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Abstract 

An Investigation of the Properties of Gene-Based Tests of GWAS Data:   

 Simulations and Analyses of ADHD GWAS Data 

By Joshua Weinstock 

Genome-wide association studies (GWAS) have become a useful tool in recent years for 

elucidating the etiology of a variety of complex traits. Although these studies have shown 

promising findings in the field of psychiatric genetics, conventional single-SNP testing methods 

pose a number of challenges of both a statistical and biological nature. These challenges make 

alternative association testing methods, such as gene-based tests, attractive. In the current study, 

I used simulations and analyses of real data to evaluate the properties of several of the 

aforementioned gene-based tests, as well as to attempt to answer some questions raised by the 

application of several gene-based tests to real ADHD GWAS data from four samples. The issues 

addressed by the simulations included an examination of their Type I Error rates and statistical 

power across several plausible scenarios, as well as the impact of differing LD among the SNPs 

on the gene-based tests that use summary data and differences in test performance with genes of 

differing length, number of LD blocks, and number of causal variants per block. Analyses of the 

real ADHD GWAS data were used to evaluate differences among the gene-based tests in finding 

associated genes.
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Abstract 

Genome-wide association studies (GWAS) have become a useful tool in recent years for 

elucidating the etiology of a variety of complex traits. Although these studies have shown 

promising findings in the field of psychiatric genetics, conventional single-SNP testing methods 

pose a number of challenges of both a statistical and biological nature. These challenges make 

alternative association testing methods, such as gene-based tests, attractive. In the current study, 

I used simulations and analyses of real data to evaluate the properties of several of the 

aforementioned gene-based tests, as well as to attempt to answer some questions raised by the 

application of several gene-based tests to real ADHD GWAS data from four samples. The issues 

addressed by the simulations included an examination of their Type I Error rates and statistical 

power across several plausible scenarios, as well as the impact of differing LD among the SNPs 

on the gene-based tests that use summary data and differences in test performance with genes of 

differing length, number of LD blocks, and number of causal variants per block. Analyses of the 

real ADHD GWAS data were used to evaluate differences among the gene-based tests in finding 

associated genes.  
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Introduction 

 Genome-wide association studies (GWAS) have become a useful tool in recent years for 

elucidating the etiology of a variety of non-Mendelian diseases. These studies have shown 

promising findings in the field of psychiatric genetics, including locating relevant genetic loci for 

schizophrenia (Ripke, 2013) and ADHD (Neale et al., 2010). The canonical GWAS methodology 

typically consists of estimating the association between a given single nucleotide polymorphism 

(SNP) and the phenotype of interest for each of the millions of SNPs that are genotyped in a 

given study. This results in a separate association test statistic for each of the millions of 

genotyped and imputed genetic markers.  

 Single-SNP methods pose a number of challenges of both a statistical and biological 

nature. In a statistical sense, the number of association tests performed results in the need for 

very stringent p-values (Corvin et al., 2009), typically on the order of p = 5 X 10-8 (Dudbridge & 

Gusnanto, 2008). Statistical power in this context if often poor due to small effect sizes, 

relatively modest sample sizes given the number of statistical tests performed, as well as the 

number of markers vastly exceeding the number of individuals genotyped. These challenges 

make alternative association testing methods, such as gene-based tests, attractive (Neale & 

Sham, 2004). Gene-based tests perform a synthesis of the effect-sizes and/ or p-values provided 

for all the SNP’s mapped to a given gene and its flanking region, taking into account the 

correlation among the SNPs, referred to as their linkage disequilibrium (LD).  This is an 

attractive approach, as the gene is the actual functional biological unit of inheritance. Indeed, the 

functions of genes and pathways have been more thoroughly investigated than that of SNP’s 

(Peng et al., 2009). Gene-based tests also create opportunities for different patterns of association 

among SNP’s in a gene to result in the same gene-based test statistic; this provides the potential 
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for genes in which each SNP contributes a small amount of risk to still produce a significant test-

statistic and a more appreciable effect size than any of the constituent SNPs.  

 A number of competing gene-based tests have emerged which provide different analytic 

routes for calculating their gene-based test statistics. Naïve formulations include Fisher’s 

procedure for combining p-values and simply choosing the most significant SNP within a gene, 

known as Sidak’s combination test (Peng et al., 2009). Fisher’s combination procedure is not 

well-suited to this context given its assumption of independent p-values. Due to linkage 

disequilibrium (LD), groups of nearby SNP’s, such as within a gene, often appear in correlated 

blocks. This makes test statistics that assume independent p-values or effect sizes are suspect in 

this context, given that LD is often of a non-trivial magnitude. Sidak’s combination test only 

uses a single SNP statistic as the overall gene-best statistic, which leads to the exclusion of other 

SNPs from affecting the results, thus also is not ideal for this context.  

 The GATES (Gene-Based Association Test Using Extended Simes Procedure) method 

(Li, 2011) provides an alternative analytic procedure for combining p-values.  This test estimates 

the gene-based p-value as the minimum of the effective number of SNP p-values, where the 

effective number of p-values is estimated using the LD of the SNPs. This is found by performing 

an eigen decomposition of the LD correlation matrix and diminishing the effective number of 

independent SNP’s according to eigenvalues that are greater than one, as these indicate the 

presence of a dependency structure among the SNP’s.  

 Li et al. (2011) evaluated their algorithm through a series of simulation studies. The goal 

of such studies is to assess the type 1 error rate and statistical power across a range of realistic 

scenarios. The authors generated 30 SNP’s under Hardy-Weinberg equilibrium (HWE) and each 

SNP was grouped within a block of correlated SNPs. HWE refers to the expected prevalence of 



SIMULATIONS AND ANALYSES OF ADHD GWAS DATA                                                 5 

 
 

 

observed alleles at a bi-allelic marker, and violations may suggest genotyping errors or 

population stratification, among other explanations. Blocks were simulated using varying levels 

of within-block correlation, or LD. Blocks were assumed to be independent of one another. 

While the authors used three disease models (I.e., additive, multiplicative, and a null model 

where the SNPs have no effect on disease risk) for constructing a phenotype, only the additive 

model is relevant to this discussion. They also varied the effect-sizes of individual SNPs. Their 

simulation studies indicate a distinct advantage for the GATES algorithm over other evaluated 

gene-based testing methods in the presence of LD in terms of reduced type 1 error. In terms of 

statistical power GATES did not perform meaningfully better than the other algorithms tested, 

which included logistic regression, Fisher’s combination procedure, Simes test, and VEGAS (Liu 

et al., 2010).  

 As an extension of the GATES algorithm, Li et al. (2012) proposed the hybrid set-based 

test (HYST) as a gene-based test. This algorithm uses GATES on each of n LD blocks within a 

gene to synthesize a single p-value for each block. A scaled chi-squared test is then used to 

combine the n block p-values into an overall test statistic for each gene, which is a modification 

of Fisher’s combination procedure that takes the correlation among constituent SNPs (I.e., their 

LD) into account. Li et al. then simulated a variety of scenarios for protein-protein interaction 

based association analysis, finding that HYST generally outperformed alternative gene-based 

tests in terms of statistical power. Among the competing algorithms evaluated were GATES and 

the scaled chi-squared test, in addition to the Sequence Kernel Association Test (SKAT), which 

will be discussed below.  

 Canonical correlation analysis (CCA) was proposed by Ferreira et al. (2012) and provides 

an alternative analytic route to gene-based testing. CCA is a multivariate test of association that  
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maximizes the correlation among unique, orthogonal linear combinations of the two sets of 

variables on the "predictor" and the "outcome" sides of the equation. In the case of a single 

continuous phenotype and multiple SNP’s, Ferreira et al. note that CCA is equivalent to linear 

multiple regression. SNP’s in high multi-collinearity are removed through a pruning stage 

relying on variance inflation factor analysis. Wilk’s lambda is then used to test the significance 

of all canonical correlations. It should be noted that a crucial difference between CCA and the 

above algorithms is that CCA does not work with summary data (I.e., SNP-based p-values or 

effect sizes) from a SNP-based GWAS, but rather uses the original genotype / dosage and 

phenotype data.  

 Ferreira et al. assessed the viability of CCA as a gene-based test through simulations. 

They compared the results of CCA to two permutation based approaches implemented in PLINK 

(Purcell et al., 2007), as well as the gene-based test GWiS, which will be described below. They 

generated data for 2000 individuals with a normally distributed quantitative trait. This differs 

from the above simulations which generated a categorical diagnostic phenotype. Ferreira et al. 

manipulated the proportion of phenotypic variance explained by each gene (heritability), the 

number of quantitative trait loci (QTL), gene length (ranging from 220 to 500 kb), QTL allele 

frequency, and allele frequency of surrounding SNP’s. Naturally, heritability was also 

manipulated to assess type-1 error rate. The results suggested that CCA performs better in the 

presence of small genes (better meaning more statistical power and appropriate type-1 error 

rates) and when the number of QTL’s is small. In contrast, CCA was less powerful in the context 

of larger genes. The results suggested that in most scenarios PLINK’s all-SNP method provides 

similar or better performance.  
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 The PLINK all-SNP method provides the canonical method for permutation based set-

based statistics. The PLINK set-based statistic non-parametrically generates a null distribution of 

p-values by permuting the phenotype labels and keeping the genotypic information constant. For 

each of these iterations, the same test-statistic as before is calculated. Afterwards, the original 

test-statistic is compared to this null distribution to generate an empirical p-value. The SNPs 

used are selected to be in low LD with one another. This method seems to perform well 

according to the above mentioned simulation analyses, but is limited in practice due to the 

computational expense of permutation.   

 Another regression based approach is the SKAT (Wu et al., 2011) method for rare-

variants. SKAT conducts linear regression and performs hypothesis testing on a group of 

markers using a variance-component score test. The null-hypothesis is generated by only using 

specified covariates (I.e., no SNPs) to predict the phenotype. This is then compared to a model 

that also includes genotypic information on the constituent SNPs. The variance-component score 

test also includes a matrix whose elements correspond to the genetic similarity between two 

subjects. The kernel in this case is linear, which means that the two sets of genotypic information 

are compared in a manner similar to covariance. It is not explicitly stated why other types of 

kernels (polynomial, Gaussian) were not explored, but is likely that the linear kernel simply 

provides much better computational performance. In this context a larger variance-component 

score test corresponds to a larger effect of the gene due to the contribution of genotypic 

information over merely including covariates. This statistic follows a chi-squared distribution, 

lending itself well to analytical calculation of p-values.  

 The Gene-Wide Significance test (GWiS) provides a Bayesian alternative (Huang et al., 

2011) to calculation of gene-based p-values. GWiS uses Bayesian model selection to determine 
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the best subset of SNPs that maximizes the total probability of the model given the phenotype 

and the genotypic data. Bayesian model selection is a procedure for discriminating between 

competing models. In accordance with Bayesian methods, a prior is specified over each possible 

model which in this case is maximized when the number of SNPs in the model is equal to the 

effective number of independent tests, which is calculated using the LD of the gene. The 

likelihood term is simply the likelihood of a multiple linear regression model for the gene, with 

the SNPs as predictors and the phenotype as a dependent variable. The prior and likelihood term 

are multiplied to yield a value proportional to the likelihood of the model given the phenotype 

and genotypic information. GWiS is designed to choose a single model for each gene that 

maximizes the above model likelihood term. GWiS then uses a permutation procedure to convert 

the GWiS test-statistic to a p-value, and applies a p-value adjustment procedure to the results.   

The Current Study 

 In the current study, I used simulations and analyses of real data to evaluate the properties 

of several of the aforementioned gene-based tests, as well as to attempt to answer some questions 

raised by the application of several gene-based tests to real ADHD GWAS data from four 

samples. The issues addressed by the simulations included an examination of their Type I Error 

rates and statistical power across several plausible scenarios, as well as the impact of differing 

LD among the SNPs on the gene-based tests that use summary data and differences in test 

performance with genes of differing length, number of haplotype blocks, and number of causal 

variants per block. Analyses of the real ADHD GWAS data were used to evaluate differences 

among the gene-based tests in finding associated genes. 

Methods 

Simulation 
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The simulated data were generated using a two-step process. First, genotype data are 

simulated. The foundational unit for the genotype simulations are LD blocks, which occur in real 

data when certain sets of SNPs in close genetic proximity to one another are transmitted together 

during meiosis, as their close genetic distance prevents them from being split up due to 

recombination. To simulate LD blocks, we first specified the theoretical correlation matrix Σ 

among SNPs in a block, and then simulate covariance matrices based on randomized draws from 

a Wishart distribution with Σ as a parameter. Markers are produced in a dosage format, where 

each column in the data matrix corresponds to a single marker. For N individuals and P markers 

per block, an N x P matrix is simulated with each column being a marker. The K LD blocks are 

then concatenated together to yield an N x P*K matrix, representing a gene. The similarity 

between adjacent blocks is measured through canonical correlation, which effectively seeks to 

maximize the correlation among linear combinations between the two LD blocks. Due to the 

inherent randomness in the generation of the data, the markers do not depart from HWE. The 

parameters currently specified are minor allele frequency, Σ, number of individuals, number of 

blocks, number of markers per block, and between block correlation. 

 The phenotype data are simulated by randomly choosing a set of causal LD blocks, and 

then subsequently choosing a specified number of causal markers within those LD blocks. For a 

given effect size, the explanatory power is distributed equally over the causal markers. This per-

marker effect size is then converted to an expected slope based on the effect size, marker 

variance, and phenotype variance. The slope is then multiplied by a randomly sampled sign (-1 

or 1) to produce both positive and negative marker effects. Each of these causal markers is then 

combined in an additive manner based on their slopes to produce the “true” phenotype. A degree 

of random noise is then added to the phenotype based on the total explanatory power specified 
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before (specified as an R-squared value). The distribution of this noise is Gaussian, which can 

later be converted into a binomial variable through the sigmoid function if the user desires a 

categorical phenotype (e.g., a diagnosis).   

 Currently a few gene-based tests are implemented in the simulation package: Sidak’s, 

Fisher’s, VEGAS, GATES, HYST, and CCA gene-based test. Naturally others are in the process 

of being implemented (GWiS, SKAT) as discussed before. It is important to distinguish among 

two general types of gene-based tests. Only CCA uses the raw genotypic data to associate the 

gene with the phenotype, whereas the other tests use summary statistics of and the LD among the 

constituent SNPs. This is a fundamental difference which has performance consequences that 

will be assessed through simulation. Once implementation was completed, a series of tests were 

conducted. The gene-based tests were first assessed for proper type-1 error by simulating a gene 

with no causal effect on the phenotype and measuring the proportion of simulations in which a 

given test produces a significant p-value. Type-1 error was checked under different conditions of 

LD. Next, power analyses were conducted by simulating genes with a non-zero causal effect on 

the simulated phenotype, and measuring the proportion of outcomes where the gene-based tests 

produces a significant p-value.  

 To distinguish between the two types of gene-based tests, another parameter was added to 

the simulation. When using a summary-statistic based gene-based test that relies on LD 

information, in practice it is most common to use a corresponding reference panel (I.e., the 1000 

genomes samples; provide reference) for the measurement of LD. This has an important 

consequence in that this LD information may lead to spurious results if the 1000 genomes 

reference panel has very different LD from the population of interest. Gene-based tests which do 

not rely on summary statistics do not rely on an external 1000 genomes sample for LD 
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information. To incorporate this effect into the simulations, a multivariate Gaussian noise matrix 

was produced with a user specified amount of variance for each variable. The noise matrix is of 

the same dimensions as the LD matrix. In addition, each of the simulated random variables has a 

mean of zero with no covariance, leading to a diagonal covariance matrix. In an effort to mimic 

the form of a correlation matrix, which is a Hermitian matrix, the noise matrix was coerced into a 

symmetric matrix by equating the lower and upper triangular regions. This guarantees the 

absence of complex eigenvalues in the sum of the noise matrix and original LD matrix. After the 

symmetric noise matrix is produced it is summed with the original LD matrix. This procedure is 

only applied to those gene-based tests which rely on external LD information. The motivation 

behind this addition of noise is to replicate the lack of complete concordance between the 1000 

genomes reference panel LD and the LD of the population of interest. Varying amounts of noise 

can be specified to create more or less noisy LD matrices. This feature will provide insights into 

the degree of robustness of the summary-statistic based gene-based tests to noisy inferences of 

population LD.  

 The simulation tools were written in R 3.1.0 (R core team, 2014) and compiled into an R 

package, gwassim. A small portion of the simulation is written in C++ for speed gains. The 

package was developed on a personal laptop with limited computing power. The simulations 

were run on the SURFsara Lisa computing cluster housed in the Netherlands. Each simulation 

test constitutes the combined results of 500 independent simulations. Naturally more simulations 

would lead to a more precise result, but there is a tension between computational tenability and 

precision that is sufficiently well struck by the number of simulations used herein.  

 

Psychiatric Genomics Consortium (PGC) ADHD GWAS data 
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Samples and participants 

ADHD GWAS data were used from four samples. The first sample was collected in 

Germany, where families were recruited at outpatient clinics in Wuerzburg, Homburg, and Trier. 

The families had a German and Caucasian ancestry. The children were at least six years of age 

and all met DSM-IV criteria for ADHD. This sample will be referred to in this paper as GERM. 

This sample had 494 cases and 1,297 controls.  

The next sample was collected from behavioral clinics affiliated with the Children's 

Hospital of Philadelphia. This sample consisted of 3588 family trios (i.e., parents and an 

offspring). Families of European ancestry were included. The children were ADHD probands of 

at least age six. This will be referred to as the CHOP sample.  

The next sample was collected from three locations: the Massachusetts General Hospital, 

UCLA, and Washington University. The sample consisted 712 family trios. Families were 

invited if at least one child displayed at least three inattentive systems during an initial interview. 

This will be referred to as the PUWM sample.  

The final sample was collected from a variety of European countries. Family members 

were Caucasians and of European descent. Germany, Ireland, the Netherlands, Spain, 

Switzerland, the United Kingdom, and Israel were among the countries included. The probands 

had been clinically diagnosed as having ADHD. The sample consisted of 866 family trios. This 

will be referred to as the IMAGE1 sample 

Genotyping and imputation 

Cases were genotyped using an Affymetrix array at the State University of New York 

Upstate Medical University, while controls were genotyped using an Affymetrix array at the 
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Broad Institute National Center for Genotyping and analysis. The data were imputed using the 

BEAGLE software (Browning & Browning, 2009).  

Quality control 

In the original GWASs, Covariates controlling for sex and population stratification were 

included. Population stratification was addressed by including the first six components from 

principal component analysis (PCA) on the genotypic data. Markers with allele frequency less 

than .05 or genotyping score of less than .80 were excluded from analysis. This data filtering was 

performed on each sample separately.  

Statistical analyses 

For each single SNP, logistic regression was conducted to estimate a regression 

coefficient for the given SNP as well as its standard error. The coefficients were then 

exponentiated to put in odds-ratio form. P-values were generating using the Wald statistic, which 

provides an asymptotic estimate of the given marker P-value using a chi-squared distribution 

with a single degree of freedom. These analyses were conducted using PLINK.  

Application of gene-based tests  

After the above analysis was conducted gene-based tests were performed.  

Specifically, using the package KGG (Li, 2010), I applied the gene-based tests GATES and 

HYST to the existing PLINK outputs of SNP-based results combined with LD information from 

the 1000 genomes European reference panel (Genomes Project Consortium, 2010). For the 

CCAs, I selected the most significant genes from GATES and HYST and ran CCAs on them 

using Ferreira’s test which I implemented in R. I then compared the various gene p-values using 

various statistical tests (e.g. paired sample t-tests) and statistical graphic methods (e.g. scatter 
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plots with fitted regression lines). Only the above three gene-based tests were run on the data due 

to considerations of computational tenability and available software.  

Meta-analysis 

 For each gene there were 12 total p-values – four each (one for each of the four samples) 

for CCA, GATES, and HYST. For each gene-based test, each of the four sample p-values was 

combined using Fisher’s combination procedure. Given that genes are assumed to be relatively 

independent it seems unlikely that Fisher’s combination procedure suffers the same pitfalls as 

when it is used on SNP level p-values. The Benjamini-Hochberg (Benjamini & Hochberg, 1995) 

procedure was subsequently applied to the resulting p-values to correct for the number of tests.  

Results 

Type-1 simulation results 

As described above, the first simulation conducted was a test of type-1 error, the results 

of which are displayed in figure 1.  
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Figure 1: type 1 error rates 

 

 Tests for type-1 error were varied over two parameters: level of LD and number of markers 

per block. The nominal type-1 error rate was .05, which is displayed in figure 1 with a dashed line. 

The test with the most divergent performance from our expectation of .05 was Fisher’s procedure, 

which showed elevated levels of type-1 error throughout. In particular, as expected the level of 

type-1 inflation of Fisher’s appears to increase as the level of LD increases. The other tests display 

type-1 error rates very close to the expected .05 rate, with HYST appearing as slightly 

conservative.  

PGC ADHD GWAS sample results 

GERM 
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 It is important to consider the inflation of p-values when working with high-dimensional 

genomic data. P-value inflation occurs when we observe systematically lower p-values across the 

genome than expected due to a spurious association. To evaluate this potential inflation it is 

useful to examine quantile-quantile plots. Were we to observe p-value inflation we would notice 

that the plotted values would systematically fall above the diagonal in Figure 2. Here we observe 

limited departure from the diagonal line. The gene-based p-values are from GATES.  

 

Figure 2: QQ-plot of Germany gene-based p-values 

Table 1 indicates a list of the top 10 hits for the gene-based p-values according to 

GATES. As will be shown later, there is a very high degree of agreement between GATES and 

HYST, with CCA departing from the other two tests in its estimates. It is important to note that 

the p-values listed in table 1 are nominal – that is, they have not been corrected for multiple 
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testing. The p-values will be corrected for multiple testing after the multiple samples are 

combined through meta-analysis. The results indicate that the strongest signal occurs in 

chromosome four, closely followed by signals in chromosomes two and eleven, but that none 

reach genome-wide significance.   

Gene gatesp chrom startPosition Length hystp ccap 

COX7B2 3.93E-06 4 46736846 174407 3.32E-05 NA 

BCL11A 4.63E-05 2 60678301 102333 0.000371 0.061662 

SPI1 5.22E-05 11 47376408 23720 4.27E-05 0.004787 

MIR1286 7.84E-05 22 20236656 79 7.84E-05 NA 

MAP2K3 8.18E-05 17 21191347 27205 8.18E-05 NA 

GPX6 0.000103 6 28471072 12499 0.000137 NA 

MYBPC3 0.000122 11 47352956 21298 0.000502 0.04235 

TRIM67 0.000127 1 231298673 58642 0.000219 NA 

PLEKHM1 0.000137 17 43513265 54882 0.000124 NA 

C1orf131 0.000149 1 231359508 17426 0.000144 NA 

 
Table 1: Top 10 gene hits according to GATES 

It is worthwhile to more explicitly compare the results of the three-gene based tests. A 

beneficial transformation of p-values is to apply −𝑙𝑜𝑔10 to the values. This aids the visual 
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interpretation of the p-values by transforming small p-values into large values, and by distorting 

the distance between small p-values.  

 

Figure 3: gene-based pvalues by gene length 

 

 As indicated in Figure 3, we observe a slight downward slope as the mean p-value 

decreases, suggesting a lack of power on large genes for these gene-based tests. We also observe 

that CCA results in more significant p-values on average.  

 In an effort to tease out the effect of gene-length, it can be useful to dichotomize the 

gene-lengths into small genes and large genes. While dichotomizing a continuous variable can 

reduce statistical power this choice is purely to aid exploratory analysis.  After performing this 

split, it is informative to look at differences in mean –log(p-value) among the results.  
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Pair Difference t Df Sig. (2-tailed) 

logGATESp – logHYSTp -.00052 -.920 12005 .358 

logGATESp - logCCAp -.07705 -1.317 110 .190 

logHYSTp - logCCAp -.07437 -1.271 110 .206 

 
Table 2: Differences in mean -log(p-values) for GERM sample for small genes 

As indicated in Table 2, we did not observe any significant differences in mean 

difference of –log(p-values) when examining shorter genes in the GERM sample.  

Pair Difference t df Sig. (2-tailed) 

logGATESp – logHYSTp -.01683 -.10.600 12005 < .0001 

logGATESp - logCCAp -.06245 .864 110 .389 

logHYSTp – logCCAp -.05219 .759 110 .449 

 
Table 3: Differences in mean -log(p-values) for GERM sample for large genes 

As indicated in Table 3, we observed a significant difference between the mean –log(p-

values) of GATES and HYST in large genes, with HYST have a slightly higher mean. This may 

suggest an advantage for HYST when working with large genes. This suggestion is furthered by 

Figure 1 which indicated that HYST is actually slightly conservative. We explored possible 

explanations for this difference using simulations which will be discussed below.  
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CHOP 

We first examine the QQplot of gene-based p-values for the sample. 

 

Figure 4: QQplot of GATES p-values for CHOP sample 

As we observed with the GERM sample, visual examination of the QQplot does not suggest 

inflation in p-values.  

gene gatesp chrom startPosition length hystp ccap 

MIR3180-4 0.000112 16 15248706 154 0.000112 NA 

SH3BP2 0.000139 4 2820540 22284 0.000107 NA 
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GSTM5 0.00027 1 1.1E+08 6028 0.00148 NA 

MIR3666 0.000327 7 1.14E+08 112 0.000327 NA 

ZNF781 0.000331 19 38158649 24568 0.000386 NA 

AICDA 0.000361 12 8754761 10682 0.000361 NA 

TES 0.000387 7 1.16E+08 35834 0.00281 NA 

PHLPP1 0.000494 18 60382671 265006 0.000186 NA 

SEC16B 5.00E-04 1 1.78E+08 40810 0.000809 NA 

UBXN10-AS1 0.000532 1 20510735 2245 0.000532 NA 

 
Table 4: Top hits by GATES for CHOP 

 

As indicated in table four the top hits by Gates indicate the strongest signal arises at gene 

MIR3180-4 in chromosome 16. The next strongest signal is gene SH3BP2 in chromosome 4. 

Again, none of the genes reach genome-wide significance. As we observed before there is a 

strong congruence between HYST and GATES.  
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Figure 5: scatterplot of -log(p-values) by gene length 

Figure 5 depicts a similar pattern to what was observed in the GERM sample – HYST appears to 

have smaller p-values on larger genes. In this sample we also observe CCA to produce larger p-

values as gene length increases.  

Pair Difference t df Sig. (2-tailed) 

logGATESp – logHYSTp -.00080 -1.303 12025 .193 

logGATESp - logCCAp -.05696 -1.621 113 .108 

logHYSTp - logCCAp -.05703 -1.609 113 .110 

 
Table 5: Differences in mean -log(p-values) for GERM sample for small genes 
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As indicated in Table 6, we did not observe any significant differences in mean difference of –

log(p-values) when examining shorter genes in the CHOP sample.  

Pair Difference t df Sig. (2-tailed) 

logGATESp – logHYSTp -.01744 -11.646 12025 < .0001 

logGATESp - logCCAp -.01577 -.324 125 .746 

logHYSTp - logCCAp -.00974 -.199 125 .842 

 
Table 6: Differences in mean -log(p-values) for GERM sample for large genes 

Here we observe the same difference between HYST and GATES that we did in the GERM 

sample – that is, HYST appears to have more significant p-values when examining larger genes.  

IMAGE1  
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Figure 6: QQplot of GATES p-values for IMAGE1 

Figure 6 suggests through visual inspection that systematic inflation of p-values is not occurring 

in IMAGE1.  

gene gatesp chrom startPosition length hystp ccap 

CKMT1A 1.62E-05 15 43985083 6338 1.62E-05 NA 

MIR4257 3.88E-05 1 1.51E+08 87 3.88E-05 NA 

HYPK 3.92E-05 15 44092618 2152 3.92E-05 NA 

MFAP1 4.66E-05 15 44096732 20220 4.66E-05 0.003393 
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CATSPER2P1 4.70E-05 15 44028145 10352 4.70E-05 0.003247 

PDIA3 5.26E-05 15 44038589 26216 5.26E-05 0.01136 

SERF2-C15ORF63 5.78E-05 15 44084173 10597 5.78E-05 NA 

ADAMTSL4 6.22E-05 1 1.51E+08 9381 6.22E-05 0.012174 

DPH3P1 9.89E-05 20 61475917 1627 9.89E-05 NA 

ELL3 0.000106 15 44064797 4706 0.000106 NA 

 
Table 7: top hits according to GATES 

We observe that gene CKMT1A has the strongest signal in the IMAGE1 sample, located in 

chromosome 15. We also observe genes HYPK, MFAP1, CATSPER2P1, PDIA3-SERF2, and 

C15ORF63 to also display strong signals in close physical proximity to CKMT1A, each being 

less than 1.2 mega base-pairs away. We also observe nominal significance according to CCA for 

each of the genes. Nonetheless, as with the previous samples, none of the genes reach genome-

wide significance. 



SIMULATIONS AND ANALYSES OF ADHD GWAS DATA                                                 26 

 
 

 

 

Figure 7: scatterplot of GATES -log(p-values) and gene length 

Here we observe the same pattern as before with regards to HYST and GATES – that is, it 

appears HYST yields lower p-values than GATES on larger genes, whereas associations found 

with CCA decrease in significance with increasing gene length.  

 

Pair Difference t df Sig. (2-tailed) 

logGATESp – logHYSTp -.00144 -2.737 11918 .006 

logGATESp - logCCAp -.06542 1.109 111 .270 

logHYSTp - logCCAp -.05746 .985 111 .327 

 
Table 8: Differences in mean -log(p-values) for IMAGE1 sample for small genes 
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As indicated in Table 8, we observe that even in small genes HYST has smaller p-values than 

GATES.   

Pair Difference t df Sig. (2-tailed) 

logGATESp – logHYSTp -.01846 -11.707 11921 < .0001 

logGATESp - logCCAp .06240 .909 123 .365 

logHYSTp - logCCAp .07539 1.050 123 .296 

 
Table 9: Differences in mean -log(p-values) for IMAGE1 sample for large genes 

Table 9 depicts the same result that we observed before – that is, on larger genes HYST yields 

smaller p-values than does GATES.  

PUWM 
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Figure 8: QQplot of GATES p-values 

gene gatesp chrom startPosition length hystp ccap 

ATP7B 5.74E-05 13 52506805 78826 0.000284 NA 

LINC00865 6.73E-05 10 91589249 11370 0.000247 NA 

HNRNPA1L2 0.000169 13 53191604 26316 0.000224 NA 

SUGT1 0.000169 13 53226830 35604 0.000202 NA 

UGT1A8 0.000198 2 2.35E+08 155656 0.000356 NA 

BMPR1B 0.000203 4 95917382 162220 6.37E-05 NA 

UGT1A9 0.000205 2 2.35E+08 101409 0.000914 NA 

THSD1 0.000209 13 52951302 29328 0.000233 NA 

VPS36 0.000212 13 52986736 37644 0.000218 NA 

UGT1A10 0.000224 2 2.35E+08 136830 0.00178 NA 

Table 10: Top hits by GATES in PUWM sample 
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Figure 9: scatterplot of GATES -log(p-values) and gene length 

Here and in the two tables below, we observe a similar pattern as before with HYST and 

GATES. We also observe a strong upward slope on linear CCA fit, but this is likely driven by 

outliers – the linear trend is for visual purposes and not for rigorous analysis.  

 

Pair Difference t df Sig. (2-tailed) 

logGATESp – logHYSTp -.00070 -1.324 12087 .186 

logGATESp - logCCAp .02471 .463 114 .645 

logHYSTp - logCCAp .01729 .330 114 .742 
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Table 11: Differences in mean -log(p-values) for PUWM sample for small genes 

 

Pair Difference t df Sig. (2-tailed) 

logGATESp – logHYSTp -.01558 -9.886 12091 < .0001 

logGATESp - logCCAp -.03277 -.591 125 .365 

logHYSTp - logCCAp -.02541 -.461 125 .296 

 
Table 12: Differences in mean -log(p-values) for PUWM sample for large genes 

 

Meta-analysis 

After applying the meta-analysis procedure, a single gene, NOM1 on chromosome 7, resulted in 

nominal significance according to HSYT. GATES and CCA did not result in any significant 

genes. The top 10 hits according to HYST are displayed in Table 13.  

gene chrom starPosition length ccap_pval gatesp_pval hystp_pval 

NOM1 7 156742416 23461 NA 0.214309547 0.04956707 

ABCA4 1 94458393 128313 NA 0.99999999 0.821187159 

ADORA2A 22 24828086 10243 NA 0.875552356 0.821187159 

ADORA2A-AS1 22 24834244 56540 NA 0.875552356 0.821187159 

AGMO 7 15239942 361699 NA 0.99999999 0.821187159 

BMPR1B 4 95917382 162220 NA 0.99999999 0.821187159 
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C1orf131 1 231359508 17426 NA 0.875552356 0.821187159 

C9orf9 9 135754289 11130 NA 0.992133329 0.821187159 

CAMTA1 1 6845383 86725 NA 0.99999999 0.821187159 

CATIP 2 219221578 11240 NA 0.875552356 0.821187159 

 
Table 13: top hits on meta-analyzed results according to HSYT 

Power simulations 

The above results on PGC data were used to inform hypotheses concerning these gene-

based tests that could be examined in a controlled setting through simulation. Naturally this 

poses the risk of distancing ourselves from understanding the risks of the gene-based estimators 

in practice, but given the construction of the simulations it seems likely that they will contribute 

to our knowledge of which gene-based test to use in a given scenario. The use of real data results 

to generate hypothesis also has the desirable effect of creating dialogue between the simulations 

and real results, ensuring that relevant real world hypotheses are being tested in the simulations.    

  It is informative to begin with a general power analysis. Given the above focus on gene 

length I first performed a simulation on large genes. The genes had 10 markers per block, and 20 

blocks in total. The total effect size was fixed at 1% of variance, and there were 4 total causal 

markers in separate blocks. The estimation of LD matrix for GATES and HYST had no added 

noise. Under these conditions we observe the results in Figure 10.  
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Figure 10: power in large genes by LD 

The results indicate that the gene-based estimator with the most power in large genes is 

the Fisher combination procedure. However, as demonstrated before, this test also has incorrect 

type-1 error by a large degree, suggesting systematically low p-values. GATES, HYST, VEGAS, 

and Sidak’s all perform similarly, with CCA appearing to have the lowest power in these 

conditions. It is also clear that the HYST performance in this simulation does not corroborate the 

PGC sample ADHD GWAS results. It is also apparent that an increase in LD within the blocks is 

beneficial for the gene-based tests. It is also clear the statistical power is low for all of the gene-

based tests.  

In effort to further examine the differences between GATES and HYST we produced 

another simulation that varies only the dispersal of causal effects within a gene. The simulated 

genes had five blocks, each consisting of five markers with a medium level of internal LD. The 
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effect size was held constant at 1% of total variance. In one scenario, there were four total causal 

SNPs, each within separate blocks. In another scenario, there was only a single causal SNP.  

 

Figure 11: power by dispersal of causal SNPs 

The results suggest that in general, gene-based tests will perform worse when the 

explanatory variance is dispersed evenly across disparate parts of a gene. We also observe that 

with a single causal SNP, GATES performs better than HYST, but when the causal etiology is 

dispersed across four SNPs, HYST performs better. Explanations for this switch in performance 

and its significance will be provided below.  

 Let us repeat the above experiment with a slight variation on size of gene. The same 

simulation was run except for an increase of five markers per block to 10 and an increase of total 

blocks to 10. That is, all other conditions were held constant and a gene four-times larger was 

used.  

 



SIMULATIONS AND ANALYSES OF ADHD GWAS DATA                                                 34 

 
 

 

 

Figure 12: power by dispersal of causal SNPs in large genes 

As depicted in Figure 12 we again observe the challenge posed to gene-based tests by 

genes with a wide dispersal of causal etiology. We also note that there is a large advantage of 

GATES and Sidak’s over the other tests in the scenario of a single causal SNP. GATES also 

outperforms HYST by a large margin of over .20. In the case of four causal SNPs, the 

performance of HYST approaches GATES, but does not surpass it as we observed in the 

previous experiment.  
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Figure 13: power by addition of noise 

The simulation indicates the degree to which each gene-based test is robust to the 

addition of noise. This addition was only applied to GATES and HYST since these are the only 

gene-based tests included that both rely on LD information and a reference sample to calculate 

the LD. Due to this restriction we may conclude that the variation of the four other gene-based 

tests is completely due to noise in the simulations. It is apparent from Figure 13 that HYST and 

GATES do not display vulnerability to the addition of noise to the LD matrix. The variation in 

the power of HYST and GATES does not appear to exceed that of the other tests whose variation 

is completely due to randomness.  

Discussion 

Our first result in Figure 1 reaffirms that Fisher’s combination procedure is inappropriate, 

even in cases of minimal LD, as it produces a much higher proportion of nominally significant p-

values than the other tests. This is an expected result and is due to the assumption of Fisher’s 
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combination procedure that each of the p-values be independent. This vulnerability appears to be 

exacerbated in particularly large genes. The other gene-based tests appear to exhibit correct type-

1 error rates, with the possible exception of HYST. HYST appears to be slightly conservative, 

meaning that it produces slightly too few significant results. The inflation of Fisher’s is in 

congruence with previous literature – Li et al. observed in 2012 a similar result. However, Li et 

al. do not observe the deflation of p-values from HYST. Given the small magnitude of our result, 

it seems likely that if HYST is producing a lower than expected type-1 error, then it is by an 

amount too insignificant to discourage practical use.  

In all four of the above samples we observed that HYST has a higher –log(p-value) than 

GATES (p < .0001) in larger genes. This result inspired a particular simulation test – that is, a 

test of how HYST and GATES perform when the dispersion of causal etiology is manipulated. 

This test was born out of a hypothesis that larger genes in these samples may harbor a 

particularly wide dispersal of causal SNPs when compared to smaller genes. As indicated in 

Figure 9, HYST outperforms GATES by a small degree when examining genes with 16% of the 

SNPs being causal and their influence is very dispersed across separate blocks. We also notice 

that when we use a large gene but do not increase the number of causal markers that HYST no 

longer outperforms GATES, as indicated in Figure 10. These simulation results suggest a 

number of conclusions about when it is appropriate to use HYST instead of GATES.  

Firstly, there needs to be certain degree of dispersion of the causal influence for HYST to 

outperform GATES. In any gene with a single or a few causal block it seems likely that GATES 

will perform much better. Secondly, if a low proportion of blocks contain signal, then it seems 

likely that GATES will also outperform HYST. These results suggest that HYST is best used on 

genes that have a wide dispersal of causal influence within a sufficiently high proportion of 
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blocks. These results are supported to a degree by previous results (Li et al, 2012), who found 

HYST to generally outperform GATES in simulations, but to provide similar results in practice. 

It is also worthwhile to note that in most simulated scenarios with one or a few causal SNPs that 

Sidak’s approach of simply selecting the best test-statistic performed comparably to GATES, and 

in most scenarios provided similar results. This combination of strong relative performance and 

simplicity in calculation make Sidak’s a surprisingly attractive gene-based test.  

As indicated in Figure 8, we also observe noticeably poor performance by the CCA test. 

This result is notable in that CCA is the only one of the above studied gene-based tests to directly 

take into account genotypic and phenotypic data without relying on summary statistics. The poor 

performance of CCA on large genes is in congruence with Tang and Ferreira results in 2012, 

who observe CCA to perform much better on smaller genes than large genes. A possible 

statistical explanation is grounded in the limitations of linear regression. As stated before, in the 

case of a single phenotype, CCA is identical to multiple linear regression. To avoid the 

instability of coefficients in the presence of high multi-collinearity, the CCA procedure relies on 

a SNP pruning procedure. However, it may be that this screening procedure is eliminating causal 

SNPs given that it does not take into account the test-statistics of the given marker. Use of a 

more lenient SNP pruning procedure might aid the performance of the CCA method.  

There are computational considerations as well that limit the usability of CCA in practice. 

The test is implemented in R which is not suitable for speed intensive computations, which made 

it challenging to apply the test to more than a few genomic regions. In the simulations a small 

section of the test had to be rewritten in C++ to gain acceptably performant behavior. These 

computational barriers make it difficult to recommend the use of CCA in practice on large 

genomic datasets.  
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A theoretical advantage of CCA over gene-based tests that rely on summary data is that 

CCA is not vulnerable to imprecise estimation of population LD. As discussed above, GATES 

and HYST are typically applied with a corresponding 1000 Genomes reference panel sample 

used to estimate LD. This denigrates the performance of GATES and HYST relative to CCA if 

the 1000 Genomes reference sample is a poor surrogate for the population of interest. As 

indicated in Figure 11, it appears that even significant random perturbations of the true LD 

matrix in simulations does not meaningfully reduce the power of GATES and HYST relative to 

CCA. This suggests that GATES and HYST are robust to imprecise inferences of the population 

LD matrix. What follows are observations and explanations for this unexpected result.  

Throughout the simulations, GATES often produced very similar results to Sidak’s. This 

is expected if we consider the formulation of GATES, given that GATES effectively chooses the 

minimum marker p-value, only using the LD information to calculate an effective number of 

tests. In the case of no LD among SNPs it is trivial to show that GATES and Sidak’s will 

produce the same result. Given that our noise matrix was a multivariate Gaussian with a mean of 

zero, we were not greatly disturbing this calculation of the total number of effective tests since 

local LD information has minimal effect on GATES. Given that HYST uses GATES as an 

essential step we can extend this explanation to HYST as well. This result is promising for 

GATES and HYST and bodes well for their practical use. It should be noted that this conclusion 

only holds in the case of unbiased addition of random noise.  

The individual samples did not produce any genes with p-values at or below genome-

wide significance for any of the gene-based tests. This result is consistent with our knowledge of 

ADHD as a complex phenotype, given that such traits are often comprised as the constellation of 

several small genetic effects, which can make individual signals hard to find. This is in 
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accordance with the existing literature on the PGC ADHD GWAS datasets, as a previous a case 

control analysis of these datasets did not find any SNPs at or below genome wide significance 

(Neale et al., 2010).  

After meta-analysis, a single gene – NOM1 -- remained genome-wide significant after p-

value correction at a nominally significant level (p < .05). Another gene in chromosome 7 – 

AGMO – within 5 Mbp suggests the possibility of this as a true signal. Given that the other gene-

based test, GATES, applied to this gene was not significant, it is difficult to consider this as a 

robust finding. Rather, it seems most appropriate to highlight NOM1 as a genomic region of 

interest for further inquiry for ADHD. We will continue to evaluate this in the remaining 5 

available PGC ADHD GWAS samples.  

Limitations 

It is important to consider the limitations of this study with regards to our ability to infer 

relevant genomic loci for ADHD. As suggested by Neale et al. in 2010, genomic loci may be 

implicated in epistasis, epigenetic effects, gene-environment correlation, none of which are 

accounted for in this study. Additionally, GWAS is principally focused on risk imposed by 

common variants. This may leave us blind to the true causal markers of ADHD if they are due to 

rare variants which we currently exclude from our single-SNP analysis. We have also imposed 

an additive model on each marker, rather than exploring alternative structures. Each of these 

factors may contribute variance to ADHD that we currently will be unable to powerfully detect.    

Our study also has many limitations on our ability to simulate realistic genes. We 

simulated genes with minimal between block correlation, constant block sizes, and can only 

simulate one gene at a time. We also did not consider phenotypes that do not have an underlying 

Gaussian distribution. While these may be robust assumptions to a certain degree, they do limit 
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our ability to simulate genes that one would naturally observe in GWAS data. Each simulation 

was only ran 500 times. Although this amount is likely sufficient for our purposes, we still did 

observe some noise in repetitions of the same simulation.  

Areas of future work 

As mentioned previously, not every gene-based test of interest was implemented in the 

simulations or applied to the PGC data. This includes SKAT, GWiS, and the PLINK set-based 

tests. Given the prevalence of these methods in the literature it would be of great interest to 

examine their results. It would also be of interest to more formally compare the results of our 

power analyses to that of previously published simulation studies by Ferreira, Li, and others. 

This formal comparison would allow for a deeper understanding of how the design choices 

involved in the simulations affect the results.  

Another potential area of inquiry is to compare our results from the gene-based tests with 

a purely SNP based analysis in each gene. It would be of particular interest to apply the q-value 

method (Storey & Tibshirani, 2003) to the SNP level results within each gene. The q-values 

provide a very attractive interpretation and may provide insights that we cannot gain from 

examining p-values alone. It would also be of great interest to expand our results from the four 

samples above to other five PGC datasets. The addition of these samples into our meta-analysis 

will bolster our power in finding significant genes.  

Conclusion 

This study complements existing literature on gene-based tests for ADHD in a few ways. 

To our knowledge, this is the first study to run simulation analyses of existing gene-based tests 

while not simultaneously proposing a new gene-based test. The lack of investment in a specific 

gene-based test’s performance lends itself favorably to objective interpretation of the simulation 
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results. This study also made use of a dialogue between real PGC ADHD GWAS data and 

simulations to explore hypotheses in a rich field of inquiry about gene-based tests on ADHD 

GWAS data. The study also highlights NOM1 as a genomic location of potential relevance to our 

understanding of the etiology of ADHD. This line of inquiry is not complete by any means and 

future work into the PGC ADHD GWAS datasets and simulations are planned.  
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