Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:	
Marcos Paulo Monteiro	Data
	Date

Deciphering strain differences in CodY regulation of *Clostridioides difficile*sporulation

Ву

Marcos P. Monteiro

Doctor of Philosophy

Biological and Biomedical Sciences

Microbiology and Molecular Genetics

Shonna M. McBride Advisor

Marcin Grabowicz Committee Member

Christopher LaRock Committee Member

Philip Rather Committee Member

Yih-Ling Tzeng Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D. Dean of the James T. Laney School of Graduate Studies
 Date

Deciphering strain differences in CodY regulation of *Clostridioides difficile*sporulation

Ву

Marcos P. Monteiro

B.S., Eastern Washington University, 2020

Advisor: Shonna M. McBride, Ph.D.

An abstract of

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Graduate Division of Biological and Biomedical Science

Microbiology and Molecular Genetics

Abstract

Deciphering strain differences in CodY regulation of *Clostridioides difficile* sporulation By Marcos Monteiro

Clostridioides difficile is an anaerobic and spore-forming pathogen that causes severe diarrhea, colitis, and even death. C. difficile infections are considered a burden to the healthcare and the economic systems of the U.S. Since spores are the only mode of transmission, the formation of spores is crucial for the spread of C. difficile. When a host ingests spores, the spores travel through the gastrointestinal tract, reaching the intestines where the spores sense bile salts. By sensing bile salts, spores are triggered to become vegetative cells. Vegetative cells continue traveling the gastrointestinal tract, reaching the colon. In the colon, C. difficile can colonize it. In this environment, nutrient availability is limited, prompting intracellular responses to adapt to the conditions. In C. difficile, nutrient availability is sensed by various nutritional regulators, including CodY. CodY is a global transcriptional regulator that senses branched-chain amino acids (BCAA) and quanosine-triphosphate (GTP). In rich growth conditions, BCAA and GTP bind to CodY, causing conformational changes that increase its affinity to bind specific sequences of DNA. When there are low concentrations of BCAA and GTP, BCCA and GTP are not bound to CodY, and the affinity of CodY to DNA decreases. In C. difficile, CodY is known to repress toxin production and sporulation. However, the direct CodY-regulated factors that control sporulation are not well understood. In this work, we confirm and expand the knowledge that CodY represses the initiation of sporulation in two different strains of C. difficile and that CodY continues to have a role in the regulation of sporulation at the stationary phase. Additionally, we identified several direct CodY-regulated factors in both the 630∆erm and UK1 strains that are differentially regulated between the strains and unique in one of the strains. We further determined the effect of many direct CodY-regulated factors on sporulation in strain UK1 and the UK1 codY mutant. This work illustrates that CodY has a greater impact on the transcriptome of UK1 and that many factors under CodY regulation impact sporulation in C. difficile.

Deciphering strain differences in CodY regulation of *Clostridioides difficile*sporulation

Ву

Marcos P. Monteiro

B.S., Eastern Washington University, 2020

Advisor: Shonna M. McBride, Ph.D.

A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Graduate Division of Biological and Biomedical Science

Microbiology and Molecular Genetics

Acknowledgments

First, I would like to thank my advisor, Shonna. I met Shonna in 2018 in a conference, where we talked about doing a Ph.D. and have a family. Since then, she inspired and believed in me to achieve my goals as a researcher and to pursue my doctorate. She has taught me so much about sciences as well as how to be a better person. She has always supported me and my family while pursuing my doctorate. I would not have achieved to get my Ph.D. without her; I will be always grateful for her help and love.

I would also like to thank the members of the McBride Lab. I thank Adrianne for her compassion, work ethic, charisma, and energetic influence in my life and work; I will always appreciate your friendship and mentorship. I would also like to thank Cheyenne and Ysabella for their friendship, support, and love.

I am grateful for my ex-partner Amanda for her support. Without her help and willingness to sacrifice her dreams, I would not have achieved any of my academic successes. I am also grateful for my children Theodore and Elizabeth for the joy that they bring to my life and a reminder to focus on what it is important in life.

To my extended family: I thank you for your support and love for me and my family.

I would also like to thank my committee and colleagues for their support in advancing my career and their friendship throughout this journey.

Table of Contents

Abstract
Acknowledgments
Table of Contents
List of Tables and Figures
Chapter 1: Introduction1
Chapter 2: Deciphering strain differences in CodY regulation of Clostridioides difficile
sporulation
Chapter 3: Discussion

List of Tables and Figures

Chapter 2

Table 1: Differentially expressed CodY target genes in strains 630∆ <i>erm</i> and UK1
Table 2: Unique direct CodY-regulated factors present in the 630∆ <i>erm</i> or UK1 strains
Table 3: CodY-regulated genes of UK1 selected for knockdown
Table 4: Bacterial Strains and plasmids
Table 5: Oligonucleotides
Table S1: RNA-Seq analysis of $630\Delta erm\ codY$ compared to $630\Delta erm$
Table S2: RNA-Seq analysis of UK1 <i>codY</i> compared to UK1
Table S3: Differentially direct CodY-regulated factors in 630∆ <i>erm</i> and UK1

Figure 2: Repression of specific direct CodY-induced factors increases sporulation in UK1

Figure 1: CodY repression on sporulation is strain-dependent

Figure 3: Repression of specific direct CodY-repressed factors reduces sporulation in UK1 *codY* mutant

Figure S1: CRISPRi constructs repress expression of target genes

Figure S2: DNA cloning and vector details

Chapter 1: Introduction

1: Clostridioides difficile

a. Clostridioides difficile, a healthcare-associated pathogen

Clostridioides difficile is a pathogen that causes *C. difficile* infection (CDI), the most prevalent healthcare-associated infection in the United States (Guh *et al.* 2020; CDC, 2019; Smits *et al.* 2016). In 2017, more than 500,000 individuals had CDI, and of these individuals, 30,000 died (Guh *et al.* 2020; CDC, 2019). In 2017, the US healthcare costs for CDI were one billion dollars (Feuerstadt *et al.* 2020). Due to its significant healthcare and economic burden, the Centers for Disease Control and Prevention (CDC) has designated *C. difficile* as an urgent threat (CDC, 2019).

There are two categories of acquired CDI designated by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America: nosocomial-acquired (NA-CDI) and community-acquired (CA-CDI) CDI (McDonald *et al.* 2018). In recent years, epidemiological studies have shown that CA-CDI cases have increased and NA-CDI cases have decreased (Feuerstadt, Theriault, and Tillotson 2023; Yu *et al.* 2023; Guh *et al.* 2020). It is suggested that the decrease in NA-CDI cases is attributed to the increase in good healthcare practices such as surveillance of NA-CDI cases, adherence to antiseptic techniques, isolation of infected patients, and controlled administration of antibiotics in healthcare settings (Feuerstadt, Theriault, and Tillotson 2023). For both NA-CDI and CA-CDI individuals, the CDI recurrence is about 20%, and each time individuals acquire CDI, it increases their chances of CDI recurrence (Song and Kim 2019).

b. Risk Factors

Individuals who have been treated with antibiotics for a prolonged time are more susceptible to CDI due to the disruption of the gut microbiota, which allows *C. difficile* colonization (Slimings and Riley 2014; Baines *et al.* 2006; Hensgens *et al.* 2012; McFarland 1998). In addition, for those who are treated with antibiotics and have extended stays in

healthcare settings, the risk of CDI increases (Shaughnessy *et al.* 2011; Jullian-Desayes *et al.* 2017). The elderly and immunocompromised are frequent patients in healthcare settings, which increases their exposure to *C. difficile*, which can lead to CDI (Lessa *et al.* 2015; McDonald *et al.* 2018; Dubberke *et al.* 2008; Navaneethan *et al.* 2012).

In a community setting, individuals who have direct contact with farm animals, have poor hygiene and take antiacids have a higher risk of acquiring CDI (Ofori *et al.* 2018; Goorhuis *et al.* 2008; Songer *et al.* 2009; Jhung *et al.* 2008; Bakker *et al.* 2010; Dial 2006; Williams 2001). The increase in cases of CA-CDI, especially in young and non-antibiotic-treated individuals, raises worry about what other risk factors are associated with CA-CDI (Ayada *et al.* 2023). Therefore, it is crucial to conduct more research to identify other risk factors for CA-CDI.

c. CDI Transmission

C. difficile is a strictly anaerobic and spore-forming bacterium, and as such, it cannot survive in the presence of atmospheric oxygen (Edwards, Suarez, and McBride 2013).

However, by forming spores, C. difficile can persist in the presence of atmospheric oxygen (Nicolas Kint, Morvan, and Martin-Verstraete 2022). Additionally, C. difficile spores are resistant to radiation, dehydration, most cleaning products, and heat (Shen et al. 2019), making them extremely durable (Lawley et al. 2010; Shen 2020). Due to the spores capabilities to survive extreme environments, it is not surprising that spores are the only mode of C. difficile transmission (Deakin et al. 2012).

When individuals ingest *C. difficile* spores, the spores travel through the gastrointestinal tract, surviving stomach acid and other physical and chemical innate immunity from the host (DuPont 2018). Upon arrival in the small intestine, the spore senses bile acids, activating its germination process (Paredes-Sabja *et al.* 2008; Burns, Heap, and Minton 2010; Giel *et al.* 2010; Francis *et al.* 2013). Germination is a process in which spores develop into vegetative cells (Giel *et al.* 2010; Koenigsknecht *et al.* 2015; Sorg and Sonenshein 2008), which are metabolically active, requiring nutrients to survive within the host (Marshall *et al.* 2023).

Nutrient availability is sensed by regulators such as CodY and CcpA, and upon nutrient deprivation, these regulators decrease their repression of *tcdR*, *tcdA*, and *tcdB* (Dineen *et al.* 2007; Dineen, McBride, and Sonenshein 2010; Antunes, Martin-Verstraete, and Dupuy 2011; Antunes *et al.* 2012). *tcdR* encodes the toxin sigma factor, whereas *tcdA* and *tcdB* encode toxin A (TcdA) and toxin B (TcdB) (Chandrasekaran and Lacy 2017; Hammond and Johnson 1995; Braun *et al.* 1996; Bouillaut *et al.* 2015; Monot *et al.* 2015; Smits *et al.* 2016). Secretion of TcdA and TcdB by *C. difficile* vegetative cells leads to the hallmark symptoms of CDI (Chumbler *et al.* 2016; Di Bella *et al.* 2016).

Once TcdA and TcdB are released into the host colon, they bind to epithelial receptors, which leads to the internalization of these toxins (Chandrasekaran and Lacy 2017). When internalized, the toxins disrupt the host cells by turning off essential host regulatory proteins (Chandrasekaran and Lacy 2017; Genisyuerek *et al.* 2011; I. Just *et al.* 1995; Just *et al.* 1995). Disruption of the host regulatory proteins leads to cytoskeleton rearrangements in the cell, which disrupts tight junctions and resulting in apoptosis (Chandrasekaran and Lacy 2017; Peritore-Galve *et al.* 2022). Disturbance of tight junctions results in increased intestinal permeability and, consequently, diarrhea (Shen *et al.* 2011; Moonwiriyakit *et al.* 2023).

II. Spore formation

a. Sporulation

Sporulation is one of the most crucial cell processes in spore-forming bacteria, essential for the survival and transmission of the bacterium (Peter Setlow 2014; Martiny *et al.* 2006). Through spores, bacteria can survive harsh environmental stresses and persist for millions of years (Shen *et al.* 2019; Lawley *et al.* 2010; Shen 2020; Setlow 2014; Cano and Borucki 1995; Vreeland, Rosenzweig, and Powers 2000). The process of sporulation is definitive; as such, tight molecular regulation is essential to determine the fate of the cell (Saujet *et al.* 2014; Edwards and McBride 2014). When vegetative cells initiate sporulation and completion of

sporulation occurs, they transform into spores; through process, the bacteria become metabolically active to metabolically dormant (Paredes-Sabja *et al.* 2008; Keijser *et al.* 2007; Gupta *et al.* 2025; Ghosh *et al.* 2015). These metabolically dormant spores can germinate into vegetative cells only under favorable conditions with bile salts acting as germinant (Shen 2020; Baloh and Sorg 2022). Because sporulation is essential for *C. difficile* transmission, the mechanisms of spore formation will be described and discussed.

b. Mechanisms of spore formation

Sporulation, in simple terms, is an asymmetric division of a vegetative cell into a spore (Young and Fitz-James 1959). However, sporulation is a complex process that involves seven stages, from stage 0 (initiation of sporulation) to stage VII (Young and Fitz-James 1959; Murrell 1967b; Hoch 1976). Stage 0 is defined as a transition stage after cell division, where two nucleoids are formed and anchored to mesosomes at the poles (Voitsekhovsky et al. 2024; Murrell 1967; Talukdar et al. 2015). Then, a conformational change occurs for the two nucleoids, forming an axial filament; this is defined as stage I (Barák, Prepiak, and Schmeisser 1998; Buchanan, Henriques, and Piggot 1994). At stage II, the formation of the septum occurs, giving rise to the asymmetric cell division of the mother cell and the prespore, where the nucleoids are at the opposite poles (Setlow et al. 1991). After septation, the mother cell engulfs the prespore, forming the forespore, completing stage III (Higgins and Piggot 1992; Ryter 1965). In stage IV, the inner cell wall and the outer cortex are formed in the forespore by the implementation of peptidoglycan (Freese 1972; Sadoff 1973; Tipper and Linnett 1976). After the formation of the outer cortex, several spore coat proteins are added to the outer cortex, which is designated as stage V (Voitsekhovsky et al. 2024; Henriques, Melsen, and Moran 1998). The maturation of the spore continues at stage VI (Setlow 2006), and stage VII is the lysis of the mother cell, releasing the mature spore (Voitsekhovsky et al. 2024). After spore release, spores will only germinate when exposed to a germinant, as explained before (Shen 2020; Baloh and

Sorg 2022). All the sporulation stages are necessary for complete spore formation; however, the scope of this work focus on the initiation of sporulation in *C. difficile*, which will be explained.

c. Initiation of sporulation

In all endosporulating bacteria, Spo0A, the master regulator of sporulation, is necessary to initiate sporulation (Brown et al. 1994). Upon activation by phosphorylation, Spo0A dimerizes and binds to DNA to regulate the transcription of sporulation genes (DiCandia et al. 2022; Rosenbusch et al. 2012). In the model organism for sporulating bacteria, Bacillus subtilis, the activation and deactivation of Spo0A occur via a phosphorelay system involving several kinases and phosphatases, which are stimulated by various signals (Sonenshein 2000). On the other hand, C. difficile does not encode orthologs of the B. subtilis phosphorelay (DiCandia et al. 2022; Paredes, Alsaker, and Papoutsakis 2005; Underwood et al. 2009). To date, the mechanism by which Spo0A is activated in C. difficile remains unknown (DiCandia et al. 2022). However, several factors play a role in the initiation of sporulation in *C. difficile*. These factors are: SigH, RstA, Spo0E, PtpA, PtpB, PtpC, SigB, Agr, RgaRS, and CD2214-2215 (Rosenbusch et al. 2012; Saujet et al. 2011; Edwards, Tamayo, and McBride 2016; Edwards, Anjuwon-Foster, and McBride 2019; Edwards, Krall, and McBride 2020; DiCandia et al. 2024; Childress et al. 2016; Edwards et al. 2022; Kint et al. 2017; Ahmed et al. 2020; Edwards and McBride 2023; Girinathan et al. 2018; Ciftci et al. 2019). Additionally, other regulators and molecules regulate the initiation of sporulation in *C. difficile* through sensing and acquisition of nutrients; these factors and molecules are OppA, AppA, CD2589, c-di-GMP, CcpA, and CodY (Dineen, McBride, and Sonenshein 2010; Antunes, Martin-Verstraete, and Dupuy 2011; Antunes et al. 2012; Edwards, Nawrocki, and McBride 2014; Martins et al. 2021; Edwards et al. 2021; Dhungel and Govind 2021). In this work, the regulation of sporulation by CodY will be further discussed in detail.

III. CodY

a. Nutritional sensor transcriptional regulator

CodY is a transcriptional regulator that was first characterized in *B. subtilis* as the repressor of the dipeptide permease operon (*dpp*) (Slack *et al.* 1995). CodY was named for its function in the <u>control of dpp</u> (Cod). The letter Y comes from its position in the *cod* operon, *codVWXY* (Slack *et al.* 1995). CodY is present in many Gram-positive bacteria with low G-C content and senses intracellularly branched-chain amino acids (BCAA, isoleucine, leucine, and valine) and guanosine triphosphate (GTP) (Dineen *et al.* 2007; Sonenshein 2005). In a nutrient-rich environment, during exponential phase growth, there is an abundance of BCAA and GTP, which binds to CodY, changing its conformation to dimerize CodY and allow binding to DNA (Dineen *et al.* 2007; Dineen, McBride, and Sonenshein 2010; Ratnayake-Lecamwasam *et al.* 2001; Villapakkam *et al.* 2009; Daou *et al.* 2019). When nutrient availability is scarce, during the stationary phase, intracellular concentrations of BCAA and GTP decrease, relieving the binding of CodY to DNA. By sensing BCAA and GTP, CodY primarily represses genes that are not necessary or needed during the exponential phase and derepresses these same genes during the stationary phase.

In *C. difficile*, CodY is predicted to directly regulate more than 100 genes (*Dineen et al.* 2007; Dineen, McBride, and Sonenshein 2010). Of the genes regulated by CodY, the majority are related to metabolic functions, as observed in other bacterial species (Dineen, McBride, and Sonenshein 2010; Slack *et al.* 1995; Daou *et al.* 2019; Hendriksen *et al.* 2008; Lu *et al.* 2015; den Hengst *et al.* 2005; Larsen *et al.* 2006; Geng *et al.* 2018; Malke *et al.* 2006; Majerczyk *et al.* 2010; Kaiser *et al.* 2015; Waters *et al.* 2016; King *et al.* 2018; Batte, Sahukhal, and Elasri, 2018; Bennett *et al.* 2007; Lobel *et al.* 2015; Lobel and Herskovits 2016; Edwards, Nawrocki, and McBride 2014; Brinsmade *et al.* 2010; Belitsky 2011; Kaiser *et al.* 2018; Qi *et al.* 2015; Serror and Sonenshein 1996; Château *et al.* 2011). One of the most significant aspects of CodY regulation in *C. difficile* is the regulation of toxin production. CodY binds directly to the promoter of *tcdR*, an alternative sigma factor for the expression of toxin genes (Dineen et al.

2007). A *codY* mutant expresses much higher concentrations of TcdA and TcdB than its parental strain (Dineen *et al.* 2007; Dineen, McBride, and Sonenshein 2010; Daou *et al.* 2019; Nawrocki *et al.* 2016). The link between nutrient availability and toxin production highlights the importance of nutrient sensing and regulation in virulence.

b. CodY and sporulation

In B. subtilis, CodY represses several genes that regulate the initiation of sporulation. such as spo0A (Molle et al. 2003). Additionally, in Bacillus anthracis, CodY was found to bind to the promoter region of kinB, which encodes for a major kinase responsible for the phosphorylation of Spo0A (Château et al. 2013). Interestingly, overexpression of CodY in B. anthracis leads to lower sporulation compared to the parental strain (Gopalani et al. 2016). In Clostridium perfringens, CodY regulation of sporulation is strain-dependent by differential regulation of abrB in different strains. AbrB is a known repressor of initiation of sporulation in C. perfringens (Li et al. 2013; 2017). However, in C. difficile, the mechanism by which CodY impacts sporulation is not well understood. Previously, it was shown that the codY mutant in C. difficile overexpressed genes involved in sporulation, suggesting that CodY might impact the regulation of sporulation (Dineen, McBride, and Sonenshein 2010). In another study, codY mutants of two distinct *C. difficile* strains, UK1 and 630∆*erm*, sporulated more than their parental strains, which indicates that CodY represses sporulation in C. difficile. In this same study, the *codY* mutants of UK1 and 630\(\Delta em\) had extreme differences in sporulation frequencies, suggesting that CodY-regulation on sporulation is also strain-dependent (Nawrocki et al. 2016).

IV. Specific aims

CodY plays a crucial role in *C. difficile* pathogenesis in regulating toxin production and sporulation. The mechanism by which CodY regulates toxin production is well understood.

However, it is unknown which direct CodY-regulated factors control sporulation. Additionally,

there appears to be a difference in how CodY regulates sporulation in UK1 and $630\Delta erm$ strains. By identifying which direct CodY-regulated factors impact sporulation and determining CodY-regulation differences between UK1 and $630\Delta erm$ strains, we can better understand how nutrient availability and sporulation are linked through CodY regulation. To further progress our understanding of CodY regulation of sporulation in *C. difficile*, the goal of my thesis was to identify direct CodY-regulated factors that control sporulation in the UK1 and $630\Delta erm$ strains. Here, I investigated the regulation of sporulation by CodY through the following specific aims:

- Identify direct CodY-regulated factors that differentially control sporulation in the UK1 and 630∆erm strains.
- 2. Determine the effect on sporulation of direct CodY-regulated factors in UK1

References

Edwards, A. N., and McBride, S. M. 2023. "The RgaS-RgaR Two-Component System Promotes *Clostridioides difficile* Sporulation through a Small RNA and the Agr1 System." *bioRxiv*, January, 2023.06.26.546640. https://doi.org/10.1101/2023.06.26.546640.

Ahmed, U. K. B., Shadid, T. M., Larabee, J. L., and Ballard, J. D. 2020. "Combined and Distinct Roles of Agr Proteins in *Clostridioides difficile* 630 Sporulation, Motility, and Toxin Production." Edited by Michael S. Gilmore. *mBio* 11 (6). https://doi.org/10.1128/mBio.03190-20.

Antunes, A., Camiade, E., Monot, M., Courtois, E., Barbut, F., Sernova, N. V., Rodionov, D. A., Martin-Verstraete, I., and Dupuy, B. 2012. "Global Transcriptional Control by Glucose and Carbon Regulator CcpA in *Clostridium difficile*." *Nucleic Acids Res* 40 (21): 10701–18. https://doi.org/10.1093/nar/gks864.

Antunes, A., Martin-Verstraete, I., and Dupuy, B. 2011. "CcpA-Mediated Repression of *Clostridium difficile* Toxin Gene Expression: *C. difficile* Toxin Regulation by CcpA." *Mol Microbiol* 79 (4): 882–99. https://doi.org/10.1111/j.1365-2958.2010.07495.x.

"Attributable Healthcare Resource Utilization and Costs for Patients With Primary and Recurrent Clostridium difficile Infection in the United States | Clinical Infectious Diseases | Oxford Academic." n.d. Accessed June 5, 2025.

https://academic.oup.com/cid/article/66/9/1326/4817900?login=false.

Ayada, G., Atamna, A., Babich, T., Zvi, H. B., Elis, A., and Bishara, J. 2023. "Community versus Health Care-Associated *Clostridioides difficile* Infection: A Comparison between Clinical Characteristics and Outcomes in Hospitalized Patients." *Am J Infect Control* 51 (12): 1339–43. https://doi.org/10.1016/j.ajic.2023.05.019.

Baines, S. D., Saxton, K., Freeman, J., and Wilcox, M. H. 2006. "Tigecycline Does Not Induce Proliferation or Cytotoxin Production by Epidemic *Clostridium difficile* Strains in a Human Gut Model." *J Antimicrob Chemother* 58 (5): 1062–65. https://doi.org/10.1093/jac/dkl364.

Baloh, M., and Sorg, J. A. 2022. "Clostridioides difficile Spore Germination: Initiation to DPA Release." Curr Opin Microbiol 65 (February):101–7. https://doi.org/10.1016/j.mib.2021.11.001.

Barák, I., Prepiak, P., and Schmeisser, F. 1998. "MinCD Proteins Control the Septation Process during Sporulation of *Bacillus subtilis*." *J Bacteriol* 180 (20): 5327–33. https://doi.org/10.1128/jb.180.20.5327-5333.1998.

Batte, J. L., Sahukhal, G. S., and Elasri, M. O. 2018. "MsaB and CodY Interact To Regulate *Staphylococcus aureus* Capsule in a Nutrient-Dependent Manner." *J Bacteriol* 200 (17): e00294-18. https://doi.org/10.1128/JB.00294-18.

Belitsky, B. R. 2011. "Indirect Repression by *Bacillus subtilis* CodY via Displacement of the Activator of the Proline Utilization Operon." *J Mol Biol* 413 (2): 321–36. https://doi.org/10.1016/j.jmb.2011.08.003.

Bennett, H. J., Pearce, D. M., Glenn, S., Taylor, C. M., Kuhn, M., Sonenshein, A. L., Andrew, P. W., and Roberts, I. S. 2007. "Characterization of *relA* and *codY* Mutants of *Listeria monocytogenes*: Identification of the CodY Regulon and Its Role in Virulence." *Mol Microbiol* 63 (5): 1453–67. https://doi.org/10.1111/j.1365-2958.2007.05597.x.

Bouillaut, L., Dubois, T., Sonenshein, A. L., and Dupuy, B. 2015. "Integration of Metabolism and Virulence in *Clostridium difficile*." *Res Microbiol* 166 (4): 375–83. https://doi.org/10.1016/j.resmic.2014.10.002.

Braun, V., Hundsberger, T., Leukel, P., Sauerborn, M., and Eichel-Streiber, C. V. 1996. "Definition of the Single Integration Site of the Pathogenicity Locus in *Clostridium difficile*." *Gene* 181 (1): 29–38.

Brinsmade, S. R., Kleijn, R. J., Sauer, U., and Sonenshein, A. L. 2010. "Regulation of CodY Activity through Modulation of Intracellular Branched-Chain Amino Acid Pools." *J Bacteriol* 192 (24): 6357–68. https://doi.org/10.1128/JB.00937-10.

Brown, D. P., Ganova-Raeva, L., Green, B. D., Wilkinson, S. R., Young, M., and Youngman, P. 1994. "Characterization of *spo0A* Homologues in Diverse Bacillus and Clostridium Species Identifies a Probable DNA-Binding Domain." *Mol Microbiol* 14 (3): 411–26.

Buchanan, C.E., Henriques, A. O., and Piggot, P. J. 1994. "Chapter 8 Cell Wall Changes during Bacterial Endospore Formation." In *New Comprehensive Biochemistry*, 27:167–86. Elsevier. https://doi.org/10.1016/S0167-7306(08)60411-1.

Burns, D. A., Heap, J. T., and Minton, N. P. 2010. "SIeC Is Essential for Germination of *Clostridium difficile* Spores in Nutrient-Rich Medium Supplemented with the Bile Salt Taurocholate." *J Bacteriol* 192 (3): 657–64. https://doi.org/10.1128/JB.01209-09.

Cano, R., and Borucki, M. 1995. "Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber." *Science* 268 (5213): 1060–64. https://doi.org/10.1126/science.7538699.

CDC. 2019. "Antibiotic Resistant Threats in the United States, 2019." U.S. Department of Health and Human Services. www.cdc.gov/DrugResistance/Biggest-Threats.html.

Chandrasekaran, R., and Lacy, D. B. 2017. "The Role of Toxins in *Clostridium difficile* Infection." *FEMS Microbiol Rev* 41 (6): 723–50. https://doi.org/10.1093/femsre/fux048.

Château, A., Schaik, W. V., Joseph, P., Handke, L. D., McBride, S. M., Smeets, F. M. H., Sonenshein, A. L., and Fouet, A.. 2013. "Identification of CodY Targets in *Bacillus anthracis* by Genome-Wide In Vitro Binding Analysis." *J Bacteriol* 195 (6): 1204–13. https://doi.org/10.1128/jb.02041-12.

Childress, K. O., Edwards, A. N., Nawrocki, K. L., Woods, E. C., Anderson S. E., and McBride, S. M. 2016. "The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in *Clostridium difficile.*" *Infect Immun* 84 (September). https://doi.org/10.1128/IAI.00735-16.

Chumbler, N. M., Farrow, M. A., Lapierre, L. A., Franklin, J. L., and Lacy, D. B. 2016. "Clostridium difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms." Infect Immun 84 (10): 2871–77. https://doi.org/10.1128/IAI.00583-16.

Ciftci, Y., Girinathan, B. P., Dhungel, B. A., Hasan, M. K., and Govind, R. 2019. "Clostridioides difficile SinR' Regulates Toxin, Sporulation and Motility through Protein-Protein Interaction with SinR." Anaerobe 59 (May):1–7. https://doi.org/10.1016/j.anaerobe.2019.05.002.

Daou, N., Wang, Y., Levdikov, V. M., Nandakumar, M., Livny, J., Bouillaut, L., Blagova, E., et al. 2019. "Impact of CodY Protein on Metabolism, Sporulation and Virulence in *Clostridioides* difficile Ribotype 027." *PLoS One* e0206896 (14): 34.

https://doi.org/10.1371/journal.pone/0206896.

Deakin, L. J., Clare, S., Fagan, R. P., Dawson, L. F., Pickard, D. J., West, M. R., Wren, B. W., Fairweather, N. F., Dougan, G., and Lawley, T. D. 2012. "The *Clostridium difficile spo0A* Gene Is a Persistence and Transmission Factor." *Infect Immun* 80 (8): 2704–11. https://doi.org/10.1128/IAI.00147-12.

Dhungel, B. A., and Govind, R. 2021. "Phase-variable Expression of *pdcB*, a Phosphodiesterase, Influences Sporulation in *Clostridioides difficile*." *Mol Microbiol* 116 (5): 1347–60. https://doi.org/10.1111/mmi.14828.

Di Bella, S., Ascenzi, P., Siarakas, S., Petrosillo, N., and di Masi, A.. 2016. "Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects." Toxins 8 (5): 134. https://doi.org/10.3390/toxins8050134.

Dial, S. 2006. "Proton Pump Inhibitor Use and Risk of Community-Acquired *Clostridium difficile*-Associated Disease Defined by Prescription for Oral Vancomycin Therapy." *CMAJ* 175 (7): 745–48. https://doi.org/10.1503/cmaj.060284.

Dial, S., Delaney, J. A. C., Barkun, A. N., and Suissa, S. 2005 "Use of Gastric Acid–Suppressive Agents and the Risk of Community-Acquired *Clostridium difficile*–Associated Disease." *JAMA* 294 (23): 2989-2995. doi:10.1001/jama.294.23.2989.

DiCandia, M. A., Edwards, A. N., Alcaraz, Y. B., Monteiro, M. P., Lee, C. D., Cuebas, G. V., Bagchi, P., and McBride, S. M. 2024. "A Conserved Switch Controls Virulence, Sporulation, and Motility in *C. difficile*." *PLoS Pathog* 20 (5): e1012224. https://doi.org/10.1371/journal.ppat.1012224.

DiCandia, M. A., Edwards, A. N., Jones, J. B., Swaim, G. L., Mills, B. D., and McBride, S. M. 2022. "Identification of Functional Spo0A Residues Critical for Sporulation in *Clostridioides difficile*." *J Mol Biol* 434 (13): 167641. https://doi.org/10.1016/j.jmb.2022.167641.

Dineen, S. S., McBride, S. M., and Sonenshein, A. L. 2010. "Integration of Metabolism and Virulence by *Clostridium difficile* CodY." *J Bacteriol* 192 (20): 5350–62. https://doi.org/10.1128/JB.00341-10.

Dineen, S. S., Villapakkam, A. C., Nordman, J. T., and Sonenshein, A. L. 2007. "Repression of *Clostridium difficile* Toxin Gene Expression by CodY." *Mol Microbiol* 66 (1): 206–19. https://doi.org/10.1111/j.1365-2958.2007.05906.x.

Dubberke, E. R., Butler, A. M., Reske, K. A., Agniel, D., Olsen, M. A., D'Angelo, G., McDonald, L. C., and Fraser, V. J. 2008. "Attributable Outcomes of Endemic *Clostridium difficile* – Associated Disease in Nonsurgical Patients." *EID* 14 (7): 1031–38. https://doi.org/10.3201/eid1407.070867.

DuPont, H. L. 2018. "Gastric Acid and Enteric Infections: Souring on the Use of PPIs." *Dig Dis Sci* 63 (4): 814–17. https://doi.org/10.1007/s10620-018-4955-1.

Edwards, A. N., Anjuwon-Foster, B. R., and McBride, S. M. 2019. "RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility." *MBio* 10 (2).

https://doi.org/10.1128/mBio.01991-18.

Edwards, A. N., and McBride, S. M. 2014. "Initiation of Sporulation in *Clostridium difficile*: A Twist on the Classic Model." *FEMS Microbiol Lett* 358 (2): 110–18. https://doi.org/10.1111/1574-6968.12499.

Edwards, A. N., Nawrocki, K. L., and McBride, S. M. 2014. "Conserved Oligopeptide Permeases Modulate Sporulation Initiation in *Clostridium difficile*." *Infect Immun* 82 (10): 4276–91. https://doi.org/10.1128/IAI.02323-14.

Edwards, A. N., Suarez, J. M., and McBride, S. M. 2013. "Culturing and Maintaining *Clostridium difficile* in an Anaerobic Environment." *J Vis Exp*, no. 79, e50787. https://doi.org/10.3791/50787.

Edwards, A. N., Tamayo, R., and McBride, S. M. 2016. "A Novel Regulator Controls *Clostridium difficile* Sporulation, Motility and Toxin Production." *Mol Microbiol* 100 (6): 954–71. https://doi.org/10.1111/mmi.13361.

Edwards, A. N., Krall, E. G., and McBride, S. M. 2020. "Strain-Dependent RstA Regulation of *Clostridioides difficile* Toxin Production and Sporulation." *J Bacteriol* 202 (2): e00586-19. https://doi.org/10.1128/JB.00586-19.

Edwards, A. N., Wetzel, D., DiCandia, M. A., and McBride, S. M. 2022. "Three Orphan Histidine Kinases Inhibit *Clostridioides difficile* Sporulation." *J Bacteriol* 204 (5): e00106-22. https://doi.org/10.1128/jb.00106-22.

Edwards, A. N., L. Willams, C. L., Pareek, N., McBride, S. M., and Tamayo, R. 2021. "C-Di-GMP Inhibits Early Sporulation in *Clostridioides difficile." mSphere* 6 (6): e0091921. https://doi.org/10.1128/msphere.00919-21.

Feuerstadt, P., Stong, L., Dahdal, D. N., Sacks, N., Lang, K., and Nelson, W. W. 2020.
"Healthcare Resource Utilization and Direct Medical Costs Associated with Index and Recurrent
Clostridioides difficile Infection: A Real-World Data Analysis." *J Med Econ* 23 (6): 603–9.
https://doi.org/10.1080/13696998.2020.1724117.

Feuerstadt, P., Theriault, N., and Tillotson, G. 2023. "The Burden of CDI in the United States: A Multifactorial Challenge." *BMC Infect Dis* 23 (March):132. https://doi.org/10.1186/s12879-023-08096-0.

Francis, M. B., Allen, C. A., Shrestha, R., and Sorg, J. A. 2013. "Bile Acid Recognition by the *Clostridium difficile* Germinant Receptor, CspC, Is Important for Establishing Infection." *PLoS Pathog* 9 (5): e1003356. https://doi.org/10.1371/journal.ppat.1003356.

Freese, E. 1972. "Chapter 3 Sporulation of Bacilli, A Model of Cellular Differentiation." In *Curr Top Dev Biol*, edited by A. A. Moscona and Alberto Monroy, 7:85–124. Academic Press. https://doi.org/10.1016/S0070-2153(08)60070-8.

Geng, J., Huang, S., Chen, Y., Chiu, C., Hu, S., and Chen, Y. M. 2018. "Impact of Growth pH and Glucose Concentrations on the CodY Regulatory Network in *Streptococcus salivarius*." *BMC Genomics* 19 (1): 386. https://doi.org/10.1186/s12864-018-4781-z.

Genisyuerek, S., Papatheodorou, P., Guttenberg, G., Schubert, R., Benz, R., and Aktories, K. 2011. "Structural Determinants for Membrane Insertion, Pore Formation and Translocation of *Clostridium difficile* Toxin B." *Mol Microbiol* 79 (6): 1643–54. https://doi.org/10.1111/j.1365-2958.2011.07549.x.

Ghosh, S., Korza, G., Maciejewski, M., and Setlow, P. 2015. "Analysis of Metabolism in Dormant Spores of Bacillus Species by 31P Nuclear Magnetic Resonance Analysis of Low-Molecular-Weight Compounds." *J Bacteriol* 197 (5): 992–1001. https://doi.org/10.1128/jb.02520-14.

Giel, J. L., Sorg, J. A., Sonenshein, A. L., and Zhu, J. 2010. "Metabolism of Bile Salts in Mice Influences Spore Germination in *Clostridium difficile*." *PLoS One* 5 (1): e8740. https://doi.org/10.1371/journal.pone.0008740.

Girinathan, B. P., Ou, J., Dupuy, B., and Govind, R. 2018. "Pleiotropic Roles of *Clostridium difficile* Sin Locus." *PLOS Pathog* 14 (3): e1006940. https://doi.org/10.1371/journal.ppat.1006940.

Goorhuis, A., Bakker, D., Corver, J., Debast, S. B., Harmanus, C., Notermans, D. W., Bergwerff, A. A., Dekker, F. W., and Kuijper, E. J. 2008. "Emergence of *Clostridium difficile* Infection Due to a New Hypervirulent Strain, Polymerase Chain Reaction Ribotype 078." *Clin Infect Dis* 47 (9): 1162–70. https://doi.org/10.1086/592257.

Gopalani, M., Dhiman, A., Rahi, A., and Bhatnagar, R. 2016. "Overexpression of the Pleiotropic Regulator CodY Decreases Sporulation, Attachment and Pellicle Formation in *Bacillus anthracis*." *Biochem Biophys Res Commun* 469 (3): 672–78. https://doi.org/10.1016/j.bbrc.2015.12.019.

Guh, A. Y., Mu, Y., Winston, L. G., Johnston, H., Olson, D., Farley, M. M., Wilson, L. E., et al. 2020. "Trends in U.S. Burden of *Clostridioides difficile* Infection and Outcomes." *N Engl J Med* 382 (14): 1320–30. https://doi.org/10.1056/NEJMoa1910215.

Gupta, P., Caldbeck, R., Walters, R. C., Wells, E. C., Hardman, B. L., Christie, G., Springett, R. J., and Blaza, J. N. 2025. "Bioenergetic Metabolism Restarts alongside Germinant Sensing and Hydration in Bacterial Spore Germination." bioRxiv. https://doi.org/10.1101/2025.03.13.642030.

Hammond, G. A., and Johnson, J. L. 1995. "The Toxigenic Element of *Clostridium difficile* Strain VPI 10463." *Microb Pathog* 19 (4): 203–13.

Hendriksen, W. T., Hester J. B., Silvia E., Hoogenboezem, T., Jong, A. D., Groot, R. D., Kuipers, O. P., and Hermans, P. W. M. 2008. "CodY of *Streptococcus pneumoniae*: Link between Nutritional Gene Regulation and Colonization." *J Bacteriol* 190 (2): 590–601.

Hengst, C. D., Curley, P., Larsen, R., Buist, G., Nauta, A., Sinderen, D., Kuipers, O. P., and Kok, J. 2005. "Probing Direct Interactions between CodY and the *oppD* Promoter of *Lactococcus lactis*." *J Bacteriol* 187 (2): 512–21. https://doi.org/10.1128/JB.187.2.512-521.2005.

Henriques, A. O., Melsen, L. R., and Moran, C. P. 1998. "Involvement of Superoxide Dismutase in Spore Coat Assembly in *Bacillus subtilis*." *J Bacteriol* 180 (9): 2285–91. https://doi.org/10.1128/jb.180.9.2285-2291.1998.

Hensgens, M. P. M., Goorhuis, A., Dekkers, O. M., and Kuijper, E. J. 2012. "Time Interval of Increased Risk for *Clostridium difficile* Infection after Exposure to Antibiotics." *J Antimicrob Chemother* 67 (3): 742–48. https://doi.org/10.1093/jac/dkr508.

Higgins, M. L., and Piggot, P. J. 1992. "Septal Membrane Fusion? A Pivotal Event in Bacterial Spore Formation?" *Mol Microbiol* 6 (18): 2565–71. https://doi.org/10.1111/j.1365-2958.1992.tb01433.x.

Hoch, J. A. 1976. "Genetics of Bacterial Sporulation." *Adv Genet* 18:69–98. Elsevier. https://doi.org/10.1016/S0065-2660(08)60437-X.

Jhung, M. A., Thompson, A. D., Killgore, G. E., Zukowski, W. E., Songer, G., Warny, M., Johnson, S., Gerding, D. N., Clifford McDonald, L., and Limbago, B. M. 2008. "Toxinotype V *Clostridium difficile* in Humans and Food Animals." *EID* 14 (7): 1039–45. https://doi.org/10.3201/eid1407.071641.

Jullian-Desayes, I., Landelle, C., Mallaret, M., Brun-Buisson, C., and Barbut, F. 2017.
"Clostridium difficile Contamination of Health Care Workers' Hands and Its Potential
Contribution to the Spread of Infection: Review of the Literature." Am J Infect Control 45 (1): 51–58. https://doi.org/10.1016/j.ajic.2016.08.017.

Just, I., Selzer, J., Wilm, M., Eichel-Streiber, C., Mann, M., and Aktories, K. 1995. "Glucosylation of Rho Proteins by *Clostridium difficile* Toxin B." *Nature* 375:500–503.

Just, I., Wilm, M., Selzer, J., Rex, G., Eichel-Streiber, C., Mann, M., and Aktories, K. 1995. "The Enterotoxin from *Clostridium difficile* (ToxA) Monoglucosylates the Rho Proteins *." *J Biol Chem* 270 (23): 13932–36. https://doi.org/10.1074/jbc.270.23.13932.

Kaiser, J. C., King, A. N., Grigg, J. C., Sheldon, J. R., Edgell, D. R., Murphy, M. E. P., Brinsmade, S. R., and Heinrichs, D. E. 2018. "Repression of Branched-Chain Amino Acid Synthesis in *Staphylococcus aureus* Is Mediated by Isoleucine via CodY, and by a Leucine-Rich Attenuator Peptide." *PLoS Genet* 14 (1): e1007159.

https://doi.org/10.1371/journal.pgen.1007159.

Kaiser, J. C., Omer, S., Sheldon, J. R., Welch, I., and Heinrichs, D. E. 2015. "Role of BrnQ1 and BrnQ2 in Branched-Chain Amino Acid Transport and Virulence in *Staphylococcus aureus*." *Infect Immun* 83 (3): 1019–29. https://doi.org/10.1128/IAI.02542-14.

Keijser, B. J. F., Beek, A. T., Rauwerda, H., Schuren, F., Montijn, R., Spek, H., and Brul, S. 2007. "Analysis of Temporal Gene Expression during *Bacillus subtilis* Spore Germination and Outgrowth." *J Bacteriol* 189 (9): 3624–34. https://doi.org/10.1128/jb.01736-06. King, A. N., Borkar, S. A., Samuels, D. J., Batz, Z., Bulock, L. L., Sadykov, M. R., Bayles, K. W., and Brinsmade, S. R. 2018. "Guanine Limitation Results in CodY-Dependent and -Independent Alteration of Staphylococcus Aureus Physiology and Gene Expression." *Journal of Bacteriology* 200 (14): e00136-18. https://doi.org/10.1128/JB.00136-18.

Kint, N., Janoir, C., Monot, M., Hoys, S., Soutourina, O., Dupuy, B., and Martin-Verstraete, I. 2017. "The Alternative Sigma Factor Sigma(B) Plays a Crucial Role in Adaptive Strategies of *Clostridium difficile* during Gut Infection." *Environ Microbiol* 19 (5): 1933–58. https://doi.org/10.1111/1462-2920.13696.

Kint, N., Morvan, C., and Martin-Verstraete, I. 2022. "Oxygen Response and Tolerance Mechanisms in *Clostridioides difficile.*" *Curr Opin Microbiol* 65 (February):175–82. https://doi.org/10.1016/j.mib.2021.11.009.

Koenigsknecht, M. J., Theriot, C. M., Bergin, I. L., Schumacher, C. A., Schloss, P. D., and Young, V. B. 2015. "Dynamics and Establishment of *Clostridium difficile* Infection in the Murine Gastrointestinal Tract." *Infect Immun* 83 (3): 934–41. https://doi.org/10.1128/IAI.02768-14.

Larsen, R., Kloosterman, T. G., Kok, J., and Kuipers, O. P. 2006. "GlnR-Mediated Regulation of Nitrogen Metabolism in *Lactococcus lactis*." *J Bacteriol* 188 (13): 4978–82. https://doi.org/10.1128/JB.00025-06.

Lawley, T. D., Clare, S., Deakin, L. J., Goulding, D., Yen, J. L., Raisen, C., Brandt, C., et al. 2010. "Use of Purified *Clostridium difficile* Spores to Facilitate Evaluation of Health Care Disinfection Regimens." *Appl Environ Microbiol* 76 (20): 6895–6900. https://doi.org/10.1128/AEM.00718-10.

Lessa, F. C., Mu, Y., Bamberg, W. M., Beldavs, Z. G., Dumyati, G. K., Dunn, J. R., Farley, M. M., Holzbauer, S. M., Meek, J. I., and Phipps, E. C. 2015. "Burden of *Clostridium difficile* Infection in the United States." *N Engl J Med* 372 (9): 825–34.

Li, J., Freedman, J. C., Evans, D. R., and McClane, B. A. 2017. "CodY Promotes Sporulation and Enterotoxin Production by *Clostridium perfringens* Type A Strain SM101." *Infect Immun* 85 (3). https://doi.org/10.1128/IAI.00855-16.

Li, J., Ma, M., Sarker, M. R., and McClane, B. A. 2013. "CodY Is a Global Regulator of Virulence-Associated Properties for *Clostridium perfringens* Type D Strain CN3718." *MBio* 4 (5): e00770-13. https://doi.org/10.1128/mBio.00770-13.

Lobel, L., and Herskovits, A. A. 2016. "Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in *Listeria monocytogenes*." *PLoS Genet* 12 (2): e1005870. https://doi.org/10.1371/journal.pgen.1005870.

Lobel, L., Sigal, N.,Borovok, I., Belitsky, B. R., Sonenshein, A. L., and Herskovits, A. A. 2015. "The Metabolic Regulator CodY Links *L. monocytogenes* Metabolism to Virulence by Directly Activating the Virulence Regulatory Gene, *prfA*." *Mol Microbiol* 95 (4): 624–44. https://doi.org/10.1111/mmi.12890.

Lu, W. W., Wang, Y., Wang, T., and Kong, J. 2015. "The Global Regulator CodY in *Streptococcus thermophilus* Controls the Metabolic Network for Escalating Growth in the Milk Environment." *Appl Environ Microbiol* 81 (7): 2349–58. https://doi.org/10.1128/AEM.03361-14.

Majerczyk, C. D., Dunman, P. M., Luong, T. T., Lee, C. Y., Sadykov, M. R., Somerville, G. A., K. Bodi, and Sonenshein, A. L. 2010. "Direct Targets of CodY in *Staphylococcus aureus*." *J Bacteriol* 192 (11): 2861–77. https://doi.org/10.1128/JB.00220-10.

Malke, H., Steiner, K., McShan, W. M., and Ferretti, J. J. 2006. "Linking the Nutritional Status of *Streptococcus pyogenes* to Alteration of Transcriptional Gene Expression: The Action of CodY and RelA." *IJMM* 296 (4–5): 259–75. https://doi.org/10.1016/j.ijmm.2005.11.008.

Marshall, A., McGrath, J. W., Graham, R., and McMullan, G. 2023. "Food for Thought—The Link between *Clostridioides difficile* Metabolism and Pathogenesis." *PLoS Pathog* 19 (1): e1011034. https://doi.org/10.1371/journal.ppat.1011034.

Martins, D., DiCandia, M. A., Mendes, A. L., Wetzel, D., McBride, S. M., Henriques, A. O., and Serrano, M. 2021. "CD25890, a Conserved Protein That Modulates Sporulation Initiation in *Clostridioides difficile." Scientific Reports* 11 (1): 7887. https://doi.org/10.1038/s41598-021-86878-9.

Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., et al. 2006. "Microbial Biogeography: Putting Microorganisms on the Map." *Nat Rev Microbiol* 4 (2): 102–12. https://doi.org/10.1038/nrmicro1341.

McDonald, L C., Gerding, D. N., Johnson, S., Bakken, J. S., Carroll, K. C., Coffin, S. E., Dubberke, E. R., et al. 2018a. "Clinical Practice Guidelines for Clostridium Difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)." *CID* 66 (7): 987–94. https://doi.org/10.1093/cid/ciy149.

McFarland, L.V. 1998. "Epidemiology, Risk Factors and Treatments for Antibiotic-Associated Diarrhea." *Dig Dis* 16 (5): 292–307. https://doi.org/10.1159/000016879.

Molle, V., Nakaura, Y., Shivers, R. P., Yamaguchi, H., Losick, R., Fujita, Y., and Sonenshein, A. L. 2003. "Additional Targets of the *Bacillus subtilis* Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis." *J Bacteriol* 185 (6): 1911–22.

Monot, M., Eckert, C., Lemire, A., Hamiot, A., Dubois, T., Tessier, C., Dumoulard, B., et al. 2015. "Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus." Scientific Reports 5 (1): 15023. https://doi.org/10.1038/srep15023.

Moonwiriyakit, A., Pathomthongtaweechai, N., Steinhagen, P. R., Chantawichitwong, P., Satianrapapong, W., and Pawin and Pongkorpsakol. 2023. "Tight Junctions: From Molecules to Gastrointestinal Diseases." *Tissue Barriers* 11 (2): 2077620. https://doi.org/10.1080/21688370.2022.2077620.

Murrell, W. G. 1967a. "The Biochemistry of the Bacterial Endospore." In *Advances in Microbial Physiology*, edited by A. H. Rose and J. F. Wilkinson, 1:133–251. Academic Press. https://doi.org/10.1016/S0065-2911(08)60252-0.

Murrell, W.G. 1967b. "The Biochemistry of the Bacterial Endospore." In *Advances in Microbial Physiology*, 1:133–251. Elsevier. https://doi.org/10.1016/S0065-2911(08)60252-0.

Navaneethan, U., Mukewar, S., Venkatesh, P. G., Lopez, R., and Shen, B. 2012. "Clostridium difficile Infection Is Associated with Worse Long Term Outcome in Patients with Ulcerative Colitis." *J Crohns Colitis* 6 (3): 330–36. https://doi.org/10.1016/j.crohns.2011.09.005.

Nawrocki, K. L., Edwards, A. N., Daou, N., Bouillaut, L., and McBride, S. M. 2016. "CodY-Dependent Regulation of Sporulation in *Clostridium difficile*." *J Bacteriol* 198 (15): 2113–30. https://doi.org/10.1128/JB.00220-16.

Ofori, E., Ramai, D., Dhawan, M., Mustafa, F., Gasperino, J., and Reddy, M. 2018. "Community-Acquired *Clostridium difficile*: Epidemiology, Ribotype, Risk Factors, Hospital and Intensive Care Unit Outcomes, and Current and Emerging Therapies." *J Hosp Infect* 99 (4): 436–42. https://doi.org/10.1016/j.jhin.2018.01.015.

Paredes, C. J., Alsaker, K. V., and Papoutsakis, E. T. 2005. "A Comparative Genomic View of Clostridial Sporulation and Physiology." *Nat Rev Microbiol* 3 (12): 969–78. https://doi.org/10.1038/nrmicro1288.

Paredes-Sabja, D., Bond, C., Carman, R. J., Setlow, P., and Sarker, M. R. 2008. "Germination of Spores of *Clostridium difficile* Strains, Including Isolates from a Hospital Outbreak of *Clostridium difficile*-Associated Disease (CDAD)." *Microbiology* 154 (Pt 8): 2241–50. https://doi.org/10.1099/mic.0.2008/016592-0.

Peritore-Galve, F. C., Shupe, J. A., Cave, R. J., Childress, K. O., Washington, M. K., Kuehne, S. A., and Lacy, D. B. 2022. "Glucosyltransferase-Dependent and Independent Effects of *Clostridioides difficile* Toxins during Infection." *PLoS Pathog* 18 (2): e1010323. https://doi.org/10.1371/journal.ppat.1010323.

Qi, M., Mei, F., Wang, H., Sun, M., Wang, G., Yu, Z., Je, Y., and Li, M. 2015. "Function of Global Regulator CodY in *Bacillus thuringiensis* BMB171 by Comparative Proteomic Analysis." *J Microbiol Biotechnol* 25 (2): 152–61.

Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W., and Sonenshein, A. L. 2001. "*Bacillus subtilis* CodY Represses Early-Stationary-Phase Genes by Sensing GTP Levels." *Genes Dev* 15 (9): 1093–1103. https://doi.org/10.1101/gad.874201.

Bakker, D., Corver, J., Harmanus, C., Goorhuis, A., Keessen, E. C., Fawley, W. N., Wilcox, M. H., Kuijper, E. J. 2010 "Relatedness of Human and Animal Clostridium Difficile PCR Ribotype 078 Isolates Determined on the Basis of Multilocus Variable-Number Tandem-Repeat Analysis and Tetracycline Resistance." *J Clin Microbiol* 48 https://doi.org/10.1128/jcm.01171-10.

Rosenbusch, K. E., Bakker, D., Kuijper, E. J., and Smits, W. K. 2012. "C. Difficile 630DeltaErm Spo0A Regulates Sporulation, but Does Not Contribute to Toxin Production, by Direct High-Affinity Binding to Target DNA." *PLoS One* 7 (10): e48608.

https://doi.org/10.1371/journal.pone.0048608.

Ryter, A. 1965. "[MORPHOLOGIC STUDY OF THE SPORULATION OF *BACILLUS SUBTILIS*]." *Annales De l'Institut Pasteur* 108 (January):40–60.

Sadoff, H. L. 1973. "Comparative Aspects of Morphogenesis in Three Prokaryotic Genera." Annu Rev Microbiol 27 (Volume 27,): 133–54.

https://doi.org/10.1146/annurev.mi.27.100173.001025.

Saujet, L., Monot, M., Dupuy, B., Soutourina, O., and Martin-Verstraete, I. 2011. "The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in *Clostridium difficile*." *J Bacteriol* 193 (13): 3186–96. https://doi.org/10.1128/JB.00272-11.

Saujet, L., Pereira, F. C., Henriques, A. O., and Martin-Verstraete, I. 2014. "The Regulatory Network Controlling Spore Formation in *Clostridium difficile*." *FEMS Microbiol Lett* 358 (1): 1–10. https://doi.org/10.1111/1574-6968.12540.

Serror, P., and Sonenshein, A. L. 1996. "CodY Is Required for Nutritional Repression of *Bacillus subtilis* Genetic Competence." *J Bacteriol* 178 (20): 5910–15.

https://doi.org/10.1128/jb.178.20.5910-5915.1996.

Setlow, B., Magill, N., Febbroriello, P., Nakhimovsky, L., Koppel, D. E., and Setlow, P. 1991. "Condensation of the Forespore Nucleoid Early in Sporulation of Bacillus Species." *J Bacteriol* 173 (19): 6270–78. https://doi.org/10.1128/jb.173.19.6270-6278.1991.

Setlow, P. 2006. "Spores of *Bacillus subtilis*: Their Resistance to and Killing by Radiation, Heat and Chemicals." *J. Appl Microbiol* 101 (3): 514–25. https://doi.org/10.1111/j.1365-2672.2005.02736.x.

Setlow, P. 2014. "Spore Resistance Properties." *Microbiol Spectr* 2 (5): 10.1128/microbiolspec.tbs-0003–2012. https://doi.org/10.1128/microbiolspec.tbs-0003-2012.

Shaughnessy, M. K., Micielli, R. L., DePestel, D. D., Arndt, J., Strachan, C. L., Welch, K. B., and Chenoweth, C. E. 2011. "Evaluation of Hospital Room Assignment and Acquisition of *Clostridium difficile* Infection." *ICHE* 32 (3): 201–6. https://doi.org/10.1086/658669.

Shen, A., Edwards, A. N., Sarker, M. R., and Paredes-Sabja, D. 2019. "Sporulation and Germination in Clostridial Pathogens." *Microbiol Spectr* 7 (6).

https://doi.org/10.1128/microbiolspec.GPP3-0017-2018.

Shen, A. 2020. "Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention." Annu Rev Microbiol 74 (1): 545–66. https://doi.org/10.1146/annurev-micro-011320-011321.

Shen, L., Weber, C. R., Raleigh, D. R., Yu, D., and Turner, J. R. 2011. "Tight Junction Pore and Leak Pathways: A Dynamic Duo." *Annu Rev Physiol* 73 (Volume 73, 2011): 283–309. https://doi.org/10.1146/annurev-physiol-012110-142150.

Slack, F. J., Serror, P., Joyce, E., and Sonenshein, A. L. 1995. "A Gene Required for Nutritional Repression of the *Bacillus subtilis* Dipeptide Permease Operon." *Mol Microbiol* 15 (4): 689–702. https://doi.org/10.1111/j.1365-2958.1995.tb02378.x.

Slimings, C., and Riley, T. V. 2014. "Antibiotics and Hospital-Acquired *Clostridium difficile* Infection: Update of Systematic Review and Meta-Analysis." *J Antimicrob Chemother* 69 (4): 881–91. https://doi.org/10.1093/jac/dkt477.

Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H., and Kuijper, E. J. 2016a. "Clostridium difficile Infection." Nat Rev Dis Primers 2 (1): 1–20. https://doi.org/10.1038/nrdp.2016.20.

Sonenshein, A. L. 2000. "Control of Sporulation Initiation in *Bacillus subtilis*." *Curr Opin Microbiol* 3 (6): 561–66.

Sonenshein, A. L. 2005. "CodY, a Global Regulator of Stationary Phase and Virulence in Gram-Positive Bacteria." *Curr Opin Microbiol* 8 (2): 203–7. https://doi.org/10.1016/j.mib.2005.01.001.

Song, J. H., and Kim, Y. S. 2019. "Recurrent *Clostridium difficile* Infection: Risk Factors, Treatment, and Prevention." *Gut and Liver* 13 (1): 16–24. https://doi.org/10.5009/gnl18071.

Songer, J. G., Trinh, H. T., Killgore, G. E., Thompson, A. D., McDonald, L. C., and Limbago, B. M. 2009. "Clostridium difficile in Retail Meat Products, USA, 2007." EID 15 (5): 819–21. https://doi.org/10.3201/eid1505.081071.

Sorg, J. A., and Sonenshein, A. L. 2008. "Bile Salts and Glycine as Cogerminants for *Clostridium difficile* Spores." *J Bacteriol* 190 (7): 2505–12. https://doi.org/10.1128/JB.01765-07.

Talukdar, P. K., Olguín-Araneda, V., Alnoman, M., Paredes-Sabja, D., and Sarker, M. R. 2015. "Updates on the Sporulation Process in Clostridium Species." *Res Microbiol* 166 (4): 225–35. https://doi.org/10.1016/j.resmic.2014.12.001.

Tipper, D. J., and Linnett, P. E. 1976. "Distribution of Peptidoglycan Synthetase Activities between Sporangia and Forespores in Sporulating Cells of *Bacillus sphaericus*." *J Bacteriol* 126 (1): 213–21. https://doi.org/10.1128/jb.126.1.213-221.1976.

Underwood, S., Guan, S., Vijayasubhash, V., Baines, S. D., Graham, L., Lewis, R. J., M. H. Wilcox, M. H., and Stephenson, K. 2009. "Characterization of the Sporulation Initiation Pathway of *Clostridium difficile* and Its Role in Toxin Production." *J Bacteriol* 191 (23): 7296–7305. https://doi.org/10.1128/JB.00882-09.

Villapakkam, A. C., Handke, L. D., Belitsky, B. R., Levdikov, V. M., Wilkinson, A. J., and Sonenshein, A. L. 2009. "Genetic and Biochemical Analysis of the Interaction of *Bacillus subtilis* CodY with Branched-Chain Amino Acids." *J Bacteriol* 191 (22): 6865–76. https://doi.org/10.1128/JB.00818-09.

Voitsekhovsky, V. G., Avdeeva, L. V., Balko, O. B., and Balko, O. I. 2024. "Peculiarities of the Ontogenesis of Bacilli During Development from a Vegetative Cell to a Spore." *Mikrobiol Zh* 86 (4): 91–105. https://doi.org/10.15407/microbiolj86.04.091.

Vreeland, R. H., Rosenzweig, W. D., and Powers, D. W. 2000. "Isolation of a 250 Million-Year-Old Halotolerant Bacterium from a Primary Salt Crystal." *Nature* 407 (6806): 897–900. https://doi.org/10.1038/35038060.

Waters, N. R., Samuels, D. J., Behera, R. K., Livny, J., Rhee, K. Y., Sadykov, M. R., and Brinsmade, S. R. 2016. "A Spectrum of CodY Activities Drives Metabolic Reorganization and Virulence Gene Expression in *Staphylococcus aureus*." *Mol Microbiol* 101 (3): 495–514. https://doi.org/10.1111/mmi.13404.

Williams, C. 2001. "Occurrence and Significance of Gastric Colonization during Acid-Inhibitory Therapy." *Best Practi Res Clin Gastroenterol* 15 (3): 511–21. https://doi.org/10.1053/bega.2001.0191.

Young, I. E., and Philip C.Fitz-James, P. C. 1959. "Chemical and Morphological Studies of Bacterial Spore Formation." *J Biophys Biochem Cytol* 6 (3): 467–82. https://doi.org/10.1083/jcb.6.3.467.

Yu, H., Alfred, T., Nguyen, J. L., Zhou, J., and Olsen, M. A. 2023. "Incidence, Attributable Mortality, and Healthcare and Out-of-Pocket Costs of *Clostridioides difficile* Infection in US Medicare Advantage Enrollees." *CID* 76 (3): e1476–83. https://doi.org/10.1093/cid/ciac467.

Chapter 2: Deciphering strain differences in CodY regulation of

Clostridioides difficile sporulation

Marcos P. Monteiro¹, Michael A. DiCandia², and Shonna M. McBride¹

¹Department of Microbiology and Immunology, Emory University School of Medicine,

Emory Antibiotic Resistance Center, Atlanta, GA, USA.

²Center for Integrated Solutions for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Under review

M.P.M acquired funding, designed and performed experiments, and wrote and edited the manuscript.

M.A.D analyzed RNA-seq and contributed to editing the manuscript.

S.M.M acquired funding, designed experiments, supervised the project, and wrote and edited the manuscript.

ABSTRACT

Clostridioides difficile is an anaerobic, spore-forming, pathogen that causes diarrhea, colitis, and even death. C. difficile grows and replicates in the intestine as a vegetative bacillus, but must transition into a dormant spore to survive and transmit in the environment. The transformation into a spore is a complex developmental process that is regulated in response to conditions within the host, most notably nutrient limitation. Nutrient availability is sensed by C. difficile through transcriptional regulators, such as CodY. CodY is a global nutritional gene regulator that controls gene expression in response to branched-chain amino acids (BCAA) and guanosine-triphosphate (GTP). It was previously observed that CodY represses C. difficile sporulation, but the impact of CodY on sporulation has differed considerably by strain. Here, we investigated the effects of CodY on gene expression during sporulation in the two common research strains 630∆erm (ribotype 012) and UK1 (ribotype 027). We confirmed that CodY suppressed premature spore formation in both strains through time-elapsed sporulation assays with codY mutants. Through transcriptional analyses of codY mutant sporulation, we defined the similarities and differences in CodY-dependent gene expression between strains. We also identified differences in putative CodY sites within the 630 and UK1 genomes that may influence CodY regulation. Finally, we performed CRISPRi knockdowns to examine the effects of selected CodY-regulated genes, demonstrating the impact of multiple CodY-dependent factors on sporulation.

IMPORTANCE

C. difficile spore formation is crucial for transmission and survival of the bacterium. Spore formation is triggered by the availability of crucial nutrients, which CodY and other regulators sense. However, the mechanism by which CodY represses sporulation in C. difficile is poorly understood. In this study, we identified several CodY-regulated factors that could play a role in sporulation, both in $630\Delta erm$ and UK1 strains. Our results show that many factors under the regulation of CodY can impact sporulation.

INTRODUCTION

Clostridioides difficile is an anaerobic and spore-forming nosocomial pathogen that causes severe diarrhea, colitis, and even death (CDC 2019; 2023; 2013). Transmission of *C. difficile* is only possible through spores, which survive environmental threats such as atmospheric oxygen and disinfectants (Sandhu and McBride 2018). After a host ingests *C. difficile* spores, they transit through the gastrointestinal tract, reaching the intestines, where they sense bile salts and germinate into vegetative cells (Wilson 1983; Sorg and Sonenshein 2008; Lee, Rizvi, and McBride 2024). *C. difficile* vegetative cells colonize the host colon, where nutrient availability is limited, leading to toxin production and spore formation (Donnelly *et al.* 2022; Antunes, Martin-Verstraete, and Dupuy 2011; Antunes *et al.* 2012; Dineen *et al.* 2007; Dupuy and Sonenshein 1998; Nawrocki *et al.* 2016; Dineen, McBride, and Sonenshein 2010). Nutrient availability is fundamental for determining whether *C. difficile* grows as a vegetative cell or becomes a spore. Under nutrient-limited conditions, *C. difficile* responds by increasing the expression of factors for nutrient acquisition and biosynthesis of necessary metabolites; when these mechanisms fail to provide for sustained vegetative growth, spore formation is initiated (Lee *et al.* 2022; Neumann-Schaal, Jahn, and Schmidt-Hohagen 2019; Saujet *et al.* 2011).

To sense and control metabolism, *C. difficile* encodes nutritional regulators, such as the global nutrient transcriptional regulator, CodY (Dineen *et al.* 2007; Nawrocki *et al.* 2016; Dineen, McBride, and Sonenshein 2010). CodY was first identified in *Bacillus subtilis* and is present in many Gram-positive bacteria with low G-C genomes (*Slack et al.* 1995; Levdikov *et al.* 2006; Sonenshein 2005; Stenz *et al.* 2011). In a nutrient-rich environment, *C. difficile* senses branched-chain amino acids (BCAAs) and guanosine triphosphate (GTP) through their interactions with CodY (Dineen *et al.* 2007; Nawrocki *et al.* 2016; Dineen, McBride, and Sonenshein 2010; Blagova *et al.* 2003; Brinsmade *et al.* 2010). CodY undergoes a confirmational change when it binds to BCAAs and GTP, which increases its binding affinity to

specific CodY-DNA binding sites, leading to the differential regulation of hundreds of genes (Dineen *et al.* 2007; Nawrocki *et al.* 2016; Dineen, McBride, and Sonenshein 2010; Daou *et al.* 2019). When the intracellular concentrations of BCAAs and GTP decrease, the binding affinity of CodY to DNA is altered, changing gene expression to adapt to nutrient scarcity, including the derepression of toxin production and the initiation of sporulation (Dineen *et al.* 2007; Nawrocki *et al.* 2016; Dineen, McBride, and Sonenshein 2010; Daou *et al.* 2019; Brinsmade *et al.* 2014; Waters *et al.* 2016). While the regulation of specific metabolic genes and toxins by CodY are well-documented, the mechanisms by which CodY affects *C. difficile* sporulation are less clear (Daou *et al.* 2019; Nawrocki, Crispell, and McBride 2014). CodY has varied effects on sporulation in strains 630 (ribotype 012) and UK1 (ribotype 027), as evidenced by a modest increase in sporulation in a 630 *codY* mutant and robust hypersporulation in a UK1 *codY* mutant (Daou *et al.* 2019; Nawrocki *et al.* 2016). The CodY proteins encoded by these strains are identical and similarly expressed, leading us to ask how CodY differentially regulates sporulation outcomes in these strains.

In this study, we examined CodY-dependent gene regulation in the 630 and UK1 backgrounds to identify strain-specific differences in sporulation outcomes. Through transcriptional analysis and mapping of CodY-binding sites, we identified CodY-regulated factors that are differentially expressed in 630 Δ erm and UK1 and contain a CodY-binding site in at least one strain. In addition, we demonstrated that transcriptional repression of several direct CodY-regulated factors in UK1 or UK1 codY impact sporulation. These results illustrate how CodY regulation differs between the 630 Δ erm and UK1 strains and demonstrate that many CodY-regulated factors can impact sporulation.

RESULTS

The impact of CodY regulation on sporulation is strain-dependent

In previous work, we demonstrated that CodY represses the initiation of sporulation and that CodY regulation of sporulation varies by strain (Nawrocki *et al.* 2016). In the commonly

studied strain 630∆erm (a 630 derivative), CodY was found to modestly repress sporulation, resulting in a two-fold increase in sporulation frequency for the codY mutant in sporulation broth cultures. In contrast, the epidemic 027 isolate, the UK1 codY mutant, demonstrated more than 1000-fold greater sporulation frequency than the parent strain. To better understand how CodY regulates sporulation dissimilarly in either 630\(\Delta erm\) and UK1, we evaluated sporulation in these strains over time on sporulation agar, which induces more robust sporulation than liquid medium (Fimlaid et al. 2013; Edwards, Tamayo, and McBride 2016). Strains UK1, 630∆erm, and their respective codY mutants were grown on 70:30 sporulation agar and the formation of ethanolresistant spores were assessed after 6 h (logarithmic phase), 12 h (stationary phase), and 24 h of growth, to compare the dynamics of spore production. As shown in Figure 1, at log phase the 630∆erm codY mutant sporulated ~43-fold more than its parent strain (1.0E-3 +/- 4.3E-4 vs 2.6E-5 +/- 3.3E-5 %). In comparison, at log phase the UK1 codY mutant sporulated ~3,150-fold more than its parent strain, UK1. These results support the prior evidence that CodY represses premature sporulation initiation and that CodY repression of sporulation in UK1 is more robust than in $630\Delta erm$ (Nawrocki et al. 2016). By stationary phase (12 h), the 630 codY mutant sporulated ~28-fold less than the parent strain (0.12 +/- 0.07 vs 3.37 +/- 1.02 %), while after 24 h of growth, the 630 codY mutant and parent displayed similar sporulation frequencies (Figure 1). These results suggest that CodY suppresses early initiation of sporulation in 630, yet this strain requires CodY to reach its full sporulation potential. In contrast, at stationary phase the UK1 codY mutant sporulation frequency was ~2000-fold higher than its parent strain (45.4 +/-16.9 vs 0.02 +/- 0.01 %), and continued at greater frequency than the parent at 24 h (67.9 +/-4.9 vs 0.33 +/- 0.05). In contrast, in the UK1 strain CodY represses sporulation at all growth stages. These data suggest there are differences in CodY-dependent gene regulation in UK1 and 630 that result in dissimilar sporulation outcomes.

Identifying strain-specific differences in CodY regulation

To understand how CodY regulates sporulation differently in the UK1 and 630 backgrounds, we examined gene expression during growth on sporulation agar in these strains and their *codY* mutants. Since CodY activity is controlled by the availability of BCAA and GTP, we investigated expression at log phase, when nutrients are most abundant and CodY repression is greatest (Dineen *et al.* 2007; Nawrocki *et al.* 2016; Dineen, McBride, and Sonenshein 2010; Slack *et al.* 1995; Blagova *et al.* 2003; Brinsmade *et al.* 2010; Daou *et al.* 2019; Belitsky and Sonenshein 2011; Edwards, Nawrocki, and McBride 2014). Following 6 h of growth on 70:30 agar, samples were processed for RNA-seq analysis to assess the ratio of gene expression in the *codY* mutants relative to their respective parent strain (*codY*/WT) (**Table S1**, **Table S2**). Transcription was extensively altered in the *codY* mutants of both strains, resulting in 867 genes differentially expressed more than 3-fold in the UK1 *codY* mutant and 449 genes in the 630 *codY* mutant.

Transcripts that were differentially regulated in the UK1 *codY* and 630 *codY* mutants include factors that are directly and indirectly regulated by CodY. To discern which genes may be directly controlled by CodY to influence sporulation, we sought to define genes with known or potential CodY-binding motifs (CodY boxes). Using the CodY binding sites previously identified in *C. difficile* (Nawrocki *et al.* 2016; Girinathan *et al.* 2018; Dineen, McBride, and Sonenshein 2010) and potential CodY boxes identified based on the classical Gram-positive CodY consensus (AATTTTCWGAAAATT) (Bailey *et al.* 2015), we narrowed the list of differentially regulated genes to those most likely to be directly regulated by CodY. The resulting list included 404 genes with prospective CodY-binding sites within the promoter or coding sequence that were 3-fold differentially expressed in at least one of the *codY* mutant strains, relative to the parental control (**Table S3**).

Of the genes listed in **Table S3**, 92 were similarly regulated by CodY in the UK1 and 630 Δ erm strains, which limits their likelihood for strain-specific, CodY-dependent impacts. While some of these factors may differ in protein similarity or function that result in differences in

sporulation outcomes, such differences were outside the scope of this study. Of the genes in **Table S3** that were dissimilarly CodY regulated between UK1 and 630∆*erm*, 225 had identical CodY boxes, which suggests that the differences in expression observed were not due to variation in the inherent ability of CodY to bind to these target sequences. We focused further on those CodY-regulated genes with significant differences in expression between the UK1 and 630∆erm strains. Table 1 includes CodY-regulated genes with associated CodY boxes that differ in expression at least 2-fold between strains, while **Table 2** contains CodY-regulated genes that are unique to the genome of either strain. As expected from the sporulation phenotypes of the codY mutants, sporulation-specific transcripts comprised many of the genes differentially expressed in the UK1 codY mutant (**Table S3** ~≥ 10%) (Pereira et al. 2013; Fimlaid et al. 2013), many of which were late-stage sporulation or germination factors. Unfortunately, increased late sporulation gene expression in UK1 codY is not helpful for understanding how CodY differentially regulates the initiation of sporulation, which is controlled by the activation of the master sporulation regulator, Spo0A (Fimlaid et al. 2013; DiCandia et al. 2022). One factor that is directly involved in Spo0A activity and demonstrated reduced expression in UK1 codY is spo0E. Spo0E interacts with Spo0A to limit Spo0A activation, which prevents sporulation initiation in C. difficile (DiCandia et al. 2024). However, the putative CodY boxes that potentially impact spo0E were identical in UK1 and 630, implying that the CodY-dependent effect on spo0E transcription in the UK1 codY mutant was not due to strain-specificity in CodY binding. In addition, a large proportion (20%, Table S3) of the CodY-regulated transcripts in both strains are genes of unknown function, which limits our understanding of their contribution to CodYdependent phenotypes.

Though few sporulation initiation-associated genes were identified in these data that would clearly explain the increased spore formation found in the UK1 *codY* mutant, there were notable differences in the expression of genes indirectly associated with greater sporulation.

The transcriptional analyses revealed significant changes in CodY regulation between strains,

including increased relative expression of dozens of metabolic genes in UK1 *codY* that are not observed in 630 *codY*. Further, several of the metabolism loci that are upregulated in UK1 *codY* contain differences in their putative CodY boxes compared to 630 *codY* (**Table 1**), while some are only encoded by one strain (**Table 2**). The extensive differences in UK1 *codY* and 630 *codY* metabolic gene expression suggests that these strains have altered responses to nutrient limitation, which may affect the ability to initiate or complete spore formation.

Repression of multiple direct CodY-regulated factors impact sporulation in strain UK1

Given the limited information available on the function of many CodY-regulated factors, we selected an assortment of genes present in both strains that were greatly induced or repressed by CodY for further investigation of their impacts on sporulation (Table 3). To determine which directly-regulated, CodY-dependent transcripts may impact spore formation, we employed a CRISPR interference (CRISPRi) approach to suppress transcription of target genes (Müh et al. 2019). The UK1 and UK1 codY strains were used for these experiments due to the robust CodY-regulated sporulation phenotype in this background. The UK1 strain was used to evaluate the effects of repressing eight CodY-induced factors, while the UK1 codY mutant was used to examine repression of six CodY-repressed factors. Strains were transformed with plasmids containing each CRISPRi sgRNA target expressed from a nisininducible promoter and grown on 70:30 agar with 1 µg/ml nisin to assess the impact of transcript repression on sporulation (Edwards and McBride 2023; McBride and Sonenshein 2011). The repression of target genes was examined by qRT-PCR during active growth, which confirmed that the targeted transcripts were reduced in all the strains tested (Figure S1). The sporulation frequencies of strains carrying each sgRNA target were determined after 24 h, as previously noted, and normalized to the respective parent carrying the vector control (pKD). As shown in Figure 2, suppression of two of the eight CodY-induced transcripts in strain UK1 resulted in significant increases in sporulation relative to the control. The repression of CDIF27147 01510,

a gene of unknown function, resulted in a ~40-fold increase in sporulation in strain UK1. The expression of *CDIF27147_01510* was reduced approximately 50-fold in the UK1 *codY* mutant and 20-fold 630 *codY* mutant (*CD630_14850*) under sporulation conditions (**Table S3**). The *CD630_14850* gene is controlled by the iron-responsive regulator, Fur, and induced by cysteine, suggesting it is involved in metabolism (Dubois *et al.* 2016; Ho and Ellermeier 2015). Similarly, knockdown of the *CDIF27147_02672* transcript led to ~35-fold greater sporulation in UK1 (**Figure 2**). Expression of *CDIF27147_02672* was decreased 4-fold in the UK1 *codY* mutant and ~3-fold in the 630 *codY* mutant during sporulation (**Table S3**). *CDIF27147_02672* is part of a dicistronic operon encoding a pH-dependent transcriptional regulator and transporter we recently characterized (*smrRT*; *CD630_25050-25060*) that contributes to macrolide and lincosamide resistance (Wetzel *et al.* 2024). SmrR represses expression of the *smrT* transporter, which reduces sporulation and toxin production (Wetzel *et al.* 2024). Expression of SmrRT and CDIF27147_01510 do not appear to directly link to Spo0A activity based on known interactions (DiCandia *et al.* 2024), but more likely support cellular homeostasis through pH or nutritional adaptations, respectively.

The UK1 *codY* mutant was used to assess repression of six CodY-repressed factors by CRISPRi and examine their effects on sporulation, as outlined above. Of the six genes assessed in UK1 *codY*, suppression of *CDIF27147_02081* and *CDIF27147_02803* dramatically reduced spore formation (**Figure 3**). Repression of *CDIF27147_02081* led to a ~150-fold decrease in sporulation, while knockdown of *CDIF27147_02803* resulted in ~35-fold lower spore formation than the control. *CDIF27147_02081* and *CDIF27147_02803* both encode predicted membrane proteins of unknown function that are expressed during sporulation (*Fimlaid et al. 2013; Saujet et al.* 2013; Abhyankar *et al.* 2019; Soutourina *et al.* 2020). *CDIF27147_02081* expression increased 248-fold in the UK1 *codY* mutant during sporulation, but was down 14-fold in the 630 *codY* mutant (*CD630_19280*) (**Table S3**). Similarly, *CDIF27147_02803* expression increased 47-fold in UK1 *codY* and decreased 3-fold in 630

codY (CD630_26360) during sporulation. The juxtaposed expression profiles for these genes in the UK1 codY and 630 codY mutants suggest that both factors support robust spore formation, but further investigation is needed to understand their roles in sporulation.

DISCUSSION

While 630 and UK1 encode identical CodY proteins that can bind to the same target sites, the activity of CodY in these backgrounds may be influenced by many factors that cannot be easily measured. CodY regulation is contingent on the availability of the cofactors GTP and BCAA, which trigger conformational changes in CodY that are necessary for DNA binding (Dineen et al. 2007; Nawrocki et al. 2016; Dineen, McBride, and Sonenshein 2010; Blagova et al. 2003; Brinsmade et al. 2010; Daou et al. 2019). The availability of GTP and BCAA signal amino acid and energy levels in the cell, which can vary in strains based on their ability to take up nutrients or their capacity to utilize nutrient sources. The UK1 and other 027 isolates grow more poorly than the 630 strain in complete defined minimal media (CDMM) and 027 ribotype isolates demonstrate a narrower metabolic repertoire than 630 and many other strains (Karasawa et al. 1995; Woods et al. 2018; Rizvi et al. 2023; Furtado et al. 2024; Nawrocki et al. 2018; Scaria et al. 2014). The metabolic range of the 027 isolates relative to other strains may contribute to differences in CodY activity. For example, if BCAA are available to bind CodY, even if other growth-limiting nutrients are unavailable, CodY-DNA binding could persist, restricting adaptation to nutrient limitation, and decreasing spore formation (Figure 1, UK1 24h). Thus, deletion of codY in UK1 could expand metabolite availability through nutrient gene derepression to support sporulation. Our data suggest that at least some of the CodY-regulated genes in UK1 repress sporulation, as indicated by the hypersporulation of the UK1 codY mutant, while in the 630∆erm strain, only the timing of sporulation is advanced in the absence of codY (Figure 1). Overall, the evidence suggests that nutrient availability differs in these strains, leading to differential CodY regulation of sporulation and metabolic processes.

Our data show that the CodY regulons of the 630 Δ erm and UK1 strains are considerably different (**Table S1, S2, S3**). Additionally, we identified several CodY-dependent genes with putative CodY boxes that differ in these strains (**Table 1**) and unique CodY-regulated factors present only in one strain (**Table 2**). Though we were able to identify several factors that are differentially regulated by CodY that have potential CodY-binding sites, further investigation is needed to determine if CodY is the major regulator of these factors and if CodY binds to these boxes. It is also important to note that by limiting our analysis to factors that were differentially expressed in the *codY* mutants by more than 3-fold, we may have missed some direct CodY-regulated factors that impact sporulation.

Our work demonstrates that multiple factors regulated by CodY can influence sporulation, as illustrated in **Figures 2** and **3**. As CodY regulates hundreds of genes, innumerable effects of global changes in gene expression in the absence of *codY* may contribute to the different sporulation phenotypes in the UK1 and $630\Delta erm$ strains. The effects of CodY on sporulation may be an indirect result of altering the nutrients available or cellular functions that are necessary for adapting to post-exponential growth. Many of the CodY-dependent factors that are differentially regulated have no identified function in *C. difficile*, and their roles in sporulation are not known. Further characterization of these CodY regulated factors, especially those that affect sporulation when repressed, could provide targets for preventing spore formation.

MATERIALS AND METHODS

Bacterial strains and growth conditions

C. difficile strains were cultivated in a Coy anaerobic chamber at 37°C with an atmosphere of 10% H₂, 5% CO₂, and 85% N₂ as previously described (Bouillaut, McBride, and Sorg 2011). C. difficile strains grew in BHIS broth with addition of 0.1% of taurocholic acid (TA, Sigma-Aldrich) to induce germination and 0.2% of fructose (D-fructose, Fisher Chemical) to

prevent sporulation (Sorg and Dineen 2009). To maintain plasmids in *C. difficile* strains, 2-10 μ g/ml of thiamphenicol was added to cultures. For CRISPRi induction, 1μ g/ml of nisin was added, as needed. *Escherichia coli* strains were cultivated aerobically at 37°C in LB medium (Lennox) with 20 μ g/ml of chloramphenicol and/or 100 μ g/ml ampicillin (Sigma-Aldrich) for plasmid maintenance. *E. coli* was counter-selected post-conjugation with 100 μ g/ml of kanamycin.

Strain and plasmid construction

The *C. difficile* strain R20291 027 ribotype genome (GenBank accession no. CP_029423.1) was used as a template for primer construction, and UK1 genomic DNA was used for PCR amplification. To generate sgRNAs, the Benchling CRISPR Guide RNA Design tool was used. sgRNAs were amplified by PCR and cloned into pMC1123 (Müh *et al.* 2019; Edwards and McBride 2023). Design details of vector constructions are provided in the supplemental material (**Fig. S2**).

Sporulation assays

Sporulation assays were carried out as previously described (Childress *et al.* 2016; Edwards and McBride 2017). In short, *C. difficile* cultures at mid-exponential phase ($OD_{600} \sim 0.5$) were plated on 70:30 agar supplemented with 2 ug/ml of thiamphenicol and 1 ug/ml of nisin as needed. After 6 (H_6), 12 (H_{12}), and 24 hours (H_{24}) of growth, ethanol-resistant sporulation assays were performed as previously described (Edwards and McBride 2017). Sporulation frequencies were calculated by dividing the number of spores by the total quantity of cells (spores + vegetative). A *spo0A* mutant was used as a negative sporulation control. For statistical analysis, GraphPad Prism v10.4.1 was used as stated in the figure legends.

Phase contrast microscopy

Phase-contrast microscopy was performed at H₆, H₁₂, and H₂₄, as specified in the figure legends, using cells grown on 70:30 sporulation agar, as previously described (Edwards and McBride 2023).

RNA sequencing (RNA-seq) analysis

C. difficile strains were grown on 70:30 agar for 6 hours, cells were scraped and suspended into 1:1:2 ethanol-acetone-water solution and stored at -70°C prior to processing. RNA was extracted and treated with DNase I (Ambion), as previously described (Dineen, McBride, and Sonenshein 2010; Edwards, Nawrocki, and McBride 2014). RNA libraries were prepared and processed by the Microbial Genomics Sequencing Center (MiGS; Pittsburgh, PA), as previously described. RNA-seq reads were mapped to the respective reference genome (630; NC_009089.1), and (R20291; CP_029423.1) using Geneious Prime v2022.2.2. Expression levels of transcripts were calculated and compared using DESeq2 (Love, Huber, and Anders 2014). RNA-seq raw sequence reads were deposited to the NCBI Sequence Read Archive (SRA) as BioProject PRJNA1263881.

Identification of CodY-boxes

Potential CodY boxes were found in the 630 and R20291 genomes from previously published sites, in addition to *in silico* identification (Dineen, McBride, and Sonenshein 2010; Girinathan *et al.* 2018). The *C. difficile* strain 630 and R20291 genomes (630, NC_009089.1; R20291, CP_029423.1) were screened for the global CodY AATTTCWGAAAATT consensus sequence containing up to four mismatches using a combination of FIMO MEME and Benchling software(Dineen, McBride, and Sonenshein 2010; Bailey et al. 2015).

Quantitative reverse transcription PCR analysis (qRT-PCR)

C. difficile strains were grown on 70:30 agar for 6 hours, suspended in 1:1:2 Ethanol-Acetone-water solution, and stored at -70°C. RNA extraction, treatment with DNase I (Ambion), and cDNA synthesis using random hexamers (Bioline) were performed as previously described

(Dineen, McBride, and Sonenshein 2010; Edwards, Nawrocki, and McBride 2014). qRT-PCR was conducted on a Roche LigthCycler 96 instrument from 50 ng of cDNA in technical triplicates using Bioline SensiFast SYBR & Fluorescein mix with primers shown in **Table 5**. Expression was normalized to the internal control transcript, rpoC, and analyzed using the $\Delta\Delta C_t$ method for relative quantification (Schmittgen and Livak 2008). GraphPad Prism v10.4.1 was used as mentioned in the figure legends, for statistical analysis.

ACKNOWLEDGEMENTS

The authors would like to thank members of the McBride lab for useful feedback and suggestions during the course of this work. This work was supported by the U.S. National Institutes of Health through research grants Al179158 to M.P.M., and Al156052 and Al116933 to S.M.M. The content of this manuscript is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institutes of Health.

TABLES

Table 1. Differentially expressed CodY target genes in strains 630 ∆erm and UK1

	UK1				630∆ <i>erm</i>				
Genetic Region	Predicted CodY Box	Predicted CodY Target	∆codY/ WT	Genetic Region	Predicted CodY Box	Predicted CodY Target	∆codY/WT	Gene names	Putative Function
CDIF27147 _00336- 00337	AATATTCAAATAATT AACTTTAGGAAAAAT AATTTTTTGAAAAAA	CDIF27147_ 00336-00337		CD02130-02140	AATATTCAAATAATT AACTTTA A GAAAAAT AATTTTTTGAAAAAA	CD02130-02140	1.43-1.77		Sporulation
CDIF27147 _00351- 00353	AATTTTCTGACAAAT	CDIF27147_ 00352-00353		CD02260-02280	A G TTTTCTGACAGCT	CD02270-02280	1.57-4.41	fliN	Motility
CDIF27147 _00374- 00397	AACTTTTAGAAAATA AAGTTTATGAAAATT AATTTTGAGAAAAAT	CDIF27147_ 00382- 00397	0.39- 0.95	CD02450-02630	AACTTTT G GAA G ATA AAGTTTATGAAAATT AATTTTGAGAAAAAT	CD02670	1.21-4.13	flg, fli, mot, flh	Motility
CDIF27147 _00476- 00478	CATTTTAGAAAAATT	CDIF27147_ 00478	1.30- 3.28	CD03350-03370	CATTTTA A AAAAATT	CD03370	0.59-8.06		Unknown
CDIF27147 _00481- 00482	AAATATCTGAAAAAA AATTTACTAAAAACT AAGTTTATGAAAAAT GATTTTATGCAAATT	CDIF27147_ 00481-00482		CD03400-03410	AATTATCTGAAAAAA AATTTACTAAAAACT AAGTTTATGAAAAAT GATTTTATGCAAATT	CD03400-03410	1.43-1.62		Unknown
CDIF27147 _00526- 00530		CDIF27147_ 00526-00530		CD04450-04490	AAAATTC A GAAAATT	CD04450-04490	0.93-1.34	oraSE, orr	Amino Acid
CDIF27147 _00566- 00567	AGATTTGTGAAAATA AATTTTGAAAAATC AATATTTTAAAAAATC ATCTTTCTCACAATT AAGTTTCAAGAAATA AACTTACTAAAAATC	CDIF27147_ 00566	1.12- 6.02	CD04830-04840	AGATTTGTGAAAATA AATTTTGAAAATAGT AATATTTTAAAAATC ATCTTTCTCACAATT AAGTTTCAAGAAATA AACT C ACTAAAAATC	CD04830	1.38-1.45		Transporter
CDIF27147 _00618	AACATTCTGAAAAAT AATATAACGAAAATT AAGTTAAAGAAAATT	CDIF27147_ 00618	8.64	CD05500	AA T ATTCTGAAAAAT AATATAACGAAAATT AAGTTAAAGAAAATT	CD05500	1.08		Unknown
CDIF27147 _00723- 00725		CDIF27147_ 00723-00725		CD06490-06510	AATATACTTTAAATT AACCTTTATAAAATT AGTTTGAAAAAAAATT AATTATATCAAAATC GATTTTATGGAATTT AATTTACAGATACTG AAAGTTCAGATATTT AGATTTATGAAGATTT	CD06490-06510	1.01-1.10		Peptidases

	AGATTTATGAAGATT AATTTGCAGAACTAT CATTACCTGAAAAAT AAATATGTGAAAAAT AACTTTCAGAGATTA				AATTTGCAGAACTAT CATTACCTGAAAAAT AAATATGTGAAAAAT AACTTTCAGAGATTA				
CDIF27147 00739		CDIF27147_ 00739	33.2	CD06640	TATTTT CCT AAAATA	CD06640	5.81	tcdC	Toxin
	AATTATAAGAAGATT	CDIF27147_ 00772	10.3	CD06910	A G TTATAAGAAGATT	CD06910	0.43		Metabolism
CDIF27147 _00939- 00943	AATTTGATGAAATTT AATTTTTAAAAAGTT AATTTACGGCAAATG	CDIF27147_ 00939-00943	0.23 - 0.53	CD08530-08560	AATTTGATGAAATTT AATTTTTAAAAAGTT AATTTAC A GCAAATG	CD08530	0.58-1.12	oppBCA D	Metabolite transporter
	TATTATCTGAAAATA AAGTTTTAGAAATTT	CDIF27147_ 00948-00949		CD08610-08630	TATTATCTGAAAATA AAGTTTTAGAAA C TT	CD08620-08630	0.27-0.79		Metabolite transporter
	AATTTTATGAAAGCT TATTTTTAGAGAATT AATTTCCTCAAAAGT	CDIF27147_ 00969-00973		CD08820-08860	AATTTTATGAAAGCT TATTTTTAGAGAATT AATTTCCTCAAAA A T	CD08820-08860	1.65-2.48	glgCDA P	Metabolism
CDIF27147 _01044- 01045		CDIF27147_ 01044-01045		CD10280-10290	CTTTTTTAGAAAATT ATTTTTATGAGAATT AATTTTAAGAATATA AAGTCTATTAAAATT AATATTAGTAAAGTT	CD10280-10290	0.49-1.06		Signaling
CDIF27147 _01075	AATTATTGAAAAATT AAATTTCACAAAATT TATTTCAGGAAAATT	CDIF27147_ 01075	0.23	CD10540	AATTATTGAAAAATT AAATTTCACAAAATT TATTTCAGGAAAA C T	CD10540	0.5	bcd2	Metabolism
CDIF27147 01249		-	0.89	CD12380	AATTTTAGGAACATT	CD12380	4.19		Unknown
CDIF27147 _01280- 012820	AATTTTCAGCATATT AGATTTCTCAAAATT AATTTTATAAAAAAAT	CDIF27147_ 01280- 012820	0.64 - 0.80	CD12660-12680	AATTTTCAGTATATT AATTAAAAGAAAATT AATTCTCAGAAAATA	CD12660-12670	2.04-3.21		Transporter
CDIF27147 _01285- 01288	CAATTTCAAAAAATT ATTTTTCTGAAAAAG AATATCCTGAAAATT AATTTGGAGAAGATT AATTTCCATAAATTT			CD12710- 12740	ATTTTCTGAAAAAG AATATCCTGAAAATT AATTTGGAGAAGGTT AATTTCCATAAATTT	CD1273-12740	0.25-1.10	topA	DNA Processing
CDIF27147 _01432	CATTTGAAGAAAATT AATTTTAAGTATATT AATTTTCTTATATTT	CDIF27147_ 01432	0.29	CD14120	CATTTGAAGAAAATT AATTTTAAGTATATT	CD14120	1.16		Transcriptio n Regulation
CDIF27147 01665		-	49.8	CD15670	AATATTGATAAAATT	CD15670	1.01	cotG	Sporulation
_01003 CDIF27147 _01721	ATTTTTCAGACAATT AAATTTTACAAAATT AATTTTGCGTAATTT	CDIF27147_ 01721	0.30	CD16160	ATTTTTCAGACAATT AAATTTTACAAAATT AATTTTG T GTAATTT	CD16160	1.29		Signaling

	AATTTAACAAAAATT AATTTTATTATAATT				AATTTAACAAA G ATT AATTTTATTATAATT				
CDIF27147 01737	AATTATTGCAAAATT	CDIF27147_ 01737	28.1	CD16310	AATT T T GCA ATAATT	CD16310	0.59	sodA	Metabolism
O1805- _01806	AATTTTCTTTAAATT	CDIF27147_ 01805-01806		CD16940-16950	ATTTTTCAAAAACTT AATTTTTCAAAAACT AATTTTCTTTAAATT	CD16940-16950	0.23-0.71		Unknown
CDIF27147 _01855- 01856	AATTATTGGTAAATT	CDIF27147_ 01855-01856		CD17400-17410	AATTATTG C TAAATT	CD17400-17410	0.55	grdGF	Metabolism
	AATTTTAAAAAAATT AATTTTTGAAAAA CATTTTCCTAATATT	CDIF27147_ 01886	0.02	CD17671-17680	AATTTTAAAAAAATT CATTTTCCTAATATT	CD17671-17680	0.09-0.11		Unknown
CDIF27147 01913	AAATTCCTAAAAATT	CDIF27147_ 01913	4.77	CD17930	AA G T G CCTAAAAATT	CD17930	0.52		Unknown
	AATTTTACGATATTT ATTTTCGAGAAAAAT	CDIF27147_ 01965	8.23	CD18440	AATTTTACGATATTT AAAATACAGAAAATT ATTTTTGAGAAAAAT	CD18440	1.02		Unknown
CDIF27147 _02022- 02023	GATTTTCATAACATT AATTTTCAAAGATTT AAATTTCTAAAAATG	CDIF27147_ 02022-02023		CD18620-18630	GATTTTCATAACATT	CD18620-18630	0.35-0.58		Conjugative Transposon
	AACTTTCAGACAAAT	CDIF27147_ 02031	0.11	CD18710	AACT C TCAGACAAAT	CD18710	0.55		Conjugative Transposon
	AATTTTTTCTAAATT GATTTGCAGAAAGTT AAGTTTCAGAAGATA	CDIF27147_ 02062-02067		CD19120-19170	AATTTTTTCTAAATT GATTT A CAGAAAGTT AAGTTTCAGAAGATA	CD19120-19170	0.18-0.42	eutABCL ME	Metabolism
	AAATTTATAAAAATA	CDIF27147_ 02068	67.5	CD19180	AAATTT C TAAAAATA	CD19180	0.31	eutK	Metabolism
	ATATTTACGAAAATT	CDIF27147_ 02170	321.8	CD20000	-	-	0.12	ispD	Metabolism
CDIF27147 02368	AATTTTAAGAATATA AAAATTCTGAAATTT	CDIF27147_ 02368	33.3	CD22010	AATTTT G AGAATATA AAAATTCTGAAATTT	CD22010	7.11		Transporter
	ATTATTCAAAAAATT	CDIF27147_ 02391-02392		CD22310-22330	TTTATTCAAAAAATT	CD22310-22330	0.95-1.35	asrABC	Redox
CDIF27147 _02414	GAATTACTAAAAATA AAGCTTGTGAAAAGT AATATTCATAAATGT AATTTATTGTAATTT AATTTTAATAATCTT	CDIF27147_ 02414	0.64	CD22520	GAATTACT G AAAATA AAGCTTGTGAAAAGT AATATTCATAAATGT AATTTATTGTAATTT AATTTTAATAATCTT	CD22520	5.93	kamA	Metabolism
CDIF27147 _02424	AATATTCTGAAGATA AAATTACAGATAAAT AATCTTTTGAAAAAG ATTTGACTGAAAAAT AAAATTCAGATAATG	CDIF27147_ 02424	0.06	CD22630	AATACTCTGAAGATA AAATTACAGATAAAT AATCTTTTGAAAAAG ATTTGACTGAAAAAT AAAATTCAGATAATG	CD22630	1.89	prsA	Metabolism

CDIF27147 _02479- 02480	AATTCTATGAAAATT	CDIF27147_ 02479-02480		CD23260-23270	AATTCTAT A AAAATT	CD23260-23270	3.89-4.50	gatAB	Metabolism
CDIF27147 _02545- 02546	ATTTTTTAGAAAGTT AATTTAAAAAAAAATT	CDIF27147_ 02545-02546		CD23880-23900	ATTTTCTAGAAAGTT AATTTTATGAAGATA AAATTAAGAAAAATA	CD23880-23890	1.18- 3.24	blaRI	Antimicrobia I Resistance
CDIF27147 _02668	ATTTTTCTGAATATT TATTTTCATAATATT AAATTTCATAAGATT	CDIF27147_ 02668	2.13	CD25020	ATTTTTCTGAATATT TATTTTCATAATATT AAATTT T ATAAGATT	CD25020	6.81		Cofactor synthesis
CDIF27147 _02763		-	48.6	CD25990	AATTATATTTAAATT	CD25990	0.50		Transcriptio nal
CDIF27147 02961	AGTATTCTGAAAGTT	CDIF27147_ 02961	0.32	CD27870	AGTATTCTGAAAG C T	CD27870	0.82	cwp84	regulator Cell surface
	AATATTCAGAAAAAA AGTTAGCAGAAGATT AATTTACTGATAGTA TATTGTCTGAAACTT AATATACACAAAATT		0.33	CD27970	GATATTCAGAAAAAA AATTAGCAGAAGATT AATTTACTGATAATA TATTGTCTGAAACTT AATATACACAAAATT	CD27970	3.54		Cell surface
CDIF27147 02995	AATTTTAAGAAAGTT AATTTTCAATAAGTT	CDIF27147_ 02995	10.2	CD28181 (partial)	AATTTTCAATAAGTT	CD28181	1.09		Unknown
CDIF27147 _03022	GATTTTAGGAAAATT AATTCACTGAGAGTT AATTTTCATTTAATT	CDIF27147_	78.5	CD28370	GATTTTAGGAAAATT AATT T ACTGAGAGTT AATTTTCATTTAATT	CD28370	5.47		Unknown
CDIF27147 _03138	AATTTGACAAAAATT AAGTTTGAAAAAAAT TATTATCAGAAAGTT	CDIF27147_ 03138	0.51	CD30040	ATTTTGACAAAAATT AAGTTTGAAAAAATT TATTATCAGAAAGTT	CD30040	4.40	kdgT2	Metabolite Transport
CDIF27147 03140	AATATTCTGTATATG AAATTAGTGAAAATT	CDIF27147_ 03140	0.41	CD30060	AATATTCTGTATAT T AAATTAGTGAAAATT	CD30060	4.60		Metabolism
	AATGTTCCTAAAAAC ATATTTTAGAAAATT	CDIF27147_ 03156-03157		CD30230-30240	AATGTTCCTAAAAAT ATATTTTAGAAAATT	CD30230-30240	0.21-0.37		Unknown
CDIF27147 03165	ATTTTTTATAAAATT AATTCTTTGAAAAAT	CDIF27147_ 03165	37.1	CD30320	ATTTTTTATAA G ATT AATTCTTTGAAAAAT	CD30320	0.93		Cofactor synthesis
_03103 CDIF27147 _03235- 03236	AATTTATTTAGAATT	CDIF27147_ 03235-03236		CD30970-30980	AATTTATTTA A AATT	CD30970-30980	5.28-6.89	bglGF	Metabolite Transport
CDIF27147 _03313- 03314	AATTATAAGCAAATT	CDIF27147_ 03313	2.36- 9.10	CD31510- 31521	AAT C ATAAGCAAATT	CD31510	0.61-1.26		Prophage trancription regulation
CDIF27147 03355	AATATTTATAAAATT	CDIF27147_ 03355	14.3	CD31840	AA A ATTTATAAA C TT	CD31840	0.82	dpaL	Metabolism
CDIF27147 _03396	TATTTTCTAATAATT	CDIF27147_ 03396	3.83	CD32190	TATTTTTTAATAATT	CD32190	0.93	hslO	Stress response

CDIF27147	AAAGTACAGGAAATT	CDIF27147_	5.71-	CD32600-32630	AAAGTACAGGAAATT	CD32600-32630	0.45-1.00	pstCAB,	Transporter,
_03439-		03439-03442	10.1		AATTTGATGGAAATA			phoU	Transcriptio
03442									n regulation
CDIF27147	GATTTTCTGAAAAGA	CDIF27147	0.26	CD33690	GATTTTCTGAAAA A A	CD33690	5.63		Unknown
_03542	GAATTTCAAAAAAGT	03542			A AATTTCAAAAAAGT				

Table 2. Unique direct CodY-regulated factors present in the 630∆erm or UK1 strains

Genetic Region	Predicted CodY Box	Predicted CodY Targe	t ∆codY/WT	Gene names	Putative Function
		630∆erm			
CD02110-02120	AATTTGATGAAAATA	CD02110-02120	2.08-3.89	licC	Metabolism
	GATTTTCGGAAAAAT				
CD02410-02440	ATTTTTTTAAAATT	CD02410-02440	4.31-8.55		Motility
	TATATTCTAAAAATT				
	GATTTTCTGATAATG				
CD03790-CD03810	AATATACGGAACATT	CD03790-03810	0.34-0.60		Conjugative transposon
CD04090-04120	AAATTTCATAAAAAT	CD04090-04120	0.33-1.11		Conjugative transposon
CD04230	AATTTTCAAAGACTT	CD04230	0.32		DNA replication
	AAATTACAGAAAAAT				-
	AAATTTCTAAAAATG				
	AATATGCTGAAAATC				
CD04352	TACTTTCAGAACATT	CD04352	0.27		Conjugative transposon
CD10921-10940	ACTTTACAGAAGATT	CD10921-10940	0.23-0.27		Conjugative transposon
					Transcriptional regulator
CD11030	AAGTGTCAGAAAATG	CD11030	0.32		Conjugative transposon
CD18510-18550	GACTTTCTCAAAATT	CD18510-18550	0.30-0.68		Conjugative transposon
CD18840	AATTTTTATAATATT	CD18840	0.07		Unknown
CD18860	AATTTTAGGATTATT	CD18860	4.47		Transcription regulator
	AATTTACAGCAACTT				, ,
CD26170	AATATTCCAAAATTT	CD26170	5.33		Unknown
CD31360-31380	AATTTTATGATGATT	CD31360-31380	2.95-5.86	bgIA7F5G4	Metabolism
	ATTTTTATGAAAATT			J	
	AATTTACTAAAGATT				
		UK1			
CDIF27147	ATTTTCCTGAAAAAT	CDIF27147 00350	0.23-0.59	rfbBCAD	Metabolism
00347-00350		_			
CDIF27147	AATTTTCTTAATATT	CDIF27147 00657-	9.18		Signaling
00657-00658		00658			5 5
CDIF27147 00757	ACTTAACTGAAAATT	CDIF27147 00757	24.0		Amino acid metabolism
CDIF27147	AACTTTTGGAAAAGT	CDIF27147 01972	1.49-7.30		Conjugative transposon
01970-01972		_			, , , , , , , , , , , , , , , , , , , ,
CDIF27147	AATTTACTAAAAATA	CDIF27147 02077-	1.08-3.09		Metabolism
02077-02078	AATATTGAGAAAAAT	02078			
CDIF27147 03267	AATATTCAGGAACTT	CDIF27147 03267	1.56-3.34		Metabolism
CDIF27147	AATTTTTAAAATATT	CDIF27147 03305-	0.29-0.50		CRISPR
03305-03309	GATTTTATGAAAATA	03309			
	AATGTTAGGAAAATT				
	AATTTATGGAAGATT				
	ACTTTTAGGAAAATA				
	AGTTTTTAGAAACTT				
	ATATTTTAGAAAATT				

CDIF27147_03444- 03445	AATTTTCTCATAATC	CDIF27147_03444- 03445	4.54-5.27	Transporter
CDIF27147_03612	AATTTTCAAAAAGAT AATTTGGAGAAGATT	CDIF27147_03612	0.29	Unknown
CDIF27147 03617	AATTTTCTGATGATG	CDIF27147 03617	4.00	Unknown
CDIF27147_03628	AATTTTTTAAAACTT AATTTTTACAAAAAT	CDIF27147_03628	7.05	Unknown
CDIF27147_03629	AATTTGCAAAAGATT AATTTTTATAAACTT	CDIF27147_03629	10.8	Transposase
CDIF27147_03815- 03818	CATTTTTGGAAACTT	CDIF27147_03818	2.31-6.48	Transposon

Table 3. CodY-regulated genes of UK1 selected for knockdown

	Direct CodY-induced targets					
Predicted CodY Target	Predicted CodY Box	∆codY/WT	Name	Putative Function		
CDIF27147_01886	AATTTTAAAAAAATT	0.02		Unknown		
	AATTTTTTGAAAAAA					
	CATTTTCCTAATATT					
CDIF27147_01510	CATTATCAGAAAAAT	0.022		Unknown		
CDIF27147_02271	AGTTTTTGAAAAATT	0.04-0.04		Transcription regulation		
CDIF27147_02499	AAATATCAAAAACTT	0.12		Transcription regulator		
CDIF27147_00584	AATATGCAGAAAATG	0.18		Transcription		
	AATTTTCTATAAATA			antiterminator		
	AAAGTTCTGAAAATA					
	AATTATGTGAAAATA					
CDIF27147_00748	ATATTTCATAAAATT	0.19	blal	Transcription regulator		
CDIF27147_03455	AACTTAATGAAAACT	0.22-0.24	spo0E	Sporulation initation		
	AATATTGACAAAATA					
	AATATCCAGAAATAT					
CDIF27147_02672	ATTTTTCAAAAATTT	0.24-0.30	smrR	Transcription regulator		
	Direct CodY-rep	ressed targe	ets			
CDIF27147_02081	AATCTTCAAAAAATA	248.6-376.2		Unknown		
CDIF27147_00252	AATCTTAATAAACTT	267.7		Unknown		
CDIF27147_01772	AAATTTATGAATATT	65.9		Unknown		
CDIF27147_02803	GATTTTTAGAAGATT	47.4		Unknown		
CDIF27147_01821	AAATCTCAGAAAGTT	42.3		Metabolism		
CDIF27147_03734	ATTCTTATGAAAATA	41.4		Unknown		
	AATGTTAATAAAGTT					
	AATATTTAGAATAAT					

Table 4. Bacterial Strains and plasmids

		Course
Plasmid or		Source,
Strain	Relevant genotype or features	construction or
Strain		reference
Strains		
E. coli		
DH5 $lpha$ Max	F- Φ80/acZΔM15 Δ(/acZYA-argF) U169 recA1 endA1	Invitrogen
Efficiency	hsdR17 (rk-, mk+) phoA supE44 λ-thi-1 gyrA96 relA1	-
HB101	F- mcrB mrr hsdS20(r _B - m _B -) recA13 leuB6 ara-14 proA2	B. Dupuy
	lacY1 galK2 xyl-5 mtl-1 rpsL20	
C. difficile		
630∆ <i>erm</i>	Erm ^S derivative of strain 630, ribotype 012	N. Minton (Hussain,
		Roberts, and Mullany
		2005)
UK1	Epidemic isolate, ribotype 027	(Sorg and Sonenshein 2010)
LB-CD16	UK1 codY::ermB	(Mooyottu et al. 2014)
MC310	630∆erm spo0A::ermB	(A. N. Edwards,
	000 <u>0</u> 01111	Nawrocki, and
		McBride 2014)
MC364	630∆erm codY::ermB	(K. L. Nawrocki et al.
		2016)
MC855	630∆ <i>erm spo0A::ermB</i> pMC123	(DiCandia et al. 2022)
MC2186	UK1 pMC1123	(Wetzel et al. 2024)
MC2187	UK1 pMC1170	This study
MC2188	UK1 pMC1171	This study
MC2189	UK1 pMC1172	This study
MC2190	UK1 pMC1173	This study
MC2191	UK1 pMC1174	This study
MC2192	UK1 pMC1175	This study
MC2194	UK1 pMC1177	This study
MC2195	UK1 codY::ermB pMC1123	This study
MC2196	UK1 codY::ermB pMC1158	This study
MC2197	UK1 codY::ermB pMC1160	This study
MC2216	UK1 codY::ermB pMC1156	This study
MC2218	UK1 codY::ermB pMC1162	This study
MC2219	UK1 codY::ermB pMC1163	This study
MC2220	UK1 codY::ermB pMC1164	This study
MC2263	UK1 pMC1178	(Wetzel et al. 2024)
Plasmids		
pRK24	Tra ⁺ , Mob ⁺ ; <i>bla, tet</i>	(Thomas and Smith
14.00	D 10 0 1D DN4 1 15	1987)
pIA33	P _{xyl} ::dCas9-opt P _{gdh} ::sgRNA-rfp catP	(Müh et al. 2019)

pMC123	E. coli- C. difficile shuttle vector, bla, catP	(McBride and
		Sonenshein 2011)
pMC404	pMC123 with <i>catP</i> replaced by <i>aad</i> 9	(Purcell et al. 2017)
pMC1123	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-neg catP; (pKD)	(Adrianne N. Edwards
		and Shonna M.
		McBride 2023)
pMC1156	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_02081 catP	This study
pMC1158	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_00252 catP	This study
pMC1160	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_01772 catP	This study
pMC1162	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_02803 catP	This study
pMC1163	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_01821 catP	This study
pMC1164	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_03734 catP	This study
pMC1170	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_01886 catP	This study
pMC1171	PcprA::dCas9-opt Pgdh::sgRNA-CDIF27147_01510 catP	This study
pMC1172	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_02271 catP	This study
pMC1173	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_02499 catP	This study
pMC1174	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_00584 catP	This study
pMC1175	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_00748 catP	This study
pMC1177	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_03455 catP	This study
pMC1178	P _{cprA} ::dCas9-opt P _{gdh} ::sgRNA-CDIF27147_02672 catP	(Wetzel et al. 2024)

Table 5. Oligonucleotides

Primer	Sequence (5'→3')	Use/locus tag/reference
oMC44	CTAGCTGCTCCTATGTCTCACATC	Forward primer for <i>rpoC</i> qPCR (McBride and Sonenshein 2011)
oMC45	CCAGTCTCCTGGATCAACTA	Reverse primer for <i>rpoC</i> qPCR (McBride and Sonenshein 2011)
oMC2618	GATTATTATGGCGAACAATGAATTAGAAG	Forward primer for <i>spo0E</i> qPCR
oMC2619	AAATATTTCTGGATATTCTATGTATGTATTTATCT	Reverse primer for <i>spo0E</i> qPCR
oMC2362	AGTTAAACAGAAAGATAATTGCTGTATGG	Forward primer for <i>smrR</i> qPCR (Wetzel et al. 2024)
oMC2363	ACTTGTAGCCTTACGTTGTTCTTC	Reverse primer for <i>smrR</i> qPCR (Wetzel et al. 2024)
oMC3088	TTGCAATAAAGTGTGCTATAATTAAACTGTAAATGGCC A	Forward primer to Gibson assemble CRISPRi sgRNAs into pMC1123 (Wetzel et al. 2024; Adrianne N. Edwards and McBride 2023)
oMC3089	CCTTTTTCTATTTAAAGTTTTATTAAAACTTATAGGATCC GCGGCCGC	Reverse primer to Gibson assemble CRISPRi sgRNAs into pMC1123 (Wetzel et al. 2024; Adrianne N. Edwards and McBride 2023)
oMC3101	AATTAAACTGTAAATGGCCA <u>AATAATTCCTCACTATCAA</u> <u>G</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_02081 amplification
oMC3103	AATTAAACTGTAAATGGCCA <u>GAAGAATTACTAAAACTG</u> <u>AG</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_00252 amplification
oMC3105	AATTAAACTGTAAATGGCCA <u>AATAGTATATTAAAACATA</u> <u>A</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_01772 amplification
oMC3108	AATTAAACTGTAAATGGCCA <u>ACAACAGTTTCAAGGTCT</u> <u>TG</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_02803 amplification
oMC3109	AATTAAACTGTAAATGGCCA <u>TTGACTTGGATAGTACCA</u> AGGTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_01821 amplification
oMC3110	AATTAAACTGTAAATGGCCA <u>ATATTTTTGTAAGGATGC</u> <u>AA</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_03734 amplification
oMC3131	AATTAAACTGTAAATGGCCA <u>TCTTGAAGGTGGTAAAAT</u> <u>GG</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_01886 amplification

oMC3132	AATTAAACTGTAAATGGCCA <u>TGGTGACACAAAACAATC</u> <u>CG</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_01510 amplification
oMC3133	AATTAAACTGTAAATGGCCA <u>GGTATACAAAAGTTTAAG</u> <u>CA</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_02271
oMC3134	AATTAAACTGTAAATGGCCA <u>AAAAACGTACCTAAAACT</u> <u>GT</u> GTTTTAGAGCTAGAAATAGC	amplification Forward primer for sgRNA- CDIF27147_02499 amplification
oMC3135	AATTAAACTGTAAATGGCCA <u>AAAAACGTACCTAAAACT</u> <u>GT</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_00584 amplification
oMC3136	AATTAAACTGTAAATGGCCA <u>ATATCTTACTTATTGAAGA</u> <u>G</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_00748 amplification
oMC3138	AATTAAACTGTAAATGGCCA <u>AAATGAGATTGAAGCAGT</u> <u>TA</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_03455 amplification
oMC3139	AATTAAACTGTAAATGGCCA <u>ATAAAAAAATTATACGTCG</u> <u>A</u> GTTTTAGAGCTAGAAATAGC	Forward primer for sgRNA- CDIF27147_02672 amplification (Wetzel et al. 2024)
oMC3235	TTTCTTAATTATGGCTATGGCAGTT	Forward primer for CDIF27147_01886 qPCR
oMC3236	ATAAAGGCTTCATAAATACAGCGAA	Reverse primer for CDIF27147_01886 qPCR
oMC3237	TTGTGTCACCATAAACTTTCCAATA	Forward primer for CDIF27147_01510 qPCR
oMC3238	AGAGTGATGTTTTCCTGATGAAAT	Reverse primer for CDIF27147_01510 qPCR
oMC3239	AACCATCTAAGTTTGGCATCATTAT	Forward primer for CDIF27147_02271 qPCR
oMC3240	TTTAAGTGCAGAAGGTTATCAAGTT	Reverse primer for CDIF27147_02271 qPCR
oMC3241	AAATGACTTGGCTTCAACAATATTG	Forward primer for CDIF27147_02499 qPCR
oMC3242	AGTAATTGCACGTTCTAATGGTATT	Reverse primer for CDIF27147_02499 qPCR
oMC3243	CAAAGTACGGCCAATTAAATTTTCT	Forward primer for CDIF27147_00584 qPCR
oMC3244	AATTGCTAACCATTCATCTTTGAT	Reverse primer for CDIF27147_00584 qPCR
oMC3245	AAAGTTGCCACAATCAGAATTAAAG	Forward primer for CDIF27147_00748 qPCR
oMC3246	CGTTTGTTTCCATTGATATTTTTGC	Reverse primer for CDIF27147_00748 qPCR
oMC3249	AGGTTTGACAAGGCTTTCTAAAATA	Forward primer for CDIF27147_00252 qPCR

oMC3250	TCAACCATATTTCCAGCATTTGATA	Reverse primer for
		<i>CDIF27147_00252</i> qPCR
oMC3251	CTGCTGTTAATTCAAAATGGAGTTT	Forward primer for
		<i>CDIF27147_01772</i> qPCR
oMC3252	ATCTTATCATTTTTATCCTCTCCATT	Reverse primer for
		<i>CDIF27147_01772</i> qPCR
oMC3394	CACAATAGCTAAAATTGTGCAATGA	Forward primer for
		<i>CDIF27147_02803</i> qPCR
oMC3395	TGCTTATGTTGAAGAAATAGCATCT	Reverse primer for
		CDIF27147_02803 qPCR
oMC3396	AATGATTTTATTTGGACTTGGAGGT	Forward primer for
		CDIF27147_01821 qPCR
oMC3397	AATTGCTATTGCTGTTAGAGAATCA	Reverse primer for
		<i>CDIF27147_01821</i> qPCR
oMC3398	AGTTGTACCCTCAAAAATATCCATT	Forward primer for
		<i>CDIF27147_03734</i> qPCR
oMC3399	ATTTTGTGTTGGATTTTTGGTTCTT	Reverse primer for
		<i>CDIF27147_03734</i> qPCR
oMC3488	ACGTTACTATTATTGATAATCTTCACTTATATG	Forward primer for
		<i>CDIF27147_02081</i> qPCR
oMC3489	AGATTATAGTACAATAATATAGAAAATTGACACT	Reverse primer for
		<i>CDIF27147_02081</i> qPCR
4084	AACTTATAGGATCCGCGGCCGCTAGTCAGACATCATG	Reverse primer for sgRNAs
	CTGATCTAGA	with NotI site for cloning
		into pIA33 (Müh et al.
		2019)

FIGURES

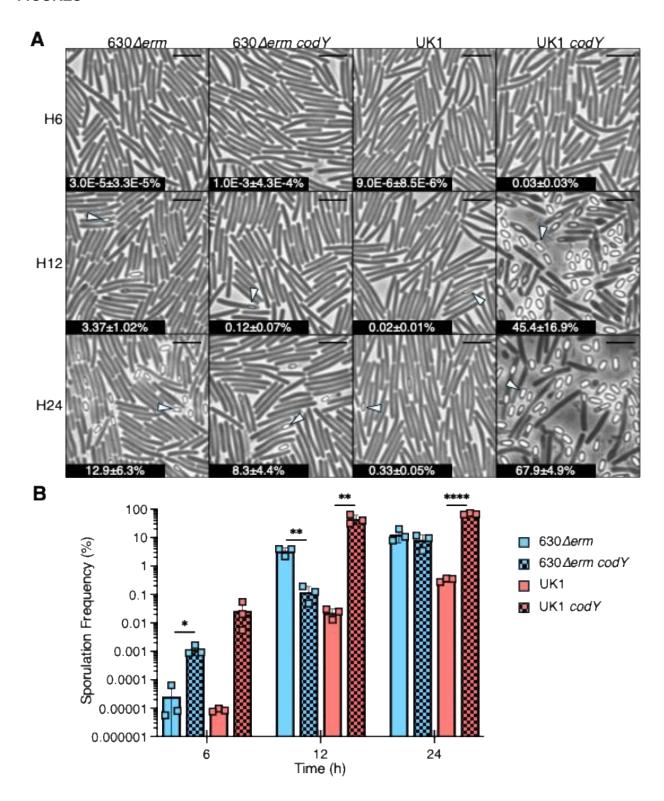


Figure 1. CodY repression on sporulation is strain-dependent. A) Phase-contrast micrographs of strains $630\Delta erm$, $630\Delta erm$ codY (MC364), UK1, and UK1 codY (LB-CD16) grown on sporulation agar for 6, 12, or 24 h. White arrowheads indicate bright spores. Scale bar = 5 μ m. [‡]SD: standard deviation <0.0001. B) Ethanol-resistant spore formation for the cultures above. The means and individual values for three biological replicates are shown. Data were analyzed using unpaired Student's *t*-tests comparing the mutants to their respective parent strain. *P<0.05, **P<0.01, **** P<0.0001.

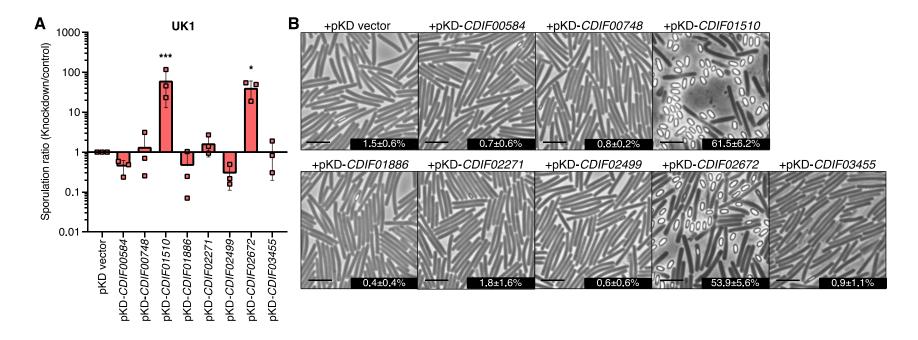


Figure 2. Repression of specific direct CodY-induced factors increases sporulation in UK1. A) Ratio of ethanol-resistant spore formation of strain UK1 expressing CRISPRi knockdown constructs, relative to a vector control. UK1 carrying pKD-*CDIF01886* (MC2187), pKD-*CDIF01510* (MC2188), pKD-*CDIF02271* (MC2189), pKD-*CDIF02499* (MC2190), pKD-*CDIF00584* (MC2191), pKD-*CDIF00748* (MC2192), pKD-*CDIF03455* (MC2194), pKD-*CDIF02672* (MC2263), and the pKD vector (MC2186) were assessed for spore formation after 24 h growth on sporulation agar (70:30 with 2 μg/ml thiamphenicol, 1 μg/ml nisin). The means, individual values, and standard deviations of ratios (Knockdown/control) for at least three biological replicates are shown. B) Phase-contrast micrographs of the strains in A with sporulation frequencies. Scale bar = 5 μm. The mean, standard deviations, and SEM are shown for three biological replicates. Data were analyzed using a one-way ANOVA followed by Fisher's LSD. **P*<0.05, *** *P*<0.001.

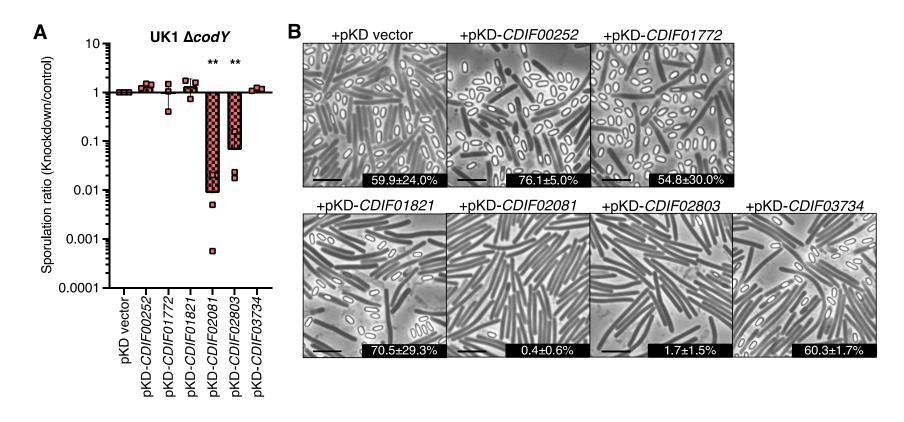


Figure 3. Repression of specific direct CodY-repressed factors reduces sporulation in the UK1 *codY* mutant. A) Ratio of ethanol-resistant spore formation of strain UK1 Δ*codY* mutant expressing CRISPRi knockdown constructs, relative to a vector control. UK1 Δ*codY* carrying pKD-vector (MC2195), pKD-*CDIF00252* (MC2196), pKD-*CDIF01772* (MC2197), pKD-*CDIF01821* (MC2219), pKD-*CDIF02081* (MC2216), pKD-*CDIF02803* (MC2218), and the pKD-*CDIF03734* (MC2220) were assessed for spore formation after 24 h growth on sporulation agar (70:30 with 2 μg/ml thiamphenicol, 1 μg/ml nisin). The means, individual values, and standard deviations of ratios (Knockdown/control) for at least three biological replicates are shown. B) Phase-contrast micrographs of

the strains in A with sporulation frequencies. Scale bar = 5 μ m. The mean, standard deviations, and SEM are shown for three biological replicates. Data were analyzed using a one-way ANOVA followed by Fisher's LSD. **P<0.01.

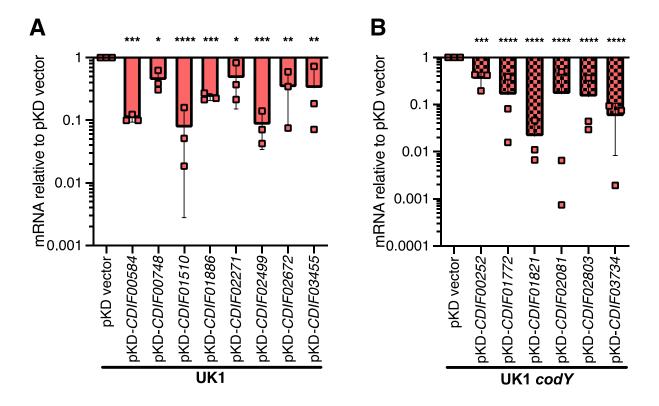


Figure S1. CRISPRi constructs repress expression of target genes. qRT-PCR analysis of gene expression for A) UK1 strains expressing CRISPRi knockdown constructs pKD-CDIF01886 (MC2187), pKD-CDIF01510 (MC2188), pKD-CDIF02271 (MC2189), pKD-CDIF02499 (MC2190), pKD-CDIF00584 (MC2191), pKD-CDIF00748 (MC2192), pKD-CDIF03455 (MC2194), pKD-CDIF02672 (MC2263), relative to the pKD vector control strain (MC2186) and B) UK1 ΔcodY carrying pKD-CDIF00252 (MC2196), pKD-CDIF01772 (MC2197), pKD-CDIF01821 (MC2219), pKD-CDIF02081 (MC2216), pKD-CDIF02803 (MC2218), pKD-CDIF03734 (MC2220), relative to the pKD-vector control strain (MC2195). Samples were harvested after 6 h of growth on sporulation agar (70:30 with 2 μg/ml thiamphenicol, 1 μg/ml nisin). The means and individual values for three biological replicates are shown. Data were analyzed using a one-way ANOVA followed by Dunnett's multiple comparison test. *P<0.05, **
P<0.01, **** P<0.001, **** P<0.001, **** P<0.0001.

Figure S2 – DNA cloning and vector details

<u>pMC1156</u>: A 140 bp PCR product containing sgRNA-*CDIF02081* was created using primers 4084 and oMC3101 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1158</u>: A 140 bp PCR product containing sgRNA-*CDIF00252* was created using primers 4084 and oMC3103 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1160</u>: A 140 bp PCR product containing sgRNA-*CDIF01772* was created using primers 4084 and oMC3105 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1162</u>: A 140 bp PCR product containing sgRNA-*CDIF02803* was created using primers 4084 and oMC3108 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1163</u>: A 140 bp PCR product containing sgRNA-*CDIF01821* was created using primers 4084 and oMC3109 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1164</u>: A 140 bp PCR product containing sgRNA-*CDIF03734* was created using primers 4084 and oMC31110 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1170</u>: A 140 bp PCR product containing sgRNA-*CDIF01886* was created using primers 4084 and oMC3131 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1171</u>: A 140 bp PCR product containing sgRNA-*CDIF01510* was created using primers 4084 and oMC3132 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1172</u>: A 140 bp PCR product containing sgRNA-*CDIF02271* was created using primers 4084 and oMC3133 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1173</u>: A 140 bp PCR product containing sgRNA-*CDIF02499* was created using primers 4084 and oMC3134 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1174</u>: A 140 bp PCR product containing sgRNA-*CDIF0584* was created using primers 4084 and oMC3135 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

pMC1175: A 140 bp PCR product containing sgRNA-*CDIF00748* was created using primers 4084 and oMC3136 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

<u>pMC1177</u>: A 140 bp PCR product containing sgRNA-*CDIF03455* was created using primers 4084 and oMC3138 and was amplified again using primers oMC3088 and oMC2089, which contain homology to pMC1123. The resulting product was Gibson assembled into pMC1123 via *MscI* and *NotI* sites.

REFERENCES

Abhyankar, W. R., Zheng, L., Brul, S., de Koster, C. G., and de Koning, L. J. 2019. "Vegetative Cell and Spore Proteomes of *Clostridioides difficile* Show Finite Differences and Reveal Potential Protein Markers." *J Proteome Res* 18 (11): 3967–76. https://doi.org/10.1021/acs.jproteome.9b00413.

Edwards and McBride. 2023. "The RgaS-RgaR Two-Component System Promotes Clostridioides difficile Sporulation through a Small RNA and the Agr1 System." bioRxiv, January, 2023.06.26.546640. https://doi.org/10.1101/2023.06.26.546640.

Antunes, A., Camiade, E., Monot, M., Courtois, E., Barbut, F., Sernova, N. V., Rodionov, D. A., Martin-Verstraete, I., and Dupuy, B.. 2012. "Global Transcriptional Control by Glucose and Carbon Regulator CcpA in *Clostridium difficile*." *Nucleic Acids Res* 40 (21): 10701–18. https://doi.org/10.1093/nar/gks864.

Antunes, A., Martin-Verstraete, I., and Dupuy, B. 2011. "CcpA-Mediated Repression of *Clostridium difficile* Toxin Gene Expression: *C. difficile* Toxin Regulation by CcpA." *Mol Microbiol* 79 (4): 882–99. https://doi.org/10.1111/j.1365-2958.2010.07495.x.

Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S. 2015. "The MEME Suite." *Nucleic Acids Res* 43 (W1): W39–49. https://doi.org/10.1093/nar/gkv416.

Belitsky, B. R., and Sonenshein, A. L. 2011. "Contributions of Multiple Binding Sites and Effector-Independent Binding to CodY-Mediated Regulation in *Bacillus subtilis*." *J Bacteriol* 193 (2): 473–84. https://doi.org/10.1128/JB.01151-10.

Blagova, E. V., Levdikov, V. M., Tachikawa, K., Sonenshein, A. L., and Wilkinson, A. J. 2003. "Crystallization of the GTP-Dependent Transcriptional Regulator CodY from *Bacillus subtilis*." *Acta Crystallogr D Biol Crystallogr* 59 (Pt 1): 155–57. Bouillaut, L., McBride, S. M., and Sorg, J. A. 2011. "Genetic Manipulation of *Clostridium difficile*." *Curr Protoc Microbiol* Chapter 9 (February):Unit 9A 2.

Brinsmade, S. R., Alexander, E. L., Livny, J., Stettner, A. I., Segrè, D., Rhee, K. Y., and Sonenshein, A. L. 2014. "Hierarchical Expression of Genes Controlled by the *Bacillus subtilis* Global Regulatory Protein CodY." *Proc Nati Acad Sci* 111 (22): 8227–32. https://doi.org/10.1073/pnas.1321308111.

Brinsmade, S. R., Kleijn, R. J., Sauer, U., and Sonenshein, A. L. 2010. "Regulation of CodY Activity through Modulation of Intracellular Branched-Chain Amino Acid Pools." *J Bacteriol* 192 (24): 6357–68. https://doi.org/10.1128/JB.00937-10.

CDC. 2013. "Antibiotic Resistance Threats in the United States, 2013."

https://doi.org/10.1002/9780471729259.mc09a02s20.

CDC. 2019. "Antibiotic Resistance Threats in the United States, 2019."

CDC. 2023. "Emerging Infections Program Healthcare-Associated Infections—Community Interface Report *Clostridioides difficile* Infection Surveillance, 2021," June.

Childress, K. O., Edwards, A. N., Nawrocki, K. L., Woods, E. C., Anderson, S. E., and McBride, S. M. 2016. "The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in *Clostridium difficile.*" *Infect Immun* 84 (September). https://doi.org/10.1128/IAI.00735-16.

Daou, N., Wang, Y., Levdikov, V. M., Nandakumar, M., Livny, J., Bouillaut, L., Blagova E., et al. 2019. "Impact of CodY Protein on Metabolism, Sporulation and Virulence in *Clostridioides difficile* Ribotype 027." *PLoS One* e0206896 (14): 34. https://doi.org/10.1371/journal.pone/0206896.

DiCandia, M. A., Edwards, A. N., Alcaraz, Y. B., Monteiro, M. P., Lee, C. D., Cuebas, G. V., Bagchi, P., and McBride, S. M. 2024. "A Conserved Switch Controls Virulence, Sporulation, and Motility in *C. difficile*." *PLoS Pathogens* 20 (5): e1012224. https://doi.org/10.1371/journal.ppat.1012224.

DiCandia, M. A., Edwards, A. N., Jones, J. B., Swaim, G. L., Mills, B. D., and McBride, S. M. 2022. "Identification of Functional Spo0A Residues Critical for Sporulation in *Clostridioides* difficile." *J Mol Biol* 434 (13): 167641. https://doi.org/10.1016/j.jmb.2022.167641.

Dineen, S. S., McBride, S. M., and Sonenshein, A. L. 2010. "Integration of Metabolism and Virulence by *Clostridium difficile* CodY." *J Bacteriol* 192 (20): 5350–62. https://doi.org/10.1128/JB.00341-10.

Dineen, S. S., Villapakkam, A. C., Nordman, J. T., and Sonenshein, A. L. 2007. "Repression of *Clostridium difficile* Toxin Gene Expression by CodY." *Mol Microbiol* 66 (1): 206–19. https://doi.org/10.1111/j.1365-2958.2007.05906.x.

Donnelly, M. L., Shrestha, S., Ribis, J. W., Kuhn, P., Krasilnikov, M., Feliciano, C. A., and Shen, A. 2022. "Development of a Dual-Fluorescent-Reporter System in *Clostridioides difficile* Reveals a Division of Labor between Virulence and Transmission Gene Expression." *mSphere* 7 (3): e00132-22. https://doi.org/10.1128/msphere.00132-22.

Dubois, T., Dancer-Thibonnier, M., Monot, M., Hamiot, A., Bouillaut, L., Soutourina, O., Martin-Verstraete, I., and Dupuy, B. 2016. "Control of *Clostridium difficile* Physiopathology in Response to Cysteine Availability." Edited by V. B. Young. *Infect Immun* 84 (8): 2389–2405. https://doi.org/10.1128/IAI.00121-16.

Dupuy, B., and Sonenshein, A. L. 1998. "Regulated Transcription of *Clostridium difficile* Toxin Genes." *Mol Microbiol* 27 (1): 107–20.

Edwards, A. N., and McBride, S. M. 2017. "Determination of the in Vitro Sporulation Frequency of *Clostridium difficile*." *Bio-Protocol* 7 (3): e2125. https://doi.org/10.21769/BioProtoc.2125.

Edwards, A. N., Nawrocki, K. L., and McBride, S. M. 2014. "Conserved Oligopeptide Permeases Modulate Sporulation Initiation in *Clostridium difficile*." *Infect Immun* 82 (10): 4276–91. https://doi.org/10.1128/IAI.02323-14.

Edwards, A. N., Tamayo, R., and McBride, S. M. 2016. "A Novel Regulator Controls *Clostridium difficile* Sporulation, Motility and Toxin Production." *Mol Microbiol* 100 (6): 954–71. https://doi.org/10.1111/mmi.13361.

Edwards, A. N., and McBride, S. M. 2023. "The RgaS-RgaR Two-Component System Promotes *Clostridioides difficile* Sporulation through a Small RNA and the Agr1 System." *PLoS Genetics* 19 (10): e1010841. https://doi.org/10.1371/journal.pgen.1010841.

Fimlaid, K. A., Bond, J. P., Schutz, K. C., Putnam, E. E., Leung, J. M., Lawley, T. D., and Shen, A. 2013. "Global Analysis of the Sporulation Pathway of *Clostridium difficile.*" *PLoS Genet* 9 (8): e1003660. https://doi.org/10.1371/journal.pgen.1003660.

Furtado, K. L., Plott, L., Markovetz, M., Powers, D., Wang, H., Hill, D. B., Papin, J., Allbritton, N. L., and Tamayo, R.. 2024. "*Clostridioides difficile* -Mucus Interactions Encompass Shifts in Gene Expression, Metabolism, and Biofilm Formation." Edited by Craig D. Ellermeier. *mSphere* 9 (6): e00081-24. https://doi.org/10.1128/msphere.00081-24.

Girinathan, B. P., Ou, J., Dupuy, B., and Govind, R. 2018. "Pleiotropic Roles of *Clostridium difficile* Sin Locus." *PLoS Pathog* 14 (3): e1006940. https://doi.org/10.1371/journal.ppat.1006940.

Ho, T. D., and Ellermeier, C. D. 2015. "Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in *Clostridium difficile*." Edited by V. J. DiRita. *J Bacteriol* 197 (18): 2930–40. https://doi.org/10.1128/JB.00098-15.

Hussain, H. A., Roberts, A. P., and Mullany, P. 2005. "Generation of an Erythromycin-Sensitive Derivative of *Clostridium difficile* Strain 630 (630Δerm) and Demonstration That the Conjugative Transposon Tn916ΔE Enters the Genome of This Strain at Multiple Sites." *J Med Microbiol* 54 (2): 137–41.

Karasawa, T., Ikoma, S., Yamakawa, K., and Nakamura, S. 1995. "A Defined Growth Medium for *Clostridium difficile*." *MicroSoc* 141 (2): 371–75. https://doi.org/10.1099/13500872-141-2-371.

Lee, C. D., Rizvi, A., Edwards, A. N., DiCandia, M. A., Vargas Cuebas, G. V., Monteiro, M. P., and McBride, S. M. 2022. "Genetic Mechanisms Governing Sporulation Initiation in *Clostridioides difficile.*" *Curr Opin Microbiol* 66 (April):32–38. https://doi.org/10.1016/j.mib.2021.12.001.

Lee, C. D., Rizvi, A., and McBride, S. M. 2024. "KipOTIA Detoxifies 5-Oxoproline and Promotes the Growth of *Clostridioides difficile*." *bioRxiv*, January, 2024.05.01.592088. https://doi.org/10.1101/2024.05.01.592088.

Levdikov, V. M., Blagova, E., Joseph, P., Sonenshein, A. L., and Wilkinson, A. J. 2006. "The Structure of CodY, a GTP- and Isoleucine-Responsive Regulator of Stationary Phase and Virulence in Gram-Positive Bacteria *." *J Biol Chem* 281 (16): 11366–73. https://doi.org/10.1074/jbc.M513015200.

Love, M. I., Huber, W., and Anders, Simon. 2014. "Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2." *Genome Biol* 15 (12): 550. https://doi.org/10.1186/s13059-014-0550-8.

McBride, S. M., and Sonenshein, A. L. 2011. "Identification of a Genetic Locus Responsible for Antimicrobial Peptide Resistance in *Clostridium difficile*." *Infect Immun* 79 (1): 167–76. https://doi.org/10.1128/IAI.00731-10.

Mooyottu, S., Kollanoor-Johny, A., Flock, G., Bouillaut, L., Upadhyay, A., Sonenshein, A. L., and Venkitanarayanan, K. 2014. "Carvacrol and Trans-Cinnamaldehyde Reduce *Clostridium difficile* Toxin Production and Cytotoxicity in Vitro." *Int J Mol Sci* 15 (3): 4415–30.

Müh, U., Pannullo, A. G., Weiss, D. S., and Ellermeier, C. D. 2019. "A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in *Clostridioides difficile*." *J Bacteriol* 201 (14): e00711-18. https://doi.org/10.1128/JB.00711-18.

Nawrocki, K. L., Crispell, E. K., and McBride, S. M. 2014. "Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria." *Antibiot (Basel)* 3 (4): 461–92. https://doi.org/10.3390/antibiotics3040461.

Nawrocki, K. L., Edwards, A. N., Daou, N., Bouillaut, L., and McBride, S. M. 2016. "CodY-Dependent Regulation of Sporulation in *Clostridium difficile*." *J Bacteriol* 198 (15): 2113–30. https://doi.org/10.1128/JB.00220-16.

Nawrocki, K. L., Wetzel, D., Jones, J. B., Woods, E. C., and McBride, S. M. 2018. "Ethanolamine Is a Valuable Nutrient Source That Impacts *Clostridium difficile* Pathogenesis." *Environ Microbiol* 20 (4): 1419–35. https://doi.org/10.1111/1462-2920.14048. Nawrocki, K. L., Edwards, A. N., Daou, N., Bouillaut, L., and McBride, S. M. 2016. "CodY-Dependent Regulation of Sporulation in *Clostridium difficile*." *J Bacteriol* 198 (15): 2113–30. https://doi.org/10.1128/JB.00220-16.

Neumann-Schaal, M., Jahn, D., and Schmidt-Hohagen, K. 2019. "Metabolism the Difficile Way: The Key to the Success of the Pathogen *Clostridioides difficile.*" *Front Microbiol* 10:219. https://doi.org/10.3389/fmicb.2019.00219.

Pereira, F. C., Saujet, L., Tome, A. R., Serrano, M., Monot, M., Couture-Tosi, E., Martin-Verstraete, I., Dupuy, B., and Henriques, A. O. 2013. "The Spore Differentiation Pathway in the Enteric Pathogen *Clostridium difficile*." *PLoS Genet* 9 (10): e1003782. https://doi.org/10.1371/journal.pgen.1003782.

Purcell, E. B., McKee, R. W., Courson, D. S., Garrett, E. M., McBride, S. M., Cheney, R. E., and Tamayo, R. 2017. "A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls *Clostridium difficile* Biofilm and Toxin Production during Stationary Phase." *Infect Immun* 85 (9): e00347-17. https://doi.org/10.1128/IAI.00347-17.

Rizvi, A., Vargas-Cuebas, A., Edwards, A. N., DiCandia, M. A., Carter, Z. A., Lee, C. D., Monteiro, M. P, and McBride, S. M. 2023. "Glycine Fermentation by *C. difficile* Promotes Virulence and Spore Formation, and Is Induced by Host Cathelicidin." *Infect Immun* 91 (10): e00319-23. https://doi.org/10.1128/iai.00319-23.

Sandhu, B. K., and McBride, S. M. 2018. .". *Clostridioides difficile*." *Trends Microbiol* 26 (12): 1049–50. https://doi.org/10.1016/j.tim.2018.09.004.

Saujet, L., Monot, M., Dupuy, B., Soutourina, O., and Martin-Verstraete, I. 2011. "The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor

Expression in *Clostridium difficile*." *J Bacteriol* 193 (13): 3186–96. https://doi.org/10.1128/JB.00272-11.

Saujet, L., Pereira, F. C., Serrano, M., Soutourina, O., Monot, M., Shelyakin, P. V., Gelfand, M. S., Dupuy, B., Henriques, A. O., and Martin-Verstraete, I. 2013. "Genome-Wide Analysis of Cell Type-Specific Gene Transcription during Spore Formation in *Clostridium difficile*." *PLoS Genet* 9 (10): e1003756. https://doi.org/10.1371/journal.pgen.1003756.

Scaria, J., Chen, J. W., Useh, N., He, H., McDonough, S. P., Mao, C., Sobral, B., and Chang, Y. F. 2014. "Comparative Nutritional and Chemical Phenome of *Clostridium difficile* Isolates Determined Using Phenotype Microarrays." *Int J Infect Dis* 27C (August):20–25. https://doi.org/10.1016/j.ijid.2014.06.018.

Schmittgen, T. D., and Livak, K. J. 2008. "Analyzing Real-Time PCR Data by the Comparative C(T) Method." *Nat Protoc* 3 (6): 1101–8.

Slack, F. J., Serror, P., Joyce, E., and Sonenshein, A. L. 1995. "A Gene Required for Nutritional Repression of the *Bacillus subtilis* Dipeptide Permease Operon." *Molecular Microbiology* 15 (4): 689–702. https://doi.org/10.1111/j.1365-2958.1995.tb02378.x.

Sonenshein, A. L. 2005. "CodY, a Global Regulator of Stationary Phase and Virulence in Gram-Positive Bacteria." *Curr Opin Microbiol* 8 (2): 203–7. https://doi.org/10.1016/j.mib.2005.01.001.

Sorg, J. A., and Dineen, S. S. 2009. "Laboratory Maintenance of *Clostridium difficile*." *Curr Protoc Microbiol* Chapter 9 (February):Unit9A 1.

https://doi.org/10.1002/9780471729259.mc09a01s12.

Sorg, J. A., and Sonenshein, A. L. 2008. "Bile Salts and Glycine as Cogerminants for *Clostridium difficile* Spores." *J Bacteriol* 190 (7): 2505–12. https://doi.org/10.1128/JB.01765-07. Sorg, J. A., Sonenshein, J. 2010. "Inhibiting the Initiation of Clostridium Difficile Spore Germination Using Analogs of Chenodeoxycholic Acid, a Bile Acid." *J Bacteriol* 192 (19): 4983–90. https://doi.org/10.1128/JB.00610-10.

Soutourina, O., Dubois, T., Monot, M., helyakin, P. V., Saujet, L., Boudry, P., Gelfand, M. S., Dupuy, B., and Martin-Verstraete, I. 2020. "Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen *Clostridioides difficile*." *Front Microbiol* 11 (August):1939. https://doi.org/10.3389/fmicb.2020.01939.

Stenz, L., Francois, P., Whiteson, K., Wolz, C., Linder, P., and Schrenzel, J. 2011. "The CodY Pleiotropic Repressor Controls Virulence in Gram-Positive Pathogens." *FEMS Immunol Med Microbiol* 62 (2): 123–39. https://doi.org/10.1111/j.1574-695X.2011.00812.x.

Thomas, C. M., and Smith, C. A. 1987. "Incompatibility Group P Plasmids: Genetics, Evolution, and Use in Genetic Manipulation." *Annu Rev Microbiol* 41 (1): 77–101.

Waters, N. R., Samuels, D. J., Behera, R. K., Livny, J., Rhee, K. Y., Sadykov, M. R., and Brinsmade, S. R. 2016. "A Spectrum of CodY Activities Drives Metabolic Reorganization and Virulence Gene Expression in Staphylococcus Aureus." *Mol Microbiol* 101 (3): 495–514. https://doi.org/10.1111/mmi.13404.

Wetzel, D., Carter, Z. A., Monteiro, M. P., Edwards, A. N., Scharer, C. D., and McBride, S. M. 2024. "The pH-Responsive SmrR-SmrT System Modulates *C. difficile* Antimicrobial Resistance, Spore Formation, and Toxin Production." *Infect Immun* 92 (3): e0046123. https://doi.org/10.1128/iai.00461-23.

Wilson, K. H. 1983. "Efficiency of Various Bile Salt Preparations for Stimulation of *Clostridium difficile* Spore Germination." *J Clin Microbiol* 18 (4): 1017–19.

Woods, E. C., Edwards, A. N., Childress, K. O., Jones, J. B., and McBride, S. M. 2018. "The *C. difficile clnRAB* Operon Initiates Adaptations to the Host Environment in Response to LL-37." *PLoS Pathog* 14 (8): e1007153. https://doi.org/10.1371/journal.ppat.1007153.

Chapter 3: Discussion

C. difficile is a nosocomial pathogen that is a burden to the healthcare and economic system in the U.S. (Guh et al. 2020; CDC, 2019; Smits et al. 2016). Through spore formation, C. difficile can survive disinfectants and spread from host to host via fecal-oral transmission (Sandhu and McBride 2018). Since nutrient availability is tightly linked with sporulation, it is crucial to understand better how nutrients regulate sporulation in C. difficile to intervene in the important process of dissemination. By comprehending the molecular mechanisms linking nutrient availability and sporulation, we can better illuminate how sporulation works in C. difficile.

I. CodY

In *B.* subtilis, CodY represses initiation of sporulation by binding directly to the promoter region of *spo0A* and repressing its transcription (Ratnayake-Lecamwasam *et al.* 2001; Mirouze, Prepiak, and Dubnau 2011). On the other hand, CodY is not a direct repressor of *spo0A* in *C. difficile*, and little is known about the molecular mechanism by which CodY regulates sporulation in *C. difficile* (Dineen, McBride, and Sonenshein 2010; Nawrocki *et al.* 2016; Daou *et al.* 2019). In this study, we increased the understanding of CodY regulation of sporulation in the 630∆*erm* and UK1 strains, identified several factors directly regulated by CodY in both strains and determined the impact of many directly CodY-regulated factors in the UK1 strain.

Our results demonstrated for the first time using sporulation assays that CodY is repressing initiation of sporulation in both 630 Δ erm and UK1 strains (**Chap. 2, Fig. 1**). Additionally, our data confirm previous findings that CodY regulation of sporulation is strain-dependent (Nawrocki et al. 2016). It would be valuable to investigate if other *C. difficile* ribotypes, such as strains from ribotypes 106, 014, 002, 020, and 076, have a strain-dependent phenotype of CodY regulation of sporulation as observed in 630 Δ erm and UK1 (**Chap. 2, Fig. 1**) (Kim et al. 2022; Guh et al. 2020). Investigating other *C. difficile* ribotype strains for CodY regulation of sporulation can lead to a better understanding of how adaptable CodY regulation is

in different strains, as well as identify possible CodY-regulated factors that are shared or unique to each strain, which could serve as targets for drug development.

This work also demonstrated for the first time that after 12 hours on a solid sporulation medium, the 630∆erm strain sporulated more than its codY mutant (Chap. 2, Fig. 1). These data indicate that CodY is necessary for the advancement of sporulation in the 630∆erm background and not in the UK1 strain. To our knowledge, this work is the first to show that CodY is necessary for the advancement of sporulation in the 630∆erm background. The only other example where CodY can play strain-specific roles (inducer/repressor) as a regulator of initiation of sporulation is in *C. perfringens*, where in one *C. perfringens* strain, CodY represses initiation of sporulation while in another strain of *C. perfringens*, CodY induces initiation of sporulation (Li et al. 2013; 2017). However, this is the first evidence that CodY can have both roles of inducer and repressor of sporulation for the same strain in one species of spore-forming bacteria (Chap. 2, Fig. 1). Comparing the CodY transcriptome at logarithmic and stationary phase in sporulation medium for the 630∆erm background, could show which direct CodY-induced/repressed factor(s) impact sporulation and if these factors are the same or different at these time points.

By defining the CodY transcriptome of 630 Δ erm and UK1 under sporulation conditions prior to the initiation of sporulation (for the WT), we identified several transcripts that CodY impacted that might affect the initiation of sporulation (Chap. 2, Table S1; Chap. 2, Table S2). We also determined which of these transcripts are potentially direct CodY targets by identifying which factors have a potential CodY box in each genome (Chap. 2, Table S3). Several factors listed in Chap. 2 Table S3, which are putative CodY-regulated factors, regulate late-stage sporulation and germination processes. These factors were predicted to contain CodY box(es), suggesting that CodY directly regulates later stages of sporulation, as well as initiation. In other sporulating bacteria, CodY is not known to regulate late-stage sporulation and/or germination factors directly, but only initiation of sporulation factors (Ratnayake-Lecamwasam *et al.* 2001;

Molle *et al.* 2003; Hilbert and Piggot 2004; Li *et al.* 2013; 2017). Determining if CodY binds to the predicted CodY boxes of the factors that regulate late-stage sporulation and germination would establish the role of CodY in the regulation of these factors and expand the repertoire of CodY regulation of sporulation.

We also identified several genes that are unique in both $630\Delta erm$ and UK1 and are putative CodY-regulated factors (**Chap. 2, Table 2**). As explained in Chapter 2, these factors have not yet been characterized in *C. difficile*; characterizing these factors would allow us to understand their roles in sporulation. Another future direction to take from this work is to express the unique factors of $630\Delta erm$ in the UK1 strain and vice versa and determine their effects on sporulation.

We also identified unique factors with putative CodY boxes (Chap. 2, Table 2); five factors are unique in the UK1 background, and two factors are unique in the 630∆erm background that have metabolism-predicted functions. The presence of unique metabolic factors in 630∆erm and UK1 suggests that these strains adapted to utilize different nutrients within the host (Knight et al. 2015; He et al. 2010; Kulecka et al. 2021). Indeed, it has been shown that different strains of C. difficile utilize different nutrients, indicating that some strains can utilize nutrients that other strains cannot (Scaria et al. 2014). Because nutrient allocation/utilization is different between 630∆erm and UK1 strains, the CodY regulation of sporulation in these strains would be different, as we showed in this work (Chap. 2, Fig. 1). Additionally, it was determined that *C. difficile* exhibits low genome conservation and that strains of ribotype 027 are capable of evolving within a short period of time (Stabler et al. 2009; Scaria et al. 2010). It can be suggested that changes in the human diet, especially the rise of processed foods over the years, have also pressured C. difficile strains to evolve and survive within the host (Castro et al. 2025). It was determined that epidemic strains could utilize trehalose, a new additive sugar used in the food industry, and induce toxin production (Collins et al. 2018). Most studies investigating the relationship between diet and C. difficile infection have

been conducted in murine models rather than in humans, making it challenging to determine which metabolites are impactful in *C. difficile* infection in humans (Jose *et al.* 2021; Mefferd *et al.* 2020; Hazleton *et al.* 2022). However, it is well established that diet has a direct impact on the composition of the intestinal microbiota, which can influence susceptibility to *C. difficile* (Reeves *et al.* 2011; Ross *et al.* 2024). It would be important to determine which metabolites can impact *C. difficile* infection through the direct CodY-regulated factors and how dietary changes in humans can decrease the risk of acquiring *C. difficile* infection.

In addition, we determined that many direct CodY-regulated factors impact sporulation in the UK1 background (**Chap. 2**, **Fig. 2**; **Chap. 2**, **Fig. 3**) (Wetzel *et al.* 2024). These data indicate that CodY regulation of sporulation encompasses several factors controlled by this global nutritional transcription regulator. In *B. subtilis*, CodY directly regulates four genes that participate in the initiation of sporulation (Ratnayake-Lecamwasam *et al.* 2001). However, in *C. difficile*, none of these direct CodY-regulated factors that impact sporulation in UK1 (**Chap. 2**, **Fig. 2**; **Chap. 2**, **Fig. 3**) seem not to have a specific function to sporulation. Even though these targets do not directly regulate sporulation, it is still necessary to understand their roles and how they might impact other important cellular processes that are involved in *C. difficile* pathogenesis, and could be used as targets for future treatments.

Many of the putative CodY-regulated factors identified in this work (**Chap. 2, Table S3**) are also regulated by other transcriptional regulators; these factors are *tcdRBE*, *feoB1*, *cysKE*, *ribDBAH*, *brnQ* and many others (Nawrocki *et al.* 2016; Antunes, Martin-Verstraete, and Dupuy 2011; Antunes *et al.* 2012; Ho and Ellermeier 2015). The transcriptional regulator CcpA is one of the regulators that also regulates some factors, as listed in **Chap. 2, Table S3**. CcpA is another nutritional transcriptional regulator that responds to glucose, repressing toxin production and sporulation (Antunes, Martin-Verstraete, and Dupuy 2011; Antunes *et al.* 2012). CcpA represses sporulation by binding directly to the promoter region of *spo0A* (Antunes *et al.* 2012). Because there is an overlap of the CodY and CcpA regulons, it is important to distinguish if the genes

identified in this work (**Chap. 2, Table 3; Chap. 2 Table S3**) are direct CodY-regulated and if CodY regulation of these genes is the sole cause of the sporulation phenotypes (**Chap. 2, Fig. 1**) (Dineen, McBride, and Sonenshein 2010; Daou *et al.* 2019; Antunes, Martin-Verstraete, and Dupuy 2011; Antunes *et al.* 2012). However, having multiple regulators that sense different signals and regulate the same factors is a way to ensure the tight regulation of cell processes, such as sporulation, to ensure that the cell is ready for spore formation.

II. Final Summary

In this work, we elucidated the differences in CodY regulation of sporulation in two different important strains of *C. difficile*, 630 Δ erm and UK1. We confirmed and expanded the knowledge of CodY repression of sporulation in both backgrounds. By showing the differences in CodY regulation of sporulation in the 630 Δ erm and UK1 strains, we were able to identify that CodY represses initiation of sporulation in both strains and that CodY is necessary for the advancement of sporulation in the 630 background. Additionally, we identified many factors with putative CodY-boxes with functions on late-sporulation and germination, which we do not see in other sporulating species that encode CodY. Many of the unique factors have been shown to predict function in metabolism, suggesting that these strains have a different metabolic repertoire that affects CodY regulation of sporulation. Also, we determined that four specific direct CodY-regulated factors have an impact on sporulation in the UK1 background.

Because regulation of sporulation is a critical step for *C. difficile* life cycle and necessary for transmission, it is crucial to understand how nutrient-sensing transcriptional regulators, such as CodY, regulate sporulation. In addition, by identifying several putative CodY-regulated factors, this work will serve as a guide to the scientific community on finding possible CodY-regulated factors in 630 Δ erm and UK1, to choose candidate factors regulated by CodY for further characterization in *C. difficile* and to understand that important cell processes such as sporulation, are impacted by many factors under the same regulation.

References

Antunes, A., Camiade, E., Monot, M, Courtois, E., Barbut, F., Sernova, N. V., Rodionov, D. A., Martin-Verstraete, I., and Dupuy, B. 2012. "Global Transcriptional Control by Glucose and Carbon Regulator CcpA in *Clostridium difficile*." *Nucleic Acids Res* 40 (21): 10701–18. https://doi.org/10.1093/nar/gks864.

Antunes, A., Martin-Verstraete, I., and Dupuy, B. 2011. "CcpA-Mediated Repression of Clostridium difficile Toxin Gene Expression: C. difficile Toxin Regulation by CcpA." Mol Microbiol 79 (4): 882–99. https://doi.org/10.1111/j.1365-2958.2010.07495.x.

Castro, M., Silver, H. J., Hazleton, K., Lozupone, C., and Nicholson, M. R. 2025. "The Impact of Diet on *Clostridioides difficile* Infection: A Review." *J Infect Dis*, May, jiaf233. https://doi.org/10.1093/infdis/jiaf233.

CDC. 2019. "Antibiotic Resistant Threats in the United States, 2019." U.S. Department of Health and Human Services. www.cdc.gov/DrugResistance/Biggest-Threats.html.

Collins, J., Robinson, C., Danhof, H., Knetsch, C. W., van Leeuwen, H. C., Lawley, T. D., Auchtung, J. M., and Britton, R. A. 2018. "Dietary Trehalose Enhances Virulence of Epidemic Clostridium difficile." Nature 553 (7688): 291–94. https://doi.org/10.1038/nature25178.

Daou, N., Wang, Y., Levdikov, V. M., Nandakumar, M., Livny, J., Bouillaut, L., Blagova, E., *et al.* 2019. "Impact of CodY Protein on Metabolism, Sporulation and Virulence in *Clostridioides* difficile Ribotype 027." *PLoS One* e0206896 (14): 34.

https://doi.org/10.1371/journal.pone/0206896.

Dineen, S. S., McBride, S. M., and Sonenshein, A. L. 2010. "Integration of Metabolism and Virulence by *Clostridium difficile* CodY." *J Bacteriol* 192 (20): 5350–62. https://doi.org/10.1128/JB.00341-10.

Guh, A. Y., Mu, Y., Winston, L. G., Johnston, H., Olson, D., Farley, M. M., Wilson, L. E., *et al.* 2020. "Trends in U.S. Burden of *Clostridioides difficile* Infection and Outcomes." *N Engl J Med* 382 (14): 1320–30. https://doi.org/10.1056/NEJMoa1910215.

Hazleton, K. Z., Martin, C. G., Orlicky, D. J., Arnolds, K. L., Nusbacher, N. M., Moreno-Huizar, N., Armstrong, M., Reisdorph, N., and Lozupone, C. A. 2022. "Dietary Fat Promotes Antibiotic-Induced *Clostridioides difficile* Mortality in Mice." *Npj Biofilms and Microbiomes* 8 (1): 15. https://doi.org/10.1038/s41522-022-00276-1.

He, M., Sebaihia, M., Lawley, T. D., Stabler, R. A., Dawson, L. F., Martin, M. J., Holt, K. E., *et al.* 2010. "Evolutionary Dynamics of *Clostridium difficile* over Short and Long Time Scales." *Proc Natl Acad Sci U S A* 107 (16): 7527–32. https://doi.org/10.1073/pnas.0914322107.

Hilbert, D. W., and Piggot, P. J. 2004. "Compartmentalization of Gene Expression during *Bacillus subtilis* Spore Formation." *Microbiol Mol Biol Rev* 68 (2): 234–62. https://doi.org/10.1128/MMBR.68.2.234-262.2004.

Ho, T. D., and Ellermeier, C. D. 2015. "Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in *Clostridium difficile*." Edited by V. J. DiRita. *J Bacteriol* 197 (18): 2930–40. https://doi.org/10.1128/JB.00098-15.

Jose, S., Mukherjee, A., Horrigan, O., Setchell, K. D. R., Zhang, W., Moreno-Fernandez, M. E., Andersen, H., *et al.* 2021. "Obeticholic Acid Ameliorates Severity of *Clostridioides difficile* Infection in High Fat Diet-Induced Obese Mice." *Mucosal Immunol* 14 (2): 500–510. https://doi.org/10.1038/s41385-020-00338-7.

Kim, D. Y., Cheknis, A. K., Serna-Perez, F., Lin, M. Y., Hayden, M. K., Moore, N. M., Harrington, A., *et al.* 2022. "403. Strain Epidemiology of *Clostridioides difficile* across Three Geographically Distinct Medical Centers in Chicago." *OFID* 9 (Supplement_2): ofac492.481. https://doi.org/10.1093/ofid/ofac492.481.

Knight, D. R., Elliott, B., Chang, B. J., Perkins, T. T., and Riley, T. V. 2015. "Diversity and Evolution in the Genome of *Clostridium difficile*." *Clin Microbiol Rev* 28 (3): 721–41. https://doi.org/10.1128/CMR.00127-14.

Kulecka, M., Waker, E., Ambrozkiewicz, F., Paziewska, A., Skubisz, K., Cybula, P., Targoński, Ł., Mikula, M, Walewski, J., and Ostrowski, J. 2021. "Higher Genome Variability within Metabolism Genes Associates with Recurrent *Clostridium difficile* Infection." *BMC Microbiol* 21 (1): 36. https://doi.org/10.1186/s12866-021-02090-9.

Li, J., Freedman, J. C., Evans, D. R., and McClane, B. A. 2017. "CodY Promotes Sporulation and Enterotoxin Production by *Clostridium perfringens* Type A Strain SM101." *Infect Immun* 85 (3). https://doi.org/10.1128/IAI.00855-16.

Li, J., Ma, M., Sarker, M. R., and McClane, B. A. 2013. "CodY Is a Global Regulator of Virulence-Associated Properties for *Clostridium perfringens* Type D Strain CN3718." *MBio* 4 (5): e00770-13. https://doi.org/10.1128/mBio.00770-13.

Mefferd, C. C., Bhute, S. S., Phan, J. R., Villarama, J. V., Do, D. M., Alarcia, S., Abel-Santos, E., and Hedlund, B. P. 2020. "A High-Fat/High-Protein, Atkins-Type Diet Exacerbates *Clostridioides* (*Clostridium*) *difficile* Infection in Mice, Whereas a High-Carbohydrate Diet Protects." *mSystems* 5 (1). https://doi.org/10.1128/mSystems.00765-19.

Mirouze, N., Prepiak, P., and Dubnau, D. 2011. "Fluctuations in *spo0A* Transcription Control Rare Developmental Transitions in *Bacillus subtilis*." *PLoS Genet* 7 (4): e1002048. https://doi.org/10.1371/journal.pgen.1002048.

Molle, V., Nakaura, Y., Shivers, R. P., Yamaguchi, H., Losick, R., Fujita, Y., and Sonenshein, A. L. 2003. "Additional Targets of the *Bacillus subtilis* Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis." *J Bacteriol* 185 (6): 1911–22.

Nawrocki, K. L., Edwards, A. N., Daou, N., Bouillaut, L., and McBride, S. M. 2016. "CodY-Dependent Regulation of Sporulation in *Clostridium difficile*." *J Bacteriol* 198 (15): 2113–30. https://doi.org/10.1128/JB.00220-16.

Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W., and Sonenshein, A. L. 2001. "*Bacillus subtilis* CodY Represses Early-Stationary-Phase Genes by Sensing GTP Levels." *Genes Dev* 15 (9): 1093–1103. https://doi.org/10.1101/gad.874201.

Reeves, A. E., Theriot, C. M., Bergin, I. L., Huffnagle, G. B., Schloss, P. D., and Young, V. B. 2011. "The Interplay between Microbiome Dynamics and Pathogen Dynamics in a Murine Model of *Clostridium difficile* Infection." *Gut Microbes* 2 (3): 145–58.

Ross, F. C., Patangia, D., Grimaud, G., Lavelle, A., Dempsey, E. M., Ross, R. P., and Stanton, C. 2024. "The Interplay between Diet and the Gut Microbiome: Implications for Health and Disease." *Nat Rev Microbiol* 22 (11): 671–86. https://doi.org/10.1038/s41579-024-01068-4.

Sandhu, B. K., and McBride, S. M. 2018. .". *Clostridioides difficile*." *Trends Microbiol* 26 (12): 1049–50. https://doi.org/10.1016/j.tim.2018.09.004.

Scaria, J., Chen, J. W., Useh, N., He, H., McDonough, S. P., Mao, C., Sobral, B., and Chang, Y. F. 2014. "Comparative Nutritional and Chemical Phenome of *Clostridium difficile* Isolates Determined Using Phenotype Microarrays." *Int J Infect Dis* 27C (August):20–25. https://doi.org/10.1016/j.ijid.2014.06.018.

Scaria, J., Ponnala, L., Janvilisri, T., Yan, W., Mueller, L. A., and Chang, Y. 2010. "Analysis of Ultra Low Genome Conservation in Clostridium Difficile." *PLoS ONE* 5 (12): e15147. https://doi.org/10.1371/journal.pone.0015147.

Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H., and Kuijper, E. J. 2016. "Clostridium difficile Infection." Nat Rev Dis Primers 2:16020. https://doi.org/10.1038/nrdp.2016.20.

Stabler, R. A., He, M., Dawson, L., Martin, M., Valiente, E., Corton, C., Lawley, T. D., *et al.* 2009. "Comparative Genome and Phenotypic Analysis of *Clostridium difficile* 027 Strains Provides Insight into the Evolution of a Hypervirulent Bacterium." *Genome Biol* 10 (9): R102. https://doi.org/10.1186/gb-2009-10-9-r102.

Wetzel, D., Carter, Z. A., Monteiro, M. P., Edwards, A. N., Scharer, C. D., and McBride, S. M. 2024. "The pH-Responsive SmrR-SmrT System Modulates *C. difficile* Antimicrobial Resistance, Spore Formation, and Toxin Production." *Infect Immun* 92 (3): e0046123. https://doi.org/10.1128/iai.00461-23.