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Abstract 

 
Constructing Confidence Intervals for Sensitivity 

Under Controlled Specificity in Medical Tests 
By: Isaac Parakati 

 
 

Introduction: Medical tests frequently assist health care workers with identifying individuals 
affected or not affected by a disease. Although medical tests are supposed to correctly 
identify diseased individuals as diseased and non-diseased individuals as non-diseased, this 
does not always occur. The test’s accuracy is typically measured in terms of sensitivity and 
specificity. Fixing the specificity of a test at a particular value, the test’s corresponding 
sensitivity can be determined. The goal of this paper is to propose two new approaches for 
constructing confidence intervals for sensitivity after fixing specificity.  
 
Methods: To estimate sensitivity, both of the two proposed approaches are based on a 
quadratic inference function but differ by the procedure used to profile out a nuisance 
parameter. The first approach minimizes the function with respect to the nuisance parameter. 
The second approach determines an optimal weighted average between two values for the 
nuisance parameter. To demonstrate the two approaches, confidence intervals were 
constructed for the sensitivity of a gene expression biomarker using samples of cancerous 
and non-cancerous tissues, fixing specificity. Simulations were conducted to evaluate the 
approaches under different distributions with varying sample sizes. Coverage probabilities 
and average confidence interval length were determined for each simulation.  
 
Results: In the simulations, the two new approaches produced confidence intervals above or 
near the nominal significance level. The first approach constructed very wide intervals with 
conservative coverage. The second approach constructed narrower intervals with coverage 
near the nominal value; this approach performed similarly to the leading existing BTII 
approach, whose simulation results were extracted from Zhou and Qin’s paper4. The BTII 
approach seemed to perform slightly better when the diseased and non-diseased sample sizes 
differed. With larger sample sizes, average confidence interval length for all approaches 
narrowed.  
 
Discussion: The second approach proposed in this paper appears to be a suitable non-
bootstrap alternative to the BTII approach when constructing confidence intervals. 
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1. INTRODUCTION 

Medical tests are used frequently by health care professionals to assist with medical 

decision-making. A medical test can suggest the presence of a certain disease in an 

individual. Ideally, this test would accurately determine the presence of disease. However, 

realistically, accurate assessments do not always occur: this test might label a non-diseased 

person as diseased or a diseased person as non-diseased. The probability that a medical test 

correctly labels a non-diseased person as non-diseased is its specificity, and the probability 

that the test correctly labels a diseased person as diseased is its sensitivity. For a medical test 

using a single biomarker on a continuous scale, the relationship between the test’s sensitivity 

and specificity is mediated by a decided cutoff point. Assuming higher values for a test 

suggest the presence of disease, a higher cutoff point gives the test a higher sensitivity and a 

lower specificity. For a test, it is of interest to determine the maximum sensitivity when the 

specificity is controlled at a given level, e.g. 0.8 or 0.9, or vice versa.  

1.1 Problem Statement and Notation 
	

Let 𝐱𝟏 = (x!!, x!"… x!!!) represent test values for a medical test from samples of 𝑛! 

diseased subjects, and let 𝐱𝟎 = x!", x!"… x!!!  represent test values for a medical test from 

𝑛! non-diseased subjects. Write the distributions of 𝐱𝟏 and 𝐱𝟎 as 𝐹! and 𝐹!, respectively. For 

a cutoff value 𝑐, the sensitivity and specificity of the test can be represented by  

Sensitivity = Pr 𝐱𝟏 > 𝑐  = 1 - 𝐹!(𝑐) 

Specificity =  Pr 𝐱𝟎 ≤ 𝑐  = 𝐹!(𝑐) 

Fixing specificity at a desired value Sp, the test’s sensitivity 𝜃 can be calculated by 

𝜃 = 1− 𝐹!(𝐹!!! 𝑆𝑝 ). However, in practice, the underlying distributions 𝐹! and 𝐹! are not 
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known. Therefore, after fixing specificity, the sensitivity of the test has to be estimated. The 

point estimate 𝜃 for sensitivity can be calculated by 

𝜃  =
𝐼(x!" > 𝑐)!!

!!!
𝑛!

, 

where the estimated cutoff value 𝑐 is the Sp-th quantile of 𝐱𝟎. 

1.2 Purpose Statement 
	

The purpose of this paper is to construct confidence intervals for 𝜃 after fixing 

specificity. Two confidence intervals will be proposed. Simulation studies will be conducted 

comparing the two intervals to the well-performing BTII interval proffered by Zhou and 

Qin4. The results from simulations studies on the BTII interval are extracted from Zhou and 

Qin’s paper4.  

1.3 Significance Statement 
	

This paper will introduce two new confidence intervals for the sensitivity of a medical 

test controlling for its specificity. Because constructing these intervals does not involve 

bootstrap approaches, the intervals may be less computationally intensive to generate while 

still performing well, compared to earlier intervals. Thus, this paper will also provide 

evidence for the case of adopting the proposed intervals. 

2. BACKGROUND/LITERATURE REVIEW 

2.1 Naive Interval 
	

The variance of the estimated sensitivity Var 𝜃  might be represented as 
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Var! 𝜃 =
𝜃 × (1− 𝜃)

𝑛!
 

The resulting naive (1- α)% confidence interval would be  

[𝜃 + z!!!!
Var! 𝜃 , 𝜃 − z!!!!

Var! 𝜃 ], 

where z! represents the 𝛽-th quantile of the normal distribution. Linnet2 demonstrated that 

the coverage probability of this confidence interval, or the probability that the interval 

contains the true sensitivity, falls below the nominal coverage probability of 1- α. This result 

may be expected since Var! 𝜃  does not account for the variability of 𝑐.  

2.2 Linnet Interval 
	

To account for the variability of 𝑐 when determining the variance of the estimated 

sensitivity, Linnet2 proposed another approach, articulated by Platt et al3 and Zhou and Qin4. 

In this approach, the variance of the estimated sensitivity can be determined by 

Var! 𝜃 =
𝜃 × (1− 𝜃)

𝑛!
+ 𝑓!! 𝑐  × Var(𝑐 )  

where 𝑓! represents the probability density function of 𝐱𝟏. Let 𝑓! represent the probability 

function of 𝐱𝟎. Then, because approximately 

𝑐 − 𝑐 ~ 𝑁 0,
1− 𝑆𝑝 𝑆𝑝
𝑛!𝑓!! 𝑐

, 

the estimate Var! 𝜃  can be obtained as 

Var! 𝜃 =
𝜃 × (1− 𝜃)

𝑛!
+ 𝑓!! 𝑐 ×

1− 𝑆𝑝 𝑆𝑝
𝑛!𝑓!! 𝑐
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According to Platt’s coding of Linnet’s interval3, Linnet uses the probability density function 

of the normal distribution for both 𝑓! and 𝑓!, and he uses the Sp-th quantile of the normal 

distribution for 𝑐. Linnet demonstrated that the interval 

[𝜃 + z!!!!
Var! 𝜃 ,𝜃 − z!!!!

Var! 𝜃 ] 

performed well with regard to statistical power. However, Platt et al3 showed that Linnet’s 

interval did not perform well when 𝐱𝟏 and 𝐱𝟎 are not normally distributed.  

2.3 Bootstrap Intervals 
	

Platt et al3 developed another approach to constructing confidence intervals for 

sensitivity using a bootstrap approach. A bootstrap procedure proceeds by first drawing 

samples 𝐱𝟏∗ = (x!!∗ , x!"∗ ,… , x!!!
∗ ) and 𝐱𝟎∗ = (x!"∗ , x!"∗ ,… , x!!!

∗ )  of sizes 𝑛! and 𝑛! from the 

observed samples 𝐱𝟏 and 𝐱𝟎, respectively. Fixing specificity at a value Sp, let 𝑐∗ represent 

the Sp-th quantile of 𝐱𝟎∗ . Then, the bootstrap sensitivity estimate 𝜃∗ can be represented by 

𝜃!∗  =
𝐼(x!!∗ > 𝑐∗)!!

!!!
𝑛!

 

Repeating these steps N times will create a set of bootstrap replications (𝜃!!∗ ,𝜃!!∗ ,… ,𝜃!"∗ ). 

The mean and variance of (𝜃!!∗ ,𝜃!!∗ ,… ,𝜃!"∗ ) provide the estimated sensitivity 𝜃! and its 

variance.  

𝜃! =  
1
𝑁 𝜃!"∗

!

!!!

 

Var!(𝜃!) =  
1

𝑁 − 1 (𝜃!"∗
!

!!!

− 𝜃!)! 

To construct confidence intervals from bootstrap replications, Platt used Efron and 

Tibshirani’s5 bias-corrected and accelerated (BCa) intervals. Through simulations, Platt et al3 
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demonstrated that the BCa interval has a higher coverage probability compared to Linnet’s2 

interval for non-normally distributed data. When the data is normally distributed, the BCa 

interval and Linnet’s interval have similar coverage probabilities.  

Later, Zhou and Qin also proposed a bootstrap approach called BTII to generate 

confidence intervals for sensitivity. Similar to the bootstrap procedure used by Platt et al3, 

first, samples 𝐱𝟏∗and 𝐱𝟎∗  of sizes 𝑛! and 𝑛!, respectively, are drawn. Then, the sensitivity is 

determined by 

𝜃!"∗  =
𝐼(x!!∗ > 𝑐∗)!!

!!! + 12 𝑧!!!!
!

𝑛! + 𝑧!!!!
!  

The term 𝑧!!!!
!  is a finite-sample correction adapted from Agresti and Coull’s paper6. In their 

paper, Agresti and Coull found through simulations that adding 𝑧!!!!
!  improves coverage 

accuracy for Wald intervals. Since 𝑧!!!!
! ≈ 2 when 𝛼 = 0.05, including this term equates to 

adding 2 diseased and 2 non-diseased observations to the sample.  

Repeating the 𝜃!"∗  draws N times creates a set of bootstrap replications 

(𝜃!"!∗ ,𝜃!"!∗ ,… ,𝜃!"#∗ ). The estimated sensitivity 𝜃!" and its estimated variance Var!" 𝜃!"  

are 

𝜃!" =  
1
𝑁 𝜃!"#∗

!

!!!

 

Var!"(𝜃!") =  
1

𝑁 − 1 (𝜃!"#∗
!

!!!

− 𝜃!")! 
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From the estimated sensitivity and its estimated variance, the 1− !
!
% BTII confidence 

interval is 𝜃!" + z!!!!
Var!" 𝜃!" ,𝜃!" − z!!!!

Var!" 𝜃!" ]. Through simulations, Zhou 

and Qin4 demonstrated that the BTII interval had better coverage intervals and narrower 

length compared to the BCa interval.  

Compared to the naïve interval and Linnet’s interval, the BTII and BCa intervals had 

better coverage. However, the BTII and BCa intervals use resampling approaches, making 

them more computationally intensive. 

3. METHODS 

This paper proposes two new approaches for constructing confidence intervals for 

sensitivity, controlling for specificity. Unlike BTII and BCa, the approaches proposed in this 

paper do not use resampling approaches. Meanwhile, our methods do not impose 

assumptions on 𝐹! and 𝐹!. Our proposed confidence intervals are constructed by inverting 

hypothesis tests. 

Consider the following quadratic inference function 

𝜙 𝑐,𝜃 =

1
𝑛!

𝐼 𝑥!! > 𝑐 − 𝜃!!
!!!  

!
 

1
𝑛!

× 𝜃 × 1− 𝜃
+

1
𝑛!

𝐼 𝑥!! ≤ 𝑐 − 𝑆𝑝!!
!!!  

!
 

1
𝑛!

× 𝑆𝑝 × 1− 𝑆𝑝
 

Clearly, 𝜙 𝑐,𝜃  may be used as a test statistic for the values of 𝑐,𝜃  as the true one. Let 𝜎! 

and 𝜎! represent the standard deviations of the populations of diseased and non-diseased test 

values, respectively. Because 𝑛!(𝑛!! 𝐼 𝑥!! > 𝑐 − 𝜃)!!
!!!

!
𝑁 0,𝜎!!  and 

𝑛! 𝑛!! 𝐼 𝑥!! ≤ 𝑐 − 𝑆𝑝!!
!!!

!
𝑁 0,𝜎!!  by the Central Limit Theorem, 𝜙 𝑐,𝜃  can be 

approximated by a chi-square distribution with 2 degrees of freedom, as the diseased and 
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nondiseased samples are independent. However, the cutoff value 𝑐 is a nuisance parameter. 

Therefore, we need to profile it out for our inference on 𝜃, which is of interest. It is 

worthwhile to point out that one unique challenge here lies in the fact that 𝜙 𝑐,𝜃  is not 

differentiable with respect to 𝑐. 

        Our first method, denoted as M1, takes the function 𝜂 𝜃 = min!|! 𝜙(𝑐,𝜃) as a 

quadratic inference function for 𝜃. When 𝜃 is the true value, it may be shown that 𝜂 𝜃  can 

be approximated by 𝜒!(1). Computationally, the minimization to obtain 𝜂 𝜃  needs only to 

consider a finite number of 𝑐 values since 𝑐 is involved in 𝜙 𝑐,𝜃  only through indicator 

functions. Precisely, with given 𝜃, 𝜙 𝑐,𝜃  takes at most 𝑛! + 𝑛! + 1 distinct values 

corresponding to 𝑐 taking values in 𝐱𝟏, 𝐱𝟎, and −∞. Furthermore, the search for a minimizer 

𝑐 may be restricted to those values between the empirical Sp-th quantile of 𝐱𝟎 and the 

empirical 𝜃-th quantile of 𝐱𝟏, since 𝜙 𝑐,𝜃  increases beyond that range. A 1− 𝛼 % 

confidence interval for sensitivity can be constructed at the two values 𝜃!,𝜃!  for which 

𝜂 𝜃! = 𝜂 𝜃! = χ!!!! 1 . The two values 𝜃! and 𝜃!are found using the bisection method 

described in the Appendix to this paper. 

 Referred to as M2, the second approach constructs a confidence interval 𝜃 by 

inverting a test based on 𝜙 𝑐! ,𝜃  with 𝑐! being the optimal linear combination of two cutoff 

values. It can be shown that this test statistic can also be approximated by χ! 1  distribution 

when 𝜃 is the true value. The first cutoff value 𝑐! is found by solving the following equation 

for 𝑐!: 

1
𝑛!

𝐼 x!! ≤ 𝑐! − 𝑆𝑝
!!

!!!

= 0 
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From the equation, 𝑐! is equivalent to the 𝑆𝑝-th quantile of 𝐱𝟎. Similarly, for a value 𝜃, the 

second cutoff value 𝑐! is obtained from the equation 

1
𝑛!

𝐼 x!! > 𝑐! − 𝜃
!!

!!!

= 0 

The value 𝑐! is equivalent to the (1− 𝜃)-th quantile of 𝐱𝟏. When 𝜃 is the true value, both 

estimated cutoff’s target the same estimand and an optimal estimate can be obtained by using 

a weighted average of the two to achieve better efficiency. The optimal weight is 

proportional to reciprocal of the variance for the corresponding cut-off estimate. Borrowing 

methodology developed by Huang7, an estimated quantity proportional to the standard 

deviation of 𝑐! is determined by “perturbing” the above equation as follows: 

1
𝑛!

𝐼 x!! ≤ 𝑐!

!!

!!!

= 𝐹!"#!!(0.025;  n!, 𝑆𝑝)/n!, 

1
𝑛!

𝐼 x!! ≤ 𝑐!

!!

!!!

= 𝐹!"#!!(0.975;  n!, 𝑆𝑝)/n!, 

where 𝐹!"#!!(0.025;  n!, 𝑆𝑝) and 𝐹!"#!!(0.975;  n!, 𝑆𝑝) are the 2.5-th and 97.5-th percentiles of 

the binomial distribution Bin 𝑛!, 𝑆𝑝 , respectively. These two equations give the values 𝑐!! 

and 𝑐!!; similarly, 𝑐!! and 𝑐!! are found from the diseased sample in parallel. The lengths of 

the intervals (𝑐!!, 𝑐!!) and (𝑐!!, 𝑐!!) are proportional to the standard deviations of 𝑐! and 

𝑐!, respectively. Then, take 𝑤! = (𝑐!! − 𝑐!!)!! and 𝑤! = (𝑐!! − 𝑐!!)!!. The value 𝑐! is 

determined from 𝑐! =  !!×!!!!!∗!!
!!!!!

. A (1− 𝛼)% confidence interval can be generated at the 

two values 𝜃!,𝜃! for which 𝜙 𝑐! ,𝜃! = 𝜙 𝑐! ,𝜃! = χ!!!! 1 , found using the bisection 

method described in the Appendix. 
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4. PRACTICAL APPLICATION TO CANCER TISSUE 

To demonstrate the confidence interval constructed by the two approaches proposed 

in this paper, the following cancer tissue data is extracted from Pepe’s textbook1. The data 

comes from a gene-expression experiment conducted by the Institute for Systems Biology in 

Seattle, WA. The expression of a gene was analyzed from 30 ovarian cancer tissues and 23 

non-diseased ovarian tissues. Under a fixed specificity, researchers are interested in the 

sensitivity of the gene expression in detecting patients with ovarian cancer. Thus, it is of 

interest to construct a confidence interval for the sensitivity of the medical test when 

specificity is fixed. 

Fixing specificity at a specificity of 0.80, the approaches M1 and M2 can be used to 

calculate 95% confidence intervals for the sensitivity of the gene expression. The 95% 

confidence intervals generated from M1 and M2 are [0.0936, 0.8737] and [0.3082, 0.8275], 

respectively. These confidence intervals are illustrated in Figures 1 and 2 by the vertical 

lines. The horizontal line in each figure indicates χ!.!"! 1 ≈ 3.84.  As illustrated, M2 

produces a narrower confidence interval length compared to M1; M1 is more conservative. 

5. SIMULATIONS 

Fixing specificity, we performed simulations to evaluate the approaches M1 and M2 

and compare them to the BTII approach proposed by Zhou and Qin4. For the BTII approach, 

simulation results were extracted from Zhou and Qin’s paper4. For M1 and M2, simulations 

were conducted under different distributions with varying sample sizes for the test values 𝐱𝟏 

and 𝐱𝟎. The sample sizes for 𝐱𝟏 and 𝐱𝟎 are (𝑛!,𝑛!)=(20, 20), (50, 50), and (40, 20). (20, 20) 

represents small samples, (50, 50) represents larger samples, and (40, 20) represents samples 

of differing sizes. In some applications, however, the sample sizes of 𝐱𝟏 and 𝐱𝟎 can be much 
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larger. The sample size combinations listed here are only used for simulations, though meant 

to reflect practical situations.  

In each simulation, 5,000 pairs of random samples 𝐱𝟏 and 𝐱𝟎 are drawn from 𝐹! and 

𝐹! following either a beta or normal distribution setup. 5 beta distribution setups and 5 

normal distributions setups are used. Under each setup, simulations are repeated with the 

different sample size combinations described earlier. To compare and evaluate the 

confidence intervals constructed under each simulation setup, average confidence interval 

length and coverage probability are calculated. 

For the first set of simulations using beta distributions, Table 1 lists the parameters 

used, the fixed value for specificity, and the corresponding true sensitivity for each setup. 

The setups follow the ones used by Zhou and Qin to demonstrate the BTII approach. Table 2 

depicts coverage probabilities and average 95% confidence interval lengths after applying the 

BTII approach and the approaches proposed in this thesis, M1 and M2, under each of the 

setups introduced in Table 1, with 𝐹!~𝐵𝑒𝑡𝑎 𝑎!, 𝑏!  and 𝐹!~𝐵𝑒𝑡𝑎 𝑎!, 𝑏! . 

In Table 2, the coverage probability and average confidence interval length for M1 

and M2 differed from the BTII approach. In general, compared to the BTII approach, M1 and 

M2 had better coverage probabilities and a wider average confidence length. M1 consistently 

had a coverage probability higher than the nominal level of 0.95, yet its average confidence 

interval length was much larger compared to the lengths from BTII and M2. In most setups, 

M2 performed similarly to BTII: M2 produced slightly wider average confidence intervals 

and coverage probabilities slightly better or worse than BTII. With larger sample sizes, for all 

three approaches, average confidence interval length decreased and coverage probability 
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improved or diminished, depending on setup. BTII may produce better coverage probabilities 

and narrower confidence intervals when (𝑛!, 𝑛!) = (40, 20).  

In the second set of simulations conducted, rather than beta distributions, normal 

distributions were used to model 𝐹! and 𝐹!. Table 3 lists the normal distribution parameters 

used. Throughout these simulations, 𝐹! followed a standard normal N(0,1) distribution and 𝐹! 

abided by a standard deviation of 1, with varying values for mean between 1.6832 and 

2.9264, i.e. 𝐹! ~ N(0,1) and 𝐹! ~ (𝜇!, 1). Table 3 also lists the values fixed for specificity and 

the corresponding true sensitivities.  

 Coverage probabilities and average confidence interval lengths with normal 

distributions are shown in Table 4. BTII performed perform similarly to M2. Across different 

parameter settings, BTII and M2 alternated between producing slightly better coverage and 

wider confidence intervals or poorer coverage yet narrower confidence intervals, compared 

to the other. For instance, compared to BTII, M2 had better coverage and wider confidence 

intervals under Setup 3, and poorer coverage yet narrower confidence intervals under Setup 

5. M1 demonstrated better coverage than M2 and BTII due to the wider confidence intervals 

M1 produces. Sample size trends observed among beta distribution setups persisted under the 

normal distribution setups. As sample size increased, average confidence intervals length for 

all three approaches decreased. Similar to results from using beta distributions, BTII seemed 

to have slightly better coverage and produce narrower confidence intervals when (𝑛!, 𝑛!) = 

(40, 20). 

5. DISCUSSION 

 Fixing specificity, the approaches M1 and M2 proposed in this paper construct 

1− 𝛼 % confidence intervals with coverage probability above or near the nominal level 𝛼, 
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without using bootstrap approaches or estimated the density functions of the diseased sample 

𝐱𝟏 and the non-diseased sample 𝐱𝟎, unlike previous approaches. Compared to the existing 

leading approach BTII by Zhou and Qin4, M1 constructs confidence intervals with better 

coverage yet wider length, and M2 construct confidence intervals with similar coverage and 

average length. However, BTII might perform better when 𝐱𝟏 and 𝐱𝟎 have different sample 

sizes. All in all, based on these results shown, M2 could be a suitable non-bootstrap 

alternative to BTII. 

There are several limitations to this paper. Notably, the simulation results from the 

BTII approach were extracted from Zhou and Qin’s paper4. Therefore, Zhou and Qin’s 

simulation results for BTII were not replicated. In addition, to allow comparison between 

BTII, M1, and M2, simulations using M1 and M2 could only be conducted under the 

distribution and sample size settings established by Zhou and Qin in their paper4.  

Nevertheless, despite having room for improvement, approaches M1 and M2 

demonstrate that reliable confidence intervals can be constructed without using resampling 

methods. Moreover, M1 and M2 represent only two ways of constructing confidence 

intervals in this manner; other approaches may exist as well. Future work will explore 

additional approaches and fine-tune M1 and M2. 
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7. APPENDIX 

7.1 Bisection Method 
 
Used to find roots for a function 𝑓 on a range [𝑎, 𝑏], the bisection method works by first by 

finding the midpoint 𝑐 = !!!
!

 of the range [𝑎, 𝑏]. Then, then if the sign of 𝑓(𝑏) is the same as 

the sign of 𝑓(𝑐), 𝑏 is updated by 𝑐; otherwise, 𝑎 is updated by 𝑐. This procedure is repeated 

until 𝑏 − 𝑎 is sufficiently small. Finally, the value 𝑓(𝑐) is the approximated root. In this 

paper, the bisection method is used to find the left and right bounds of 1− 𝛼 % confidence 

intervals for sensitivity constructed by the approaches proposed in this paper. For approach 

M1, the roots are approximated at 𝜂 𝜃 − 𝜒!!!! (1). For M2, the roots are approximated at 

𝜙 𝜃, 𝑐! − 𝜒!!!! (1). The initial range for the lower bound of the interval is between 0 and 

the point estimate 𝜃, and the initial range for the upper bound is between 𝜃 and 1. Although 

numerically 𝜙 0, 𝑐  and 𝜙 1, 𝑐  cannot be evaluated, they are reasonably assumed to 

produce values greater than 𝜙 𝜃, 𝑐 − 𝜒!!!! (1). Making this assumption allows the bisection 

method to function well. 
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7.2 Tables & Figures 
	
Figure	1:	M1	Interval	for	sensitivity	of	biomarker	gene	in	detecting	ovarian	cancer,	with	
fixed	specificity	
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Figure 2: M2	Interval	for	sensitivity	of	biomarker	gene	in	detecting	ovarian	cancer,	with	
fixed	specificity	
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Table 1: Beta distributions setups for simulations 

Setup  (𝒂𝟏,𝒃𝟏)  (𝒂𝟎,𝒃𝟎) Specificity True sensitivity 
1 (4,1) (1,3.5) 0.90 0.95 
2 (3,1) (1,3) 0.80 0.93 
3 (3,1) (1,3) 0.90 0.85 
4 (4,2) (2,4) 0.80 0.82 
5 (3,2) (2,3) 0.80 0.55 
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Table 2: Simulation results under Beta distribution setups 
 
  𝑛! = 20, 𝑛! = 20 𝑛! = 50, 𝑛! = 50 𝑛! = 40, 𝑛! = 20 
Setup Approach Coverage 

Prob 
Avg 
Length 

Coverage 
Prob 

Avg 
Length 

Coverage 
Prob 

Avg 
Length 

1 BTII 0.8395 0.2278 0.9590 0.1678 0.9595 0.2229 
M1 0.9868 0.9508 0.9874 0.3123 0.9816 0.9713 
M2 0.9546 0.4330 0.9454 0.2065 0.9324 0.4605 

2 BTII 0.9255 0.2457 0.9530 0.1783 0.9715 0.2342 
M1 0.9888 0.4513 0.9868 0.2323 0.9874 0.4044 
M2 0.9414 0.3309 0.9364 0.1886 0.9406 0.2866 

3 BTII 0.9460 0.3741 0.9565 0.2829 0.9330 0.3518 
M1 0.9932 0.9367 0.9896 0.4564 0.9870 0.9490 
M2 0.9454 0.5225 0.9476 0.3215 0.9286 0.5350 

4 BTII 0.9545 0.3875 0.9485 0.2812 0.9620 0.3608 
M1 0.9890 0.6029 0.9848 0.3523 0.9832 0.5640 
M2 0.9452 0.4434 0.9506 0.2844 0.9380 0.4097 

5 BTII 0.9440 0.5223 0.9540 0.3858 0.9335 0.4939 
M1 0.9900 0.6968 0.9852 0.4601 0.9850 0.6511 
M2 0.9494 0.5392 0.9504 0.3789 0.9430 0.5057 
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Table 3: Normal distributions setups for simulations 
 
Setup (µ1, σ1) (µ0, σ0) Specificity True Sensitivity 
1 (2.9264,1) (0,1) 0.90 0.95 
2 (2.5631,1) (0,1) 0.90 0.93 
3 (2.1231,1) (0,1) 0.90 0.85 
4 (2.4865,1) (0,1) 0.80 0.82 
5 (1.6832,1) (0,1) 0.80 0.55 
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Table 4: Simulation results under Normal distribution setups 
 
  𝑛! = 20, 𝑛! = 20 𝑛! = 50, 𝑛! = 50 𝑛! = 40, 𝑛! = 20 
Setup Method Coverage Length Coverage Length Coverage Length 
1 BTII 0.7835 0.2196 0.9600 0.1572 0.9350 0.2001 
 M1 0.9874 0.9510 0.9894 0.3104 0.9870 0.9717 
 M2 0.9538 0.3294 0.9474 0.1957 0.9354 0.3141 
2 BTII 0.9405 0.3061 0.9675 0.2293 0.9595 0.2974 
 M1 0.9872 0.9451 0.9874 0.4144 0.9874 0.9626 
 M2 0.9390 0.4030 0.9368 0.2699 0.9432 0.3881 
3 BTII 0.9445 0.4277 0.9485 0.3201 0.9430 0.4080 
 M1 0.9902 0.9265 0.9850 0.5257 0.9868 0.9345 
 M2 0.9456 0.4856 0.9354 0.3582 0.9280 0.4692 
4 BTII 0.7980 0.1990 0.9575 0.1443 0.9640 0.1942 
 M1 0.9884 0.9430 0.9820 0.4363 0.9886 0.9594 
 M2 0.9432 0.4178 0.9332 0.2863 0.9442 0.4047 
5 BTII 0.9640 0.4159 0.9585 0.2977 0.9555 0.3835 
 M1 0.9872 0.9473 0.9876 0.3803 0.9890 0.9664 
 M2 0.9344 0.3783 0.9414 0.2441 0.9406 0.3640 
 
 
 
 
 
 
	
	


