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Abstract

Asymptotics of Resonances for Radial Potential Scattering in Hyperbolic Space
By Laura Catherine Crompton

It is shown that for scattering by a spherically symmetric potential with
compact support in Hn+1, the resonance counting function N(r) is asymp-
totic to Crn+1. C is found explicitly, and is shown to depend only on the
dimension and the radius of support of the potential.
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Chapter 1

Introduction

For a compact d-dimensional Riemannian manifoldM the Weyl law shows
the connection between the asymptotic values of eigenvalues and global ge-
ometric quantities of the manifold: ifN(t) is the number of eigenvalues less
than or equal to t, then

N(t) ∼ C(n)Vol(M)td.

Weyl-type asymptotics are still unknown for the most general manifolds.
We do have upper and lower bounds in many cases. There is the well-
known result of Zworski [18], where he showed that for potential scattering
in Rd, d odd, the number of poles in a disc of radius t, N(t), is bounded by

N(t) ≤ Ctd,

and this bound is sharp. Roughly speaking, Zworski wrote a solution u of(
∆− λ2 + V

)
u = 0

in terms of the free resolvent of ∆. Lax and Phillips [13] showed that the
resolvent is related to the kernel of the scattering matrix. Zworski estimated
this kernel, using the explicit formulas known for u and the resolvent. We
will follow this approach, adapted for hyperbolic manifolds.

Stefanov [16] refined Zworski’s result by proving a sharp constant with ge-
ometric significance. For compact hyperbolic manifolds Weyl-type asymp-
totics can be obtained from the Selberg trace formula, see e.g., [14]. This
approach can also be used for non-compact hyperbolic surfaces of finite area
[17].

Once we move to the infinite-area case, however, we need another in-
terpretation of spectral counting. One can either supplement the counting
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function for the discrete spectrum by a term related to the scattering phase,
or else use the counting function for resonances instead of eigenvalues.

For manifolds hyperbolic near infinity it is already known (see [5]) that

N(t) = O(tn).

For infinite-area hyperbolic surfaces, Guillopé-Zworski [11] proved that
N(t) � t2, although the lower bound is proportional to the 0-volume, which
might be zero. Borthwick [5, 6] proved sharp upper bounds for compactly
supported perturbations of Hn+1 with constants related to geometric infor-
mation. In this paper we show the bound from [5] is sharp for compactly
suppported, spherically symmetric potential scattering in Hn+1.

Let ∆ be the positive Laplacian on Hn+1. Denote the kernel of the resol-
vent by R := (∆ + s(n− s))−1. It is well known that in this setting

R(s; z, z′) =
2−2s−1π−

n
2 Γ(s)

Γ(s− n
2

+ 1)
σ−sF (s, s− n− 1

2
; 2s−n+1; σ−1), (1.0.1)

where F is the Gauss hypergeometric function and σ := cosh2 (1
2
d(z, z′)).

From this we can deduce that R(s) admits an analytic extension to s ∈ C
if n is even, and a meromorphic extension with poles at s = −k for k =
0, 1, 2, . . . if n is odd. The multiplicities of the poles in the second case are
given by

m(−k) = (2k + 1)
(k + 1) · · · (k + n− 1)

n!
. (1.0.2)

Let R be the resonance set for Hn+1 with resonances repeated according to
multiplicity. (R is empty for n even.) Then the resonance counting function
is defined by

N(t) := #{ζ ∈ R :
∣∣∣ζ − n

2

∣∣∣ ≤ t}.

For n odd, we can find an asymptotic forN(t) by integrating 1.0.2. For later
use, define the constant

B(0)
n :=

{
2

(n+1)!
nodd,

0 neven.

Then asymptotics for the resonance counting function in Hn+1 are given by

N(t) ∼ B(0)
n tn+1 (1.0.3)
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as t → ∞. Let V ∈ L∞c (Hn+1) be spherically symmetric with support
contained in a ball of radius rV . The resonance set of the perturbed operator
∆ + V is RV , with resonances repeated according to multiplicity, and the
associated counting function is

NV (t) := #{ζ ∈ RV :
∣∣∣ζ − n

2

∣∣∣ ≤ t}.

Let

ÑV = (n+ 1)

∫ a

0

NV (t)

t
dt. (1.0.4)

Stefanov [16] showed that

NV (t) ∼ C(t)tn+1 ⇔ ÑV (t) ∼ C(t)tn+1. (1.0.5)

Therefore as the basis of the estimate ofNV (t) we use the following relative
counting formula:

(n+ 1)

∫ a

0

NV (t)−N(t)

t
dt

= 2

∫ a

0

σ(t)

t
dt+

1

2π

∫ π
2

−π
2

log
∣∣∣τ (n

2
+ ae iθ

)∣∣∣ dθ +O(log a),

(1.0.6)

where τ(s) is the relative scattering determinant for ∆ + V and σ(t) is the
corresponding relative scattering phase. The contribution from the scatter-
ing phase will be of lower order in this case, as shown in appendix A.

To estimate the relative scattering determinant we will use a combination
of series solutions, asymptotic analysis of Legendre functions, and singular
value techniques to produce an asymptotic

n+ 1

2π

∫ π
2

−π
2

log
∣∣∣τ (n

2
+ ae iθ

)∣∣∣ dθ ∼ an+1B
(1)
V + o(an+1) (1.0.7)

with

B
(1)
V :=

2(n+ 1)

πΓ(n)

∫ π
2

−π
2

∫ ∞
0

[H(x, e iθ, rV )]+
xn+2

dx dθ (1.0.8)
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where [·]+ denotes the positive part and

H(α, r) :=Re
[
2α log

(
α cosh r +

√
1 + α2 sinh2 r

)
− α log (α2 − 1)

]
+ log

∣∣∣∣∣cosh r −
√

1 + α2 sinh2 r

cosh r +
√

1 + α2 sinh2 r

∣∣∣∣∣.
(1.0.9)

Using Stefanov’s result and the estimate (1.0.7) leads directly to our main
result:

Theorem 1.0.1. Let V ∈ L∞c (Hn+1) be a radial potential with suppV ⊆
B(0, rV ). Assume V is continuous near rV and satisfies V (r) ∼ c(rv−r)ω−1

as r → rV for some constant c and ω ≥ 1. Assume that Re s > n
2

and∣∣s− n
2

∣∣ ∈ N. Then

(n+ 1)

∫ a

0

NV (t)

t
dt = B(0)

n an+1 +B
(1)
V an+1 + o(an+1) (1.0.10)

In chapter 2 sections 2.1 and 2.2 we give some background results for the
relative scattering determinant τ(s). In 2.3 we obtain estimates on the scat-
tering matrix. In chapter 3 we apply these estimates to obtain the claimed
bound on τ(s).



5

-10 -5 5 10

-10

-5

5

10

Figure 1.1: Resonances for the step potential V = χr≤1 in H2.
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Chapter 2

Estimates on the Scattering
Matrix

2.1 Relative Scattering Theory Background
The scattering matrix arises when we try to use generalized eigenfunctions
to associate solutions of (∆− s(n− s))u = 0 to functions on ∂Hn+1. Let

E0(s; z, x′) := lim
ρ′→0

ρ
′−sR(s; z, z′)

be the Poisson kernel for (∆− s(n− s)). For Re s > −N + n
2

this kernel
defines the Poisson operator

E0(s) : L2(∂Hn+1, dh)→ ρ−NL2(Hn+1, dg)

where h is the metric induced on ∂Hn+1 by ρ2g and g is the usual metric on
Hn+1.

Let f ∈ C∞(Sn). Then the equation (∆− s(n− s))u = 0 has a solution
given by setting u = E0(s)f . Further, if Re s ≥ n

2
with s(n − s) not in

the discrete spectrum of ∆, then u has a two-part asymptotic expansion as
ρ→ 0:

(2s− n)E0(s)f ∼ ρn−sf + ρsf ′. (2.1.1)

The scattering matrix is defined as the map S0(s) : f 7→ f ′. For general f ,
this expansion uniquely determines the scattering matrix through meromor-
phic continuation.
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The same construction gives the perturbed scattering matrix SV (s) associ-
ated to the operator ∆ + V . In this case the scattering “matrix” is actually a
pseudo-differential operator. However we can see from (2.1.1) that the scat-
tering matrix still in some sense takes us from the incoming to the outgoing
solution of the differential equation (∆ + V − s(n− s))u = 0.

Given V ∈ L∞c (Hn+1) we associate the relative scattering determinant

τ(s) := detSV (s)S0(s)−1.

τ(s) admits a factorization into an exponential part and quotients of Hadamard
products, as follows. Let H∗(s) denote the Hadamard product over the res-
onance setR∗:

H∗(s) :=
∏
ζ∈R∗

E

(
s

ζ
+ 1

)
, (2.1.2)

where

E(z, p) := (1− z) exp z +
z2

2
+ · · ·+ zp

p

and ∗ = V or 0. Then τ admits a factorization in terms of these Hadamard
products:

Proposition 2.1.1.

τ(s) = eq(s)
HV (n− s)
HV (s)

H0(s)

H0(n− s)
, (2.1.3)

where q(s) is a polynomial of degree at most n+ 1.

The arguments of Guillarmou [9] and Borthwick [3] show that (2.1.3)
holds with q(s) a polynomial of unknown degree. For the proof that the
degree of q(s) is at most n + 1, see the argument in [5]. This factorization
is particularly useful in that it gives a Jenson-type formula connecting the
resonance counting founctions to a contour integral involving τ(s). Froese
[8] developed such a counting formula for Schrödinger operators in the Eu-
clidean setting. The following version, by Borthwick [5], is the asymptoti-
cally hyperbolic analog.
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Proposition 2.1.2. Assume that V ∈ L∞c (Hn+1). As a→∞,∫ a

0

NV (t)−N0(t)

t
dt

= 2

∫ a

0

σ(t)

t
dt+

1

2π

∫ π
2

−π
s

log
∣∣∣τ(

n

2
+ ae iθ)

∣∣∣ dθ +O(log a), (2.1.4)

where σ(ξ) is the relative scattering phase of V ,

σ(ξ) :=
i

2π
log τ

(n
2

+ iξ
)
.

Proof. According to (2.1.3), for Res > n
2
, τ(s) has zeros when n−s ∈ RV

or s ∈ R0 and the latter case occurs only if s(n − s) is in the discrete

spectrum of ∆0. Likewise poles of τ(s) for Re s > n
2

occur when either

n− s ∈ R0 or s ∈ RV , and the latter case only if s(n− s) is in the discrete

spectrum of ∆ + V . All of these are counted with multiplicity.

For t > 0 let η be the contour (n
2

+ t exp (i[−π/2, π/2])∪ [n
2

+ it, n
2
− it],

as shown in Figure 2.1. Assuming that η does not contain a resonance in

RV orR0 we have

1

2πi

∮
η

τ ′

τ
(s) ds = NV (t)−N0(t)− 2dV (t) + 2d0(t),

where d∗(u) is the counting function for the (finite) set R∗ ∩ (n
2
,∞). Eval-

uating the contour integral yields

1

2πi

∮
η

τ ′

τ
(s) ds = Im

1

2π

∮
η

τ ′

τ
(s) ds

=

∫ t

−t
σ′(ξ) dξ + Im

1

2π

∫ π
2

−π
2

τ ′

τ

(n
2

+ te iθ
)
ite iθ dθ

= 2σ(t) +
1

2π

∫ π
2

−π
2

t
∂

∂t
log
∣∣∣τ (n

2
+ te iθ

)∣∣∣ dθ.
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Figure 2.1: The contour η.

Divide by t and integrate to obtain the claimed formula with remainder term

given by

2

∫ a

0

dV (t)− d0(t)

t
dt = O(log a).

The proposition can be stated for a more general space and perturbation,
but we will not need it in this paper.

In [5] the relative scattering phase had the Weyl-like asymptotic

σ(ξ) = C(n)[vol(K, g)− vol(K0, g0)]ξn+1 +O(ξn)

where K was a compact set within which the manifold might differ from
Hn+1. Our perturbation of the Laplacian does not affect the topology of
Hn+1, so the relative scattering phase is of lower order in this case. See
Appendix A for a full proof of this for a non-smooth potential.

From [6] we have the following bound on log |τ(s)|, which we will need
in the proof of the main theorem.

Lemma 2.1.3. Let Q denote the joint set of zeros and poles of τ
(n

2
+ z
)

and τ
(n

2
+ e iπ/(n+1)z

)
. If |z| ≥ 1 and dist(z,Q) > |z|−β with β > 2, then

−c(β)|z|n+1 ≤ log
∣∣∣τ (n

2
+ z
)∣∣∣ ≤ C(β)|z|n+1.

Proof. Since τ
(
n
2
− z
)

= 1/τ
(
n
2

+ z
)

and τ
(
n
2

+ z
)

= τ
(
n
2

+ z
)
, it suf-

fices to prove the bounds for z in the first quadrant. The upper bound
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was given in Borthwick [5, Prop. 5.4]. For the lower bound, consider the

Hadamard products appearing in the factorization of τ(s) given in 2.1.3.

These products are of order 2 but not finite type, so applying the Minimum

Modulus Theorem Directly would give− log
∣∣τ (n

2
+ z
)∣∣ = O(|z|2+η), away

from the zeros. However, Lindelöf’s Theorem (see e.g. [2, Thm. 2.10.1])

shows that products of the form

H∗
(
n
2

+ z
)
H∗
(
n
2
± e iπ/(n+1)z

)
are of finite type. That is,

log
∣∣∣H∗ (n

2
+ z
)
H∗

(n
2
± e iπ/(n+1)z

)∣∣∣ ≤ C|z|n+1

as |z| → ∞. Using these estimates and their implications via the Minimum

Modulus Theorem [2, Thm. 3.7.4], we can show that

log
∣∣∣τ (n

2
+ z
)∣∣∣ ≥ −c(β)|z|n+1 − log

∣∣∣τ (n
2
± e iπ/(n+1)z

)∣∣∣, (2.1.5)

provided n
2

+ z and n
2
± e iπ/(n+1)z stay at least a distance |z|−β away from

the set Q.

Assuming arg z ∈ [0, π
2
] and again that n

2
+ z and n

2
± e iπ/(n+1)z stay at

least a distance |z|−β away from the set Q, we know

log
∣∣∣τ (n

2
± e iπ/(n+1)z

)∣∣∣ ≤ C(β)|z|n+1

from above. The lower bound in the first quadrant then follows from 2.1.5.

2.2 Form of the Relative Scattering Matrix
In this section we find an explicit formula for τ(s). Let V ∈ L∞c [0, rV ] be
continuous near rV and satisfy

V (r) ∼ c(rV − r)ω−1 as r → rV ,

for some constant c and ω ≥ 1. We want to solve the equation

(∆ + V (r))ϕ = s(n− s)ϕ (2.2.1)
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using geodesic polar coordinates on Hn+1. In geodesic polar coordinates
Hn+1 ∼= R+ × Sn and the hyperbolic metric is given by

g0 = dr2 + sinh2 rdω2

where dω2 is the standard sphere metric on Sn. The Laplacian on Hn+1 is

∆ = − 1

sinhn r
∂r(sinhn r∂r) +

1

sinh2 r
∆Sn .

The eigenfunctions of ∆Sn are spherical harmonics Y m
l with eigenvalues

given by
∆SnY

m
l = l(l + n− 1)Y m

l .

Here l = 0, 1, 2, . . . and m = 0, 1, . . . , hn(l) with

hn(l) :=
2l + n− 1

n− 1

(
l + n− 2

n− 2

)
.

Plugging this expression for ∆ into (2.2.1) and separating the radial part
gives

−ϕ′′(r)− n coth rϕ′(r) +

[
l(l + n− 1)

sinh2 r
+ V (r)− s(n− s)

]
ϕ(r) = 0

(2.2.2)
After changing variables this is the inhomogeneous associated Legendre
equation. Define

k := l + n−1
2

and ν := s− n+1
2

Using the P and Q solutions to the associated Legendre equation, we take

uk0(s, r) = sinh−
n−1
2 (r)P−kν (cosh r)

and
vk0(s, r) = sinh−

n−1
2 (r)Qk

ν(cosh r)

as a pair of satisfactory homogeneous solutions. Note

Qk
ν(z) :=

e−kπi

Γ(ν + k + 1)
Qk
ν(z). (2.2.3)
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This convention is due to Olver, and has the advantage that Qk
ν(z) = Q−kν (z)

and Qk
ν(z) is an entire function of either k or ν. Define a pair of general

solutions by

uk(s, r) ∼ uk0(s, r)atr = 0

vk(s, r) = vk0(s, r)atr =∞

By the method of variation of parameters, uk(s, r) and vk(s, r) satisfy the
following integral equations:

uk(s, r) = uk0(s, r) +

∫ rV

r

Jk(s; r, t)V (t)uk(s, t) dt (2.2.4)

vk(s, r) = vk0(s, r) +

∫ rV

r

Jk(s; r, t)V (t)vk(s, t) dt (2.2.5)

where

Jk(s; r, t) :=
Γ(k + ν + 1)

sinhn (r)

[
uk0(s, r)vk0(s, t)− uk0(s, t)vk0(s, r)

]
. (2.2.6)

Note Jk(s; r, t) = Jk(n− s; r, t). Define

Mk(s) = lim
r→0

Rk(s) sinhl+n−1 (r)vk(s, r),

where Rk(s) is to chosen so that lim
r→0

Rk(s) sinhl+n−1 (r)vk0(s, r) = 1. For

s ∈ C we define Mk(n− s) in exactly the same way as Mk(s). In [5] it was
shown that uk(s, r) has a two-part asymptotic expansion:

uk(s, r) = A(s)vk(s, r) + B(s)vk(n− s, r) (2.2.7)

for r > rV . The scattering matrix can then be read off:

[SV ]l = −2n−2sΓ(n
2
− s)

Γ(s− n
2
)

A(s)

B(s)
.

Since vk(s, r) and vk(n − s, r) go as sinh−l−n+1 r at r = 0, but uk(s, r) is
regular at r = 0, we must have that

A(s)

B(s)
= − limr→0 sinh−l−n+1 (r) vk(n− s, r)

limr→0 sinh−l−n+1 (r) vk(s, r)
.
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We get rid of the extraneous poles appearing in the gamma factors of (2.2.7)
by considering the relative scattering matrix [SV (s)S0(s)−1]k. Therefore the
relative scattering matrix is

[SV (s)S0(s)−1]k =
Mk(n− s)
Mk(s)

.

We want to derive bounds for the scattering matrix. We begin by following
Zworski’s approach in [19]. The integral equation (2.2.5) can be solved
by iteration using the method of Neumann series solutions, and we obtain
formally at least

vk =
∞∑
j=0

vkj (2.2.8)

where
vkj+1(s, r) =

∫ rV

r

Jk(s, r, t)V (t)vkj (s, t) dt (2.2.9)

We will show in the next section that the series (2.2.8) converges provided k
is sufficiently large and α is bounded away from the imaginary axis. There-
fore if we denote by Mk

j the contribution to Mk coming from vkj , we can
write formally at least that

Mk =
∑
j

Mk
j (2.2.10)

We then use our estimates for vk(s, r) and vk(n − s) to derive bounds for
Mk(s) and Mk(n− s).

2.3 Scattering Matrix Estimates
Define

λl := [SV S
−1
0 ]l − 1 (2.3.1)

The goal of this section is the

Proposition 2.3.1. Let V ∈ L∞c [0, rV ] be a spherically symmetric potential

that is continuous near rV and satisfies

V (r) ∼ c(rV − r)ω−1 as r → rV ,
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for some constant c and ω ≥ 1. Assume that Re s > n
2

and
∣∣s− n

2

∣∣ ∈ N.

For ε > 0, argα ∈
[
0, π

2
− ε
]
, and r ∈ [0,∞], we have

λl

(n
2

+ ae iθ
)

= (k2 + a2)
ω
2 e

kH
(
aeiθ

k
,rV

)
+O(1). (2.3.2)

We defer the proof of Proposition 2.3.1 until the end of this chapter. After
building up the needed estimates on vkj (s, r) and vkj (n− s, r), we will show
a bound of the form

log |Mk
1 (n− s)| = kH(α, r1) +O(−ω[log k + logα]). (2.3.3)

2.3.1 Background Estimates
In this section we will present some estimates on the growth of the Legendre
functions P−kν (cosh r) and Qk

ν(cosh r) as k, |ν| → ∞ simultaneously. We
want to have leading asymptotic behaviour with error bounds uniform in
α := (ν + 1

2
)/k for Reα ≥ 0. For proofs and more detailed derivations, see

[5, Appendix A].
Throughout this section we let z = cosh r and switch feely between the

two variables. Let

w(z) = sinh r

{
P−kν (cosh r) or
Qk
ν(cosh r)

The Legendre equation then reduces to

∂2
zw = (k2f + g)w, (2.3.4)

where

f(r) :=
1 + α2 sinh2 r

sinh4 r
, g(r) := −sinh2 r + 4

4 sinh4 r
(2.3.5)

If Re α = 0 then the equation (2.3.4) has turning points (points where f
vanishes to first order) when α = ±i/ sinh r. By conjugation it suffices to
assume Imα ≥ 0 and so we focus on the upper turning point. To obtain uni-
form estimates near this point, we introduce the complex variable ζ defined
by integrating √

ζdζ =
√
fdz, (2.3.6)
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starting from ζ = 0 on the left and from z0 =
√

1− 1/α2, the turning point,
on the right. Throughout this section we assume principal branches for the
logs and square roots, under the restriction that argα ∈ [0, π/2].

Integrating both sides of (2.3.6) gives

2

3
ζ

3
2 = φ, (2.3.7)

where

φ(α, r) :=

∫ r

cosh−1 z0

√
1 + α2 sinh2 t

sinh t
dt

= α log

(
α cosh r +

√
1 + α2 sinh2 r√

α2 − 1

)

+
1

2
log

[
cosh r −

√
1 + α2 sinh2 r

cosh r +
√

1 + α2 sinh2 r

]
.

(2.3.8)

The expression (2.3.8) is well-defined by principal branches for
argα ∈ (0, π/2], and we extend the definition to the positive real axis by
continuity. At α = 1, this extension gives φ(1, r) = log sinh r.

The region we are interested in, where argα ∈ [0, π/2] and r ≥ 0, corre-
sponds to the sector arg φ ∈ [−π, π/2]. For future reference we note that φ
satisfies the equation

∂rφ =
√
f sinh r (2.3.9)

In particular note this implies that Re ∂rφ ≥ 0.
The asymptotics of φ(α, ·) will be important in our estimates. As r → 0,

φ(α, r) = log
(r

2

)
+ p(α) +O(r2), (2.3.10)

where

p(α) :=
α

2
log

(
α + 1

α− 1

)
+

1

2
log (1− α2). (2.3.11)

As r →∞,
φ(α, r) = αr + q(α) +O(r−2), (2.3.12)

where

q(α) := α log

(
α√

α2 − 1

)
+

1

2
log

(
1− α
1 + α

)
. (2.3.13)
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Proposition 2.3.2. Assuming k > 0, arg α ∈ [0, π
2
] and r ∈ [0,∞),

P−kν (cosh r)

=
2π1/2

Γ(k + 1)

k1/6ζ1/4eπi/6

[1 + α2 sinh2 r]1/4
e−kp(α)

[
Ai (k2/3e2πi/3ζ) + h1(k, α, r)

]
(2.3.14)

and

Qk
ν(cosh r)

=
2π

Γ(kα + 1)

k1/6ζ1/4
∣∣α

2

∣∣1/2
[1 + α2 sinh2 r]1/4

ekq(α)
[
Ai (k2/3ζ) + h0(k, α, r)

]
(2.3.15)

where ζ is defined by (2.3.7) and (2.3.8), and p(α) and q(α) are defined in

(2.3.11) and (2.3.13) respectively. The error terms satisfy

|k
1
6 ζ

1
4h1(k, α, r)| ≤ CekReφk−1

(
1 + |α|−

2
3

)
|k

1
6 ζ

1
4h0(k, α, r)| ≤ Ce−kReφk−1

(
1 + |α|−

2
3

)

with C independent of both α and r.

As long as we do not let α come too close to the imaginary axis and |kα|
is not too small, we have the easier estimate:

Corollary 2.3.3. Assuming that |kα| ≥ 1, Reα > 0, argα ∈ [0, π
2
− ε] for

some ε > 0, and r ∈ [r0, r1]:∣∣P−kν (cosh r)
∣∣ ≤ C

Γ(k + 1)
ekRe[φ(α,r)−p(α)]
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and ∣∣Q−kν (cosh r)
∣∣ ≤ C

∣∣α
2

∣∣ 12
|Γ(kα + 1)|

e−kRe[φ(α,r)−q(α)]

where C depends only on r0 and r1.

The behavior of the Legendre functions near r = 0 will become important
in later sections. From [1]

P−kν (cosh r) = C1(k) sinhk r +O(r) (2.3.16)

Q−kν (cosh r) = C2(k) sinh−k r +O(r) (2.3.17)

where the constants C1, C2 do not depend on r. Recall Q−kν is related to Qk
ν

by

Qk
ν = Q−kν =

ekπi

Γ(ν − k + 1)
Q−kν .

The connection formula

P−kν =
1

cos (νπ)Γ(ν + k + 1)
Qk
−ν−1 −

1

cos (νπ)Γ(k − ν)
Qk
ν (2.3.18)

gives us the way to move between the s and (n− s) terms.
Throughout this paper we will abbreviate P−kν (cosh r) and Qk

ν(cosh r) as
P−kν and Qk

ν as long as it remains clear which variable is meant.

2.3.2 Estimating the Exponentially Decaying Terms
Define the constant

A =
2|Γ(ν + k + 1)|

Γ(k + 1)|Γ(kα + 1)|

∣∣∣α
2

∣∣∣1/2 ek[q(α)−p(α)].

Lemma 2.3.4. For Reα > 0, as k →∞,

A =
C(rV )

k
+O(1) (2.3.19)

where C(rV ) is a constant independent of k and α.
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Proof. Using ν = kα − 1/2, we have Γ(k + ν + 1) = Γ(k(1 + α) + 1/2).

Assuming Reα ≥ 0, we use Stirling’s formula to estimate

log

∣∣∣∣ Γ(k(1 + α) + 1/2)

Γ(k + 1)Γ(kα + 1)
(2α)

1
2

∣∣∣∣
= kRe [(1 + α) log (1 + α)− α log (α)] + log

1

k
+

1

2
log (2)

+
3

2
+O(1)

(2.3.20)

for large k. From the definitions of q(α) and p(α),

log ejk[q(α)−p(α)] = jk[−(1 + α) log (1 + α) + α log (α)],

leaving

logA = log

(
1

k

)
+

1

2
log (2) +

3

2
+O(1).

Thus A = C(rV )
k

+O(1) for k sufficiently large.

Because of the recursive relation (2.2.9) and the connection formula (2.3.18)
we will need to analyze terms of the form∫ rV

r

Jk(s, r, t)V (t)f∗(s, t) dt

where f∗ = vk0 or uk0.

Lemma 2.3.5. Assume that Re s > n
2

and
∣∣s− n

2

∣∣ ∈ N. For Reφ ≥ 0 and

k sufficiently large,∣∣∣∣∫ rV

r

Jk(s, r, t)V (t)vk0(s, t) dt

∣∣∣∣ ≤ C(rV )

k

∣∣vk0(s, r)
∣∣ (2.3.21)

where C(rV ) is a constant depending only on rV .
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Proof. Using the estimates from (2.3.3) and Lemma (2.3.4):∣∣∣∣∫ rV

r

Jk(s, r, t)V (t)vk0(s, t) dt

∣∣∣∣
≤ C

|Γ(k + ν + 1)|
Γ(k + 1)|Γ(kα + 1)|2

∣∣∣α
2

∣∣∣2/2 sinh−
n−1
2 (r)ekRe[φ(α,r)−p(α)]

×
∫ rV

r

sinh (t)V (t)
(
e−2kRe[φ(α,t)−q(α)] + ek[q(α)−p(α)]

)
dt

≤ C(rV )A
∣∣vk0(s, r)

∣∣ (2.3.22)

≤ C(rV )

k

∣∣vk0(s, r)
∣∣

where (2.3.22) comes from the fact that Reφ is increasing in r.

Lemma 2.3.6. Assume that Re s > n
2

and
∣∣s− n

2

∣∣ ∈ N. For Reφ ≥ 0 and

k sufficiently large, ∣∣Mk
j (s)

∣∣ ≤ [C(rV )

k

]j
.

Proof. Lemma 2.3.5 gives us immediately that

∣∣vk1(s, r)
∣∣ ≤ C(rV )

k

∣∣vk0(s, r)
∣∣ .

Assume
∣∣vkj (s, r)

∣∣ ≤ [C(rV )
k

]j ∣∣vk0(s, r)
∣∣ . Then

∣∣vkj+1(s, r)
∣∣ ≤ ∫ rV

r

∣∣Jk(s, r, t)V (t)vkj (s, t)
∣∣ dt

≤
∫ rV

r

∣∣∣∣∣Jk(s, r, t)V (t)

[
C(rV )

k

]j
vk0(s, t)

∣∣∣∣∣ dt
≤
[
C(rV )

k

]j+1 ∣∣vk0(s, r)
∣∣
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and by induction

∣∣vkj (s, r)
∣∣ ≤ [C(rV )

k

]j ∣∣vk0(s, r)
∣∣

for all j. Then∣∣Mk
j (s)

∣∣ = lim
r→0

∣∣Rk(s) sinhl+n−1 (r)vkj (s)
∣∣

≤ lim sup
r→0

∣∣Rk(s) sinhl+n−1 (r)
∣∣ [C(rV )

k

]j ∣∣vk0(s)
∣∣

≤
[
C(rV )

k

]j
.

2.3.3 Estimating the Exponentially Growing Terms
Using the connection formula (2.3.18) and the definitions of uk0(s, r) and
vk0(s, r), we can write

vk0(n− s) = sinh (r)−
n−1
2 Qk

−ν−1(cosh (r))

= Γ(ν + k + 1) cos (νπ)uk0(s, r) +
Γ(ν + k + 1)

Γ(k − ν)
vk0(s, r).

(2.3.23)

It will be useful notationally to let

L =
CV Γ(ω)

(2φ(α, rV ))ω

where CV is defined by

V (t) sinh t ∼ CV (rV − t)ω−1

as t→ rV .
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Lemma 2.3.7. Assume that Re s > n
2

and
∣∣s− n

2

∣∣ ∈ N. For Reφ ≥ 0 and

k sufficiently large,∣∣∣∣∫ rV

r

Jk(s, r, t)V (t)uk0(s, r)

∣∣∣∣ ≤ ∣∣AC(rV )uk0(s, r)
∣∣

+

∣∣∣∣LΓ(ν + k + 1)

Γ(k + 1)2

e2kReφ(α,rV )−p(α)

kω

∣∣∣∣ ∣∣vk0(s, r)
∣∣ (2.3.24)

Proof. First we estimate the uk0(s, t) term against the first term in Jk(s, r, t):∫ rV

r

∣∣uk0(s, r)vk0(s, t)V (t)Γ(ν + k + 1)uk0(s, t)
∣∣ dt

≤ |Γ(ν + k + 1)|
Γ(k + 1)|Γ(kα + 1)|

∣∣∣α
2

∣∣∣ 12 ekRe [q(α)−p(α)]
∣∣uk0(s, r)

∣∣ ∫ rV

r

|V (t)| sinh t dt

≤
∣∣AC(rV )uk0(s, r)

∣∣ (2.3.25)

We use Laplace’s method (see Appendix A) to estimate the uk0(s, t) term

against the second term in Jk(s, r, t):∫ rV

r

∣∣−vk0(s, r)uk0(s, t)V (t)Γ(ν + k + 1)uk0(s, t)
∣∣ dt

≤ |Γ(ν + k + 1)|
Γ(k + 1)2

e−2kRe p(α)
∣∣vk0(s, r)

∣∣ ∫ rV

r

|V (t)| sinh t e2kReφ(α,r) dt

≤ |L| |Γ(ν + k + 1)|
Γ(k + 1)2

e2kRe [φ(α,rV )−p(α)]k−ω
∣∣vk0(s, r)

∣∣ . (2.3.26)

Lemma 2.3.8. Let V ∈ L∞c [0, rV ] be a spherically symmetric potential that

is continuous near rV and satisfies

V (r) ∼ c(rV − r)ω−1 as r → rV ,
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for some constant c and ω ≥ 1. Assume that Re s > n
2

and
∣∣s− n

2

∣∣ ∈ N.

For Reφ ≥ 0 and k sufficiently large,

|Mk(n− s)| = |1 +Mk
1 (n− s) +O(k−1−ω)|.

Proof. Lemma 2.3.7 together with our estimates for the kernel

Jk(s, r, t)V (t)vk0(s, r) and the connection formula give∣∣vk1(n− s, r)
∣∣ ≤ ∣∣Γ(ν + k + 1) cos (νπ)AC(rV )uk0(s, r)

∣∣
+

∣∣∣∣LΓ(ν + k + 1)2

Γ(k + 1)2

e2kRe [φ(α,rV )−p(α)]

kω
vk0(s, r)

∣∣∣∣
+

∣∣∣∣AC(rV )
Γ(ν + k + 1)

Γ(k − ν)
vk0(s, r)

∣∣∣∣
Induction on j then gives∣∣vkj (n− s, r)

∣∣ ≤ ∣∣Γ(ν + k + 1) cos (νπ)AC(rV ))juk0(s, r)
∣∣

+

∣∣∣∣[LΓ(ν + k + 1)2

Γ(k + 1)2
e2kReφ(α,rV )−p(α)k−ω

]
j(AC(rV ))j−1vk0(s, r)

∣∣∣∣
+

∣∣∣∣[AC(rV )]j
Γ(ν + k + 1)

Γ(k − ν)
vk0(s, r)

∣∣∣∣ .

Since AC(rV ) decays as 1
k

for k ≥ N , the series

∞∑
j=0

vkj (n− s, r)

converges for k ≥ N . We can therefore consider Mk(n − s) as the sum

(2.2.10).

Define

B :=
|Γ(ν + k + 1)Γ(k − ν)|

Γ(k + 1)2
|cos (νπ)| |α|

1
2 (2.3.27)
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Then ∣∣Mk
j (n− s)

∣∣ = lim
r→0

∣∣∣∣ Γ(k − ν)

Γ(ν + k + 1)vk0(s)
vkj (n− s)

∣∣∣∣
≤ |Γ(k − ν) cos (νπ)| [AC(rV )]j

∣∣∣∣uk0(s)

vk0(s)

∣∣∣∣
+ LB

∣∣∣∣ 2α
∣∣∣∣ 12 e2kReφ(α,rV )−p(α)k−ωj(AC(rV ))j−1

+ [AC(rV )]j.

From (2.3.16) and (2.3.17), uk0(s)

vk0 (s)
→ 0 as r → 0. Aj decays as k−j for

k ≥ N from the analysis of vkj (s). Thus∣∣Mk(n− s)
∣∣ =

∣∣1 +Mk
1 (n− s) +O(k−1−ω)

∣∣
for k sufficiently large.

2.3.4 Estimating the Leading Exponential Growth Term
By Lemmas 2.3.6 and 2.3.8, to prove Proposition 2.3.1 we need to prove
the asymptotic for

∣∣Mk
1 (n− s)

∣∣. By our definition of Mk(n − s) and the
connection formula,

Mk
1 (n− s) = lim

r→0

Γ(k − ν)

Γ(ν + k + 1)vk0(r, s)
vk1(n− s)

= lim
r→0

Γ(k − ν)

vk0(r, s)
uk0(r, s)

∫ rV

r

V (t) sinhn (t) vk0(s, t)vk0(n− s, t) dt

− lim
r→0

Γ(k − ν)

∫ rV

r

V (t) sinhn (t) uk0(s, t)vk0(n− s, t) dt

(2.3.28)

We show the first term in Mk
1 (n− s) goes to zero as r → 0.
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Lemma 2.3.9.

lim
r→0

Γ(k − ν)

vk0(s, r)
uk0(s, r)

∫ b

r

V (t) sinhn (t) vk0(s, t)vk0(n− s, t) dt = 0.

Proof. The proof depends on the behavior of the associated Legendre func-

tions as r → 0 and the relation (2.3.18). From (2.3.16) and (2.3.17) and the

relation

Qk
ν = Q−kν =

ekπi

Γ(ν − k + 1)
Q−kν

we have
uk0(s, r)

vk0(s, r)
→ 0 as sinh2k r as r → 0. Next we use (2.3.18) to write

lim
r→0

Γ(k − ν)

vk0(s, r)
uk0(s, r)

∫ rV

r

V (t) sinhn (t) vk0(s, t)vk0(n− s, t) dt

= lim
r→0

Γ(k − ν)

vk0(s, r)
uk0(s, r)

∫ rV

r

V (t) sinh (t) Γ(ν + k + 1) cos (νπ)P−kν Qk
ν

+ V (t) sinh (t)
Γ(ν + k + 1)

Γ(k − ν)
(Qk

ν)
2 dt (2.3.29)

We use (2.3.3) to estimate the first term in of the integral:

lim
r→0

∣∣∣∣Γ(k − ν)

vk0(s, r)
uk0(s, r)

∫ rV

r

V (t) sinh (t) Γ(ν + k + 1) cos (νπ)P−kν Qk
ν dt

∣∣∣∣
≤ lim

r→0
C(k, ν)

∣∣∣∣uk0(r, s)

vk0(r, s)
ekRe[q(α)−p(α)]

∫ rV

r

V (t) sinh t dt

∣∣∣∣
which goes to zero in the limit r → 0. For the second term

lim
r→0

C(k, ν)
uk0(s, r)

vk0(s, r)

∫ rV

r

V (t) sinh t
(
Q−kν

)2
dt

the Q-Legendre function blows up as r → 0, so we use L’Hospital’s rule to
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compute the limit:

C(k, ν) lim
r→0

uk0(s, r)

vk0(s, r)

∫ rV

r

V (t) sinh t
(
Q−kν

)2
dt

= C(k, ν) lim
r→0

−V (r) sinh2 r
(
Q−kν

)2

P−kν ∂rQ
−k
ν −Q−kν ∂rP

−k
ν

(P−kν )
2

= C(k, ν) lim
r→0

−V (r) sinh2 r
(
Q−kν

)2 (
P−kν

)2

2ν cosh r Q−kν P−kν − (ν − k)[Q−kν−1P
−k
ν −Q−kν P−kν−1]

= C(k, ν) lim
r→0

V (r) sinh2 r +O(r) (2.3.30)

= 0

where (2.3.30) follows from the fact that the behavior of the Legendre func-

tions near r = 0 depends only on the order k. Notice we switched from

Olver’s Q-function to Qk
ν in order to use known formulas for the deriva-

tive.

To estimate the second term in (2.3.28) we use (2.3.14), (2.3.15), and
(2.3.18):

− lim
r→0

Γ(k − ν)

∫ rV

r

V (t) sinhn (t) uk0(s, t)vk0(n− s, t) dt

= − lim
r→0

Γ(k − ν)

∫ rV

r

V (t) sinh (t) P−kν

[
cos (νπ)Γ(ν + k + 1)P−kν

+
Γ(ν + k + 1)

Γ(k − ν)
Qk
ν

]
dt (2.3.31)

It is easier to deal with the second term of 2.3.31 separately first. Using
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(2.3.3) we have

lim
r→0
|Γ(ν + k + 1)|

∫ rV

r

∣∣V (t) sinh t P−kν Qk
ν

∣∣ dt
≤ |C(rV )Γ(ν + k + 1)||α| 12

Γ(k + 1)|Γ(kα + 1)|
ekRe[q(α)−p(α)]

× max
t∈[0,rV ]

V (t)

∫ rV

0

sinh t
(
1 +O(|kφ|−1)

)
dt (2.3.32)

Lemma 2.3.10. The error term |kφ|−1 ≤ C(rV )|k|−1 where the constant

depends only on rV .

Proof. We break up the estimate into zones so as to use the estimate from

[5, Appendix A] on |φ|.
Zone 1: Assume that |1 + α2 sinh2 r| ≥ c, and |α| ≥ 1. Then

|φ| �

− log (αr) |α| sinh r ≤ 1
2

|α|r |α| sinh r ≥ 1
2

Therefore in zone 1 ∫ rV

0

| sinh t|
|φ(α, t)|

dt ≤ rV sinh rV .

Zone 2: Assume that |1 + α2 sinh2 r| ≥ c, and |α| ≤ 1. Then

|φ| �

| log (1− e−r)| |α| sinh r ≤ 1
2

|α|(r + log 2|α|) |α| sinh r ≥ 1
2

(2.3.33)

If |α| = 0, then

lim
r→0

∫ rV

r

| sinh t|
|φ(0, t)|

dt→ 0.

Assume |α| > δ for some small δ > 0. Then∫ rV

0

| sinh t|
|φ(α, t)|

dt ≤ rV
sinh rV

log (1− e−rV )
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in case 1 We subdivide case 2 as follows. If |α| ≥ 1,∫ rV

0

| sinh t|
|φ(α, t)|

dt ≤ rV sinh rV .

If δ < |α| < 1, ∫ rV

0

| sinh t|
|φ(α, t)|

dt < δrV sinh rV

Zone 3 is the region near the turning point, θ ∈ [π
2
− εa−2, π

2
]. We will use

the estimate from Lemma 2.1.3 when we estimate this region for the proof

of the main theorem.

We have already seen that the combination

C(rV )
|Γ(ν + k + 1)|

Γ(k + 1)|Γ(kα + 1)|
|α|

1
2 ekRe[q(α)−p(α)] → 0 as k →∞

in the analysis of Mk
j (s). Therefore the term

lim
r→0
|Γ(ν + k + 1)|

∫ rV

r

∣∣V (t) sinh (t)P−kν Qk
ν

∣∣ dt
is negligible for k sufficiently large.

2.4 Proof of the Bound on the Scattering Matrix

Proof of Proposition 2.3.1. Recall we want to show

λl

(n
2

+ ae iθ
)

= (k2 + a2)
ω
2 e

kH
(
aeiθ

k
,rV

)
+O(1). (2.4.1)

assuming V ∈ L∞c [0, rV ] be a spherically symmetric potential that is con-

tinuous near rV and satisfies

V (r) ∼ c(rV − r)ω−1 as r → rV ,

for some constant c and ω ≥ 1. Assume that Re s > n
2

and
∣∣s− n

2

∣∣ ∈ N.

Let ε > 0, argα ∈
[
0, π

2
− ε
]
, and r ∈ [0,∞].
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By Lemmas 2.3.4 and 2.3.9 we need to bound

lim
r→0

∣∣∣∣Γ(ν + k + 1)Γ(k − ν) cos (νπ)

∫ rV

r

V (t) sinh t (P−kν (cosh t))2 dt

∣∣∣∣ .
We show the proof for k ≥ N , N > 0 sufficiently large, here. The proof for

small k is sketched in the next section. Using (2.3.14) and the asymptotics

for the Airy functions,

lim
r→0
−Γ(ν + k + 1)Γ(k − ν) cos (νπ)

∫ rV

r

V (t) sinh t(P−kν (cosh t))2 dt

=
−Γ(ν + k + 1)Γ(k − ν)

Γ(k + 1)2
cos (νπ)|α|

1
2

×
∫ rV

0

V (t) sinh t√
1 + α2 sinh2 t

e2k[φ(α,t)−p(α)]
(
1 +O(|kφ|−1) +O(|kφ|−2)

)
dt

(2.4.2)

Recall

B :=
|Γ(ν + k + 1)Γ(k − ν)|

Γ(k + 1)2
|cos (νπ)| |α|

1
2 .

Using the extension of Laplace’s Method from Appendix A, (2.4.2) is asymp-

totic to

−B V (rV ) sinh (rV )e2k[φ(α,rV )−p(α)]

[1 + α2 sinh2 rV ]
1
2 (2φ′(α, rV ))ω

k−ω

−BC
∫ rV

0

V (t) sinh t√
1 + α2 sinh2 t

(
1

|kφ|
+

1

|kφ|2

)
dt (2.4.3)

for k ≥ N . Away from the turning point, we may assume

1+α2 sinh2 t > c for some c > 0. The factor 1/|φ|we estimated previously.

Therefore for k ≥ N ,

Mk
1 (n− s) = −B V (rV ) sinh (rV )e2k[φ(α,rV )−p(α)]

[1 + α2 sinh2 rV ]
1
2 (2φ′(α, rV ))ω

k−ω +O(|k|−1−ω).

(2.4.4)
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Let δ > 0 and recall ν = kα− 1/2. Assuming α 6∈ [1,∞), we can estimate

logB using Stirling’s formula:

logB = log

∣∣∣∣sin (πkα) Γ(k(1 + α) + 1
2
)Γ(k(1− α) + 1

2
)

Γ(k + 1)2

∣∣∣∣
= πk|Im α|+ kRe [(α + 1) log (α + 1) + (1− α) log (1− α)]

+O(log k) (2.4.5)

as k → ∞, uniformly for arg (α− 1) > δ. The same estimate can be

extended to arg (α− 1) ≤ δ using

sin (πkα) Γ

(
k(1− α) +

1

2

)
=

−π tanπkα

Γ
(
k(α− 1) + 1

2

)
and the assumption |kα| ∈ N, which implies | tanπkα| ≤ 1. Note that

H(α, rV ) = Re [2φ(α, rV )− 2p(α) + (α + 1) log (α + 1)

−(α− 1) log (α− 1)] .

Also in the sector |θ| < π/2− ε and with rV fixed, Reφ′(α) is comparable

to |α|, so that we have the estimate

log |Mk
1 (n− s)| = kH(α, rV ) +O(−ω[log k + logα]) (2.4.6)

for k sufficiently large. Exponentiating gives the desired result.

2.4.1 Estimating the Scattering Matrix for small k
The method for small k is essentially the same as that for k ≥ N . How-
ever, instead of asymptotics for the associated Legendre functions, we use
Olver’s expansion for the associated Legendre functions in terms of asso-
ciated Bessel functions and then the Bessel function asymptotics. The in-
duction is exactly analogous, and even slightly easier because of the simpler
asymptotics for the Bessel functions. We give an outline of the proof here.
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From [15] we have

P−kν (cosh r) =

(
1

kα

)k ( r

sinh r

) 1
2

Ik(kαr)

(
1 +O(

1

kα
)

)
(2.4.7)

Qk
ν(cosh r) =

e−kπi

Γ(k + ν + 1)
(kα)k

( r

sinh r

) 1
2

Kk(kαr)

(
1 +O

(
1

kα

))
(2.4.8)

where Ik and Kk are the associated Bessel functions. The asymptotics for
the Ik and Kk are well known:

Ik(z) �

{
1

Γ(k+1)

(
z
2

)k |z| < 1
ez√
2πz

|z| ≥ 1

Kk(z) �

{
Γ(k)

2

(
z
2

)−k |z| < 1√
π
2z
e−z |z| ≥ 1

Using the substitution z = ae iθr we split the integrals appearing in the
series solution of vkj (s) and vkj (n − s) at 1/a. The induction is analogous
to that done in for the case of large k, only now we consider large a and
bounded k. The integral over [0, rV ] = [0, 1/a] decays as 1/a. The integral
over [1/a, rV ] is comparable to ear1 cos θ/(ka). For a large and k fixed,

kH

(
ae iθ

k
, rV

)
� arV cos θ.

Thus we have a bound corresponding to that in Proposition 2.3.1 for k > 0.
In the case that k = 0, we take the limiting value of H

(
aeiθ

k
, rV

)
to get

λk

(n
2

+ ae iθ
)

= (k2 + a2)
ω
2 earv cos θ +O(1/a).

This together with (2.3.3) proves Proposition 2.3.1 for all k.
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Chapter 3

Asymptotics for the Number of
Scattering Poles

Since the relative scattering phase is of lower order, we only need to esti-
mate log |τ(s)| in the half-plane Re s > n

2
. Recall

λl := [SV S
−1
0 ]l − 1 (3.0.1)

Thus

log |τ(s)| =
∑
l

hn(l) log
∣∣[SV (s)S0(s)−1]l

∣∣
=
∑
l

hn(l) log |1 + λl(s)| (3.0.2)

We will need different estimates for the regions where H is positive, nega-
tive, and close to zero. Hence we introduce the notation∑

l

hn(l) log |1 + λl(s)| = Σ+ + Σ0 + Σ− (3.0.3)

Σ+ will be the dominant term, for which we will use our estimates on Leg-
endre function asymptotics. Σ0 will be over a narrow region where H is
roughly zero and will have a number of terms controlled by the width of the
region. For Σ− we will use the Poisson kernel estimates from [5]. In the
region where H ≈ 0 we will also need the following rough estimate on the
matrix elements.
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Figure 3.1: The positive region for H(α, r), shown for r = 1.

Lemma 3.0.1. For 0 ≤ k ≤ c
√
a and Re s ≥ 1

2
and assuming

dist(1− s,RV) ≥ |s|−β with β > 2,

log
∣∣[SV (s)S0(s)−1]l

∣∣ ≤ C(rV , β, k)(k + |s|) log |s|

and

log
∣∣[SV (s)S0(s)−1]l

∣∣ ≥ −c(rV , β)(k + |s|) log |s|.

Proof. We give the proof for the case k > N for some large N . The proof

for k ≤ N is analogous, but uses the estimates on Bessel functions from

section 2.3.4 instead of those on Legendre functions. Recall

k := l + n−1
2

and ν := s− n+1
2

.

Using the known behavior of Qk
ν(cosh r) as r → 0 and the definitions of

Mk(s), we note that Mk(s) Γ(k)
Γ(l+s)

is an entire function of s. We will base

our (very rough) estimate on the version of Stirling’s formula

log
1

Γ(z)
≤ 〈z〉 log 〈z〉.

Using the estimate for vj(s) and recalling

A :=
Γ(l + s)

Γ(k + 1)Γ(s− n
2

+ 1)

[α
2

] 1
2
ek[q(α)−p(α)]
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we can estimate

log |Mk
j (s)| ≤ C(k, rV )

[
s

k − n
2

+ s

]j
for large |s|. Applying Stirling to estimate

log

∣∣∣∣ Γ(k)

Γ(l + s)

∣∣∣∣ ≤ C(rV , β)(k + |s|) log |s|

and combining that with the estimate on Mk
j (s) from Chapter 2 gives

log |Mk(s)| ≤ C1(rV , β, k)(k + |s|) log |s| (3.0.4)

By the Minimum Modulus Theorem (see, e.g., [2, Thm. 3.7.4]) assuming

dist(1− s,RV) ≥ |s|−β with β > 2,

log |Mk(s)| ≥ −c1(rV , β, k)(k + |s|) log |s| (3.0.5)

for large |s|. Similarly for Mk(n− s) we note that Mk(n− s) Γ(k)
Γ(l+n−s) is an

entire function of s and use our estimates for vkj (n− s) to get

log |Mk(n− s)| ≤ C2(rV , β, k)(k + |s|) log |s| (3.0.6)

log |Mk(n− s)| ≥ −c2(rV , β, k)(k + |s|) log |s| (3.0.7)

for dist(1 − s,RV) ≥ |s|−β with β > 2. The results follow from applying

these estimates to

[SV (s, rV )S0(s, rV )−1]l =
Mk(n− s, rV )

Mk(s, rV )
.

Recall we want to show asymptotics for

log
∣∣∣τ (n

2
+ ae iθ

)∣∣∣ =
∑
l

hn(l) log

∣∣∣∣[SV (n2 + ae iθ
)
S0

(n
2

+ ae iθ
)−1
]
l

∣∣∣∣
=
∑
l

hn(l) log
∣∣∣1 + λl

(n
2

+ ae iθ
)∣∣∣ (3.0.8)
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Let x = A(θ) be the implicit solution of the equation H(xe iθ, rV ) = 0, so
that H(A(θ)e iθ, rV ) = 0. Assume θ ≤ π

2
− ε. For δ > 0, we will split the

sum ∑
l

hn(l) log
∣∣∣1 + λl

(n
2

+ ae iθ
)∣∣∣

at
k =

a

A(θ)(1± a−1/2)
.

Using the inequality

log |1 + x| ≥ log |x| − log 2 for |x| ≥ 2,

for a sufficiently large we have

H

(
ae iθ

k
; rV

)
≥ H

(
A(θ)e iθ(1 + a−1/2), rV

)
≥ ca−1/2.

Thus for k ≥ c
√
a we have from Lemma 3.0.1 that

log

∣∣∣∣1 + λl

(
1

2
+ ae iθ

)∣∣∣∣ ≥ kH

(
ae iθ

k
; rV

)
−O(log k). (3.0.9)

Together with the asymptotic

hn(l) =
2ln−1

Γ(n)

(
1 +O(l−1)

)
we have

Σ+ ≥
∑

c
√
a≤k≤ a

A(θ)(1+a−1/2)

(
2kn−1

Γ(n)
+ Ckn−2

)(
kH

(
ae iθ

k
, rV

)
− C log k

)
.

(3.0.10)
Since H(α, rV ) = O(|α|) with a constant depending only on rV ,

∑
c
√
a≤k≤ a

A(θ)(1+a−1/2)

kn−1H

(
ae iθ

k
, rV

)
= O(an)
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Therefore ∑
c
√
a≤k≤ a

A(θ)(1+a−1/2)

hn(l) log |1 + λl(s)|

≥ 2

Γ(n)

∑
k≤a/A(θ)

knH

(
ae iθ

k
, rV

)
− Can log a (3.0.11)

withC depending only on ε and rV . SinceH(xe iθ) is an increasing function
of x, we can bound it with the corresponding integral. Thus∑

c
√
a≤k≤ a

A(θ)(1+a−1/2)

hn(l) log |1 + λl(s)|

≥ 2

Γ(n)

∫ a

A(θ)(1+a−1/2)

c
√
a

knH

(
ae iθ

k
, rV

)
dk − Can log a

Substituting x = a/k gives∑
c
√
a≤k≤ a

A(θ)(1+a−1/2)

hn(l) log |1 + λl(s)|

≥ 2an+1

Γ(n)

∫ c
√
a

A(θ)(1+a−1/2)

H(x, e iθ, rV )

xn+2
dx− Can log a

where C depends only on ε and rV . For k ≤ c
√
a we use the estimates from

Lemma (3.0.1) to get∑
n−1
2
≤k≤c

√
a

log

∣∣∣∣[SV (n2 + ae iθ
)
S0

(n
2

+ ae iθ
)−1
]
l

∣∣∣∣ ≥ −O(a
n+1
2 log a).

(3.0.12)
Since H(α; rV ) � |αrV | for large |α|, we also have

2an+1

Γ(n)

∫ ∞
c
√
a

H(x, e iθ, rV )

xn+2
dx = O(a

n+1
2 )
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Over the range [A(θ), A(θ)(1 + a−1/2)] H(α; rV ) = O(δ) for some small
δ > 0, so we can also estimate

2an+1

Γ(n)

∫ A(θ)(1+a−1/2)

A(θ)

H(x, e iθ, rV )

xn+2
dx = O(δan+1)

Combining these estimates, we have

Σ+ ≥
2an+1

Γ(n)

∫ ∞
A(θ)

H(x, e iθ, rV )

xn+2
dx−O(a

n+1
2 log a). (3.0.13)

For A(θ)(1 − a−1/2) < a/k < A(θ)(1 + a−1/2), since there are O(a1/2)
values of k in this range, Lemma 3.0.1 gives the estimate

Σ0 ≥ −O(a
n+1
2 log a). (3.0.14)

Last we have the region where a/k ≤ A(θ).Fix some small ε > 0 and let
η = a−1/2/2. Define rj := rV + jη. Let χ1, χ2 ∈ C∞0 (Hn+1) be cutoff
functions such that χj = 1 for r ≤ rj and χj = 0 for r ≥ rj+1. From [5]
we have

λk(s) := [SV (s)S0(s)−1]l − 1

= (2s− n)〈1[r2,r3]E0(s)Y m
l , [∆, χ2]RV (s)[∆, χ1]1[r1,r2]E0(n− s)Y m

l 〉
(3.0.15)

where E0(s) is the Poisson kernel of the unperturbed Laplacian, Y m
l are

the spherical harmonics, and 1i denotes the multiplication operator of the
characteristic function χ[ri,ri+1](r). Assuming Re s ≥ n

2
,

|arg(s − n
2
)| < π

2
− ε, and the distance from s(n − s) to any points in

the discrete spectrum is at least ε, we can apply the spectral theorem and
standard elliptic estimates to obtain∥∥∥[∆, χ2]RV (s)[∆, χ1]

∥∥∥ ≤ C(rV , ε)η
−4. (3.0.16)

Next we know
12E0(s)Y m

l = χ[r2,r3]al(s; r)Y
m
l ,

where al(s; r) was computed explicitly in [5]:

al(s; r) = 2
n−1
2
−s√π Γ(l + s)

Γ(s− n
2

+ 1)
(sinh r)−

n−1
2 P−kν (cosh r).
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Using the identity
E0(s) = −E0(n− s)S0(s)

and that

[S0(s)]l = 2n−2sΓ(n
2
− s)

Γ(s− n
2
)

Γ(l + s)

Γ(l + n− s)
we use Schwarz’s inequality to estimate

〈1[r2,r3]E0(s)Y m
l , [∆, χ2]RV (s)[∆, χ1]1[r1,r2]E0(n− s)Y m

l 〉

≤
∣∣∣sin π(s− n

2
)Γ(l + s)Γ(l + n− s)

∣∣∣ [∫ r2

r1

∣∣P−kν (cosh r)
∣∣2 sinh r

] 1
2

×

[∫ r3

r2

∣∣P−kν (cosh r)
∣∣2 sinh r

] 1
2

≤ C(ε, rV )ke
kH

(
aeiθ

k
;rV +η

)
(3.0.17)

The details of the calculation for 3.0.17 can be found in [5, Prop.5.3]. In the
range a/k ≤ A(θ) where H(α, r) is negative, setting η = a−1/2 gives

kH

(
ae iθ

k
; rV + a−1/2

)
= k

[
H

(
ae iθ

k
; rV

)
+O(a−1/2)

]
≤ −ca1/2 (3.0.18)

so that we have ∣∣∣λk (n
2

+ ae iθ
)∣∣∣ ≤ C(ε, rV )a2ke−ca

1/2

(3.0.19)

Finally we apply this to log |τ(s)| using

log |1 + x| ≥ −|x| log 4 for |x| ≤ 1

2
.

Thus for large a we have

log |τ(s)| ≥ −C(ε, rV )a2ke−ca
1/2
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and hence
Σ− ≥ −C(ε, rV )a2ke−ca

1/2

. (3.0.20)

This leads to the proof of Theorem 1.0.1, which we restate here for conve-
nience.

Theorem 3.0.2. Let V ∈ L∞c (Hn+1) be a radial potential with suppV ⊆
B(0, rV ), V is continuous near rV and satisfies V (r) ∼ c(rv − r)ω−1 as

r → rV for some constant c and ω ≥ 1. Assume that Re s > n
2

and∣∣s− n
2

∣∣ ∈ N. Then

(n+ 1)

∫ a

0

NV (t)

t
dt = B(0)

n an+1 +B
(1)
V an+1 + o(an+1) (3.0.21)

where

B
(1)
V :=

2(n+ 1)

πΓ(n)

∫ π
2

−π
2

∫ ∞
0

[H(x, e iθ, rV )]+
xn+2

dx dθ. (3.0.22)

Proof of Theorem 1.0.1. From Proposition 2.1.2 we can estimate the num-

ber of scattering poles by bounding the relative scattering phase and the

relative scattering determinant:∫ a

0

NV (t)−N0(t)

t
dt

= 2

∫ a

0

σ(t)

t
dt+

1

2π

∫ π
2

−π
2

log
∣∣∣τ(

n

2
+ ae iθ)

∣∣∣ dθ +O(log a). (3.0.23)

In this case the relative scattering phase is of lower order, so we are con-

cerned only with the relative scattering determinant. Borthwick in [5] showed

that

log
∣∣∣τ (n

2
+ ae iθ

)∣∣∣
≤ b(θ, rV )an+1 − C(ε, rV )a

n+1
2 log a− C(ε, rV )a2ke−ca

1/2

(3.0.24)



39

where

b(θ, rV ) :=
2

Γ(n)

∫ ∞
0

[
H(xe iθ,rV

]
+

xn+2
dx.

Applying the estimates (3.0.13), (3.0.14), (3.0.20) we have the correspond-

ing lower bound

log
∣∣∣τ (n

2
+ ae iθ

)∣∣∣
≥ b(θ, rV )an+1 − C(ε, rV )a

n+1
2 log a− C(ε, rV )a2ke−ca

1/2

(3.0.25)

Then for any ε > 0, we can integrate 3.0.25 over |θ| ≤ π
2
− εa−2, which

proves the lower bound

n+ 1

2π

∫
|θ|≤π

2
−εa−2

log |τ
(n

2
+ ae iθ|

)
dθ

≥ an+1 n+ 1

πΓ(n)

∫
|θ|≤π

2
−εa−2

∫ ∞
0

[H(xe iθ,rV )+]

xn+2
dx dθ + o(an+1).

For the missing sectors, we use Lemma 2.1.3 to see that

n+ 1

2π

∫ π
2

π
2
−ε

log
∣∣∣τ (n

2
+ ae iθ

)∣∣∣ dθ ≥ −cεan+1.

We let ε→ 0 to complete the proof of theorem (1.0.1).
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Appendix

by David Borthwick

4.1 Scattering determinant estimate
The relative scattering determinant associated to V ∈ L∞c (Hn+1) is the
meromorphic function

τ(s) := detSV (s)S0(s)−1.

Sharp upper bounds for |τ(s)| were provided in Borthwick [5, Prop. 4.5]:

Proposition 4.1.1. Assume that the support of V is contained within a ball

of radius r0. For a ∈ n
2

+ N and θ ≤ π/2 we have

log
∣∣τ(n

2
+ aeiθ)

∣∣ ≤ b(θ, r0)an+1 + o(an+1),

uniformly for |θ| ≤ π/2− εa−2, with

b(θ, r0) :=
2

Γ(n)

∫ ∞
0

[
H(xeiθ, r0)

]
+

xn+2
dx.

4.2 Scattering phase estimate
The relative scattering phase is

σ(t) :=
i

2π
log τ(n/2 + it).

For a metric perturbation we’d have σ(t) of order tn+1, with leading coeffi-
cient proportional to the difference in volumes. For potential scattering the
following shows that this leading term is absent.
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Theorem 4.2.1. The relative scattering phase associated to V ∈ L∞c (Hn+1)

satisfies

σ(t) = O(tn).

The resolvent RV (s) is related to R0(s) by

R0(s)−RV (s) = RV (s)V R0(s). (4.2.1)

If we let Ω := suppV ⊂ Hn+1, then this implies the relation

(1− V RV (s)1Ω) (1 + V R0(s)1Ω) = 1. (4.2.2)

Proposition 4.2.3 implies that ‖V R0(s)1Ω‖ < 1 for |s − n/2| sufficiently
large, in which case we can write

1− V RV (s)1Ω = (1 + V R0(s)1Ω)−1 . (4.2.3)

Lemma 4.2.2. The scattering matrices satisfy a relative scattering formula

SV (s)S0(s)−1 = 1 + (2s− n)E0(s)t1Ω (1 + V R0(s)1Ω)−1 V E0(n− s),

valid for Re s ≥ n/2 with |s− n/2| sufficiently large.

Proof. Using equation (4.2.1) and its transpose we have

RV (s) = R0(s)−R0(s)V RV (s)

= R0(s)−R0(s)V R0(s) +R0(s)V RV (s)V R0(s)

= R0(s)−R0(s)1Ω (1 + V RV 1Ω)V R0(s)

The formulas for the scattering matrix can then be derived by multiplying

the kernels by (2s− n)(ρρ′)−s and taking the limit as ρ, ρ′ → 0. This gives

SV (s) = S0(s)− (2s− n)E0(s)t1Ω (1− V RV 1Ω)V E0(s).

The result follows after applying S0(s)−1 on the right and using (4.2.3).

In order to apply Lemma 4.2.1 we need some estimates on the model
terms. From [10, Prop. 3.2] we have the following:
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Proposition 4.2.3 (Guillarmou). For Re s > n/2 − 1/8, s 6= n/2, the

weighted resolvent satisfies estimates∥∥∥ρ 1
2R0(s)ρ

1
2

∥∥∥ ≤ C |s− n/2|−1 ,

and ∥∥∥ρ 1
2R′0(s)ρ

1
2

∥∥∥ ≤ C |s− n/2|−1 .

We will also need Hilbert-Schmidt norms of the Poisson operator. For
this estimate it is easiest to write the Poisson kernel in the Bn+1 model. We
specify the boundary defining function ρ = 2e−r, where r is hyperbolic
distance from the origin. The normalizing factor is included so that the
induced metric on ∂Bn+1 = Sn is the standard sphere metric. For this
boundary defining function, the Poisson kernel is given by

E0(s;u, ω) = 2−s−1π−n/2
Γ(s)

Γ(s− n/2 + 1)

(
1− |u|2

|u− ω|2

)s

,

where u ∈ Bn+1, ω ∈ Sn.

Lemma 4.2.4. Let χ ∈ L∞c (Bn+1). For t ∈ R, the Poisson operator

E0(n/2 + it) : L2(Sn)→ L2(Bn+1) satisfies

‖χE0(n/2 + it)‖2 ≤ C |t|n/2−1 ,

and

‖χE ′0(n/2 + it)‖2 ≤ C |t|n/2−1 .

Proof. The Hilbert-Schmidt norm is calculated directly:

‖χE0(n/2 + it)‖2

= cn

∣∣∣∣Γ(n/2 + it)

Γ(1 + it)

∣∣∣∣
[∫

Sn

∫
Bn+1

χ(u)2

(
1− |u|2

|u− ω|2

)n

dV (u) dω

]1/2
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Because χ is compactly supported, there is no convergence issue and the

term in brackets is just a constant. The result follows from∣∣∣∣Γ(n/2 + it)

Γ(1 + it)

∣∣∣∣ ≤ C |t|n/2−1 ,

which is easily deduced from Stirling’s formula. The derivative estimate is

similar.

Proof of Theorem 3.1. By virtue of Lemma 4.2.2 we can write this as

τ(s) := det(1 + T (s)),

where

T (s) := (2s− n)E0(s)t1Ω (1 + V R0(s)1Ω)−1 V E0(n− s).

Following the argument from Froese [8, Lemma 3.3], we will estimate the

derivative

σ′(t) = − 1

2π
tr
[
(1 + T (n/2 + it))−1T ′(n/2 + it)

]
Note first that detSV (s)S0(s)−1 is unitary for Re s = n/2, so that∥∥(1 + T (n/2 + it))−1

∥∥ = 1.

Thus we can bound the derivative of the scattering phase by a trace norm,

|σ′(t)| ≤ C ‖T ′(n/2 + it)‖1 .

To control the trace norm, we have the Hilbert-Schmidt estimates on

E0(n/2± it) and derivatives from Lemma 4.2.4. From Proposition 4.2.3 we

also can estimate ∥∥(1 + V R0(s)1Ω)−1
∥∥ = O(1),
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for Re s ≥ n/2 − 1/8 with |s− n/2| sufficiently large, and same for the

derivative. Putting these together (and noting the extra factor of (2s − n))

we obtain

|σ′(t)| = O(|t|n−1).

The result follows by integrating this estimate.

LetRV denote the set of poles of RV (s), repeated according to multiplic-
ity. The resonance counting function is

NV (t) := #{ζ ∈ RV : |ζ − n/2| ≤ t}.

From the proof of [5, Thm. 1.1], we obtain the following:

Corollary 4.2.5. Suppose that V ∈ L∞c (Hn+1) has support contained in a

ball of radius r0. Then

(n+ 1)

∫ a

0

NV (t)

t
dt ≤

[
B(0)
n +B(1)(r0)

]
an+1 + o(an+1),

with

B(0)
n :=

 2
(n+1)!

n odd,

0 n even,

and

B(1)(r0) :=
n+ 1

πΓ(n)

∫ π
2

−π
2

∫ ∞
0

[H(xeiθ, r0)]+
xn+2

dx dθ,

where [·]+ denotes the positive part and

H(α, r) := Re
[
2α log

(
α cosh r +

√
1 + α2 sinh2 r

)
− α log(α2 − 1)

]
+ log

∣∣∣∣∣cosh r −
√

1 + α2 sinh2 r

cosh r +
√

1 + α2 sinh2 r

∣∣∣∣∣ .
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4.3 Laplace’s method
Consider the function φ(α; r) defined in 2.3.8. Since

φ(α; r)′ =

√
1 + α2 sinh2 r

sinh r
,

where the prime denotes an r derivative, we see that Reφ′ > 0 for Reα > 0.
If u(t) is smooth and non-vanishing at b, then Laplace’s method gives the
asymptotic ∫ b

0

e2kφ(t)u(t) dt ∼ u(b)e2kφ(b)

2kφ′(b)
,

as k →∞.
It is not difficult to extend the classical result to include rougher assump-

tions on u, e.g. u is continuous near b with a finite order of vanishing as
t → b. However, we also require some uniformity with respect to the pa-
rameter α. In order to trace how the rate of convergence depends on this
extra parameter, we will include the details of the proof.

Proposition 4.3.1. Suppose that u ∈ L∞[0, b] is continuous near b and

satisfies

u(t) ∼ c(b− t)σ−1 as t→ b,

for some σ ≥ 1. Then, for

I(α; k) :=

∫ b

0

e2kφ(α;t)u(t) dt, f(α; k) :=
cΓ(σ)

(2φ′(α; b))σ
k−σe2kφ(α;b),

given ε, κ > 0 there exists N (independent of α) such that∣∣∣∣ I(α; k)

f(α; k)
− 1

∣∣∣∣ ≤ κ,

provided |argα| ≤ π/2− ε.

Proof. Let us write ∫ b

a

e2kφ(t)u(t) dt = I1 + I2 + I3,
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where for some η > 0

I1 = c

∫ b

b−k−η
e2kφ(t)(b− t)σ−1 dt,

I2 =

∫ b

b−k−η
e2kφ(t)

(
u(t)− c(b− t)σ−1

)
dt.

I3 =

∫ b−k−η

0

e2kφ(t)u(t) dt.

For the first integral, we substitute x = b− t and define

h(x) = ψ(b− x)− ψ(b) + ψ′(b)x,

so that

I1 = ce2kφ(b)

∫ k−η

0

e−2kφ′(b)xekh(x)xσ−1 dx. (4.3.1)

This can be expressed as a Gamma integral plus some error terms:

I1 = ce2kφ(b)

[
Γ(σ)

(2kφ′(b))σ
+ J1 + J2

]
,

where

J1 =

∫ k−η

0

e−2kφ′(b)x
(
ekh(x) − 1

)
xσ−1 dx,

and

J2 =

∫ ∞
k−η

e−2kφ′(b)xxσ−1 dx.

To estimate J1 note that

φ′′(α; t) = − coth r√
1 + α2 sinh2 r

,

Thus, for |argα| ≤ π/2− ε and r ∈ [a, b], we have

|φ′′(α, r)| ≤ coth a

2 sin ε
.



47

Taylor’s approximation then gives |h(x)| ≤ Cεx
2 for x near 0, and hence

for large k,

sup
x∈[0,k−η ]

∣∣ekh(x) − 1
∣∣ = Oε(k

1−2η).

After removing this term, we can replace the upper limit k−η by ∞ and

estimate

|J1| ≤
Γ(σ)

(2kReφ′(b))σ
Oε(k

1−2η).

The other error term in (4.3.1) can be estimated as an incomplete Gamma

function:

|J2| ≤
1

2kReφ′(b)
e−2k1−η Reφ′(b).

Now consider the second integral. Given any δ > 0, we will have∣∣u(t)− c(b− t)σ−1
∣∣ ≤ δ(b− t)σ−1,

for all t sufficiently close to b. Hence, for k sufficiently large

|I2| ≤ δ

∫ b

b−k−η
e2kReφ(t)(b− t)σ−1 dt,

Then, by the same analysis we used on J2 we find

|I2| ≤ δe2kReφ(b)

×
[

Γ(σ)

(2kReφ′(b))σ
(1 +Oε(k

1−2η)) +
1

2kReφ′(b)
e−2k1−η Reφ′(b)

]
,

for sufficiently large k.

The third integral is estimated by

|I3| ≤ b ‖u‖∞ exp
[
2kReφ(b− k−η)

]
≤ Cεb ‖u‖∞ e

2kReφ(b)e−2k1−η Reφ′(b).
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Collecting these estimates, we find that∣∣∣∣ I(α; r)

f(α; r)
− 1

∣∣∣∣ ≤ δ + Cε

(
|φ′(α; b)|

Reφ′(α; b)

)σ
k1−2η

+ Cεk
σ |φ′(α; b)|σ e−2k1−η Reφ′(α;b),

which can be made arbitrarily small provided η ∈ (1/2, 1). For |argα| ≤
π/2− ε we have

Reφ′(α; b)

|φ′(α; b)|
≥ sin ε,

so the k1−2η term is controlled by choosing k large relative to 1/ε. For the

final error term we also need to note the lower bound

|φ′(α; b)| ≥
√

sin 2ε

sinh b
.
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