem is, 

f(m,M,t,F,p,|X,S)=!"  (!|!;!,!,!,!)×!" !,! ! !!(!)!!(!)!!(!)
!"  (!|!)

                                                     (3) 

Pr  (!|!) from equation (3) involves high-dimensional sum and intergral, so MCMC method is 

carried out to estimate the joint posterior probability density of equation (3) 

The joint posterior distributions of the parameters M, t, p, m and F are estimated 

numerically using Markov chain Monte Carlo (MCMC) method using the software BayesAss. 

The estimated posterior distributions are used to make inferences. 
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To estimate the posterior distributions of parameters, the MCMC was run for a total of 107 

iterations, discarding the first 2×106 as burn-in for AN county and a total of 1.5×107 iterations, 

discarding the first 5×106 as burn-in for JI+ZH county to allow the chain to reach stationarity. 

Samples were collected every 100 iterations to obtain posterior mean and posterior standard 

deviation of the migration rate. 

Statistical	
  analysis	
  
 

Effective geographic distance and snail migration rates 

We assume that snail migration between two villages is determined by the distance and 

stream between two villages. Topography and land use may also be predictive of snail migration. 

The EDG values of Euclidean model, topography model, incline model and wetness model are 

highly correlated. Stream only model, stream velocity model and streams and channels model are 

highly correlated. We test the hypotheses that distance between two villages (Euclidean model) 

can predict snail migration, and if this relationship can be enhanced by considering topography 

(Incline model). Other hypotheses we examined include if stream only and land use model can 

better predict snail migration. 

Simple linear regression model (model 1) and random intercept models accounting for 

village specific migration propensity were fitted to predict snail migration (model 2-4). Since 

pair-wise migration rates were modeled as outcomes, an exchangeable correlation structure was 

used in random intercept models. Because migration rate lies between 0 and 1, we modeled its 

logit transformation which has an unrestricted range. For each distance measure, the following 

four models were fitted 

logit(yi)=β0+β1xi+εi                              (1) 
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logit(yi) = β0+β1xi +b01i+εi                   (2) 

logit(yi) = β0+β1xi +b02i+εi                   (3) 

logit(yi) = β0+β1xi +b01i+ b02i +εi          (4) 

where yi=migration rate, xi=ln(median or 25th percentile of EGD value) for different EGD 

models, b01i=random effect of migration to village i, b02i=random effect of migration from 

village i. The random effects are assumed to be Gaussian: b01i~N(0, τ1
2), b02i~N(0, τ2

2) and  

εi~N(0, σ2).  In Model 4, the two random effects b01i and b02i are assumed to be independent. τ2 

represents variance of random effects and σ2 represents residual variance. 

Model AIC, marginal R2 (m_R2), conditional R2 (c_R2), leave-one-out cross-validation R2 

(cv_R2) and root-mean-square error (cv_RMSE) were used to compare models. 

 First, we defined as AIC=-2log likelihood+2k, where k is the total number of parameters in 

the model. The lower AIC, the better the model. For mixed effect model, marginal R2 represents 

the variance explained by fixed effect (EGD values), and conditional R2 is interpreted as 

variance explained by both fixed and random effects. Cross validation R2 is defined as the R2 

from fitting a simple linear regression between the set of observed migration rate from ith 

observation (i=1, 2……n) and the migration rate predicted from model without ith observation 

(yi). To obtain the predicted migration rate for ith observation, we first obtained model parameter 

estimates using all the data except the except ith observation. We then calculated logit(yi) and 

obtained predicted migration rate yi =exp(logit(yi))/(1+exp(logit(yi))). cv_RMSE represents the 

difference between predicted migration rate from model without ith observation and migration 

rate from ith observation. cv_RMSE= (!!!!(!))!!
!!!

!
 . We also estimated baseline migration rate 

for each model, p1=exp(β0c)/(1+exp(β0c)) when xi centered at median of the covariate 

(log(median)or log(25th percentile)). 
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Sensitivity	
  analysis	
  
 

To assess the sensitivity of estimating the migration rates using BayesAss, we considered 

different seeds, iterations and mixing parameters for MCMC. In this report, migration rates were 

estimated by two separate MCMC processing. One for AN county and the other for JI and ZH 

combined due to the large distance and boundary barrier between those two regions. In order to 

assess the sensitivity, we also run a MCMC processing combining all counties together as well as 

all counties separately.  

We also considered logarithm of EGD median, logarithm of EGD 25th percentile and 

logarithm of EGD minimum are used as covariates to predict migration rates separately. Finally, 

the impacts of outlying migration rate were also assessed.  

Migration rates were estimated by BayesAss 3.0. Data analysis was performed by using SAS 

9.3 and RStudio. 

Results	
  
	
  

Descriptive	
  analyses	
  
	
  

Snail data were available in 29 out of 32 villages within 3 counties. 833 Oncomelania 

hupensis snails were sampled (table 4). Microsatellite genotypes of the 11 loci were summarized 

in supplement table 2. 536 pairs of snail migration path between villages were estimated, most 

snail migration rates were small. The maximum snail migration rate was 0.26 and minimum 

migration rate was 0.0047. The median migration rate was 0.0072 (IQR: 0.0034). Also 12 

(2.24%) out of 536 migration rates were greater than 10% (table 1). With respect to the study 

region, we found that the direction of large migration rates were unidirectional and, mainly from 
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up-stream to down-stream. Non-migrant rates were also estimated from BayesAss with a 

maximum 0.92 and minimum 0.67. The median non-migrant rate was 0.77 (IQR: 0.18). Table 2 

shows the 29 non-migrant rates. 

The majority of the migration rates estimated from the MCMC processing combining all 

counties together were similar to those estimated from the method used in the paper (AN county 

separately, JI and ZH combined ), but the migration rates outliers (≥0.1) were less common. This 

is probably due to the fact that Bayesass assumes the non-migrant rates to be greater than or 

equal to 2/3. With greater numbers of villages, the migration rates will get smaller as the number 

of villages increases because of the constraint that they need to add up to 1. Most of the 

migration rates estimated from the MCMC processing by running all three counties separately 

agree with the results from the method used in the report. Those sensitivity analyses indicate the 

Bayesian inference using BayesAss is robust. Considering that the boundary between JI and ZH 

is not clear and the distance of villages between those two counties is not necessary further than 

the villages within those counties, our final analyses were based on migration rates estimated 

from combining those two villages together.  

Median and 25th percentile of EGD distribution between each pair of villages ( !"
! =496) was 

summarized for each functional environmental model. Since incline model, land use model, 

stream-only model, stream-velocity model and streams, and channels model are bi-directional, 

the total sample size of EGD distribution is 992 (supplement table 3). The distributions of 

median and 25th percentile of EGD are right-skewed for all nine environmental models. 

Consequently, a natural log transformation of median and 25th percentile was used in the analysis 

of relationship between EGD models and snail migration. From the scatter plots between logit of 

migration rates and logarithm of 25th percentile of cost function, we can see that as 25th 
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percentile of cost function increase, migration rates decrease (figure 1). The scatter plots between 

logit of migration rates and median of cost function are very similar to the logit of migration 

rates and 25th percentile of cost function, so only the logit of migration rates and 25th percentile 

of cost function are shown. High-pair wise correlations between the nine environmental models. 

Specifically, Euclidean model, topography model, incline model and wetness model are all 

highly correlated (r>0.9) for both median and 25th percentile. Stream only model, stream velocity 

model and streams and channels model are all highly correlated (r>0.9) for both median and 25th 

percentile (Supplement figure 1,2, supplement table 4,5). Scatter plots between logit of migration 

rates and EGD original scale, and between logit of migration rates and logarithm tranformation 

of EGD for different models all show that as EGD increase, the logit of migration rates decrease. 

This pattern was consistent between logarithm of EGD median, logarithm of EGD 25th percentile 

and logarithm of EGD minimum. 

Modeling	
  results	
  
	
  

 Logarithm of medians and 25th percentiles of EGD distribution from four environmental 

models- Euclidean model, incline model, stream only model and land use model were used as 

covariate to predict snail migration rates. Overall, the four environmental models gave similar 

results (table3). Results from Incline model were almost identical to the results from Euclidean 

model. All models indicate that EGD was associated with snail migration rates. When cost 

distance increases, snail migration rates decrease (all exp(β)<1). For example, for the model with 

two random intercepts using the log 25th as the covariate, one IQR increase in log25th EGD is 

associated with an odds ratio of migration of 0.497 (95%CI: 0.453-0.545). There was 

considerable village specific heterogeneity in migration rates. When we include both terms of 

migration to specific village and migration from specific village, model gives best AIC and R2. 
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Moreover, the random effect estimates (and the associated heterogeneity variance) for “from 

village” are consistently larger than the random effect estimates for “to village”. This indicates 

that source villages explain more variation in the high migration rates than the presence of target 

villages. There is also evidence that the log of 25th percentile of EGD value predicts migration 

rates better than log of median of EGD value. The estimated migration rate for a typical village 

(!1) was less than 0.01 for every model when log of EGD at the median value. Although 

environmental EGD values were negatively associated with migration rates, there were migration 

rate outliers that can’t be explained by EGD values alone. Supplement figure 3 shows migration 

rates can be predicted by EGD fairly well when migration rates are small, but for large value of 

migration rates, EGD predict poorly. We conducted a sensitivity analysis for the incline random 

effect “to and from” model using log25th as covariate by excluding outliers (migration rate 

≥0.1).The resulted model fits better (significantly smaller AIC and CV_RMSE, larger cv_R2) 

compare to the same model with outliers (table 3). However, the negative association between 

migration rates and EGD remains. 

Discussion	
  
	
  

Most snail migration rates were small. There were only 12 out of 536 pairwise migration 

rates that were greater than 10% and a few of which, that were greater than 20%. BayesAss 

assumes the sum of all migration rates to be less than 1/3, resulting in non-migrant rate to be 

between 2/3 and 1. Most migration rates between villages were small and the total migration 

rates from a specific village were less than 1/3. However, some non-migrant rates were very 

close to 2/3 indicating that we might underestimate migration rates for those villages because of 

the constraint. We hope future study can develop a statistical model which can relax the 
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constraint of total migration rate being less than 1/3. Nevertheless, we did a series of sensitivity 

analysis by estimating migration rates with three counties combined or separately- the results 

indicated that Bayesian inference using BayesAss was robust. Also Faubet et al.[18] validated 

BayesAss by using multi-allelic markers and scenarios with varying number of populations. 

They found that if the assumptions of negligible change in allele frequencies due to migration 

and/or genetic drift over a few generations are not violated, and if the genetic differentiation is 

not too low (FST≥0.05) then the method can give fairly accurate estimate of migration rates even 

when they are close to the threshold (about 0.1). The study collected snail data between 2008 and 

2010. If we can obtain yearly multiloci data, we will be able to estimate allele frequencies for 

each year and assess if there were changes in allele frequencies during the study period given 

that snails can survive for about a year. It is also possible to estimate FST from multiloci data [27], 

which enables us to assess if the genetic differentiation is indeed large enough for accurate 

estimation of migration rates by BayesAss. 

From random effect models between logit of snail migration rates and cost function, we 

observed very high heterogeneity in the village random effect both for source and target. The two 

random intercept models suggested that about 50% of the variation is attributed to the individual 

villages. This implies village characteristics may help explain between-village snail migration 

rates in addition to ecological distance. Future analysis may consider village characteristics, such 

as up-stream or down-stream of water flow, agricultural type and social connections in predicting 

migration rates. Furthermore, for the random intercept models, we assume random effects are 

independent. We might want to allow the random effects to be spatially correlated. Since villages 

are hydrologically connected, if stream plays an important role on snail migration, it is likely that 

villages from same hydrological connection are more correlated than villages from further apart. 



20	
  
	
  

Linear models and random effect models using the Euclidean distance, incline distance, 

stream only distance and land use distance all suggested that as the environmental distance 

increase, snail migration rates decrease. Guo et al.[28] used a geographic information and remote 

sensing based model to predict O. hupensis snail’s habitats in the Poyang Lake Area in China. 

Poyang Lake is a known habitat for O. hupensis snails. Their study indicated that the snail 

density decreased as the distance from the centroid of the lake increased.  Clearly, environmental 

distance is a good predictor for snail migration. However, when we inspect scatter plots (figure 1) 

and model fit (supplement figure 3), the relationship between logit of snail migration rates and 

environmental distance is not perfectly linear, and model fit improves as we remove migration 

rate outliers. We should consider non-linear effect of cost distance such as polynomial splines or 

piecewise regression in the future study. 

For those villages with outlying snail migration rates, it would be of interest to investigate the 

infectious status of snails, individuals, and animal host as well as historical epidemiological data. 

If the destination villages attained schistosomiasis transmission control or transmission 

interruption in the past while source villages did not, and schistosomiasis re-emerged in the 

destination villages, then it indicates that snail migration plays a significant role on 

schistosomiasis transmission. This implies that isolated controlling efforts for Schistosomiasis 

may not be as effective and avmore systematic regional strategy should be considered. This has 

been observed in the case of controlling mosquito-transmitted malaria. Mosquitoes are the 

vectors for transmitting malaria and they are capable of travelling several kilometers. Insecticide-

treated nets is an effective way of controlling malaria in the experimental settings, but field 

experiences showed that if the insecticide-treated nets only covered an isolated village, the 

treatment was not as effective as expected[8]. 
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From EGD and migration rate model fit (table 3), we can see that overall Euclidean model, 

incline model, stream-only model and land-use model gave similar results. Results from incline 

model were almost identical to the results from Euclidean model. The EGD distance values from 

Euclidean model is highly correlated with incline model (slope close to 1, supplement figure 1 

&2) indicating that the topography features used by the incline model may provide limited 

additional information beyond Euclidean distance for villages located in mountainous areas. 

Furthermore, Akullian et al.[7] suggested that although O. hupensis snails are capable of moving 

up-stream and down-stream, snails dispersed further, on average, down-stream than up-stream. 

And even slow-moving flows in the small irrigation channels were observed to facilitate snail 

dispersal in the down-stream direction. Thus accounting for flow direction of stream, river and 

irrigation system would improve the model. Although in this study, geographic distances from 

incline model, land-use model, stream-only model, stream-velocity model, and streams and 

channels model are bi-directional, the EGD distance values are not so different for one direction 

from the other. It will be useful to include a covariate for the direction in the model. Finally, we 

considered the effect of each geographical model one-at-a-time. Future study should consider 

multiple environmental determinants along with social network in the same model.   

Conclusion	
  
	
  

Overall, the Oncomelania hupensis snail migration rates were small. We observed very high 

heterogeneity in the village random effects both for source and target. Euclidean model, incline 

model, stream-only model and land-use model gave similar results where as EGD distance 

increased, snail migration rates decreased. Future study may consider multiple environmental 

determinants, village-specific characteristic and social network in the same model.	
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Tables	
  
Table 1. Large migration rates computed from BayesAss 

From To Estimate (SE) 

AN_BG1 AN_BG2 0.2543(0.0297) 

AN_JQ3 AN_JQ1 0.2616(0.0232) 

JI_SB1 JI_GH3 0.1265(0.0280) 

JI_DS4 JI_DS5 0.1242(0.0243) 

ZH_XZ4 JI_LJ3 0.1432(0.0265) 

JI_XQ5  JI_XQ3 0.1963(0.0187) 

JI_XQ5 JI_XQ7 0.1069(0.0275) 

ZH_HQ2 ZH_FX7 0.1204(0.0290) 

ZH_HQ4  ZH_HQ1 0.1718(0.0242) 

ZH_XD3  ZH-ZH5 0.1552(0.0223) 

ZH_HQ2 ZH_WX3 0.1106(0.0237) 

ZH_XD3 ZH_XL5 0.1118(0.0219) 
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Table 2. Non-migration rates computed from BayesAss 

Village Estimated non-migrant rate (SE) 

AN-320210_JG10 0.7988(0.0257) 

AN-330302_BG2 0.6739(0.0071) 

AN-330401_JQ1 0.6762(0.0093) 

AN-330403_JQ3 0.8602(0.0281) 

AN-350603_HT3 0.9176(0.0240) 

AN-330301_BG1 0.9211(0.0235) 

JI-110103_GH_B 0.6764(0.0094) 

JI-110107_GH_AB 0.8794(0.0225) 

JI-110202_GQ_AB 0.8680(0.0228) 

JI-110203_GQ_B 0.6760(0.009) 

JI-110501_SB_AB 0.7989(0.0254) 

JI-120704_DS_AB 0.8743(0.0218) 

JI-120705_DS_A 0.6765(0.0095) 

JI-120805_DC_AB 0.7946(0.0247) 

JI-130408_GH_B 0.6765(0.0096) 

JI-130903_LJ_AB 0.6743(0.0075) 

JI-141003_XQ_AB 0.673(0.0061) 

JI-141005_XQ_AB 0.8568(0.0231) 

JI-141007_XQ_B 0.6763(0.0094) 

ZH-210107_FX_B 0.6767(0.0098) 

ZH-210301_HQ_AB 0.6742(0.0073) 

ZH-210302_HQ_AB 0.7792(0.0241) 

ZH-210304_HQ_AB 0.8373(0.0247) 
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ZH-220403_XD_AB 0.8798(0.0226) 

ZH-220406_XD_AB 0.7739(0.0239) 

ZH-220504_XZ_A 0.7945(0.0271) 

ZH-220605-ZG_AB 0.7108(0.0165) 

ZH-230703_WX_AB 0.6737(0.0069) 

ZH-240805_XL_AB 0.7423(0.0204) 
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Table 3. Model fit for snail migration rates and environmental models 

Models Covariate Statistical models AIC m_R2 c_R2 cv_R2 
CV-

RMSE 

IQR of 

covariate 

IQR 

*exp(!) 

95%CI of 

IQR*exp(!) 
!1 95%CI of !1 

ԏ1
2 

to 

ԏ2
2 

from 
σ2 

Incline 

model 

logmedian Linear model 1027.4 0.062   0.041 0.025 0.630 

  

  

  

0.424 (0.372,0.482) 0.0074 (0.0069, 0.0079)      

 Random intercept to 975.2 0.058 0.310 0.038 0.025 0.424 (0.372,0.483) 0.0080 (0.0069, 0.0092) 0.116  0.317 

 Random intercept from 968 0.058 0.430 0.118 0.024 0.412 (0.362,0.469) 0.0080 (0.0067, 0.0095)  0.196 0.305 

 Random intercept to and 

from 

909.9 0.089 0.530 0.103 0.024 0.372 (0.324,0.427) 0.0077 (0.0064, 0.0093) 0.063 0.172 0.249 

log25th Linear model 1017.9 0.078   0.061 0.025 0.738 

  

  

  

0.536 (0.489,0.587) 0.0073 (0.0068, 0.0078)      

 Random intercept to 967.1 0.071 0.310 0.049 0.025 0.539 (0.492,0.591) 0.0079 (0.0069,0.0091) 0.111  0.312 

 Random intercept from 957.8 0.070 0.440 0.136 0.024 0.527 (0.481,0.577) 0.0079 (0.0067, 0.0094)  0.194 0.298 

 Random intercept to and 

from 

899.3 0.097 0.540 0.115 0.024 0.497 (0.453,0.545) 0.0077 (0.0064, 0.0093) 0.062 0.172 0.244 

Stream 

only model 

logmedian Linear model 1051.8 0.018   0.013 0.025 0.654 

  

  

  

0.528 (0.465,0.600 ) 0.0082 (0.0078, 0.0087)      

 Random intercept to 988.7 0.036 0.330 0.028 0.025 0.480 (0.421,0.549) 0.0088 (0.0076, 0.0103) 0.141  0.322 

 Random intercept from 991.8 0.025 0.410 0.096 0.024 0.497 (0.435,0.568) 0.0090 (0.0075, 0.0107)  0.211 0.318 

 Random intercept to and 

from 

920 0.090 0.590 0.100 0.024 0.386 (0.331,0.449) 0.0086 (0.0071, 0.0105) 0.087 0.178 0.251 

log25th Linear model 1044.1 0.032   0.028 0.025 0.873 

  

  

  

0.709 (0.645,0.779) 0.0081 (0.0076, 0.0086)      

 Random intercept to 981.5 0.048 0.330 0.036 0.025 0.672 (0.612,0.739) 0.0087 (0.0075, 0.0100) 0.134  0.318 

 Random intercept from 982.6 0.039 0.420 0.113 0.024 0.678 (0.616,0.747) 0.0088 (0.0074, 0.0105)  0.207 0.312 

 Random intercept to and 

from 

909.2 0.096 0.560 0.111 0.024 0.585 (0.528,0.648) 0.0084 (0.0070, 0.0102) 0.082 0.178 0.245 

Euclidean 

model 

logmedian Linear model 1027.5 0.062   0.041 0.025 0.626 

  

0.421 (0.370,0.479) 0.0074 (0.0069, 0.0079)      

 Random intercept to 975.2 0.058 0.310 0.038 0.025 0.421 (0.369,0.480) 0.0080 (0.0069, 0.0092) 0.116  0.317 



26	
  
	
  

Models Covariate Statistical models AIC m_R2 c_R2 cv_R2 
CV-

RMSE 

IQR of 

covariate 

IQR 

*exp(!) 

95%CI of 

IQR*exp(!) 
!1 95%CI of !1 

ԏ1
2 

to 

ԏ2
2 

from 
σ2 

  Random intercept from 967.8 0.058 0.428 0.119 0.024   

  

0.409 (0.359,0.466) 0.0080 (0.0067, 0.0095)  0.197 0.305 

 Random intercept to 

and from 

909.7 0.089 0.532 0.104 0.024 0.369 (0.321,0.424) 0.0077 (0.0064, 0.0093) 0.063 0.173 0.249 

log25th Linear model 1018.0 0.078   0.061 0.025 0.726 

  

  

  

0.527 (0.481,0.578) 0.0073 (0.0069, 0.0078)      

 Random intercept to 967.3 0.071 0.314 0.049 0.025 0.531 (0.485,0.582) 0.0079 (0.0069, 0.0091) 0.111  0.312 

 Random intercept from 957.7 0.071 0.437 0.112 0.025 0.518 (0.473,0.568) 0.0079 (0.0067, 0.0094)  0.194 0.298 

 Random intercept to 

and from 

899.4 0.097 0.539 0.115 0.024 0.489 (0.446,0.537) 0.0077 (0.0064, 0.0093) 0.062 0.173 0.244 

Land use 

model 

logmedian Linear model 1043.8 0.033   0.022 0.025 0.594 

  

  

  

0.454 ( 0.402, 0.512) 0.0083 (0.0078,0.0087)      

 Random intercept to 988.1 0.042 0.294 0.027 0.025 0.435 (0.381, 0.496) 0.0088 (0.0077,  0.0101) 0.116  0.325 

 Random intercept from 990.2 0.032 0.388 0.094 0.025 0.444 (0.388, 0.508) 0.0090 (0.0076, 0.0106)  0.185 0.319 

 Random intercept to 

and from 

916.5 0.122 0.562 0.101 0.024 0.330 (0.280, 0.388) 0.0085 (0.0071, 0.0103) 0.087 0.164 0.25 

log25th Linear model 1034.55 0.049   0.041 0.025 0.783 

  

  

  

0.603 (0.548, 0.664) 0.0081 (0.0077, 0.0086)      

 Random intercept to 978 0.061 0.305 0.039 0.025 0.582 (0.525,0.644)  0.0086 (0.0075, 0.0099) 0.112  0.319 

 Random intercept from 979.5 0.048 0.399 0.097 0.025 0.591 (0.534, 0.655) 0.0088 (0.0074, 0.0103)  0.182 0.313 

 Random intercept to 

and from 

902.9 0.126 0.566 0.120 0.024 0.489 (0.436, 0.548) 0.0084 (0.0069, 0.0101) 0.084 0.163 0.243 

Validation 

model* 

log25th Random intercept to 

and from 

451.3 0.097 0.539 0.218 0.009 0.698 0.576 (0.774, 0.879) 0.0088 (0.0075, 0.0103) 0.064 0.122 0.100 

*Incline model without migration rate ≥0.1 
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Figures	
  
	
  

Figure 1. Scatter plots of logit of migration rates and cost function 
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Supplement	
  tables	
  
	
  

Supplement table 1. Summary of sampling counties, villages and snails 

County Village Snail n (%) 

AN JG 40(4.8) 

 BG1 36(4.3) 

 BG2 42(5.0) 

 JQ1 30(3.6) 

 JQ3 44(5.3) 

 HT3 37(4.4) 

subtotal  229(27.5) 

JI GH3 14(1.7) 

 GH7 40(4.8) 

 GQ2 39(4.7) 

 GQ3 14(1.7) 

 SB 24(2.9) 

 DS4 46(5.5) 

 DS5 13(1.6) 

 DC 27(3.2) 

 GH 12(1.4) 

 LJ 22(2.6) 

 XQ3 32(3.8) 

 XQ5 32(3.8) 

 XQ7 13(1.6) 

subtotal  328(39.4) 

ZH FX 11(1.3) 
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 HQ1 23(2.8) 

 HQ2 37(4.4) 

 HQ4 35(4.2) 

 XD3 37(4.4) 

 XD6 33(4.0) 

 XZ 15(1.8) 

 ZG 35(4.2) 

 WX 25(3.0) 

 XL 25(3.0) 

subtotal  276(33.1) 

Total	
    833(100) 
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Supplement table 2. Summary of Oncomelania hupensis snail microsatellite genotypes 

OH08 OH12 OH150 OH157 OH211 OH212 OH235 OH47 OH573 OH68 OH73 

Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) Rep

eats 

N(%) 

105 1(0.1) 180 3(0.2) 336 10 

(0.7) 

262 3(0.2) 140 14 

(1.0) 

219 7(0.6) 248 7(0.5) 208 7 

(0.5) 

172 1(0.1) 170 8 

(0.5) 

150 28 

(1.8) 

108 52 

(4.8) 

183 20 

(1.3) 

342 62 

(4.4) 

264 101 

(6.6) 

152 6(0.4) 222 9(0.7) 250 593 

(44.2) 

210 11 

(0.8) 

176 1010 

(75.8) 

172 28 

(1.8) 

153 94 

(6.1) 

111 146 

(13.5) 

186 16 

(1.0) 

345 399 

(28.3) 

266 2(0.1) 154 3(0.2) 225 37(3) 252 397 

(29.6) 

212 7 

(0.5) 

180 13 

(1.0) 

174 346 

(22) 

156 27 

(1.8) 

114 58 

(5.4) 

189 21 

(1.4) 

348 183 

(13.0) 

274 45 

(2.9) 

156 3(0.2) 228 72 

(5.9) 

254 248 

(18.5) 

214 83 

(5.9) 

182 280 

(21.0) 

176 226 

(15) 

159 133 

(8.6) 

117 28 

(2.6) 

192 30 

(1.9) 

351 351 

(24.9) 

276 92 

(6.0) 

158 1(0.1) 231 55 

(4.5) 

256 23 

(1.7) 

216 31 

(2.2) 

184 7(0.5) 178 684 

(44) 

162 208 

(13.5) 

120 29 

(2.7) 

195 82 

(5.3) 

354 179 

(12.7) 

278 935 

(61.0) 

160 156 

(11.4) 

234 76 

(6.2) 

258 12 

(0.9) 

218 537 

(37.9) 

186 2(0.2) 180 166 

(11) 

165 216 

(14.0) 

123 11 

(1.0) 

198 19 

(1.2) 

357 28 

(2.0) 

280 118 

(7.7) 

162 213 

(15.5) 

237 19 

(1.6) 

260 12 

(0.9) 

220 486 

(34.3) 

190 12 

(0.9) 

182 15 

(1) 

168 125 

(8.1) 

126 36 

(3.3) 

201 44 

(2.9) 

360 10 

(0.7) 

282 49 

(3.2) 

164 897 

(65.4) 

240 27 

(2.2) 

262 35 

(2.6) 

222 82 

(5.8) 

200 7(0.5) 184 1 

(0.1) 

171 154 

(10.0) 

129 41 

(3.8) 

204 117 

(7.6) 

363 12 

(0.9) 

284 3(0.2) 166 16 

(1.2) 

243 55 

(4.5) 

264 9(0.7) 224 151 

(10.7) 

  188 1 

(0.1) 

174 211 

(13.7) 
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OH08 OH12 OH150 OH157 OH211 OH212 OH235 OH47 OH573 OH68 OH73 

132 56 

(5.2) 

207 217 

(14.0) 

366 7(0.5) 286 13 

(0.9) 

168 26 

(1.9) 

246 160 

(13) 

266 3(0.2) 226 2(0.1)   190 70 

(4.5) 

177 87 

(5.6) 

135 251 

(23.2) 

210 65 

(4.2) 

369 1(0.1) 288 56 

(3.7) 

178 8(0.6) 249 82 

(6.7) 

270 3(0.2) 238 19 

(1.3) 

  198 1 

(0.1) 

180 154 

(10.0) 

138 43 

(4.0) 

213 177 

(11.5) 

372 39 

(2.8) 

290 9(0.6) 188 26 

(1.9) 

252 59 

(4.8) 

        183 77 

(5.0) 

141 8(0.7) 216 16 

(1.0) 

375 7(0.5) 292 8(0.5) 190 2(0.2) 255 42 

(3.4) 

        186 12 

(0.8) 

144 8(0.7) 219 7(0.5) 378 17 

(1.2) 

294 14 

(0.9) 

194 1(0.1) 258 17 

(1.4) 

        189 2(0.1) 

147 20 

(1.9) 

222 4(0.3) 381 15 

(1.1) 

296 8(0.5)   261 13 

(1.1) 

        198 11 

(0.7) 

150 6(0.6) 225 1(0.1) 384 14 

(1.0) 

298 20 

(1.3) 

  264 11 

(0.9) 

        204 1(0.1) 

153 22 

(2.0) 

279 1(0.1) 387 3(0.2) 300 8 

(0.5) 

  267 18 

(1.5) 

        207 4(0.3) 

156 22 

(2.0) 

387 2(0.1) 390 16 

(1.1) 

302 15 

(1.0) 

  270 14 

(1.2) 

          

159 24 

(2.2) 

393 16 

(1.0) 

393 18 

(1.3) 

304 16 

(1.0) 

  273 41 

(3.4) 

          

162 18 396 537 396 9(0.6) 306 9(0.6)   276 81           
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OH08 OH12 OH150 OH157 OH211 OH212 OH235 OH47 OH573 OH68 OH73 

(1.7) (34.7) (6.6) 

165 23 

(2.1) 

399 57 

(3.7) 

399 10 

(0.7) 

310 2(0.1)   279 34 

(2.8) 

          

168 17 

(1.6) 

408 5(0.3) 405 2(0.1) 312 3(0.2)   282 56 

(4.6) 

          

171 6(0.6) 411 37 

(2.4) 

408 2(0.1) 318 3(0.2)   285 27 

(2.2) 

          

174 6(0.6) 414 52 

(3.4) 

411 9(0.6)     288 76 

(6.2) 

          

177 13 

(1.2) 

  414 7(0.5)     291 67 

(5.5) 

          

180 6(0.6)   417 1(0.1)     294 30 

(2.5) 

          

183 2(0.2)   423 1(0.1)     297 22 

(1.8) 

          

186 4(0.4)         300 5(0.4)           

189 6(0.6)         303 10 

(0.8) 

          

192 36 

(3.3) 

                    

195 11                     
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OH08 OH12 OH150 OH157 OH211 OH212 OH235 OH47 OH573 OH68 OH73 

(1.0) 

198 5(0.5)                     

201 33 

(3.1) 

                    

204 5(0.5)                     

207 3(0.3)                     

219 3(0.3)                     

225 2(0.2)                     

228 10 

(0.9) 

                    

231 3(0.3)                     

234 2(0.2)                     

243 1(0.1)                     

246 3(0.3)                     

Tot

al 

1080 

(100) 

 1546 

(100) 

 1412 

(100) 

 1532 

(100) 

 1372 

(100) 

 1222 

(100) 

 1342 

(100) 

 1416 

(100) 

 1332 

(100) 

 1546 

(100) 

 1554 

(100) 
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Supplement table 3. Summary of cost-path values for different cost models 

Model Parameters of 

EDG distribution 

N Maximum Median Minimum IQR 

Euclidean Median  496 67213 20986 6129 21829 

 25th percentile  496 67146 17947 3064 23343 

topography Median  496 67373 21028 6257 21703 

 25th percentile  496 67275 17941 3160 23358 

Incline Median  992 67556 21095 6264 21870 

 25th percentile  992 67457 18115 3159 23420 

land use Median  992 792110 185965  52631 149434 

 25th percentile  992 750338 155263 27015 153913 

distance from watershed Median  496 93168 34317 10524 25226 

 25th percentile  496 90316 30675 4792 27064 

wetness Median  496 80357 26891 6741 23826 

 25th percentile  496 78086 24232 3311 25163 

Stream only Median  992 5328716 1099047 376972 814078 

 25th percentile  992 4920968 927570 203168 809812 

stream velocity Median  992 5288993 1057957 369528 812309 

 25th percentile  992 4851660 910861 221901 798687 

streams and channels Median  992 943752 293955 131763 270226 

 25th percentile  992 860484 267931 95599 292998 

	
  

	
   	
  



35	
  
	
  

Supplement table 4. Correlation coefficients of median of EGD between different environmental models 

 Euclidean topograph

y 

Incline land 

use 

distance 

from 

watershed 

wetness Stream 

only 

stream 

velocity 

streams and 

channels 

Euclidean  1 >0.999 0.999 0.616   0.737 0.929 0.592 0.582 0.545  

topography >0.999  1 >0.999  0.617 0.738 0.927 0.591 0.580  0.543  

Incline 0.999   >0.999  1 0.603  0.740 0.928 .577 0.565 0.528  

land use 0.616 0.617  0.603  1 0.567 0.553 0.878 0.877  0.865   

distance from 

watershed 

0.737  0.738  0.740 0.568 1 0.627 0.512 0.462  0.444   

wetness 0.929 0.927  0.928 0.553 0.627 1 0.587 0.594 0.557  

Stream only 0.592 0.591  0.577  0.878 0.512 0.587 1 0.964 0.921   

stream velocity 0.581 0.580  0.565 0.878 0.462 0.594 0.964 1 0.959  

streams and 

channels 

0.545  0.543  0.528 0.865   0.444 

 

0.557 0.920 0.959  1 
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Supplement table 5. Correlation coefficients of 25th percentile of EGD between different 
environmental models 

 Euclidean topograph

y 

Incline land 

use 

distance 

from 

watershed 

wetness Stream 

only 

stream 

velocity 

streams and 

channels 

Euclidean  1 >0.999 0.999 0.724   0.783 0.983 0.772 0.734 0.620 

topography >0.999  1 >0.999  0.723 0.781 0.984 0.781 0.734 0.619 

Incline 0.999   >0.999  1 0.710  0.782 0.984 .758 0.720 0.603 

land use 0.724 0.723 0.710 1 0.673 0.714 0.963 0.961  0.917 

distance from 

watershed 

0.783 0.781 0.782 0.673 1 0.735 0.664 0.623 0.513 

wetness 0.983 0.984 0.984 0.714 0.737 1 0.761 0.731 0.618 

Stream only 0.772 0.772 0.758 0.963 0.664 0.761 1 0.925 0.925 

stream velocity 0.734 0.734 0.720 0.961 0.623 0.731 0.986 1 0.956 

streams and 

channels 

0.620 0.619 0.603 0.917 0.513 

 

0.618 0.925 0.956 1 
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Supplement	
  figures	
  
 

Supplement figure 1. Correlation of median of EGD between different environmental models 

	
  

	
  

	
   	
  



38	
  
	
  

Supplement figure 2. Correlation of 25th percentile of EGD between different environmental 
models 
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Supplement figure 3. Observed versus predicted logit of migration rates from "to and from" 
random effect model for EGD log25th 

	
  

Panel	
  A	
  represents	
  predicted	
  versus	
  observed	
  logit(migration	
  rates)	
  from	
  Euclidean	
  model	
  log25th	
  

random	
  effect	
  “to	
  and	
  from”	
  model.	
  Panel	
  B	
  represents	
  predicted	
  versus	
  observed	
  logit(migration	
  rates)	
  

from	
  Incline	
  model	
  log25th	
  random	
  effect	
  “to	
  and	
  from”	
  model.	
  Panel	
  C	
  represents	
  predicted	
  versus	
  

observed	
  logit(migration	
  rates)	
  from	
  Stream	
  only	
  model	
  log25th	
  random	
  effect	
  “to	
  and	
  from”	
  model.	
  

Panel	
  D	
  represents	
  predicted	
  versus	
  observed	
  logit(migration	
  rates)	
  from	
  Land	
  use	
  model	
  log25th	
  

random	
  effect	
  “to	
  and	
  from”	
  model.	
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APPENDIX	
  

BAYESASS	
  CODE	
  
	
  

AN COUNTY 
Input file: county_an.txt 
Random seed=2345 MCMC iterations=10000000 Burn-in=2000000 Sampling interval=100 
Mixing parameters: (dM=0.3,dA=0.3,dF=0.3) Output file=an_county.txt 
Individuals: 229 Populations: 6 Loci: 11 
 
JI_ZH COUNTY 
Input file: ji_zh.txt 
Random seed=12345 MCMC iterations=15000000 Burn-in=5000000 Sampling interval=100 
Mixing parameters: (dM=0.5,dA=0.5,dF=0.5) Output file=output_ji_zh.txt 
Individuals: 604 Populations: 23 Loci: 11 
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