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Abstract

Methods for Estimating the Effect of Air Pollution on Asthma
under a Changing Climate

By
Brooke Alhanti

Climate models are complex mathematical representations of global and
regional climate, which vary over space and time. Estimates of local meteorological
variables provided by climate models are biased. More accurate estimates of
future meteorological conditions are essential to investigating health impacts of
climate change. Here we consider the association between ambient air pollution
and respiratory disease under a changing climate. We use regional climate and air
quality model outputs and develop calibration methods that aim to produce more
accurate projections.

We first assess the association between ambient ozone (O3) and fine particulate
matter (PM2.5) and asthma in the metro Atlanta area by age under recent
meteorological conditions (1993-2009). We then propose a quantile-mapping
approach where the quantile values of climate model outputs and historical
data are regressed against each other with integrated piecewise splines to create
calibrated projections.

We utilize copulas to develop a bivariate quantile calibration method
that simultaneously calibrates the marginal distribution of each variable while
capturing dependence between variables. This method estimates the bias between
monotonic increasing quantile functions for climate models and monitoring data
and applies this estimated bias to future climate projections. The Gumbel
and Frank copulas are used to estimate the dependence between daily average
temperature and solar radiation. Inference is conducted under a Bayesian
framework to account for all sources of uncertainty in the projection. A
cross-validation study is performed using historical data to evaluate the proposed
approach. We apply our method to projections from four different climate models
in Atlanta and find evidence for higher mean temperature and lower mean solar
radiation in 2041-2070 compared to 1991-2000.

Finally, we consider spatial dependence in climate model outputs over a
contiguous grid. We develop a spatial calibration method that calibrates climate
model outputs over multiple locations and projects calibrated values on a gridded
area. This spatial extension allows calibrated projections at locations that do not
have a monitor. We project future levels of two air pollutants: O3 and PM2.5 on a
spatial field covering northern Alabama and Georgia. We subsequently use these
projected pollutant concentrations to project future asthma cases in Atlanta and
Birmingham.
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Specific Aims

Over the past 50 years it has become clear that the warming of the Earth’s climate

system is unequivocal. However, how much warming will occur and the local effects

of global climate change are uncertain. Climate models, which are mathematical

representations of climate, are used to understand and predict climatic behavior.

They are complex models based on atmospheric, ocean, and land variables, which

vary over space and time. Climate models are built on a global grid system

and then downscaled to regional and local levels. The different combinations of

climate models and downscaling methodologies results in estimates that retain a

large amount of uncertainty, however, because climate models are deterministic

much of that uncertainty is unmeasured.

Interest in the future impacts of climate change is increasing as scientists and

policymakers have realized accurate predictions of local impacts are needed to

justify the social and economic costs of combating climate change. One such

impact of interest is how climate change will affect human health. Climate change

has the potential to impact human health in a myriad of ways, from direct impacts

such as heat-related illness to more complicated impacts such as forced migrations

due to environmental degradation. How climate change will affect air pollution

and related health effects is a particularly complex question. Meteorological

variables play a large role in the formation, transport, and removal of ambient

air pollution; therefore, how these variables change in the future will directly

influence air pollution concentrations.

Fine particulate matter (PM2.5) concentrations are affected by temperature,

solar radiation, and precipitation. Heat and solar radiation can influence the

chemical constituents of PM2.5, and precipitation can lower the concentration of

PM2.5 in ambient air. Ozone is particularly sensitive to temperature and solar

radiation as it is a secondary pollutant formed by the photochemical oxidation

of carbon monoxide and volatile organic compounds in the presence of nitrous

oxides and sunlight. Many scientists believe as the Earth warms, ozone levels
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will increase (assuming current emissions of greenhouse gases remain somewhat

constant) [4, 5].

The particles that make up PM2.5 are small enough to be inhaled deep into the

lungs, leading to worsened respiratory health. PM2.5 has been linked to asthma in

numerous epidemiological and clinical studies. Ozone is also known to exacerbate

asthma by leading to inflammation in the airways. Patients with asthma are

more likely to have respiratory distress when exposed to ozone than non-asthmatic

patients. Furthermore, rates of asthma are increasing globally at a pace too rapid

to be explained by genetics or changes in diagnostic characterization. Scientific

inquiry has looked to environmental exposures to explain this increase [6].

The relationships between meteorological variables, air pollution, and asthma

naturally lead to the question: How will climate change impact asthma in the

future? This dissertation contributes to a growing body of scientific literature

informing the answer.

Aim 1. Determine the association between ambient air pollutants

(O3 and PM2.5) and asthma in Atlanta. To address this aim, we examine

the association between population-weighted ambient air pollution concentrations

measured daily from 1993-2009 in Atlanta, GA and emergency department (ED)

visits for asthma. Daily time-series analyses are conducted to estimate associations

by age group (0-4, 5-18, 19-39, 40-64, and 65+ years). Sub-analyses are performed

stratified by race and sex.

Aim 2. Simultaneously calibrate climate model outputs with

multiple variables. Calibration methods can be used to improve the accuracy

of climate change model predictions on the local level. Previous methods only

used one variable at a time, resulting in the loss of dependence between variables.

We develop a method that calibrates climate model output for multiple variables

simultaneously (e.g., temperature and solar radiation) by using quantile functions

and copulas. This method also provides a measure of uncertainty.
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Aim 3. Extend climate model calibration to spatially to project

future ambient air pollution and asthma ED visits We extend our

calibration method beyond a single location to multiple 12 km x 12 km grid

cells over northern Georgia and Alabama. This extension is accomplished via the

inclusion of spatially-varying coefficients in our calibration approach. Calibrated

future levels of O3 and PM2.5 are used to project how asthma morbidity will be

effected by the changing climate, based on observed associations between ambient

air pollutants and asthma morbidity discussed in Aim 1.
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1 Introduction

The Earth’s climate system is an interactive system consisting of the atmosphere,

land surface, water, and living organisms. Climate, which is typically described

in terms of temperature, precipitation, and wind, is often defined as ”average

weather” and is influenced by both internal and external dynamics. These external

dynamics are referred to as “forcings” and can be natural (e.g., volcano erupting)

or anthropogenic (e.g., carbon emission from power generation) [7]. Over the

past 50 years, it has become clear that the “warming of the climate system is

unequivocal” and that anthropogenic forcing has contributed to climate change

[8]. However, how much warming will occur and where temperatures changes

will be the most drastic is still uncertain. Climate scientists try to answer these

questions with climate models.

Climate models are mathematical representations of climate used to

understand and predict climatic behavior. They are based on a large number of

variables from the atmosphere, ocean, and land, and must make many simplifying

assumptions to perform complex calculations. These complicated models output

a large number of climate variables and the quality of the estimation of individual

output variables is dependent on the climate model and it’s inputs. The figure

below shows an example of the challenges in estimating observed temperature

alone. Each line represents an estimate of surface temperature over large regions

over time. Some models (Köppen) used land air temperatures while others

(Brohan) used both land air temperature and sea surface temperatures. All time

series were smoothed and adjusted to be comparable [7].
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Figure 1: Global surface temperature models over time (1840-2000) [9]

This example illustrates how climate models must use multiple data sources

to produce their estimates. When projecting future climate, models also must

take into account the current changing climate as well as potential changes in

anthropogenic forcing. In order to simplify future projections, the International

Panel on Climate Change (IPCC) developed four scenarios, called Representative

Concentration Pathways (RCPs) to represent a range of climate outcomes from

low future greenhouse gas (GHG) emissions to very high future GHG emissions.

RCPs are defined by their total radiative forcing (a cumulative measure of human

emissions of GHGs in Watts/sq2) [8]. All recent climate change model predictions

take place under one of the RCP scenarios.

Modern climate models are typically divided into two categories: Global

Circulatory Models (GCMs) and Regional Climate Models (RCMs). GCMs model

the entire Earth’s climate based grid cells over time. The size of the grid cell and

the time-step is dependent partly on computing power. RCMs are nested models

which take GCM levels for a region (e.g., Europe or North America) and use those

levels as initial and boundary conditions for a more finely gridded model. RCMs

are used to inform assessments of the impact of climate change on regions and

nations as local information is necessary to justify social and economic policies

related to climate change adaptation and mitigation [10].
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Figure 2: Schematic for global atmospheric model [2]

Simulating the most realistically accurate climate models possible is important

for assessing the potential impact of climate change on human health. Adaptation

and mitigation to the changing climate are complex and expensive endeavors

with high political and economic costs. The World Meteorological Organization

asserted, “only by assessing what the real impact will be on different countries will

it be possible to justify difficult social and economic policies to avert a dangerous

deterioration in the global climate” [10]. Climate change has the potential to

endanger human health across the globe. The figure below was developed by the

Centers of Disease Control and Prevention (CDC) to illustrate the complex and

intertwined relationship between climate change and human health [3]. The inner

circle shows how climate change factors(e.g., rising temperatures, increasing CO2

levels, etc.) lead to outcomes such as extreme heat or air pollution, which in turn

lead to adverse health events (e.g., asthma, cardiovascular disease, etc.).
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Figure 3: Climate change impacts on human health [3]

Rising temperatures and unmitigated GHG emissions will affect several types

of air pollution. Particulate matter (PM) is a mixture of solid particles and

liquid droplets found in the air. PM2.5 is the designation used for particles with

diameters less than 2.5 µg [4]. PM2.5 concentrations are affected by weather,

such as heat and precipitation. Temperature and solar radiation can influence

the chemical composition of PM2.5’s constituents and precipitation can reduce the

overall concentration in ambient air [11]. PM2.5 is particularly dangerous to human

health as the particles are small enough to be inhaled deep into the lungs, beyond

the lungs natural defenses (Figure 4). PM2.5 causes inflammation of the airways,

resulting in decreased lung function, respiratory symptoms (e.g., coughing and

difficulty breathing), and aggravated asthma [12, 13].
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Figure 4: Fine particulate pollution [4]

Another pollutant impacted by climate change is ground-level ozone.

Tropospheric ozone (O3) is formed through photochemical reactions involving

carbon monoxide (CO), volatile organic compounds (VOC), and nitrogen oxides

(NOx) in the presence of sunlight. These reactions occur more often in the presence

of higher temperatures and solar radiation leading to higher O3 concentrations on

hot, sunny days [5]. The projected effect of climate change on ozone concentrations

varies by location. As temperatures rise, air quality models project increased ozone

production; however, higher temperatures also lead to faster destruction of ozone.

As ozone is a secondary pollutant, the role of changing emissions standards will

also affect the level of ozone concentrations. Within all the uncertainty about

projected global ozone levels, there is a growing consensus that ozone levels will

increase in urban areas [14, 15, 16, 17, 18].

Exposure to ambient ozone can lead to a number of adverse health outcomes,

including increasing the likelihood of asthma-related events [19, 20, 21, 14, 22, 23].

Exposure to ozone induces airway inflammation, resulting in respiratory responses

[18]. Patients with asthma are at increased risk for adverse effects of ozone

exposure because they have weakened pulmonary reserves to tolerate airway

inflammation and ozone interacts with the underlying pathophysiology of asthma.

Ozone exposure can induce airway inflammation, which appears to worsen a

patient’s underlying asthma status. Studies have shown asthmatic patients

exposed to ozone had a greater influx of markers of airway inflammation than
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non-asthmatic controls [24, 6]. The observed epidemiological links between

ambient ozone and asthma are supported by experimental chamber studies and

suggest a causal relationship between ozone exposure and increased likelihood of

an asthmatic response [6].

In the chapters below we also explore calibration of climate model outputs as a

way to increase the accuracy of climate projection models. We propose a method

to calibrate climate model outputs to historical observed data and then apply the

relationship to future projections. The calibration is done using quantile functions

specified using I-splines (see Section 3.3). The quantile relationship between the

observed data and the projected estimates is determined and then used to predict

more accurate climate variable estimates in the future. Quantile functions are

useful in climate research as they can capture tail probabilities better than mean

regression techniques. These tail probabilities are important in climate research

as extreme values are often the most related to adverse health events, such as

heat waves. Quantile functions modeled with splines also allow us to flexibly

capture smooth non-linear relationships. Multiple model variables can be used to

inform the calibration of a single climate variable through creating multivariate

distributions with a copula, which provides a method for characterizing a joint

distribution from two variables. Once bivariate calibration has been performed at

a single location the calibration can be extended to a spatial field encompassing

multiple climate model grid cells. This spatial calibration is achieved through the

use of spatially varying calibration parameters. Spatial calibration of projected

concentrations of ozone and PM2.5 are used to project changes in future asthma

morbidity resulting from changes in ambient air pollutant concentrations.
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2 Aim 1: Air Pollution and Respiratory Disease

2.1 Background

Many epidemiological studies have documented relationships between ambient air

pollution and asthma [20]. Adverse effects of ambient air pollution on asthma

appear to disproportionately affect children [25, 26, 27, 28, 29, 30], who also

have the highest prevalence of asthma [31]. The increased susceptibility of

children may be due to physiological differences between adults and children

(underdeveloped pulmonary and immune systems and smaller airways that become

more obstructed when inflamed) and higher levels of outdoor physical activity in

children [32, 33, 34, 22]. Only limited previous studies consider whether and how

associations differ by age group. Analyses comparing air pollution effects across

age groups can help to identify susceptible populations —an essential component

for both focused prevention efforts and accurate risk assessment. Here we

investigated short-term associations between ambient air pollution concentrations

and asthma emergency department (ED) visits across five age groups in Atlanta,

GA. Additional stratification by sex and race was also considered to examine

whether the differences in asthma-air pollution associations across age groups may

be explained by sex and race.

Air quality and ED visit data were collected in 20 counties around Atlanta

(years 1993-2009). The air quality data included daily population-weighted

average concentrations of ambient 8-hour maximum O3 (ppb) and 24-hour average

PM2.5 (µg/m3). The population-weighted average concentrations were calculated

using data from all available monitors for each pollutant in the study regions.

We included monitors from the US EPA Air Quality System, the SouthEastern

Aerosol Research and Characterization (SEARCH) network, and the Assessment

of the Spatial Aerosol Composition (ASACA) network (Figure 5). The monitoring

data were first spatially interpolated across the studys geographic domain and

then a population-weighted average concentration estimate was derived using
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tract-level population estimates from the 2010 US Census (Figure 6). Daily

minimum, maximum, and dew-point temperature data were obtained from the

National Climate Data Center.

Figure 5: Air pollution monitoring locations in the Atlanta metro region with
spatial domain of study area

Figure 6: Locations of Atlanta hospitals providing daily emergency department
(ED) data from 1993-2009

Patient-level ED visit data were obtained from individual hospitals and the

Georgia Hospital Association. Asthma ED visits were identified using the primary

International Classification of Diseases, 9th Revision diagnosis code for the record

as either 493 (asthma) or 786.07 (wheeze). Identified visits were aggregated by
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day to obtain daily counts of asthma ED visits overall, and for five age groups:

0-4, 5-18, 19-39, 40-64, and 65+ years.

2.2 Analysis

For each age group, daily time-series Poisson regression models were used to

assess the relationship between asthma ED visit counts and ambient pollutant

concentrations. Analyses were conducted separately for each age group.

log(Yik) = β0 + β1xi + β2dwi +
∑7

a=1 βaholai +
∑9

b=1 βbhospidbi

+
3∑

c=1

βcn(temp0ci)+
3∑

d=1

βdn(temp12di)+
3∑

e=1

βen(dp12ei)+
8∑

f=1

βfn(timefi)

Yik: Daily ED count (i) for age group k

xi: Daily 3-day moving average pollutant concentration

n(): Natural cubic spline

In these analyses, our a priori temporal metric for all air pollutant

concentrations was a 3-day moving average (of the current day, the previous day,

and 2 days prior), chosen based on previous research [22, 35, 36]. The models

controlled for meteorology via natural cubic splines with 3 degrees of freedom (df)

of lag 0 minimum temperature, 2-day moving average (of the previous day, and 2

days prior) minimum temperature, and 2-day moving average (of the previous day,

and 2 days prior) dew point temperature. Temporal controls included indicator

variables for day of week, federal holidays, and days commonly celebrated as

holidays (e.g., the day after Thanksgiving) and a natural cubic spline of time

(df=8 per year). The models also included indicator variables for the periods

when there were changes in the number of hospitals that contributed to the total

ED counts over time. Standard errors of the model coefficients were scaled to

account for over-dispersion in ED counts.
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Rate ratios (RR) were scaled to a pollutant-specific standard unit. The

standard unit for each pollutant was determined as the interquartile range (IQR)

of data: 28 ppb for O3 and 8 µg/m3 for PM2.5. Pairwise statistical significance for

the difference in age-specific RRs was assessed based on standard errors obtained

from independent stratified analyses at a type I error rate of 0.05, assuming the

RRs estimated from the separate datasets were not correlated.

Several sensitivity analyses on model specification were performed. Various

degrees of freedom for all non-linear effects were explored as well as different

meteorological controls, such as the use of maximum temperature versus minimum

temperature. Sub-analyses were also performed to examine whether the pattern

of age-specific associations between pollutant concentrations and asthma ED

visits differed by sex and race. For these analyses, race was dichotomized

into white and non-white (black, Hispanic, and other). Race-specific models

were only considered for 1993 through 2006 because information on race was

unavailable after 2006. Atlanta data between 1993 and 2006 were also missing

race information to varying extents by age group (as high as 56% for asthma ED

visits in the 0-4 year age category). All analyses were performed in R 2.15.1 (R

Foundation for Statistical Computing, Vienna, Austria).

2.3 Results

Descriptive statistics for the pollutants are shown in Table 1. Asthma ED counts

totaled 389,771 in Atlanta. Mean daily counts were highest in the 5-18 year age

group, followed by the 0-4 year age group (Table 2). Males had approximately

twice the mean daily counts of females in the younger age groups (0-4 and 5-18

years); in the older age groups this pattern reversed to females having about

twice as many mean daily cases as males. Non-whites had more mean daily cases

in the younger age groups than whites, but as age increased mean daily case

counts became more even between groups. Time series plots show the patterns
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of asthma ED visits by age group (Figure 7) and pollutant concentrations over

time (Figure 8). The younger age groups (0-4, 5-18) have a seasonal pattern of

asthma ED visits, while the older age groups have less temporal variance. The

pollutant concentrations have a clear seasonal pattern and PM2.5 has an overall

slight decrease over time.

Table 1: Descriptive Statistics of Population Weighted
Averages of Ambient Pollutant Concentrations in Atlanta
(1993-2009)

Pollutant Daily Mean SD
O3 (ppb) 43.7 19.1
PM2.5 (µg/m3) 14.1 6.8

Table 2: Mean Daily Counts of Asthma ED Visits
in Atlanta (1993-2009), by Age Group: Total and by
Sex and Race

Age Group Total Male Female White Non-white
0-4 years 16.78 10.42 6.24 2.22 4.5
5-18 years 18.24 10.75 7.3 2.78 6.2
19-39 years 13.36 4.65 8.53 4.39 6.16
40-64 years 11.33 3.60 7.62 3.68 4.53
65+ years 1.53 0.49 1.04 0.75 0.48

Figure 7: Daily counts of asthma emergency department (ED) visits by age group
for 2006-2009 in the Atlanta
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Figure 8: Daily population-weighted average concentrations of O3 and PM2.5 for
2006-2009 in the Atlanta

The strongest associations between pollutant concentrations and asthma ED

visits were found in the 5-18 year age group (Table 3). Ambient O3 was more

strongly associated with asthma ED visits (RR per 28 ppb=1.05, 95% confidence

interval (CI): 1.01, 1.08) in the 5-18 year old age group compared to the other age

groups. The 19-39 age group also had a statistically significant positive association

(RR per 28 ppb=1.04, CI: 1.01, 1.07). Ambient O3 concentrations and asthma

ED visits were not significantly associated in the other age groups with rate ratios

per 28 ppb of 1.00 (CI: 0.98, 1.03) in 0-4 year olds, 1.01 (CI: 0.98, 1.04) in 40-64

year olds, and 1.01 (CI: 0.96, 1.07) in those 65 years and older. For ambient PM2.5

a statistically significantly positive association with asthma ED visits was found

in the 5-18 year old age group with a RR per 8µg/m2 of 1.03 (CI: 1.01, 1.05).

Ambient PM2.5 was also significantly associated with the 40-64 year olds (RR

per 8µg/m2=1.02, CI: 1.00, 1.04), and 65+ year olds (RR per 8µg/m2=1.04, CI:

1.00, 1.08). Young children aged 0-4 years old (RR per 8µg/m2=1.01, CI: 0.99,

1.03) and 19-39 year olds (RR per 8µg/m2=1.01, CI: 1.00, 1.03) did not have a

significant association between ambient PM2.5 and asthma ED visits.
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Table 3: Rate Ratios for the Association Between a Standard Unit Increase in
Three-Day Moving Average Pollutant Concentrations and Asthma ED visits in
Atlanta (1993-2009)∗

Pollutant Age Group RR 95% CI
O3 0-4 1.004 0.977 1.031

5-18 1.046∗∗ 1.014 1.079
19-39 1.041∗∗ 1.011 1.071
40-64 1.010 0.978 1.042
65+ 1.011 0.955 1.070

PM2.5 0-4 1.009 0.993 1.025
5-18 1.028∗∗ 1.009 1.047
19-39 1.015 0.998 1.032
40-64 1.020∗∗ 1.002 1.038
65+ 1.039∗∗ 1.003 1.077

* Standard units: 28 ppb for O3 and 8 µg/m3 for PM2.5

** Significant at the α=.05 level

Sensitivity analyses on model specification showed similar results for a wide

range of degrees of freedom for both the temperature and time splines. In

general, results using minimum temperature and maximum temperature were

similar. However, the use of maximum temperature attenuated the association

between the O3 concentration and asthma-related ED visits, particularly among

the younger age groups (0-4, 5-18, and 19-39 years). This attenuation was

more substantial as the degrees of freedom in the time spline were increased,

and may be attributed to over control. Ozone formation is highly sensitive to

temperature, and the Pearson correlation between 3-day moving average ozone and

maximum temperature was 0.72 compared to a lower correlation of 0.60 between

ozone and minimum temperature in Atlanta where both temperature variables are

represented as specified in our main model lag 0 temperature plus 2-day moving

average (of the previous day, and 2 days prior).

The observed trend of 5-18 year olds having higher RRs, generally persisted

in the sub-analyses by sex and race. Figures 9 and 10 illustrates the pattern of

RRs and corresponding 95% confidence intervals for each pollutant (axes vary by

pollutant for better visualization of the results). However, the higher RRs in the
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5-18 year age group appeared to be partially driven by high RRs in non-whites.

Considering the results for 5-18 year olds, associations of O3 among non-whites

(RRs of 1.16 (1.10, 1.21) per 28 ppb O3) were significantly stronger (2-sided P

<0.001) than among whites (RR of 0.97 (0.91, 1.04) per 28 ppb O3). In addition,

associations were generally stronger among males than females across all age

groups, although there were no statistically significant differences. No significant

differences in associations between the demographic sub-groups were observed for

PM2.5, although patterns of weighted average associations by sex and race across

age groups were generally similar to O3 with weaker associations overall. The

non-white 5-18 year olds had a RR of 1.16 (1.10, 1.21) compared to whites with

a RR of 0.97 (0.91, 1.04).

Figure 9: Rate ratios for the association between a standard unit increase in
three-day moving average O3 concentrations and asthma ED visits in Atlanta
(1993-2009)
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Figure 10: Rate ratios for the association between a standard unit increase in
three-day moving average PM2.5 concentrations and asthma ED visits in Atlanta
(1993-2009)

2.4 Discussion

We found consistent positive associations between short-term concentrations of

ambient O3 and PM2.5 and asthma ED visits among children 5-18 year olds

compared to younger and older age groups. These results are similar to those

found elsewhere. In a study of 8 cities in Korea, children under 15 years old

were more likely than older age groups to be hospitalized for asthma when

concentrations of O3, NO2, and PM10 were higher [27]. Likewise, short-term

increases in ambient PM2.5 and O3 concentrations were also associated with an

elevated risk of asthma-related hospitalization among 6 to 18 year olds in New

York City [26]. A study on ED visits for asthma in an industrial Canadian city

found stronger associations with increases in O3, CO, NO2, and SO2 for children

between 2 and 14 than for adults [25].

Our results of strong associations in the pediatric groups may be related

to several well-documented susceptibility factors experienced by children. For
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example, children may be more susceptible to harmful effects of air pollution

because their less-developed respiratory system may become more obstructed when

exposure to air pollution causes inflammation in their smaller airways. Children

also have less developed immune systems than adults, higher ventilation rates, and

higher air pollution exposures per body weight than adults, which may increase the

severity of the effects of pollutant exposure [33, 34]. Children may also experience

higher levels of exposure to ambient air pollution than adults because they are

more physically active and spend more time outside, thus increasing the frequency

and duration of their exposure [32].

We also examined sex and race as potential factors explaining observed

age-related differences in air pollution-asthma associations. The pattern of strong

associations among 5-18 year olds appeared to be partially driven by non-white

and male patients. For example, non-whites appeared to be more vulnerable to

short-term increases in ambient pollution, particularly O3 and NO2, than whites

in the 5-18 year old age group. A study in Phoenix found both black and Hispanic

children (0-14 years old) had stronger associations between NO2 concentrations

and asthma hospitalization than white children [37]. Other studies have found

effect modification by race for O3 and PM2.5. Strickland et al. found children

aged 2 to 16 with African American mothers had greater susceptibility to effects

of O3 on asthma ED visits than children with white mothers [38]. Similarly, a

study of children in Texas found African American and Hispanic children had a

stronger association between increases in ambient O3 and initial asthma diagnosis

than white children [39]. A national study found African American adults had

a stronger association between asthma attacks and PM2.5 concentrations than

white adults [40]. Racial and ethnic minorities may be overall more susceptible to

asthma exacerbations in response to asthma triggers as several studies have found

African Americans and Hispanics of all ages have more poorly controlled asthma

than whites and that this pattern persists even in high income groups [41, 42, 43].
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Considering stratification by sex, associations between asthma ED visits and

ambient air pollutant concentrations were generally stronger among males than

females in the 5-18 year old age group, with significant differences observed for CO

and NO2. Pediatric males may spend more time outside (e.g., playing on sports

teams) than females, which would lead to increased exposure. These results by

sex are similar to those by Son et al., who found males had higher risk ratios

between asthma hospitalizations and CO and NO2 than females, however their

results were not statistically significant [27]. A study in Toronto did not find

any significant differences in the associations between asthma hospitalizations

and PM2.5 concentrations by sex among children 6 to 12 years old [44]. Overall,

few studies have examined modification of the effects of ambient air pollution on

asthma by sex, thus this may be a topic for further investigation.

There are several limitations to our study. First, our epidemiological results

may be impacted by potential measurement error in our exposure data. We

attempted to limit this measurement error by calculating population-weighted

averages of air pollution concentration data available from multiple monitoring

sites in each city on each study day. This ensures the daily pollution values

used in our epidemiological models represent population exposures to ambient

concentrations better than those from single fixed-site monitors. It is important

to note, however, that the population-weighted average concentrations were

weighted with overall population counts across each study area, not age-specific

population counts, and thus our age-specific RRs may be impacted by differential

measurement error. Second, asthma ED visits were identified only using primary

ICD-9 code information. Not including visits with asthma listed in secondary

ICD-9 codes may have reduced our sample size and thus the power of the study.

However, since asthma listed in secondary codes indicates co-occurrence with

other morbidities that in some cases may be the main reason for the ED visit,

using secondary ICD-9 code information to identify asthma visits may result

in a non-specific case definition and attenuate the apparent association between
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pollutant concentrations and health care visits. Third, there was missing a large

amount of race data in the demographic sub-analyses. Finally, sub-analyses were

limited to race and sex; there may be other unmeasured factors that differed

across age groups that might explain further observed age-related differences in

air pollution-asthma associations.

In summary, our results suggest children with asthma are disproportionately

affected by acute changes in ambient air pollution, compared with adults. This

may be particularly explained by stronger risks faced by non-white and male

populations in this age group.
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3 Aim 2: Simultaneously calibrate climate

model outputs with multiple variables

3.1 Background

The complexity of climate models combined with the many assumptions necessary

to build a model lead to models that are inherently biased compared to

observations. The aphorism attributed to George E.P. Box that, ”All models are

wrong, but some are useful” particularly pertains to climate models [45]. While we

know no climate model is completely accurate, but they do provide an idea of how

climate works now and how it will change in the future. There is some evidence

that calibrating specific variables outputted from climate models to historically

observed values can improve predictability in that variable [46].

Calibration methods that currently exist have several disadvantages. First,

commonly used calibration methods, such as variance-scaling, include some

temporal component in the method. Calibration on a daily or monthly level

artificially limits the potential full distribution of the variable being calibrated

to a monthly. For example, if we are interested in projecting daily average

temperatures in 2050 our primary concern would be the value of the hottest

temperature, not the month in which temperature occurred. By linking the

calibration to temporal periods we may lose the upper and lower tails after

calibration. Our proposed method uses quantile functions to calibrate climate

model outputs over their entire distributions, ignoring the short-term temporal

trends and avoiding the lose of information that may result from temporal

calibration. The second disadvantage of currently existing calibration methods

is the lack of simultaneous calibration. Current calibration methods calibrate

each climate model variable one at a time, ignoring the physical complexity of

the climate system. Climate variables are highly interconnected and univariate

calibration methods lose information, particularly the dependence structure of the
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variables. A calibration approach which considers multiple variables and retains

the dependence structure may reduce uncertainty in the calibrated variables.

The proposed approach estimates quantile functions using I-splines to model

the marginal distributions of meteorological variables from observed data and

climate model outputs. The joint distribution is specified via a copula. Our goal

is to calibrate the climate model projections to observed values while retaining the

between-variable dependence structure. This method may lead to a more accurate

projection of future meteorological patterns and provide a measure of uncertainty

for the projections.
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3.2 Quantile Functions

Quantile functions are useful tools for quantifying tail probabilities. Correctly

estimating such tail probabilities is important in climate model outputs as extreme

values (e.g., heat waves, higher ozone levels) are usually the most related to

adverse health effects . Furthermore, the relationship between observed and

modeled meteorological variables can be non-linear and their relationship cannot

be summarized solely by the mean, as in linear regression [47]. Considering the

relationships between quantile functions of the observed and modeled data over

the study period provides more information than a simple linear regression would.

For a random variable, Y, the quantile function of Y is the inverse of the

cumulative distribution function:

QY (τ) = F−1
Y (τ), τ ∈ [0, 1]

where τ represents the quantile value of Y: P [Y < Q(τ)] = τ . For example, if Yj

is the median Y value, τj = 0.5. More recently, researchers have used techniques

to estimate entire quantile functions with the purpose of identifying empirical

distributions [48, 47].

Traditional linear regression models are structured as Y = Xβ + ϵ where X

is a matrix of explanatory variables and Y is a vector containing the outcome of

interest. In quantile regression, the Y vector is replaced with a vector containing

the τ th quantile of Y.

Q(τ) = XTβ(τ)

This regression models the relationship between X and the conditional quantiles

of Y|X=x. Regression coefficients can be estimated with the formula: β̂(τ) =

argmin
∑n

i=1 ρτ (yi − xT
i β) or with Bayesian regression methods. Thus, β(τ)

provides the covariate effect for each τ th quantile.
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Here we are not using true quantile regression as there are no covariates being

regressed against (rather, we use an I-spline based on a simple sequence from 0 to

1).

3.3 I-Splines

Splines are basis functions for piecewise regressions which connect at interior knots.

They consist of polynomial functions that are designed to provide a sufficient

degree of smoothness at the knots. Splines enable the fitting of smooth regression

lines for non-linear relationships. Splines can also be used to constrain regression

models (e.g., monotonic increasing).

As discussed in Zhou, et al., when simultaneously modeling multiple quantiles

the quantile curves can cross, which leads to an invalid distribution for the outcome

of interest [49, 50, 48]. One way to prevent this issue is by constraining the

quantile function with piecewise polynomial functions to ensure monotonicity.

Integrated piecewise polynomial splines (I-splines) can construct such a monotone

function. I-splines are calculated by performing piecewise integration of M-splines.

M-splines, basis functions with order k, Mi(•|k, t), i = 1, ..., n, are designed

so that any piecewise polynomial associated with the knot sequence, t, can be

represented as a linear combination f =
∑

aiMi, where ai ≥ 0 and
∑

ai = 1. The

M-spline, Mi(x|k, t), is only defined in the interval [ti, ti+k] and is zero elsewhere.

Additionally,
∫
Mi(x)dx=1 and eachMi has the properties of a probability density

function over the interval [ti, ti+k]. First order M-splines are uniform densities over

[ti, ti+1] while second order M-splines are triangle densities over [ti, ti+2] with the

mode at ti+1 [51]. M-splines are calculated as follows:

Mi(x|1, t) = 1
ti+1−ti

, where ti ≤ x < ti+1 and 0 otherwise

Mi(x|k, t) = k(x−ti)Mi(x|k−1,t)+(ti+k−x)Mi+1(x|k−1,t)

(k−1)(ti+k−ti)
, when k>1
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I-splines are calculated by integrating each piecewise section of the M-spline

from the minimum of the appropriate knot-interval (L) to x. Hence, I-splines are

monotonic increasing.

Ii(x|k, t) =
∫ x

L

Mi(u|k, t) du

3.3.1 I-Spline Examples

For example, if we are creating I-splines of order k=3 with 2 interior knots at

0.3 and 0.6 we would start by creating the M-splines. The third order M-splines

are built upon the second order M-splines, which are based on the first order

M-splines. Thus, we begin with the creation of the first order M-splines. First,

we identify the knot sequence t, whose length is determined by the final order of

the splines we are creating (here, k=3) and the number of interior knots. The

exterior knots are repeated k times with the interior knots only occurring once.

In this example, we create 3rd order I-splines with 2 interior knots, therefore our

knot sequence will be t = {0,0,0,.3,.6,1,1,1}.

Within each order there are multiple M-splines, indexed by i. The number of

M-splines in each order is equal to the length of the knot sequence minus k. Thus,

the first order M-splines consist of 7 splines. Using the above equation for first

order M-splines, we calculate them as follows (these set 1
0
to 0):

M1(x|1, t) = 1
0−0

= 0

M2(x|1, t) = 1
0−0

= 0

M3(x|1, t) = 1
0.3−0

= 0.3

M4(x|1, t) = 1
0.6−0.3

= 0.3

M5(x|1, t) = 1
1−0.6

= 0.4

M6(x|1, t) = 1
1−1

= 0

M7(x|1, t) = 1
1−1

= 0



27

The second order M-splines use these results and are constructed as follows:

M1(x|2, t) = 2(x−0)M1(x|1,t)+(0−x)M2(x|1,t)
1(0−0)

= 0

M2(x|2, t) = 2(x−0)M2(x|1,t)+(0.3−x)M3(x|1,t)
1(0.3−0)

= 2(0.3−x)
.32

M3(x|2, t) = 2(x−0)M3(x|1,t)+(0.6−x)M4(x|1,t)
1(0.6−0)

= 2
.6
[ x
0.3

+ 0.6−x
0.3

]

M4(x|2, t) = 2(x−0.3)M4(x|1,t)+(1−x)M5(x|1,t)
1(1−0.3)

= 2
.7
[x−0.3

0.3
+ 1−x

0.4
]

M5(x|2, t) = 2(x−0.6)M5(x|1,t)+(1−x)M6(x|1,t)
1(1−0.6)

= 2
.4
[x−0.6

0.4
]

M6(x|2, t) = 2(x−1)M6(x|1,t)+(1−x)M7(x|1,t)
1(1−1)

= 0

While the first order splines are uniform linear functions, the second order

splines are piecewise triangles. Therefore, M3(x|2, t) and M4(x|2, t) are separated

into 2 piecewise sections with the breakpoint at the interior knots (0.3 and 0.6,

respectively). The area under each of the basis functions integrates to 1. The

figure below graphically depicts the second order M-splines (Figure 11).

Figure 11: Second-order M-splines example. Different colors represents different
sections of the piecewise functions.

(a) M2(x|2, t) (b) M3(x|2, t)

(c) M4(x|2, t) (d) M5(x|2, t)
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The third order M-splines are piecewise polynomial functions and are

constructed from the second order M-splines. As with the second order M-splines,

each piecewise polynomial function exists only within the boundaries set by the

knot sequence. The area under each of lines integrates to 1. The figure below

graphically depicts the third order M-splines with knots at (0, 0.3, 0.6, 1).

M1(x|3, t) = 3(x−0)M1(x|2,t)+(0.3−x)M2(x|2,t)
2(0.3−0)

= 3(0.3−x)2

0.32

M2(x|3, t) = 3(x−0)M2(x|2,t)+(0.6−x)M3(x|3,t)
2(0.6−0)

= 100x
3

− 250x2

3
for (0, 0.3)

and = 3(0.6−x)2

0.3(0.62)
for (0.3, 0.6)

M3(x|3, t) = 3(x−0)M3(x|2,t)+(1−x)M3(x|4,t)
2(1−0)

= 50x2

3
for (0, 0.3)

= −650x2

21
+ 200x

7
− 30

7
for (0.3, 0.6)

and = 75
7
(1− x)2 for (0.6, 1)

M4(x|3, t) = 3(x−0.3)M4(x|2,t)+(1−x)M3(x|5,t)
2(1−0.3)

= 1000
49

(x− 0.3)2 for (0.3, 0.6)

and = 3
0.282

(−1.1x2 + 1.64x− 0.54) for (0.6, 1)

M5(x|3, t) = 3(x−0.6)M5(x|2,t)+(1−x)M3(x|6,t)
2(1−0.6)

= 3(x−0.6)2

0.43
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Figure 12: Third-order M-splines example. Different colors represents different
sections of the piecewise functions.

(a) M1(x|3, t)

(b) M2(x|3, t) (c) M3(x|3, t)

(d) M4(x|3, t) (e) M5(x|3, t)
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Once the third order M-splines have been calculated, the I-splines are created

by integrating each piecewise section of the M-splines over their respective

intervals. For example, the I-spline corresponding to M2(x|3, t) would be created

in two sections - one ranging across (0, 0.3) and the other from (0.3, 0.6) as shown

below (Figure 13).

I2(x|3, t):

for (0, 0.3),
∫ x

0
100
3
u− 250

3
u2du = 50

3
x2 − 250

9
x3

for (0.3, 0.6),
∫ x

0.3
250
9
(0.6− u)2du = 250

27
[(x− 0.6)3 + 0.027]
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Figure 13: Third-order I-splines example. Different colors represents different
sections of the piecewise functions.

(a) I1(x|3, t) (b) I2(x|3, t)

(c) I3(x|3, t) (d) I4(x|3, t)

(e) I5(x|3, t)

For the univariate calibration, the initial I-spline was created from a sequence,

τi, increasing every .005 from [0,1] with 10 interior knots set at t=(0.05, 0.10, 0.15,

0.20, 0.40, 0.60, 0.80, 0.85, 0.90, 0.95).
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3.4 Bayesian Inference

Bayesian inference methods are used to estimate the regression coefficients,

here Q(τ ; β) = I(τ)β where I(τ) is the basis function design matrix. The

Metropolis-Hastings algorithm (a Markov Chain Monte Carlo (MCMC) method)

is used here as the posterior distributions of the unknown parameters are unknown

and not in closed form. The general form of the Metropolis-Hastings algorithm

is based on comparing the current parameter values to proposed values and then

choosing whether to accept or reject the proposed parameter value. The algorithm

begins by specifying a vector of initial estimates, βc. For this analysis, the initial

beta estimates were selected by minimizing the least-squares regression model

between the Q(τi) values and the I-spline design matrix, under the constraint that∑
βi = 1. This constraint forces the quantile function to have a minimum of 0

and a maximum of 1, which is necessary to ensure the estimated quantile function

goes through (0,0) and (1,1).

Once the initial parameters are estimated, the algorithm proposes a new set of

parameters, βp, based on a specified distribution. Here we use a Log-normal

distribution (P (βp|βc) = 1
βpσ

√
2π
e−

(lnβp−µ)2

2σ2 ) to randomly generate proposed β

estimates, with the parameters specified as µ = βc and σ2 = V̂ ∗ T where V̂

is the estimated variance of the initial β̂ from the least-squares regression and T

is a tuning parameter to adjust the acceptance rate.

The proposed parameters (βp) are evaluated against the current value (βc) by

comparing the likelihood for the proposed parameter value to that of the initial

estimates based on the likelihood ratio:

R =
L(y|βp)L(βp)P (βc|βp)

L(y|βc)L(βc)P (βp|βc)

L(y|β) is the data likelihood based on the given β, L(β) is the prior and is

often assumed to be the same for both βc and βp, and P (βp|βc) (and its reciprocal
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distribution) is the proposal distribution. For this application, the data likelihood

is calculated empirically via the inverse derivative of the quantile function.

L(y|βp) =
n∑

i=1

log(fY (yi))

fY (yi) =
1

dQ| τi={τ :Q(τi;β)=yi}
= M(τi) ∗ β

where M(τi) is the M-spline design matrix corresponding to the I-spline basis

function.

The proposed and initial likelihoods are compared with a likelihood ratio test.

If βp produces a likelihood ratio that meets the acceptance probability (decided as

min{1,R}), then βp becomes the new βc. If the proposed likelihood fails to meet

the acceptance probability, βp is discarded and βc remains. Then, the algorithm

begins again by proposing another set of beta estimates. This process is carried

out for a predetermined number of iterations (here, n=10,000).

The initial proposed samples can be outside of the posterior distribution,

therefore, the first 2,000 estimates were discarded (the burn-in). The resulting

iterations were also thinned by every 100 samples to minimize autocorrelation

in the samples, resulting in m=800 simulations. Convergence of the MCMC

regression model was assessed using trace plots. These plots track the accepted

parameter values over each iteration and show a general trend of convergence. A

deviance plot was also created and showed a general decreasing trend (indicating

better model fit as the model converged).

3.5 Univariate Calibration Method

In order to calibrate the climate projection model to observed data, we first convert

the raw data (both the observed and the projection model, separately) to a sorted,

standardized range from [0,1]. We then use the relationship between the data’s

distributions and the quantile functions to estimate τ values representative of the

data’s quantile value.
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For i=1,...n, n=total number of time points, i= day in historical period, Y obs
i

= daily measurements at monitor, and Y RCM
i = daily 50 km x 50 km grid RCM

output linked to the monitor.

Y obs
i ∼ fobs(y

obs
i |βobs)

Y RCM
i ∼ fRCM(yRCM

i |βRCM)

fobs(y
obs
i |βobs) =

1
d
dτ
Qobs(τ obsi |βobs)| τobsi ={τ :Qobs(τi;βobs)=yobsi }

, τ ∈ [0, 1]

fRCM (yRCM
i |βRCM )= 1

d
dτ

QRCM (τRCM
i

|βRCM )|
τRCM
i

={τ :QRCM (τi;βRCM )=yRCM
i

}
, τ∈[0,1]

The derivative of the quantile function can be simply calculated using the

M-splines, which is one attractive feature of using I-splines. The distribution

of Y is needed to calculate the data likelihood in the MCMC estimation of the

beta coefficients, as explained in Section 3.4. The quantile function is given below:

Let xj be an interior sequence of quantile values, j = 1, ..., 1000.

Qobs(xj; βobs) = I(xj)βobs

QRCM(xj; βRCM) = I(xj)βRCM

where I(xj)= J x (h-4) design matrix of third-order I-splines for a knot sequence of

{t1, t2, ..., th} and the β estimates are constrained with
∑

βi,obs = 1,
∑

βi,RCM =

1, βobs > 0, and βRCM > 0. For identifiability purposes, we set β1 = 1. An

MCMC algorithm is used to estimate the β̂obs and β̂RCM coefficients in the quantile

functions, which are then used to estimate values for τ̂ obsi and τ̂RCM
i .

Once the β̂ estimates have been estimated, the calibration step can begin. Let

ZRCM
k be future RCM outputs on day k, where k = day in future period.
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τ̂RCM
k = {τ : QRCM(τk; βRCM) = zRCM

k }

Using the future τ̂RCM
k we use the relationship between τ obsi and τRCM

i to

predict the future ˆτ obsk .

τ̂ obsk = ĝ(τ̂RCM
k )

where

τ obsi = ĝ(τRCM
i ) = I(τRCM

i )γcal

where γcal is subject to the
∑

γ = 1 constraint. The calibrated ˆτ obsk values

are converted to standardized climate variables through the quantile function,

QRCM(τk; βRCM) = zRCM
k . Finally, the standardized variable is transformed to

the scale of the original climate variables and re-sorted into daily values.

3.6 Application of Univariate Method

We applied the method described in Section 3.5 to data ranging from January

1, 1996 to December 30, 2000. Observed meteorologic variables were obtained

from daily measurements taken at the Hartsfield-Jackson Atlanta International

Airport. The climate model data was produced by the North American Regional

Climate Change Assessment Program (NARCCAP) using the Canadian Regional

Climate Model as the RCM and the Community Climate System Model to provide

the boundary conditions [52]. The daily values for the 50 km x 50 km grid cell

over the city of Atlanta were used as the climate model (RCM) data. Average

daily temperature, maximum daily temperature, and daily solar radiation were

assessed.
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Figure 14: Scatter plots of regional climate model outputs versus observed values
for daily average temperature, maximum daily temperature, and daily solar
radiation in Atlanta (1996-2000)

As seen in Figure 14, there was a fair amount of variability in the prediction

capability of the climate model outputs. For each variable, we first identified the

empirical quantile functions of both the observed and RCM datasets (Figure 15).
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Figure 15: Estimated and empirical quantile functions for daily average
temperature and daily solar radiation in Atlanta (1996-2000)

The quantile functions for average temperature and solar radiation were

estimated in the MCMC using I-splines. The corresponding densities are given in

Figure 16.
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Figure 16: Histograms of observed and projected daily mean temperature and
solar radiation with accompanying empirical data density functions in Atlanta
(1996-2000)

The resulting posterior quantile estimates were then regressed against each

other to obtain the β̂’s associated with the calibrated τ ’s. Figure 17 below shows

how well the predicted line fit the observed relationship between τ̂obs and I(τ̂RCM).
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Figure 17: Predicted relationship between τ̂obs and I(τ̂RCM) for average
temperature and solar radiation in Atlanta (1996-2000)

The resulting calibrated quantile values, τc were then converted back into

their respective climate variables. The empirical CDF plots below show how the

calibrated values were more accurate predictors of climate variable quantile levels

than the RCM values (Figure 18).
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Figure 18: Empirical CDFs of observed, uncalibrated projections, and calibrated
projections for daily average temperature, maximum temperature, and solar
radiation in Atlanta (1996-2000). The calibrated projections include 95%
confidence bands around the empirical CDF

The average root mean squared error (RMSE) of the calibrated model outputs

was consistently less than the RMSE of the RCM model (Table 4). The RMSE of

the RCM model was calculated directly, RMSE =

√∑n
i=1(y

obs
i −yRCM

i )2

n
. The RMSE
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of the calibrated model was the mean of the RMSE of each MCMC iteration,∑m
j=1 rj

m
, where rj =

√∑n
i=1(y

obs
i −ycalij )2

n
.

Table 4: Average Root Mean Squared Error
(RMSE) of RCM and Calibrated Models

Variable RCM Calibrated
Average Temperature 4.05 0.50
Maximum Temperature 4.29 0.58
Solar Radiation 563.57 53.32

The univariate calibrated model had the same correlations between the

variables as the RCM model did (Table 5). The dependence structure seen in the

observed data cannot be preserved through the univariate calibration; therefore, a

multivariate calibration method is needed and developed later (see Section 3.7.2).

Table 5: Correlations between Climate Variables

Variable Observed RCM Calibrated
Average Temperature & Maximum Temperature 0.981 0.968 0.968
Average Temperature & Solar Radiation 0.607 0.478 0.478
Maximum Temperature & Solar Radiation 0.685 0.593 0.593

We performed a cross validation analysis of the univariate method to assess

its performance using four years of RCM and observed data. The first three years

were used as a training dataset and the last year was used as a testing dataset. The

training dataset was used to estimate the β coefficients and those β̂’s were used to

calculated the calibrated τ̂ calk values, which were transformed to climate variables

using the observed values of the training dataset. We compared our method to a

simple linear regression (SLR) calibration between the RCM and observed data

and to variance-scaling (VS), a standard calibration method often used in climate

research [46]. The variance-scaling method involved adjusting the predicted values

from the RCM so they will have the same mean and variance and the observed

data from the training period.

Our proposed quantile calibration method was better at capturing the tail

distributions of the climate variables than the SLR or VS methods. Figure 19

shows the empirical CDFs resulting from the testing dataset.
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Figure 19: Cross-validation: empirical CDF plots of observed, uncalibrated
projections, calibrated projections (with 95% confidence bands), simple linear
regression projections, and variance-scaling projections for daily average
temperature, maximum temperature, and solar radiation in Atlanta (1996-2000)

Overall, the quantile method performed well in the cross validation. The

calibrated predicted quantile levels fit the observed quantile levels better than

the RCM model. Temperature variables performed better than solar radiation.
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This may be because the climate model is designed to prioritize the accuracy of

temperature projections over the accuracy of other variables’ projections. The

RMSE of the calibrated variables was less than the RMSE of the uncalibrated

RCM variables, but not less than the SLR or VS methods (Table 6). However,

while these methods performed well in the center of the data distribution, neither

of them capture the tail distributions well. The correlations between variables

were similar to the overall analysis (Table 7).

Table 6: Cross Validation: Average Root Mean Squared
Error (RMSE) of Different Methods

Variable RCM Calibrated SLR Variance-scaled
Average Temperature 3.46 0.89 2.27 1.09
Maximum Temperature 4.04 0.87 2.89 1.65
Solar Radiation 580.53 410.35 990.52 307.87

Table 7: Cross Validation: Correlations between Climate
Variables

Variable Observed RCM Calibrated SLR Variance-scaled
Avg Temp & Max Temp 0.983 0.967 0.967 0.967 0.967
Avg Temp & Solar Radiation 0.636 0.456 0.456 0.456 0.456
Max Temp & Solar Radiation 0.716 0.584 0.584 0.584 0.584
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3.7 Bivariate Calibration Method

3.7.1 Background

The methods described to this point are designed for a univariate calibration

(e.g., calibrating a RCM-generated maximum daily temperature to observed

maximum daily temperature). These univariate techniques, as well as other

current methods and applications of climate model calibration, only consider single

variables one at a time, ignoring the physical complexity of the climate system

where climate variables interact and influence each other. For example, days with

higher temperatures are associated with higher solar radiation, while temperature

and precipitation tend to have an inverse relationship. Therefore, an approach

that considers multiple variables jointly may result in reduced uncertainty in the

calibrated outputs.

Additionally, a multivariate approach can ensure that the dependence structure

between those variables is retained after calibration. Retaining the dependence

structure may result in more accurate projections of adverse impacts, which

are often driven simultaneously by multiple conditions. Multiple climate model

variables are routinely used simultaneously as inputs for projecting future infection

disease transmission and air quality. For example, warmer temperatures and

higher precipitation levels can synergistically lead to larger mosquito populations.

Similarly, ozone and particulate matter (air pollution) are affected by multiple

meteorological conditions.

The main objective of this section is to describe a statistical approach to

perform bivariate joint calibration on the distribution-level. Specifically, we

extend the quantile calibration of Zhou et al. [48] by incorporating the observed

dependence between variables. This is accomplished via a copula to link the

marginal distributions of two climate variables to allow joint calibration. We

apply our calibration approach to examine projections of future temperature and

solar radiation in the city of Atlanta, which is currently in non-attainment for

ozone pollution under the National Ambient Air Quality Standards. Ozone is a
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secondary pollutant and its formation is highly affected by temperature and solar

radiation. We consider projections from four regional climate models (RCMs).

RCMs are used to inform the impact of climate change on regions and nations,

as accurate local information is necessary to justify social and economic policies

related to climate change adaptation and mitigation [10]. Our goal is to obtain

improved climate projections that can be used to evaluate health impacts in

subsequent analyses.

3.7.2 Motivating Example

We perform the bivariate calibration method using average daily temperature and

total daily solar radiation as our two variables. Four climate models are calibrated

for comparison purposes using observed monitoring data. Daily meteorological

conditions for 1991-2000, including average temperature and total solar radiation

(global horizontal irradiance), were obtained from the National Climatic Data

Center and the National Solar Radiation Data Base for monitors located at the

Hartsfield-Jackson Atlanta International Airport.

Climate model outputs were obtained from the North American Regional

Climate Change Assessment Program (NARCCAP) and included daily average

surface temperature and daily solar radiation values from the 50 km by 50

km grid cell including the Atlanta monitors [53]. These outputs were obtained

for the historical period of 1991-2000 and for the future period of 2041-2070.

NARCCAP, which is a public database of RCM simulations, provided simulations

which were conducted under the IPCC Special Report on Emissions Scenarios

(SRES) A2 emissions scenario [54]. The A2 scenario represents the higher end

of IPCC emission scenarios and entails large population increases, high carbon

dioxide emissions, and weak environmental concerns. To assess variabilities in

RCM projections under the same emission scenario, we examined NARCCAP

simulations from four combinations of two different RCMs driven by boundary

conditions from four different global climate models (GCMs). The RCMs include
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the Canadian Regional Climate Model (CRCM) and the Handley Regional

Model 3 (HRM3). The GCMs include the Community Climate model version

3 (CCSM3), the Canadian Global Climate Model version 3 (CGCM3), the

Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model version 2.1, and

the United Kingdom Hadley Centre Climate Model version 3 (HadCM3). Detailed

descriptions on the RCM and GCM characteristics are summarized by NARCCAP

online

(http://www.narccap.ucar.edu/). The following 4 RCM-GCM combinations

were conducted by NARCCAP and examined in this study: CRCM-CCSM,

CRCM-CGCM3, HRM3-GFDL, and HRM3-HadCM3. As Figure 20 shows, the

uncalibrated climate models project higher temperature and solar radiation values

than were observed.



47

Figure 20: Observed values and historic climate simulations for average
temperature and solar radiation in Atlanta (1991-2000)

3.7.3 Copulas

Copulas are one method of determining a joint distribution provided the marginal

distributions are known. Copulas are multivariate distribution functions where

the marginal distribution for each variable is uniform. The copula completely

characterizes the dependence relationship between the variables. In order to use
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copulas, random variables are transformed to uniformly distributed marginals via

the cumulative distribution function:

(U1, U2) = (F1(Y1), F2(Y2))

The copula, CY, is defined as the joint cumulative distribution of (U1, U2) such

that:

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2)

This relationship allows the random variables, (Y1, Y2) to be rewritten as

(Y1, Y2) = (F−1
1 (U1), F

−1
2 (U2)) leading to:

C(u1, u2) = P (Y1 ≤ F−1
1 (u1), Y2 ≤ F−1

2 (u2))

By Skalr’s theorem, the joint probability density can then be written as the

product of the derivative of the copula and the marginal densities [55].

fY(x) = fy1(y1) · fy2(y2) · cY(u1, u2) (1)

There are many different types of copula families, grouped by parametric form.

The two most common copula families are elliptical and Archimedean copulas.

A systematic method for selecting a copula has not been determined although

the science of copula selection is a popular area of research. For this analysis,

we will investigate the fit of the Gumbel and the Frank copulas, members of the

Archimedean family.

The Gumbel copula form is:

Cα(u1, u2) = exp{−[(−log u1)
α + (−log u2)

α]1/α}, α ∈ [1,∞)

where α̂ = 1
1−k

and k is the Kendall’s τ coefficient of the observed data.
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The bivariate Frank copula form is:

C(u, v; δ) = −δ−1log

(
1− e−δ − (1− e−δu)(1− e−δv)

1− e−δ

)
,−∞ < δ < ∞

where δ̂ is estimated by setting Kendall’s τ = 1 + 4δ−1[D1(δ) - 1], where

D1(x)=x−1
∫ x

0
tk(et − 1)−1dt, and solving for δ. The estimation of δ was

accomplished with the CDVine R package [56].

The choice of the Gumbel copula, which entails greater dependence in the right

tail, is based on previous work in climate change research [55]. The bivariate

Frank copula was chosen as a comparison to the Gumbel copula because it models

a similar, but slightly different dependence structure between the two variables.

The copula determines the dependence between the two variables and contributes

information on that dependence to the joint distribution of the variables. Because

parametric form of copula determines the parametric form of the joint distribution,

the selection of copula affects how well the joint distribution describes the true

dependence between the variables. Copula selection is a current area of interest

in statistics. Here, parametric forms were selected based on the copula properties,

specifically maintaining tail dependence (compared to the Gaussian copula, for

example, which does not retain tail dependence).

3.7.4 General Modeling Framework

The goal of our calibration method is to first estimate the discrepancy in

distributions between the climate model simulation and the observed monitoring

data. We characterize the entire distribution using quantile functions. For a

continuous random variable, Y, the quantile function of Y is the inverse of the

strictly monotone cumulative distribution function:

QY (τ) = F−1
Y (τ), τ ∈ [0, 1]
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where τ represents the quantile level of Y: P [Y < QY (τ)] = τ . For example,

QY (0.5) is the median of Y. The quantile function uniquely defines the distribution

with density given by:

fY (y) =
1

dQY (τ∗)
dτ

|τ∗={τ :QY (τ)=y}
(2)

In the univariate quantile calibration described above, a non-decreasing

function is used to calibrate the quantile function of the numerical model

output towards the quantile function of the observations. However, univariate

calibration methods do not account for the fact that meteorological variables do

not exist independently from each other and affect each other’s values. Therefore,

calibration ideally should accommodate multiple variables in a unified statistical

model. We use copulas to define the target joint distribution and retain the

observed dependence structure of the climate variables in the calibrated outputs.

The above copula decomposition of the bivariate likelihood allows us to perform

joint quantile-based calibration as follows:

• Step 1: for the historical period, we assume the quantile function associated

with each marginal density fk(yk), for variable k={1,2} is given by

gk(Q
RCM
k (τ)), where QRCM

k (τ) is the corresponding empirical quantile

function of the climate model output and gk(·) is a non-decreasing calibration

function. The copula density CY (u1, u2) is also estimated from the observed

monitoring data to capture the desired dependence structure.

• Step 2: the calibration functions gk(·) estimated from Step 1 are applied to

the quantile functions of the climate model outputs for the future period to

obtain a calibrated future marginal distribution for each variable.

• Step 3: to obtain calibrated outputs with the correct dependence at the daily

level, we simulate realizations of (u1, u2) from the historical copula CY and

the calibrated future quantile function from Step 2 for the same number of

future days.
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3.7.5 Model Specification

We model quantile functions for the observed data as smooth functions using

I-splines as described in Section 3.3 to ensure monotonicity. Here we selected a

knot sequence of {0.1, 0.25, 0.5, 0.75, 0.9, 0.95} based on a sensitivity analysis.

We model Qobs(τ) =
∑

i βiIi(Q
RCM(τ)) where Qobs(τ) is the quantile function

of the historical observed data and QRCM(τ) is the empirical quantile function

for the climate model data. The marginal quantiles are modeled separately for

each climate variable. Ii(·) denotes the i-th I-spline basis function, and βi is the

corresponding regression coefficient. Qobs(τ) is monotone increasing if βi > 0 for

all i. Without loss of generality, we standardize each variable to be between 0 and

1. We then assume that
∑

i βi = 1. This constraint forces the quantile functions

to go through (0,0) and (1,1) such that the corresponding density has support

over the [0,1] x [0,1] square. The dimension of the I-splines is dependent on the

number of knots selected for the splines. Preliminary cross-validation study of

various knot selection options determined placing knots at the 10th, 25th, 50th,

75th, 90th, and 95th quantile levels of the data was sufficiently dense. Joint

calibration is accomplished via the copula function.

In addition to the bivariate copula-based calibration, a two-stage quantile

calibration method was considered. This method uses the univariate quantile

calibration method laid out by Zhou, et al. to calculate the marginal

calibration functions independently [48]. The resulting calibrated quantile

function, gk(Q
RCM
k (τ)), is used to identify the quantile levels, τi, matching the

historic observed daily measured values for each variable. The resulting τi from

both variables are linked by day. These pairs are randomly re-sampled with

replacement for the same number of future days, analogous to the simulation step

in the general modeling framework. Therefore, the two-stage approach can be

viewed as a non-parametric bootstrap method to the copula. This non-parametric

method is similar to the Schaake shuffle frequently used in climate research

[57, 58, 59, 60].
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3.7.6 Parameter Estimation

Parameter estimation and inference are carried out under a Bayesian

framework. Bayesian inference is particularly useful for propagating different

sources of uncertainties into the final climate projections. The random-walk

Metropolis–Hastings algorithm, a Markov Chain Monte Carlo (MCMC) method,

is used because the full conditional distributions of all model parameters do not

correspond to standard distributions.

The positivity and sum-to-one constraints on the βi’s are handled using a

latent variable approach. Specifically, we define βi = eβ
∗
i∑

i e
β∗
i

where β∗
i is the

unconstrained latent variable. For identifiability purposes, we set β∗
1=0. Here

we use a multivariate normal distribution to propose β∗
i values for each climate

variable. A truncated normal distribution is used to propose α values for the

Gumbel copula with a lower bound of 1 and an upper bound of 200. A normal

distribution is used to propose δ values for the Frank copula. The proposal

distributions are tuned to achieve acceptance rates of approximately 35%.

Non-informative flat priors are used for β∗
i , α, and δ. The data likelihood,

Equation (1), is given via the inverse derivative of the quantile function for the

marginal density using Equation (2) and the selected copula density. The Gumbel

copula density is given by: c(u, v, α) = exp{−[xα + yα]1/α}[(xα + yα)1/α + α −

1][xα + yα]1/(α−2)(xy)α−1(uv)−1 (where x=-log u and y=-log v). The bivariate

Frank copula density is given by c(u, v, δ) = δ(1−e−δ)e−δ(u+v)

[1−e−δ−(1−e−δu)(1−e−δv)]2
. With the

use of I-splines, the marginal density has a closed-form expression given by the

corresponding M-splines. The density is evaluated over a grid of 200 evenly spaced

quantile values within [0,1].

A total of 500,000 iterations were run and thinned every 100 iterations. After

burn-in the final number of posterior samples was 3000. Convergence of the

MCMC algorithm was assessed using trace plots of key model parameters and

deviance.
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3.7.7 Cross-Validation Study

We compared our bivariate calibration method to other calibration methods

currently used in climate science using the 10 years of historical data (1991-2000)

of average daily temperature and daily total solar radiation in a five-fold

cross-validation analysis.

The bivariate quantile calibration methods (Gumbel copula, Frank copula, and

two-stage) were compared to linear regression and the variance-scaling method.

The linear regression method estimated the linear association between daily

climate model outputs and the corresponding observed monitor values. The

regression coefficients are then applied to the climate model output on each day in

the testing dataset. The variance-scaling method forces the mean and variance of

a climate model output to equal the mean and variance of historic observed values

[46]. First, the mean of the climate model output is linearly scaled by the difference

between the historical monthly mean (µm) of the observed data and the monthly

mean of the climate model data: let T1 = Ȳ RCM
future + µm(Ȳ

obs
hist) − µm(Ȳ

RCM
hist ). The

mean-corrected values are then centered to have zero means: T2 = T1 − µm(T1).

Next, the standard deviations are used to scale the observed to the climate model:

T3 = T2 ∗ [
σm(Y obs

hist)

σm(T2)
]. Finally, calibrated outputs are obtained by shifting T3 back

using the corrected mean: T3 + µm(T1).

Calibration methods were compared by calculating the continuous ranked

probability score (CRPS) of the quantile values over a sequence of 101 quantile

levels between the calibrated climate model outputs for the testing dataset and

the corresponding observed values. As seen in Table 8, the bivariate quantile

calibration methods generally had a lower CRPS than the other calibration

methods for both average temperature and solar radiation. The Gumbel copula

method had the lowest CRPS for average temperature in two of the climate models

while the Frank copula method had the lowest CRPS for solar radiation across

three of the climate models.
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The variance scaling method resulted in CRPSs higher than those of the

bivariate calibration method in all cases except the daily average temperature

in the HRM3-hadCM3 model and the solar radiation in the CRCM-CGCM3

model. The linear regression calibration generally performed the worst of the

calibration methods. Here the calibrated output represents the conditional mean

of the observation given the model output (regression towards the mean), resulting

in poorly characterized distribution tails.

Table 8: Continuous ranked probability scores (CRPS) from a cross-validation
analysis of methods used in calibrating climate models. The bivariate quantile
methods are compared to univariate scaling methods on the grid cell corresponding
to the monitor in Atlanta, GA. The lowest CRPS for each variable-model
combination is bold.

Climate Model: Model 1 a Model 2 b Model 3 c Model 4 d

Temperature (C)
No Calibration 1.639 2.689 1.663 1.478
Linear Regression 0.426 0.598 0.776 0.462
Variance Scaling 0.511 0.642 0.771 0.456
Two-Stage 0.563 0.566 0.627 0.507
Gumbel 0.313 0.303 0.346 0.271
Frank 0.272 0.260 0.410 0.366

Solar Radiation (W/m2)
No Calibration 747 605 535 540
Linear Regression 174 141 126 135
Variance Scaling 175 107 106 142
Two-Stage 147 138 110 120
Gumbel 103 107 154 115
Frank 108 92 107 103

aCRCM-CCSM
bCRCM-CGCM3
cHRM3-GFDL
dHRM3-HadCM3

Table 9 gives the Pearson’s correlation and Kendall’s tau of the calibrated

model output in the testing dataset compared to those observed. The correlation

of the calibrated climate model outputs was best retained by the two-stage quantile

calibration method. This was expected as the linkage of the calibrated outputs
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is based on the observed daily quantile values of the two variables. The copula

calibration method led to correlations that underestimated the observed historic

correlation. The linear regression and variance scaling correlations were the same

as the uncalibrated correlations as both methods are monotone transformations.

The variance scaling and linear regression methods resulted in correlations that

were slightly higher than the observed correlation in two models and slightly lower

than the observed correlations in the other two models.

Table 9: Correlation measures from a cross-validation analysis of methods used
in calibrating climate models. The bivariate quantile methods are compared
to univariate scaling methods on the grid cell corresponding to the monitor in
Atlanta, GA.

Climate Model: Model 1 a Model 2 b Model 3 c Model 4 d

Pearsons Correlation
Observed 0.564 0.564 0.564 0.564
No Calibration 0.685 0.613 0.536 0.461
Linear Regression 0.685 0.613 0.536 0.461
Variance Scaling 0.685 0.613 0.536 0.461
Two-Stage 0.575 0.566 0.557 0.561
Gumbel 0.343 0.370 0.392 0.382
Frank 0.490 0.482 0.493 0.484

Kendall’s Tau
Observed 0.403 0.403 0.403 0.403
No Calibration 0.492 0.433 0.375 0.330
Linear Regression 0.492 0.433 0.375 0.330
Variance Scaling 0.492 0.433 0.375 0.330
Two-Stage 0.391 0.409 0.411 0.411
Gumbel 0.277 0.268 0.286 0.275
Frank 0.344 0.337 0.346 0.339

aCRCM-CCSM
bCRCM-CGCM3
cHRM3-GFDL
dHRM3-HadCM3

3.7.8 Application to Climate Projections

We assess future climate by estimating the mean and 95th percentile of the climate

variables over the period 2041-2070. These statistics are compared to those during
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the historical period (1991-2000). The quantile functions of the calibrated climate

models had less variability between them than the uncalibrated climate models,

particularly in the upper tails of the distributions for both temperature and solar

radiation (Figures 21 and 22). Figure 21 shows that the quantile functions of

the calibrated historic climate models (1991-2000) fit the quantile function of the

observed monitoring data better than the quantile functions of the uncalibrated

climate models. The raw future period (2041-2070) climate model outputs have

considerably higher upper tails than the observations. The calibrated distributions

are closer to the historic distribution than the uncalibrated distributions thus

demonstrating our ability to resolve distributional discrepancies. Figures 21 and

22 also show that the two copula forms gave similar projections. We note the

posterior intervals for the two-stage calibration are much smaller. This is likely

because the estimated τi values being resampled are assumed known.
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Figure 21: Quantiles functions of average daily temperature and total daily
solar radiation from raw climate model projections and calibrated climate model
simulation during the historical period (1991-2000). Calibrated models are
calibrated with the best method based on the CRPS from the cross-validation.
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Figure 22: Quantiles functions of average daily temperature and total daily
solar radiation from raw climate model projections and calibrated climate model
projections (2041-2070). Climate model projections are compared to the quantile
functions from the historic monitoring data (1991-2000). Calibrated models are
calibrated with the best method based on the CRPS from the cross-validation.
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Calibrated climate models had higher projected mean values for temperature

and lower projected mean values for solar radiation in comparison to uncalibrated

climate models (Figure 23). At the 95th percentile level, calibrated climate models

had lower projected values for both temperature and solar radiation compared to

uncalibrated climate model outputs (Figure 24). More importantly, calibration

reduces the between-model variability in projections considerably. The differences

between the calibrated values and the historic values were less than the differences

between the historic values and the uncalibrated climate model values at the

95th percentile in all climate models. The calibrated climate models projected

an increase in temperature of 1.68 to 1.81 degrees in the mean and an increase

of 0.73 to 2.04 degrees in the 95th percentile. For solar radiation, the calibrated

model outputs indicate no change in mean solar radiation and a decrease in solar

radiation at the 95th percentile. This is the opposite conclusion to the conclusion

obtained from using uncalibrated model outputs, which projects an increase in

solar radiation at both the mean and the 95th percentile.

Our estimates of the Gumbel copula parameter, α, were similar across the four

climate models with α̂ = {1.32, 1.29, 1.32, 1.31}. Our estimates of the Frank

copula parameter, δ, were also similar across the four climate models with δ̂ =

{3.31, 3.22, 3.33, 3.25}.
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Figure 23: Projected mean percentile values for average daily temperature and
total daily solar radiation values from raw climate model projections and calibrated
climate model projections (2041-2070). Climate model projections are compared
to observed values from historic monitoring data (1991-2000). Posterior mean and
95% posterior intervals are shown when available.

Figure 24: Projected 95th percentile values for average daily temperature and total
daily solar radiation values from raw climate model projections and calibrated
climate model projections (2041-2070). Climate model projections are compared
to observed values from historic monitoring data (1991-2000). Posterior mean and
95% posterior intervals are shown when available.

3.7.9 Discussion

Improving the quality of climate model projections is a priority in both climate

science and public health science. Accurate climate projections are important
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for policy makers when deciding on how to respond to the threat of climate

change. Adaptation (adjusting to unpreventable climate change) and mitigation

(preventing further climate change as much as possible) to the changing climate

are complex and expensive endeavors with high political and economic costs. The

World Meteorological Organization asserted that “only by assessing what the

real impact will be on different countries will it be possible to justify difficult

social and economic policies to avert a dangerous deterioration in the global

climate” [10]. Accurate and consistent climate projections, especially those

with uncertainty estimates, are essential to providing decision-makers information

about the impacts of climate change.

One such impact of climate change is human health. Climate change

has the potential to endanger human health across the globe through several

interconnected channels, including higher temperatures, more extreme weather,

and sea level rise. These shifting climate factors can lead to heat waves with

increased frequency and intensity, higher levels of air pollution, changes in vector

ecology, increasing allergens, decreased water quality, food supply interruptions,

and environmental degradation [3]. Direct heat-related mortality and morbidity

(e.g., heat stroke) are expected to increase as the global temperature rises

[61, 62, 63]. Increased temperatures can also indirectly affect human health

through mechanisms such as increases in ambient air pollution concentrations

[4, 14]. Asthma aggravation has been tied to increases in ambient air pollution

levels as air pollution can induce airway inflammation [22, 12].

Calibration is one strategy to improve the accuracy of climate model

projections. The proposed bivariate quantile calibration method is aimed at

improving the accuracy of the upper-tail climate projections in particular.

Calibrating climate model outputs against historical observations via a statistical

model also provides uncertainty measures (here, a posterior predictive interval)

that can employed in the decision-making process. Under our Bayesian framework,

parameters for the marginal densities and the copula are estimated jointly. This
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approach better propagates uncertainties in projections compared to methods that

employ a stepwise estimation approach [46, 64, 65].

Several elements of the proposed calibration method warrant further

examination. First, how well the dependence structure between the variables

is retained in the calibrated models outputs is influenced by the choice of copula.

In our application, the Gumbel and Frank copulas appear to underestimate the

dependence between temperature and solar radiation. Copula selection is an active

area of research including work in the use of goodness-of-fit statistics [66], copula

structures [67], and information criteria [68, 69]. Copula selection can be also

driven by the dependence structure, such as symmetry and tail dependence, that

one wishes to capture based on knowledge of the physical system. The use of

a parametric copula facilitates our approach to be extended to more than two

variables.

Second, any calibration method is dependent on the quality and assumptions

of the climate model used, where minimal discrepancies during the historical

period will lead to smaller uncertainty in the calibrated projections. This analysis

considered only four climate models and assessment of more climate models of

different spatial resolution and global regions are needed to fully assess the benefits

and limitations of statistical calibration in climate science research.

Third, output calibration makes the necessary but naive assumption that bias

observed during the historical period in the climate model will be identical to

the future periods. Finally, we only consider calibration at a single location.

Climate model bias is likely to exhibit spatial trends and one natural extension

is to consider spatial quantile processes [47] when performing calibration at

multiple locations. Incorporating spatial dependence will also allow interpolation

of the calibration parameters such that locations with no monitoring data can be

calibrated.
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4 Aim 3: Projection of Future Ambient

Air Pollution and Asthma Emergency

Department Visits

4.1 Background

Climate models have been used to estimate future health impacts due to air

pollution, often with a focus on ozone and respiratory disease [70, 71, 72, 73,

74, 75]. These studies used climate model outputs, including O3 concentrations,

to project changes in future mortality under climate change scenarios. Both O3

concentrations and air pollution mortality are expected to increase in the future

based on the findings of these studies. Research on health impacts resulting

from changes in future PM2.5 concentrations has had mixed findings [76, 77].

PM2.5 concentrations are heavily dependent on emissions and any projection must

make assumptions on future environmental policy. Climate models that assume a

reduction in the emissions contributing to PM2.5 project a subsequent reduction

in PM2.5 concentrations and a corresponding reduction in morbidity and mortality

due to PM2.5.

The reliability of all health impact projections is dependent on the accuracy

of the climate models on which they are based. Here we will extend the bivariate

calibration method detailed above in Section 3.7 by considering the spatial

structure of climate model outputs on a contiguous areal grid. We develop a spatial

calibration method that calibrates climate model outputs over a gridded area. This

spatial calibration allows for local calibration (at each grid cell) to potentially

improve the accuracy of the climate model outputs. The bivariate calibration

also allows for the retention of the observed correlation structure between climate

model variables.

This spatial extension allows the projection of calibrated climate model

variables at locations that do not have a monitoring site to provide observed
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data. We project calibrated values for two air pollutants: O3 and PM2.5. We

subsequently use these projected pollutant concentrations to project future asthma

emergency department (ED) visits in two metropolitan areas: Atlanta, GA and

Birmingham, AL.

4.2 Data

The climate model used in this analysis is a coupled global and region climate

modeling system that links a global climate-chemistry model with regional weather

(WRF) and air quality (CMAQ) models [78, 79, 70]. The WRF-CMAQ climate

model has a spatial resolution of 12 km x 12 km grid cells. The spatial domain of

the climate model was limited to latitudes between 32.7◦ and 35◦ and longitudes

between -83◦ and -87.5◦ (northern Georgia and Alabama). At each grid cell

the climate model simulates values of 8-hour maximum O3 (ppb) and 24-hour

average PM2.5 (µg/m3) for 2001-2004 and 2055-2059. For this analysis the 8.5

RCP scenario is used, meaning the WRF model assumes high CO2 emissions and

large population increases. The CMAQ model also makes assumptions about air

pollutant emissions. Most importantly for this work, the CMAQ model assumes a

large reduction in the emissions of the constituents of PM2.5, resulting in a model

that greatly under-estimates PM2.5 concentrations in the historic period.

The observed data consists of 8-hour maximum O3 (ppb) and 24-hour average

PM2.5 (µg/m3) measured from 2001-2004 at air quality monitors located within

the study area. The O3 and PM2.5 monitors that were not co-located were linked

to the closest monitor by determining the shortest great circle distance between

the pollutants’ monitors. Monitoring pairs (PM2.5 monitors each matched to the

closest O3 monitor) that had observed data during the summer months (May -

September) 2001-2004 were selected for use. Distances between O3 and PM2.5

monitors ranged from 0 km to 8.9 km. In the end, 17 monitors were used (Figure

25). Climate model grid cells were linked to the observed monitors by finding the
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closest grid cell centroid for each monitor pair. Both climate model and observed

data were limited to warm months (May - September) in this analysis.

Figure 25: Study area for spatial calibration analysis with air quality monitors

4.3 Data Descriptives

The mean observed correlation between the pollutants at each monitoring location

was 0.588 while the mean correlation between the pollutants at each linked grid

cell from the climate model was -0.058. The correlations at each monitoring

location is displayed in Table 10. The climate model consistently underestimates

the temporal correlation between O3 and PM2.5. As Figures 26 and 27 show, the

temporal patterns of the pollutants are not well simulated by the uncalibrated

climate model during the historical period. Specifically, the model simulation

shows less day-to-day variation than the observations.
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Table 10: Pearson’s Correlation of Observed and Uncalibrated Data

Monitor Pair Observed Uncalibrated (2001-2004)

1 0.745 -0.117
2 0.688 -0.084
3 0.718 -0.11
4 0.657 -0.101
5 0.683 -0.021
6 0.493 -0.049
7 0.672 0.092
8 0.661 -0.106
9 0.58 -0.031
10 0.496 -0.031
11 0.499 -0.07
12 0.433 -0.043
13 0.581 -0.016
14 0.471 -0.058
15 0.663 -0.099
16 0.55 -0.031
17 0.413 -0.112

Mean 0.588 -0.058
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Figure 26: Time series of daily observed O3 and PM2.5 at a monitor pair in
northeast Birmingham, AL during summer 2002

Figure 27: Time series of daily simulated O3 and PM2.5 at a monitor pair in
northeast Birmingham, AL during summer 2002

As Figure 28 shows, the uncalibrated climate model is biased upwards in

the hindcast for O3 resulting in higher concentrations of O3 than were actually
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observed. As Figure 29 shows, uncalibrated climate model outputs of PM2.5

over-predicts days with lower PM2.5 concentrations and under-predicts days with

higher PM2.5 concentrations.

Figure 28: Quantiles of projected and observed O3 at a monitor pair in northeast
Birmingham, AL, 2001-2004

Figure 29: Quantiles of projected and observed PM2.5 at a monitor pair in
northeast Birmingham, AL, 2001-2004

4.4 Parameter Estimation

Estimation was done in two-stages as the model was too large to estimate at

once. The first stage comprises of fitting the calibration model separately at each



69

monitor location. The second stage uses the parameters from all monitor locations

and pools them spatially to obtain a spatially-varying calibration function. Here

the knot sequence of the I-splines used to model the empirical quantile functions

was {0.1, 0.25, 0.5, 0.75, 0.95}.

4.4.1 Statistical Model

There are S monitoring locations matched to S climate model grid cells. At

each location, denoted by s, a bivariate calibration modeled is fitted following the

method proposed in Aim 2.

At each location s, QObs
s,PM(τ) is the quantile function for the observed PM2.5

values, YObs
s,PM , and QObs

s,O3
(τ) is the quantile function for the observed O3 values,

YObs
s,O3

. Similarly, QCM
s,PM(τ) is the quantile function for the linked modeled PM2.5

values, YCM
s,PM , and QCM

s,O3
(τ) is the quantile function for the matched-location

modeled O3 values, YCM
s,O3

.

The model is set up as follows:

QObs
s,PM(τ) = gs,PM [QCM

s,PM(τ); βs,PM ]

QObs
s,O3

(τ) = gs,O3 [Q
CM
s,O3

(τ); βs,O3 ]

f(Y Obs
s,PM , Y Obs

s,O3
) = f(Y Obs

s,PM)f(Y Obs
s,O3

)c(τObs
1,s , τObs

2,s ; θ)

where c(τObs
1,s , τObs

2,s ; θ) is the copula density, τ1 are the quantile levels for PM2.5,

and τ2 are the quantile levels for O3. The density of f(Y ) where Y =

{Y Obs
s,PM , Y Obs

s,O3
, Y CM

s,PM , Y CM
s,O3

} is given by:

f(Y ) =
1

dQY (τ∗)
dτ

|τ∗={τ :QY (τ)=y}
;
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τObs
1,s = {τ : QObs

s,PM(τ) = Yτ} ;

τObs
2,s = {τ : QObs

s,O3
(τ) = Yτ}

The priors associated with the above model’s parameters are given below. We

consider 2 copula functions: Gumbel and Frank:

θGubmel ∼ TN(θ, 1, 1,∞)

θFrank ∼ N(θ, 0.1)

The priors for βs,PM and βs,O3 are N(0, δ), where δ equals the variance of the

initial β estimates multiplied by a tuning parameter, with constraints:∑
i βi = 1

βi =
eβ

∗
i∑

i e
β∗
i

β∗
1=0

The one-stage estimation results in a variable-specific β̂ vector and corresponding

Σ̂ covariance matrix for every monitoring location. Each of the β̂ vectors consist of

the regression coefficients describing the calibration relationship at that location

and have the dimensions (K x 1) where K is determined by the dimensions of

the calibration design matrix and is dependent on the number of knots in the

I-spline. Following the calibration at each location, the calibration parameters,

β̂s, are pooled across all sites for each variable.

For s = 1, 2, . . . , S,

β̂s,PM ∼ N(βs,PM , Σ̂s,PM)

β̂s,O3 ∼ N(βs,O3 , Σ̂s,O3)

βs,PM ∼ N(µPM ,VPM)

βs,O3 ∼ N(µO3 ,VO3)
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We combine the location-specific parameters into a single vector. For each

pollutant separately, the (K x 1) β̂ vectors are stacked into one large β· vector

with the dimensions (SK x 1).

β̂· =



β̂1

β̂2

...

β̂S


=



β̂11

...

β̂1K

β̂21

...

β̂2K

...

β̂SK



β· =



β1

β2

...

βS


=



β11

...

β1K

β21

...

β2K

...

βSK


A vector of the mean of the β̂k values across all locations, µ is created. This

vector is repeated S times to create one long vector, µ· with the dimensions (SK

x 1).

µ· =



µ

µ

...

µ
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The covariance matrix is similarly set up where Σ̂s represents the (K x K)

covariance matrix at each monitor location. These Σs covariance matrices are

set up in a large block diagonal covariance matrix:

Σ̂· =



Σ̂1

Σ̂2 0
0 . . .

Σ̂S


For each location s, V is a (K x K) diagonal vector of variances of each βk

coefficient across the s locations. Covariances between βs coefficients at the

same location were assumed to be 0. Similar to the µ· vector that summarized

information across all locations, a summary covariance matrix, V ·, was created

by summarizing the V for all s and has dimensions (SK x SK).

V · =



V . . . . . . . . . . .

. . V . . . . . . .

...
...

. . .
...

. . . . . . . . . . . V
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Our final model for PM2.5 is:

β̂·PM ∼ N(β·PM , Σ̂·PM)

β·PM ∼ N(µ·PM ,V ·PM)

Similarly for O3, we have:

β̂·O3 ∼ N(β·O3, Σ̂·O3)

β·O3M ∼ N(µ·O3,V ·O3)

Our goal is to estimate a set of β coefficients that can be used to simulate calibrated

values of O3 and PM2.5 based on all of the monitor locations. We accomplish

this using a Gibbs sampler where the posterior distributions are known. Here X

represents a (SK x K) design matrix that consists of (K x K) identity matrices

repeated S times.

β· ∼ N((Σ̂·
−1

+ V ·−1)−1(Σ̂·
−1
β̂·+ V ·−1 µ·), (Σ̂·

−1
+ V ·−1)−1)

µ· ∼ N((XTV ·−1 X−1)−1XTV ·−1 β·, (XTV ·−1 X)−1)

Vk,k ∼ InvGamma
(S
2
+ α0,

S∑
s=1

(βs,k − µk)
2

2
+ α0

)
The off-diagonal portions of the covariance matrix, V ·, represent the spatial

covariance between the monitor locations. If there was no spatial relationship,

the off-diagonals would be 0 and V · could be estimated by taking the Kronecker

product of an (S x S) identity matrix and the V matrix, V · = I ⊗V . Spatial
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covariances between the locations are incorporated with an exponential spatial

covariance function, S = exp(−1
ρ
xD) whereD is a matrix of the pairwise distances

between the monitor locations. Thus, the covariance matrix for spatial dependence

V · = S ⊗V .

The parameter ρ is a spatial smoothing parameter that determines how much

the spatial points are influenced by the surrounding points. A rough estimate

of ρ = −log(r)
d

where d is the distance between two points and r is their spatial

correlation. The value of ρ was determined by selecting two points and calculating

the distance between them and then conducting a sensitivity analysis over various

potential spatial correlations.

4.4.2 Prediction of New Location

The posterior β·, µ·, and V · estimates, which incorporate the spatial relationship

between the monitoring locations, are used to predict a set of β (K x 1) for a new

location. For any new location, the distance matrix, D, is expanded to include

the pairwise distances between the observed locations and the new, unobserved

location. This Dnew (S+1) x (S+1) is used to calculate a new spatial correlation

matrix, Snew = exp(−1
ρ

x Dnew). Subsequently, the joint covariance matrix is

found, V ·new = Snew ⊗V .

Vnew =

Σ11 Σ12

Σ21 Σ22


where:

Σ11 is (sk x sk)

Σ12 is (sk x k)

Σ21 is (k x sk)

Σ22 is (k x k)

The posterior predictive distribution is the conditional multivariate Gaussian

distribution.
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βnew | βk = N
(
µk + Σ21Σ

−1
11 (βk − µk), vk − Σ21Σ

−1
11 Σ12

)
Finally, the estimated βnew are used to calculate a predicted quantile function for

the new location, Q(τ) = βnew I.

4.5 Health Impact Projections

The projected pollutant values obtained using the above method were used to

project how asthma ED visits will change in the future under the changing

climate. Projections of the change in asthma morbidity were calculated for the

20-county metropolitan area of Atlanta, GA and the 9-county metropolitan area

of Birmingham, AL.

4.5.1 Data

Air quality and ED visit data were collected in 20 counties around Atlanta and in

9 counties around Birmingham (years 2002-2008). The air quality data included

daily population-weighted average concentrations of ambient 8-hour maximum

O3 (ppb) and 24-hour average PM2.5 (µg/m3). The population-weighted average

concentrations were calculated using data from all available monitors for each

pollutant in the study regions. We included monitors from the US EPA Air Quality

System, the SouthEastern Aerosol Research and Characterization (SEARCH)

network, and the Assessment of the Spatial Aerosol Composition (ASACA)

network. The monitoring data were first spatially interpolated across the study’s

geographic domain and then a population-weighted average concentration estimate

was derived using tract-level population estimates from the 2010 US Census. Daily

minimum, maximum, and dew-point temperature data were obtained from the

National Climate Data Center.

Patient-level ED visit data were obtained from individual hospitals and the

Georgia Hospital Association. Asthma ED visits were identified using the primary
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International Classification of Diseases, 9th Revision diagnosis code for the record

as either 493 (asthma) or 786.07 (wheeze).

4.5.2 Analysis

Change in asthma morbidity is dependent on two factors: how the concentration

of air pollution changes and the effect the air pollution level has on asthma.

In order to estimate the change in ambient air pollutant concentration we used

the calibrated future O3 and PM2.5 concentrations that were projected at each

grid cell using the above method. Grid cells that fell within the 20- and

9-county metropolitan regions were categorized as Atlanta or Birmingham grid

cells, respectively. The average concentrations of O3 and PM2.5 were calculated

by taking the mean of the concentrations for all of the grid cells within each group.

The mean observed concentrations of O3 and PM2.5 were calculated by taking the

mean of all of the observed concentrations from the monitors that fell within the

two metropolitan regions separately.

Daily time-series Poisson regression models were used to assess the relationship

between asthma ED visit counts and ambient pollutant concentrations. For these

analyses the temporal data were limited to the warm months (May - October)

for each year. The outcome of interest was daily counts of emergency department

(ED) visits for asthma. The main exposure variables were daily concentrations

of O3 (ppb) and PM2.5 (µg/m3). Other covariates in the health effects model

were cubic splines for lag 0 maximum daily temperature, cubic splines for lag

1-2 minimum temperature, cubic splines for lag 0-2 dew point temperature, time

splines for each year, indicator variables for each year, weekday, holidays, and

hospital, and an interaction variable for each year and the first time spline.
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The full models were:

log(YATL) = β0 + β1O3 + β2PM2.5 +
∑3

a=1 βaMaxTemp0a +∑3
b=1 βbMinTemp12b +

∑3
c=1 βcDP02c +

∑7
d=1 βdY eard +

∑8
e=1 βes(Timee) +∑7

f=1 βfY ear ∗ Time1f +
∑7

g=1 βgWeekdayg +
∑6

h=1 βhHolidayh +∑48
i=48 βiHopsitali + ϵ

log(YBHAM) = β0 + β1O3 + β2PM2.5 +
∑3

a=1 βaMaxTemp0a +∑3
b=1 βbMinTemp12b +

∑3
c=1 βcDP02c +

∑7
d=1 βdY eard +

∑8
e=1 βes(Timee) +∑7

f=1 βfY ear ∗ Time1f +
∑7

g=1 βgWeekdayg +
∑6

h=1 βhHolidayh +∑8
i=8 βiHopsitali + ϵ

The β estimates for O3 and PM2.5 (and their corresponding standard errors) were

used in the prediction of future asthma cases. For each city individually, the mean

changes in pollutant concentrations were ∆PM = mean(PMCM
2.5 ) - mean(PMObs

2.5 )

and ∆O3 = mean(OCM
3 ) - mean(OObs

3 ) where the observed time period is 2001-2004

and the climate model time period is 2055-2059. Calculation of the change in daily

asthma ED visits was done using the following formula:

EED = M*(exp{βO3∆O3 + βPM∆PM} - 1)

where M = Mean annual ED visits, ∆O3 = Change in mean O3 between historic

and future period, ∆PM = Change in mean PM2.5 between historic and future

period, and EED = Estimated change in number of ED visits between historic

and future period. Credible intervals were calculated by taking the 5th and 95th

percentiles of iterations of the EED estimates. The EED estimate iterations were

calculated by using all 3,000 iterations of ∆ and simulating 3,000 βO3 and βPM

vectors from a multivariate Gaussian distribution:

 βO3

βPM

 ∼ N


 β̂O3

β̂PM

,
 ̂var(βO3)

̂cov(βO3 , βPM)̂cov(βO3 , βPM) ̂var(βPM)
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4.5.3 Results

The mean observed Pearson’s correlation between O3 and PM2.5 at each linked

monitoring site was 0.588. After spatial bivariate calibration the mean Pearson’s

correlation between projected O3 and PM2.5 was 0.580 for the Gumbel copula and

0.572 for the Frank copula. In contrast the mean Pearson’s correlation between

uncalibrated projected O3 and PM2.5 was -0.058. Table 11 shows the correlation

values at each monitor location.

Table 11: Pearson’s Correlation of Observed and Calibrated Data

Grid Cell Observed Gumbel Frank Uncalibrated

1 0.745 0.740 0.677 -0.117
2 0.688 0.675 0.664 -0.084
3 0.718 0.707 0.704 -0.110
4 0.657 0.660 0.604 -0.101
5 0.683 0.636 0.648 -0.021
6 0.493 0.494 0.505 -0.049
7 0.672 0.657 0.669 0.092
8 0.661 0.632 0.646 -0.106
9 0.580 0.583 0.598 -0.031
10 0.496 0.483 0.482 -0.031
11 0.499 0.497 0.504 -0.070
12 0.433 0.463 0.467 -0.043
13 0.581 0.588 0.559 -0.016
14 0.471 0.440 0.441 -0.058
15 0.663 0.633 0.635 -0.099
16 0.550 0.540 0.526 -0.031
17 0.413 0.427 0.396 -0.112

Mean 0.588 0.580 0.572 -0.058

For this analysis the spatial smoothing parameter ρ=60. The distance between

the two monitoring locations (here, one in central Atlanta and one east of Atlanta)

was 74.8 km. Spatial correlations of r={0.05, 0.25, 0.5, 0.75} corresponded to ρ =

{60, 125, 250, 600}. Each monitor pair was left out one at a time and predicted

from the other monitor pairs. The resulting estimated O3 and PM2.5 levels were

compared to the observed levels using continuous ranked probability score (CRPS).

Table 12 shows the results from the sensitivity analysis.
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Table 12: Sensitivity analysis of spatial smoothing parameter values (ρ) using
continuous ranked probability scores (CRPS) with the lowest CRPS in bold.

ρ

60 125 250 600

Gumbel O3 0.098 0.108 0.105 0.112
Gumbel PM2.5 0.109 0.111 0.122 0.116
Frank O3 0.110 0.115 0.121 0.113
Frank PM2.5 0.100 0.104 0.108 0.123

The calibrated spatial climate models generally projected lower levels of mean

O3 than the uncalibrated climate model, although the results varied by location

(Figures 30, 31 and 32). The calibrated spatial climate models projected higher

levels of mean PM2.5 than the uncalibrated climate model across most of the spatial

domain (Figures 33, 34 and 35). Results were similar for the two parametric copula

forms (Gumbel and Frank) for both pollutants. In Atlanta and Birmingham

uncalibrated estimates for both O3 and PM2.5 were less than the historically

observed mean concentrations for the cities’ metro regions. Calibrated projected

future concentrations of O3 were less than the historic observed concentrations,

while calibrated projected future concentrations of PM2.5 were higher than historic

observed concentrations (Table 13).

Table 13: Projected and Observed Concentrations of Ambient O3 and PM2.5 in
Atlanta and Birmingham

O3 (ppb) PM2.5 (µg/m3)
Atlanta
Observed Historic 52.12 17.34
Uncalibrated Historic 33.95 8.93
Uncalibrated Future 50.84 4.14
Calibrated Future - Gumbel 47.1 22.07
Calibrated Future - Frank 44.12 22.69

Birmingham
Observed Historic 46.48 18.43
Uncalibrated Historic 35.91 6.93
Uncalibrated Future 48.75 3.18
Calibrated Future - Gumbel 43.25 18.69
Calibrated Future - Frank 38.81 18.65
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Figure 30: Uncalibrated projected mean O3 (ppb) concentrations, 2055-2059

Figure 31: Gumbel calibrated projected mean O3 (ppb) concentrations, 2055-2059
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Figure 32: Frank calibrated projected mean O3 (ppb) concentrations, 2055-2059

Figure 33: Uncalibrated projected mean PM2.5 (µg/m
3) concentrations, 2055-2059
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Figure 34: Gumbel calibrated projected mean PM2.5 (µg/m3) concentrations,
2055-2059

Figure 35: Frank calibrated projected mean PM2.5 (µg/m3) concentrations,
2055-2059
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Baseline annual counts of asthma ED visits were 33,719 in Atlanta and 4,623

in Birmingham (average of total annual counts from 2006-2007). In Atlanta,

the regression coefficient representing the association between asthma ED visits

and O3 was 0.0009 (SE: 0.0005) and the regression coefficient representing the

association between asthma ED visits and PM2.5 was 0.0018 (SE: 0.0008). In

Birmingham, there was a null association between O3 and asthma ED visits with

a regression coefficient of 0.0000 (SE: 0.0012) and a positive association between

PM2.5 and asthma ED visits with a regression coefficient of 0.0040 (SE: 0.0019).

The association between PM2.5 and asthma ED visits was statistically significant

in both Atlanta (p=.03) and Birmingham (p=.04). The covariance between O3

and PM2.5 was -2.4 x 10−7 in Atlanta and -1.5 x 10−6 in Birmingham.

Using the uncalibrated climate model, the projected average annual change in

asthma ED visits for Atlanta was a decrease of 833 ED visits with a 95% credible

interval of (-1392, -249). A reduction of 833 asthma ED visits would be a 2.47%

reduction in visits compared to baseline counts. The projected average annual

change in asthma ED visits for Atlanta using the calibrated climate models was

an increase of 141 (-1373, 1531) visits using the Gumbel copula and 85 (-1014,

1119) visits using the Frank copula. These projections represent a 0.42% and a

0.25% annual increase in asthma ED visits, respectively.

In Birmingham, the projected average annual change in asthma ED visits using

the uncalibrated model was an decrease of 276 (-443, -106) visits, which would be

a 5.97% decrease in ED visits compared to the baseline. The calibrated climate

model projected average annual change in asthma ED visits for Birmingham was a

increase of 6 (-160, 169) visits using the Gumbel copula and a decrease of 4 (-153,

141) ED visits using the Frank copula (Table 13). These projections represent a

0.13% annual increase in asthma ED visits using the Gumbel copula and a 0.09%

annual increase in asthma ED visits using the Frank copula.
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Table 14: Projected average changes in annual asthma ED visits between
2001-2004 and 2055-2059 due to changes in concentrations of O3 and PM2.5

Atlanta

EED 95% Interval % Change

Uncalibrated -833 (-1392, -249) -2.47
Gumbel
Combined Uncertainty 141 (-1373, 1531) 0.42
Health Association Uncertainty 135 (-173, 454) 0.40
Projection Uncertainty 146 (-1293, 1482) 0.43
Frank
Combined Uncertainty 85 (-1014, 1119) 1.84
Health Association Uncertainty 85 (-311, 491) 1.84
Projection Uncertainty 85 (-944, 937) 1.84

Birmingham

EED 95% Interval % Change

Uncalibrated -276 (-443, -106) -0.82
Gumbel
Combined Uncertainty 6 (-160, 169) 0.02
Health Association Uncertainty 5 (-25, 37) 0.01
Projection Uncertainty 6 (-146, 137) 0.02
Frank
Combined Uncertainty 4 (-153, 141) 0.086
Health Association Uncertainty 4 (-65, 75) 0.086
Projection Uncertainty 4 (-122, 101) 0.086

Table 14 shows the difference between the projected levels and the historically

observed mean levels by deciles for both O3 and PM2.5. In Atlanta, higher deciles

show larger reductions in O3 for the uncalibrated projections and both copula

forms. For PM2.5 in Atlanta, the uncalibrated projection has large reductions

in the higher deciles, while the two copula forms project an increase in the

concentration of PM2.5 in all the deciles except the 90th. In Birmingham, the

Gumbel copula projects large decreases in O3 levels at all deciles, and the Frank

copula also projects decreases in O3 levels at deciles above the 30th percentile. The

uncalibrated projection has increases in O3 levels in the lower deciles and increases

in O3 levels starting at the 60th percentile. Similar to Atlanta, the uncalibrated
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projection in Birmingham projects a reduction in PM2.5 levels at all decile levels.

The two copula forms project an increase in PM2.5 levels in the lower deciles and

a decrease in PM2.5 levels in the higher deciles.

Table 15: Change in pollutant concentrations by quantile levels

Atlanta

∆ O3 ∆ PM
Percentile Gumbel Frank Uncalibrated Gumbel Frank Uncalibrated
10% 14 12 21 11 10 -3
20% 8 6 15 8 8 -7
30% 4 1 9 7 8 -9
40% -1 -3 5 6 7 -11
50% -5 -8 -1 6 6 -12
60% -8 -12 -6 5 5 -14
70% -11 -13 -11 4 4 -17
80% -16 -19 -16 1 2 -20
90% -21 -25 -23 -3 -1 -24

Mean -5 -8 -1 5 5 -13

Birmingham

∆ O3 ∆ PM
Percentile Gumbel Frank Uncalibrated Gumbel Frank Uncalibrated

10% -11 8 20 7 7 -6
20% -16 4 15 5 5 -8
30% -20 -1 11 4 4 -10
40% -24 -5 6 3 2 -11
50% -26 -7 4 2 1 -13
60% -31 -10 -1 1 -1 -15
70% -35 -13 -4 -2 -3 -18
80% -40 -19 -10 -6 -6 -22
90% -46 -25 -17 -10 -9 -27

Mean -28 -8 2 1 1 -15
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4.5.4 Discussion

The uncalibrated climate model projected higher concentrations of O3 in the future

period (2055-2059) compared to the calibrated climate model projections. The

climate model in the historic period (2001-2004) projected lower concentrations

of O3 in the hindcast than were observed at the monitors. Therefore, we would

assume the mean projected calibrated concentrations of O3 would be higher than

the uncalibrated projections. This unexpected result may be explained by the

fact that the calibration function may not be accurately calibrating the upper

tails of the distribution. With this somewhat small observed dataset (only four

years of data and 17 monitor pairs), fewer knots could be used on the I-spline,

which may have resulted in modeled quantile functions that did not accurately

capture the upper tails. There was specifically a lack of data in the upper levels

of the quantile functions of the observed data for O3, making them particularly

difficult to accurately model. As a result, the projected calibrated concentrations

of O3 may be attenuated toward the mean. Overall, the calibrated projections of

O3 were higher than the historic raw O3 concentrations. However, in the urban

centers of Atlanta and Birmingham, the mean projected O3 concentrations were

less than the observed O3 concentrations.

During the hindcast, the uncalibrated climate model simulated more days with

low levels of PM2.5 and fewer days with high levels of PM2.5, resulting projected

PM2.5 concentrations that were less than observed concentrations. This bias is

corrected in the calibration step, which leads to calibrated climate models that

project higher levels of PM2.5 than observed concentrations.

The assumptions built into the uncalibrated WRF-CMAQ climate model are

important in the interpretation of the PM2.5 results. The WRF-CMAQ model

assumes by 2055 there will be a 60% reduction in the emissions that contribute

to PM2.5. This assumption explains the low PM2.5 values in the uncalibrated

future climate model (2055-2059). When the downward bias from the hindcast is

corrected in the future climate model, the calibrated climate model projections are
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higher than both the uncalibrated hindcast and the observed values. This result

highlights the major assumption of the calibration method, which is that the bias

between the hindcast and the observed values will apply to the climate model in

the future period.

The projected average changes in annual asthma ED visits between 2001-2004

and 2055-2059 present projected changes due only to changes in concentrations

of O3 and PM2.5 under the assumptions of the WRF-CMAQ model. Changes

in population growth, asthma incidence, and other non-pollutant exacerbators of

asthma are not considered. Thus, the projected changes in annual asthma ED

visits assume all conditions remain in stasis with the historic time period except

the concentrations of O3 and PM2.5.

The uncertainty around the calibrated projected change in annual asthma ED

visits encompasses the uncertainty around the estimated effect the air pollutant

has on asthma ED visits as well as the uncertainty around the change in pollutant

concentrations between the historic and future time periods. The uncalibrated

climate model is deterministic, therefore we cannot obtain a measure of uncertainty

around the uncalibrated change in pollutant concentrations between the historic

and future time periods.

This analysis has several limitations. First, any work with climate models is

dependent on the assumptions and accuracy of that climate model. Interpretations

of results must take these assumptions into account. Second, the calibration of the

upper tails of the distributions was limited by a lack of observed data. Not only

were we limited to 17 monitoring sites, the number of days with very high ozone at

those sites was small, making it difficult to model. Third, this analysis assumes the

observed effect air pollution had on asthma in the historic period (2002-2008) in

Atlanta and Birmingham will be the same effect in the future period (2055-2059).

Fourth, the spatial calibration and projection method assumes the bias of climate

model grid cells projection is unlinked to observed data (i.e., no monitor within 12
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km by 12 km grid) can be spatially kriged using the nearby observed monitoring

sites data and linked climate model projections.
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5 Concluding Remarks

Climate change has the potential to impact human health in a myriad of ways, from

direct impacts such as heat-related illness to more complex impacts such as forced

migrations due to environmental degradation. As interest in the impacts of climate

change increase, both scientists and policymakers know accurate predictions of

local impacts are needed to justify the social and economic costs of combating

climate change. This dissertation illustrates one method for improving the

accuracy of climate model projections and estimates the impact a changing climate

may have on asthma. We first assessed the association between ambient ozone (O3)

and fine particulate matter (PM2.5) and asthma in the metro Atlanta area. We

found both O3 and PM2.5 were associated with an increase in asthma ED visits. We

next developed a bivariate calibration method to improve the accuracy of climate

model projections. More accurate climate model projections should lead to more

accurate estimations of future health impacts. We applied our bivariate calibration

method to projections of air quality on a spatial field, which allowed us to obtain

calibrated projections for two cities in the southeastern United States: Atlanta,

GA and Birmingham, AL. We subsequently use these calibrated air quality levels

to project future asthma ED visits. These results provide information on one

potential impact of climate change on human health.

In future work we may explore expanding the bivariate calibration method to

accommodate additional variables. For example, ozone and PM2.5 concentrations

are correlated with temperature and the bias correction may benefit from

incorporating all three into a joint calibration. This extension would utilize

copulas that allow for more than two variables (e.g., the multivariate Frank).

In this research we used the Gumbel and Frank copulas as they have been used

in previous climate research. Other parametric forms of copulas could also be

examined.
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