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Abstract

Automatic active space selection for the driven similarity
renormalization group method

By Chenxi Cai

We proposed a convenient automatic active space selection
scheme for the driven similarity renormalization group truncated
to second order (DSRG-PT2) [C. Li and F. A. Evangelista, J.
Chem. Theory Comput. 11, 2097 (2015)]. It is based on state-
averaged configuration singles (CIS) natural orbitals and the
following DSRG computations become a black-box procedure.
The scheme is tested for valence excited states calculations with
three DSRG methods: valence CI singles (VCIS) and VCIS with
doubles (VCISD) wave functions improved with a second-order
perturbation theory (VCIS/VCISD-DSRG-PT2) [C. Li and F.
A. Evangelista, J. Chem. Phys. 147, 074107 (2017)], and state-
averaged multireference driven similarity renormalization group
[(SA)-MRDSRG] second-order perturbation theory (SA-DSRG-
PT2) [C. Li and F. A. Evangelista, J. Chem. Phys. 148,
124106 (2018)]. Results are benchmarked on a set of 24 organic
molecules. The scheme is also tested for H2O core excitations
with the complete-active-space (CAS) DSRG method.
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1

Chapter 1 Introduction

1.1 Introduction

Efficient and reliable theoretical methods for describing electronic wavefunctions

and potential energy surfaces are usually crucial for understanding chemical reactivity.

Single reference methods can provide accurate results for vertical excitations and

energies.5 However, they cannot describe transition state structures, bond breaking,

and non-radiative decay via conical intersection. The traditional Hartree-Fock (HF)

reference used in standard single-reference methods is poorly suited for describing

orbital near degeneracies. For example, the Restricted Hartree-Fock (RHF) method

is usually not applicable to transition states.6 When electron configurations become

exactly or nearly degenerate, a multi-configurational/multi-reference treatment may

be necessary. In this case, an appropriate zeroth-order wave function is a complete-

active-space self-consistent field reference (CASSCF). It includes all possible electron

arrangements in the “active space”, a limited set of orbitals, inspired by the Full

Optimized Reaction Space (FORS) concept.7 The CASSCF method8,9 is the most

frequently used approach for treating the dominant static electron correlation effects.

Dynamic electron correlation can be accounted for configuration interaction (CI) or

multireference perturbation theory.10–18

One important advantage of CASSCF is that the wavefunction is invariant with

respect to separate orbital rotations within the active, the doubly occupied, and the

virtual spaces. However, the variational optimization of orbitals depend strongly and

unpredictably on the choice of the space of active orbitals. It can become costly due

to the repeated active space full configuration interaction computations. Even with

a relatively modest active space, the cost of CASSCF is higher than that of Hartree-
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Fock. The nonlinear nature of the orbital optimization can also lead to convergence

difficulties. These difficulties can be eased by using natural orbitals (NOs) instead

of canonical molecular orbitals and systematically removing configurations from the

full interaction expansion. The natural orbital occupation number of a given orbital

indicates an orbital’s relative contribution to the wave function, and as such, it can

be used to identify a compact basis that is well suited for the efficient expansion of

the electronic wave function.

The NOs introduced by Löwdin19,20 are the eigenvectors of the one-particle den-

sity matrix. In 1955, Löwdin and Shull21 showed that for a two-electron system, a

CI expansion based on natural orbitals has the best convergence in the sense that it

requires the fewest configurations to achieve a given accuracy in the energy. Since

then, NOs have been used extensively in CI expansions22–27 and advantages over

canonical Hartree-Fock orbitals were demonstrated.28–34 In 1976, Shavitt35 showed

that natural orbitals lead to the fastest configuration interaction convergence within

different orbital transformations. Jensen et al28 showed that the magnitude of the

natural orbital occupation numbers of second-order Mller-Plesset perturbation the-

ory (MP2) can guide the selection of the active space for CASSCF calculations. The

UNO-CAS method29,30 is an inexpensive alternative to CASSCF, based on NOs of

the unrestricted Hartree-Fock (UHF ) wave function. Grev and Schaefer31 investi-

gated the use of NOs obtained from CI wave functions including all single and double

excitations (CISD) for use in multireference CI (MRCI) studies. Gordon32 showed

that natural orbital occupation numbers can be used as a diagnostic for the multicon-

figurational character of the wave function. Abrams and Sherrill34 employed single-

reference based NOs in complete active space conguration interaction (CASCI) as an

alternative to CASSCF orbitals. Barr and Davidson36 introduced the frozen natural

orbitals (FNOs) and many applications were investigated.37–39 Zhen and Spiridoula5

proposed the use of NOs obtained from a single reference correlated calculation de-
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scribing a high-multiplicity state (HMNOs), as a substitute for CASSCF molecular

orbitals. Recently, Levine and co-workers40 presented a CASCI expansion built from

the state-averaged NOs of configuration interaction singles calculations (CIS-NO).

The CIS-NO-CASCI approach provided a size intensive/consistent description of ex-

cited states. In these CI applications, different procedures of generating NOs have

been investigated. Then NOs can be used to choose an active space for subsequent CI

calculations and include all the configurations as specified by the correlation method

within this active space. In this respect, various schemes based on NOs for automatic

active space selection are exploited.5,34,41–43 It should mentioned that Neese and co-

workers43 recently introduced an efficient scheme for the automatic selection of an

active space for similarity transformed equations of motion (STEOM) coupled cluster

method based on Levine’s work.40

In this thesis, we assess the accuracy of the automatic selection of active space

scheme introduced by Neese43 for different versions of the driven similarity renormal-

ization with second-order perturbation theory (DSRG-PT2).44–46 The state-averaged

NOs are constructed by single-reference calculations of electronic excited states: an

inexpensive CIS-NO. The active space is selected automatically based on CIS-NO and

then a DSRG-PT2 computation is performed using those fixed orbitals to recover dy-

namic effects.

1.2 Density Matrix and Natural Orbitals

The one-electron density matrix γ(x′1;x1) in the position representation is defined

as

γ(x′1;x1) = N

∫
dx2 · · · dxNΨ(x′1, x2 . . . , xN)∗Ψ(x1, x2 . . . , xN), (1.1)

where Ψ is a N-electron wavefunction and the quantities xi collects the spatial and

spin coordinates of electron i . The density matrix γ(x′i;xi) represented in a basis of
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spin orbitals φi may be written as the expectation value

γpq = 〈Ψ|â+
p âq|Ψ〉, (1.2)

where â+
p and âq are creation and annihilation operators for orbitals φp and φq, re-

spectively. The NOs are eigenstates of the one-electron density matrix,

γU = NU (1.3)

where the eigenvalues of the density matrix, N, are the occupation numbers of

the respective NOs. A correlated density matrix has fractional natural occupation

numbers and it is not idempotant, which indicates the partial occupation of the asso-

ciated orbitals. Larger occupation numbers indicate larger contributions to the total

correlation energy. As former work has shown,19 the NOs can be used to represent a

correlated wave function in a more compact form.

1.3 Static and Dynamical Correlation

In quantum chemistry, the concept of “correlation” is usually taken to encompass

all the deficiencies of the Hartree-Fock single-determinantal approach, like, for exam-

ple, inability of HF to correctly describe the dissociation of molecules. The correlation

energy (Ecorr) is defined as the difference between the exact (non-relativistic) energy

(Eexact) and the Hartree-Fock energy (EHF).

Ecorr = Eexact − EHF, (1.4)

The correlation energy is usually separated into two kinds: static and dynamical

correlation.

Static correlation arises from the mixing of near-degenerate configurations (deter-

minants) with the HF Slater determinant. In certain cases, there are degeneracies or

near-degeneracies among orbitals and a single Slater determinant does not provide

a good description of a many-electron system’s state. In this cases, it is necessary
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include all nearly degenerate electron configurations at zeroth-order, which can be

done by forming a linear combination of near-degenerate determinants:

|Ψ0〉 =
∑
i

ci|Φi〉, (1.5)

where |Ψ0〉 is a N -electron reference wavefunction, |Φi〉 is Slater determinants and ci

is its corresponding coefficient. The CASSCF involves all possible determinants (full

CI) in the active space, which help to find orbitals that minimize the energies of the

mixture of near-degenerate determinants.

Dynamical correlation arises from small contributions of excited configurations

and describes the correlation between the active orbitals and the external orbitals.

Some external orbitals are necessary for quantitative accuracy of matrix diagonaliza-

tion. However, the process can be expensive if these external orbitals are included

in the active space. A solution to this problem will probably require the inclusion of

dynamical correlation by perturbation theory (PT),11 coupled cluster theory (CC),47

and other approaches. In this thesis, DSRG-PT2 is used to recover dynamical corre-

lation.

Fig. 1.1 shows the static and dynamical correlations differences. Static correlation

can be treated with CASSCF and dynamic correlation is typically gained through

more approximate means.

1.4 Configuration Interaction Singles (CIS)

The configuration interaction expansion of the exact many electron wavefunction

equation is typically written as

|Ψ〉 = c0|Φ0〉+
∑
ia

cai |Φa
i 〉+

∑
i<j,a<b

cabij |Φab
ij 〉+

∑
i<j<k,a<b<c

cabcijk |Φabc
ijk〉+ . . . , (1.6)

where |Φ0〉 is the HF single Slater determinant, |Φa
i 〉 is a singly excited determinant

formed by replacing spin-orbital φi in |Φ0〉 with spin orbital φa. |Φab
ij 〉 is a doubly
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Figure 1.1: A basic description of static correlation and dynamic correlation. Static
correlation is the correlation gained via CASSCF and dynamic correlation describes
the correlation between the active orbitals and the external orbitals.

excited determinant, etc. In our notations, i, j, k denote orbitals occupied in the

reference and a, b, c denote orbitals unoccupied (virtual) in the reference. The CIS

wavefunction is defined by truncating Eq. 1.6 after single excitations:

|Ψ〉 = c0|Φ0〉+
∑
ia

cai |Φa
i 〉, (1.7)

The CIS energy (ECIS) is given by

ECIS = E0 + 2
∑
ia

c0c
a
iFia +

∑
iab

cai c
b
iFab −

∑
ija

cai c
a
jFij +

∑
ijab

cai c
b
j〈aj||ib〉, (1.8)

where

E0 = 〈Φ0|Ĥ|Φ0〉 (1.9)

and the Fock matrix element Fpq is defined as

Fpq = hpq +
∑
k∈Φ0

〈pk||qk〉, (1.10)

For a closed-shell SCF reference |Φ0〉, off-diagonal terms of the Fock matrix vanish,

and the expression for ECIS simplicity to

ECIS = ESCF +
∑
ia

(cai )
2(εi − εj) +

∑
ijab

cai c
b
j〈aj||ib〉. (1.11)
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The CI energy and coefficients can be obtained by diagonalizing the CIS Hamiltonian

using Davidson’s method48 or the Davidson-Liu Simultaneous Expansion Method.49

1.5 Automatic Active Space Selection

1.5.1 Generate State Averaged (SA)-CIS One Body Reduced
Density Matrix

In Levine and co-workers’ work,40 a restricted HF calculation is performed firstly

and then a CIS50 calculation is preformed to obtain the natural orbitals. This pro-

cedure allows to approximate the lowest N singlet excited states. By averaging the

one body reduced density matrices of low-lying excited (CIS) I th states (γ
CIS(I)
pq ) and

ground state (γHF
µν ) as shown in the following Equation, the state averaged (SA)-CIS

one-body reduced density matrix is

Dpq = γSA−CIS
pq =

1

Nλ + 1
(γHF
µν +

Nλ∑
I=1

γCIS(I)
pq ), (1.12)

where the Nλ is the number of roots of I th singlet excited states.The CIS one body

reduced density matrix is defined

γCIS(I)
pq = 〈ΨCIS(I)|â†pâq|ΨCIS(I)〉, (1.13)

where |ΨCIS(I)〉 =
∑occ

i

∑vir
a Ca

i |φai 〉.

The state average CIS density matrix Dpq is block diagonal

D =

(
Do 0
0 Dv

)
(1.14)

where Do and Dv are the occupied-occupied and the virtual-virtual blocks and the

off-diagonal blocks are zero. Then we separately diagonalize the occupied (Do) and

virtual (Dv) blocks. The corresponding eigenvalues are the occupation numbers Ω

and unitary matrices U are obtained as

U o†DoU o = Ωo, U v†DvU v = Ωv, (1.15)
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The NOs are eigenstates of the one-electron density matrix where U o is occupied

unitary matrix and U v is virtual unitary matrix.

1.5.2 Active Orbitals Selection Based on NO Occupancy

Upon diagonalization of the resulting occupied (Do) and virtual (Dv) blocks, the

occupied and virtual natural orbitals are separately ordered according to their oc-

cupation numbers. In order to investigate relationship between occupation numbers

and active orbitals, we calculated occupancies of occupied and virtual natural orbitals

of formaldehyde, as an example, with increasing number of A2 excited states. The

basis set we used is def2-TZVP.51 All results are shown in Fig 1.2 with number of

A2 excited states increasing from 0 to 10. The C2v point group of formaldehyde in-

dicates that for A2 excited states, the excitations can only be B1 → B2, B2 → B1,

A1 → A2, or A2 → A1. After HF calculations, we knew that all occupied orbitals of

formaldehyde are in the A1, B1 or B2 irreps. Then the virtual orbitals in A1 were not

considered and shown in Fig 1.2. The figure with zero A2 excited states illustrates

that in group state, occupied orbitals have 1 occupancies while virtual orbitals have

zero occupancies. When the number of excited states is set to 1, the B2 HOMO

orbital has occupancy smaller than 1 and the B1 LUMO orbital has occupancy larger

than 0. Then from the following plots with number of roots increasing to 10, we know

that the occupied orbitals with smaller occupancies are more likely to loose electrons,

and the virtual orbitals with larger occupancies are more likely to receive electrons.

The CIS-NO method with different roots helps us choose active orbitals according

to their occupation numbers. Occupied orbitals with smaller occupancies and virtual

orbitals with larger occupancies should belong to the active space. To identify the

important orbitals, we introduced two cumulative thresholds for the occupied (σo)

and virtual spaces (σv) here,

σo ≥
∑act

i (1− Ωi)∑No
j (1− Ωj)

, σv ≥
∑act

a Ωa∑Nv
b Ωb

, (1.16)
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Figure 1.2: Average Orbital occupancies of formaldehyde when n A2 excited roots
are computed. The A2 excited states are generally vertical excitations: B1 → B2,
B2 → B1 or A1 → A2. The left part shows occupied orbitals in B1, B2 and A1.
The right part shows virtual orbitals in B1, B2 and A2. When the number of root
increases, some occupied orbital occupancies become smaller and some virtual orbital
occupancies become larger.

where No and Nv are the total number of active occupied and active virtual orbitals,

respectively. Ωi and Ωa are the occupancies of active occupied and active virtual

orbitals, respectively. As these two thresholds indicate, occupied orbitals are chosen
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to be the active orbitals in an order of decreasing 1 − Ωi until conditions in Equa-

tion. (1.16) are satisfied; virtual orbitals are chosen to be the active orbitals in an

order of decreasing Ωa until conditions in Equation. (1.16) are satisfied. These cumu-

lative thresholds help select occupied orbitals whose occupancies are small and virtual

orbitals whose occupancies are large. They are also more general and convenient than

an individual threshold for different molecules. These two thresholds are set to equal

in our later work.

1.5.3 Construct New Coefficient Matrix C

In the last step, we finally transform the MO coefficients to natural orbitals basis

with unitary matrix defined as

U =

(
Uo 0
0 Uv

)
, (1.17)

in the following way

C ′ = CU. (1.18)

The set of CIS-NO orbitals defined by the coefficients C ′ are then used in all following

computations of the correlation energy.
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Chapter 2 CIS-NO For Valence Excited
States

2.1 Introduction

As we mentioned in Chapter 1, dynamic electron correlation effects need to be

added to achieve highly accurate electron energies. Multireference versions of per-

turbation theory (MRPT),11,15,52–60 configuration interaction (MRCI),1,61–63 coupled

cluster theory (MRCC),47,64–67 and other related approaches68–70 are generally used

to treat dynamic electron correlation. However, these multireference theories are

affected by the intruder-state problem,71,72 which is encountered when determinants

that lie within the reference space spanned by the effective Hamiltonian become near-

degenerate with determinants that lie outside of it. In perturbative theories, excited

configurations that cause the intruder-state problem have small energy denominators.

There are some solutions for solving the problem and one is to remove intruders by

shifting energy denominators.73

Our lab has previously introduced the driven similarity renormalization group

(DSRG),74 a many-body theory inspired by flow renormalization group methods.75–80

The DSRG performs a continuous unitary transformation of the Hamiltonian con-

trolled by the flow parameter s:

Ĥ → H̄(s) = Û(s)†ĤÛ(s), (2.1)

where Ĥ is the bare Hamiltonian, H̄(s) is the transformed Hamiltonian, and Û(s)

is a unitary operator that depends on a time-like parameter s in range ∈ [0,∞).

When s goes to infinity, the non-diagonal part [H̄(s)]N of H̄(s) goes to zero. More

specifically, for a intermediate given value of s, states with energy denominators

larger than a cutoff energy Λ = s−1/2 are folded into an effective Hamiltonian. As
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consequence, the excitations that have small energy denominators are avoided by the

DSRG transformation.

Li and co-workers have introduced three approaches to electronic excitation ener-

gies based on the DSRG: (i) Multireference driven similarity renormalization group

(MR-DSRG) derived a second-order perturbation theory (DSRG-MRPT2)44 (ii) Va-

lence CI singles (VCIS) and VCIS with doubles (VCISD) wave functions improved

with a second-order perturbation theory (VCIS/VCISD-DSRG-PT2)45 (iii) State-

averaged multireference driven similarity renormalization group [(SA)-MRDSRG] de-

rived a second-order perturbation theory (SA-DSRG-PT2).46 Both MR-DSRG and

SA-MRDSRG are built by employing the operator algebra of Mukherjee and Kutzel-

nigg’s (MK) generalized normal ordering.81–83 All these methods avoid the intruder-

state problem and may be applied to near-degenerate excited states. They also have

other advantages: (1) The DSRG-MRPT2 energy equations are simple and can be

solved by a computational approach that requires at most the three-body cumu-

lant of the reference wave function and may be easily combined with density-fitted

or Cholesky-decomposed two-electron integrals to reduce the computational cost.84

(2) VCIS/VCISD-DSRG-PT2 combines an active space truncated CI expansion and

second-order multireference perturbation theory and reduce the storage cost for cumu-

lants. (3) In SA-DSRG-PT2 theory, the transformed Hamiltonian can be obtained in

a single non-iterative procedure that does not depend on the number of model states.

The present work focus on the implementation of CIS-NO with VCIS/VCISD-

DSRG-PT2 and SA-DSRG-PT2 theories. The main advantage of the combination of

CIS-NO and different versions of DSRG-PT2 is the automatic selection can lead to

an efficient and accurate black-box method for describing electronic wavefunctions of

ground and excited states.
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2.2 Theory

2.2.1 VCIS/VCISD-DSRG-PT2

We assume that core (C), active hole (AH, designated by indices I , J , ...), active

particle (AP , designated by the indices A,B , ...), and virtual (V) subsets form the

full orbital set (G). The active orbitals space is defined as the sum of the active hole

and partical spaces: A = AH + AP. All these subsets are shown in Fig 2.1.

Figure 2.1: Orbital spaces used to define the VCIS and VCISD zeroth-order wave
functions.

With this division, we assume that zeroth-order ground state wave functions Ψ
(0)
0

for valence excited states can be described by an active space CI with singles (VCIS)

or singles and doubles (VCISD) wave functions obtained from a closed-shell reference

determinant |Φ0〉. The zeroth-order VCIS and VCISD wave functions [Ψ
(0)
n ] for the

nth excited state are defined respectively as:

|Ψ(0),S
n 〉 =

AH∑
I

AP∑
A

cAI |ΦA
I 〉 , (2.2)

and

|Ψ(0),SD
n 〉 =

AH∑
I

AP∑
A

cAI |ΦA
I 〉+

1

4

AH∑
IJ

AP∑
AB

cABIJ |ΦAB
IJ 〉 , (2.3)
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where cAI and cABIJ are the CI coefficients of the singly excited determinant |ΦA
I 〉 =

â+
AâI |Φ0〉, and doubly excited determinant |ΦAB

IJ 〉 = â+
Aâ

+
BâJ âI |Φ0〉. We improve this

zeroth-order description with the driven similarity renormalization group (DSRG-

PT2). As Eq.2.1 shows, DSRG performs a continuous unitary transformation of the

Hamiltonian. This unitary transformation is controlled by the DSRG flow equa-

tion44,74

[H̄(s)]N = R̂(s), (2.4)

where R̂(s) is the so-called source operator and it plays the role of driving the DSRG

transformation of the Hamiltonian. After solving this flow equation, the electronic

energy of a given reference wave function Ψ (either ground or excited) is given by the

expectation value of the DSRG transformed Hamiltonian,

E(s) = 〈Ψ|H̄(s)|Ψ〉, (2.5)

We assume that each electronic state has a different zeroth-order Hamiltonian and

the Hamiltonian for the nth electronic state (Ĥn) is partitioned into a zeroth-order

component [Ĥ
(0)
n ] plus a first-order perturbation [Ĥ

(1)
n ]. The zeroth-order term [Ĥ

(0)
n ]

is defined

Ĥ(0)
n = E(0)

n + F̂ (0)
n , (2.6)

where E
(0)
n is the reference energy

E(0)
n = 〈Ψ(0)

n |Ĥ|Ψ(0)
n 〉, (2.7)

and F̂
(0)
n is the diagonal apart of the normal-ordered Fock operator

F̂ (0)
n =

G∑
p

[f (0)
n ]pp{âpp}. (2.8)

The Fock operator [f
(0)
n ] matrix has the form

f (0)
n =


fCn 0 0 0
0 fAH

n 0 0
0 0 fAP

n 0
0 0 0 fVn

 (2.9)
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and it includes the diagonal blocks of the average Fock matrix fn which is defined by

the density matrix (γn) and the one- and two- electron integrals (hqp, 〈pr||qs〉).

(fn)qp = hqp +
C∑
m

〈pm||qm〉+
A∑
µν

〈pµ||qν〉(γn)νµ, (2.10)

The DSRG-MRPT2 total energy equation is defined

E[2]
n (s) = E(0)

n + 〈Ψ(0)
n |[H̃(1)

n (s), T̂ (1)
n (s)]|Ψ(0)

n 〉, (2.11)

where H̃
(1)
n (s) is an effective first-order Hamiltonian defined as H̃

(1)
n (s) = Ĥ

(1)
n +

R̂
(1)
n (s). The T̂

(1)
n (s) is the cluster operator that excites electrons from the occupied

to the unoccupied orbitals of the Hartree-Fock reference (Ψ0), and is defined by the

first-order flow equation

Ĥ(1)
n + [Ĥ(0)

n , T̂ (1)
n (s)]N = R̂(1)

n (s), (2.12)

The excitation energy for the nth excited state [ωn(s)] is computed by the difference

between the DSRG-MRPT2 energy for the ground state [E
[2]
0 (s)] and excited state

[E
[2]
n (s)],

ωn(s) = E[2]
n (s)− E[2]

0 (s). (2.13)

2.2.2 SA-DSRG-PT2

In SA-MRDSRG, the zeroth-order electronic states [Ψn
0 ], which is instead using

the active CAS determinant space,

|Ψn
0 〉 =

NCAS∑
I=1

cnI |ΨI〉, (2.14)

With different electronic states, they construct a statistical ensemble E0:

E0 ≡ {Ψα
0 , α = 1, 2, . . . , n}, (2.15)

Then by using the theory of generalized normal ordering of Mukherjee and Kutzelnigg

(MK-GNO),82 the bare Hamiltonian (Ĥ) in a normal-ordered form with respect to
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the ensemble is

Ĥ = E0 +
G∑
pq

f̄ qp{âpq}ρ +
1

4

G∑
pqrs

νrspq{âpqrs}ρ, (2.16)

where E0 is the SA reference energy and f̄ qp is the SA Fock matrix,

E0 = 〈Ĥ〉ρ =
n∑

α=1

ωα〈Ψα
0 |Ĥ|Ψα

0 〉, (2.17)

f̄ qp = hqp +
H∑
ij

νqjpi γ̄
i
j, (2.18)

hqp is the one-electron integrals, νqjpi = 〈φpφq||φrφs〉 is the antisymmetrized two-electron

integrals and γ̄ij is the SA density matrix.

We introduced state-specific DSRG transformed Hamiltonian in Equation.2.1 Then

the state-average transformation of the Hamiltonian is an operator that includes

three- and higher-body terms,

H̄(s) = Ē0(s) +
G∑
pq

H̄q
p(s){âpq}ρ +

1

4

G∑
pqrs

H̄rs
pq(s){âqprs}ρ + . . . , (2.19)

where Ē0(s) = 〈H̄(s)〉ρ, H̄rs...
pq...(s) are tensors and the second quantized operators

are normal ordered with respaect to the ensemble of the states. The state-averaged

DSRG applies many-body source operators R̂(s) normal ordered with respect to the

ensemble of states.

R̂k(s) =
1

(k!)2

H∑
ij...

P∑
ab...

rij...ab...(s)({â
ab...
ij... }ρ + {âij...ab...}ρ), (2.20)

The Equation above shows R̂(s) with k-body (k = 1, 2, . . . , n) components and the

rij...ab... is a rank 2k tensor defined below,

ria(s) = [f ia +
A∑
µν

4µ
ν γ̄

µ
ν t
iν
aµ(s)]exp[−s(4i

a)
2], (2.21)

rijab(s) = νijabexp[−s(4
ij
ab)

2], (2.22)
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The source operator is a nondiagonal operator, [R̂(s)]N = R̂(s). This condition is

achieved by applying rxy...µν...(s) = 0, ∀µ, ν, x, y, · · · ∈ A

The DSRG Hamiltonian of SA-DSRG-PT2 is

H̄ [2](s) = H̄(0) +
2∑
i=1

H̄ i(s), (2.23)

By diagonalizing, we can get the energies. Here we implemented two diagonalization

methods, one is contracted and the other is uncontracted. As for contracted scheme,

the DSRG Hamiltonian is diagonalized within the space of basis states in the ensemble

E0,
n∑
β

〈Ψα
0 |H̄ [2](s)|Ψβ

0 〉C
ξ
β = Cξ

αEξ(s), ξ = 1, . . . , n, (2.24)

where [Eξ(s)] is the energy of state ξ. The zeroth-order wave function is

|Ψξ
0〉 =

n∑
α

Cξ
α|Ψα

0 〉 =

NCAS∑
I=1

(
n∑
α

Cξ
αc
α
I )|ΦI〉, (2.25)

In the uncontracted scheme, the DSRG Hamiltonian is diagonalized within the space

of CAS determinants {ΦI , I = 1, 2, . . . , NCAS},
NCAS∑
J

〈ΦI |H̄ [2](s)|ΦJ〉C̃ξ
J = C̃ξ

JẼξ(s), ξ = 1, . . . , n, (2.26)

and the wave function is

|Ψ̃ξ
0〉 =

NCAS∑
I

C̃ξ
I |Φ

I〉, (2.27)

The uncontracted scheme is more flexible than the contracted one because each deter-

minant has an corresponding coefficient. These two schemes can avoid the intruder-

state problem and both are computational advantageous.

The differences between VCIS/VCISD-DSRG-PT2 and SA-DSRG-PT2 methods

are: (1) VCIS/VCISD-DSRG-PT2 are general used for closed-shell computations

while SA-DSRG-PT2 is used for open-shell cases. (2) VCIS/VCISD-DSRG-PT2 are

specific-state methods while SA-DSRG-PT2 is state-average method, which can solve

special case such as conical intersection. Moreover, we have never extensively tested

the SA-DSRG-PT2 before. It is important to know the accuracy of it.
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2.3 Computational Details

The VCIS-, VCISD-, and SA-DSRG-PT2 methods are implemented in Forte, an

open-source suite of multireference methods interfaced to the PSI4 quantum chem-

istry package.85 We computed 71 singlet states of 24 organic molecules from Thiel’s

benchmark set,4 selecting only molecules with single character %T greater than or

equal to 87% in CC3 benchmark, because excited states that are dominated by dou-

ble excitations have small %T1 values. States with single character %T greater than

or equal to 87% are dominated by single excited. Molecular orbitals were optimized

at the restricted Hartree-Fock level using the def2-TZVP basis set.51 Two-electron

integrals were approximated by density fitting, where the def2-TZVP-JKFIT86 basis

set was used for Hartree-Fock and DSRG-PT2 computations. The overall calcula-

tion procedure is to combine CIS-NO and VCIS/VCISD/SA-DSRG-PT2 (AUTO-

VCIS/VCISD/SA-DSRG-PT2). The active space is automatically chosen by CIS-NO

for subsequent DSRG computations to evaluate excitation energy. The active orbitals

and excitation energies for all single states are provided in Appendix.

2.4 Results

2.4.1 Threshold Dependence of Active Space

The active space of 24 molecules for their corresponding singlet states were com-

puted with different thresholds: 0.99, 0.95, 0.9 and 0.85, respectively, to investigate

threshold effects. Fig. 2.2 shows size of active space of 24 molecules with different

thresholds. The number of active orbitals for each molecule are listed in the Ap-

pendix. As the threshold decreases from 0.99 to 0.95, the sizes of the active space

decrease more than a half for most of the molecules. When threshold decreases to

0.9, most of the active space sizes change little and they are found to be the same as

that obtained with the 0.85 threshold.
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Figure 2.2: Number of active orbitals selected by CIS-NO with 0.99, 0.95, 0.90,0.85
thresholds for the set of 24 molecules from Ref. 1. Blue bar shows size with 0.99
threshold, orange bar shows size with 0.95, green bar shows size with 0.9 and grey
bar shows size with 0.85. All computations use the def2-TZVP basis set.
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(a) Canonical Orbitals
(b) NO with 0.99 threshold

(c) NO with 0.95 threshold (d) NO with 0.9 threshold

Figure 2.3: Plots of ethylene orbitals. 1a) Canonical orbitals. b)-d) Natural orbitals
with 0.99, 0.95, 0.90 thresholds, respectively. The corresponding occupancies are
listed below orbitals. The red number means that this orbital is chosen to be active.
1-B3u is the HOMO orbital and 1-B2g is the LUMO orbital. All computations use
the def2-TZVP basis set.

For example, Fig. 2.3 shows some important occupied and virtual orbitals of ethy-

lene. The Fig 2.3a shows canonical orbitals and Fig 2.3b, 2.3c, 2.3d show natural

orbitals. Orbitals look different from 4Ag orbital because of different types of or-

bitals. When threshold decreases from 0.99 to 0.95, the number of active orbitals

which have red numbers above symmetry is reduced from 10 to 4 and then 2 with

0.90 threshold. As the red number is occupancies of orbitals, Fig 2.3b, 2.3c, 2.3d il-

lustrate that CIS-NO always choose most important orbitals: occupied orbitals with

smaller occupancies and virtual orbitals with larger occupancies. When the threshold

is smaller, the size of active space also becomes smaller.

Then the excitation energy results with thresholds are investigated. The excitation
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Table 2.1: Singlet excitation energies error statistics (in eV) of different thresholds
with respect to CC3 values of 24 organic molecules taken from Ref. 4. All DSRG
computations use the def2-TZVP basis set.

Parameters 0.99 0.95 0.9

VCIS- VCISD- VCIS- VCISD- VCIS- VCISD-

ME −0.05 −0.02 −0.04 −0.08 −0.03 −0.07

SD 0.24 0.28 0.28 0.27 0.28 0.27

MAE 0.20 0.22 0.24 0.24 0.23 0.24

MIN −0.46 −0.47 −0.52 −0.59 −0.52 −0.59

MAX 0.67 0.92 0.74 0.60 0.74 0.60

energies of 71 singlet states are computed with different threshold and different DSRG

methods.

VCIS/VCISD-DSRG-PT2

The thresholds are set: 0.99, 0.95, and 0.9 for VCIS/VCISD-DSRG-PT2 method

and error statistics are with respect to CC3 values. After collecting data in Table

2.1, it can be seen that for AUTO-VCIS-, the mean absolute errors (MAE) difference

between 0.99 and 0.95 thresholds is 0.04 eV and that between 0.95 and 0.9 thresholds

is -0.01 eV. As for AUTO-VCISD-, the MAE differences are 0.02 eV (between 0.99

and 0.95) and 0 eV (between 0.95 and 0.9). The standard deviation (SD) differences

between two thresholds are 0.04 eV (between 0.99 and 0.95) and 0 eV (between 0.95

and 0.9) for AUTO-VCIS-, while -0.01 eV (between 0.99 and 0.95) and 0 eV (between

0.95 and 0.9) for AUTO-VCISD-. The higher threshold is, the more accurate the

excited energies. However, all these differences are small, which means the large

decrease of active space size leads to slight changes in accuracy. We can truncate

active space by decreasing the threshold value and the calculation results still have

good accuracy. which improves AUTO-DSRG calculations to be more inexpensive

and faster.
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SA-DSRG-PT2

As for SA-DSRG-PT2, the excitation energies of 71 singlet states are computed

with different thresholds: 0.95, 0.9 and 0.85, respectively, to investigate threshold

effects. Threshold 0.99 is not considered in this part because some of the active spaces

are too large to be truncated with CAS. After collecting data in Table 2.2, it can be

seen that MAE values are same of three thresholds. The SD differences between two

thresholds are 0.01 eV (between 0.95 and 0.90) and 0 eV (between 0.90 and 0.85)

for AUTO-SA-DSRG-PT2. From Fig. 2.2 we know that all the molecules have small

active space size with thresholds from 0.95 to 0.85. The reason of the little changes

of MAE and SD is that as the threshold decreases from 0.95 to 0.85, the amount of

active orbitals decrease a little. The active space size keeps unchanged when threshold

decreases to 0.85 for most molecules, except imidazole and s-triazine. We still have

the conclusion that active space can be truncated by decreasing threshold value and

the calculation results still have good accuracy.

Table 2.2: Singlet excitation energy errors statistics (in eV) of different thresholds
with respect to CC3 values of 24 organic molecules taken from Ref. 4. All SA-DSRG-
PT2 computations use the def2-TZVP basis set.

Parameters 0.95 0.9 0.85

ME 0.13 0.17 0.16

SD 0.24 0.23 0.23

MAE 0.21 0.21 0.21

MIN −0.26 −0.26 −0.26

MAX 0.75 0.80 0.80

2.4.2 Comparison with Manual Selection

We then compared size of truncated active space in AUTO-VCIS/VCISD-DSRG

methods with that in Ref. 45, in which active space is selected manually. Because

including different singlet states of a molecule in calculation means different set of ac-

tive space, molecules chosen in comparison need to have same included singlet states.
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Ethene, cyclopropene, norbornadiene, imidazole, formaldehyde, and acetone satisfy

this requirement. All included singlet states in calculations of these six molecules are

the same as that in Ref. 45. Fig. 2.4 shows the number of active orbitals of CIS-NO

selection and manual selection. All calculations use the def2-TZVP basis set and

CIS-NO threshold is 0.9. The active space datas are in the Appendix.

Ethene Cyclopropene Norbornadiene Imidazole Formaldehyde Acetone
Molecules
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CIS-NO
Manually

Figure 2.4: Active space size of 6 molecules from Ref. 2. Blue bars represent results
of CIS-NO selection with 0.9 threshold; Orange bars represent results of manual
selection. All computations use def2-TZVP basis set.

The size of truncated active space with CIS-NO methods is smaller than half

of that with manual selection in ethene, cyclopropene, formaldehyde and acetone

molecules and larger than a half in norbornadiene and imidazole. Table 2.3 shows

MAE and SD of these 6 molecules with respect to CC3 values and both AUTO-VCIS

and AUTO-VCISD methods have smaller errors than those of DSRG methods with
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manual selection. The size of active space can be truncated well with CIS-NO and

active orbitals are more optimal, which means faster, lower-cost and more accurate

calculations.

Table 2.3: Singlet excitation energies error statistics (in eV) of VCIS/VCISD and
AUTO-VCIS/VCISD-DSRG-PT2 with respect to CC3 of 6 organic molecules taken
from Ref. 4. All computations use def2-TZVP basis set and threshold is 90% for auto
selection methods

VCIS- VCISD-

AUTO- Manually AUTO- Manually

SD 0.21 0.24 0.15 0.19

MAE 0.18 0.21 0.14 0.16

2.4.3 Comparison with Established Excited State Methods

Here we considering established excited state methods. Table 2.4 shows these

71 states excitation energy error statistics of AUTO-VCIS/VCISD/SA-DSRG-PT2

compared with those of other methods. It includes TDDFT (B3LYP functional),90–92

DFT combined with multireference CI (DFT/MRCI),87 single-reference CC methods

(CC2 and CCSD),2 CASPT2 [multi-state (MS)88 and state-specific (SS)89] schemes,

and VCIS/VCISD-DSRG-PT2 with manually selected active space.45 All DSRG com-

putations use def2-TZVP basis set and other methods use the TZVP basis. The CIS-

NO threshold was set to 0.99 for VCIS/VCISD-DSRG-PT2 computations and 0.95

for SA-DSRG-PT2 method.

As shown in Table 2.4, both MAE and SD of AUTO-VCIS-DSRG-PT2 (0.20 and

0.24 eV) are smaller than those of previously computed VCIS-DSRG-PT2 (0.23 and

0.28 eV). The MAE of AUTO-VCISD-DSRG-PT2 is the same as VCISD-DSRG-

PT2 and the corresponding SD is larger by 0.02 eV. This means that the AUTO-

VCIS/VCISD-DSRG-PT2 methods improves upon VCIS/VCISD-DSRG-PT2 with

manually selected active space. The SD and MAE differences between VCIS-DSRG-

PT2 and VCISD-DSRG-PT2 are 0.02 eV and 0.01 eV, respectively. However, those
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Table 2.4: Singlet excitation energies error statistics (in eV) of different methods with
respect to CC3 of 24 organic molecules taken from Ref. 4. All DSRG computations
use def2-TZVP basis set and other methods use the TZVP basis.

Method ME SD MAE MIN MAX

B3LYPa −0.42 0.24 0.43 −0.97 0.08

DFT/MRCIa −0.34 0.17 0.34 −1.12 0.03

CC2b 0.04 0.11 0.09 −0.22 0.27

CCSDb 0.19 0.08 0.19 0 0.39

MS-CASPT2c −0.22 0.17 0.23 −0.62 0.17

SS-CASPT2c −0.17 0.20 0.21 −0.59 0.41

VCIS-DSRG-PT2d 0.04 0.28 0.23 −0.41 1.02

VCISD-DSRG-PT2d −0.07 0.26 0.22 −0.58 0.57

VCISD+HF-DSRGd −0.06 0.26 0.22 −0.75 0.57

AUTO-VCIS-DSRG-PT2e −0.05 0.24 0.20 −0.46 0.67

AUTO-VCISD-DSRG-PT2e −0.02 0.28 0.22 −0.47 0.92

AUTO-SA-DSRG-PT2f 0.13 0.21 0.20 −0.26 0.75

a Data taken from Ref. 87
b Data taken from Ref. 2
c Multi-state (MS) CASPT2 (with IPEA shifts) data taken from Ref. 88 State-specific (SS)

CASPT2 data taken from Ref. 89 using the same active spaces and IPEA shifts as Ref. 88
d Data taken from Ref. 45. Active space is selected manually.
d Threshold is 0.99.
f Threshold is 0.95.
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differences of AUTO-VCIS-DSRG-PT2 and VCISD-DSRG-PT2 are 0.04 eV and 0.02

eV, respectively. The reason of the slightly larger differences of SD and MAE between

AUTO selection than manual selection may be the lack of double excited determi-

nants in CIS-NO part. CIS-NO selection only considers single excited determinants

but double excited determinants are necessary for describing VCISD-DSRG-PT2

method. The MAE value order of all these methods are: CC2 < CCSD < AUTO-

VCIS-DSRG-PT2 ∼ AUTO-SA-DSRG-PT2 < SS-CASPT2 < VCISD-DSRG-PT2 ∼

AUTO-VCISD-DSRG-PT2 < VCIS-DSRG-PT2 ∼ MS-CASPT2 < DFT/MRCI <

B3LYP, which shows that the AUTO-DSRG methods reproduce high-quality CC3

results well. CIS-NO is a convenient selection method with accuracy that can select

more optimal active space for excitation energy calculations with VCIS/VCISD/SA-

DSRG-PT2 methods.

2.4.4 Comparison with CAS Space

The truncation is also helpful for excitation energies calculations using complete

active space (CAS)-based references wave functions improved by DSRG-PT2 (CAS-

DSRG-PT2) method. Calculations based on CAS wave function are expensive with

large active space because of too many determinants in active space. Here, we can set

threshold to 0.9 so that the size of active space selected by CIS-NO is small, which

can be seen in Fig. 2.2. Error statistics of AUTO-VCIS/VCISD/SA-DSRG-PT2 and

AUTO-CAS-DSRG-PT2 are listed in Table 2.5.

It shows that MAE and SD values of these four methods have slight differences,

which means (i) CIS-NO method automatically selects optimal active orbitals for

these methods (ii) CIS-NO helps to decrease active space for CAS and the results have

good agreement of CC3 reference values (iii) VCIS/VCISD/SA methods work well for

singlet excitation energies calculation compared with CAS method. (iv) SA-DSRG-

PT2 method works the best for singlet excitation energies calculation compared with
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Table 2.5: Singlet excitation energies error statistics (in eV) of VCIS/VCISD/SA
and CAS with respect to CC3 values of 24 organic molecules taken from Ref. 4. All
computations use def2-TZVP basis set and 0.9 threshold.

AUTO-SA- AUTO-VCIS- AUTO-VCISD- AUTO-CAS-

ME 0.17 −0.03 −0.07 0.02

SD 0.23 0.28 0.27 0.28

MAE 0.21 0.23 0.24 0.22

MIN −0.26 −0.52 −0.59 −0.38

MAX 0.80 0.74 0.60 0.87

other methods.

2.4.5 Conclusion

We have proposed and implemented a method to automatically select active spaces

for multireference computations of excited states based on state average CIS natu-

ral orbitals. This method selects important orbitals into active space for excitation

energy calculations. The size of active space can be truncated by decreasing the cu-

mulative NO occupancy. The size is truncated significantly when threshold is changed

from 0.99 to 0.85 and keep same when threshold is smaller that 0.85. Although the

number of active orbitals with 0.9 threshold is smaller than those with 0.99 and

0.95 threshold, the accuracy remains comparable and satisfactory. The three DSRG

methods, AUTO-VCIS, AUTO-VCISD and AUTO-SA-DSRG-PT2 have good results

compared with established excited state methods such as DFT/MRCI. What’s more,

AUTO-SA- is the best one. The truncated active space is also helpful for CAS-based

DSRG calculations. The small active space selected helps CAS procedure to be faster

and inexpensive. By comparing six selected molecule from Ref. 45, the truncated

active space selected by CIS-NO with 90% cumulative occupancy is nearly half the

size of manually selected active spaces. In conclusion, the advantages of CIS-NO

method are: (i) Active space selection is automatic and results have good accuracy

respect with CC3 values. (ii) We can truncate active space with lower threshold,
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which help calculations have lower cost. (iii) The CIS-NO method is helpful to make

VCIS/VICSD/SA-DSRG-PT2 a black-box methods for excited states.

2.4.6 Appendix

Vertical Excitation Energies

The vertical excitation energies of all 71 singlet transitions from the twenty-four

molecules are shown in Table 2.6. We list the excitation energies of CC3 computed

with the TZVP basis set and the AUTO-VCIS/VCISD/SA-DSRG-PT2/def2-TZVP

results with different thresholds. The CC3 results are taken from Ref. 4
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Table 2.6: Vertical excitation energies (in eV) for singlet states of the twenty-four molecules computed using VCIS-, VCISD-,
SA-, CAS-DSRG-PT2 (s = 0.5 E−2

h ) with the def2-TZVP basis set and different thresholds.

DSRG-PT2
VCIS VCISD SA CAS

Molecule State CC3 0.99 0.95 0.9 0.99 0.95 0.9 0.95 0.9 0.85 0.9

Ethene 1 1B1u(π → π∗) 8.37 8.08 8.14 8.11 8.08 8.14 8.11 8.30 8.34 8.34 8.20
E-Butadiene 1 1Bu(π → π∗) 6.58 6.29 6.29 6.28 6.22 6.21 6.28 6.56 6.58 6.58 6.39
all-E-Hexatriene 1 1Bu(π → π∗) 5.58 5.34 5.22 5.26 5.22 5.14 5.26 5.61 5.62 5.62 5.37
all-E-Octatetraene 1 1Bu(π → π∗) 4.94 4.74 4.79 4.85 4.62 4.73 4.85 5.09 5.04 5.04 4.96
Cyclopropene 1 1B1(σ → π∗) 6.9 6.73 6.71 6.72 6.75 6.67 6.72 6.86 6.92 6.92 6.77

1 1B2(π → π∗) 7.1 6.85 7.00 6.99 6.84 7.00 6.99 7.24 7.22 7.22 7.04
Cyclopentadiene 1 1B2(π → π∗) 5.73 5.42 5.38 5.38 5.46 5.39 5.39 5.70 5.70 5.70 5.51

3 1A1(π → π∗) 8.69 8.60 8.73 8.73 8.60 9.06 9.06 8.86 8.86 8.86 8.69
Norbornadiene 1 1A2(π → π∗) 5.64 5.45 5.43 5.42 5.39 5.42 5.42 5.66 5.70 5.67 5.56

1 1B2(π → π∗) 6.49 6.39 6.40 6.40 6.27 6.40 6.40 6.65 6.68 6.65 6.52
2 1B2(π → π∗) 7.64 7.65 7.79 7.78 7.62 7.79 7.78 7.95 8.02 7.99 7.86
2 1A2(π → π∗) 7.71 7.65 7.66 7.71 7.59 7.66 7.71 7.87 7.97 7.94 7.82

Benzene 1 1B1u(π → π∗) 6.68 6.27 6.23 6.39 6.28 6.23 6.23 6.60 6.60 6.60 6.40
1 1E1u(π → π∗) 7.45 7.43 7.59 7.73 7.36 7.59 7.59 7.72 7.72 7.72 7.63

Naphthalene 1 1B2u(π → π∗) 5.03 5.11 5.25 5.25 4.83 5.02 5.02 5.35 5.35 5.35 5.29
2 1B3u(π → π∗) 6.33 6.70 6.98 6.98 6.46 6.93 6.93 7.08 7.08 7.08 7.02
2 1B1g(π → π∗) 6.79 6.68 6.80 6.80 6.79 7.10 7.10 7.38 7.38 7.38 7.29
2 1B2u(π → π∗) 6.57 6.86 7.11 7.11 6.61 7.08 7.08 7.22 7.22 7.22 7.19
3 1B2u(π → π∗) 8.44 9.11 9.18 9.18 8.57 8.86 8.86 9.17 9.17 9.17 9.05

Furan 2 1A1(π → π∗) 6.62 7.14 7.13 7.13 6.60 6.41 6.41 6.70 6.70 6.70 6.53
3 1A1(π → π∗) 8.53 8.61 8.67 8.67 8.51 8.46 8.46 8.65 8.65 8.65 8.42

Pyrrole 1 1B2(π → π∗) 6.71 6.70 6.68 6.68 6.59 6.62 6.62 6.88 6.88 6.88 6.67
3 1A1(π → π∗) 8.17 8.35 8.42 8.42 8.26 8.23 8.23 8.37 8.37 8.37 8.21

Imidazole 2 1A′′(n→ π∗) 6.83 7.04 7.03 7.03 7.02 6.74 6.74 6.92 6.95 6.95 6.78
2 1A′(π → π∗) 6.58 6.89 6.78 6.78 6.63 6.48 6.48 6.64 6.64 6.64 6.53
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Table 2.6 (Continued.)

DSRG-PT2
VCIS VCISD SA CAS

Molecule State CC3 0.99 0.95 0.9 0.99 0.95 0.9 0.95 0.9 0.85 0.9

3 1A′(π → π∗) 7.10 7.14 7.12 7.12 6.93 6.97 6.97 7.21 7.21 7.21 7.01
4 1A′′(n→ π∗) 7.94 8.49 8.45 8.45 8.40 8.14 8.14 8.14 8.20 8.20 8.13
5 1A′(π → π∗) 8.45 8.59 8.55 8.55 8.63 8.66 8.66 8.66 8.66 8.66 8.56

Pyridine 1 1B1(n→ π∗) 5.06 5.18 5.02 5.02 5.08 4.84 4.84 4.97 4.97 4.97 4.95
2 1A2(n→ π∗) 5.51 5.50 5.40 5.40 5.59 5.39 5.39 5.50 5.50 5.50 5.45
2 1A1(π → π∗) 6.85 6.46 6.43 6.43 6.44 6.35 6.35 6.72 6.72 6.72 6.52
3 1A1(π → π∗) 7.70 7.68 7.82 7.824 8.15 7.92 7.92 7.95 7.95 7.95 7.85
2 1B2(π → π∗) 7.59 7.66 7.76 7.76 7.53 7.74 7.74 7.88 7.88 7.88 7.79

Pyrazine 1 1B3u(n→ π∗) 4.25 4.14 4.01 4.16 4.28 4.06 4.02 7 4.32 4.34 4.34 4.25
1 1Au(n→ π∗) 5.05 5.07 4.93 4.87 5.23 4.84 4.93 5.11 5.22 5.22 4.97
1 1B1u(π → π∗) 7.07 6.68 6.59 6.77 6.75 6.58 6.59 6.96 7.01 7.01 6.93
2 1B1u(π → π∗) 8.06 8.04 8.17 8.39 7.89 8.20 8.17 8.37 8.39 8.39 8.50
2 1B2u(π → π∗) 8.05 8.25 8.29 8.33 8.12 8.21 8.28 8.44 8.47 8.47 8.44

Pyrimidine 1 1B1(n→ π∗) 4.51 4.52 4.32 4.34 4.65 4.25 4.26 4.41 4.49 4.49 4.36
1 1A2(n→ π∗) 4.93 4.97 4.72 4.71 5.11 4.73 4.82 4.88 5.01 5.01 4.88
2 1A1(π → π∗) 7.06 6.77 6.69 7.83 6.75 6.55 7.86 6.96 7.01 7.01 7.93
2 1B2(π → π∗) 8.01 7.97 8.14 8.13 8.19 8.29 8.17 8.30 8.36 8.36 8.25
3 1A1(π → π∗) 7.74 7.69 7.84 7.83 7.61 7.87 7.86 8.02 8.05 8.05 7.93

Pyridazine 1 1B1(n→ π∗) 3.93 3.86 3.71 3.70 4.05 3.56 3.77 3.76 3.90 3.90 3.70
1 1B2(π → π∗) 6.93 6.62 6.54 6.54 6.59 6.423 6.65 6.83 6.87 6.87 6.59
2 1B2(π → π∗) 7.55 7.45 7.70 7.67 7.52 7.63 7.84 7.85 7.88 7.88 7.71
3 1A1(π → π∗) 7.82 7.91 8.08 8.03 7.83 8.00 8.18 8.15 8.18 8.18 8.06

s-Triazine 1 1A′′2(n→ π∗) 4.76 4.61 4.62 4.63 4.64 4.39 4.39 4.56 4.61 4.61 4.46
1 1A′′1(n→ π∗) 4.78 4.34 4.29 4.31 4.75 4.50 4.47 4.60 4.74 4.7 4.49
1 1E′′(n→ π∗) 4.82 4.58 4.56 4.55 4.75 4.50 4.48 4.64 4.73 4.73 4.54
2 1A′1(π → π∗) 7.41 7.06 7.04 7.04 7.07 6.82 6.82 7.29 7.32 7.32 7.03
2 1E′′(n→ π∗) 7.82 8.10 8.06 7.98 7.68 7.53 7.54 7.67 7.84 7.84 7.60
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Table 2.6 (Continued.)

DSRG-PT2
VCIS VCISD SA CAS

Molecule State CC3 0.99 0.95 0.9 0.99 0.95 0.9 0.95 0.9 0.85 0.9

1 1E′(π → π∗) 8.04 7.83 8.04 8.04 8.00 8.22 8.22 8.32 8.37 8.37 8.26
s-Tetrazine 1 1B3u(n→ π∗) 2.54 2.27 2.09 2.11 2.74 2.16 2.11 2.51 2.63 2.63 2.19

1 1Au(π → π∗) 3.80 4.03 3.63 3.63 4.24 3.60 3.63 3.87 4.05 4.05 3.70
2 1Au(n→ π∗) 5.46 5.10 5.18 5.20 5.51 5.27 5.20 5.63 5.74 5.74 5.32
1 1B1u(π → π∗) 7.45 6.99 6.93 6.93 7.12 6.95 6.93 7.40 7.54 7.54 7.09
2 1B1u(π → π∗) 7.79 7.60 7.81 7.82 7.81 7.86 7.82 8.20 8.20 8.20 7.91
2 1B2u(π → π∗) 8.51 8.69 8.78 8.78 8.70 8.80 8.78 9.04 9.12 9.12 8.91

Formaldehyde 1 1A2(n→ π∗) 3.95 3.70 3.70 3.70 4.51 3.81 3.81 4.08 4.08 4.08 3.73
1 1B1(σ → π∗) 9.19 9.12 9.04 9.04 9.45 9.12 9.120 9.16 9.16 9.16 9.07
2 1A1(π → π∗) 9.53 9.70 9.74 9.74 9.71 9.65 9.65 10.53 10.53 10.53 9.63

Acetone 1 1A2(n→ π∗) 4.40 4.12 4.15 4.15 5.09 4.25 4.25 4.55 4.55 4.55 4.23
1 1B1(σ → π∗) 9.17 9.03 8.95 8.95 9.87 9.02 9.02 9.13 9.13 9.13 8.99
3 1A1(π → π∗) 9.65 9.72 9.56 9.56 10.57 9.76 9.76 9.39 9.39 9.39 9.66

p-Benzoquinone 1 1B3g(π → π∗) 4.59 4.72 4.83 4.83 4.12 4.83 4.83 5.32 5.39 5.39 5.09
1 1B1u(π → π∗) 5.62 5.63 5.76 5.76 5.48 5.76 5.76 6.10 6.14 6.14 5.97
2 1B3g(π → π∗) 7.28 7.43 7.48 7.48 7.03 7.48 7.48 7.76 7.81 7.81 7.72

Formamide 1 1A′′(n→ π∗) 5.66 5.36 5.32 5.32 5.36 5.36 5.36 5.43 5.43 5.43 5.36
Acetamide 1 1A′′(n→ π∗) 5.70 5.37 5.37 5.37 5.37 5.37 5.37 5.63 5.63 5.63 5.37
Propanamide 1 1A′′(n→ π∗) 5.72 5.38 5.38 5.378 5.38 5.38 5.38 5.64 5.64 5.64 5.38
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Active Space Information

Table 2.7 lists the number of active orbitals of ethene, cyclopropene, norbornadi-

ene, imidazole, formaldehyde and acetone six molecules with CIS-NO selection and

manual selection. The number of active orbitals selected by CIS-NO with different

thresholds are listed in Table 2.8.

Table 2.7: Number of active orbitals of six molecules selected with CIS-NO and
manually. The threshold of CIS-NO is 0.9

Molecule CIS-NO Manually

Ethene 2 7

Cyclopropene 3 7

Norbornadiene 4 6

Imidazole 7 12

Formaldehyde 4 9

Acetone 5 12



33

Table 2.8: Number of Active orbitals of 24 molecules selected by CIS-NO method
with different thresholds.

Molecule 0.99 0.95 0.9 0.85

Ethene 10 4 2 2

Butadiene 12 4 2 2

E-Hexatriene 16 4 2 2

E-Octatetraene 16 4 2 2

Cyclopropene 6 4 3 3

Cyclopentadiene 16 4 4 4

Norbornadiene 19 6 4 4

Benzene 23 4 4 4

Naphthalene 26 6 6 6

Furan 18 4 4 4

Pyrrole 16 4 4 4

Imidazole 17 8 8 7

Pyridine 19 6 6 6

Pyrazine 20 6 5 5

Pyrimidine 20 6 5 5

Pyridazine 20 6 5 5

s-Triazine 20 9 8 7

Formaldehyde 6 4 4 4

Acetone 11 5 5 5

p-Benzoquinone 18 4 4 4

Formamide 2 2 2 2

Acetemide 2 2 2 2

Propanamide 2 2 2 2
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Chapter 3 CIS-NO Work On Core Exci-
tation

3.1 Introduction

X-ray Absorption Spectroscopy (XAS) is a widely used technique for investigating

local geometries and electron structures. There are two regions of XAS: X-ray Absorp-

tion Near Edge Structure (XANES), and Extended X-ray Absorption Fine Structure

(EXAFS).93 XANES gives information about the valance, bond angles and energy

bandwidth, while EXAFS gives information about the lattice dynamics, interatomic

distances, and near neighbor coordination numbers. As shown in Fig. 3.1 taken from

Ref. 94, when a core electron absorbs energy less or greater than its binding energy

(shown as the black line), there are edges of XAS, near edge and extended edge.

Figure 3.1: Example of a X-ray photoabsorption spectrum (XAS). The near edge is
located in the low energy region and the extended edge is located in the high energy
region of the spectrum.
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The XAS edges are labeled according to the core electron excitation original shell.

As shown in Fig. 3.2, labels K,L,M are associated with excitation from the n = 1, 2, 3

atomic shells. For first-row transition metals, metal 1s excitations into partially

occupied or empty 3d orbitals from the K-edge, whose analysis is comparatively simple

due to low spin-orbit coupling and weak multiconfigurational character.

Figure 3.2: Transitions resulting from the excitation of a core electron and the corre-
sponding XAS K, L, M edges.

The traditional method to calculate excitation state is time-dependent density

functional theory (TDDFT), which is an extension of DFT. However, core excitation

energies from TDDFT are lower than experimental ones due to exchange-correlation

functionals. For example, TDDFT yields over 10 eV errors compared with experi-

mental K-edge excitation energies of second-row main-group molecules like CO and

N2O.96 Therefore, in order to improve XANES calculation, especially in L-edge re-

gion, where states are heavily mixed, multireference methods are needed. Here we

consider the DSRG method with second-order multireference perturbation theory

(DSRG-MRPT2) for XAS core excitation energy calculations, using CIS-NO to auto-
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matically select active orbitals. In this thesis, we tested H2O to investigate the effec-

tiveness of active space chosen by CIS-NO used in the multireference DSRG algorithm

on the prediction of core-excitations which generate X-ray near-edge absorption.

3.2 Computational Details

The DSRG-PT2 method is implemented in Forte, an open-source suite of mul-

tireference methods interfaced to the PSI4 quantum chemistry package.85 We added

an option in CIS-NO codes part which can help to choose the amount of active oc-

cupied and virtual orbitals. This option can be more convenient for core excitation

calculations in the later DSRG part. We computed H2O core excitations optimized

at the restricted Hartree-Fock level using the correlation-consistent polarized core-

valence basis set, aug-cc-pCVTZ basis set.97 The overall calculation starts with the

automatic selection of active space using CIS-NO and it is followed by a DSRG-PT2

computations based on a CASCI reference to evaluate excitation energy.

The TDDFT method excitation energies were computed using B3LYP98–101 func-

tion with def-TZVP basis set.

3.3 Results

3.3.1 H2O Core Excitation Energy Calculations with Different
Methods

The experimental K-edge spectrum of H2O is shown in Fig. 3.3 taken from Ref.

3. From this figure, the photo energies of 4a1, 2b2 peaks are about 534 and 536 eV,

separately. The Rydberg peak is largely composed of a mixture of diffuse Rydberg

states within the energy interval of 537 to 538 eV. We mainly focus on 4a1, 2b2 peaks

in our later work.

We then performed TDDFT core excitation calculations of H2O, from 1s orbital to

50 virtual orbitals. As results shown in Fig. 3.4, the three red lines are experimental
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Figure 3.3: XAS spectrum of water in the gas-phase taken from Ref. 3

peaks and black lines are TDDFT results with roots in the 530-550 eV area. The

shift value of TDDFT peaks is 15.2 eV. The first two black peaks are overlapped

with experimental 4a1, 2b2 peaks with similar intensities. However, the Rydberg part

with energy interval of 540 to 541.2 eV is far from the experimental value. This

figure indicates that TDDFT has converged results of first two excitations, while the

Rydberg peak is poorly described.

Next, we computed the K-edge spectrum with various wave function methods.

Firstly, we compare results between TDDFT, CASCI, and CAS-DSRF-PT2. After

HF computations, we selected the 20 most important virtual orbitals into active space

according to their energies. We also set the core excitation root to 20 because only

1s is considered as active occupied orbital and all the core excitations are from 1s to

these 20 virtual orbitals. We then did CASCI and CASCI-DSRG-PT2 calculations. It
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Figure 3.4: H2O TDDFT results. All calculations were done using the B3LYP func-
tional and def2-TZVP basis set. Red lines are experiment peaks, black lines are
TDDFT roots in 530-550 eV range. Shift value = 15.2 eV.

should be mentioned that, all computations use canonical orbitals. These two results

are shown in Fig. 3.5 and Fig. 3.6. By comparing these two figures with TDDFT,

both CAS calculations shows the 4a1, 2b2 peaks closer to experimental ones. The

Rydberg peaks in these two methods are also more similar to experimental peak

than that of TDDFT. The positions of 4a1, 2b2 peaks in two CAS methods indicated

that multireference methods improve results. Moreover, the CAS-DSRG-PT2 shows

the most accurate spectrum, which is nearly identical to the experimental one, and

requires a much smaller shift (3.3eV). In conclusion, the DSRG-PT2 is a promising

method to compute energies.

3.3.2 H2O Core Excitation Energy Calculations with Different
Orbitals

In this part, we compare H2O core excitation energy calculations based on two

different orbitals: canonical orbitals and natural orbitals. We already show canonical

orbitals results with CASCI and CAS-DSRG-PT2 in the former section. The NO

calculations are based on the same basis set, active space, roots and methods, but

differ in the use of natural orbitals. Fig. 3.7a shows the K-edge spectrum computed
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Figure 3.5: H2O CASCI results with canonical orbitals. 20 virtual orbitals are in-
cluded in active space. Red lines are experiment peaks, black lines are CASCI roots
in 530-550 eV range. CASCI calculations were done using aug-cc-pCVTZ basis set
and total roots are 20. Shift value is -18.4 eV.

Figure 3.6: H2O CAS-DSRG-PT2 results with canonical orbitals. 20 virtual orbitals
are included in active space. Red lines are experiment peaks, black lines are CASCI
roots in 530-550 eV range. CASCI calculations were done using aug-cc-pCVTZ basis
set and total roots are 20. Shift value is 3.3 eV.

with the CASCI method and Fig. 3.7b shows the results of the CAS-DSRG-PT2

computations. The shapes and energies of peaks in these two figures have little

overlapped with red experimental peaks. In the figure b of CAS-DSRG-PT2, the first

peak is a1 and the second peak is the mixed result by b2 and Rydberg. Although the
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shift value of CAS-DSRG-PT2 is smaller than that of TDDFT, the messed results

with NO are even worse than TDDFT results. We then investigate the reason and

improve it.

Figure 3.7: H2O spectra with NO. 20 virtual orbitals are included in active space.
Red lines are experiment peaks, black lines are CASCI and CAS-DSRG-PT2 roots
in 530-550 eV range. CASCI and CAS-DSRG-PT2 calculations were done using aug-
cc-pCVTZ basis set and total roots are 20. Shift values are a) -17 eV and b) 2
eV.

To examine the effects of NO compared to canonical orbitals, we only compute one

excited state and increase the number of active virtual orbitals by 1 each time and see

how the energies change. Here we investigate only one a1 and one b2 state, separately.

We still use aug-cc-pCVTZ basis set and the procedure is: 1) Select an active space
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that has specific number of active virtual orbitals through the CIS-NO procedure. 2)

Perform CAS-DSRG-PT2 calculations based on canonical and natural orbitals. All

the active orbitals and energies for a1 and b2 are provided in the Appendix.

The Fig. 3.8 shows energies of a1 and b2 peaks with two types of orbitals, sepa-

rately. As illustrated in Fig. 3.8a, in the case of the a1 peak, energies with CIS-NO

and canonical orbitals are all smaller than experimental value. The energies with

CIS-NO fluctuate in a small range and does not have a tendency: the energies have

small changes when the active space is small, while have larger changes when the

active space is larger. The energies with canonical orbitals are slowly increasing and

show a tendency to be stabilized. The plot is flat when the active space is large and

the corresponding energy is most accurate. However, this largest energy with canon-

ical orbitals is still less accurate than the energies with CIS-NO. CIS-NO energies

fluctuate little around a more accurate value and are nearly keep unchanged when

active space is very small. The same situation happens in the case of the b2 orbital

shown in Fig. 3.8b, which indicates that CIS-NO with much smaller active space has

better results than canonical orbitals with large active space.

We also perform vertical comparison between a1 and b2 peaks for each kind of

orbitals. As shown in Fig. 3.9a, which indicates energies of a1 and b2 peaks with

CIS-NO, the two plots have nearly the same relative position when the number of

active virtual orbitals is small. However, these plots have larger energy difference

when active space is larger. The Fig. 3.9b shows those of canonical orbitals. These

two plots have similar tendencies to achieve the experimental values and always have

similar relative position. The energy differences can be seen more directly in Fig. 3.9c,

which shows energy differences between a1 and b2 peaks. The experimental value

difference, 2 eV, are set as a reference line. The figure c illustrated that canonical

orbitals represented two peaks with relative energy difference ranging from 1.3 eV to

4 eV; CIS-NO represented two peaks with relative energy difference ranging from 1.3
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Figure 3.8: H2O a)a1 and b)b2 peaks position with NO and Canonical orbitals. For
each calculations, the root is only a1 or b2. Red line is experimental value, blue line
represents CIS-NO results and black line represents canonical results. CAS-DSRG-
PT2 calculations were done using aug-cc-pCVTZ basis set.
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eV to 5.4 eV. However, CIS-NO represented two peaks with relative energy difference

ranging around 3 eV when the number of active virtual orbital is small, which indicates

that CIS-NO has more stable results when the active space is small.

From the discussions above, we found that as for simple states, the energies with

CIS-NO are more accurate when the active space is small than that of canonical

orbitals with large active space. The relative energies of two peaks are also stable with

small active space in the case of CIS-NO. The reason may be that the virtual orbitals

of H2O is far between each other. After CIS-NO, the most important canonical

virtual orbitals are transformed and combined to be the first few virtual NOs with

large occupation numbers. The far virtual NOs have less possibilities to receive the

electrons excited from core orbitals and their occupation numbers are nearly zero.

Then when more far virtual NOs are included into the active space, they reduce the

accuracy. The Fig 3.10 verifies the conclusion. We only calculated a1 and b2 core

excitations and set threshold of CIS-NO to 0.99, which then get the smallest active

space that including one occupied 1s orbital and two most important virtual orbital

in A1 and B2. The results are similar to experimental peaks and the computations

are inexpensive because of small active space. Moreover, the shift value is -6.1 eV,

which is smaller than that of TDDFT. This conclusion also explains the worse results

shown in Fig 3.7. Large active space including less important virtual orbitals will

increase errors.

3.3.3 Conclusion

We implemented TDDFT, CASCI, and CAS-DSRG-PT2 methods to calculate

core excitation energies of H2O. Two CAS methods with canonical orbitals repre-

sented better than TDDFT, which indicates multireference methods are necessary

for core excitation energy calculations. We then investigated influences of different

orbitals: NO and canonical orbitals. Results illustrate that, as for simple states 4a1
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Figure 3.9: H2O a1and b2 peaks positions with a)NO and b)Canonical orbitals.
c)Relative values between two peaks. For each calculations, the root is only a1 or
b2. CAS-DSRG-PT2 calculations were done using aug-cc-pCVTZ basis set.
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Figure 3.10: H2O spectrum with NO. The roots are one a1 and one b2, CIS-NO
threshold is 0.99. Red lines are experiment peaks, black lines are CAS-DSRG-PT2
results. CAS-DSRG-PT2 calculations were done using aug-cc-pCVTZ basis set. Shift
value is -6.1 eV.

and 2b2, CIS-NO represents better results with smaller active space than canonical

orbitals. The CIS-NO helps to select most important virtual orbitals into active space

and the corresponding active space is small. The computations are cheaper and more

convenient. The shift value is also smaller than that of TDDFT. The Rydberg peak

with NO needs more work in the future because of its complexity.
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3.3.4 Appendix

Table 3.1 lists the a1 and b2 energy calculations based on NO and canonical orbitals

with number of active virtual orbitals changing from 1 to 25. All active orbitals in

CAS-DSRG-PT2 calculations are selected by CIS-NO.

Table 3.1: a1 and b2 excitation energies (in eV) with different number of NO and
canonical active virtual orbitals. All CAS-DSRG-PT2 computations use aug-cc-
pCVTZ basis set.

CIS-NO Canonical Orbitals

Virtual orbitals a1 b2 a1 b2

1 529.070 532.683 525.505 526.847

2 529.278 532.818 525.212 526.679

3 529.869 532.905 525.001 526.663

4 529.275 532.710 525.006 526.670

5 529.748 533.314 525.235 527.563

6 529.611 532.914 525.646 527.847

7 529.145 532.274 525.678 527.878

8 529.872 532.911 525.732 528.124

9 529.920 533.277 525.803 529.803

10 529.819 532.493 526.507 529.851

11 529.565 533.093 526.709 529.926

12 529.938 532.843 527.651 530.088

13 530.465 533.044 527.686 531.403

14 530.001 533.693 527.756 531.693

15 531.486 532.841 527.800 531.773

16 530.576 535.397 528.750 531.82

17 530.263 535.260 528.756 531.949

18 530.612 535.428 529.071 531.993

19 530.384 534.954 529.068 532.071

20 530.365 534.573 529.084 532.218

21 529.967 534.179 529.219 532.498

22 530.919 534.601 529.234 532.510

23 529.686 534.651 529.326 532.520

24 530.246 535.911 529.817 532.542

25 530.588 535.087 529.831 532.543
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Active Space Information

Table 3.2 and Table 3.3 list the active orbitals selection results of one a1 or b2

root through CIS-NO selection. The number of active virtual orbitals changes from

1 to 25. All computations us aug-cc-pCVTZ basis set.

Table 3.2: a1 root: active orbitals with different amount of virtual active orbitals
selected by CIS-NO method.

Number of active virtual orbitals A1 A2 B1 B2

1 2 0 0 0

2 3 0 0 0

3 4 0 0 0

4 5 0 0 0

5 6 0 0 0

6 7 0 0 0

7 8 0 0 0

8 9 0 0 0

9 10 0 0 0

10 11 0 0 0

11 12 0 0 0

12 13 0 0 0

13 14 0 0 0

14 15 0 0 0

15 16 0 0 0

16 17 0 0 0

17 18 0 0 0

18 19 0 0 0

19 20 0 0 0

20 20 0 0 1

21 20 0 0 2

22 21 0 0 2

23 21 0 0 3

24 20 0 0 5

25 21 0 0 5
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Table 3.3: b2 root: active orbitals with different amount of virtual active orbitals
selected by CIS-NO method.

Number of active virtual orbitals A1 A2 B1 B2

1 1 0 0 1

2 1 0 0 2

3 1 0 0 3

4 1 0 0 4

5 1 0 0 5

6 1 0 0 6

7 1 0 0 7

8 1 0 0 8

9 1 0 0 9

10 1 0 0 10

11 1 0 0 11

12 1 0 0 12

13 1 0 0 13

14 1 0 0 14

15 1 0 0 15

16 2 0 0 15

17 3 0 0 15

18 5 0 0 14

19 5 0 0 15

20 6 0 0 15

21 7 0 0 15

22 8 0 0 15

23 9 0 0 15

24 10 0 0 15

25 10 0 0 16
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Chapter 4 Summary

In this thesis, I investigated an active space selection scheme, in valence and core

excited states, based on configuration interaction with singles natural orbitals (CIS-

NO).

In Chapter 2, CIS-NO is used to automatically select active spaces for VCIS-

/VCISD-/SA-DSRG-PT2 computations. The active space changes with cumulative

NO occupancies. When the threshold is 0.95, the corresponding active space becomes

nearly half of that when the threshold is 0.99. Then active space changes little when

the threshold changes to 0.85 or smaller values. The CIS-NO method is helpful to

select active space automatically and smaller threshold helps to truncate active space

without increasing errors. In addition, we test the Thiel’s cases with three DSRG

methods: VCIS-, VCISD- and SA-DSRG-PT2. All these three methods reproduce

good results compared to CC3 values. They also yield smaller errors than some other

methods, such as VCIS/VCISD-DSRG-PT2 with canonical orbitals, whose active

space is chosen manually. The SA-DSRG-PT2 gives the best results among these

three methods. It becomes a black-box method by using CIS-NO.

In Chapter 3, CIS-NO is used to select active space for H2O core excitations. By

comparing energies of 4a1, 2b2 and Rydberg states obtained with TDDFT, CASCI,

and CAS-DSRG-PT2 with canonical orbitals, the more similar shapes and positions

of peaks with two CAS methods show that multireference methods are necessary for

core excitation energy calculations. Then we compared results between canonical

and natural orbitals. The results of only one specific state, a1 or b2, with increasing

number of virtual orbitals computations indicate that CAS calculations with canonical

orbitals need large active space to achieve accurate energies. On the contrary, CAS

calculations with NOs only need small active space to achieve accurate energies. The
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small active space can be automatically chosen by using CIS-NO method. Moreover,

the shift value with CIS-NO is also smaller than that of TDDFT. However, Rydbergs

generally requires a larger active space. In this case, I find that canonical orbitals are

more suitable than NOs. Further investigations are required to assess the deficiency

of CIS-NO for core excited states.

CIS-NO is a black-box procedure for active space selection. The occupation num-

ber of NOs helps to choose more important orbitals into active space. We can also

truncate active space with the smaller CIS-NO threshold. This method helps DSRG

calculations become more convenient and inexpensive.
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