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Abstract

By Ran Xu

This paper presents a new dataset, B-SHARP, which can be used to detect

Mild Cognitive Impairment (MCI), an early stage of Alzheimer’s Disease. The

dataset contains 721 speech recordings from 144 MCI patients and 185 health

controls, on three topics about daily activity, room environment and picture

description. Given the B-SHARP dataset, several hierarchical transformer

models on the text side based on the transcription and multiple speech models

with different encoding methods based on acoustic information are developed.

And finally, the model performance are evaluated and a comparison is drawn

between text models and speech models.
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Chapter 1

Introduction

Alzheimer’s disease (AD) is a progressive disease which destroys memory

and other important mental functions including semantic and pragmatic levels

of language processing [12]. So far, there are around 5.8 million Americans

living with AD in 2020. By 2050, this number is expected to increase

to approximately 14 million1. Therefore, it is critial to detect AD in the

early stage as it will potentially rescue enormous patients from suffering

AD. To this end, many traditional cognitive assessments such as positron

emission tomography or cerebrospinal fluid analysis [16] have been proposed

for AD detection. However, these approaches usually takes long time and

are expensive. Such drawbacks may cause delay in treating AD, and put a

heavy burden on public health, especially for seniors whose life expectancy

is rapidly growing yet are more susceptible to AD [27]. Therefore, finding

1https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
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a easy-to-use approach with commonly used available devices is the major

challenge for early detection of AD.

Mild Cognitive Impairment (MCI) is considered as the first phase that

patients start having biomarker evidence of brain changes that can eventually

lead to AD [3]. During this phase, patients often develop problems linked with

lexical-syntactic difficulties as their words are often hard to understand [23].

Moreover, although these patients can speak sentences that are morpholog-

ically, syntactically, and phonologically correct but the sentences are often

vague and consists a lot of filler words [34]. However, such language and

speech changes for MCI are often subtle and are nearly imperceptible to

people other than friends and relatives. Till now, designing effective method

to detect MCI is still an important while challenging research problem.

To this end, various machine learning methods have been proposed for the

detection of language impairments indicating AD from speech, text [4, 44, 46,

27, 32]. Paper [46, 4, 44] use traditional machine learning techniques such as

decision trees and support vector machines (SVM) to classify AD patients from

the healthy group. However, these methods heavily rely on feature engineering

to extract the relevant features, and extracting such features is often labor

intensive, cost-prohibitive, and raises patient information leakage issues. There
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are also some methods [27, 21] using deep learning to automatically extract

useful information from the text or speech. Such model only consider the

audio or text information separately without combining them together which

still limits their detection performance. What’s worse, most previous works

only concentrated on the detection of dementia while the detection of MCI

have been only based on relatively small datasets with less than 100 examples.

This has become the biggest hurdle that prevents deep learning models from

being deployed for MCI tasks.

This paper proposes several methods that consider and compare both

text and speech information with deep neural networks. First, I present

a new dataset that involves 721 speech recordings of three tasks from 329

subjects. Such a dataset provides a benchmark for me to develop approaches

to combining the audio and text transcribed from speech information. Then,

motivated by the observation in [6] that pre-trained language models (e.g.

BERT [11]) outperform feature-based approaches on the AD detection task, I

fine-tune such language models to transfer the general semantics and syntactic

information inside them for the MCI task for text modeling and achieve an

accuracy of 73%. For the speech information, I have tried on different neural

architectures including Convolutional Neural Network (CNN), Recurrent
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Neural Network (RNN) and Transformers with various tokenization strategies

for tacking the pause information. The best accuracy is around 66% achieved

by hierarchical LSTM model with token-level MFCC encoding. Detailed

analysis are provided to recover the strengths and shortcomings of distinct

types of speeches.

The main contributions of this paper are as follows:

• I present a new dataset called B-SHARP, which contains 721 speech

recordings from 144 MCI patients and 185 health controls that can be

used to develop NLP and acoustic models for the detection of Mild

Cognitive Impairment (MCI).

• I employ pre-trained language models for the text data and leverage

LSTM and Transformers for the speech part for the MCI detection task

and conduct extensive experiments to demonstrate their performance

over the B-SHARP dataset.

• I contrast the performance of these different approaches on the MCI

detection task, and discuss advantages and disadvantages for existing

differences.

The structure of this paper is described as follows: I discuss the existing
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works in early detection of Alzheimer’s disease in chapter 2. Then, I describe

the proposed dataset in chapter 3. After discussing the text and speech model

in chapter 4 and 5 respectively, I conclude my research findings and discuss

the potential future work in chapter 6.
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Chapter 2

Related Works

There are various existing works on detecting Mild Cognitive Impair-

ment(MCI) using machine learning techniques. Both text-based and audio-

based approaches have been used towards MCI classification. Asgari et al. [4]

group spoken words using Linguistic Inquiry and Word Count (LIWC) from

transcriptions of 14 MCI patients and 27 health controls, and apply SVM

and random forest for the classification. Toth et al. [44] focus on the speech

audio of 48 MCI patient and 38 health controls and manually extract multiple

acoustic features such as lexical frequency of words, part-of-speech tags, and

hesitation and speech rates, for classification. Fraser et al. [14] consider not

only the text and speech, but also eye movements and head stabilization

with 26 MCI patients and 29 health controls, and use logistic regression and

SVM as classifier. All the previous works mentioned above are based on less

than 100 subjects, and most of them manually extract linguistic features for
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baseline classifier, while my work is based on 721 recordings from 329 subjects

and involves many latest deep neural models.

The detection of dementia, is a similar but much more popular task.

Becker et al. [8] present the famous dataset DementiaBank that involves 552

speech recording from 194 dementia patients and 99 health controls. Many

research have been conducted based on this dataset. Fraser et al. [13] select

the best 35 features from 370 features extracted and get an accuracy of

87.5%. Sabah et al. [2] demonstrates a robust method based only on acoustic

features, which selects the best 20 features for classification and could reach

an accuracy of 94.7%. My work differs from the previous ones in that I tackle

the detection of MCI rather than dementia, which adds more challenges to

this project since MCI is not as obvious as dementia.
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Chapter 3

Dataset

3.1 Data Description

3.1.1 B-SHARP

My research is conducted based on data collected as part of the Brain, Stress,

Hypertension, and Aging Research Program (B-SHARP) [27]. The dataset

contains 185 normal controls and 144 MCI patients selected by specialists

according to their neuropsychological and clinical assessments. Besides, all

the subjects have been examined with multiple cognitive tests including the

Montreal Cognitive Assessment (MoCA) [33] and the Boston Naming Test

(BNT) [17]. Each year, each subject is asked to record a speech task protocol

in Section 3.1.2 and 46.2%, 35.6% and 0.6% of the subjects have so far come

back on their 2nd, 3rd and 4th year to take new voice recordings, respectively.

Table 3.1 displays the statistics of B-SHARP dataset, from which one could
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see that the subject ratio and recording ratio are similar and are around 50%,

so the dataset could be considered as a balanced dataset.

For MoCA scores, patients with scores lower than 26 might have abnormal

cognitive functions and it can be easily observed that the average MoCA score

of MCI patients is way below 26 while the average MoCA score of control

group is just above 26, which indicates it’s probably more difficult to predict

the control group correctly. For BNT score, patients with scores of 14 and

above might have a neurological or psychiatric disorder. However, the table

shows that the control group has average score above 14 and MCI patients

have lower scores, which is not align with this rule. So from this prospective,

this contradiction might add some challenges to the prediction.

1st 2nd 3rd 4th Sbj Sbj Ratio Rec Rec Ratio MoCA BNT

C 26 83 75 1 185 56.23% 421 58.39% 26.2 14.2

M 32 69 42 1 144 43.77% 300 41.61% 21.5 13.4

T 58 152 117 2 329 100% 721 100% 24.2 13.9

Table 3.1: Statistics of B-SHARP dataset. C: the control group, M: the
MCI group, T: total of both control and MCI groups, 1st/2nd/3rd/4th: #
of subjects who came back for visits each year till the 1st/2nd/3rd/4th year,
Sbj: # of subjects, Rec: # of recordings, MoCA/BNT: average scores and
standard deviations from MoCA/BNT.
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3.1.2 Speech Task Protocol

A speech task protocol is conducted each year for recording. Each subject is

asked to speak 1-2 minutes on three topics respectively - Q1: daily activity,

Q2: room environment, and Q3: picture description - guided by the same

instructions as in A.1. An important thing to note is that since the subjects

were guided to have similar activities before test, and were sitting in the

same room and shown the same picture “The Circus Procession” in Fig A.1

during the test, their speech content won’t vary a lot, which reduces potential

variance.

But I also find some exceptions after I listen to all the recordings. Due

to the COVID-19 pandemic, many subjects who revisited in 2020 could not

conduct the speech task protocol in person and their speeches were instead

recorded via phone call or virtual meeting. As a result, those subjects discussed

their personal daily activities in Q1 and their own room environment in Q2,

which are very different from most other subjects and thus could potentially

influence the model prediction. Moreover, the speeches recorded remotely

tend to have a worse quality than the normal recordings, which also makes

future research more challenging.
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3.2 Data Preprocessing

3.2.1 Transcription

Since the original dataset only contains the recordings, I need first transcribe

them into text for future research on the transcription. I try three different

online transcription tools – Temi1, Amazon Transcribe2, and Rev.ai3 – on

several recordings to compare their accuracy. I choose them because they all

could generate a timestamp for each token while transcribing it into text at

the same time, which is very useful for tokenization and analysis on speed and

pauses. Among these three transcription tools, Temi is the one that Li et al.

[27] used in his experiments and it will be easier for me to continue to work

on it because he already fixed many transcription errors and segmented the

transcription into three parts by tasks. But his revision on the transcription

also introduces a problem that the timestamps of the tokens are messed up

and thus I might lose a valuable information. For the second transcription

tool, Amazon Transcribe, the problem is simply inaccurate transcription. I

read several transcriptions generated by Amazon Transcribe and I find it hard

to understand the context without the help of the original recordings. And

1Temi: https://www.temi.com/
2Amazon Transcribe: https://aws.amazon.com/transcribe/
3Rev.i: https://www.rev.ai/
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finally, Rev.ai is chosen because it generates more accurate transcription and

proper timestamps, but I also need to spend much time on formatting the

data in this case.

3.2.2 Data Format

The transcription along with the timestamps is generated in a complicated

format and is hard to use. Thus, I need to transform it into a clear format

that will be easy to fit into models. A main challenge in this process is that

each transcription and timestamp need to be manually segmented into three

parts by reading the transcripts and listening to the recordings, since all the

three tasks are recorded in a single file. The final data format consists of full

transcriptions, a list of tokens and a list of corresponding timestamps of each

task.

3.2.3 Data Split

In order to train both the text models and speech models, I split the dataset

into three parts - training set, development set and evaluation set, where

training set is used to help models learn the parameters, development set is

to help me fine tune the models and select the best models, and evaluation

set is to check if the models have good performance.
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Table 3.2 displays the distribution of control group and MCI group in

each set. The three sets are split based on the rules that (1) development set

and evaluation set do not have shared subjects with training set in case the

models rely solely on those specific subjects, (2) the ratio of control and MCI

group for both subjects and recordings have little difference from the ratio

in the entire dataset, and (3) the number of samples in training set is much

larger than development and evaluation set to help models learn better and

avoid overfitting.
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Training Set
Subjects Recordings

Count Ratio Count Ratio
Control 135 57.20% 291 53.08%
MCI 101 42.80% 210 41.92%
Total 236 100.00% 501 100.00%

Development Set
Subjects Recordings

Count Ratio Count Ratio
Control 43 58.11% 60 60.00%
MCI 31 41.89% 40 40.00%
Total 74 100.00% 100 100.00%

Evaluation Set
Subjects Recordings

Count Ratio Count Ratio
Control 49 57.65% 70 58.33%
MCI 36 42.35% 50 41.67%
Total 85 100.00% 120 100.00%

All Data
Subjects Recordings

Count Ratio Count Ratio
Control 185 56.23% 421 58.39%
MCI 144 43.77% 300 41.61%
Total 329 100.00% 721 100.00%

Table 3.2: Data distribution for training/development/evaluation set and all
data
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Chapter 4

Text Model

4.1 Background

4.1.1 Word Embeddings

Many language systems rely on text representations as their first step to extract

semantic information for text. Preliminary representation learning methods

for text, such as one-hot encoding [7], N-grams [9] and TF-IDF [39] methods

usually embed text into a sparse representation. Such methods, despite their

simplicity, do not capture semantic correlations between features. What’s

worse, as the size of the vocabulary is usually large, then the representations

are sparse and high-dimensional, which is computationally expensive. To

tackle these challenges, distributed representation methods are proposed.

Such methods represents text units with lower-dimensional vectors.

To obtain such distributed vector, there are various ways such as Word2Vec [31],
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GloVe [37] and Fasttext [20]. These methods uses co-occurrence statistics

to learn embeddings for each word, as they push the embedding of words

that co-occur frequently more close while pull others apart. For example,

Word2Vec propose two approaches to capture the word similarities: CBoW

uses a window to predict the center word and SkipGram uses a center word

to predict its surrounding words. However, these methods usually uses a

fixed vector to represent words, which fail to consider the ambiguity issue,

i.e. a word may have multiple meanings. Motivated by this, contextual word

embedding methods are proposed [38, 11], where the word representations

depend on the entire input sentence. These methods calculate the embed-

ding based on the context information, thus being able to capture semantics

information effectively.

4.1.2 Transformers and Pre-trained Language Models

Transformer is one of the most popular models for NLP tasks [45]. Dif-

ferent from the existing neural architectures such as Convolutional Neural

Networks or Recurrent Neural Networks, the Transformer model contains

stacked self-attention and point-wise, fully connected layers with residual

connections without any explicit recurrent structure, which can be calculated
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more efficiently.

Specifically, Vaswani et al. [45] propose a new attention function using

the scaled dot-product as the attention score, expressed as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (4.1)

where Q,K, V ∈ R`×d are the vector representations of all the words in the

sequences of queries, keys and values accordingly. 1√
dk

is the scaling vector

that pushes the softmax function into regions where it has extremely small

gradients.

Figure 4.1: The architecture for Transformer model.
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Based on the above attention function, [45] further propose multi-head

attention to allow the model to jointly attend to information from different

representation subspaces. In particular, for a multi-head attention module

with m heads, we have

MultiHead(Q,K, V ) = Concat(head1, . . . , headm)WO (4.2)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i ) is the attention vector for the

i-th attention head. In addition to the above multi-head attention modules,

each layer in the encoder and decoder in Transformer contains a point-wise

two-layer fully connected feed-forward network.

Motivated by the success of transformers, there are many studies attempted

to leverage the power of transformers to incorporate context from both direc-

tions. Among them, pre-trained language models, such as BERT [11] and its

variants (e.g., RoBERTa [29], ALBERT [26] and T5 [40]), have been shown to

achieve state-of-the-art performance in many natural language understanding

tasks, including text classification [43], named entity recognition [28] and

question answering [22]. These models are essentially massive neural net-

works based on bi-directional transformer architectures, and are trained using

open-domain data in a completely unsupervised manner. For example, the
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popular BERT-base model contains 110 million parameters, and is trained

using the Books Corpus (800 million words) and English Wikipedia (2500

million words). More importantly, many pre-trained language models have

been publicly available online as one does not need to train them from scratch.

The massive training data enables pre-trained language models to have strong

expressive power for capturing general semantics and syntactic information

effectively. When applying pre-trained language models to downstream tasks,

such knowledge can be efficiently transferred to the downstream domains

through efficient and scalable stochastic gradient-type algorithms.

4.2 Experiments

To get a sense of the models’ learning ability on each task, I first build a

transformer model for each individual question. I implement various kinds of

transformer models on this dataset including BERT, BERT-large, ALBERT,

ALBERT-large, RoBERTa, RoBERTa-large.

Table 4.1 shows the accuracy of the text models on Q1, Q2, Q3 individually,

and it is easy to notice that BERT generally has the best and most stable

performance, which also verifies that transformer models have the ability to

extract features from the text, and also the transcriptions indicate the mental
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Model Q1 Q2 Q3

BERT 0.69 0.68 0.68
ALBERT 0.6 0.63 0.63
RoBERTa 0.64 0.7 0.67
BERT-large 0.63 0.64 0.63
ALBERT-large 0.61 0.63 0.62
RoBERTa-large 0.6 0.64 0.62

Table 4.1: The accuracy of the text models on task Q1, Q2, Q3 on evaluation
set individually.

health condition of subjects.

Then the three tasks are integrated together to produce an ensemble

model in two ways. One is in early fusion, which means the three models

for the three tasks are trained separately and their predictions are used to

vote for a final prediction, and this process is also known as majority voting.

The other one is in late fusion, which means the three embedding from the

three models are concatenated and updated together, and generate the final

prediction as a whole. Figure 4.2 is the model that Li et al. [27] propose,

which is also the late fusion ensemble model I use in my experiment.

Table 4.2 displays a comparison between my and Li’s [27] approaches

and results. Li does 5-fold cross validation on 650 samples, while I have 71

more samples this year that allows me to generate training, development and

evaluation set. Li’s model uses 9 embeddings from all the three questions
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Figure 4.2: Ensemble Model by Li et al. [27]

trained by BERT/ALBERT/RoBERTa, while mine only uses 3 embeddings

from the three questions trained by BERT since ALBERT and RoBERTa

model do not work well in my case. And in the end, my late fusion model

has an accuracy of 0.7 and early fusion reaches 0.73, which is very similar to

his ensemble model accuracy 0.74. The accuracy of my ensemble model is

higher than each individual model because ensemble model considers all the

three tasks at the same time and could reduce the potential variance element

that causes prediction error. Thus, the ensemble model could be more stable

and have better performance than each individual model.

In conclusion, the ensemble hierarchical BERT model is able to powerfully

extract features from text and give a promising accuracy of 73% to distinguish
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MCI patients to normal controls, probably because transcriptions provide the

context of the speeches which reflect whether the subjects have normal logical

thinking or not. Besides, compared to Li’s previous model, mine has similar

accuracy but is more robust and more time and memory efficient because of

the technique and model I use.

Mine Li’s

Acc(late) 0.7 -
Acc(early) 0.73 0.74
Model Be Be + Ae +Re

Technique train/dev/test set 5-fold cross validation
# samples 721 650

Table 4.2: Comparison between my and Li’ approaches and results. Be: the
model uses embeddings from all the three questions trained by BERT (3
embeddings together), Be + Ae + Re: the model uses embeddings from all
the three questions trained by BERT/ALBERT/RoBERTa (9 embeddings
together).
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Chapter 5

Speech Model

5.1 Background

5.1.1 Mel Frequency Cepstral Coefficients (MFCC)

In audio processing, the Mel Frequency Cepstral Coefficients [30] is a repre-

sentation of the short-term power spectrum of a sound, which is calculated

based on a linear cosine transform of a log power spectrum on a nonlinear

mel scale of frequency. With the audio as the input, the calcualtion of MFCC

usully contains the following steps [41]:

• Take discrete Fourier transform and map the powers of the spectrum

onto the mel scale with the triangular overlapping windows [10].

• Take the Log of amplitude spectrum for re-scaling.

• Take the discrete cosine transform of the log powers, as if it were a

signal. The MFCCs are the amplitudes of the resulting spectrum.



24

MFCC have been commonly used as the backbone feature in speech recogni-

tion [1, 42], and the deep learning methods usually stack layers over MFCC

features for downstram tasks.

5.1.2 Multi-layer Perceptron (MLP)

A multilayer perceptron (MLP) is a class of feedforward neural network. An

MLP usually consists of at least three layers: an input layer, a hidden layer

and an output layer. Each node is a neuron that uses a nonlinear activation

function. MLP is the one of the most simple network architecture, as it serves

as a universal function approximator.

5.1.3 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) [24] is a variation of feed-forward

neural network, which is first proposed for image recognition. In CNN, the

convolution and pooling layers are proposed to characterize the most salient

information from the input through convolution and pooling operations. As

a result, it transforms a image from a large-size representation to a smaller

one and extract important local shapes. Later on, CNN has been adapted

for sequential data such as text and audio [1, 18, 48]. Take audio as an

example, each audio can be transformed to a spectral feature matrix via
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MFCC as it is a sequence of voice. CNN is capable of modeling such local

frequency structures by allowing the convolutional layer to receive input only

from features representing a limited bandwidth of the whole speech spectrum.

CNN model is computationally simple and efficient to train, and has been

widely used as the feature extractor for audios. However, it cannot capture

the sequential information to store the historical knowledge, which hampers

its performance over the sequential data.

5.1.4 Recurrent Neural Network (RNN)

Recurrent Neural Network is a specific type of neural networks to tackle the

sequential data. Different to the fixed contextual windows used as inputs in

MLPs and CNNs, the RNN model feeds the activations from previous time

steps as input to the network for the current input. As a result, such structure

can better leverage the contextual information and have been widely used for

text, video and audio analysis [15, 25, 42]. Long Short-Term Memory (LSTM)

Network [19] is the one of the most popular RNN, which have been shown

to perform better than RNNs on learning context-free and context-sensitive

languages. The architecture of LSTMs contains special units called memory

blocks in the recurrent hidden layer. The memory blocks contain memory
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cells with self-connections storing (remembering) the temporal state of the

network in addition to special multiplicative units called gates to control

the flow of information. Each memory block contains an input gate which

controls the flow of input activation into the memory cell and an output gate

which controls the output flow of cell activation into the rest of the network.

The mathematical formulation of LSTM model is shown as below.

ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

c̃t = σc (Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ σh (ct) ,

(5.1)

where W denotes weight matrices (e.g. Wi is the matrix of weights from

the input gate to the input), b denote bias vectors, σ is the logistic sigmoid

function, and i, f, o and c are respectively the input gate, forget gate, output

gate and cell activation vectors and � is the element-wise product of the

vectors and g and h are the cell input and cell output activation functions.

Compared with CNN models, LSTMs usually take longer time to train but
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can encode some contextual information for audio data. However, such model

still suffer from the vanishing gradient problem [36] which limits its ability

over long sequence.

5.1.5 Attention Mechanism

Attention is first proposed in [5] for the machine translation task. The

attention mechanism strengthens not only the ability of RNN in capturing

the long-range dependencies but also the interpretability as it enable the

model to focus a subpart of the input that is most relevant to the task. The

attention module is usually designed as a linear neural network that can be

trained along with the whole neural network. The attention computation can

be formulated as follows,

c =
∑

i αisi

αi = exp(f(h,si))∑
i exp(f(h,si))

f (h, s) = hT tanh (Ws)

(5.2)

where s represents the features for each component, W is the learnable

parameters for calculating the attention, h is the query vector which denotes

current mobility status from the recurrent layer, f represents the score

function, and c is the context output representing the global feature for the
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whole input.

5.2 Experiments

5.2.1 Speech-level Embedding

To prepare for speech models, the audio recording of each subject is first

split into three parts based on the timestamps of each task. For the baseline

model, I encode each part of recording by MFCC [30], which has dimension

of 13, and the sequence length depends on the length of audio. Thus, due to

the different time duration of each speech, the feature length mostly varies

from 8,000 to 15,000. And after truncating the longer ones and padding the

shorter ones with zeros, I unify all the feature vectors for each task to have a

sequence length of 12,000.

Given the input for the speech model, I conduct the experiment on multiple

different neural models including multi-layer perceptron(MLP), MLP with at-

tention mechanism(MLP+Attention), Convolutional Neural Networks(CNN),

Recurrent Neural Networks(RNN), CNN and RNN together(CNN+RNN),

and three-layers transformers, and compare these models’ performance on

speeches. Table 5.1 shows the test accuracy of each model on each task. It’s

obvious that RNN model has the best performance on all the of three tasks
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because it can better tackle the sequential information in the audio. The

three-layers transformer model also has higher accuracy than most others,

but it takes much space and time for training and thus is not efficient enough.

Model Q1 Q2 Q3

MLP 0.55 0.58 0.57
MLP+Attention 0.62 0.63 0.63
CNN 0.58 0.58 0.58
RNN 0.65 0.64 0.65
CNN+RNN 0.58 0.6 0.58
Transformers 0.64 0.64 0.63

Table 5.1: The accuracy of the speech models with speech-level embedding
on task Q1, Q2, Q3 on evaluation set individually.

5.2.2 Token-level Embedding

As a common practice in most of previous works, speech-level encoding to

MFCC does show its ability to extract features from audio for prediction,

but I think this method cannot harness the token information and is also

memory-inefficient - many audios have long time duration and directly feed

them into neural models can easily cause memory overflow. Thus, I propose

a model with token-level embedding, utilizing the timestamps for each token

provided in transcriptions, to see if it could potentially solve this problem

and give a better result.

In order to get token-level encoding, the recording is first split into tokens
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by the timestamps, and then MFCC feature from each token is extracted.

However, for the pauses between each two tokens, I apply four different ways

to encode them, to find out if the pauses are able to bring performance gain:

(1) No pause is encoded at all, which means only MFCC features for word

tokens are used for training. (2) Each word and the two pauses before and

after it is considered as a single token and MFCC feature is extracted for

training. In this case, every two tokens would have an overlap for a pause,

so that the model might potentially interpret the change of sequential audio.

(3) The time duration of each pause token passes through a linear layer

to get a pause token embedding, which is then concatenated to each word

token embedding before it. (4) The time duration of each pause token also

passes through the linear layer to get pause token embedding, but instead of

concatenating to the word token embedding, it is considered as an individual

token, and is placed right after each word token in the correct order.

After the token embeddings are obtained by these four methods individ-

ually, they are then put into a LSTM layer [19] to get speech embedding,

which finally passes through a linear layer to get the prediction.

Figure 5.1 is a graph indication of the method (4) mentioned above. This

hierarchical LSTM model is only for each individual task. For each encoding
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Figure 5.1: Hierarchical LSTM model encoding with method (4) the time
duration of each pause token passes through the linear layer to get pause
token embedding, which is considered as an individual token, and is placed
right after each word token in the correct order.

method, I also build an ensemble model with early fusion similar to the

ensemble model on the text part.

The table 5.2 shows the accuracy of this hierarchical LSTM model with

the four different encoding methods mentioned above on the three task Q1,

Q2, Q3 individually and the accuracy of ensemble model. From the table,

one can notice that modeling pause as a specific token generally has the best

performance. However, the accuracy of ensemble model is not better than

individual models, probably because the individual models have contradictory

signals and some of them might affect the prediction result in a negative way.
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Besides, it can also be observed that the model without pause embedding has

the worst accuracy, which indicates that the pause information could bring

performance gain. Also, the low accuracy of the second encoding method also

implies that direct modeling the pause MFCC information is not a good way.

Encoding Method Q1 Q2 Q3 Ensem

Only word token embedding
by MFCC

0.61 0.64 0.6 0.61

Word + two pauses token
embedding by MFCC

0.61 0.65 0.64 0.61

Word token embedding by
MFCC concatenated with
pause token embedding by
linear layer

0.68 0.64 0.63 0.64

Word token embedding by
MFCC + pause token em-
bedding by linear layer as
an individual token

0.64 0.67 0.67 0.66

Table 5.2: The accuracy of the hierarchical LSTM model with four different
encoding methods to get token-level embedding on evaluation set task Q1,
Q2, Q3 individually and the accuracy of ensemble model.

5.2.3 Pretrained Language Model

Since the hierarchical LSTM model encoded by MFCC does not show a very

promising result, I propose another model that fine tunes the pretrained

language model for audio, just as the BERT model for the text part.
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The pretrained language model1 proposed by Winata et al. [47] is a

transformer-based end-to-end code switching system for automatic speech

recognition(ASR). Instead of encoding the input by MFCC features, this

ASR model accepts a spectrogram of the audio as the input, and predicts

characters from it. The models consists of 2 layers of encoders and 4 layers of

decoders. But note that the decoders are only used for pretraining but not in

the finetuning process. Convolutional layers are to learn a universal speech

representation for input embedding, and multi-head attention is used to

allow the model to jointly attend to information from different representation

subspaces at a different position. A detailed comparison between this audio

transformer model and the BERT base text model are shown in table 5.3

below.

Model Audio Transformer BERT(base)

Input Spectrogram of audio Text tokens
Embedding CNNs (VGG) Embedding matrix
# layers M=2,N=4 M=12
# attention heads A=4 A=12
Pretrain task ASR MLM + NSP

Table 5.3: Comparison between audio transformer and BERT text model.
M: # encoders, N: # decoders, ASR: Automatic Speech Recognition, MLM:
Masked Language Modeling, NSP: Next Sentence Prediction

Since the parameters from the pretrained model is not provided, I first

1https://github.com/gentaiscool/end2end-asr-pytorch
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pretrain this language model on the dataset Librispeech [35] based on the

given code, and save the best model during pretraining. Then the decoder of

the model is changed from character prediction to binary classification for

further fine tuning on my dataset.

Model Q1 Q2 Q3

Pretrained language model 0.64 0.66 0.65

Table 5.4: The accuracy of the pretrained language model on evaluation set
task Q1, Q2, Q3 individually.

Table 5.4 shows the accuracy of this pretrained language model. It’s

interesting that the model does not have better performance than previous

models, which might indicate these two models both are not very capable

of extracting feature from audio, or the audio itself does not contain much

context and thus is harder to provide signals for final prediction.
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Chapter 6

Conclusion and future work

All the speech models get similar results, among which hierarchical LSTM

model with token-level MFCC encoding is a bit better than others, which

demonstrates that token information does include valuable information, and

considering pauses could improve the model performance. However, compared

with the text model, none of the speech models have better performance than

the BERT model on the text side, which have an accuracy of 73%. From those

results, one can conclude that, for prediction of early Alzheimer’s Disease,

the text model has a better performance because it has richer information on

the context of the speech; the speech model, though does not do well in the

prediction, could still capture many other aspects such as tones and pauses

that are ignored by the text model.

For future work, I’ll first try to further improve the text model because

BERT model is only a baseline, and text contains much more information
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than audio that has potentials to be further extracted. Besides, I’ll combine

the text model and speech model together to capture both context and audio

information at the same time, and see if this could further improve the

model accuracy on this task. And if I could get a promising result from this

ensemble model of text and audio, I’ll try to build a same model for the

dataset DementiaBank [8] to check if the model is robust enough to produce

a high accuracy on similar task.
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Appendix A

Appendix

A.1 Speech Task Protocol

Task Instruction

Q1 I would like you to describe to me everything we did
from the moment we met today until now. Please try to
recall as many details as possible in the order the events
actually happened where we met, what we did, what we
saw, where we went, and what you felt or thought during
each of these events.

Q2 I would like you to describe everything that you see in
this room.

Q3 I am going to show you a picture and ask you to describe
what you see in as much detail as possible. You can
describe the activities, characters, and colors of things
you see in this picture.

Table A.1: The same instructions of the three speech tasks Q1, Q2 and Q3
provided to each subject.

Table A.1 shows the instructions that guide each subject for the speech

protocol. For Q3, the picture shown to the subjects is shown in Figure A.1,

copyrighted by the McLoughlin Brothers as part of the Juvenile Collection.



38

Figure A.1: Picture of ”The Circus Procession” used in Q3 of the speech task
protocol.
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Öhman, and Dimitrios Kokkinakis. Predicting mci status from mul-

timodal language data using cascaded classifiers. Frontiers in aging

neuroscience, 11:205, 2019.

[15] Michael Freitag, Shahin Amiriparian, Sergey Pugachevskiy, Nicholas

Cummins, and Björn Schuller. audeep: Unsupervised learning of repre-

sentations from audio with deep recurrent neural networks. The Journal

of Machine Learning Research, 18(1):6340–6344, 2017.

[16] Denise C Fyffe, Shubhabrata Mukherjee, Lisa L Barnes, Jennifer J Manly,

David A Bennett, and Paul K Crane. Explaining differences in episodic

memory performance among older african americans and whites: the

roles of factors related to cognitive reserve and test bias. Journal of the

International Neuropsychological Society: JINS, 17(4):625, 2011.



43

[17] Harold Goodglass, Edith Kaplan, and Sandra Weintraub. Boston naming

test. Lea & Febiger Philadelphia, PA, 1983.

[18] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke,

Aren Jansen, R Channing Moore, Manoj Plakal, Devin Platt, Rif A

Saurous, Bryan Seybold, et al. Cnn architectures for large-scale audio

classification. In 2017 IEEE international conference on acoustics, speech

and signal processing, pages 131–135. IEEE, 2017.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.
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