
1

Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Junxiang Wang Date

2

The Applications of Alternating Minimization Algorithms on Deep Learning Models

By

Junxiang Wang
Doctor of Philosophy

Computer Science and Informatics

Liang Zhao, Ph.D.
Advisor

Carl Yang, Ph.D.
Committee Member

Li Xiong, Ph.D.
Committee Member

Lars Ruthotto, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D., MPH
Dean of the James T. Laney School of Graduate Studies

Date

3

The Applications of Alternating Minimization Algorithms on Deep Learning Models

By

Junxiang Wang
B.S., East China Normal University, Shanghai,China, 2012

M.Sc., George Mason University, VA, 2020

Advisor: Liang Zhao, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2022

4

Abstract

The Applications of Alternating Minimization Algorithms on Deep Learning Models
By Junxiang Wang

Gradient Descent(GD) and its variants are the most popular optimizers for train-
ing deep learning models. However, they suffer from many challenges such as gradient
vanishing and backward locking, which prevent their more widespread use. To address
these intrinsic drawbacks, Alternating Minimization(AM) methods have attracted at-
tention from researchers as a potential way to train deep learning models. Their idea
is to decompose a neural network into a series of linear and nonlinear equality con-
straints, which generate multiple subproblems and they can be minimized alternately.
Their empirical evaluations demonstrate good scalability and high accuracy. They
also avoid gradient vanishing problems and allow for non-differentiable activation
functions, as well as allowing for complex non-smooth regularization and the con-
straints that are increasingly important for neural network architectures.

This dissertation discusses the applications of AM methods on deep learning
models, which can be categorized into three research topics: 1). AM methods on
Multi-Layer Perceptron(MLP), which includes deep learning Alternating Direction
Method of Multipliers(dlADMM), and monotonous Deep Learning Alternating Min-
imization(mDLAM). 2). AM methods on Graph Neural Network(GNN), which in-
cludes the Invertible Validity-aware Graph Diffusion(IVGD). 3). AM methods for
distributed neural network training, which includes parallel deep learning Alternat-
ing Direction Method of Multipliers(pdADMM), pdADMM-G, and pdADMM-G-Q.

For the dlADMM algorithm, parameters in each layer are updated in a back-
ward and forward fashion. The time complexity is reduced from cubic to quadratic
in(latent) feature dimensions for subproblems by iterative quadratic approximations
and backtracking. Finally, we provide the convergence guarantee of the dlADMM
algorithm under mild conditions with a sublinear convergence rate o(1/k).

For the mDLAM algorithm, our innovative inequality-constrained formulation in-
finitely approximates the original problem with non-convex equality constraints, en-
abling our convergence proof of the proposed mDLAM algorithm regardless of the
choice of hyperparameters. Our mDLAM algorithm is shown to achieve a fast linear
convergence by the Nesterov acceleration technique.

For the IVGD model, we unroll AM methods into GNN models for graph source
localization. Specifically, first, to inversely infer sources of graph diffusion, we propose
a graph residual scenario to make existing graph diffusion models invertible with the-
oretical guarantees; second, we develop a novel error compensation mechanism that
learns to offset the errors of the inferred sources. Finally, to ensure the validity of
the inferred sources, we unroll AM methods into the proposed validity-aware layers
to project inferred sources to feasible regions by encoding validity constraints. A lin-
earization technique is proposed to strengthen the efficiency of our proposed layers.
The convergence of the proposed IVGD is proven theoretically.

For the pdADMM algorithm, we achieve model parallelism by breaking layer de-
pendency: parameters in each layer of neural networks can be updated independently

5

in parallel. The convergence of the proposed pdADMM to a stationary point is the-
oretically proven under mild conditions with a sublinear convergence rate o(1/k).

For the pdADMM-G algorithm and the pdADMM-G-Q algorithm, in order to
achieve model parallelism, we extend the proposed pdADMM algorithm to train the
GA-MLP model, named the pdADMM-G algorithm. The extended pdADMM-G-Q
algorithm reduces communication costs by introducing the quantization technique.
Theoretical convergence to a (quantized) stationary point of two proposed algorithms
is provided with a sublinear convergence rate o(1/k).

6

The Applications of Alternating Minimization Algorithms on Deep Learning Models

By

Junxiang Wang
B.S., East China Normal University, Shanghai,China, 2012

M.Sc., George Mason University, VA, 2020

Advisor: Liang Zhao, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2022

7

Acknowledgments

Firstly, I would like to express my heartfelt gratitude to to my mentor, Dr. Liang

Zhao, for his support during my Ph.D study. His effective instruction and mental

encouragement helped me overcome the difficulty of my research projects. I really

appreciate the efforts Dr Liang Zhao made when he revised my research papers and

presentation slides over and over. Without his guidance, I would never be able to

publish many papers during these years.

Secondly, I appreciate all my committee members, Dr.Carl Yang, Dr. Li Xiong,

and Dr. Lars Ruthotto. They provided insightful comments to the my preliminary

dissertation prospectus, and the draft of the dissertation thesis. Their useful sugges-

tions broadened my research horizon, and left me equipped with ideas of new research

directions. Special thanks go to Dr.Yue Cheng, who provided valuable suggestions

and hardware support from the level of system infrastructures during our research

collaboration.

Thirdly, I would like to thank my research collaborators in and out of the Dr.

Liang Zhao’s laboratory: Hongyi Li, Xiaojie Guo, Chen Ling, Junji Jiang, Shiyu

Wang, Guangji Bai, Yuyang Gao, and Zheng Chai, to name but a few. Thank you

all for your unique contributions to our papers and useful advices to improve our

research ideas.

Finally, I would like to dedicate this dissertation thesis to my girlfriend, my par-

ents, and other family members. They provided me with support and courage during

this memorable journey.

CONTENTS i

Contents

1 Introduction 1

1.1 Contributions . 7

1.2 The Organization of the dissertation 11

2 The dlADMM Algorithm 12

2.1 Introduction . 12

2.2 Related Work . 15

2.3 dlADMM . 16

2.3.1 Problem Transformation . 16

2.3.2 the Proposed dlADMM Algorithm 17

2.3.3 The Quadratic Approximation and Backtracking 20

2.4 Convergence Analysis . 25

2.4.1 Assumptions . 26

2.4.2 Key Properties . 26

2.5 Experiments . 29

2.5.1 Experiment Setup . 29

2.5.2 Experimental Results . 31

2.6 Conclusion . 35

3 The mDLAM Algorithm 37

3.1 Introduction . 37

CONTENTS ii

3.2 Related Work . 39

3.3 Model and Algorithm . 41

3.3.1 Inequality Approximation for Deep Learning 41

3.3.2 Alternating Optimization . 42

3.4 Convergence Analysis . 46

3.4.1 Convergence Properties . 47

3.4.2 Convergence of the Proposed mDLAM Algorithm 48

3.4.3 Discussion . 49

3.5 Experiments . 50

3.5.1 Datasets and Parameter Settings 50

3.5.2 Convergence . 51

3.5.3 Performance . 52

3.5.4 Sensitivity Analysis . 55

3.6 Conclusion . 58

4 The pdADMM Algorithm 59

4.1 Introduction . 59

4.2 Related Work . 61

4.3 pdADMM . 63

4.3.1 Problem Reformulation . 63

4.3.2 Solutions to All Subproblems 65

4.4 Convergence Analysis . 68

4.5 Experiments . 72

4.5.1 Datasets . 72

4.5.2 Speedup . 73

4.5.3 Convergence . 77

4.5.4 Performance . 77

4.6 Conclusion . 80

CONTENTS iii

5 The pdADMM-G and pdADMM-G-Q Algorithms 81

5.1 Introduction . 81

5.2 Related Work . 84

5.3 The pdADMM-G Algorithm . 84

5.3.1 Problem Formulation . 85

5.3.2 The pdADMM-G Algorithm 86

5.3.3 Quantization Extension of pdADMM-G(pdADMM-G-Q) . . . 89

5.4 Convergence Analysis . 90

5.5 Experiments . 96

5.5.1 Datasets and Settings . 97

5.5.2 Comparison Methods . 99

5.5.3 Convergence . 99

5.5.4 Speedup . 102

5.5.5 Communication Overheads . 104

5.5.6 Performance . 105

5.6 Conclusion . 108

6 Conclusion and Future Works 109

6.1 Research Tasks . 111

6.1.1 The dlADMM Algorithm . 111

6.1.2 The mDLAM Algorithm . 113

6.1.3 The pdADMM Algorithm . 114

6.1.4 The pdADMM-G and pdADMM-G-Q Algorithms 115

6.1.5 The IVGD Model . 116

6.2 Discussion . 117

6.3 Current Publications . 119

6.3.1 Contributions of Published Papers Contributing to dissertation 119

6.3.2 Published Papers During My Ph.D. 120

CONTENTS iv

6.3.3 Papers Published Before Ph.D. 123

6.3.4 Submitted and In-preparation Papers 124

6.4 Future Research Directions . 125

6.4.1 Parallel Training of Graph Neural Networks on Large-Scale

Graphs . 125

6.4.2 Stochastic AM Algorithms for Large-Scale Datasets 125

Appendix A Appendix of the dlADMM Algorithm 126

A.1 Algorithms to Update W k+1
l and ak+1

l 126

A.2 Preliminary Lemmas . 126

A.3 Proof of Theorem 1 . 131

A.4 Proof of Theorem 3 . 140

Appendix B Appendix of the mDLAM Algorithm 142

B.1 Definition . 142

B.2 Preliminary Lemmas . 145

B.3 Main Proofs . 146

Appendix C Appendix of the pdADMM Algorithm 158

C.1 Preliminary Results . 158

C.2 Main Proofs . 162

Appendix D Appendix of the pdADMM-G Algorithm 170

D.1 Convergence Proofs . 170

D.1.1 Preliminary Results . 170

D.1.2 Proof of Lemma 8 . 175

D.1.3 Proof of Lemma 9 . 175

D.1.4 Proof of Theorem 9 . 176

D.1.5 The proof of Theorem 10 . 181

CONTENTS v

D.1.6 The proof of Theorem 11 . 181

D.1.7 The proof of Theorem 12 . 182

D.2 More Experimental Results . 184

D.2.1 The Settings of All Hyperparameters 184

D.2.2 The Performance of Validation Sets 184

Bibliography 186

LIST OF FIGURES vi

List of Figures

1.1 The relationships among three research topics. 5

2.1 The overview of the proposed dlADMM algorithm. 18

2.2 Convergence curves of the proposed dlADMM algorithm on two datasets

when ρ = 1. 31

2.3 Divergence curves of the proposed dlADMM algorithm on two datasets

when ρ = 10−6. 32

2.4 Performance of the proposed dlADMM algorithm against all compari-

son methods on the MNIST dataset. 33

2.5 Performance of the proposed dlADMM algorithm against all compari-

son methods on the Fashion MNIST dataset. 33

3.1 Convergence curves of the proposed mDLAM algorithm on four datasets. 52

3.2 Test accuracy of the proposed mDLAM algorithm against all compar-

ison methods. 53

3.3 The relationship between the running time of the proposed mDLAM

algorithm and:(a) the number of neurons;(b) the value of ρ. 54

4.1 The overview of the proposed pdADMM algorithm. 65

4.2 The relationship between the speedup of the proposed pdADMM al-

gorithm and the number of layers on five datasets. 76

4.3 Convergence curves of the proposed pdADMM algorithm. 77

LIST OF FIGURES vii

4.4 Training accuracy of the proposed pdADMM algorithm against all

comparison methods on six datasets. 78

4.5 Test accuracy of the proposed pdADMM algorithm against all com-

parison methods on six datasets. 78

5.1 The overview of the proposed pdADMM-G optimization algorithm. . 87

5.2 Convergence curves of the pdADMM-G algorithm and the pdADMM-

G-Q algorithm on four datasets. 100

5.3 The speedup of the proposed pdADMM-G on different datasets con-

cerning the number of layers(i.e. a weak-scaling study). 101

5.4 The speedup of all methods on two large datasets concerning the num-

ber of GPUs(i.e. a strong-scaling study). 102

5.5 Communication overheads of two proposed algorithms on three datasets.103

LIST OF TABLES viii

List of Tables

1.1 Notations of the MLP training problem in this dissertation. 3

2.1 The relationship between running time per iteration(in second) of the

proposed dlADMM algorithm and the number of neurons as well as

the value of ρ. 34

2.2 The relationship between running time per iteration(in second) of the

proposed dlADMM algorithm and the size of training samples as well

as the value of ρ. 34

3.1 Statistics of four benchmark datasets. 50

3.2 Hyperparameter settings on four benchmark datasets. 50

3.3 The effect of ρ on the test accuracy of the proposed mDLAM algorithm

on four datasets. 56

3.4 The effect of the initial value of ε(i.e. ε0) on the test accuracy of the

proposed mDLAM algorithm on four datasets. 57

4.1 The relationship between the speedup of the proposed pdADMM al-

gorithm and the number of neurons on five datasets. 75

5.1 Important Notations . 85

5.2 Statistics of eight benchmark datasets. 97

5.3 Test performance of all methods when the number of neurons is 100. 106

LIST OF TABLES ix

5.4 Test performance of all methods when the number of neurons is 500. 107

6.1 Research tasks and status . 112

D.1 Hyperparameter settings of all methods on nine benchmark datasets

when the number of neurons is 100. 184

D.2 Hyperparameter settings of all methods on nine benchmark datasets

when the number of neurons is 500. 184

D.3 The validation performance of all methods when the number of neurons

is 100. 185

D.4 The validation performance of all methods when the number of neurons

is 500. 185

LIST OF ALGORITHMS x

List of Algorithms

1 The proposed dlADMM algorithm . 19

2 The Backtracking Algorithm to update ak+1
l 21

3 The Backtracking Algorithm to update W
k+1

l 23

4 The proposed mDLAM algorithm . 43

5 The proposed pdADMM algorithm . 64

6 The proposed pdADMM-G algorithm 88

7 The Backtracking Algorithm to Update W k+1
l 126

8 The Backtracking Algorithm to Update ak+1
l 127

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Deep learning has been the focus of the machine learning community during the

last decade. While conventional machine learning models such as Support Vector

Machine(SVM) require some assumptions(e.g., the margin should be as large as pos-

sible), and they have limited capacity to process natural data in their raw forms, deep

learning models have flexible forms and entail no requirement, and they are composed

of non-linear modules that can learn multiple levels of representations automatically

[59]. Because deep learning models perform surprisingly outstandingly on large-scale

datasets, they require efficient optimizers to obtain a feasible solution within realistic

time limits.

Gradient Descent(GD) was the most popular optimizer for training deep learning

models one decade ago due to its simplicity and effectiveness. However, it has some

drawbacks such as painful hyper-parameter tuning, and the possibility to plunge into

saddle points [27]. To address these issues, many variants of GD approaches have

been introduced and are well-known, including but not limited to GD momentum

[91], AdaGrad [28], AdaDelta [118] and Adam [52]. Among them, GD momentum,

AdaGrad, and AdaDelta improve GD via the first moment of the gradient, whereas

Adam improves them further via the second moment of the gradient. However, they

CHAPTER 1. INTRODUCTION 2

suffer from many challenges that prevent their more widespread use: the gradient

vanishing is one major challenge, which means the error signal diminishes as the

gradient is backpropagated. For example, a deep Recurrent Neural Network(RNN)

model easily suffers from the gradient vanishing problem because activation functions

are sigmoid or tanh, and their derivatives are smaller than 1 [76]. Poor conditioning is

another challenge, where a small change of input leads to a drastic change in the gra-

dient. Even though researchers have proposed many solutions(e.g. Rectified Linear

Unit(ReLU) [1], skip connection [37] and batch normalization [45]), these problems

still exist because the nested structures of deep learning models amplify the effects of

existing challenges such as gradient vanishing and poor conditioning. For example, a

narrow Multi-Layer Perceptron(MLP) model with skip connections and ReLU may

still be prone to the gradient vanishing problem.

To tackle these intrinsic drawbacks of gradient descent optimization methods, Al-

ternating Minimization(AM) methods have started to attract attention as a potential

way to solve deep learning problems. A neural network problem is reformulated as a

nested function associated with multiple linear and nonlinear transformations across

multi-layers. This nested structure is then decomposed into a series of linear and

nonlinear equality constraints by introducing auxiliary variables and penalty hyper-

parameters. The linear and nonlinear equality constraints generate multiple subprob-

lems, which can be minimized alternately. Many recent AM methods have focused on

applying the Alternating Direction Method of Multipliers(ADMM) [93, 101], Block

Coordinate Descent(BCD) [120] and Method of Auxiliary Coordinates(MAC) [9] to

replace a nested neural network with a constrained problem without nesting, with

empirical evaluations demonstrating good scalability in terms of the number of layers

and high accuracy on the test sets. These methods also avoid gradient vanishing

problems and allow for non-differentiable activation functions such as binarized neu-

ral networks [22], as well as allowing for complex non-smooth regularization and the

CHAPTER 1. INTRODUCTION 3

Table 1.1: Notations of the MLP training problem in this dissertation.

Notations Descriptions
L The number of layers.
Wl The weight matrix for the l-th layer.
zl The output of the linear mapping for the l-th layer.

fl(zl) The nonlinear activation function for the l-th layer.
al The output for the l-th layer.
x The input matrix of the neural network.
y The predefined label vector.

R(zL, y) The risk function.
nl The number of neurons for the l-th layer.

constraints that are increasingly important for deep neural architectures that are

required to satisfy practical requirements such as interpretability, energy-efficiency,

and cost awareness [9]. The ADMM, as a representative of AM methods, has been

explored extensively for different neural network architectures. It was first used to

solve the MLP problem [93], and then was extended to other architectures such as

RNN [92].

This dissertation studies how AM methods can be utilized to train the MLP

model, which is the most fundamental model in deep learning. Table 1.1 lists im-

portant notations utilized in this dissertation. A typical MLP model is defined by

multiple linear mappings and nonlinear activation functions. A linear mapping for

the l-th layer is composed of a weight matrix Wl ∈ Rnl×nl−1 , where nl is the number

of neurons for the l-th layer; a nonlinear mapping for the l-th layer is defined by a

continuous activation function fl(•). Given an input al−1 ∈ Rnl−1 from the (l− 1)-th

layer, the l-th layer outputs al = fl(Wlal−1). Obviously, al−1 is nested in al = fl(•).

By introducing zl which serves as the output of the linear mapping for the l-th layer,

the task of training the MLP model is formulated mathematically as follows:

Problem 1.

minWl,zl,al R(zL, y) s.t. zl = Wlal−1(l = 1, · · · , L), al = fl(zl) (l = 1, · · · , L− 1)

CHAPTER 1. INTRODUCTION 4

In Problem 1, a0 = x ∈ Rn0 is the input of the MLP model where n0 is the number

of feature dimensions, and y is a predefined label vector. R(zL, y) is a risk function

for the L-th layer, which is convex, continuous, and proper.

The goal of this dissertation is to develop optimization algorithms based on AM

methods to address Problem 1. While some existing papers such as [9, 93, 120] stud-

ied this problem, they suffer from several challenges, which will be addressed in this

dissertation: 1. The lack of theoretical guarantees. While many previous papers

have studied the convergence theory of AM methods on nonconvex problems, they

cannot be directly applied to neural networks. This is because a typical neural net-

work model is a nested formulation of nonlinear functions, which causes the objective

to be highly non-convex. 2. Expensive computations of subproblems. Some

subproblems generated by AM methods are computationally expensive to address.

This is because they involve matrix inversion. Computing an inverse matrix needs

further sub-iterations, and its time complexity is approximate O(n3), where n is a

feature dimension [6]. 3. Slow convergence toward solutions. For some AM

methods such as ADMM, their empirical convergence curves are long-tailed. In other

words, they usually take hundreds of iterations to converge to high accuracy, even for

simple examples [6]. It is often the case that they are stuck on a modest solution.

4. The lack of investigations to parallel training neural networks. Existing

state-of-the-art algorithms are still based on GD to achieve parallel training of neu-

ral networks. However, they are subject to the backward locking problem [44]: the

gradient calculations in one layer tightly depend on and have to wait for results of all

previous layers, which prevents gradients of different layers from being calculated in

parallel. While AM methods have great potential to address this drawback, they are

rarely explored, developed, and evaluated.

In order to address all these challenges, we propose several AM methods to han-

dle these challenges in the dissertation. They can be categorized into three research

CHAPTER 1. INTRODUCTION 5

Figure 1.1: The relationships among three research topics.

topics illustrated by Figure 1.1, all of which are shown below:

1. AM methods on Multi-Layer Perceptron(MLP). Two AM methods,

the deep learning Alternating Direction Method of Multipliers(dlADMM) [101] and

monotonous Deep Learning Alternating Minimization(mDLAM) [106], are proposed

to train MLP models. They will be introduced in Chapters 2 and 3, respectively.

In the dlADMM algorithm, parameters of a neural network are updated back-

ward and then forward so that the parameter information is exchanged efficiently(i.e.

address Challenge 3); the time complexity for subproblems is reduced from cubic to

quadratic in(latent) feature dimensions via a dedicated algorithm that utilizes itera-

tive quadratic approximations and backtracking(i.e. address Challenge 2). Finally, we

provide the first proof of global convergence for an ADMM-based method(dlADMM)

in a deep neural network problem under mild conditions(i.e. address challenge 1).

The mDLAM algorithm approximates the original problem by an innovative for-

mulation with inequality constraints, enabling our convergence proof of the proposed

mDLAM algorithm regardless of the choice of hyperparameters(i.e. address Chal-

lenge 1). It is shown to achieve a fast linear convergence by the Nesterov acceleration

technique(i.e. address Challenges 1 and 3).

CHAPTER 1. INTRODUCTION 6

2. AM methods on Graph Neural Network(GNN). We extend the appli-

cations of AM methods from the MLP to the GNN because GNN models deal with

non-IID data (i.e. nodes and their connections in a graph), and the MLP can be con-

sidered as a special case of GNN models. GNN models incorporate node attributes

into models and learn node representations effectively by capturing network topology

and neighboring information [53]. Moreover, they can ”learn” rules from the data in

an end-to-end fashion. We devise GNN models via AM methods to fulfill graph learn-

ing tasks. For example, graph source localization aims to detect source nodes of a

graph given their future graph diffusion patterns. It covers a wide range of real-world

applications such as misinformation detection [46], Email virus localization [75], and

malware detection [49].

We propose a novel GNN-based model, Invertible Validity-aware Graph Diffu-

sion(IVGD), for graph source localization via unrolling AM methods into neural net-

works [104]. Specifically, first, to inversely infer sources of graph diffusion, we propose

a graph residual scenario to make existing graph diffusion models invertible with the-

oretical guarantees; second, we develop a novel error compensation mechanism that

learns to offset the errors of the inferred sources. Finally, to ensure the validity of

the inferred sources, we unroll AM methods into the proposed validity-aware lay-

ers to project inferred sources to feasible regions by encoding validity constraints.

A linearization technique is proposed to strengthen the efficiency of our proposed

layers(i.e. address Challenge 2). The convergence of the proposed IVGD is proven

theoretically(i.e. address Challenge 1). Extensive experiments on nine real-world

datasets demonstrate that our proposed IVGD outperforms state-of-the-art compar-

ison methods significantly.

3. AM methods for distributed neural network training. We extend AM

methods on MLP and GNN models to realize distributed training via model paral-

lelism (i.e. layerwise parallelism). The proposed AM methods include parallel deep

1.1. CONTRIBUTIONS 7

learning Alternating Direction Method of Multipliers(pdADMM) [103], the graph

pdADMM(pdADMM-G) [105], and the quantized graph pdADMM(pdADMM-G-Q)

[105]. They will be introduced in Chapters 4 and 5, respectively.

The pdADMM algorithm achieves layer parallelism via breaking layer dependency

among variables so that parameters in each layer of neural networks can be updated

independently in parallel(i.e. address Challenge 4). The convergence of the proposed

pdADMM to a stationary point is theoretically proven under mild conditions(i.e. ad-

dress Challenge 1).

We extend the pdADMM algorithm to train Graph Neural Networks(GNNs) such

as the Graph-Augmented Multi-Layer Perceptron(GA-MLP) model, which leads to

the pdADMM-G algorithm, and the pdADMM-G-Q algorithm extends the pdADMM-

G algorithm by the quantization technique, in order to reduce communication over-

heads(i.e. address Challenge 4). Theoretical convergence to a (quantized) stationary

point of the pdADMM-G algorithm and the pdADMM-G-Q algorithm is provided

with a sublinear convergence rate o(1/k), where k is the number of iterations(i.e.

address Challenge 1).

1.1 Contributions

The major proposed research contributions can be stated as follows.

The dlADMM Algorithm:

• We present a novel and efficient dlADMM algorithm to handle the

MLP learning problem. The new dlADMM updates parameters in a back-

ward and then forward fashion to speed up the convergence process.

• We propose the use of quadratic approximation and backtracking

techniques to avoid the need for matrix inversion as well as reduce

the computational cost for large-scale datasets. The time complexity of

1.1. CONTRIBUTIONS 8

subproblems in dlADMM is reduced from O(n3) to O(n2).

• We investigate several attractive convergence properties of dlADMM.

The convergence assumptions are very mild to ensure that most deep learning

applications satisfy our assumptions. dlADMM is guaranteed to converge to

a stationary point globally(i.e., whatever the initialization is) when the hyper-

parameter is sufficiently large. We also analyze the new algorithm’s sublinear

convergence rate.

• We conduct experiments on several benchmark datasets to validate

our proposed dlADMM algorithm. The experimental results show that

the proposed dlADMM algorithm performs better than most existing state-of-

the-art algorithms, including GD and its variants.

The mDLAM Algorithm:

• We propose a novel formulation for neural network optimization. The

deeply nested activation functions are disentangled into separate functions in-

novatively coordinated by inherently convex inequality constraints.

• We present an accelerated optimization algorithm. A quadratic approx-

imation technique is utilized to avoid matrix inversion. Every subproblem has a

closed-form solution. The Nesterov acceleration technique is applied to further

boost convergence.

• We investigate the convergence of the proposed mDLAM algorithm

under mild conditions. The new mDLAM algorithm is guaranteed to con-

verge to a stationary point whatever hyperparameters we choose. Furthermore,

the proposed mDLAM algorithm is shown to achieve a linear convergence rate,

which is faster than existing methods.

1.1. CONTRIBUTIONS 9

• Extensive experiments are conducted to demonstrate the effective-

ness of the proposed mDLAM algorithm. We test our proposed mDLAM

algorithm on four benchmark datasets. Experimental results illustrate that

our proposed mDLAM algorithm is linearly convergent on four datasets, and

outperforms consistently state-of-the-art optimizers. Sensitivity analysis of the

running time shows that it increases linearly with the increase of neurons and

hyperparameters.

The IVGD Model:

• Design a generic end-to-end framework for source location. We develop

a framework for the inverse of graph diffusion models, and learn the rules of

graph diffusion models automatically. It does not require hand-crafted rules

and can be used for source localization. Our framework is generic to any graph

diffusion model, and the code has been released publicly.

• Develop an invertible graph diffusion model with an error compen-

sation mechanism. We propose a new graph residual net with Lipschitz reg-

ularization to ensure the invertibility of graph diffusion models. Furthermore,

we propose an error compensation mechanism to offset the errors inferred from

the graph residual net.

• Propose an efficient validity-aware layer to maintain the validity of in-

ferred sources. Our model can ensure the validity of inferred sources by auto-

matically learning validity-aware layers. We further accelerate the optimization

of the proposed layers by leveraging a linearization technique. It transforms

nonconvex problems into convex problems, which have closed-form solutions.

Moreover, we provide the convergence guarantees of the proposed IVGD to a

feasible solution.

1.1. CONTRIBUTIONS 10

• Conduct extensive experiments on nine datasets. Extensive experiments

on nine datasets have been conducted to demonstrate the effectiveness and ro-

bustness of our proposed IVGD. Our proposed IVGD outperforms all compari-

son methods significantly on five metrics, especially 20% on F1-Score.

The pdADMM Algorithm:

• We propose a novel reformulation of the MLP training problem. The

formulation splits a neural network into independent layer partitions and allows

ADMM to achieve model parallelism.

• We present a model-parallelism version of the ADMM algorithm to

train an MLP. All parameters in each layer can be updated in parallel to

speed up the training process significantly. All subproblems generated by the

pdADMM algorithm are discussed in detail.

• We investigate the convergence properties of parallel ADMM. For the

common nonlinear activation functions such as the Rectified linear unit(ReLU),

we prove that the pdADMM converges to a state-of-the-art stationary point

with a sublinear convergence rate o(1/k).

• We conduct extensive experiments on six benchmark datasets. Ex-

perimental results show the massive speedup of the proposed pdADMM as well

as its competitive performance with state-of-the-art optimizers.

The pdADMM-G and pdADMM-G-Q Algorithms:

• We propose a novel reformulation of GA-MLP models. It splits a neural

network into independent layer partitions and allows ADMM to achieve model

parallelism.

• We propose a novel pdADMM-G framework to train a GA-MLP

model. All subproblems generated by the ADMM algorithm are discussed.

1.2. THE ORGANIZATION OF THE DISSERTATION 11

The extended pdADMM-G-Q algorithm reduces communication costs by intro-

ducing the quantization technique.

• We provide the theoretical convergence guarantee of the proposed

pdADMM-G algorithm and the pdADMM-G-Q algorithm. Specifi-

cally, they converge to a(quantized) stationary point of GA-MLP models when

the hyperparameters are sufficiently large, and their sublinear convergence rates

are o(1/k).

• We conduct extensive experiments to show the effectiveness of two

proposed algorithms. Experiments on nine benchmark datasets show the

convergence, the massive speedup of the proposed pdADMM-G algorithm and

the proposed pdADMM-G-Q algorithm, as well as their outstanding perfor-

mance when compared with all state-of-the-art optimizers. Moreover, the pro-

posed pdADMM-G-Q algorithm reduces communication overheads by up to

45%.

1.2 The Organization of the dissertation

The remaining dissertation is organized as follows: Chapter 2 proposes the dlADMM

algorithm. Chapter 3 presents the mDLAM algorithm. The pdADMM algorithm

is introduced in Chapter 4. The pdADMM-G algorithm and the pdADMM-G-Q

algorithm are proposed in Chapter 5. Chapter 6 summarizes this dissertation and

discusses future work.

CHAPTER 2. THE DLADMM ALGORITHM 12

Chapter 2

The dlADMM Algorithm

2.1 Introduction

As introduced in Chapter 1, Gradient Descent(GD) and its variants are state-of-

the-art optimizers for training deep learning models. But they suffer from many

limitations such as gradient vanishing and poor conditioning. Recently, the use of

the Alternating Direction Method of Multipliers(ADMM) has been proposed as an

alternative to GD. The ADMM splits a problem into many subproblems and coordi-

nates them globally to obtain the solution. It has been demonstrated successfully for

many machine learning applications [6]. The advantages of ADMM are numerous: it

exhibits linear scaling as data is processed in parallel across cores; it does not require

gradient steps and hence avoids gradient vanishing problems; it is also immune to

poor conditioning [93].

Even though the performance of the ADMM seems promising, there are still sev-

eral challenges at must be overcome: 1. The lack of global convergence guaran-

tees. Even though many empirical experiments have shown that ADMM converges

in deep learning applications, the underlying theory governing this convergence be-

havior remains mysterious. This is because a typical deep learning problem consists

2.1. INTRODUCTION 13

of a combination of linear and nonlinear mappings, causing optimization problems

to be highly nonconvex. This means that traditional proof techniques cannot be di-

rectly applied. 2. Slow convergence towards solutions. Although ADMM is

a powerful optimization framework that can be applied to large-scale deep learning

applications, it usually converges slowly to high accuracy, even for simple examples

[6]. It is often the case that ADMM becomes trapped in a modest solution and hence

performs worse than GD, as the experiment described later in this chapter in Section

2.5 demonstrates. 3. Cubic time complexity concerning feature dimensions.

The implementation of the ADMM is very time-consuming for real-world datasets.

Experiments conducted by Taylor et al. found that ADMM required more than 7000

cores to train a neural network with just 300 neurons [93]. This computational bot-

tleneck mainly originates from the matrix inversion required to update the weight

parameters. Computing an inverse matrix needs further sub-iterations, and its time

complexity is approximate O(n3), where n is a feature dimension [6].

To deal with these difficulties simultaneously, in this chapter we propose a novel

optimization framework for a deep learning Alternating Direction Method of Multi-

pliers(dlADMM) algorithm. Specifically, our new dlADMM algorithm updates pa-

rameters first in a backward direction and then forwards. This update approach

propagates parameter information across the whole network and accelerates the con-

vergence process. It also avoids the operation of matrix inversion using the quadratic

approximation and backtracking techniques, reducing the time complexity from O(n3)

to O(n2). Finally, to the best of our knowledge, we provide the first proof of the

global convergence of the ADMM-based method(dlADMM) in a deep neural network

problem. The assumption conditions are mild enough for many common loss func-

tions(e.g. cross-entropy loss and square loss) and activation functions(e.g. Rectified

Linear Unit(ReLU) and leaky ReLU) to satisfy. Our proposed framework and conver-

gence proof are highly flexible for Multi-Layer Perceptron(MLP) neural networks, as

2.1. INTRODUCTION 14

well as being easily extendable to other popular network architectures such as Convo-

lutional Neural Networks [54] and Recurrent Neural Networks [69]. Our contributions

in this chapter include:

• We present a novel and efficient dlADMM algorithm to handle the MLP training

problem. The new dlADMM updates parameters in a backward-forward fashion

to speed up the convergence process.

• We propose the use of quadratic approximation and backtracking techniques to

avoid the need for matrix inversion as well as to reduce the computational cost

for large-scale datasets. The time complexity of subproblems in dlADMM is

reduced from O(n3) to O(n2).

• We investigate several attractive convergence properties of dlADMM. The con-

vergence assumptions are very mild to ensure that most deep learning applica-

tions satisfy our assumptions. dlADMM is guaranteed to converge to a station-

ary point globally(i.e., whatever the initialization is) when the hyperparameter

is sufficiently large. We also analyze the new algorithm’s sublinear convergence

rate.

• We conduct experiments on several benchmark datasets to validate our proposed

dlADMM algorithm. The results show that the proposed dlADMM algorithm

performs better than most existing state-of-the-art algorithms, including GD

and its variants.

The rest of this chapter is organized as follows. In Section 2.2, we summarize recent

research related to this topic. In Section 2.3, we present the new dlADMM algorithm,

quadratic approximation, and the backtracking techniques utilized. In Section 2.4,

we introduce the main convergence results for the Proposed dlADMM algorithm. The

results of extensive experiments conducted to show the convergence, efficiency, and

2.2. RELATED WORK 15

effectiveness of our proposed new dlADMM algorithm are presented in Section 2.5,

and Section 2.6 concludes this chapter by summarizing the research.

2.2 Related Work

Previous literature related to this research includes optimization for deep learning

models and ADMM for nonconvex problems.

Optimization for Deep Learning Models: The GD algorithm and its vari-

ants play a dominant role in the research conducted by the deep learning optimiza-

tion community. The famous back-propagation algorithm was firstly introduced by

Rumelhart et al. to train the neural network effectively [85]. Since the superior per-

formance exhibited by AlexNet [54] in 2012, deep learning has attracted a great deal

of researchers’ attention and many new optimizers based on GD have been proposed

to accelerate the convergence process, including the use of Polyak momentum [80], as

well as research on the Nesterov momentum and initialization by Sutskever et al. [91].

Adam is the most popular method because it is computationally efficient and requires

little tuning [52]. Other well-known methods that incorporate adaptive learning rates

include AdaGrad [28], RMSProp [95], and AMSGrad [82]. Recently, the Alternating

Direction Method of Multipliers(ADMM) has become popular with researchers due

to its excellent scalability [93]. However, even though these optimizers perform well

in real-world applications, their convergence mechanisms remain mysterious. This

is because convergence assumptions do not apply to deep learning problems, which

often require non-differentiable activation functions such as ReLU.

Convergence Analysis of Nonconvex ADMM: Despite the outstanding per-

formance of the nonconvex ADMM, its convergence theory is not well established

due to the complexity of both coupled objectives and various inequality and equality

constraints. Specifically, Magnusson et al. provided new convergence conditions of

2.3. DLADMM 16

ADMM for a class of nonconvex structured optimization problems [67]; Li and Pong

investigated the properties of the nonconvex ADMM on the composite optimization

problem [60]; Wang et al. presented mild convergence conditions of the nonconvex

ADMM where the objective function can be coupled and nonsmooth [107]; Hong et

al. proved that the classic ADMM converges to stationary points provided that the

penalty parameter is sufficiently large [40]; Wang et al. proved the convergence of the

multi-convex ADMM [100]; Liu et al. proved the convergence properties of a parallel

and linearized ADMM [64]; Xie et al. proposed a deep-learning-based ADMM algo-

rithm to study the constrained optimization problems [113]. For more work, please

refer to [14, 33, 34, 94, 98, 102].

2.3 dlADMM

We present our proposed dlADMM algorithm in this section. Section 2.3.1 formu-

lates the deep neural network problem, Section 2.3.2 introduces how the Proposed

dlADMM algorithm works, and the quadratic approximation and backtracking tech-

niques used to solve the subproblems are presented in Section 2.3.3.

2.3.1 Problem Transformation

Problem 1 is difficult to solve because of the nonlinear constraint al = fl(zl). To

address this, we can relax Problem 1 by adding an ℓ2 penalty to address Problem 2

as follows:

Problem 2.

minWl,zl,al F (W, z, a) = R(zL, y) + (ν/2)
∑L−1

l=1
(∥zl −Wlal−1∥22 + ∥al − fl(zl)∥22)

s.t. zL = WLaL−1

2.3. DLADMM 17

where W = {Wl}Ll=1, z = {zl}Ll=1, a = {al}L−1
l=1 and ν > 0 is a tuning parameter.

Compared with Problem 1, Problem 2 has only a linear constraint zL = WLaL−1 and

hence is easier to solve. It is straightforward to show that as ν →∞, the solution to

Problem 2 approaches that of Problem 1.

2.3.2 the Proposed dlADMM Algorithm

We introduce the Proposed dlADMM algorithm to solve Problem 2 in this section.

The traditional ADMM strategy for optimizing parameters is to start from the first

layer and then update parameters in the following layer sequentially [93]. In this

case, the parameters in the final layer are subject to the parameter update in the

first layer. However, the parameters in the final layer contain important information

that can be transmitted to the previous layers to speed up convergence. To achieve

this, we propose our novel dlADMM framework, as shown in Figure 2.1. Specifically,

the Proposed dlADMM algorithm updates parameters in two steps. In the first, the

Proposed dlADMM begins updating from the L-th(final) layer and moves backward

toward the first layer. The update order of parameters in the same layer is al → zl →

Wl. In the second, the Proposed dlADMM reverses the update direction, beginning

at the first layer and moving forward toward the L-th(final) layer. The update order

of the parameters in the same layer is Wl → zl → al. The parameter information for

all layers can be exchanged completely by adopting this update approach.

Now we can present our dlADMM algorithm mathematically. The augmented

Lagrangian function of Problem 2 is shown in the following form:

Lρ(W, z, a, u) = R(zL, y) + ϕ(W, z, a, u) (2.1)

where ϕ(W, z, a, u) = (ν/2)
∑L−1

l=1 (∥zl−Wlal−1∥22+∥al−fl(zl)∥22)+uT (zL−WLaL−1)+

(ρ/2)∥zL − WLaL−1∥22, u is a dual variable and ρ > 0 is a hyperparameter of the

2.3. DLADMM 18

Figure 2.1: The overview of the proposed dlADMM algorithm.

Proposed dlADMM algorithm. We denote W
k+1

l , zk+1
l and ak+1

l as the backward

update of the Proposed dlADMM for the l-th layer in the (k + 1)-th iteration ,

while W k+1
l , zk+1

l and ak+1
l are denoted as the forward update of the Proposed

dlADMM for the l-th layer in the (k + 1)-th iteration. Moreover, we denote W
k+1

l =

{{W k
i }l−1

i=1, {W
k+1

i }Li=l}, zk+1
l = {{zki }l−1

i=1, {zk+1
i }Li=l}, ak+1

l = {{aki }l−1
i=1, {ak+1

i }L−1
i=l },

Wk+1
l = {{W k+1

i }li=1, {W
k+1

i }Li=l+1}, zk+1
l = {{zk+1

i }li=1, {zk+1
i }Li=l+1},

ak+1
l = {{ak+1

i }li=1, {ak+1
i }L−1

i=l+1}, W
k+1

= {W k+1

i }Li=1, zk+1 = {zk+1
i }Li=1, ak+1 =

{ak+1
i }L−1

i=1 , W
k+1 = {W k+1

i }Li=1, z
k+1 = {zk+1

i }Li=1, and ak+1 = {ak+1
i }L−1

i=1 . Then the

Proposed dlADMM algorithm is shown in Algorithm 1. Specifically, Lines 5, 6, 10,

13, 15, and 16 solve six subproblems, namely, ak+1
l , zk+1

l , W
k+1

l , W k+1
l , zk+1

l and ak+1
l ,

respectively. Lines 21 and 22 update the residual rk+1 and the dual variable uk+1,

respectively.

2.3. DLADMM 19

Algorithm 1: The proposed dlADMM algorithm

Require: y, a0 = x, ρ, ν.
Ensure: al(l = 1, · · · , L− 1),Wl(l = 1, · · · , L), zl(l = 1, · · · , L).
1: Initialize k = 0.
2: while Wk+1, zk+1, ak+1 not converged do
3: for l = L to 1 do
4: if l < L then
5: Update ak+1

l in Equation (2.3).
6: Update zk+1

l in Equation (2.4).
7: else
8: Update zk+1

L in Equation (2.5).
9: end if
10: Update W

k+1

l in Equation (2.7).
11: end for
12: for l = 1 to L do
13: Update W k+1

l in Equation (2.9).
14: if l < L then
15: Update zk+1

l in Equation (2.10).
16: Update ak+1

l in Equation (2.12).
17: else
18: Update zk+1

L in Equation (2.11).
19: rk+1 ← zk+1

L −W k+1
L ak+1

L−1.
20: uk+1 ← uk + ρrk+1.
21: end if
22: end for
23: k ← k + 1.
24: end while
25: Output W, z, a.

2.3. DLADMM 20

2.3.3 The Quadratic Approximation and Backtracking

The six subproblems in Algorithm 1 are discussed in detail in this section. Most

can be solved by quadratic approximation and the backtracking techniques described

above, so the operation of the matrix inversion can be avoided.

1. Update ak+1
l

The variables ak+1
l (l = 1, · · · , L− 1) are updated as follows:

ak+1
l ← argminal Lρ(W

k+1

l+1 , z
k+1
l+1 , {a

k
i }l−1

i=1, al, {ak+1
i }L−1

i=l+1, u
k)

The subproblem is transformed into the following form after it is replaced by

Equation (2.1).

ak+1
l ← argminal ϕ(W

k+1

l+1 , z
k+1
l+1 , {a

k
i }l−1

i=1, al, {ak+1
i }L−1

i=l+1, u
k) (2.2)

Because al and Wl+1 are coupled in ϕ(•), in order to solve this problem, we must

compute the inverse matrix of W
k+1

l+1 , which involves sub-iterations and is computa-

tionally expensive [93]. In order to handle this challenge, we define Ql(al; τ
k+1
l) as a

quadratic approximation of ϕ at akl , which is mathematically reformulated as follows:

Ql(al; τ
k+1
l) = ϕ(W

k+1

l+1 , z
k+1
l+1 , a

k+1
l+1 , u

k) + (∇akl
ϕ)T (W

k+1

l+1 , z
k+1
l+1 , a

k+1
l+1 , u

k)(al − akl)

+ ∥τ k+1
l ◦ (al − akl)◦2∥1/2

where τ k+1
l > 0 is a parameter vector, ◦ denotes the Hadamard product(i.e. the

elementwise product), and a◦b denotes a to the Hadamard power of b and ∥ • ∥1 is

the ℓ1 norm. ∇akl
ϕ is the gradient of al at a

k
l . Ql(a

k
l ; τ

k+1
l) = ϕ(W

k+1

l+1 , z
k+1
l+1 , a

k+1
l+1 , u

k).

Rather than minimizing the original problem in Equation (2.2), we instead solve the

2.3. DLADMM 21

following problem:

ak+1
l ← argminal Ql(al; τ

k+1
l) (2.3)

Because Ql(al; τ
k+1
l) is a quadratic function with respect to al, the solution can be

obtained by

ak+1
l ← akl −∇akl

ϕ/τ k+1
l

given a suitable τ k+1
l . Now the main focus is how to choose τ k+1

l . Algorithm 2 shows

the backtracking algorithm utilized to find a suitable τ k+1
l . Lines 2-5 implement a

while loop until the condition ϕ(W
k+1

l+1 , z
k+1
l+1 , a

k+1
l , uk) ≤ Ql(a

k+1
l ; τ k+1

l) is satisfied. As

τ k+1
l becomes larger and larger, ak+1

l is close to akl and akl satisfies the loop condition,

which precludes the possibility of the infinite loop. The time complexity of Algorithm

2 is O(n2), where n is the number of features or neurons.

Algorithm 2: The Backtracking Algorithm to update ak+1
l

Require: W
k+1

l+1 , z
k+1
l+1 , a

k+1
l+1 , u

k, ρ, some constant η > 1.

Ensure: τ k+1
l ,ak+1

l .
1: Pick up t and β = akl −∇akl

ϕ/t

2: while ϕ(W
k+1

l+1 , z
k+1
l+1 , {aki }

l−1
i=1, β, {ak+1

i }L−1
i=l+1, u

k) > Ql(β; t) do
3: t← tη.
4: β ← akl −∇akl

ϕ/t.
5: end while
6: Output τ k+1

l ← t.
7: Output ak+1

l ← β.

2. Update zk+1
l

The variables zk+1
l (l = 1, · · · , L) are updated as follows:

zk+1
l ← argminzl Lρ(W

k+1

l+1 , {zki }l−1
i=1, zl, {zk+1

i }Li=l+1, a
k+1
l , uk)

2.3. DLADMM 22

which is equivalent to the following forms: for zk+1
l (l = 1, · · · , L− 1),

zk+1
l ← argminzl ϕ(W

k+1

l+1 , {zki }l−1
i=1, zl, {zk+1

i }Li=l+1, a
k+1
l , uk) (2.4)

and for zk+1
L ,

zk+1
L ← argminzL ϕ(W

k, {zki }L−1
i=1 , zL, a

k, uk) +R(zL, y) (2.5)

Equation (2.4) is highly nonconvex because the nonlinear activation function f(zl)

is contained in ϕ(•). For common activation functions such as ReLU and leaky ReLU,

Equation (2.4) has a closed-form solution; for other activation functions like sigmoid

and hyperbolic tangent(tanh), a look-up table is recommended [93].

Equation (2.5) is a convex problem because ϕ(•) and R(•) are convex with regard

to zL. Therefore, Equation (2.5) can be solved by Fast Iterative Soft-Thresholding

Algorithm(FISTA) [2].

3. Update W
k+1

l

The variables W
k+1

l (l = 1, · · · , L) are updated as follows:

W
k+1

l ← argminWl
Lρ({W k

i }l−1
i=1,Wl, {W

k+1

i }Li=l+1, z
k+1
l , ak+1

l , uk)

which is equivalent to the following form:

W
k+1

l ← argminWl
ϕ({W k

i }l−1
i=1,Wl, {W

k+1

i }Li=l+1, z
k+1
l , ak+1

l , uk) (2.6)

Due to the same challenge in updating ak+1
l , we define P l(Wl; θ

k+1

l) as a quadratic

approximation of ϕ at W k
l . The quadratic approximation is mathematically reformu-

2.3. DLADMM 23

lated as follows [2]:

P l(Wl; θ
k+1

l) = ϕ(W
k+1

l+1 , z
k+1
l , ak+1

l , uk) + (∇Wk
l
ϕ)T (W

k+1

l+1 , z
k+1
l , ak+1

l , uk)(Wl −W k
l)

+ ∥θk+1

l ◦ (Wl −W k
l)

◦2∥1/2

where θ
k+1

l > 0 is a parameter vector, which is chosen by the Algorithm 3. Instead

of minimizing the Equation (2.6), we minimize the following:

W
k+1

l ← argminWl
P l(Wl; θ

k+1

l) (2.7)

Equation (2.7) is convex and hence can be solved exactly.

Algorithm 3: The Backtracking Algorithm to update W
k+1

l

Require: W
k+1

l+1 , z
k+1
l ,ak+1

l ,uk, ρ, some constant γ > 1.

Ensure: θ
k+1

l ,W
k+1

l .
1: Pick up α and ζ = W k

l −∇Wk
l
ϕ/α.

2: while ϕ({W k
i }l−1

i=1, ζ, {W
k+1

i }Li=l+1, z
k+1
l , ak+1

l , uk) > P l(ζ;α) do
3: α← α γ.
4: Solve ζ by Equation (2.7).
5: end while
6: Output θ

k+1

l ← α.

7: Output W
k+1

l ← ζ.

4. Update W k+1
l

The variables W k+1
l (l = 1, · · · , L) are updated as follows:

W k+1
l ← argminWl

Lρ({W k+1
i }l−1

i=1,Wl, {W
k+1

i }Li=l+1, z
k+1
l−1 , a

k+1
l−1 , u

k)

which is equivalent to

W k+1
l ← argminWl

ϕ({W k+1
i }l−1

i=1,Wl, {W
k+1

i }Li=l+1, z
k+1
l−1 , a

k+1
l−1 , u

k) (2.8)

2.3. DLADMM 24

Similarly, we define Pl(Wl; θ
k+1
l) as a quadratic approximation of ϕ at W

k+1

l . The

quadratic approximation is then mathematically reformulated as follows [2]:

Pl(Wl; θ
k+1
l) = ϕ(Wk+1

l−1 , z
k+1
l−1 , a

k+1
l−1 , u

k)

+ (∇
W

k+1
l
ϕ)T (Wk+1

l−1 , z
k+1
l−1 , a

k+1
l−1 , u

k)(Wl −W
k+1

l)

+ ∥θk+1
l ◦ (Wl −W

k+1

l)◦2∥1/2

where θk+1
l > 0 is a parameter vector. Instead of minimizing the Equation (2.8), we

minimize the following:

W k+1
l ← argminWl

Pl(Wl; θ
k+1
l) (2.9)

The choice of θk+1
l is discussed in Section A.1 in the Appendix.

5. Update zk+1
l

The variables zk+1
l (l = 1, · · · , L) are updated as follows:

zk+1
l ← argminzl Lρ(W

k+1
l {zk+1

i }l−1
i=1, zl, {zk+1

i }Li=l+1, a
k+1
l−1 , u

k)

which is equivalent to the following forms for zl(l = 1, · · · , L− 1):

zk+1
l ← argminzl ϕ(W

k+1
l , {zk+1

i }l−1
i=1, zl, {zk+1

i }L−1
i=l+1, a

k+1
l−1 , u

k) (2.10)

and for zL:

zk+1
L ← argminzL ϕ(W

k+1
L , {zk+1

i }L−1
i=1 , zL, a

k
L−1, u

k) +R(zL, y) (2.11)

Solving Equations (2.10) and (2.11) proceeds exactly the same as solving Equations

(2.4) and (2.5), respectively.

6. Update ak+1
l

2.4. CONVERGENCE ANALYSIS 25

The variables ak+1
l (l = 1, · · · , L− 1) are updated as follows:

ak+1
l ← argminal Lρ(W

k+1
l , zk+1

l , {aki }l−1
i=1, al, {ak+1

i }L−1
i=l+1, u

k)

which is equivalent to the following form:

ak+1
l ← argminal ϕ(W

k+1
l , zk+1

l , {aki }l−1
i=1, al, {ak+1

i }L−1
i=l+1, u

k)

Ql(al; τ
k+1
l) is defined as the quadratic approximation of ϕ at ak+1

l as follows:

Ql(al; τ
k+1
l) = ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k) + (∇ak+1

l
ϕ)T (Wk+1

l , zk+1
l , ak+1

l−1 , u
k)(al − ak+1

l)

+ ∥τ k+1
l ◦ (al − ak+1

l)◦2∥1/2

and we can solve the following problem instead:

ak+1
l ← argminal Ql(al; τ

k+1
l) (2.12)

where τ k+1
l > 0 is a parameter vector. The solution to Equation (2.12) can be

obtained by ak+1
l ← ak+1

l −∇ak+1
l
ϕ/τ k+1

l . The choice of an appropriate τ k+1
l is shown

in Section A.1 in the Appendix.

2.4 Convergence Analysis

In this section, the theoretical convergence of the proposed dlADMM algorithm is an-

alyzed. Before we formally present the convergence results of the Proposed dlADMM

algorithms, Section 2.4.1 presents the necessary assumptions to guarantee the global

convergence of dlADMM. In Section 2.4.2, we prove the global convergence of the

Proposed dlADMM algorithm.

2.4. CONVERGENCE ANALYSIS 26

2.4.1 Assumptions

Assumption 1 (Closed-form Solution). There exist activation functions al = fl(zl)

such that Equations (2.4) and (2.10) have closed form solutions

zk+1
l = h(W

k+1

l+1 , a
k+1
l) and zk+1

l = h(Wk+1
l , ak+1

l−1), respectively, where h(•) and h(•)

are continuous functions.

This assumption can be satisfied by commonly used activation functions such as

ReLU and leaky ReLU. For example, for the ReLU function al = max(zl, 0), Equation

(2.10) has the following solution:

zk+1
l =

min(W k+1

l ak+1
l−1 , 0) zk+1

l ≤ 0

max((W k+1
l ak+1

l−1 + ak+1
l)/2, 0) zk+1

l ≥ 0

Assumption 2 (Objective Function). F (W, z, a) is coercive over the nonempty set

G = {(W, z, a) : zL−WLaL−1 = 0}. In other words, F (W, z, a)→∞ if (W, z, a) ∈ G

and ∥(W, z, a)∥ → ∞. Moreover, R(zL, y) is Lipschitz differentiable with Lipschitz

constant H ≥ 0.

The Assumption 2 is mild enough for most common loss functions to satisfy. For

example, the cross-entropy and square loss are Lipschitz differentiable.

2.4.2 Key Properties

We present the main convergence result of the proposed dlADMM algorithm in this

section. Specifically, as long as Assumptions 1-2 hold, then Properties 1-3 are satis-

fied, which are important to prove the global convergence of the proposed dlADMM

algorithm. The proof details are included in Section A.3 and Section A.4 in the

Appendix.

2.4. CONVERGENCE ANALYSIS 27

Property 1 (Boundness). If ρ >
√
17+1
2

H, then {Wk, zk, ak, uk} is bounded, and

Lρ(W
k, zk, ak, uk) is lower bounded.

Property 1 concludes that all variables and the value of Lρ have lower bounds. It

is proven under Assumptions 1 and 2, and its proof can be found in Section A.3 in

the Appendix.

Property 2 (Sufficient Descent). If ρ >
√
17+1
2

H so that C1 = ρ/2−H/2−2H2/ρ > 0

and C2 = ρ/2− 2H2/ρ > 0, then

Lρ(W
k, zk, ak, uk)− Lρ(W

k+1, zk+1, ak+1, uk+1)

≥
∑L

l=1
(∥θk+1

l ◦ (W k+1

l −W k
l)

◦2∥1/2 + ∥θk+1
l ◦ (W k+1

l −W k+1

l)◦2∥1/2

+ ∥τ k+1
l ◦ (ak+1

l − akl)◦2∥1/2 + ∥τ k+1
l ◦ (ak+1

l − ak+1
l)◦2∥1/2)

+ C2∥zk+1
L − zkL∥22 + C1∥zk+1

L − zk+1
L ∥

2
2 (2.13)

Property 2 depicts the monotonic decrease of the objective value during iterations.

The proof of Property 2 is detailed in Section A.3 in the Appendix.

Property 3 (Subgradient Bound). There exist a bounded Ck+1 > 0 and g ∈

∂Lρ(W
k+1,zk+1,ak+1) such that

∥g∥ ≤ Ck+1(∥Wk+1 −W
k+1∥+ ∥zk+1 − zk+1∥+ ∥ak+1 − ak+1∥+ ∥zk+1 − zk∥)

(2.14)

Property 3 ensures that the subgradient of the objective function is bounded by

variables. The proof of Property 3 requires Property 1 and the proof is elaborated in

Section A.3 in the Appendix. Now the global convergence of the Proposed dlADMM

algorithm is presented. The following theorem states that Properties 1-3 are guaran-

teed.

2.4. CONVERGENCE ANALYSIS 28

Theorem 1. For any ρ >
√
17+1
2

H, if Assumptions 1 and 2 are satisfied, then Prop-

erties 1-3 hold.

Proof. This theorem can be concluded by the proofs in Section A.3 in the Appendix.

The next theorem presents the global convergence of the Proposed dlADMM al-

gorithm.

Theorem 2 (Global Convergence). If ρ >
√
17+1
2

H and {θk+1

l }Ll=1, {θk+1
l }Ll=1, {τ k+1

l }
L−1
l=1 ,

and {τ k+1
l }L−1

l=1 are bounded, then for the variables (W, z, a, u) in Problem 2, starting

from any (W0, z0, a0, u0), it has at least a limit point (W∗, z∗, a∗, u∗), and any limit

point (W∗, z∗, a∗, u∗) is a stationary point of Problem 2(i.e. 0 ∈ ∂Lρ(W
∗, z∗, a∗, u∗)).

Or equivalently,

z∗L = W ∗
La

∗
L−1 0 ∈ ∂W∗Lρ(W

∗, z∗, a∗, u∗)

0 ∈ ∂z∗Lρ(W
∗, z∗, a∗, u∗) ∇a∗Lρ(W

∗, z∗, a∗, u∗) = 0

Proof. Because (Wk, zk, ak, uk) is bounded, there exists a subsequence (Ws, zs, as,us)

such that (Ws, zs, as, us)→ (W∗, z∗, a∗, u∗) where (W∗, z∗, a∗, u∗) is a limit point. By

Properties 1 and 2, Lρ(W
k, zk, ak, uk) is non-increasing and lower bounded and hence

converges. By Property 2, we prove that ∥Wk+1 −Wk∥ → 0, ∥ak+1 − ak∥ → 0,

∥Wk+1 −W
k+1∥ → 0, and ∥ak+1 − ak+1∥ → 0, as k → ∞. Therefore ∥Wk+1 −

Wk∥ → 0, and ∥ak+1 − ak∥ → 0, as k → ∞. Moreover, from Assumption 1, we

know that zk+1 → zk and zk+1 → zk+1 as k → ∞. Therefore, zk+1 → zk. We

infer there exists gk ∈ ∂Lρ(W
k, zk, ak, uk) such that ∥gk∥ → 0 as k → ∞ based

on Property 3. Specifically, ∥gs∥ → 0 as s → ∞. According to the definition of

general subgradient(Defintion 8.3 in [84]), we have 0 ∈ ∂Lρ(W
∗, z∗, a∗, u∗). In other

words, the limit point (W∗, z∗, a∗, u∗) is a stationary point of Lρ defined in Equation

(2.1).

2.5. EXPERIMENTS 29

Theorem 2 shows that our dlADMM algorithm converges globally for sufficiently

large ρ, which is consistent with previous literature [51, 107]. The next theorem

shows that the Proposed dlADMM converges globally with a sublinear convergence

rate o(1/k), where k is the number of iterations.

Theorem 3 (Convergence Rate). For a sequence (Wk, zk, ak, uk), define

ck = min0≤i≤k(
∑L

l=1(∥θ
i+1

l ◦ (W i+1

l − W k
l)

◦2∥1/2 + ∥θi+1
l ◦ (W i+1

l − W
i+1

l)◦2∥1/2) +∑L−1
l=1 (∥τ

i+1
l ◦ (ai+1

l − ail)
◦2∥1/2 + ∥τ i+1

l ◦ (ai+1
l − ai+1

l)◦2∥1/2) + C2∥zi+1
L − ziL∥22 +

C1∥zi+1
L − zi+1

L ∥22), then the convergence rate of ck is o(1/k).

Proof. The proof of this theorem is included in Section A.4 in the Appendix.

2.5 Experiments

In this section, we evaluate the dlADMM algorithm using benchmark datasets. The

effectiveness, efficiency, and convergence properties of dlADMM are compared with

state-of-the-art methods. All experiments were conducted on 64-bit Ubuntu16.04

LTS with Intel(R) Xeon processor and GTX1080Ti GPU.

2.5.1 Experiment Setup

Dataset

In this experiment, two benchmark datasets were used for performance evaluation:

MNIST [58] and Fashion MNIST [112]. The MNIST dataset has ten classes of

handwritten-digit images, which was firstly introduced by Lecun et al. in 1998 [58].

It contains 55,000 training samples and 10,000 test samples with 784 features each,

which is provided by the Keras library [18]. Unlike the MNIST dataset, the Fash-

ion MNIST dataset has ten classes of assortment images on the website of Zalando,

which is Europe’s largest online fashion platform [112]. The Fashion-MNIST dataset

consists of 60,000 training samples and 10,000 test samples with 784 features each.

2.5. EXPERIMENTS 30

Experiment Settings

We set up a network architecture that contained two hidden layers with 1, 000 hid-

den units each. The ReLU was used for the activation function for both network

structures. The loss function was set as the deterministic cross-entropy loss. ν was

set to 10−6. ρ was initialized as 10−6 and was multiplied by 10 every 100 iterations.

The number of iterations was set to 200. In the experiment, one iteration means one

epoch.

Comparison Methods

Since this chapter focuses on the MLP model, GD and its variants and ADMM are

state-of-the-art methods and hence served as comparison methods. For GD-based

methods, the full batch dataset is used for training models. All parameters were cho-

sen by the accuracy of the training dataset. The baselines are described as follows:

1. Gradient Descent(GD) [4]. The GD and its variants are the most popular deep

learning optimizers, whose convergence has been studied extensively in the literature.

The learning rate of GD was set to 10−6 for both the MNIST and Fashion MNIST

datasets.

2. Adaptive gradient algorithm(Adagrad) [28]. Adagrad is an improved version

of GD: rather than fixing the learning rate during iteration, it adapts the learning

rate to the hyperparameter. The learning rate of Adagrad was set to 10−3 for both

the MNIST and Fashion MNIST datasets.

3. Adaptive learning rate method(Adadelta) [118]. As an improved version of the

Adagrad, the Adadelta is proposed to overcome the sensitivity to hyperparameter

selection. The learning rate of Adadelta was set to 0.1 for both the MNIST and

Fashion MNIST datasets.

4. Adaptive momentum estimation(Adam) [52]. Adam is the most popular opti-

mization method for deep learning models. It estimates the first and second momen-

2.5. EXPERIMENTS 31

tum to correct the biased gradient and thus makes convergence fast. The learning

rate of Adam was set to 10−3 for both the MNIST and Fashion MNIST datasets.

5. Alternating Direction Method of Multipliers(ADMM) [93]. ADMM is a pow-

erful convex optimization method because it can split an objective function into a

series of subproblems, which are coordinated to get global solutions. It is scalable to

large-scale datasets and supports parallel computations. The ρ of ADMM was set to

1 for both the MNIST and Fashion MNIST datasets.

2.5.2 Experimental Results

In this section, experimental results of the Proposed dlADMM algorithm are analyzed

against comparison methods.

Convergence

0 25 50 75 100 125 150 175 200
Iteration

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

Ob
je

ct
iv

e
Va

lu
e(

lo
g)

MNIST
Fashion MNIST

(a). Objective value

0 25 50 75 100 125 150 175 200
Iteration

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Re
sid

ua
l(l

og
)

MNIST
Fashion MNIST

(b). Residual

Figure 2.2: Convergence curves of the proposed dlADMM algorithm on two datasets
when ρ = 1.

First, we show that our proposed dlADMM algorithm converges when ρ is suf-

ficiently large and diverges when ρ is small for both the MNIST dataset and the

Fashion MNIST dataset.

2.5. EXPERIMENTS 32

0 25 50 75 100 125 150 175 200
Iteration

4

2

0

2

4

Ob
je

ct
iv

e
Va

lu
e(

lo
g)

MNIST
Fashion MNIST

(a). Objective value

0 25 50 75 100 125 150 175 200
Iteration

8

10

12

14

16

Re
sid

ua
l(l

og
)

MNIST
Fashion MNIST

(b). Residual

Figure 2.3: Divergence curves of the proposed dlADMM algorithm on two datasets
when ρ = 10−6.

The convergence and divergence of dlADMM algorithm are shown in Figures 2.2

and 2.3 when ρ = 1 and ρ = 10−6 ,respectively. In Figures 2.2(a) and 2.3(a), the X

axis and Y axis denote the number of iterations and the logarithm of objective value,

respectively. In Figures, 2.2(b) and 2.3(b), the X-axis and Y-axis denote the number

of iterations and the logarithm of the residual, respectively. Figure 2.2, both the

objective value and the residual decreased monotonically for the MNIST dataset and

the Fashion-MNIST dataset, which validates our theoretical guarantees in Theorem

2. Moreover, Figure 2.3 illustrates that both the objective value and the residual di-

verge when ρ = 10−6. The curves fluctuated drastically on the objective value. Even

though there was a decreasing trend for the residual, it still fluctuated irregularly and

failed to converge.

Performance

Figure 2.4 and Figure 2.5 show the curves of the training accuracy and test accuracy

of our proposed dlADMM algorithm and baselines, respectively. Overall, both the

training accuracy and the test accuracy of our proposed dlADMM algorithm outper-

formed most baselines for both the MNIST dataset and the Fashion MNIST dataset.

2.5. EXPERIMENTS 33

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y
GD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(a). Training accuracy

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

GD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(b). Test accuracy

Figure 2.4: Performance of the proposed dlADMM algorithm against all comparison
methods on the MNIST dataset.

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

GD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(a). Training Accuracy

0 25 50 75 100 125 150 175 200
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y
GD
Adadelta
Adagrad
Adam
ADMM
dlADMM

(b).Test Accuracy

Figure 2.5: Performance of the proposed dlADMM algorithm against all comparison
methods on the Fashion MNIST dataset.

Specifically, the curves of our dlADMM algorithm soared to 0.8 at the early stage and

then raised steadily towards 0.9 or more. The curves of the most GD-related methods,

GD, Adadelta, and Adagrad, moved more slowly than our proposed dlADMM algo-

rithm. The curves of the ADMM also rocketed to around 0.8 but decreased slightly

later on. Only the state-of-the-art Adam performed better than dlADMM slightly.

Scalability Analysis

In this subsection, the relationship between running time per iteration of our proposed

dlADMM algorithm and three potential factors, namely, the value of ρ, the size of

2.5. EXPERIMENTS 34

MNIST dataset: From 200 to 1,000 neurons

ρ
neurons

200 400 600 800 1000

10−6 1.9025 2.7750 3.6615 4.5709 5.7988
10−5 2.8778 4.6197 6.3620 8.2563 10.0323
10−4 2.2761 3.9745 5.8645 7.6656 9.9221
10−3 2.4361 4.3284 6.5651 8.7357 11.3736
10−2 2.7912 5.1383 7.8249 10.0300 13.4485

Fashion MNIST dataset: From 200 to 1,000 neurons

ρ
neurons

200 400 600 800 1000

10−6 2.0069 2.8694 4.0506 5.1438 6.7406
10−5 3.3445 5.4190 7.3785 9.0813 11.0531
10−4 2.4974 4.3729 6.4257 8.3520 10.0728
10−3 2.7108 4.7236 7.1507 9.4534 12.3326
10−2 2.9577 5.4173 8.2518 10.0945 14.3465

Table 2.1: The relationship between running time per iteration(in second) of the
proposed dlADMM algorithm and the number of neurons as well as the value of ρ.

MNIST dataset: From 11,000 to 55,000 training samples

ρ
size

11,000 22,000 33,000 44,000 55,000

10−6 1.0670 2.0682 3.3089 4.6546 5.7709
10−5 2.3981 3.9086 6.2175 7.9188 10.2741
10−4 2.1290 3.7891 5.6843 7.7625 9.8843
10−3 2.1295 4.1939 6.5039 8.8835 11.3368
10−2 2.5154 4.9638 7.6606 10.4580 13.4021

Fashion MNIST dataset: From 12,000 to 60,000 training samples

ρ
size

12,000 24,000 36,000 48,000 60,000

10−6 1.2163 2.3376 3.7053 5.1491 6.7298
10−5 2.5772 4.3417 6.6681 8.3763 11.0292
10−4 2.3216 4.1163 6.2355 8.3819 10.7120
10−3 2.3149 4.5250 6.9834 9.5853 12.3232
10−2 2.7381 5.3373 8.1585 11.1992 14.2487

Table 2.2: The relationship between running time per iteration(in second) of the
proposed dlADMM algorithm and the size of training samples as well as the value of
ρ.

2.6. CONCLUSION 35

training samples, and the number of neurons was explored. The running time was

calculated by the average of 200 iterations.

Firstly, when the training size was fixed, the computational result for the MNIST

dataset and Fashion MNIST dataset is shown in Table 2.1. The number of neurons

for each layer ranged from 200 to 1,000, with an increase of 200 each time. The value

of ρ ranged from 10−6 to 10−2, multiplying by 10 each time. Generally, the running

time increased as the number of neurons and the value of ρ became larger. However,

there were a few exceptions: for example, when there were 200 neurons for the MNIST

dataset, and ρ increased from 10−5 to 10−4, the running time per iteration dropped

from 2.8778 seconds to 2.2761 seconds.

Secondly, we fixed the number of neurons for each layer as 1, 000. The relationship

between running time per iteration, the training size, and the value of ρ is shown in

Table 2.2. The value of ρ ranged from 10−6 to 10−2, multiplying by 10 each time. The

training size of the MNIST dataset ranged from 11, 000 to 55, 000, with an increase

of 11, 000 each time. The training size of the Fashion MNIST dataset ranged from

12, 000 to 60, 000, with an increase of 12, 000 each time. Similar to Table 2.2, the

running time increased generally as the training sample and the value of ρ became

larger and some exceptions exist.

2.6 Conclusion

The ADMM is a good alternative to GD for deep learning problems. In this chap-

ter, we propose a novel dlADMM algorithm to address some previously mentioned

challenges. Firstly, the Proposed dlADMM updates parameters from backward to

forward to transmit parameter information more efficiently. The time complexity is

successfully reduced from O(n3) to O(n2) by iterative quadratic approximations and

backtracking. Finally, the Proposed dlADMM is guaranteed to converge to a station-

2.6. CONCLUSION 36

ary solution under mild conditions. Experiments on benchmark datasets demonstrate

that our proposed dlADMM algorithm outperformed most of the comparison meth-

ods.

CHAPTER 3. THE MDLAM ALGORITHM 37

Chapter 3

The mDLAM Algorithm

3.1 Introduction

In Chapter 2, we proposed a novel ADMM-based algorithm to train the MLP training

problem efficiently with convergence guarantees. We extend this idea to Alternating

Minimization(AM) methods in this chapter. However, as an emerging domain, AM for

deep model optimization suffers from several unsolved challenges including 1. Con-

vergence properties are sensitive to penalty parameters. Even though the

dlADMM algorithm is guaranteed convergence in the MLP problem, such convergence

guarantee is dependent on the choice of penalty hyperparameters: the convergence

cannot be guaranteed anymore when penalty hyperparameters are small. 2. Slow

convergence rate. To the best of our knowledge, almost all existing AM methods

can only achieve a sublinear convergence rate. For example, the convergence rate of

the ADMM and the BCD is proven to be O(1/k), where k is the number of iterations

[101, 100, 120]. Therefore, there is still a lack of a theoretical framework that can

achieve a faster convergence rate.

To simultaneously address these technical problems, we propose a new formulation

of the neural network problem, along with a novel monotonous Deep Learning Alter-

3.1. INTRODUCTION 38

nating Minimization(mDLAM) algorithm. Specifically, we, for the first time, trans-

form the original neural network optimization problem into an inequality-constrained

problem that can infinitely approximate the original one. Applying this innovation

to an inequality-constraint-based transformation not only ensures the convexity and

hence easily ensures global minima of all subproblems but also prevents the out-

put of a nonlinear function from changing much and reduces sensitivity to the input.

Moreover, our proposed mDLAM algorithm can achieve a linear convergence rate the-

oretically, and the choice of hyperparameters does not affect the convergence of our

mDLAM algorithm theoretically. Extensive experiments on four benchmark datasets

show the convergence, effectiveness, and efficiency of the proposed mDLAM algo-

rithm. Our contributions in this chapter include:

• We propose a novel formulation for neural network optimization. The deeply

nested activation functions are disentangled into separate functions innovatively

coordinated by inherently convex inequality constraints.

• We present an efficient optimization algorithm. A quadratic approximation

technique is utilized to avoid matrix inversion. Every subproblem has a closed-

form solution. The Nesterov acceleration technique is applied to further boost

convergence.

• We investigate the convergence of the proposed mDLAM algorithm under mild

conditions. The new mDLAM algorithm is guaranteed to converge to a sta-

tionary point whatever hyperparameters we choose. Furthermore, the proposed

mDLAM algorithm is shown to achieve a linear convergence rate, which is faster

than existing methods.

• Extensive experiments have been conducted to demonstrate the effectiveness of

the proposed mDLAM algorithm. We test our proposed mDLAM algorithm

on four benchmark datasets. Experimental results illustrate that our proposed

3.2. RELATED WORK 39

mDLAM algorithm is linearly convergent on four datasets, and outperforms

consistently state-of-the-art optimizers. Sensitivity analysis of the running time

shows that it increases linearly with the increase of neurons and hyperparame-

ters.

The rest of this chapter is organized as follows: In Section 3.2, we summarize recent

related research work to this chapter. In Section 3.3, we formulate the MLP train-

ing problem and present the proposed mDLAM algorithm to train the MLP model.

Section 3.4 details convergence properties of the proposed mDLAM algorithm. Ex-

tensive experiments on benchmark datasets are shown in Section 3.5, and Section 3.6

concludes this work.

3.2 Related Work

All existing works on deep learning optimization methods fall into two major cate-

gories: GD methods and AM methods, which are shown as follows:

GD Methods: The renaissance of GD can be traced back to 1951 when Robbins

and Monro published the first paper [83]. The famous back-propagation algorithm

was introduced by Rumelhart et al. [85]. Many variants of GD methods have since

been presented, including the use of Polyak momentum, which accelerates the conver-

gence of iterative methods [80], and research by Sutskever et al., who highlighted the

importance of Nesterov momentum and initialization [91]. During the last decade,

many well-known GD methods which are incorporated with adaptive learning rates

have been proposed by the deep learning community, which include but are not lim-

ited to AdaGrad [28], RMSProp [95], Adam [52], AMSGrad [82], Adabelief [128] and

Adabound [65].

Applications of AM Methods for Deep Learning: Many recent works have

applied AM algorithms to specific deep learning applications. For example, Taylor et

3.2. RELATED WORK 40

al. presented the ADMM to solve an MLP training problem via transforming it into

an equality-constrained problem, where many subproblems split by ADMM can be

solved efficiently [93], Zhang et al. handled Very Deep Supervised Hashing(VDSH)

problems by utilizing an ADMM algorithm to overcome issues related to vanishing

gradients and poor computational efficiency [125]. Zhang and Bastiaan trained a deep

neural network by utilizing ADMM with a graph [121] and Askari et al. introduced

a new framework for MLP models and optimize the objective using BCD methods

[71]. Li et al. proposed an ADMM algorithm to achieve distributed learning of Graph

Convolutional Network(GCN) via community detection [61]. Qiao et al. proposed an

inertial proximal AM method to train MLP models [81].

Convergence of AM Methods for Deep Learning: Aside from applications,

the other branch of works mathematically proves the convergence of the proposed AM

approaches. For instance, Carreira and Wang proposed a method involving the use of

auxiliary coordinates to replace a nested neural network with a constrained problem

without nesting [9]. Lau et al. proposed a BCD optimization framework and proved

the convergence via the Kurdyka-Lojasiewicz(KL) property [57], while Choromanska

et al. proposed a BCD algorithm for training deep MLP models based on the concept

of co-activation memory [19], and a BCD algorithm with R-linear convergence was

proposed by Zhang and Brand to train Tikhonov regularized deep neural networks

[124]. Jagatap and Hegde introduced a new family of AM methods and prove their

convergence to a global minimum [47]. Yu et al. proved the convergence of the pro-

posed ADMM for RNN models [92]. However, to the best of our knowledge, there

is a lack of a flexible framework that allows for different activation functions and

guarantees a linear convergence rate.

3.3. MODEL AND ALGORITHM 41

3.3 Model and Algorithm

3.3.1 Inequality Approximation for Deep Learning

In this section, we propose our problem transformation to address Problem 1. The

equality constraint al = fl(zl) is the most challenging one to handle here because

common activation functions such as sigmoid [31] are nonlinear. This makes them

nonconvex constraints and hence it is difficult to obtain the optimal solution when

solving the zl-subproblem [93]. Moreover, there is no guarantee for AM methods

to solve the nonlinear equality constrained Problem 1 [99]. To deal with these two

challenges, the following assumption is required for problem transformation:

Assumption 3. fl(zl) (l = 1, . . . , n) are quasilinear.

The quasilinearity is defined in Section B.1 in the Appendix. Assumption 3 is so

mild that most of the widely used nonlinear activation functions satisfy it, including

tanh [117], sigmoid [31], and the Rectified Linear Unit(ReLU) [66]. Then we innova-

tively transform the original nonconvex constraints into inequality constraints, which

can be an infinite approximation of Problem 1. To do this, we introduce a tolerance

ε > 0 and reformulate Problem 1 to the following:

minWl,zl,al R(zL, y)

s.t. zl = Wlal−1(l = 1, · · · , L), fl(zl)− ε ≤ al ≤ fl(zl) + ε(l = 1, · · · , L− 1).

For the linear constraint zl = Wlal−1, this can be transformed into a penalty term

in the objective function to minimize the difference between zl and Wlal−1. The

formulation is shown as follows:

3.3. MODEL AND ALGORITHM 42

Problem 3.

minWl,zl,al F (W, z, a) = R(zL, y) +
∑L

l=1
ϕ(al−1,Wl, zl),

s.t. fl(zl)− ε ≤ al ≤ fl(zl) + ε(l = 1, · · · , L− 1).

The penalty term is defined as ϕ(al−1,Wl, zl) =
ρ
2
∥zl −Wlal−1∥22, where ρ > 0 a

penalty parameter. W = {Wl}Ll=1, z = {zl}Ll=1,a = {al}L−1
l=1 . As ρ → ∞ and ε → 0,

Problem 3 approaches Problem 1.

The introduction of ε is to project the nonconvex constraints to ε-balls, thus

transforming the nonconvex Problem 1 into Problem 3. Even though Problem 3 is

still nonconvex because fl(zl) can be nonconvex(e.g. tanh and smooth sigmoid), it

is convex concerning one variable when others are fixed(i.e. multi-convex), which is

much easier to solve by AM [115]. For example, Problem 3 is convex with regard to

z when W, and a are fixed.

3.3.2 Alternating Optimization

We present the mDLAM algorithm to solve Problem 3 in this section. A potential

challenge to solving Problem 3 is a slow theoretical convergence rate. For example,

the convergence rate of the proposed dlADMM algorithm in Chapter 2 to solve Prob-

lem 3 is sublinear o(1/k), where k is the number of iterations [101]. To address this

challenge, we apply the famous Nesterov acceleration technique to boost the con-

vergence of our proposed mDLAM algorithm, and we prove its linear convergence

theoretically in the next section.

Algorithm 4 shows our proposed mDLAM algorithm. To simplify the nota-

tion, Wk+1
≤l = {{W k+1

i }li=1, {W k
i }Li=l+1}, zk+1

≤l = {{zk+1
i }li=1, {zki }Li=l+1} and ak+1

≤l =

{{ak+1
i }li=1, {aki }L−1

i=l+1}. In Algorithm 4, Lines 6, 10, and 21 apply the Nesterov ac-

celeration technique and update Wl, zl and al, respectively. the proposed mDLAM

3.3. MODEL AND ALGORITHM 43

Algorithm 4: The proposed mDLAM algorithm

Require: y, a0 = x.
Ensure: al,Wl, zl(l = 1, · · · , L).
1: Initialize ρ, k = 0, s0 = 0.
2: repeat

3: sk+1 ← 1+
√

1+4(sk)2

2

4: ωk ← sk−1
sk+1

5: for l = 1 to L do
6: W

k+1

l ← W k
l + (W k

l −W k−1
l)ωk and update W k+1

l in Equation (3.3).
7: if F (Wk+1

≤l , z
k+1
≤l−1, a

k+1
≤l−1) ≥ F (Wk+1

≤l−1, z
k+1
≤l−1, a

k+1
≤l−1) then

8: W
k+1

l ← W k
l and update W k+1

l in Equation (3.3).
9: end if
10: zk+1

l ← zkl + (zkl − zk−1
l)ωk

11: if l = L then
12: Update zk+1

L in Equation (3.5).
13: if F (Wk+1

≤L , z
k+1
≤L , a

k+1
≤L−1) ≥ F (Wk+1

≤L , z
k+1
≤L−1, a

k+1
≤L−1) then

14: zk+1
L ← zkL and update zk+1

L in Equation (3.5).
15: end if
16: else
17: Update zk+1

l in Equation (3.4).
18: if F (Wk+1

≤l , z
k+1
≤l , a

k+1
≤l−1) ≥ F (Wk+1

≤l , z
k+1
≤l−1, a

k+1
≤l−1) then

19: zk+1
l ← zkl and update zk+1

l in Equation (3.4).
20: end if
21: ak+1

l ← akl + (akl − ak−1
l)ωk and update ak+1

l in Equation (3.6).
22: if F (Wk+1

≤l , z
k+1
≤l , a

k+1
≤l) ≥ F (Wk+1

≤l , z
k+1
≤l , a

k+1
≤l−1) then

23: ak+1
l ← akl and update ak+1

l in Equation (3.6).
24: end if
25: end if
26: end for
27: k ← k + 1.
28: until convergence.
29: Output al,Wl, zl.

3.3. MODEL AND ALGORITHM 44

algorithm guarantees the decrease of objective F : for example, if the updated W k+1
l

in Line 7 of Algorithm 4 increases the value of F , i.e. F (Wk+1
≤l , z

k+1
≤l−1, a

k+1
≤l−1) ≥

F (Wk+1
≤l−1, z

k+1
≤l−1, a

k+1
≤l−1), then W

k+1
l is updated again by setting W

k+1

l = W k
l in Line

8 of Algorithm 4, which ensures the decline of F . The same procedure is applied in

Lines 13-15, Lines 18-20, and Lines 22-24 in Algorithm 4, respectively.

Next, all subproblems are shown as follows:

1. Update Wl

The variables Wl(l = 1, · · · , L) are updated as follows:

W k+1
l ← argminWl

ϕ(ak+1
l−1 ,Wl, z

k
l). (3.1)

BecauseWl and al−1 are coupled in ϕ(•), solvingWl requires an inversion operation

of ak+1
l−1 , which is computationally expensive. Motivated by the proposed dlADMM

algorithm in Chapter 2, we define P k+1
l (Wl; θ

k+1
l) as a quadratic approximation of ϕ

at W k
l as follows:

P k+1
l (Wl; θ

k+1
l) = ϕ(ak+1

l−1 ,W
k+1

l , zkl) + (∇
W

k+1
l
ϕ)T (Wl −W

k+1

l) +
θk+1
l

2
∥Wl −W

k+1

l ∥22,

where θk+1
l > 0 is a scalar parameter, which can be chosen by the backtracking

algorithm [101] to meet the following condition

P k+1
l (W k+1

l ; θk+1
l) ≥ ϕ(ak+1

l−1 ,W
k+1
l , zkl). (3.2)

Rather than minimizing Equation (3.1), we instead minimize the following:

W k+1
l ← argminWl

P k+1
l (Wl; θ

k+1
l). (3.3)

3.3. MODEL AND ALGORITHM 45

2. Update zl

The variables zl(l = 1, · · · , L) are updated as follows:

zk+1
l ← argminzl ϕ(a

k+1
l−1 ,W

k+1
l , zl), s.t. fl(zl)− ε ≤ al ≤ fl(zl) + ε l < L).

zk+1
L ← argminzL ϕ(a

k+1
L−1,W

k+1
L , zL) +R(zL, y).

Similar to updating Wl, we define V k+1
l (zl) as follows:

V k+1
l (zl) = ϕ(ak+1

l−1 ,W
k+1
l , zk+1

l) + (∇zk+1
l
ϕ)T (zl − zk+1

l) +
ρ

2
∥zl − zk+1

l ∥22.

Hence, we solve the following problems:

zk+1
l ← argminzl V

k+1
l (zl), s.t. fl(zl)− ε ≤ al ≤ fl(zl) + ε (l < L). (3.4)

zk+1
L ← argminzL V

k+1
L (zL) +R(zL, y). (3.5)

As for zl(l = 1, · · · , l − 1), the solution is

zk+1
l ← min(max(Bk+1

1 , zk+1
l −∇ϕzk+1

l
/ρ), Bk+1

2),

where Bk+1
1 and Bk+1

2 represent the lower bound and the upper bound of the set

{zl|fl(zl) − ε ≤ akl ≤ fl(zl) + ε}. Equation (3.5) is easy to solve using the Fast

Iterative Soft Thresholding Algorithm(FISTA) [2].

3. Update al

The variables al(l = 1, · · · , L− 1) are updated as follows:

ak+1
l ← argminal ϕ(al,W

k
l+1, z

k
l+1), s.t. fl(z

k+1
l)− ε ≤ al ≤ fl(z

k+1
l) + ε.

3.4. CONVERGENCE ANALYSIS 46

Similar to updating W k+1
l , Qk+1

l (al; τ
k+1
l) is defined as

Qk+1
l (al; τ

k+1
l) = ϕ(ak+1

l ,W k
l+1, z

k
l+1) + (∇ak+1

l
ϕ)T (al − ak+1

l) +
τ k+1
l

2
∥al − ak+1

l ∥22,

and this allows us to solve the following problem instead:

ak+1
l ← argminal Q

k+1
l (al; τ

k+1
l), s.t. fl(z

k+1
l)− ε ≤ al ≤ fl(z

k+1
l) + ε (3.6)

where τ k+1
l > 0 is a scalar parameter, which can be chosen by the backtracking

algorithm [101] to meet the following condition:

Qk+1
l (ak+1

l ; τ k+1
l) ≥ ϕ(ak+1

l ,W k
l+1, z

k
l+1).

The solution can be obtained by

ak+1
l ← min(max(fl(z

k+1
l)− ε, ak+1

l −∇ak+1
l
ϕ/τ k+1

l), fl(z
k+1
l) + ε).

3.4 Convergence Analysis

In this section, the convergence of the proposed algorithm is analyzed. Due to space

limit, all proofs are detailed in Section B.2 and Section B.3 in the appendix. The

following mild assumption is required for the convergence analysis of the proposed

mDLAM algorithm:

Assumption 4. F (W, z, a) is coercive over the domain {(W, z, a)|fl(zl)− ε ≤ al ≤

fl(zl) + ε (l = 1, · · · , L− 1)}.

The coercivity is defined in Section B.1 in the Appendix. Assumption 4 is also mild

such that common loss functions such as the least square loss and the cross-entropy

loss satisfy it [101].

3.4. CONVERGENCE ANALYSIS 47

3.4.1 Convergence Properties

Firstly, the following preliminary lemma is useful to prove the convergence properties

of the proposed mDLAM algorithm.

Lemma 1. In Algorithm 4, there exist αk
l , γ

k
l , δ

k
l > 0 such that for ∀k ∈ N,W k

l , z
k
l (l =

1, 2, · · · , L), and akl (l = 1, 2, · · · , L− 1), it holds that

F (Wk+1
≤l−1, z

k+1
≤l−1, a

k+1
≤l−1)− F (W

k+1
≤l , z

k+1
≤l−1, a

k+1
≤l−1) ≥

αk+1
l

2
∥W k+1

l −W k
l ∥22, (3.7)

F (Wk+1
≤l , z

k+1
≤l−1, a

k+1
≤l−1)− F (W

k+1
≤l , z

k+1
≤l , a

k+1
≤l−1) ≥

γk+1
l

2
∥zk+1

l − zkl ∥22, (3.8)

F (Wk+1
≤l , z

k+1
≤l , a

k+1
≤l−1)− F (W

k+1
≤l , z

k+1
≤l , a

k+1
≤l) ≥ δk+1

2
∥ak+1

l − akl ∥22. (3.9)

It shows that the objective decreases when all variables are updated. Based on

Assumption 4 and Lemma 1, three convergence properties hold, which are shown in

the following:

Lemma 2 (Objective Decrease). In Algorithm 4, it holds that for any k ∈ N,

F (Wk, zk, ak) ≥ F (Wk+1, zk+1, ak+1). Moreover, F is convergent. That is,

F (Wk, zk, ak)→ F ∗ as k →∞, where F ∗ is the convergent value of F .

This lemma guarantees the decrease and hence convergence of the objective.

Lemma 3 (Bounded Objective and Variables). In Algorithm 4, it holds that for any

k ∈ N

(a). F(Wk, zk, ak) is upper bounded. Moreover, limk→∞ Wk+1−Wk = 0, limk→∞ zk+1−

zk = 0, and limk→∞ ak+1 − ak = 0.

(b). (Wk, zk, ak) is bounded. That is, there exist scalars MW,Mz and Ma such that

∥Wk∥ ≤MW, ∥zk∥ ≤Mz and ∥ak∥ ≤Ma.

This lemma ensures that the objective and all variables are bounded in the pro-

posed mDLAM algorithm. Moreover, the gap between the same variables in the

neighboring iterations(e.g. Wk+1 and Wk) is convergent to 0.

3.4. CONVERGENCE ANALYSIS 48

Lemma 4 (Subgradient Bound). In Algorithm 4, there exist C2 = max(ρMa, ρM
2
a +

θk+1
1 , ρM2

a + θk+1
2 , · · · , ρM2

a + θk+1
L), and gk+1

1 ∈ ∂Wk+1F such that for any k ∈ N

∥gk+1
1 ∥ ≤ C2(∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥Wk −Wk−1∥).

The above lemma states that the subgradient of the objective is bounded by its

variables. This suggests that the subgradient is convergent to 0, and thus proves its

convergence to a stationary point.

3.4.2 Convergence of the Proposed mDLAM Algorithm

Next we discuss the convergence of the proposed mDLAM algorithm. The first theo-

rem guarantees that the proposed mDLAM algorithm converges to a stationary point.

Theorem 4 (Convergence to a Stationary Point). In Algorithm 4, for W in Problem

3, for any ρ > 0 and ε > 0, starting from any W0 , any limit point W∗ is a stationary

point of Problem 3. That is, 0 ∈ ∂W∗F .

As stated in Theorem 4, the convergence always holds no matter how W is ini-

tialized, and whatever hyperparameters ρ and ε are chosen. It is better than the

proposed dlADMM algorithm in Chapter 2, which requires the hyperparameter to be

sufficiently large.

Theorem 5 (Linear Convergence Rate). In Algorithm 4, if F is locally strongly

convex, then for any ρ, there exist ε > 0, k1 ∈ N and 0 < C1 < 1 such that it holds

for k > k1 that

F (Wk+1, zk+1, ak+1)− F ∗ ≤ C1(F (W
k−1, zk−1, ak−1)− F ∗).

3.4. CONVERGENCE ANALYSIS 49

Theorem 5 shows that the proposed mDLAM algorithm converges linearly for

sufficiently large iterations. Common loss functions like the square loss or the cross-

entropy loss are locally strongly convex [115], which make F locally strongly convex.

Therefore, Theorem 5 covers a wide range of loss functions. Compared with existing

AM methods(e.g. dlADMM in Chapter 2) with a sublinear o(1/k) convergence rate,

the proposed mDLAM algorithm achieves a theoretically better linear convergence

rate.

3.4.3 Discussion

We discuss convergence conditions of the proposed mDLAM algorithm compared with

GD-type methods and the proposed dlADMM algorithm in Chapter 2. The compar-

ison demonstrates that our convergence conditions are more general than others.

1. mDLAM versus GD

One influential work by Ghadimi et al. [30] guaranteed that the GD converges to a

stationary point, which is similar to our convergence results. While the GD requires

the objective function to be Lipschitz differentiable, bounded from below [30], our

mDLAM allows for non-smooth functions such as ReLU. Therefore, our convergence

conditions are milder than GD.

2. mDLAM versus dlADMM

Assumptions of our proposed mDLAM are milder than those of the proposed

dlADMM in Chapter 2: the mDLAM requires activation functions to be quasilinear,

which includes sigmoid, tanh, ReLU, and leaky ReLU, while the proposed dlADMM

assumes that activation functions make subproblems solvable, which only includes

ReLU and leaky ReLU. The such difference originates from different ways of address-

ing nonlinear activations: the proposed dlADMM treats them as L2 penalties. For

tanh and sigmoid, subproblems are difficult to solve and may refer to lookup tables

[101]. However, the mDLAM relaxes them via inequality constraints, and subprob-

3.5. EXPERIMENTS 50

Dataset Node# Edge# Class# Feature#
Cora 2708 5429 7 1433

Pubmed 19717 44338 3 500
Citeseer 3327 4732 6 3703

Coauthor CS 18333 81894 15 6805

Table 3.1: Statistics of four benchmark datasets.

Method
Hyper-

parameters
Cora Pubmed Citeseer

Coauthor
CS

mDLAM ρ 1× 10−3 0.01 5× 10−3 1× 10−4

GD α 0.01 0.01 0.01 5× 10−3

Adadelta α 0.01 0.1 0.01 0.05
Adagrad α 5× 10−3 5× 10−3 0.01 5× 10−3

Adam α 1× 10−3 5× 10−4 1× 10−3 1× 10−3

dlADMM ρ 1× 10−6 1× 10−6 1× 10−6 1× 10−6

Table 3.2: Hyperparameter settings on four benchmark datasets.

lems have closed-form solutions.

3.5 Experiments

In this section, we evaluate the proposed mDLAM algorithm on four benchmark

datasets. Convergence and efficiency are demonstrated. The performance of the

proposed mDLAM algorithm is compared with several state-of-the-art optimizers.

All experiments were conducted on a 64-bit machine with Intel(R) Xeon(R) Silver

4110 CPU and 64GB RAM.

3.5.1 Datasets and Parameter Settings

An important application of the MLP model is node classification on a graph based

on augmented node features [15]. Specifically, given an adjacency matrix A and a

node feature matrix H of a graph, we let the k-th augmented feature Xk = HAk(k =

3.5. EXPERIMENTS 51

0, 1, · · · , 4), which encodes information of graph topology via Ak, and then concate-

nate them into the input X = [X0, · · · , X4] [15]. The MLP model is used to predict

the node class based on the input X. We set up an architecture of three layers, each

of which has 100 neurons. The activation function was set to ReLU. The number of

epochs was set to 200. We test our model on four benchmark datasets: Cora [86],

Pubmed [86], Citeseer [86] and Coauthor CS [89], whose statistics are shown in Table

3.1.

Gradient Descent(GD) [4], Adaptive learning rate method(Adadelta) [118], Adap-

tive gradient algorithm(Adagrad) [28], Adaptive momentum estimation(Adam) [52],

and the proposed dlADMM in Chapter 2 are state-of-the-art methods and hence were

served as comparison methods. The full batch dataset was used for training models.

All parameters were chosen by maximizing the accuracy of training datasets. Table

3.2 shows hyperparameters of all methods: for the proposed mDLAM algorithm, ρ

controls quadratic terms in Problem 3; α is a learning rate in the comparison meth-

ods except for the proposed dlADMM. ρ controls a linear constraint in the proposed

dlADMM algorithm. The other hyperparameter ε is chosen adaptively as follows:

εk+1 = max(εk/2, 0.001) with ε0 = 100. This makes inequality constraints relaxed

at the early stage(i.e. εk is large and hence constraints are easy to satisfy) and then

tightens them as the mDLAM iterates.

3.5.2 Convergence

Firstly, we investigate the convergence of the proposed mDLAM algorithm on four

benchmark datasets using the hyperparameters summarized in Table 3.2. The re-

lationship between the objective and the number of epochs is shown in Figure 3.1.

Overall, the objectives on the four datasets all decrease monotonically, which demon-

strates the convergence of the proposed mDLAM algorithm. Nevertheless, objective

curves vary in tendency: the curves on the Cora and Pubmed datasets drop drasti-

3.5. EXPERIMENTS 52

Figure 3.1: Convergence curves of the proposed mDLAM algorithm on four datasets.

cally at the beginning and then reach the plateau when the epoch is around 75, while

the curves on the other two datasets keep a downward tendency for the entire 200

epochs. Moreover, the objective on the Pubmed dataset is the lowest at the end of

the training, while the objective on the Citeseer dataset is in the vicinity of 80, at

least 60% higher than the objectives on the remaining datasets. It is easy to observe

that all curves decline linearly when the epoch is higher than 100. This validates the

linear convergence rate of our proposed mDLAM algorithm(i.e. Theorem 5).

3.5.3 Performance

Next, the performance of the proposed mDLAM algorithm is compared against five

state-of-the-art methods, as is illustrated in Figure 3.2. The X-axis and Y-axis repre-

sent epoch and test accuracy, respectively. Overall, the proposed mDLAM algorithm

is superior to all other algorithms on four datasets, which has not only the highest test

3.5. EXPERIMENTS 53

(a). Cora. (b). Pubmed.

(c). Citeseer. (d). Coauthor CS.

Figure 3.2: Test accuracy of the proposed mDLAM algorithm against all comparison
methods.

3.5. EXPERIMENTS 54

(a). Running time versus
the number of neurons.

(b). Running time versus the value of ρ.

Figure 3.3: The relationship between the running time of the proposed mDLAM
algorithm and:(a) the number of neurons;(b) the value of ρ.

accuracy but also the fastest convergence speed. For example, the proposed mDLAM

achieves 70% test accuracy on the Cora dataset when the epoch is 100, while GD

only attains 60%, and the Adadelta reaches the plateau of around 40%; As another

example, the test accuracy of the proposed mDLAM on the Coauthor CS dataset is

over 80% at the 25-th epoch, whereas most comparison methods such as Adam and

GD reach half of its accuracy(i.e. 40%). The Adadelta algorithm performs the worst

among all comparison methods: it converges to a low test accuracy at the early stage,

which is usually half of the accuracy accomplished by the proposed mDLAM algo-

rithm. The other four comparison methods except Adagrad are on par with mDLAM

in some cases: for example, the curves of dlADMM and GD are marginally behind

that of mDLAM on the Coauthor CS dataset, and the performance of Adam almost

reaches that of mDLAM on the Cora dataset. It is interesting to observe that curves

of some methods decline at the end of 200 epochs such as the Adagrad on the Pubmed

dataset and the Adam on the Coauthor CS dataset.

3.5. EXPERIMENTS 55

3.5.4 Sensitivity Analysis

We explore concerning factors of the running time and the test accuracy in this

section.

Running Time

Moreover, it is important to explore the running time of the proposed mDLAM con-

cerning two factors: the number of neurons and the value of ρ. The running time was

averaged by 200 epochs. Figure 3.3(a) depicts the relationship between the running

time and the number of neurons on four datasets, where the number of neurons ranges

from 100 to 1, 000. The running times on all datasets are below 1 second per epoch

when the number of neurons is 100, and increase linearly with the number of neurons

in general. However, the rates of increase vary on different datasets: the curve on the

Coauthor CS dataset has the sharpest slope, which reaches seven seconds per epoch

when 1000 neurons are applied, while the curve on the Pubmed dataset climbs slowly,

which never surpasses 1 second. The curves on the Cora and the Citeseer datasets

demonstrate a steady increase.

To investigate the relationship between the running time per epoch and the value

of ρ, we change ρ from 10−6 to 1 while fixing others. Similar to Figure 3.3(a), the

running time per epoch demonstrates a linear increase concerning the value of ρ in

general, as shown in Figure 3.3(b). Specifically, the curve on the Coauthor CS dataset

is still the highest in slope, whereas the slope on the Pubmed dataset is the lowest.

Moreover, the effect of the value of ρ is less obvious than the number of neurons. For

example, in Figure 3.3(b) when ρ is enlarged from 10−6 to 10−2, the running time on

the Coauthor CS dataset merely ascends from around 0.65 to 1.6, while the incre-

ment of the running time on other datasets is less than 0.2. Moreover, a larger ρ may

reduce the running time. For instance, when ρ increases from 10−2 to 1, the running

time on the Coauthor CS dataset drops slightly from 1.6 seconds to 1.5 seconds per

3.5. EXPERIMENTS 56

Cora
Epoch 40 80 120 160 200

ρ = 1× 10−4 0.677 0.695 0.695 0.693 0.692
ρ = 1× 10−3 0.664 0.701 0.721 0.737 0.742
ρ = 1× 10−2 0.562 0.581 0.604 0.623 0.638

Pubmed
Epoch 40 80 120 160 200

ρ = 1× 10−4 0.471 0.407 0.407 0.407 0.407
ρ = 1× 10−3 0.663 0.645 0.640 0.650 0.649
ρ = 1× 10−2 0.743 0.758 0.762 0.768 0.773

Citeseer
Epoch 40 80 120 160 200

ρ = 1× 10−4 0.528 0.529 0.530 0.531 0.535
ρ = 1× 10−3 0.651 0.665 0.664 0.664 0.666
ρ = 1× 10−2 0.631 0.638 0.642 0.648 0.653

Coauthor CS
Epoch 40 80 120 160 200

ρ = 1× 10−4 0.843 0.881 0.888 0.896 0.894
ρ = 1× 10−3 0.780 0.807 0.825 0.839 0.835
ρ = 1× 10−2 0.688 0.719 0.724 0.737 0.738

Table 3.3: The effect of ρ on the test accuracy of the proposed mDLAM algorithm
on four datasets.

epoch. The running times on the Cora and the Citeseer datasets climb steadily.

Test Accuracy

Finally, we investigate the effects of hyperparameters on test accuracy, namely, the

value of ρ and ε. Because ε is dynamically set, we test its initial value ε0. Table 3.3

demonstrates the relationship between test accuracy and ρ on four datasets. ρ was

chosen from {1× 10−4, 1× 10−3, 1× 10−2}. Overall, the choice of ρ has a significant

effect on the test accuracy. For example, when ρ is changed from 1×10−4 to 1×10−3

on the Pubmed dataset, the performance has improved by approximately 60%, and

the gain of performance is even roughly 90% if it is modified to 1 × 10−2. On other

datasets, the change of ρ affects test accuracy by around 20%. For instance, the test

accuracy on the Cora dataset and the Coauthor CS dataset can be improved to 0.74

3.5. EXPERIMENTS 57

Cora
Epoch 40 80 120 160 200
ε0 = 1 0.620 0.679 0.712 0.735 0.743
ε0 = 10 0.646 0.689 0.718 0.741 0.741
ε0 = 100 0.664 0.701 0.721 0.737 0.742

Pubmed
Epoch 40 80 120 160 200
ε0 = 1 0.717 0.744 0.756 0.759 0.763
ε0 = 10 0.731 0.753 0.759 0.762 0.765
ε0 = 100 0.743 0.758 0.762 0.768 0.773

Citeseer
Epoch 40 80 120 160 200
ε0 = 1 0.564 0.615 0.638 0.653 0.663
ε0 = 10 0.584 0.626 0.643 0.657 0.662
ε0 = 100 0.640 0.656 0.664 0.663 0.668

Coauthor CS
Epoch 40 80 120 160 200
ε0 = 1 0.834 0.875 0.887 0.893 0.894
ε0 = 10 0.852 0.866 0.892 0.893 0.893
ε0 = 100 0.843 0.881 0.888 0.896 0.894

Table 3.4: The effect of the initial value of ε(i.e. ε0) on the test accuracy of the
proposed mDLAM algorithm on four datasets.

and 0.89 if we set ρ = 1× 10−3 and ρ = 1× 10−4, respectively. The test accuracy on

the Citeseer dataset is relatively robust to the change of ρ. As ρ varies from 1× 10−3

to 1 × 10−2, the test accuracy remains stable. The test accuracy generally increases

as the proposed mDLAM algorithm iterates. However, there are some exceptions: for

example, the test accuracy has dropped slightly from 0.66 to 0.65 when ρ = 1×10−3 on

the Pubmed dataset. Table 3.4 shows the relationship between test accuracy and

the initial value of ε(i.e. ε0) on four datasets. ε0 was chosen from {1, 10, 100}. The

test accuracy is resistant to the change of ε0. For example, the test accuracy on the

Coauthor CS dataset is in the vicinity of 0.89 no matter which ε is chosen. Moreover,

the larger a ε0 is the faster convergence speed the proposed mDLAM algorithm gains.

For instance, when ε = 100, the test accuracy is 0.08 better than that in the case

where ε = 1 on the Citeseer dataset. Compared with Tables 3.3 and 3.4, the effect of

3.6. CONCLUSION 58

ρ is more significant than that of ε0.

3.6 Conclusion

In this chapter, we propose a novel formulation of the original neural network problem

and a novel monotonous Deep Learning Alternating Minimization(mDLAM) algo-

rithm. Specifically, the nonlinear constraint is projected into a convex set so that all

subproblems are solvable. The Nesterov acceleration technique is applied to boost the

convergence of the proposed mDLAM algorithm. Furthermore, a mild assumption is

established to prove the convergence of our mDLAM algorithm. Our mDLAM algo-

rithm can achieve a linear convergence rate, which is theoretically better than existing

AM methods. The effectiveness of the proposed mDLAM algorithm is demonstrated

via the outstanding performance on four benchmark datasets compared with state-

of-the-art optimizers.

CHAPTER 4. THE PDADMM ALGORITHM 59

Chapter 4

The pdADMM Algorithm

4.1 Introduction

Due to wide applications and significant success in various applications, the training

of Deep Neural Network(DNN) models has gained ever-increasing attention from the

machine learning community. In recent years, the constant improvement of DNNs’

performance is accompanied by a fast increase in models’ complexity and size, which

indicates a clear trend toward larger and deeper networks. Such a trend leads to

severe challenges for large models to fit into a single computing unit(e.g., GPU), and

raises urgent demands for partitioning the model into different computing devices

to parallel training. However, the inherent bottleneck from GD which prevents the

gradients of different layers from being calculated in parallel. This is because in GD

gradient calculations of one layer tightly depend on and have to wait for the calcu-

lated results of all previous layers, which prevents the gradients of different layers

from being calculated in parallel.

To work around the drawback of gradient-based methods, alternating minimiza-

tion methods have caught fast increasing attention in recent years. Amongst them

for deep learning optimization, ADMM-based methods are deemed to have great po-

4.1. INTRODUCTION 60

tential for parallelism of deep neural network training, due to their inherent nature,

which can break an objective into multiple subproblems, each of which can be solved

in parallel [6].

Despite the potential, a parallel algorithm based on ADMM for deep neural net-

work training has rarely been explored, developed, and evaluated until now, due to the

layer dependency among subproblems of ADMM. Even though the ADMM reduces

the layer dependency compared with GD, one subproblem of ADMM is dependent

on its previous subproblem. Therefore, existing ADMM-based optimizers still update

parameters sequentially.

To handle the difficulties of layer dependency, in this chapter we propose a novel

parallel deep learning Alternating Direction Method of Multipliers(pdADMM) opti-

mization framework to train large-scale neural networks. Our contributions in this

chapter include:

• We propose a novel reformulation of the Multi-Layer Perceptron(MLP) neural

network problem, which splits a neural network into independent layer partitions

and allows for ADMM to achieve model parallelism.

• We present a model-parallelism version of the ADMM algorithm to train an

MLP neural network. All parameters in each layer can be updated in parallel

to speed up the training process significantly. All subproblems generated by the

pdADMM algorithm are discussed in detail.

• We investigated the convergence properties of parallel ADMM in the common

nonlinear activation functions such as the Rectified linear unit(ReLU), and we

prove that the pdADMM converges to a state-of-the-art stationary point with

a sublinear convergence rate o(1/k).

• We conduct extensive experiments on six benchmark datasets to show the mas-

sive speedup of the proposed pdADMM as well as its competitive performance

4.2. RELATED WORK 61

with state-of-the-art optimizers.

The organization of this chapter is shown as follows: In Section 4.2, we summarize

recent related research work to this chapter. In Section 4.3, we formulate the novel

pdADMM algorithm to train a MLP neural network. In Section 4.4, the convergence

guarantee of pdADMM to a stationary point is provided. Extensive experiments

on benchmark datasets to demonstrate the convergence, speedup and comparable

performance of pdADMM are shown in Section 4.5, and Section 4.6 concludes this

work.

4.2 Related Work

Distributed ADMM: ADMM is one of the commonly applied techniques in dis-

tributed optimization. Overall, the previous works on distributed ADMM can be

classified into two categories: synchronous problems and asynchronous problems.

Synchronous problems usually require workers to optimize parameters in time be-

fore the master update the consensus variable, while asynchronous problems allow

some workers to delay parameter updates. Most literature focused on the applica-

tion of the distributed ADMM to synchronous problems. For example, Mota et al.

utilized the distributed ADMM for the congestion control problem [70]; Makhdoumi

and Ozdaglar studied the convergence properties of the distributed ADMM on the

network communication problem. For more work, please refer to [10, 11, 90, 116, 126].

On the other hand, a handful of papers investigated how asynchronous problems can

be addressed by distributed ADMM. For instance, Zhang et al., Wei et al., Chang

et al and Hong proved the convergence of the distributed ADMM on asynchronous

problems [12, 13, 39, 123, 108]. Kumar et al. discussed the application of the ADMM

on multi-agent problems over heterogeneous networks [56]. However, there still lacks

a general framework for ADMM to train deep neural networks in a distributed fash-

4.2. RELATED WORK 62

ion.

Distributed Deep Learning: With the increased volume of data and layers of

neural networks, there is a need to design distributed systems to train a deep neural

network for large-scale applications. Most recent papers have proposed gradient-based

distributed systems to train neural networks: For example, Wen et al. proposed Tern-

grad to accelerate distributed deep learning in data parallelism [109]; Sergeev et al.

presented an open-source library Horovod to reduce communication overhead [88].

Other systems include SINGA [77], Mxnet[16], TicTac [36] and Poseidon [122].

Data and Model Parallelism: Data parallelism focuses on distributing data across

different processors, which can be implemented in parallel. Scaling GD is one of the

most common ways to reach data parallelism [129]. For example, the distributed ar-

chitecture, Poseidon, is achieved by scaling GD through overlapping communication

and computation over networks. The recently proposed ADMM [93, 101] is another

way of data parallelism: each subproblem generated by ADMM can be solved in

parallel. However, data parallelism suffers from the bottleneck of a neural network:

for GD, the gradient should be transmitted through all processors; for ADMM, the

parameters in one layer are subject to these in its previous layer. As a result, this

leads to heavy communication costs and time delays. Model parallelism, however,

can solve this challenge because model parallelism splits a neural network into many

independent partitions. In this way, each partition can be optimized in parallel and

hence reduce time delay. For instance, Parpas and Muir proposed a parallel-in-time

method from the perspective of dynamic systems [79]; Huo et al. introduced a fea-

ture replay algorithm to achieve model parallelism [43]. Zhuang et al. broke layer

dependency by introducing the delayed gradient [127]. However, to the best of our

knowledge, there still lacks an exploration of how to achieve model parallelism via

ADMM.

4.3. PDADMM 63

4.3 pdADMM

We propose the pdADMM algorithm in this section. Specifically, Section 4.3.1 in-

troduces the existing deep learning ADMM method, reformulates the problem, and

presents the pdADMM algorithm in detail. Section 4.3.2 discusses all subproblems

generated by pdADMM and the strategy to train a large-scale deep neural network

via pdADMM.

4.3.1 Problem Reformulation

Problem 1 has been addressed by the proposed dlADMM and mDLAM in Chapters 2

and 3, respectively. However, parameters in one layer are dependent on its neighboring

layers and hence can not achieve parallelism. For example, the update of al+1 on the

(l + 1)-th layer needs to wait before zl on the l-th layer is updated. In order to

address layer dependency, we relax Problem 1 to Problem 4 as follows:

Problem 4.

minp,W,z,q F (p,W, z,q)=R(zL, y)+(ν/2)(
∑L

l=1
∥zl −Wlpl∥22 +

∑L−1

l=1
∥ql − fl(zl)∥22)

s.t. pl+1 = ql.

where pl and ql are the input and the output of the i-th layer, respectively, p =

{pl}Ll=1, W = {Wl}Ll=1, z = {zl}Ll=1, q = {ql}L−1
l=1 , and ν > 0 is a tuning parameter.

We reduce layer dependency by splitting the output of the l-th layer and the input of

the (l + 1)-th layer into two variables pl+1 and ql, respectively. As ν → ∞, Problem

4 approaches Problem 1.

The high-level overview of the pdADMM algorithm is shown in Figure 4.1. Specif-

ically, by breaking the whole neural network into multiple layers, each of which can

be optimized by an independent worker. Therefore, layerwise training can be imple-

4.3. PDADMM 64

mented in parallel. Moreover, the gradient vanishing problem can be avoided in this

way. This is because the accumulated gradient calculated by the backpropagation

algorithm is split into layerwise components.

Now we follow the ADMM routine to solve Problem 4, the augmented Lagrangian

function is formulated mathematically as follows:

Lρ(p,W, z,q,u)

= F (p,W, z,q) +
∑L−1

l=1
(uTl (pl+1 − ql) + (ρ/2)∥pl+1 − ql∥22)

= R(zL, y) + ϕ(p1,W1, z1) +
∑L

l=2
ϕ(pl,Wl, zl, ql−1, ul−1)

+ (ν/2)
∑L−1

l=1
∥ql − fl(zl)∥22.

where ϕ(p1,W1, z1) = (ν/2)∥z1−W1p1∥22, ϕ(pl,Wl, zl, ql−1, ul−1) = (ν/2)∥zl−Wlpl∥22+

uTl−1(pl − ql−1) + (ρ/2)∥pl − ql−1∥22, ul(l = 1, · · · , L − 1) are dual variables, ρ > 0 is

a parameter, and u = {ul}L−1
l=1 . The detail of the pdADMM is shown in Algorithm

5. Specifically, Lines 5-8 update primal variables p, W, z and q, respectively, while

Line 11 updates the dual variable u. the discussion on how to solve subproblems

generated by pdADMM is detailed in the next section.

Algorithm 5: The proposed pdADMM algorithm

Require: y, p1 = x, ρ, ν.
Ensure: p,W, z,q.
Initialize k = 0.
while pk,Wk, zk,qk not converged do
Update pk+1

l of different l by Equation (4.1) in parallel.
Update W k+1

l of different l by Equation (4.2) in parallel.
Update zk+1

l of different l by Equations (4.3) and (4.4) in parallel.
Update qk+1

l of different l by Equation (4.5) in parallel.
rkl ← pk+1

l+1 − q
k+1
l (l = 1, · · · , L) in parallel # Compute residuals.

Update uk+1
l of different l by Equation (4.6) in parallel.

k ← k + 1.
end while
Output p,W, z,q.

4.3. PDADMM 65

Figure 4.1: The overview of the proposed pdADMM algorithm.

4.3.2 Solutions to All Subproblems

In this section, we discuss how to solve all subproblems generated by pdADMM in

detail.

1. Update pk+1

The variable pk+1 is updated as follows:

pk+1
l ← argminpl Lρ(p,W

k, zk,qk,uk) = ϕ(pl,W
k
l , z

k
l , q

k
l−1, u

k
l−1)

Because Wl and pl are coupled in ϕ, solving pl should require the time-consuming

operation of matrix inversion of Wl. To handle this, we apply similar quadratic

approximation techniques as used in dlADMM [101] as follows:

pk+1
l ← argmin

pl
Ul(pl; τ

k+1
l) (4.1)

4.3. PDADMM 66

where Ul(pl; τ
k+1
l) = ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1) + (∇pkl

ϕ(pkl ,W
k
l , z

k
l , q

k
l−1, u

k
l−1)(pl − pkl) +

(τ k+1
l /2)∥pl − pkl ∥22, and τ k+1

l > 0 is a parameter. τ k+1
l should satisfy

ϕ(pk+1
l ,W k

l , z
k
l , q

k
l−1, u

k
l−1) ≤ Ul(p

k+1
l ; τ k+1

l). The solution to Equation (4.1) is: pk+1
l ←

pkl −∇pkl
ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1)/τ

k+1
l .

2. Update Wk+1

The variable Wk+1 is updated as follows:

W k+1
l ← argminWl

Lρ(p
k+1,W, zk,qk,uk)

= argminWl

ϕ(pk+1

1 ,W1, z
k
1) l = 1

ϕ(pk+1
l ,Wl, z

k
l , q

k
l−1, u

k
l−1) 1 < l ≤ L

Similar to updating pl, the following subproblem should be solved instead:

W k+1
l ← argminWl

Vl(Wl; θ
k+1
l) (4.2)

where

V1(W1; θ
k+1
1) = ϕ(pk+1

1 ,W k
1 , z

k
1) +∇Wk

1
ϕT (pk+1

1 ,W k
1 , z

k
1)(W1 −W k

1)

+ (θk+1
l /2)∥W1 −W k

1 ∥22

Vl(Wl; θ
k+1
l)=ϕ(pk+1

l ,W k
l , z

k
l , q

k
l−1, u

k
l−1)+∇Wk

l
ϕT (pk+1

l ,W k
l , z

k
l , q

k
l−1, u

k
l−1)(Wl −W k

l)

+ (θk+1
l /2)∥Wl −W k

l ∥22

and θk+1
l is a parameter, which should satisfy ϕ(pk+1

1 ,W k+1
1 , zk1) ≤ V (W k+1

1 ; θk+1
1) and

ϕ(pk+1
l ,W k+1

l , zkl , q
k
l−1, u

k
l−1) ≤ V (W k+1

l ; θk+1
l)(1 < l < L). The solution to Equation

4.3. PDADMM 67

(4.2) is shown as follows:

W k+1
l ← W k

l −

∇Wk

1
ϕ(pk+1

1 ,W k
1 , z

k
1)/θ

k+1
l l = 1

∇Wk
l
ϕ(pk+1

l ,W k
l , z

k
l , q

k
l−1, u

k
l−1)/θ

k+1
l 1 < l ≤ L

3. Update zk+1

The variable zk+1 is updated as follows:

zk+1
l ← argminzl(ν/2)∥zl −W k+1

l pk+1
l ∥

2
2 + (ν/2)∥qkl − fl(zl)∥22 + (ν/2)∥zl − zkl ∥22

(l < L) (4.3)

zk+1
L ← argminzl R(zL, y) + (ν/2)∥zL −W k+1

L pk+1
L ∥22 (4.4)

where a quadratic term (ν/2)∥zl − zkl ∥22 is added in Equation (4.3) to control zk+1
l

to close to zkl . Equation (4.4) is convex, which can be solved by Fast Iterative Soft

Thresholding Algorithm(FISTA) [2].

For Equation (4.3), nonsmooth activations usually lead to closed-form solutions [101,

99]. For example, for ReLU fl(zl) = max(zl, 0), the solution to Equation (4.3) is

shown as follows:

zk+1
l =

min((W k+1

l pk+1
l + zkl)/2, 0) zk+1

l ≤ 0.

max((W k+1
l pk+1

l + qkl + zkl)/3, 0) zk+1
l ≥ 0.

For smooth activations such as tanh and sigmoid, a lookup-table is recommended

[101].

4. Update qk+1

4.4. CONVERGENCE ANALYSIS 68

The variable qk+1 is updated as follows:

qk+1
l ← argminql Lρ(p

k+1,Wk+1, zk+1,q,uk) = argminql ϕ(p
k+1
l+1 ,W

k+1
l+1 , z

k+1
l+1 , ql, u

k
l).

(4.5)

Equation (4.5) has a closed-form solution as follows:

qk+1
l ← (ρpk+1

l+1 + ukl + νfl(z
k+1
l))/(ρ+ ν)

5. Update uk+1

The variable uk+1 is updated as follows:

uk+1
l ← ukl + ρ(pk+1

l+1 − q
k+1
l) (4.6)

Finally, Our proposed pdADMM can be efficient for training a deep MLP neural

network. To achieve this, we begin by training a swallow neural network with the first

few layers of the deep neural network, then more layers are added for training step by

step until finally all layers are involved in the training process. The pdADMM can

achieve good performance as well as reduce training costs with this strategy.

4.4 Convergence Analysis

In this section, the theoretical convergence of the proposed pdADMM algorithm.

Firstly, the Lipschitz continuity and coercivity are defined as follows:

Definition 1. (Lipschitz Continuity) A function g(x) is Lipschitz continuous if there

4.4. CONVERGENCE ANALYSIS 69

exists a constant D > 0 such that ∀x1, x2, the following holds

∥g(x1)− g(x2)∥ ≤ D∥x1 − x2∥.

Definition 2. (Coercivity) A function h(x) is coerce over the feasible set F means

that h(x)→∞ if x ∈ F and ∥x∥ → ∞.

Then the following assumption is required for convergence analysis.

Assumption 5. fl(zl) is Lipschitz continuous with coefficient S > 0, and F is coer-

cive. Moreover, ∂fl(zl) is bounded, i.e. there exists M > 0 such that ∥∂fl(zl)∥ ≤M .

Assumption 5 is mild to satisfy: most common activation functions such as ReLU

and leaky ReLU satisfy Assumption 5. No assumption is needed on the risk func-

tion R(zL, y), which shows that the convergence condition of our proposed pdADMM

is milder than that of the dlADMM, which requires R(zL, y) to be Lipschitz dif-

ferentiable [101]. Due to space limit, the detailed proofs are provided in Section

C.1 and Section C.2 in the Appendix. The technical proofs follow a similar routine

as dlADMM [101]. The difference consists in the fact that the dual variable ul is

controlled by ql and zl(Lemma 21 in Section C.1 in the Appendix), which holds un-

der Assumption 5, while ul can be controlled only by zl in the convergence proof

of dlADMM. The first lemma shows that the objective keeps decreasing when ρ is

sufficiently large.

Lemma 5 (Decreasing Objective). If ρ > max(4νS2, (
√
17 + 1)ν/2), there exist

C1 = ν/2− 2ν2S2/ρ > 0 and C2 = ρ/2− 2ν2/ρ− ν/2 > 0 such that it holds for any

4.4. CONVERGENCE ANALYSIS 70

k ∈ N that

Lρ(p
k,Wk, zk,qk,uk)− Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

≥
∑L

l=2
(τ k+1

l /2)∥pk+1
l − pkl ∥22 +

∑L

l=1
(θk+1

l /2)∥W k+1
l −W k

l ∥22

+
∑L−1

l=1
C1∥zk+1

l − zkl ∥22 + (ν/2)∥zk+1
L − zkL∥22 +

∑L−1

l=1
C2∥qk+1

l − qkl ∥22 (4.7)

The second Lemma illustrates that the objective is bounded from below when ρ

is large enough, and all variables are bounded.

Lemma 6 (Bounded Objective). If ρ > ν, then Lρ(p
k,Wk, zk,qk,uk) is lower

bounded. Moreover, pk,Wk, zk,qk,and uk are bounded, i.e. there exist Np, NW,

Nz, Nq, and Nu > 0, such that ∥pk∥ ≤ Np, ∥Wk∥ ≤ NW, ∥zk∥ ≤ Nz, ∥qk∥ ≤ Nq, and

∥uk∥ ≤ Nu.

Based on Lemmas 5 and 6, the following theorem ensures that the objective is

convergent.

Theorem 6 (Convergent Objective). If ρ > max(4νS2, (
√
17 + 1)ν/2), then

Lρ(p
k,Wk, zk,qk,uk) is convergent. Moreover, limk→∞ ∥pk+1 − pk∥22 = 0,

limk→∞ ∥Wk+1 −Wk∥22 = 0, limk→∞ ∥zk+1 − zk∥22 = 0, limk→∞ ∥qk+1 − qk∥22 = 0,

limk→∞ ∥uk+1 − uk∥22 = 0.

Proof. From Lemmas 5 and 6, we know that Lρ(p
k,Wk, zk,qk,uk) is convergent

because a monotone bounded sequence converges. Moreover, we take the limit on

both sides of Inequality (4.7) to obtain

0 = limk→∞ Lρ(p
k,Wk, zk,qk,uk)− limk→∞ Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

≥ limk→∞(
∑L

l=2
(τ k+1

l /2)∥pk+1
l − pkl ∥22 +

∑L

l=1
(θk+1

l /2)∥W k+1
l −W k

l ∥22

+
∑L−1

l=1
C1∥zk+1

l − zkl ∥22 + (ν/2)∥zk+1
L − zkL∥22 +

∑L−1

l=1
C2∥qk+1

l − qkl ∥22) ≥ 0

4.4. CONVERGENCE ANALYSIS 71

Because Lρ(p
k,Wk, zk,qk,uk) is convergent, then limk→∞ ∥pk+1 − pk∥22 = 0,

limk→∞ ∥Wk+1−Wk∥22 = 0, limk→∞ ∥zk+1− zk∥22 = 0, and limk→∞ ∥qk+1−qk∥22 = 0.

limk→∞ ∥uk+1 − uk∥22 = 0 is derived from Lemma 21 in Section C.1 in the Appendix.

The third lemma guarantees that the subgradient of the objective is upper bounded,

which is stated as follows:

Lemma 7 (Bounded Subgradient). There exists a constant C > 0 and gk+1 ∈

∂Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1) such that

∥gk+1∥ ≤ C(∥pk+1 − pk∥+ ∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥qk+1 − qk∥

+ ∥uk+1 − uk∥)

Now based on Theorem 6, and Lemma 7, the convergence of the pdADMM algo-

rithm to a stationary point is presented in the following theorem.

Theorem 7 (Convergence to a stationary Point). If ρ > max(4νS2, (
√
17 + 1)ν/2),

then for the variables (p,W, z,q,u) in Problem 4, starting from any initialization

(p0,W0, z0,q0,u0), (pk,Wk, zk,qk,uk) has at least a limit point (p∗,W∗, z∗,q∗,u∗),

and any limit point is a stationary point of Problem 4 (i.e. 0 ∈ ∂Lρ(p
∗,W∗, z∗,q∗,u∗)).

In other words,

p∗l+1 = q∗l , ∇p∗Lρ(p
∗,W∗, z∗,q∗,u∗) = 0, ∇W∗Lρ(p

∗,W∗, z∗,q∗,u∗) = 0,

0 ∈ ∂z∗Lρ(p
∗,W∗, z∗,q∗,u∗), ∇q∗Lρ(p

∗,W∗, z∗,q∗,u∗) = 0.

Proof. From Lemma 6, (pk,Wk, zk,qk,uk) has at least a limit point(p∗,W∗, z∗,q∗,u∗)

because a bounded sequence has at least a limit point. From Lemma 7 and Theorem

6, ∥gk+1∥ → 0 as k →∞. According to the definition of general subgradient(Defintion

4.5. EXPERIMENTS 72

8.3 in [84]), we have 0 ∈ ∂Lρ(p
∗,W∗, z∗,q∗,u∗). In other words, every limit point

(p∗,W∗, z∗,q∗,u∗) is a stationary point.

Theorem 7 shows that our proposed pdADMM algorithm converges for sufficiently

large ρ, which is consistent with previous literature [101]. Next, the following theorem

ensures the sublinear convergence rate o(1/k) of the proposed pdADMM algorithm,

whose proof is in the Appendix.

Theorem 8 (Convergence Rate). For a sequence (pk,Wk, zk,qk,uk), define ck =

min0≤i≤k(
∑L

l=2(τ
i+1
l /2)∥pi+1

l − pil∥22 +
∑L

l=1(θ
i+1
l /2)∥W i+1

l −W i
l ∥22 +

∑L−1
l=1 C1∥zi+1

l −

zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +

∑L−1
l=1 C2∥qi+1

l − qil∥22) where C1 = ν/2− 2ν2S2/ρ > 0 and

C2 = ρ/2− 2ν2/ρ− ν/2 > 0, then the convergence rate of ck is o(1/k).

4.5 Experiments

In this section, we evaluate the performance of the proposed pdADMM using six

benchmark datasets. Speedup, convergence, and accuracy performance are compared

with several state-of-the-art optimizers. All experiments were conducted on a 64-bit

machine with Intel Xeon(R) silver 4114 Processor and 48GB RAM.

4.5.1 Datasets

In this experiment, six benchmark datasets were used for performance evaluation:

1. MNIST [58]. The MNIST dataset has ten classes of handwritten-digit images,

which was firstly introduced by Lecun et al. in 1998 [58]. It contains 55,000 training

samples and 10,000 test samples with 196 features each, which is provided by the

Keras library [17].

2. Fashion MNIST [112]. The Fashion MNIST dataset has ten classes of assortment

images on the website of Zalando, which is Europe’s largest online fashion platform

[112]. The Fashion-MNIST dataset consists of 60,000 training samples and 10,000

4.5. EXPERIMENTS 73

test samples with 196 features each.

3. Kuzushiji-MNIST(kMNIST) [20]. The kMNIST dataset has ten classes, each of

which is a character to represent each of the 10 rows of Hiragana. The kMNIST

dataset consists of 60,000 training samples and 10,000 test samples with 196 features

each.

4. Street View House Numbers(SVHN) [72]. The SVHN dataset is obtained from

house numbers in Google Street View images. It consists of ten classes of digits. In

our experiments, we use three classes ’0’, ’1’ and ’2’. The number of training data

and test data are 24,446 and 9,248, respectively, with 768 features each.

5. CIFAR10 [55]. CIFAR10 is a collection of color images with 10 different classes.

In our experiments, we use two classes ’0’ and ’6’. The number of training data and

test data are 12,000 and 2,000, respectively, with 768 features each.

6. CIFAR100 [55]. CIFAR100 is similar to CIFAR10 except that CIFAR100 has 100

classes. In our experiments, we use two classes ’0’ and ’2’. The number of training

data and test data are 5,000 and 1,000, respectively, with 768 features each.

4.5.2 Speedup

MNIST dataset

Neurons# Serial pdADMM(sec) pdADMM(sec) Speedup

1500 237.66 26.78 8.87

1600 348.70 31.78 10.97

1700 390.51 35.79 10.91

1800 475.60 41.37 11.50

1900 465.57 45.87 10.15

2000 570.90 50.70 11.26

2000 570.9 50.7 11.26

4.5. EXPERIMENTS 74

2100 570 54.91 10.38

2200 678.83 63.59 10.68

2300 710.3 70.36 10.10

2400 766.82 62.5 12.27

Fashion MNIST dataset

Neurons# Serial pdADMM(sec) pdADMM(sec) Speedup

1500 358.68 32.65 10.99

1600 407.71 37.90 10.76

1700 476.79 44.75 10.65

1800 539.51 50.50 10.68

1900 599.42 53.88 11.13

2000 645.87 58.68 11.01

2100 740.39 67.91 10.90

2200 818.58 74.17 11.03

kMNIST dataset

Neurons# Serial pdADMM(sec) pdADMM(sec) Speedup

1500 354.85 32.65 10.87

1600 407.73 37.11 10.99

1700 472.4648 42.58 11.10

1800 539.52 48.78 11.06

1900 596.84 55.56 10.74

2000 660.58 56.10 11.78

2100 737.78 66.95 11.02

2200 806.74 76.16 10.59

CIFAR10 dataset

Neurons# Serial pdADMM(sec) pdADMM(sec) Speedup

4.5. EXPERIMENTS 75

1500 326.62 25.00 13.06

1600 374.82 28.96 12.94

1700 433.46 33.99 12.75

1800 485.86 38.66 12.57

1900 544.11 43.10 12.62

2000 572.33 46.90 12.20

2100 602.65 55.25 10.91

2200 732.79 59.27 12.36

2300 784.87 56.26 13.95

2400 854.47 63.1 13.54

CIFAR100 dataset

Neurons# Serial pdADMM(sec) pdADMM(sec) Speedup

1500 334.55 25.39 13.18

1600 382.24 29.3 13.05

1700 445.23 34 13.09

1800 500.00 38.38 13.03

1900 549.77 43.25 12.71

2000 576.10 42.47 13.56

2100 666.06 47.43 14.04

2200 735.63 52.41 14.04

2300 793.03 56.73 13.98

2400 857.41 62.3 13.76

Table 4.1: The relationship between the speedup of the proposed pdADMM algorithm
and the number of neurons on five datasets.

In this experiment, we investigate the speedup of the proposed pdADMM algo-

rithm concerning the number of layers and the number of neurons on large-scale deep

4.5. EXPERIMENTS 76

11 12 13 14 15 16 17 18 19
Number of Layers

6

8

10

12

14

16

Sp
ee

du
p

MNIST
Fashion_MNIST
kMNIST

CIFAR10
CIFAR100

Figure 4.2: The relationship between the speedup of the proposed pdADMM algo-
rithm and the number of layers on five datasets.

neural networks. The activation function was set to ReLU. The loss function was the

cross-entropy loss. The running time per epoch was the average of 10 epochs. ρ and

ν were both set to 10−4.

Firstly, we investigated the relationship between speedup and the number of lay-

ers. We set up an MLP neural network with a different number of hidden layers,

which ranges from 11 to 19. The number of neurons in each layer was fixed to 2,400.

The SVHN dataset was not tried due to memory issues. Figure 4.2 shows that the

speedup increases linearly with the number of layers. Specifically, the speedup reached

11 when 19 hidden layers were trained. This indicates that the deeper a neural net-

work is, the more speedup our proposed pdADMM can gain.

Secondly, the relationship between speedup and the number of neurons was stud-

ied. Specifically, we test our proposed pdADMM algorithm on an MLP neural net-

work with 19 hidden layers. The number of neurons in each layer ranges from 1,500

to 2,400. The speedup was shown in Table 4.1 on the MNIST and Fashion MNIST

4.5. EXPERIMENTS 77

0 20 40 60 80
Epoch

0

2

4

6

8

10

Lo
ga

rit
hm

 o
f O

bj
ec

tiv
e

MNIST
Fashion MNIST
kMNIST

SVHN
CIFAR10
CIFAR100

(a). Objective versus epoch.

0 20 40 60 80
Epoch

3
2
1
0
1
2
3
4
5

Lo
ga

rit
hm

 o
f R

es
id

ua
ls MNIST

Fashion MNIST
kMNIST

SVHN
CIFAR10
CIFAR100

(b). Residual versus epoch.

Figure 4.3: Convergence curves of the proposed pdADMM algorithm.

datasets. Specifically, the speedup remains stable at around 10 no matter how many

neurons were trained. This concludes that the speedup of the proposed pdADMM is

independent of the number of neurons.

4.5.3 Convergence

To validate the convergence of the proposed pdADMM, we set up an MLP neural

network with 9 hidden layers, each of which has 500 neurons. The ReLU was used

for the activation function for both network structures. The loss function was set as

the cross-entropy loss. The number of the epoch was set to 100. ν and ρ were both

set to 0.1. As shown in Figure 4.3, the objective keeps decreasing monotonically on

all six datasets, and the residual converges sublinearly to 0, which is consistent with

Theorems 7 and 8.

4.5.4 Performance

Experimental Settings

To evaluate the performance of the proposed pdADMM algorithm, we used the same

architecture as the previous section. ν and ρ were set to 10−4 in order to maximize

the performance of training data. The number of the epoch was set to 100. In this

4.5. EXPERIMENTS 78

0 20 40 60 80
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Tr
ai

ni
ng

 A
cc

ur
ac

y
GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(a). MNIST

0 20 40 60 80
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Tr
ai

ni
ng

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(b). Fashion MNIST

0 20 40 60 80
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Tr
ai

ni
ng

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(c). kMNIST

0 20 40 60 80
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Tr
ai

ni
ng

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(d). SVHN

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y
GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(e). CIFAR10

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(f). CIFAR100

Figure 4.4: Training accuracy of the proposed pdADMM algorithm against all com-
parison methods on six datasets.

0 20 40 60 80
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
st

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(a). MNIST

0 20 40 60 80
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
st

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(b). Fashion MNIST

0 20 40 60 80
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Te
st

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(c). kMNIST

0 20 40 60 80
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(d). SVHN

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(e). CIFAR10

0 20 40 60 80
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

GD
Adadelta
Adagrad

Adam
dlADMM
pdADMM

(f). CIFAR100

Figure 4.5: Test accuracy of the proposed pdADMM algorithm against all comparison
methods on six datasets.

4.5. EXPERIMENTS 79

experiment, the full batch was used for training. As suggested by the training strategy

in Section 4.3.2, we firstly trained an MLP neural network with five hidden layers,

and then all layers were involved in training.

Comparison Methods

GD and its variants are state-of-the-art methods and hence served as comparison

methods. For GD-based methods, the full batch dataset is used for training models.

All parameters were chosen by maximizing the accuracy of training datasets. The

baselines are described as follows:

1. Gradient Descent(GD) [4]. The GD and its variants are the most popular deep

learning optimizers, whose convergence has been studied extensively in the literature.

The learning rate of GD was set to 0.01.

2. Adaptive learning rate method(Adadelta) [118]. The Adadelta is proposed to

overcome the sensitivity to hyperparameter selection. The learning rate of Adadelta

was set to 1.

3. Adaptive gradient algorithm(Adagrad) [28]. Adagrad is an improved version of

GD: rather than fixing the learning rate during training, it adapts the learning rate

to the hyperparameter. The learning rate of Adagrad was set to 0.1.

4. Adaptive momentum estimation(Adam) [52]. Adam is the most popular opti-

mization method for deep learning models. It estimates the first and second momen-

tum to correct the biased gradient and thus makes convergence fast. The learning

rate for Adam was set to 0.001.

5. Deep learning Alternating Direction Method of Multipliers(dlADMM) [101].

The dlADMM is an improvement of the previous ADMM implementation [93]. It is

guaranteed to converge to a stationary point with a rate of o(1/k). ρ and ν were both

set to 10−6.

4.6. CONCLUSION 80

Performance

In this section, the performance of the proposed pdADMM is analyzed against com-

parison methods. Figures 4.4 and 4.5 show the training and test accuracy of the

proposed pdADMM against comparison methods on six datasets, respectively. The

X-axis and Y-axis represent epoch and training accuracy, respectively. Overall, the

pdADMM outperformed most of the comparison methods: it performed the best on

the SVHN, CIFAR10, and CIFAR100 datasets, while was only secondary to Adam

on the MNIST, Fashion MNIST, and kMNIST datasets. The performance gap is

particularly obvious in the CIFAR100 dataset. Most GD-type methods suffered from

gradient vanishing in the deep neural network, and struggled to find an optimum: for

example, GD can only reach 10% training accuracy on the MNIST dataset; Adagrad

and Adadelta performed better than GD, but took many epochs to escape saddle

points. The dlADMM can avoid the gradient vanishing problem, however, it per-

formed worse than the proposed pdADMM on all datasets. Adam performed the best

on three MNIST-like datasets but performed worse than the proposed pdADMM on

three other datasets, which are hard to train with high accuracy than three MNIST-

like datasets. This indicates that the proposed pdADMM may be more suitable for

training hard datasets than Adam.

4.6 Conclusion

The ADMM is considered to be a good alternative to GD for training deep neural

networks. In this chapter, we propose a novel parallel deep learning Alternating Direc-

tion Method of Multipliers(pdADMM) to achieve layer parallelism. It is guaranteed

to converge to a stationary solution under mild conditions. Experiments on bench-

mark datasets demonstrate that our proposed pdADMM not only leads to a huge

speedup for deep MLPs, but also outperforms others on six benchmark datasets.

CHAPTER 5. THE PDADMM-G AND PDADMM-G-Q ALGORITHMS 81

Chapter 5

The pdADMM-G and

pdADMM-G-Q Algorithms

5.1 Introduction

In Chapter 4, we demonstrate the effectiveness of the proposed pdADMM algorithm.

In this Chapter, we extend our proposed pdADMM to graph applications, which can

be possibly achieved by Graph Neural Networks(GNNs). They have accomplished

state-of-the-art performance in various graph applications such as node classification

and link prediction. This is because they handle graph-structured data via aggre-

gating neighbor information and extending operations and definitions of the deep

learning approach [53]. However, their performance has significantly been restricted

via their depths due to the over-smoothing problem(i.e. the representations of differ-

ent nodes in a graph tend to be similar when stacking multiple layers) [15], and the

over-squashing problem(i.e. the information flow among distant nodes distorts along

the long-distance interactions) [96]. These challenges still exist even though some

models such as GraphSAGE [35] have been proposed to alleviate them.

On the other hand, the Graph Augmented Multi-Layer Perceptron(GA-MLP)

5.1. INTRODUCTION 82

models have recently received fast-increasing attention as an alternative to deal with

the aforementioned drawbacks of conventional GNNs via the augmentation of graph

features. GA-MLP models augment node representations of graphs and feed them

into Multi-Layer Perceptron(MLP) models. Compared with GNNs, GA-MLP mod-

els are more resistant to the over-smoothing problem [15] and therefore demonstrate

outstanding performance. For example, Wu et al. showed that a two-layer GA-MLP

approximates the performance of the GNN models on multiple datasets [110].

GA-MLP models are supposed to perform better with the increase of their depths.

However, similar to GNNs, GA-MLP models still suffer from the gradient vanishing

problem, which is caused by the mechanism of the classic backpropagation algorithm.

This is because gradient signals diminish during the transmission among deep layers.

Moreover, while the models go deeper, efficiency will become an issue, especially for

medium- and large-size graphs. Compared to the data such as images and texts, where

identically and independently distributed(i.i.d.) samples are assumed, efficiency issues

in graph data are much more difficult to handle due to the dependency among data

samples(i.e., nodes in graphs). Such dependency seriously troubles the effectiveness

of using typical acceleration techniques such as sampling-based methods, and data-

parallelism distributed learning in solving the efficiency issue. Therefore, parallelizing

the computation along layers is a natural workaround, but the backpropagation pre-

vents the gradients of different layers from being calculated in parallel. This is because

the calculation of the gradient in one layer is dependent on its previous layers.

To handle these challenges, we extend the proposed pdADMM algorithm to train

large-scale GA-MLP models, named the graph pdADMM(pdADMM-G) algorithm,

and the quantized graph pdADMM(pdADMM-G-Q) algorithm reduces communica-

tion costs of the pdADMM-G algorithm by the quantization technique. Our contri-

butions to this chapter include:

• We propose a novel reformulation of GA-MLP models. It splits a neural

5.1. INTRODUCTION 83

network into independent layer partitions and allow for ADMM to achieve model

parallelism.

• We propose a novel pdADMM-G framework to train a GA-MLP

model. All subproblems generated by the ADMM algorithm are discussed.

The extended pdADMM-G-Q algorithm reduces communication costs by intro-

ducing the quantization technique.

• We provide the theoretical convergence guarantee of the proposed

pdADMM-G algorithm and the pdADMM-G-Q algorithm. Specifi-

cally, they converge to a(quantized) stationary point of GA-MLP models when

the hyperparameters are sufficiently large, and their sublinear convergence rates

are o(1/k).

• We conduct extensive experiments to show the effectiveness of two

proposed algorithms. Experiments on nine benchmark datasets show the

convergence, the massive speedup of the proposed pdADMM-G algorithm and

the pdADMM-G-Q algorithm, as well as their outstanding performance when

compared with all state-of-the-art optimizers. Moreover, the pdADMM-G-Q

algorithm reduces communication overheads by up to 45%.

The organization of this chapter is shown as follows: In Section 5.2, we summarize re-

cent related research work to this chapter. In Section 5.3, we propose the pdADMM-G

algorithm and the pdADMM-G-Q algorithm to train deep GA-MLP models. Section

5.4 details the convergence properties of the proposed pdADMM-G algorithm and

the pdADMM-G-Q algorithm. Extensive experiments on nine benchmark datasets to

demonstrate the convergence, speedup, communication savings, and outstanding per-

formance of the pdADMM-G algorithm and the pdADMM-G-Q algorithm are shown

in Section 5.5, and Section 5.6 concludes this work.

5.2. RELATED WORK 84

5.2 Related Work

This section summarizes existing literature related to this chapter. One branch of

related research is distributed deep learning, which has been discussed in Section 4.2

in Chapter 4. The other branch of related papers are deep learning on graph, which

is shown as follows:

Deep Learning on Graphs: Graphs are ubiquitous structures and are pop-

ular in real-world applications. There is a surge of interest to apply deep learn-

ing techniques to graphs. For a comprehensive summary please refer to [111]. It

classified existing GNN models into four categories: Recurrent Graph Neural Net-

works(RecGNNs), Convolutional Graph Neural Networks(ConvGNNs), Graph Au-

toencoders(GAEs), and Spatial-Temporal Graph Neural Networks(STGNNs).

RecGNNs learn node representation with recurrent neural networks via the message

passing mechanisms [23, 29, 63]; ConvGNNs generalize the operations of convolution

to graph data and stack multiple convolution layers to extract high-level node features

[7, 25, 38]; GAEs encode node information into a latent space and reconstruct graphs

from the encoded node representation [8, 78, 97]; the idea of STGNNs is to capture

spatial dependency and temporal dependency simultaneously [48, 62, 87].

5.3 The pdADMM-G Algorithm

We propose the pdADMM-G algorithm to solve GA-MLP models in this section.

Specifically, Section 5.3.1 formulates the GA-MLP model training problem, and Sec-

tion 5.3.2 proposes the pdADMM-G algorithm. Section 5.3.3 extends the proposed

pdADMM-G algorithm to the pdADMM-G-Q algorithm for quantization.

5.3. THE PDADMM-G ALGORITHM 85

Notations Descriptions
L Number of layers.
Wl The weight matrix for the l-th layer.
bl The intercept vector for the l-th layer.
zl The auxiliary variable of the linear mapping for the l-th layer.

fl(zl) The nonlinear activation function for the l-th layer.
pl The input for the l-th layer.
ql The output for the l-th layer.
X The node representation of the graph.
A The adjacency matrix of the graph.
y The predefined label vector.

R(zL, y) The risk function for the L-th layer.
nl The number of neurons for the l-th layer.
ul The dual variable for the l-th layer.

Table 5.1: Important Notations

5.3.1 Problem Formulation

Consider a graph G = (V,E), where V and E are sets of nodes and edges, respectively,

|V | is the number of nodes, let Ψ = {ψ1(A), · · · , ψK(A)} be a set of(usually multi-

hop) operators ψi(A) : R|V | → R|V |(i = 1, · · · , K) that are functions of the adjacency

matrix A ∈ {0, 1}|V |×|V |, and R|V | is the domain of ψi(A) (i = 1, · · · , K). xk =

Hψk(A) is the augmentation of node features by the k-hop operator, whereH ∈ Rd×|V |

is a matrix of node features, and d is the dimension of features. xk(k = 1, · · · , K)

are stacked into x = [x1; · · · ;xK] by column. Then the GA-MLP training problem is

formulated as follows [15]:

Problem 5.

minWl,zl,pl R(zL, y), s.t. zl = Wlpl, pl+1 = fl(zl)(l = 1, · · · , L− 1),

where p1 = X ∈ Rn0×|V | is the input of deep GA-MLP models, where n0 = Kd is

the dimension of input and y is a predefined label vector. pl ∈ Rnl×|V | is the input of

the l-th layer, also the output for the (l−1)-th layer, and nl is the number of neurons

for the l-th layer. R(zL, y) is a risk function of the L-th layer, which is convex and

5.3. THE PDADMM-G ALGORITHM 86

continuous; zl = Wlpl and pl+1 = fl(zl) are linear and nonlinear mappings of the l-th

layer, respectively, and Wl ∈ Rnl×nl−1 is the weight matrix of the l-th layer.

In Problem 5, Ψ can be considered as a prepossessing step to augment node

features via A, and hence it is predefined. One common choice can be

Ψ = {I, A,A2, · · · , AK−1}.

We apply the pdADMM algorithm in Chapter 4 to Problem 5 to realize model

parallelism training. To achieve this, we relax Problem 5 to Problem 6 as follows:

Problem 6.

minp,W,z,q F (p,W, z,q) = R(zL, y)+(ν/2)(
∑L

l=1
∥zl −Wlpl∥22+

∑L−1

l=1
∥ql − fl(zl)∥22),

s.t. pl+1 = ql.

where p = {pl}Ll=1, W = {Wl}Ll=1, z = {zl}Ll=1, q = {ql}L−1
l=1 , and ν > 0 is a tuning

parameter. We reduce layer dependency by splitting the output of the l-th layer and

the input of the(l+1)-th layer into two variables pl+1 and ql, respectively. As ν →∞,

Problem 6 approaches Problem 5.

5.3.2 The pdADMM-G Algorithm

The high-level overview of the pdADMM-G algorithm is shown in Figure 5.1. Specif-

ically, the inputs of GA-MLP models are augmented by Hψk(A) (k = 1, · · · , K), and

then GA-MLP models are split into multiple layers, each of which can be optimized

by an independent client. Therefore, layerwise training can be implemented in par-

allel. Moreover, the gradient vanishing problem can be avoided in this way. This

is because the accumulated gradient calculated by the backpropagation algorithm is

split into layerwise components.

Now we follow the ADMM routine to solve Problem 6. The augmented Lagrangian

5.3. THE PDADMM-G ALGORITHM 87

Figure 5.1: The overview of the proposed pdADMM-G optimization algorithm.

function is formulated mathematically as follows:

Lρ(p,W, z,q,u)

=F (p,W, z,q)+
∑L−1

l=1
(uTl (pl+1−ql)+(ρ/2)∥pl+1 − ql∥22)

=R(zL, y)+ϕ(p1,W1, z1)+
∑L

l=2
ϕ(pl,Wl, zl, ql−1, ul−1)+(ν/2)

∑L−1

l=1
∥ql−fl(zl)∥22,

where ϕ(p1,W1, z1) = (ν/2)∥z1−W1p1∥22, ϕ(pl,Wl, zl, ql−1, ul−1) = (ν/2)∥zl−Wlpl∥22+

uTl−1(pl − ql−1) + (ρ/2)∥pl − ql−1∥22, ul(l = 1, · · · , L − 1) are dual variables, ρ > 0 is

a parameter, and u = {ul}L−1
l=1 . The detail of the pdADMM-G algorithm is shown in

Algorithm 6. Specifically, Lines 5-8 update primal variables p, W, z and q, respec-

tively, while Line 10 updates the dual variable u. The details of all subproblems are

shown in Section 4.3 in Chapter 4.

Our proposed pdADMM-G algorithm can be efficient for training deep GA-MLP

5.3. THE PDADMM-G ALGORITHM 88

Algorithm 6: The proposed pdADMM-G algorithm

Require: y, p1 = X, ρ, ν.
Ensure: p,W, z,q.
Initialize k = 0.
while pk,Wk, zk,qk not converged do
pk+1
l ← argminpl Lρ(p,W

k, zk,qk,uk) for different l in parallel.
W k+1

l ← argminWl
Lρ(p

k+1,W, zk,qk,uk) for different l in parallel.
zk+1
l ← argminzl Lρ(p

k+1,Wk+1, z,qk,uk) for different l in parallel.
qk+1
l ← argminql Lρ(p

k+1,Wk+1, zk+1,q,uk) for different l in parallel.
rkl ← pk+1

l+1 − q
k+1
l (l = 1, · · · , L) in parallel # Compute residuals.

uk+1
l ← ukl + ρ(pk+1

l+1 − q
k+1
l) for different l in parallel.

k ← k + 1.
end while
Output p,W, z,q.

models via the greedy layerwise training strategy [3]. Specifically, we begin by train-

ing a shallow GA-MLP model. Next, more layers are increased to the GA-MLP model

and their parameters are trained, then we introduce even more layers and iterate this

process until the whole deep GA-MLP model is included. The pdADMM-G algorithm

can achieve excellent performance as well as reduce training costs by this strategy.

Last but not least, we compare the computational costs of the proposed pdADMM-

G algorithm with the state-of-the-art backpropagation algorithm, on which the gra-

dient descent is based. We show that they share the same level of computational

costs. For the backpropagation algorithm, the most costly operation is the matrix

multiplication zl = Wlpl in the forward pass, where Wl ∈ Rnl×nl−1 and pl ∈ Rnl−1×|V |,

which requires a time complexity of O(nlnl−1|V |) [21]; for the proposed pdADMM-G

algorithm, the most costly operation is to compute the derivative∇Wl
ϕ, and it also in-

volves the matrix multiplication, and hence its time complexity is again O(nlnl−1|V |).

However, the proposed pdADMM-G algorithm trains the whole GA-MLP model in

a model parallelism fashion [103], and therefore all computational costs can be split

into different independent clients for parallel training; whereas the backpropagation

algorithm is implemented sequentially, and thus it is less efficient than the proposed

5.3. THE PDADMM-G ALGORITHM 89

pdADMM-G algorithm.

5.3.3 Quantization Extension of pdADMM-G(pdADMM-G-

Q)

In the proposed pdADMM-G algorithm, pl and ql are transmitted back and forth

among layers(i.e. clients). However, the communication overheads of pl and ql surge

for a large-scale graph G with millions of nodes. To alleviate this challenge, the quan-

tization technique is commonly utilized to reduce communication costs by mapping

continuous values into a discrete set [42]. In other words, pl is required to fit into a

countable set ∆, which is shown as follows:

Problem 7.

minp,W,z,q F (p,W, z,q) = R(zL, y) + (ν/2)(
∑L

l=1
∥zl −Wlpl∥22

+
∑L−1

l=1
∥ql − fl(zl)∥22),

s.t. pl+1 = ql, pl ∈ ∆ = {δ1, · · · , δm},

where δi(i = 1, · · · ,m) ∈ ∆ are quantized values, which can be integers or low-

precision values. m = |∆| is the cardinality of ∆. To address Problem 7, we rewrite

it into the following form:

minp,W,z,qR(zL, y) +
∑L

l=2
I(pl) + (ν/2)(

∑L

l=1
∥zl −Wlpl∥22 +

∑L−1

l=1
∥ql − fl(zl)∥22),

s.t. pl+1 = ql,

where the indicator function I(pl) is defined as follows: I(pl) = 0 if pl ∈ ∆, and

I(pl) = +∞ if pl ̸∈ ∆. The augmented Lagrangian of Problem 7 is shown as follows:

βρ(p,W, z,q,u) = Lρ(p,W, z,q,u) +
∑L

l=2
I(pl),

5.4. CONVERGENCE ANALYSIS 90

where Lρ is the augmented Lagrangian of Problem 6. The extended pdADMM-G-Q

algorithm follows the same routine as the pdADMM-G algorithm, where Lρ is re-

placed with βρ. Obviously, the only difference between the pdADMM-G-Q algorithm

and the pdADMM-G algorithm is the pl-subproblem, which is outlined in the follow-

ing:

pk+1
l ← argminpl Ul(pl; τ

k+1
l) + I(pl), (5.1)

where Ul follows Equation (4.1). The solution to Equation (5.1) is [42]: pk+1
l ←

argminδ∈∆ ∥δ − (pkl −∇pkl
ϕ(pkl ,W

k
l , b

k
l , z

k
l , q

k
l−1, u

k
l−1)/τ

k+1
l)∥.

For the pdADMM-G-Q algorithm, the variable p is only required to be quan-

tized(i.e. pl ∈ ∆) when the pl-subproblem is solved(i.e. Equation (5.1)), and the

variable q can be any real number when it is updated. However, q is guaranteed to fit

into ∆ by the linear constraint pl+1 = ql. This design is convenient for the convergence

analysis, which is detailed in the next section. One variant of the pdADMM-G-Q al-

gorithm is to quantize p and q(i.e. pl, ql ∈ ∆) when they are updated. In this case, the

solution to ql subproblem is qk+1
l ← argminδ∈∆ ∥δ− (ρpk+1

l+1 +u
k
l +νfl(z

k+1
l))/(ρ+ν)∥.

5.4 Convergence Analysis

In this section, the theoretical convergence of the proposed pdADMM-G algorithm

and the pdADMM-G-Q algorithm is provided. Due to space limit, we only provide

sketches of proofs in this section, and their details are available in Section D.1 in

the Appendix. Our problem formulations are more difficult than existing ADMM

literature: the term ∥ql − fl(zl)∥22 is coupled in the objective, while it is separable in

the existing ADMM formulations. To address this, we impose a mild condition that

5.4. CONVERGENCE ANALYSIS 91

∂fl(zl) is bounded in Assumption 6, and prove that ul is controlled via ql and zl in

Lemma 25 in Section D.1 in the Appendix.

Firstly, the proper function, Lipschitz continuity, and coercivity are defined as

follows:

Definition 3 (Proper Functions). [84]. For a convex function g(x) : R→ R
⋃
{±∞},

g is called proper if ∀x ∈ R, g(x) > −∞, and ∃x0 ∈ R such that g(x0) < +∞.

Definition 4. (Lipschitz Continuity) A function g(x) is Lipschitz continuous if there

exists a constant D > 0 such that ∀x1, x2, the following holds

∥g(x1)− g(x2)∥ ≤ D∥x1 − x2∥.

Definition 5. (Coercivity) A function h(x) is coerce over the feasible set F means

that h(x)→∞ if x ∈ F and ∥x∥ → ∞.

Next, the definition of a quantized stationary point [42] is shown as follows:

Definition 6. (Quantized Stationary Point) The pl is a quantized stationary point

of of Problem 7 if there exists τ > 0 such that

pl ∈ argminδ∈∆ ∥δ − (pl −∇plF (p,W, z,q)/τ)∥.

The quantized stationary point is an extension of the stationary point in the

discrete setting, and any global solution pl to Problem 7 is a quantized stationary

point to Problem 7(Lemma 3.7 in [42]). Then the following assumption is required

for convergence analysis.

Assumption 6. fl(zl) is Lipschitz continuous with coefficient S > 0, R(zL, y) is

proper, and F (p,W, z,q) is coercive. Moreover, ∂fl(zl) is bounded, i.e. there exists

M > 0 such that ∥∂fl(zl)∥ ≤M .

5.4. CONVERGENCE ANALYSIS 92

Assumption 6 is mild to satisfy: most common activation functions such as Rec-

tified Linear Unit(ReLU) [103] and leaky ReLU[114] satisfy Assumption 6. The risk

function R(zL, y) is only required to be proper, which shows that the convergence

condition of our proposed pdADMM-G is milder than that of the dlADMM, which

requires R(zL, y) to be Lipschitz differentiable [101]. Due to the space limit, detailed

proofs are provided in Section D.1 in the Appendix. The technical proofs follow a

similar routine as dlADMM [101]. The difference consists in the fact that the dual

variable ul is controlled by ql and zl(Lemma 26 in Section D.1 in the Appendix), which

holds under Assumption 6, while ul can be controlled only by zl in the convergence

proof of dlADMM. The first lemma shows that the objective keeps decreasing when

ρ is sufficiently large.

Lemma 8 (Objective Decrease). For both the pdADMM-G algorithm and the

pdADMM-G-Q algorithm, if ρ > max(4νS2, (
√
17 + 1)ν/2), there exist C1 = ν/2 −

2ν2S2/ρ > 0 and C2 = ρ/2− 2ν2/ρ− ν/2 > 0 such that it holds for any k ∈ N that

Lρ(p
k,Wk,zk,qk,uk)−Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

≥
∑L

l=2
(τ k+1l /2)∥pk+1

l −pkl ∥22+
∑L

l=1
(θk+1l /2)∥W k+1

l −W
k
l ∥22+

∑L−1

l=1
C1∥zk+1

l −zkl ∥22

+(ν/2)∥zk+1
L − zkL∥22 +

∑L−1

l=1
C2∥qk+1

l − qkl ∥22, (5.2)

βρ(p
k,Wk,zk,qk,uk)−βρ(pk+1,Wk+1, zk+1,qk+1,uk+1)

≥
∑L

l=1
(θk+1l /2)∥W k+1

l −W
k
l ∥22 +

∑L−1

l=1
C1∥zk+1

l −zkl ∥22 +(ν/2)∥zk+1
L − zkL∥22

+
∑L−1

l=1
C2∥qk+1

l − qkl ∥22. (5.3)

Sketch of Proof: They can be proven via the optimality conditions of all

subproblems, and Assumption 6. □

Lemma 9 shows that the objective is bounded from below when ρ is large enough,

and all variables are bounded.

5.4. CONVERGENCE ANALYSIS 93

Lemma 9 (Bounded Objective). (1). For the pdADMM-G algorithm, if ρ > ν,

then Lρ(p
k,Wk, zk,qk,uk) is lower bounded. Moreover, pk,Wk, zk,qk,and uk are

bounded, i.e. there exist Np, NW, Nz, Nq, and Nu > 0, such that ∥pk∥ ≤ Np,

∥Wk∥ ≤ NW, ∥zk∥ ≤ Nz, ∥qk∥ ≤ Nq, and ∥uk∥ ≤ Nu.

(2). For the pdADMM-G-Q algorithm, if ρ > ν, then βρ(p
k,Wk, zk,qk,uk) is lower

bounded. Moreover, Wk, zk,qk,and uk are bounded, i.e. there exist NW, Nz, Nq, and

Nu > 0, such that ∥Wk∥ ≤ NW, ∥zk∥ ≤ Nz, ∥qk∥ ≤ Nq, and ∥uk∥ ≤ Nu.

Sketch of Proof: We only show the sketch proof of(1) because(2) follows

the same routine as(1). In order to prove the boundness of Lρ, we should prove the

following:

Lρ(p
k,Wk, zk,qk,uk)

≥ F (pk,Wk, zk,q
′
) + ((ρ− ν)/2)∥pkl+1 − qkl ∥22

> −∞,

where pkl+1 = q
′

l . Therefore, F (pk,Wk, zk,q
′
) and ((ρ − ν)/2)∥pkl+1 − qkl ∥22 are upper

bounded by Lρ(p
k,Wk, zk,qk,uk) and hence Lρ(p

0,W0, z0,q0,u0)(Lemma 8). The

boundness of variables can be obtained via Assumption 6. □

Based on Lemmas 8 and 9, the following theorem ensures that the objective is

convergent.

Theorem 9 (Convergent Objective). (1). For the pdADMM-G algorithm, if ρ >

max(4νS2, (
√
17 + 1)ν/2), then Lρ(p

k,Wk, zk,qk,uk) is convergent. Moreover,

limk→∞ ∥pk+1 − pk∥22 = 0, limk→∞ ∥Wk+1 −Wk∥22 = 0, limk→∞ ∥zk+1 − zk∥22 = 0,

limk→∞ ∥qk+1 − qk∥22 = 0, limk→∞ ∥uk+1 − uk∥22 = 0.

(2). For the pdADMM-G-Q algorithm, if ρ > max(4νS2, (
√
17 + 1)ν/2), then

βρ(p
k,Wk, zk,qk,uk) is convergent. Moreover, limk→∞ ∥Wk+1 −Wk∥22 = 0,

limk→∞ ∥zk+1 − zk∥22 = 0, limk→∞ ∥qk+1 − qk∥22 = 0, limk→∞ ∥uk+1 − uk∥22 = 0.

5.4. CONVERGENCE ANALYSIS 94

Sketch of Proof: This theorem can be derived by taking the limit on both sides

of Inequality (5.2). □

The third lemma guarantees that the subgradient of the objective is upper bounded,

which is stated as follows:

Lemma 10 (Bounded Subgradient). (1). For the pdADMM-G algorithm, there exists

a constant C > 0 and gk+1 ∈ ∂Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1) such that

∥gk+1∥ ≤ C(∥pk+1 − pk∥+ ∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥qk+1 − qk∥

+ ∥uk+1 − uk∥).

(2). For the pdADMM-G-Q algorithm, there exists a constant C > 0, gk+1
W ∈

∇Wk+1βρ(p
k+1,Wk+1, zk+1,qk+1,uk+1),

gk+1
z ∈ ∂zk+1βρ(p

k+1,Wk+1, zk+1,qk+1,uk+1),

gk+1
q ∈ ∇qk+1βρ(p

k+1,Wk+1, zk+1,qk+1,uk+1),

gk+1
u ∈ ∇uk+1βρ(p

k+1,Wk+1, zk+1,qk+1,uk+1) such that

∥gk+1
W ∥ ≤ C(∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥qk+1 − qk∥+ ∥uk+1 − uk∥),

∥gk+1
z ∥ ≤ C(∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥qk+1 − qk∥+ ∥uk+1 − uk∥),

∥gk+1
q ∥ ≤ C(∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥qk+1 − qk∥+ ∥uk+1 − uk∥),

∥gk+1
u ∥ ≤ C(∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥qk+1 − qk∥+ ∥uk+1 − uk∥).

Sketch of Proof: To prove this lemma, the subgradient is proven to be upper

bounded by the linear combination of ∥pk+1 − pk∥, ∥Wk+1 −Wk∥, ∥zk+1 − zk∥,

∥qk+1 − qk∥, and ∥uk+1 − uk∥. □

Now based on Theorem 9, and Lemma 10, the convergence of the pdADMM-G

algorithm to a stationary point is presented in the following theorem.

Theorem 10 (Convergence of the pdADMM-G algorithm). If ρ > max(4νS2, (
√
17+

5.4. CONVERGENCE ANALYSIS 95

1)ν/2), then for the variables (p,W, z,q,u) in Problem 6, starting from any

(p0,W0, z0,q0,u0), (pk,Wk, zk,qk,uk) has at least a limit point (p∗,W∗, z∗,q∗,u∗),

and any limit point is a stationary point of Problem 6. That is,

0 ∈ ∂Lρ(p
∗,W∗, z∗,q∗,u∗). In other words,

p∗l+1 = q∗l , ∇p∗Lρ(p
∗,W∗, z∗,q∗,u∗)=0, ∇W∗Lρ(p

∗,W∗, z∗,q∗,u∗)=0,

0∈∂z∗Lρ(p
∗,W∗, z∗,q∗,u∗),∇q∗Lρ(p

∗,W∗, z∗,q∗,u∗)=0.

Sketch of Proof: This theorem can be derived directly from Lemma 9 and

Lemma 10. □

Theorem 10 shows that our proposed pdADMM-G algorithm converges for suf-

ficiently large ρ, which is consistent with previous literature [101]. Similarly, the

convergence of the proposed pdADMM-G-Q algorithm is shown as follows:

Theorem 11 (Convergence of the pdADMM-G-Q algorithm). If ρ > max(4νS2,

(
√
17 + 1)ν/2), then for the variables (p,W, z,q,u) in Problem 7, starting from any

(p0,W0, z0,q0,u0), (pk,Wk, zk,qk,uk) has at least a limit point (p∗,W∗, z∗,q∗,u∗),

and any limit point (W∗, z∗,q∗,u∗) is a stationary point of Problem 7. Moreover, if

τ k+1
l is bounded, then p∗ is a quantized stationary point of Problem 7. That is

p∗l+1 = q∗l , ∇W∗βρ(p
∗,W∗, z∗,q∗,u∗) = 0, 0 ∈ ∂z∗βρ(p∗,W∗, z∗,q∗,u∗),

∇q∗βρ(p
∗,W∗, z∗,q∗,u∗) = 0, p∗l ∈ argminδ∈∆ ∥δ − (p∗l −∇p∗l

F (p∗,W∗, z∗,q∗)/τ ∗l)∥.

where τ ∗l is a limit point of τ kl .

Sketch of Proof: This theorem is proven using a similar procedure as Theorem

10, and the definition of the quantized stationary point. □

The only difference between Theorems 10 and 11 is that p∗ is a stationary point

in Problem 6 and a quantized stationary point in Problem 7. Next, the following

5.5. EXPERIMENTS 96

theorem ensures the sublinear convergence rate o(1/k) of the proposed pdADMM-G

algorithm and the pdADMM-G-Q algorithm.

Theorem 12 (Convergence Rate). (1). For the pdADMM-G algorithm and a se-

quence (pk,Wk, zk,qk,uk), define ck = min0≤i≤k(
∑L

l=2(τ
i+1
l /2)∥pi+1

l −pil∥22

+
∑L

l=1(θ
i+1
l /2)∥W i+1

l −W i
l ∥22+

∑L−1
l=1 C1∥zi+1

l −zil∥22+(ν/2)∥zi+1
L −ziL∥22+

∑L−1
l=1 C2∥qi+1

l −

qil∥22) where C1 = ν/2− 2ν2S2/ρ > 0 and C2 = ρ/2− 2ν2/ρ− ν/2 > 0, then the con-

vergence rate of ck is o(1/k).

(2). For the pdADMM-G-Q algorithm and a sequence (Wk, zk,qk,uk), define dk =

min0≤i≤k(
∑L

l=1(θ
i+1
l /2)∥W i+1

l −W i
l ∥22 +

∑L−1
l=1 C1∥zi+1

l − zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +∑L−1

l=1 C2∥qi+1
l −qil∥22) where C1 = ν/2−2ν2S2/ρ > 0 and C2 = ρ/2−2ν2/ρ−ν/2 > 0,

then the convergence rate of dk is o(1/k).

Sketch of Proof: (1). In order to prove the convergence rate o(1/k), ck satisfies

three conditions:(a) ck ≥ ck+1, (b)
∑∞

k=0 ck is bounded, and(c) ck ≥ 0.

(2). dk can be proven using a similar procedure as(1). □

5.5 Experiments

In this section, we evaluate the performance of the proposed pdADMM-G algorithm

and the proposed pdADMM-G-Q algorithm on GA-MLP models using nine bench-

mark datasets. Convergence and computational overheads are demonstrated on differ-

ent datasets. Speedup and test performance are compared with several state-of-the-

art optimizers. All experiments were conducted on the Amazon Web Services(AWS)

p2.16xlarge instance, with 16 NVIDIA K80 GPUs, 64vCPUs, a processor Intel(R)

Xeon(R) CPU E5-2686 v4 @ 2.30GHz, and 732GiB of RAM.

5.5. EXPERIMENTS 97

Dataset Node# Edge# Class# Feature#
Training
Set#

Validation
Set#

Test
Set#

Cora 2485 10 556 7 1433 140 500 1000

PubMed 19 717 88 648 3 500 60 500 1000

Citeseer 2110 9104 6 3703 120 500 1000

Amazon
Computers

13 381 491 722 10 767 200 1000 1000

Amazon
Photo

7487 238 162 8 745 160 1000 1000

Coauthor
CS

18 333 163 788 15 6805 300 1000 1000

Coauthor
Physics

34 493 495 924 5 8415 100 1000 1000

Flickr 89 250 899 756 7 500 44 625 22 312 22 313

Ogbn-Arxiv 169 343 1 166 243 40 128 90 941 29 799 48 603

Table 5.2: Statistics of eight benchmark datasets.

5.5.1 Datasets and Settings

Nine benchmark datasets were used for experimental evaluation, whose statistics are

shown in Table 5.2. Each dataset is split into a training set, a validation set, and a

test set. The details are below:

1. Cora [86]. The Cora dataset consists of 2708 scientific publications classified into

one of seven classes. The citation network consists of 5429 links. Each publication in

the dataset is described by a 0/1-valued word vector indicating the absence/presence

of the corresponding word from the dictionary. The dictionary consists of 1433 unique

words.

2. PubMed [86]. PubMed comprises 30M+ citations for biomedical literature that

have been collected from sources such as MEDLINE, life science journals, and pub-

lished online e-books. It also includes links to text content from PubMed Central and

other publishers’ websites.

3. Citeseer [86]. The Citeseer dataset was collected from the Tagged.com social net-

work website. It contains 5.6 million users and 858 million links between them. Each

user has 4 features and is manually labeled as “spammer” or “not spammer”. Each

5.5. EXPERIMENTS 98

link represents an action between two users and includes a timestamp and a type. The

network contains 7 anonymized types of links. The original task on the dataset is to

identify(i.e., classify) the spammer users based on their relational and non-relational

features.

4. Amazon Computers and Amazon Photo [68]. Amazon Computers and Amazon

Photo are segments of the Amazon co-purchase graph, where nodes represent goods,

edges indicate that two goods are frequently bought together, node features are bag-

of-words encoded product reviews, and class labels are given by the product category.

5. Coauthor CS and Coauthor Physics [89]. Coauthor CS and Coauthor Physics are

co-authorship graphs based on the Microsoft Academic Graph from the KDD Cup

2016 challenge 3. Here, nodes are authors, that are connected by an edge if they co-

authored a paper; node features represent paper keywords for each author’s papers,

and class labels indicate the most active fields of study for each author.

6. Flickr [119]. In Flickr, one node in the graph represents one image uploaded to

Flickr. If two images share some common properties(e.g., same geographic location,

same gallery, comments by the same user, etc.), there is an edge between the nodes

of these two images. Node features are bag-of-word representation of the images and

labels are classes of images.

7. Ogbn-Arxiv [41]. The Ogbn-Arxiv dataset is a directed graph, representing the

citation network between all Computer Science(CS) ARXIV papers indexed by MAG.

Each node is an ARXIV paper and each directed edge indicates that one paper cites

another one. Each paper comes with a 128-dimensional feature vector obtained by

averaging the embeddings of words in its title and abstract. In addition, all papers

are also associated with the year that the the corresponding paper was published.

When it comes to experimental settings, we set K = 4 for the multi-hop operator

Ψ, and defined a diagonal degree matrix D where Dii =
∑|V |

j=1Aij, and a renormalized

adjacency matrix Ã = (D + I)−1/2(A + I)(D + I)−1/2 ∈ R|V |×|V |[53]. Moreover, we

5.5. EXPERIMENTS 99

set Ψ = {I, Ã, Ã2, Ã3} [15]. For all GA-MLP models, the activation function was set

to ReLU. The loss function was set to the cross-entropy loss. For the pdADMM-G-Q

algorithm, ∆ = {−1, 0, 1, · · · , 20} in Problem 7, and p was quantized by default.

5.5.2 Comparison Methods

GD and its variants are state-of-the-art optimizers and hence served as comparison

methods. For GD-based methods, all datasets were used for training models in a

full-batch fashion. All hyperparameters were chosen by maximizing the performance

of validation sets. Due to space limit, hyperparameter settings of all methods are

shown in Section D.2.1 in the Appendix. The following are their brief introductions:

1. Gradient Descent(GD) [4]. The GD and its variants are the most popular deep

learning optimizers. The GD updates parameters simply based on their gradients.

2. Adaptive learning rate method(Adadelta) [118]. The Adadelta is proposed to

overcome the sensitivity to hyperparameter selection.

3. Adaptive gradient algorithm(Adagrad) [28]. Adagrad is an improved version of

GD: rather than fixing the learning rate during training, it adapts the learning rate

to the hyperparameter.

4. Adaptive momentum estimation(Adam) [52]. Adam is the most popular opti-

mization method for deep learning models. It estimates the first and second momen-

tum in order to correct the biased gradient, and thus accelerates empirical conver-

gence.

5.5.3 Convergence

Firstly, in order to validate the convergence of two proposed algorithms, we set up

a GA-MLP model with 10 layers, each of which has 1000 neurons. The number of

epochs was set to 100. ν and ρ were set to 0.01 and 1, respectively.

Figure 5.2 demonstrates objectives and residuals of two proposed algorithms on

5.5. EXPERIMENTS 100

0 20 40 60 80
Epoch

102

103

104

105

Ob
je

ct
iv

e

Cora
PubMed
Citeseer
Coauthor CS

(a). pdADMM-G Objective.

0 20 40 60 80
Epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Re
sid

ua
l

Cora
PubMed
Amazon Computers
Amazon Photo

(b). pdADMM-G Residual.

0 20 40 60 80
Epoch

102

103

104

105

Ob
je

ct
iv

e

Cora
PubMed
Citeseer
Coauthor CS

(c). pdADMM-G-Q Objective.

0 20 40 60 80
Epoch

10 6

10 4

10 2

100

102

104

Re
sid

ua
l

Cora
PubMed
Amazon Computers
Amazon Photo

(d). pdADMM-G-Q Residual.

Figure 5.2: Convergence curves of the pdADMM-G algorithm and the pdADMM-G-Q
algorithm on four datasets.

5.5. EXPERIMENTS 101

(a). The speedup
on small datasets.

8 9 10 11 12 13 14 15 16 17
Number of Layers

4

6

8

10

12

14

Sp
ee

du
p

Ogbn-Arxiv
Flickr

(b). The speedup
on large datasets.

Figure 5.3: The speedup of the proposed pdADMM-G on different datasets concerning
the number of layers(i.e. a weak-scaling study).

four datasets. Overall, the objectives and residuals of the two proposed algorithms

are convergent. From Figure 5.2(a) and Figure 5.2(c), the objectives of the two

proposed algorithms decrease drastically at the first 50 epochs and then drop smoothly

to the end. The objectives on the PubMed dataset achieve the lowest among all

four datasets, whereas these on the Coauthor CS dataset are the highest, which still

reach near 105 at the 100-th epoch. As for residuals, even though the residuals

of the pdADMM-G-Q algorithm are higher than these of the pdADMM-G algorithm

initially, they both converge sublinearly to 0, which is consistent with Theorem 10 and

Theorem 11. Specifically, as shown in Figure 5.2(b) and Figure 5.2(d), the residuals on

the Cora dataset decrease more slowly with fluctuation than these on other datasets,

while residuals on the Amazon Computers and Amazon Photo datasets demonstrate

the fastest decreasing speed at the first 40 epochs before reaching a plateau less than

10−6. The residuals on the PubMed dataset accomplish the lowest values among all

four datasets again with a value of less than 10−7.

5.5. EXPERIMENTS 102

4 8 16
Number of GPUs

2

4

6

8

10

12

Sp
ee

du
p

(a). Flickr
4 8 16

Number of GPUs
2

4

6

8

10

12

14

Sp
ee

du
p

(b). Ogbn-Arxiv

GD Adagrad Adadelta Adam pdADMM-G

Figure 5.4: The speedup of all methods on two large datasets concerning the number
of GPUs(i.e. a strong-scaling study).

5.5.4 Speedup

Next, we investigate the speedup of the pdADMM-G algorithm in the large deep GA-

MLP models. The running time per epoch was an average of 10 epochs. ρ and ν were

both set to 10−3. We investigate the speedup concerning two factors: the number of

layers(i.e. weak-scaling study) and the number of GPUs(i.e. strong-scaling study).

For the relationship between the speedup and the number of layers, the pdADMM-

G algorithm in the GA-MLP models with 4000 neurons was tested. The number of

layers ranged from 8 to 17. The speedup on small datasets and large datasets are

shown in Figure 5.3(a) and Figure 5.3(b), respectively. Overall, the speedup of the

proposed pdADMM-G increases linearly with the number of layers. For example, the

speedups on the Cora dataset and the Amazon Computers dataset rise from 3 and 3.5

gradually to 4 and 4.5, respectively. The speedup on the PubMed dataset achieves

the lowest with a value of less than 3, whereas that on the Coauthor CS dataset

at least doubles that on any other small dataset, with a peak of 6. Moreover, the

speedup is more obvious on large datasets. For example, when the slopes of speedups

are compared, the slope on the Flickr dataset is at least five times much steeper than

5.5. EXPERIMENTS 103

0.6 0.8 1.0 1.2 1.4
Uploaded bytes 1e9

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

(a). Citeseer

0.75 1.00 1.25 1.50 1.75
Uploaded bytes 1e9

0.64

0.66

0.68

Te
st

 A
cc

ur
ac

y

(b). Amazon Computers

1.5 2.0 2.5
Uploaded bytes 1e9

0.82

0.84

0.86

0.88

0.90

Te
st

 A
cc

ur
ac

y

(c). Coauthor CS

pdADMM-G pdADMM-G-Q(quantize q, 16bits) pdadmm-G-Q(quantize q, 8bits) pdADMM-G-Q(quantize p q, 16bits) pdadmm-G-Q(quantize p q, 8bits)

Figure 5.5: Communication overheads of two proposed algorithms on three datasets.

that on the Coauthor CS dataset. The same trend is applied to the Ogbn-Arxiv

dataset. This means that our proposed pdADMM-G algorithm is more suitable for

large datasets.

For the relationship between the speedup and the number of GPUs, we set up a

large GA-MLP model with 16 layers and 4000 neurons and kept all hyperparameters

in the previous experiment. The speedup of our proposed pdADMM-G algorithm

was compared with all comparison methods. Figure 5.4 shows all speedups on two

large datasets. The proposed pdADMM-G algorithm achieves a higher speedup than

any GD-based method. For example, the speedups of 8 GPUs are nearly 8 on the

Flickr dataset and the Ogbn-Arxiv dataset, while the best speedups achieved via

comparison methods are in the vicinity of 6 and 5 on two datasets, respectively.

We also observe that while speedups of all methods scale linearly with the number

of GPUs, the slopes of our proposed pdADMM-G algorithm are steeper than these

of any comparison method. For example, the slope of our proposed pdADMM-G

algorithm on the Flickr dataset is more than 10 times steeper than that of Adam. All

comparison methods show similar flat slopes, and they achieve a higher slope of the

speedup on the Ogbn-Arxiv dataset than that on the Flickr dataset.

In summary, the speedup of our proposed pdADMM-G algorithm scales linearly

with the number of layers and the number of GPUs. Moreover, its speedup is superior

to any other comparison method significantly by more than 10 times.

5.5. EXPERIMENTS 104

5.5.5 Communication Overheads

Then, it is necessary to explore how many communication overheads can be reduced

using the proposed quantization technique on different quantization levels. To achieve

this, we established a large GA-MLP model with 10 layers, each of which consists of

1000 neurons. We set up three quantization cases: no quantization, the quantization

concerning p only, and the quantization concerning both p and q. For every quanti-

zation case, we also set up two different quantization sizes: 8 bits and 16 bits. Figure

5.5 demonstrates the relationship between the test accuracy and communication over-

heads for different quantization cases and sizes on three datasets. Overall, communi-

cation overheads can be reduced significantly by the proposed quantization technique.

The amount of reduction depends on different quantization cases and sizes. Generally

speaking, the more variables are quantized and the fewer bits are compressed, then

the more savings in communications can be achieved. Take the Citeseer dataset as an

example, while all algorithms reach the same test accuracy above 70%, the proposed

pdADMM-G(i.e. no quantization) consumes the most communication costs with the

value of around 1.4× 109 bytes. If the variable p is quantized using 16 bits, the com-

munication overhead drops by 10%, and then using 8 bits saves another 5%. When

variables p and q are both quantized, the communication overhead tumbles down to

1.2× 109 bytes, which means decreases by 16.7% when it is compared with the case

where only p is quantized. When variables are compressed to 8 bits instead of 16

bits, the communication overhead slips further to 1.1 × 109, a nearly 30% decline.

The same trend is applied to the other two datasets, and they accomplish a shrink of

communication overheads by 33% and 45%, respectively. This demonstrates that our

proposed quantization technique is effective for reducing unnecessary communication

costs without loss of performance. We also observe that the Coauthor CS dataset is

the largest dataset among the three, and it accomplishes the greatest communication

reduction.

5.5. EXPERIMENTS 105

5.5.6 Performance

Finally, we evaluate the performance of two proposed algorithms against all compar-

ison methods on nine benchmark datasets. We set up two standard GA-MLP models

with 10 layers but different neurons: the first model has 100 neurons, while the sec-

ond model has 500 neurons. Following the greedy layerwise training strategy [3], we

firstly trained a two-layer GA-MLP model, and then three more layers were added

to training, and finally, all 10 layers were involved. The number of epochs was set to

200. We repeated all experiments five times and reported their means and the stan-

dard deviations. Due to space limit, hyperparameter settings and the performance of

validation sets are shown in Section D.2.1 and D.2.2 in the Appendix, respectively.

Table 5.3 demonstrates the performance of all methods when the number of neu-

rons is 100. In summary, the two proposed algorithms outperform all comparison

methods slightly: they occupy the best algorithms on eight datasets out of the total

nine datasets. For example, they both achieve 78% test accuracy on the Cora dataset,

whereas the best comparison method is GD, which only reaches 73% test accuracy,

and is at least 6% lower than the two proposed algorithms. As another example,

two proposed algorithms accomplish 78% test accuracy on the PubMed dataset, 4%

better than that achieved by Adagrad, whose performance is the best aside from the

two proposed algorithms. The Citeseer dataset shows the largest performance gap

between the two proposed algorithms and all comparison methods. Two proposed

algorithms reach the level of 70% test accuracy, whereas all comparison methods fall

in the vicinity of 60% test accuracy. In other words, the two proposed algorithms out-

perform all comparison methods by more than 10%. For two proposed algorithms, the

proposed pdADMM-G algorithm outperforms marginally the proposed pdADMM-G-

Q algorithm due to the quantization technique. Their largest performance gap is 5%,

which is achieved on the Amazon Computers dataset. The Adam is the best compar-

5.5. EXPERIMENTS 106

Dataset Cora PubMed Citeseer
GD 0.730±0.022 0.638± 0.080 0.637±0.040

Adadelta 0.671±0.064 0.705±0.038 0.620±0.016
Adagrad 0.726±0.025 0.753± 0.015 0.601±0.037
Adam 0.725±0.036 0.742±0.007 0.631±0.018

pdADMM-G 0.784±0.003 0.784±0.004 0.709±0.003
pdADMM-G-Q 0.788±0.003 0.782±0.003 0.712± 0.001

Dataset
Amazon

Computers
Amazon
Photo

Coauthor
CS

GD 0.646±0.032 0.735± 0.169 0.884±0.010
Adadelta 0.136±0.060 0.369± 0.045 0.787±0.086
Adagrad 0.688±0.023 0.813± 0.018 0.887±0.007
Adam 0.724±0.010 0.855±0.009 0.883±0.009

pdADMM-G 0.735±0.006 0.856±0.011 0.915±0.004
pdADMM-G-Q 0.687± 0.054 0.832±0.010 0.914±0.003

Dataset
Coauthor
Physics

Flickr Ogbn-Arxiv

GD 0.909±0.007 0.466±0.007 0.361±0.063
Adadelta 0.915±0.014 0.461±0.008 0.523± 0.030
Adagrad 0.916±0.012 0.481±0.003 0.567±0.016
Adam 0.912±0.016 0.512 ±0.004 0.674± 0.006

pdADMM-G 0.921±0.003 0.513±0.002 0.647±0.002
pdADMM-G-Q 0.919±0.002 0.507±0.003 0.655±0.002

Table 5.3: Test performance of all methods when the number of neurons is 100.

5.5. EXPERIMENTS 107

Dataset Cora PubMed Citeseer
GD 0.757±0.024 0.699±0.655 0.680±0.014

Adadelta 0.717±0.063 0.722±0.696 0.564±0.028
Adagrad 0.776±0.013 0.759±0.761 0.650 ±0.038
Adam 0.771±0.020 0.778±0.767 0.662 ±0.021

pdADMM-G 0.786±0.005 0.786±0.786 0.713±0.007
pdADMM-G-Q 0.786±0.005 0.788±0.787 0.712±0.005

Dataset
Amazon

Computers
Amazon
Photo

Coauthor
CS

GD 0.707±0.012 0.817±0.005 0.906±0.005
Adadelta 0.243±0.063 0.380±0.069 0.880±0.011
Adagrad 0.753±0.009 0.866±0.007 0.911±0.003
Adam 0.739±0.022 0.880± 0.016 0.898±0.013

pdADMM-G 0.751±0.008 0.873±0.004 0.920±0.002
pdADMM-G-Q 0.748±0.004 0.865±0.007 0.919±0.003

Dataset
Coauthor
Physics

Flickr Ogbn-Arxiv

GD 0.917±0.004 0.466±0.001 0.436±0.042
Adadelta 0.917±0.004 0.462±0.001 0.584±0.031
Adagrad 0.914±0.004 0.487±0.005 0.630±0.016
Adam 0.914±0.002 0.517±0.002 0.682±0.010

pdADMM-G 0.918±0.003 0.515±0.002 0.655±0.001
pdADMM-G-Q 0.918±0.002 0.512±0.003 0.657±0.002

Table 5.4: Test performance of all methods when the number of neurons is 500.

ison method overall, and it serves as the best algorithm on the Ogbn-Arxiv dataset.

The Adadelta performs the worst among all comparison methods, whose performance

is significantly lower than any other method on several datasets such as the Amazon

Computers dataset, the Amazon Photo dataset, and the Coauthor CS dataset. Last

but not least, the standard deviations of all methods remain low, and this shows that

they are robust to different initializations.

Table 5.4 shows the performance of all methods when the number of neurons

is 500. In general, two proposed algorithms still reach a better performance than

all comparison methods, but the gap is more narrow. For example, in Table 5.3,

the proposed pdADMM-G algorithm achieves the best on the Amazon Computers

5.6. CONCLUSION 108

dataset. However, it is surpassed by Adagrad slightly in Table 5.4. We also observe

that a GA-MLP model with 500 neurons performs better than that with 100 neurons,

which are trained by the same algorithm. This makes sense since the wider a model

is, the more expressiveness it is equipped with.

5.6 Conclusion

The GA-MLP models are attractive to the deep learning community due to potential

resistance to some problems of GNNs such as over-smoothing and over-squashing. In

this chapter, we propose a novel pdADMM-G algorithm to achieve parallel training of

GA-MLP models, which is accomplished by breaking the layer dependency. The ex-

tended pdADMM-G-Q algorithm reduces communication overheads by the introduc-

tion of the quantization technique. Their theoretical convergence to a(quantized) sta-

tionary point of the problem is guaranteed with a sublinear convergence rate o(1/k),

where k is the number of iterations. Extensive experiments verify that the two pro-

posed algorithms not only converge in terms of objectives and residuals, and acceler-

ate the training of deep GA-MLP models, but also stand out among all the existing

state-of-the-art optimizers on nine benchmark datasets. Moreover, the pdADMM-G-

Q algorithm reduces communication overheads by up to 45% without loss of perfor-

mance.

CHAPTER 6. CONCLUSION AND FUTURE WORKS 109

Chapter 6

Conclusion and Future Works

The goal of this dissertation is to develop AM methods to train deep learning models

as an alternative to GD. We focus on three research topics: In the topic of AM meth-

ods on Multi-Layer Perceptron(MLP), we devise two algorithms: deep learning Alter-

nating Direction Method of Multipliers(dlADMM) and monotonous Deep Learning

Alternating Minimization(mDLAM). In the topic of AM methods on Graph Neural

Network(GNN), we propose the Invertible Validity-aware Graph Diffusion(IVGD) for

graph source localization. In the topic of AM methods for distributed neural network

training, we propose three algorithms: parallel deep learning Alternating Direction

Method of Multipliers(pdADMM), graph pdADMM(pdADMM-G), and quantized

graph pdADMM(pdADMM-G-Q).

For the dlADMM algorithm, the parameters in each layer are updated backward

and then forward so that the parameter information in each layer is exchanged ef-

ficiently. The time complexity is reduced from cubic to quadratic in(latent) feature

dimensions via a dedicated algorithm design for subproblems that enhances them

by utilizing iterative quadratic approximations and backtracking. Finally, we pro-

vide the first proof of global convergence for an ADMM-based method(dlADMM) in

a deep neural network problem under mild conditions. Experiments on benchmark

CHAPTER 6. CONCLUSION AND FUTURE WORKS 110

datasets demonstrated that our proposed dlADMM algorithm outperforms most of

the comparison methods. Future work will further extend this method from Multi-

Layer Perceptron(MLP) models to other architectures such as Graph Convolutional

Network(GCN) models.

For the mDLAM algorithm, our innovative inequality-constrained formulation in-

finitely approximates the original problem with non-convex equality constraints, en-

abling our convergence proof of the proposed mDLAM algorithm regardless of the

choice of hyperparameters. Our proposed mDLAM algorithm is shown to achieve

a fast linear convergence by the Nesterov acceleration technique. Extensive exper-

iments on multiple benchmark datasets demonstrate the convergence, effectiveness,

and efficiency of the proposed mDLAM algorithm.

For the IVGD model, we make a graph diffusion model invertible by restricting

its Lipschitz constant for the residual GNNs, and thus an approximate estimation of

source localization can be obtained by its inversion, and then a compensation mod-

ule is presented to reduce the introduced errors with skip connection. Moreover, we

leverage the unrolled optimization technique to integrate validity constraints into the

model, where each layer is encoded by a constrained optimization problem. To com-

bat efficiency and scalability problems, a linearization technique is used to transform

problems into solvable ones, which can be efficiently solved by closed-form solutions.

Finally, the convergence of the proposed IVGD to a feasible solution is proven the-

oretically. Extensive experiments on nine datasets show that our proposed IVGD

outperforms all comparison methods significantly on five metrics, especially 20% on

F1-Score.

For the pdADMM algorithm, we achieve model parallelism training by breaking

layer dependency among variables: parameters in each layer of neural networks can

be updated independently in parallel. The convergence of the proposed pdADMM

to a stationary point is theoretically proven under mild conditions. The convergence

6.1. RESEARCH TASKS 111

rate of the pdADMM is proven to be o(1/k), where k is the number of iterations.

Extensive experiments on six benchmark datasets demonstrated that our proposed

pdADMM can lead to more than a 10 times speedup for training large-scale deep

neural networks, and outperformed most of the comparison methods.

For the pdADMM-G algorithm and the pdADMM-G-Q algorithm, they are ex-

tended from the proposed pdADMM algorithm to train GA-MLP models in parallel:

the pdADMM-G algorithm breaks layer dependency similar to the pdADMM al-

gorithm. The extended pdADMM-G-Q algorithm reduces communication costs by

introducing the quantization technique. Theoretical convergence to a(quantized) sta-

tionary point of the pdADMM-G algorithm and the pdADMM-G-Q algorithm is

provided with a sublinear convergence rate o(1/k), where k is the number of iter-

ations. Extensive experiments demonstrate the convergence of two proposed algo-

rithms. Moreover, they lead to a more massive speedup and better performance than

all state-of-the-art comparison methods on nine benchmark datasets. Last but not

least, the proposed pdADMM-G-Q algorithm reduces communication overheads by

up to 45% without loss of performance.

6.1 Research Tasks

The major research tasks are described as follows. The current status of these tasks

is listed in Table 6.1.

6.1.1 The dlADMM Algorithm

• Definition of the MLP training problem and problem transforma-

tion(A1). We mathematically formulate the MLP training problem, and then

transform the nonlinear constraints of this problem to ℓ2 penalties in the objec-

tive.

6.1. RESEARCH TASKS 112

Task Description Status

Research Work A The dlADMM Algorithm Completed
A1 Problem definition and transformation Completed
A2 Proposal of the dlADMM algorithm Completed
A3 Discussion of solutions to all subproblems Completed
A4 Convergence proof of the proposed dlADMM algorithm Completed
A5 Validation on the benchmark datasets Completed

Research Work B The mDLAM Algorithm Completed
B1 Problem transformation and relaxation Completed
B2 Proposal of the mDLAM algorithm Completed
B3 Convergence proof of the proposed DLAM algorithm Completed
B4 Validation on the benchmark datasets Completed

Research Work C The pdADMM Algorithm Completed
C1 Problem definition and transformation Completed
C2 Proposal of the pdADMM algorithm Completed
C3 Convergence proof of the proposed pdADMM algorithm Completed
C4 Validation on the benchmark datasets Completed

Research Work D
The pdADMM-G-Q Algorithm
and the pdADMM-G-Q Algorithm

Completed

D1 Problem definition and transformation Completed

D2
Proposal of the pdADMM-G algorithm and the
pdADMM-G-Q algorithm

Completed

D3 Convergence proofs of two proposed algorithms Completed
D4 Validation on the benchmark datasets Completed

Research Work E The IVGD Model
E1 Definition of the graph source localization problem Completed
E2 Proposal of invertible graph residual network Completed
E3 Proposal of graph validity-aware layers Completed
E4 Convergence proof of the proposed IVGD model Completed
E5 Validation on the real-world datasets Completed

F Dissertation writing and revision Completed

Table 6.1: Research tasks and status

6.1. RESEARCH TASKS 113

• Proposal of the dlADMM algorithm(A2). We present a novel and effi-

cient dlADMM algorithm to handle the MLP training problem. The proposed

dlADMM updates parameters in a backward-forward fashion, in order to accel-

erate the convergence process.

• Discussion of solutions to all subproblems(A3). We discuss solutions

to all subproblems generated by the proposed dlADMM algorithm. For some

subproblems, we propose quadratic approximation and backtracking techniques

to avoid matrix inversion as well as reduce computational costs for large-scale

datasets. The time complexity of subproblems in the proposed dlADMM is

reduced from O(n3) to O(n2).

• Convergence proof of the proposed dlADMM algorithm(A4). We in-

vestigate several convergence properties of the proposed dlADMM. The conver-

gence assumptions are very mild to ensure that most deep learning applications

satisfy our assumptions. The proposed dlADMM is guaranteed to converge to

a stationary point sublinearly whatever the initialization is when the hyperpa-

rameter is sufficiently large.

• Validation on the benchmark datasets(A5). We conduct experiments on

several benchmark datasets to validate our proposed dlADMM algorithm. Ex-

perimental results show that the proposed dlADMM algorithm performs better

than most GD-based optimizers. Moreover, we also demonstrate the conver-

gence and the efficiency of the proposed dlADMM algorithm.

6.1.2 The mDLAM Algorithm

• Definition of the MLP training problem and problem relaxation(B1).

We transform the original MLP training problem into an inequality-constrained

problem that can infinitely approximate the original one. Applying this inno-

6.1. RESEARCH TASKS 114

vation to an inequality-constraint-based transformation not only ensures the

convexity of all subproblems but also reduces sensitivity to the input.

• Proposal of the mDLAM algorithm(B2). We present an efficient mDLAM

algorithm. The Nesterov acceleration technique is applied to further boost

convergence. The quadratic approximation technique is utilized to avoid matrix

inversion, and all subproblems have closed-form solutions.

• Convergence proof of the proposed DLAM algorithm(B3). We investi-

gate several convergence properties of the proposed mDLAM algorithm under

mild conditions. It is guaranteed to converge to a stationary point with linear

convergence whatever hyperparameters are initialized. The convergence rate

and the hyperparameter conditions of the proposed mDLAM algorithm are

better than these of the previously proposed dlADMM algorithm.

• Validation on the benchmark datasets(B4). Extensive experiments on

four benchmark datasets have been conducted to demonstrate the convergence,

effectiveness, and scalability of the proposed mDLAM algorithm. It achieves

a linear convergence as expected, and outperforms consistently state-of-the-art

optimizers.

6.1.3 The pdADMM Algorithm

• Definition of the MLP training problem and problem transforma-

tion(C1). We propose a novel transformation of the MLP training problem by

breaking the layer dependency, which splits a neural network into independent

layer partitions and allows for the ADMM to achieve parallel training.

• Proposal of the pdADMM algorithm(C2). We propose a novel pdADMM

algorithm to train the deep MLP model in parallel. All parameters in each layer

6.1. RESEARCH TASKS 115

can be updated independently. All subproblems generated by the proposed

pdADMM algorithm have closed-form solutions.

• Convergence proof of the proposed pdADMM algorithm(C3). Similar

to the previously proposed dlADMM algorithm, we investigate the convergence

properties of the proposed pdADMM algorithm under convergence assumptions,

which are milder than these of the previously proposed dlADMM algorithm. We

prove that it converges to a stationary point with sublinear convergence when

the hyperparameters are sufficiently large.

• Validation on the benchmark datasets(C4). We conduct extensive exper-

iments on six benchmark datasets to show the massive speedup of the proposed

pdADMM as well as its competitive performance with state-of-the-art optimiz-

ers. The speedup of the proposed pdADMM algorithm increases linearly with

the number of layers.

6.1.4 The pdADMM-G and pdADMM-G-Q Algorithms

• Definition of the GA-MLP training problem and problem transfor-

mation(D1). We mathematically formulate the GA-MLP training problem,

and then break layer dependency to achieve parallel training, which is similar

to the previously proposed pdADMM algorithm.

• Proposal of the pdADMM-G algorithm and the pdADMM-G-Q al-

gorithm(D2). We extend the previously proposed pdADMM algorithm to

train the GA-MLP model, named the pdADMM-G algorithm. The extended

pdADMM-G-Q algorithm reduces communication costs by introducing the quan-

tization technique.

• Convergence proofs of two proposed algorithms(D3). We provide the

theoretical convergence guarantees of two proposed algorithms. Specifically, we

6.1. RESEARCH TASKS 116

investigate their several convergence properties and prove that they converge to

a(quantized) stationary point of GA-MLP models sublinearly when the hyper-

parameters are sufficiently large.

• Validation on the benchmark datasets(D4). We conduct extensive ex-

periments on nine benchmark datasets to show the convergence, the massive

speedup of two proposed algorithms, as well as their outstanding performance.

Moreover, the proposed pdADMM-G-Q algorithm reduces communication over-

heads significantly by up to 45%.

6.1.5 The IVGD Model

• Definition of the graph source localization problem(E1). We define the

graph source localization problem where the prior knowledge of the graph diffu-

sion model is available. Our goal is to design a graph source localization model

constrained by graph validity constraints via utilizing such prior knowledge.

• Proposal of invertible graph residual network(E2). We propose a new

graph residual network with Lipschitz regularization to ensure the invertibility

of graph diffusion models. Furthermore, we propose an error compensation

mechanism to offset the errors inferred from the graph residual network.

• Proposal of graph validity-aware layers(E3). We ensure the validity of

inferred sources by automatically learning validity-aware layers. We further

accelerate the optimization of the proposed layers by leveraging a linearization

technique. It transforms nonconvex problems into convex problems, which have

closed-form solutions.

• Convergence proof of the proposed IVGD model(E4). We prove the

convergence of the proposed IVGD model for linear validity constraints. It con-

6.2. DISCUSSION 117

verges asymptotically to a feasible solution when the number of graph validity-

aware layers goes to infinity.

• Validation on the real-world datasets(E5). Extensive experiments on nine

datasets have been conducted to demonstrate the effectiveness and robustness of

our proposed IVGD. Our proposed IVGD outperforms all comparison methods

significantly on five metrics.

6.2 Discussion

Finally, we summarize some recent training methods in parallel to our publications.

These training methods can be either serial training methods or parallel training

methods. Serial training methods are classified into two categories: 1). Stochastic

Approximation(SA). This type of method trains a neural network in a stochastic

manner. For example, Newman et al. proposed an algorithm called slimTrain, which

automatically adapted regularization parameters for linear weights [74]. 2). Sample

Average Approximation(SAA). SAA methods update the parameters of neural net-

works in a full-batch fashion, where our proposed AM methods fall. As an example,

Newman et al. proposed the GNvpro by extending the idea of variable projection

in the nonlinear least-square problem to train Deep Neural Network(DNN) training

[73]. The main difference between our proposed AM methods and theirs consists in

the separability of neural networks: slimTrain and GNvpro split a neural network

into a nonlinear feature extractor followed by an affine mapping, while our proposed

AM methods have a finer granularity of decomposition: they decompose a neural

network into layerwise training modules. Such difference leads to several advantages:

firstly, our proposed AM methods are proven to converge for non-differentiable acti-

vations(e.g. ReLU) [101, 106], while no such convergence guarantees are provided for

slimTrain and GNvpro; secondly, they can avoid gradient vanishing/exploding prob-

6.2. DISCUSSION 118

lems for any neural network architecture [93, 92], whereas slimTrain and GNvpro

require delicate designs of neural networks (e.g. hyperbolic neural networks); thirdly,

these training modules usually have analytic solutions and hence facilitate efficient

training, and our proposed AM methods converge to modest accuracy within tens of

iterations, which are sufficient for real-world applications [6].

As for parallel training methods, they can be categorized into data parallelism and

model parallelism. We have summarized their recent development in Chapters 4 and

5. One important related work is an MGRIT-based method proposed by Gunther et

al. [32], as their method is also layerwise-based. Specifically, they substitute a paral-

lel nonlinear multigrid iteration applied to the layer domain for the backpropagation

algorithm. While their mechanism is different from our proposed AM methods, they

share a common characteristic: they both forsake model precision for speedup: the

MGRIT-based method employs a relaxation scheme to approximate the true solution

on the fine grid; our proposed AM methods relax original training problems via im-

posing constraints as penalties on the objectives. One potential future direction is to

combine their idea with ours to accelerate model training further.

It is important to compare our proposed AM methods with Block Coordinate

Descent(BCD) methods. This is because they are important components of SAA

methods and share some commonalities with our AM methods, which have been in-

vestigated recently to train neural networks [19, 120, 124]. Please refer to Chapter

3 for recent development. While they have achieved excellent performance on many

datasets, their usage is restricted by the challenges of the ill-conditioning and cou-

pled variables [73, 74]. For our proposed AM methods in this dissertation, they solve

subproblems approximately: we replace each subproblem with a quadratic approxi-

mation, and optimal learning parameters are selected via iterative backtracking, and

therefore, we can choose accurate directions toward solutions.

6.3. CURRENT PUBLICATIONS 119

6.3 Current Publications

6.3.1 Contributions of Published Papers Contributing to dis-

sertation

The following is a list of published papers that contribute to the dissertation and

author contributions:

1. Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. ADMM for Efficient

Deep Learning with Global Convergence. in Proceedings of the 25th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining(KDD 2019),

research track(acceptance rate: 14.2%), Alaska, USA, Aug 2019.

Junxiang Wang proposed the dlADMM algorithm, proved the convergence of

the dlADMM algorithm, led the experimental design and analysis and drafted

the manuscript. Fuxun Yu participated in the experimental design, and Xiang

Chen and Liang Zhao provided support and manuscript editing.

2. Junxiang Wang, Hongyi Li, and Liang Zhao. Accelerated Gradient-free Neural

Network Training by Multi-convex Alternating Optimization. Neurocomput-

ing,(impact factor: 5.719), 2022.

Junxiang Wang proposed the mDLAM algorithm, proved the convergence of

the mDLAM algorithm, led the experimental design and analysis and drafted

the manuscript. Hongyi Li participated in the experimental design, and Liang

Zhao provided support and manuscript editing.

3. Junxiang Wang, Zheng Chai, Yue Cheng, Liang Zhao. Toward Model Paral-

lelism for Deep Neural Network based on Gradient-free ADMM Framework.

in Proceedings of the IEEE International Conference on Data Mining(ICDM

2020), regular paper(acceptance rate: 9.8%), Sorrento, Italy, Nov 2020.

Junxiang Wang proposed the pdADMM algorithm, proved the convergence of

6.3. CURRENT PUBLICATIONS 120

the pdADMM algorithm, led the experimental design and analysis and drafted

the manuscript. Zheng Chai participated in the experimental design, and Yue

Cheng and Liang Zhao provided support and manuscript editing.

4. JunxiangWang, Hongyi Li, Zheng Chai, YongchaoWang, Yue Cheng, and Liang

Zhao. Towards Quantized Model Parallelism for Graph-Augmented MLPs Based

on Gradient-Free ADMM Framework, IEEE Transactions on Neural Networks

and Learning Systems(TNNLS),(impact factor: 14.425).

Junxiang Wang proposed the pdADMM-G algorithm and pdADMM-G-Q al-

gorithm, proved the convergence of the two proposed algorithms, participated

in the experimental design and drafted the manuscript. Hongyi Li led the ex-

perimental design and analysis. Zheng Chai participated in the experimental

design. Yongchao Wang, Yue Cheng, and Liang Zhao provided support and

manuscript editing.

5. Junxiang Wang, Junji Jiang, and Liang Zhao. An Invertible Graph Diffusion

Neural Network for Source Localization. 31st International World Wide Web

Conference (WWW 2022), (acceptance rate: 17.7%), Lyon, FR, Apr 2022.

Junxiang Wang proposed the IVGD framework, proved the convergence of

the proposed IVGD, led the experimental design and analysis and drafted the

manuscript. Junji Jiang participated in the experimental design. Liang Zhao

provided support and manuscript editing.

6.3.2 Published Papers During My Ph.D.

Conference Papers

1. Chen Ling, Tanmoy Chowdhury, Junji Jiang, Junxiang Wang, Xuchao Zhang,

Haifeng Chen, and Liang Zhao. DeepAR: Deep Graph Representation Learn-

ing and Optimization for Analogical Reasoning. in Proceedings of the IEEE

6.3. CURRENT PUBLICATIONS 121

International Conference on Data Mining(ICDM 2022), short paper(acceptance

rate: 20%), Orlando, FL, USA, Nov 2022.

2. Chen Ling, Junji Jiang, Junxiang Wang, and Liang Zhao. SL-VAE: Variational

Autoencoder for Source Localization. in Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining(KDD 2022), research

track(acceptance rate: 15.0%), Washington D.C, USA, Aug 2022.

3. Junxiang Wang, Junji Jiang, and Liang Zhao. An Invertible Graph Diffusion

Neural Network for Source Localization. 31th International World Wide Web

Conference(WWW 2022),(acceptance rate: 17.7%), Lyon, FR, Apr 2022.

4. Junxiang Wang and Liang Zhao. Convergence and Applications of ADMM on

the Multi-convex Problems. 26th Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining(PAKDD 2022),(acceptance rate: 19.3%), Chengdu,

China, May 2022.

5. Junxiang Wang, Zheng Chai, Yue Cheng, Liang Zhao. Toward Model Paral-

lelism for Deep Neural Network based on Gradient-free ADMM Framework.

in Proceedings of the IEEE International Conference on Data Mining(ICDM

2020), regular paper(acceptance rate: 9.8%), Sorrento, Italy, Nov 2020.

6. Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. ADMM for Efficient

Deep Learning with Global Convergence. in Proceedings of the 25th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining(KDD 2019),

research track(acceptance rate: 14.2%), Alaska, USA, Aug 2019.

7. Junxiang Wang, Liang Zhao, and Yanfang Ye. Semi-supervised Multi-instance

Interpretable Models for Flu Shot Adverse Event Detection. 2018 IEEE In-

ternational Conference on Big Data(BigData 2018)(acceptance rate: 18.9%),

6.3. CURRENT PUBLICATIONS 122

Seattle, USA, Dec 2018.

8. Junxiang Wang, Yuyang Gao, Andreas Zufle, Jingyuan Yang, and Liang Zhao.

Incomplete Label Uncertainty Estimation for Petition Victory Prediction with

Dynamic Features. in Proceedings of the IEEE International Conference on

Data Mining(ICDM 2018), regular paper(acceptance rate: 8.9%), Singapore,

Dec 2018.

9. Junxiang Wang and Liang Zhao. Multi-instance Domain Adaptation for Vac-

cine Adverse Event Detection. 27th International World Wide Web Confer-

ence(WWW 2018),(acceptance rate: 14.8%), Lyon, FR, Apr 2018.

10. Liang Zhao, Junxiang Wang, and Xiaojie Guo. Distant-supervision of hetero-

geneous multitask learning for social event forecasting with multilingual indi-

cators. Thirty-Second AAAI Conference on Artificial Intelligence(AAAI 2018),

Oral presentation(acceptance rate: 11.0%), pp. 4498-4505, New Orleans, US,

Feb 2018.

Journal Papers

1. Junxiang Wang, Hongyi Li(first-coauthor), Zheng Chai, Yongchao Wang, Yue

Cheng, and Liang Zhao. Towards Quantized Model Parallelism for Graph-

Augmented MLPs Based on Gradient-Free ADMM Framework. IEEE Trans-

actions on Neural Networks and Learning Systems(TNNLS),(impact factor:

14.225).

2. Junxiang Wang, Hongyi Li, and Liang Zhao. Accelerated Gradient-free Neural

Network Training by Multi-convex Alternating Optimization. Neurocomput-

ing,(impact factor: 5.719), 2022.

3. Junxiang Wang and Liang Zhao. Nonconvex Generalization of Alternating Di-

6.3. CURRENT PUBLICATIONS 123

rection Method of Multipliers for Nonlinear Equality Constrained Problems.

Results in Control and Optimization 2: 100009, 2021.

4. Junxiang Wang, Liang Zhao, Yanfang Ye, and Yuji Zhang. Adverse event

detection by integrating Twitter data and VAERS. Journal of Biomedical Se-

mantics,(impact factor: 1.845), 2018.

5. Liang Zhao, Junxiang Wang, Feng Chen, Chang-Tien Lu, and Naren Ramakr-

ishnan. “Spatial Event Forecasting in Social Media with Geographically Hier-

archical Regularization”. Proceedings of the IEEE(impact factor: 9.237), vol.

105, no. 10, pp. 1953-1970, Oct. 2017.

6.3.3 Papers Published Before Ph.D.

1. Junxiang Wang, Weiming Yu, Zhibin Chen, Hengda Li, Zhenran Jiang. Pre-

dicting Drug-Target Interactions of Nuclear Receptors Based on Molecular De-

scriptors Information. Letters in Drug Design and Discovery 10(10), 989-994,

2013.

2. Weiming Yu, Yan Yan, Qing Liu, Junxiang Wang, and Zhenran Jiang. Pre-

dicting drug-target interaction networks of human diseases based on multiple

feature information. Pharmacogenomics 14(14), 1701-1707, 20, 2013.

3. Zhenran Jiang, Ran Tao, Lei Du, Weiming Yu and Junxiang Wang. Using

Network-Based Approaches to Predict Ligands of Orphan Nuclear Receptors.

Current Bioinformatics 7(4), 411-414, 2012.

4. Ran Tao, Zhenran Jiang, Weiming Yu and Junxiang Wang. Predicting Cou-

pling Specificity of GPCRs Based on the Optimization of the Coupling Regions.

Combinatorial Chemistry and High Throughput Screening 15(9), 770-774, 2012.

6.3. CURRENT PUBLICATIONS 124

5. Weiming Yu, Zhengyan Jiang, Junxiang Wang, and Ran Tao. Using feature

selection technique for drug-target interaction networks prediction. Current

medicinal chemistry 18(36), 5687-5693, 2011.

6.3.4 Submitted and In-preparation Papers

1. Junxiang Wang, Hongyi Li, and Liang Zhao. Proximal ADMM Algorithms

for Multi-convex Problems. International Journal of Data Science and Analyt-

ics(Submission)

2. Junxiang Wang, Junji Jiang, and Liang Zhao. An Invertible Bi-Lipschitz Surro-

gate Model for Black-box Graph Inverse Problems. NeurIPS 2022(Submission)

3. Hongyi Li, Junxiang Wang, Yongchao Wang, Yue Cheng, and Liang Zhao.

Community-based Layerwise Distributed Training of Graph Convolutional Net-

works. IEEE Transactions on Neural Networks and Learning Systems(TNNLS)

(Submission)

4. Chen Ling, Junji Jiang, JunxiangWang, Renhao Xue, and Zhao Liang. DeepIM:

Deep Graph Representation Learning and Optimization for Influence Maximiza-

tion. WSDM 2023(In Preparation)

5. Junxiang Wang, Hongyi Li, Liang Zhao. A Convergent ADMM Framework for

Efficient Neural Network Training. IEEE Transactions on Knowledge and Data

Engineering(TKDE)(In Preparation)

6. Yuyang Gao, Junxiang Wang, Wei Wang, Xin Deng, Hamed Zamani, Xiaohan

Yan, Yan Guo, Ahmed Awadallah, Yanfang Ye, and Liang Zhao. Asynchronous

Semi-supervised Representation Learning for Email Heterogeneous Networks.

CIKM 2022(Submission)

6.4. FUTURE RESEARCH DIRECTIONS 125

7. Johnny Torres, Guangji Bai, JunxiangWang, Liang Zhao, Carmen Vaca, Cristina

Abad. Sign-regularized Multi-task Learning. Neurocomputing(In Preparation)

6.4 Future Research Directions

6.4.1 Parallel Training of Graph Neural Networks on Large-

Scale Graphs

The GCN is one of the most popular graph learning models: it demonstrates the

ability to express nodes and graphs effectively via the message-passing mechanism.

Despite its effectiveness, it is challenging to train large-scale GCN models. This is

because the space complexity and the time complexity to handle graphs are quadratic

with respect to their nodes. Therefore, a graph with millions or billions of nodes may

not fit in memory. Potential future work is to devise AM algorithms to address

parallel training on large-scale graphs.

6.4.2 Stochastic AM Algorithms for Large-Scale Datasets

On one hand, the full-batch GD is popular in the small machine learning problems,

they suffer from memory issues on the large-scale datasets, which is also potentially a

challenge of SSA methods, including our proposed AM methods. On the other hand,

however, stochastic algorithms such as Stochastic Gradient Descent(SGD) are more

prevalent for large-scale datasets [5]. This motivates us to extend our proposed AM

methods to stochastic formats by some variance reduction techniques such as SVRG

[50] and SAGA [24]. We will investigate their theoretical convergence rates as well as

verify their performance on large-scale datasets.

APPENDIX A. APPENDIX OF THE DLADMM ALGORITHM 126

Appendix A

Appendix of the dlADMM

Algorithm

A.1 Algorithms to Update W k+1
l and ak+1

l

The algorithms to update W k+1
l and ak+1

l are described in the Algorithms 7 and 8,

respectively.

Algorithm 7: The Backtracking Algorithm to Update W k+1
l

Require: Wk+1
l−1 , z

k+1
l−1 ,a

k+1
l−1 ,u

k, ρ, some constant γ > 1.

Ensure: θk+1
l ,W k+1

l .

1: Pick up α and ζ = W
k+1

l −∇
W

k+1
l
ϕ/α.

2: while ϕ({W k+1
i }l−1

i=1, ζ, {W
k+1

i }Li=l+1, z
k+1
l , ak+1

l , uk) > Pl(ζ;α) do
3: α← α γ.
4: Solve ζ by Equation (2.9).
5: end while
6: Output θk+1

l ← α.
7: Output W k+1

l ← ζ.

A.2 Preliminary Lemmas

The following several lemmas are preliminary results.

A.2. PRELIMINARY LEMMAS 127

Algorithm 8: The Backtracking Algorithm to Update ak+1
l

Require: Wk+1
l , zk+1

l ,ak+1
l−1 ,u

k, ρ, some constant η > 1.

Ensure: τ k+1
l ,ak+1

l .
1: Pick up t and β = ak+1

l −∇ak+1
l
ϕ/t

2: while ϕ(Wk+1
l+1 , z

k+1
l+1 , {a

k+1
i }l−1

i=1, β, {ak+1
i }L−1

i=l+1, u
k) > Ql(β; t) do

3: t← tη.
4: β ← ak+1

l −∇ak+1
l
ϕ/t.

5: end while
6: Output τ k+1

l ← t.
7: Output ak+1

l ← β.

Lemma 11. ∇zkL
R(zkL; y) + uk = 0 for all k ∈ N.

Proof. The optimality condition of zkL in Equation (2.11) gives rise to

∇zkL
R(zkL; y) + ρ(zkL −W k

La
k
L−1) + uk−1 = 0

Because uk = uk−1 + ρ(zkL −W k
La

k
L−1), then we have ∇zkL

R(zkL; y) + uk = 0.

Lemma 12. It holds that ∀zL,1, zL,2 ∈ RnL ,

R(zL,1; y) ≤ R(zL,2; y) +∇zL,2
RT (zL,2; y)(zL,1 − zL,2) + (H/2)∥zL,1 − zL,2∥2

−R(zL,1; y) ≤ −R(zL,2; y)−∇zL,2
RT (zL,2; y)(zL,1 − zL,2) + (H/2)∥zL,1 − zL,2∥2

Proof. Because R(zL; y) is Lipschitz differentiable by Assumption 2, so is −R(zL; y).

Therefore, this lemma is proven exactly as same as Lemma 2.1 in [2].

A.2. PRELIMINARY LEMMAS 128

Lemma 13. It holds that for ∀k ∈ N,

Lρ(W
k+1

l+1 , z
k+1
l+1 , a

k+1
l+1 , u

k)− Lρ(W
k+1

l+1 , z
k+1
l+1 , a

k+1
l , uk)

≥ ∥τ k+1
l ◦ (ak+1

l − akl)◦2∥1/2(l = 1, · · · , L− 1) (A.1)

Lρ(W
k+1

l+1 , z
k+1
l+1 , a

k+1
l , uk) ≥ Lρ(W

k+1

l+1 , z
k+1
l , ak+1

l , uk)(l = 1, · · · , L− 1) (A.2)

Lρ(W
k, zk, ak, uk)− Lρ(W

k, zk+1
L , ak, uk) ≥ (ρ/2)∥zk+1

L − zkL∥22 (A.3)

Lρ(W
k+1

l+1 , z
k+1
l , ak+1

l , uk)− Lρ(W
k+1

l , zk+1
l , ak+1

l , uk)

≥ ∥θk+1

l ◦ (W k+1

l −W k
l)

◦2∥1/2(l = 1, · · · , L) (A.4)

Lρ(W
k+1
l−1 , z

k+1
l−1 , a

k+1
l−1 , u

k)− Lρ(W
k+1
l , zk+1

l−1 , a
k+1
l−1 , u

k)

≥ ∥θk+1
l ◦ (W k+1

l −W k+1

l)◦2∥1/2(l = 1, · · · , L) (A.5)

Lρ(W
k+1
l , zk+1

l−1 , a
k+1
l−1 , u

k) ≥ Lρ(W
k+1
l , zk+1

l , ak+1
l−1 , u

k)(l = 1, · · · , L− 1) (A.6)

Lρ(W
k+1
l , zk+1

l , ak+1
l−1 , u

k)− Lρ(W
k+1
l , zk+1

l , ak+1
l , uk)

≥ ∥τ k+1
l ◦ (ak+1

l − ak+1
l)◦2∥1/2(l = 1, · · · , L− 1) (A.7)

Proof. Essentially, all inequalities can be obtained by applying optimality conditions

of updating ak+1
l , zk+1

l , W
k+1

l , W k+1
l , zk+1

l and ak+1
l , respectively. We only prove

Inequality (A.3), (A.5), and (A.6). This is because Inequalities (A.1), (A.4) and

(A.7) follow the routine of Inequality (A.5), and Inequality (A.2) follows the routine

of Inequality (A.6).

Firstly, we focus on Inequality (A.3).

Lρ(W
k, zk, ak, uk)− Lρ(W

k, zk+1
L , ak, uk)

= R(zkL; y) + (uk)T (zkL −W k
La

k
L−1) + (ρ/2)∥zkL −W k

La
k
L−1∥22

−R(zk+1
L ; y)− (uk)T (zk+1

L −W k
La

k
L−1)− (ρ/2)∥zk+1

L −W k
La

k
L−1∥22

= R(zkL; y)−R(zk+1
L ; y) + (uk)T (zkL − zk+1

L) + (ρ/2)∥zk+1
L − zkL∥22

+ ρ(zk+1
L −W k

La
k
L−1)

T (zkL − zk+1
L) (A.8)

A.2. PRELIMINARY LEMMAS 129

where the second equality follows from the cosine rule ∥zkL − W k
La

k
L−1∥22 − ∥zk+1

L −

W k
La

k
L−1∥22 = ∥zk+1

L − zkL∥22 + (zk+1
L −W k

La
k
L−1)

T (zkL − zk+1
L).

According to the optimality condition of Equation (2.5), we have∇zk+1
L
R(zk+1

L ; y)+

uk+ρ(zk+1
L −W k

La
k
L−1) = 0. Because R(zL; y) is convex and differentiable with regard

to zL, its subgradient is also its gradient. According to the definition of subgradient,

we have

R(zkL; y) ≥ R(zk+1
L ; y) +∇zk+1

L
RT (zk+1

L ; y)(zkL − zk+1
L)

= R(zk+1
L ; y)− (uk + ρ(zk+1

L −W k
La

k
L−1))

T (zkL − zk+1
L) (A.9)

We introduce Equation (A.9) into Equation (A.8) to obtain Equation (A.3).

Secondly, we focus on Inequality (A.5). The choice of θk+1
l in Algorithm 7 shows

that

ϕ(Wk+1
l , zk+1

l−1 , a
k+1
l−1 , u

k) ≤ Pl(W
k+1
l ; θk+1

l). (A.10)

Moreover, the optimality condition of W k+1
l shows that

(∇
W

k+1
l
ϕ)T (Wk+1

l−1 , z
k+1
l−1 , a

k+1
l−1 , u

k) + θk+1
l ◦ (Wl −W k

l) = 0 (A.11)

Therefore, we have

Lρ(W
k+1
l−1 , z

k+1
l−1 , a

k+1
l−1 , u

k)− Lρ(W
k+1
l , zk+1

l−1 , a
k+1
l−1 , u

k)

= ϕ(Wk+1
l−1 , z

k+1
l−1 , a

k+1
l−1 , u

k)− ϕ(Wk+1
l , zk+1

l−1 , a
k+1
l−1 , u

k) (Definition of Lρ)

≥ ϕ(Wk+1
l−1 , z

k+1
l−1 , a

k+1
l−1 , u

k)− Pl(W
k+1
l ; θk+1

l) (Equation (A.10))

= −∇ϕT

W
k+1
l

(W k+1
l −W k+1

l)− ∥θk+1
l ◦ (W k+1

l −W k+1

l)◦2∥1/2

= ∥θk+1
l ◦ (W k+1

l −W k+1

l)◦2∥1/2 (Equation (A.11)).

A.2. PRELIMINARY LEMMAS 130

Finally, we focus on Equation (A.6). This follows directly from the optimality of zk+1
l

in Equation (2.10).

Lemma 14. If ρ >
√
17+1
2

H so that C1 = ρ/2−H/2− 2H2/ρ > 0, then it holds that

Lρ(W
k+1, zk+1

L−1, a
k+1, uk)− Lρ(W

k+1, zk+1, ak+1, uk+1)

≥ C1∥zk+1
L − zk+1

L ∥
2
2 − (2H2/ρ)∥zk+1

L − zkL∥22. (A.12)

Proof.

Lρ(W
k+1, zk+1

L−1, a
k+1, uk)− Lρ(W

k+1, zk+1, ak+1, uk+1)

= R(zk+1
L ; y)−R(zk+1

L ; y) + (uk+1)T (zk+1
L − zk+1

L) + (ρ/2)∥zk+1
L − zk+1

L ∥
2
2

− (1/ρ)∥uk+1 − uk∥22

= R(zk+1
L ; y)−R(zk+1

L ; y) +∇zk+1
L
R(zk+1

L ; y)T (zk+1
L − zk+1

L) + (ρ/2)∥zk+1
L − zk+1

L ∥
2
2

− (1/ρ)∥uk+1 − uk∥22(Lemma 11)

≥ (−H/2)∥zk+1
L − zk+1

L ∥22 + (ρ/2)∥zk+1
L − zk+1

L ∥22 − (1/ρ)∥∇zk+1
L
R(zk+1

L ; y)

−∇zkL
R(zkL; y)∥22(−R(zL; y) is Lipschitz differentiable, Lemmas 11 and 12)

≥ (−H/2)∥zk+1
L − zk+1

L ∥22 + (ρ/2)∥zk+1
L − zk+1

L ∥22 − (H2/ρ)∥zk+1
L − zkL∥22

(Assumption 2)

≥ (−H/2)∥zk+1
L − zk+1

L ∥22 + (ρ/2)∥zk+1
L − zk+1

L ∥22 − (2H2/ρ)∥zk+1
L − zk+1

L ∥
2
2

− (2H2/ρ)∥zk+1
L − zkL∥22 (Mean Inequality)

= C1∥zk+1
L − zk+1

L ∥22 − (2H2/ρ)∥zk+1
L − zkL∥22.

We choose ρ >
√
17+1
2

H to make C1 > 0.

A.3. PROOF OF THEOREM 1 131

A.3 Proof of Theorem 1

Proving Theorem 1 is equal to proving jointly Theorem 13, 14, and 15, which are

elaborated in the following.

Theorem 13. Given that Assumptions 1 and 2 hold, the dlADMM satisfies Property

1.

Proof. There exists z
′
L such that z

′
L −W k

La
k
L−1 = 0. By Assumption 2, we have

F (Wk, {zkl }L−1
l=1 , z

′

L, a
k) ≥ minS > −∞

where S = {F (W, z, a) : zL −WLaL−1 = 0}. Then we have

Lρ(W
k, zk, ak, uk)

= F (Wk, zk, ak) + (uk)T (zkL −W k
La

k
L−1) + (ρ/2)∥zkL −W k

La
k
L−1∥22

= F (Wk, zk, ak) + (uk)T (zkL − z
′

L) + (ρ/2)∥zkL −W k
La

k
L−1∥22

(z
′

L −W k
La

k
L−1 = 0)

= F (Wk, zk, ak) +∇zkL
RT (zkL; y)(z

′

L − zkL) + (ρ/2)∥zkL −W k
La

k
L−1∥22

(Lemma 11)

= (ν/2)
∑L−1

l=1
(∥zkl −W k

l a
k
l−1∥22 + ∥akl − f(zkl)∥22) +R(zkL; y)

+∇zkL
RT (zkL; y)(z

′

L − zkL) + (ρ/2)∥zkL −W k
La

k
L−1∥22 (The definition of F)

≥ (ν/2)
∑L−1

l=1
(∥zkl −W k

l a
k
l−1∥22 + ∥akl − f(zkl)∥22) +R(z

′

L; y)

+ (ρ−H/2)∥zkL −W k
La

k
L−1∥22

(Lemmas 11 and 12, R(zL; y) is Lipschitz differentiable)

> −∞

It concludes from Lemma 13 and Lemma 14 that Lρ(W
k, zk, ak, uk) is upper bounded

by Lρ(W
0, z0, a0,u0) and so are (ν/2)

∑L−1
l=1 (∥zkl −W k

l a
k
l−1∥22 + ∥akl − f(zkl)∥22) and

A.3. PROOF OF THEOREM 1 132

∥zkL −W k
La

k
L−1∥22. By Assumption 2, (Wk, zk, ak) is bounded. By Lemma 11, it is

obvious that uk is bounded as well.

Theorem 14. Given that Assumptions 1 and 2 hold, the dlADMM satisfies Property

2.

Proof. This follows directly from Lemma 13 and Lemma 14.

Theorem 15. Given that Assumptions 1 and 2 hold, the dlADMM satisfies Property

3.

Proof. We know that

∂Lρ(W
k+1, zk+1, ak+1, uk+1)

= (∂Wk+1Lρ, ∂zk+1Lρ,∇ak+1Lρ,∇uk+1Lρ)

where ∂Wk+1Lρ = {∂Wl
k+1Lρ}Ll=1, ∂zk+1Lρ = {∂zlk+1Lρ}Ll=1, and

∇ak+1Lρ = {∇alk+1Lρ}L−1
l=1 . To prove Property 3, we need to give an upper bound of

∂Wk+1Lρ, ∂zk+1Lρ,∇ak+1Lρ and ∇uk+1Lρ by a linear combination of ∥Wk+1 −W
k+1∥,

∥zk+1 − zk+1∥, ∥ak+1 − ak+1∥ and ∥zk+1
l − zkl ∥.

A.3. PROOF OF THEOREM 1 133

For W k+1
l (l < L),

∂Wk+1
l

Lρ = ∇Wk+1
l

ϕ(Wk+1, zk+1, ak+1, uk+1)

= ν(W k+1
l ak+1

l−1 − z
k+1
l)(ak+1

l−1)
T

= ∇Wk+1
l

ϕ(Wk+1
l , zk+1

l , ak+1
l−1 , u

k)

= ∇
W

k+1
l
ϕ(Wk+1

l−1 , z
k+1
l−1 , a

k+1
l−1 , u

k) + θk+1
l ◦ (W k+1

l −W k+1

l)

− θk+1
l ◦ (W k+1

l −W k+1

l)−∇
W

k+1
l
ϕ(Wk+1

l−1 , z
k+1
l−1 , a

k+1
l−1 , u

k)

+∇Wk+1
l

ϕ(Wk+1
l , zk+1

l , ak+1
l−1 , u

k)

= ∇
W

k+1
l
ϕ(Wk+1

l−1 , z
k+1
l−1 , a

k+1
l−1 , u

k) + θk+1
l ◦ (W k+1

l −W k+1

l)

− θk+1
l ◦ (W k+1

l −W k+1

l) + ν(W k+1
l ak+1

l−1 − z
k+1
l)(ak+1

l−1)
T

− ν(W k+1

l ak+1
l−1 − z

k+1
l)(ak+1

l−1)
T

Because

∥ − θk+1
l ◦ (W k+1

l −W
k+1
l) + ν(W k+1

l ak+1
l−1 − zk+1

l)(ak+1
l−1)

T − ν(W
k+1
l ak+1

l−1 z
k+1
l)(ak+1

l−1)
T ∥

= ∥ − θk+1
l ◦ (W k+1

l −W
k+1
l) + ν(W k+1

l −W
k+1
l)ak+1

l−1 (a
k+1
l−1)

T − ν(zk+1
l − zk+1

l)(ak+1
l−1)

T ∥

≤ ∥θk+1
l ◦ (W k+1

l −W
k+1
l)∥+ ν∥(W k+1

l −W
k+1
l)ak+1

l−1 (a
k+1
l−1)

T ∥

+ ν∥(zk+1
l − zk+1

l)(ak+1
l−1)

T ∥ (Triangle Inequality)

≤ ∥θk+1
l ◦ (W k+1

l −W
k+1
l)∥+ ν∥W k+1

l −W
k+1
l ∥∥ak+1

l−1 ∥∥a
k+1
l−1 ∥+ ν∥zk+1

l − zk+1
l ∥∥ak+1

l−1 ∥

(Cauchy-Schwarz inequality)

Because ak+1
l−1 is bounded by Property 1 and Equation (A.11) holds, ∥∂Wk+1

l
Lρ∥ can

be upper bounded by a linear combination of ∥W k+1
l −W k+1

l ∥ and ∥zk+1
l − zk+1

l ∥.

A.3. PROOF OF THEOREM 1 134

For W k+1
L ,

∂Wk+1
L

Lρ = ∇Wk+1
L

ϕ(Wk+1, zk+1, ak+1, uk+1)

= ∇
W

k+1
L
ϕ(Wk+1

L−1, z
k+1
L−1, a

k+1, uk) + θk+1
L ◦ (W k+1

L −W k+1

L)

− θk+1
L ◦ (W k+1

L −W k+1

L)−∇
W

k+1
L
ϕ(Wk+1

L−1, z
k+1
L−1, a

k+1, uk)

+∇Wk+1
L

ϕ(Wk+1, zk+1, ak+1, uk+1)

= ∇Wk+1
L

ϕ(Wk+1
L−1, z

k+1
L−1, a

k+1, uk) + θk+1
L ◦ (W k+1

L −W k+1

L)

− θk+1
L ◦ (W k+1

L −W k+1

L) + ρ(W k+1
L ak+1

L−1 − z
k+1
L − uk+1/ρ)(ak+1

L−1)
T

− ρ(W k+1

L ak+1
L−1 − z

k+1
L − uk/ρ)(ak+1

L−1)
T

Because

∥ − θk+1
L ◦ (W k+1

L −W
k+1
L) + ρ(W k+1

L ak+1
L−1 − zk+1

L − uk+1/ρ)(ak+1
L−1)

T

− ρ(W
k+1
L ak+1

L−1 − zk+1
L − uk/ρ)(ak+1

L−1)
T ∥

= ∥ − θk+1
L ◦ (W k+1

L −W
k+1
L) + ρ(W k+1

L −W
k+1
L)ak+1

L−1(a
k+1
L−1)

T − ρ(zk+1
L − zk+1

L)(ak+1
L−1)

T

− (uk+1 − uk)(ak+1
L−1)

T ∥

≤ ∥θk+1
L ◦ (W k+1

L −W
k+1
L)∥+ ρ∥(W k+1

L −W
k+1
L)ak+1

L−1(a
k+1
L−1)

T ∥

+ ρ∥(zk+1
L − zk+1

L)(ak+1
L−1)

T ∥+ ∥(uk+1 − uk)(ak+1
L−1)

T ∥ (Triangle Inequality)

≤ ∥θk+1
L ◦ (W k+1

L −W
k+1
L)∥+ ρ∥W k+1

L −W
k+1
L ∥∥ak+1

L−1∥∥a
k+1
L−1∥+ ρ∥zk+1

L − zk+1
L ∥∥ak+1

L−1∥

+H∥zk+1
L − zkL∥∥ak+1

L−1∥

(Cauchy-Schwarz inequality, Lemma 11, R(zL; y) is Lipschitz differentiable)

Because ak+1
L−1 is bounded by Property 1 and Equation (A.11) holds, ∥∂Wk+1

L
Lρ∥ can

be upper bounded by a linear combination of ∥W k+1
L −W

k+1

L ∥, ∥zk+1
L − zk+1

L ∥ and

∥zk+1
L − zkL∥.

A.3. PROOF OF THEOREM 1 135

For zk+1
l (l < L),

∂zk+1
l
Lρ = ∂zk+1

l
ϕ(Wk+1, zk+1, ak+1, uk+1)

= ν(zk+1
l −W k+1

l ak+1
l−1) + ν∂fl(z

k+1
l) ◦ (f(zk+1

l)− ak+1
l)

= ∂zk+1
l
ϕ(Wk+1

l , zk+1
l , ak+1

l , uk)

= ∂zk+1
l
ϕ(Wk+1

l , zk+1
l , ak+1

l , uk)− ∂zk+1
l
ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k)

+ ∂zk+1
l
ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k)

= ν∂fl(z
k+1
l) ◦ (ak+1

l − ak+1
l) + ∂zk+1

l
ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k)

because zk+1
l is bounded and fl(zl) is continuous and hence fl(z

k+1
l) is bounded, and

the optimality condition of Equation (2.10) yields

0 ∈ ∂zk+1
l
ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k)

Therefore, ∥∂zk+1
l
Lρ∥ is upper bounded by ∥ak+1

l − ak+1
l ∥.

For zk+1
L ,

∇zk+1
L
Lρ = ∇zk+1

L
R(zk+1

L ; y) +∇zk+1
L
ϕ(Wk+1, zk+1, ak+1, uk+1)

= ∇zk+1
L
R(zk+1

L ; y) +∇zk+1
L
ϕ(Wk+1, zk+1, ak+1, uk)

−∇zk+1
L
ϕ(Wk+1, zk+1, ak+1, uk) +∇zk+1

L
ϕ(Wk+1, zk+1, ak+1, uk+1)

= ∇zk+1
L
R(zk+1

L ; y) +∇zk+1
L
ϕ(Wk+1, zk+1, ak+1, uk) + uk+1 − uk

The optimality condition of Equation (2.11) yields

0 ∈ ∇zk+1
L
R(zk+1

L ; y) +∇zk+1
L
ϕ(Wk+1, zk+1, ak+1, uk)

A.3. PROOF OF THEOREM 1 136

and

∥uk+1 − uk∥ = ∥∇zk+1
L
R(zk+1

L ; y)−∇zkL
R(zkL; y)∥ (Lemma 11) ≤ H∥zk+1

L − zkL∥

(Cauchy-Schwarz inequality, R(zL; y) is Lipschitz differentiable)

Therefore ∥∇zk+1
L
Lρ∥ is upper bounded by ∥zk+1

L − zkL∥.

For ak+1
l (l < L− 1),

∇ak+1
l
ϕ(Wk+1, zk+1, ak+1, uk+1)

= ν(W k+1
l+1)

T (W k+1
l+1 a

k+1
l − zk+1

l+1) + ν(ak+1
l − fl(zk+1

l))

= ∇ak+1
l
ϕ(Wk+1

l+1 , z
k+1
l+1 , a

k+1
l , uk)

= τ k+1
l ◦ (ak+1

l − ak+1
l) +∇ak+1

l
ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k)− τ k+1

l ◦ (ak+1
l − ak+1

l)

−∇ak+1
l
ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k) +∇ak+1

l
ϕ(Wk+1

l+1 , z
k+1
l+1 , a

k+1
l , uk)

= τ k+1
l ◦ (ak+1

l − ak+1
l) +∇ak+1

l
ϕ(Wk+1

l , zk+1
l , ak+1

l−1 , u
k)− τ k+1

l ◦ (ak+1
l − ak+1

l)

− ν(W k+1

l+1)
T (W

k+1

l+1 a
k+1
l − zk+1

l+1)− ν(a
k+1
l − fl(zk+1

l))

+ ν(W k+1
l+1)

T (W k+1
l+1 a

k+1
l − zk+1

l+1) + ν(ak+1
l − fl(zk+1

l))

Because

∥ − τ k+1
l ◦ (ak+1

l − ak+1
l)− ν(W k+1

l+1)
T (W

k+1

l+1 a
k+1
l − zk+1

l+1)− ν(a
k+1
l − fl(zk+1

l))

+ ν(W k+1
l+1)

T (W k+1
l+1 a

k+1
l − zk+1

l+1) + ν(ak+1
l − fl(zk+1

l))∥

≤ ∥τ k+1
l ◦ (ak+1

l − ak+1
l)∥+ ν∥ak+1

l − ak+1
l ∥+ ν∥(W k+1

l+1)
T zk+1

l+1 − (W
k+1

l+1)
T zk+1

l+1 ∥

+ ν∥(W k+1
l+1)

TW k+1
l+1 a

k+1
l − (W

k+1

l+1)
TW

k+1

l+1 a
k+1
l ∥

(Triangle Inequality)

Then we need to show that ν∥(W k+1
l+1)

T zk+1
l+1 −(W

k+1

l+1)
T zk+1

l+1 ∥ and ν∥(W
k+1
l+1)

TW k+1
l+1 a

k+1
l −

(W
k+1

l+1)
TW

k+1

l+1 a
k+1
l ∥ are upper bounded by ∥Wk+1 −W

k+1∥, ∥zk+1 − zk+1∥, and

A.3. PROOF OF THEOREM 1 137

∥ak+1 − ak+1∥.

ν∥(W k+1
l+1)

T zk+1
l+1 − (W

k+1

l+1)
T zk+1

l+1 ∥

= ν∥(W k+1
l+1)

T zk+1
l+1 − (W

k+1

l+1)
T zk+1

l+1 + (W
k+1

l+1)
T zk+1

l+1 − (W
k+1

l+1)
T zk+1

l+1 ∥

≤ ν∥zk+1
l+1 ∥∥W

k+1
l+1 −W

k+1

l+1 ∥+ ν∥W k+1

l+1 ∥∥zk+1
l+1 − z

k+1
l+1 ∥

(Triangle Inequality, Cauchy-Schwarz inequality)

Because ∥zk+1
l+1 ∥ and ∥W

k+1

l+1 ∥ are upper bounded, ν∥(W k+1
l+1)

T zk+1
l+1 − (W

k+1

l+1)
T zk+1

l+1 ∥ is

therefore upper bounded by a combination of ∥W k+1
l+1 −W

k+1

l+1 ∥ and ∥zk+1
l+1 − z

k+1
l+1 ∥.

ν∥(W k+1
l+1)

TW k+1
l+1 a

k+1
l − (W

k+1

l+1)
TW

k+1

l+1 a
k+1
l ∥

= ν∥(W k+1
l+1)

TW k+1
l+1 a

k+1
l − (W k+1

l+1)
TW k+1

l+1 a
k+1
l + (W k+1

l+1)
TW k+1

l+1 a
k+1
l

− (W k+1
l+1)

TW
k+1

l+1 a
k+1
l + (W k+1

l+1)
TW

k+1

l+1 a
k+1
l − (W

k+1

l+1)
TW

k+1

l+1 a
k+1
l ∥

≤ ν∥(W k+1
l+1)

TW k+1
l+1 (a

k+1
l − ak+1

l)∥+ ν∥(W k+1
l+1)

T (W k+1
l+1 −W

k+1

l+1)a
k+1
l ∥

+ ν∥(W k+1
l+1 −W

k+1

l+1)
TW

k+1

l+1 a
k+1
l ∥(Triangle Inequality)

≤ ν∥W k+1
l+1 ∥∥W

k+1
l+1 ∥∥a

k+1
l − ak+1

l ∥+ ν∥W k+1
l+1 ∥∥W

k+1
l+1 −W

k+1

l+1 ∥∥ak+1
l ∥

+ ν∥W k+1
l+1 −W

k+1

l+1 ∥∥W
k+1

l+1 ∥∥ak+1
l ∥(Cauchy-Schwarz Inequality)

Because ∥W k+1
l+1 ∥, ∥W

k+1

l+1 ∥ and ∥ak+1
l ∥ are upper bounded, ν∥(W k+1

l+1)
TW k+1

l+1 a
k+1
l −

(W
k+1

l+1)
TW

k+1

l+1 a
k+1
l ∥ is therefore upper bounded by a combination of ∥W k+1

l+1 −W
k+1

l+1 ∥

and ∥ak+1
l+1 − a

k+1
l+1 ∥.

A.3. PROOF OF THEOREM 1 138

For ak+1
L−1,

∇ak+1
L−1

ϕ(Wk+1, zk+1, ak+1, uk+1)

= τ k+1
L−1 ◦ (a

k+1
L−1 − a

k+1
L−1) +∇ak+1

L−1
ϕ(Wk+1

L−1, z
k+1
L−1, a

k+1
L−2, u

k)− τ k+1
L−1 ◦ (a

k+1
L−1 − a

k+1
L−1)

−∇ak+1
L−1

ϕ(Wk+1
L−1, z

k+1
L−1, a

k+1
L−2, u

k) +∇ak+1
L−1

ϕ(Wk+1, zk+1, ak+1, uk+1)

= τ k+1
L−1 ◦ (a

k+1
L−1 − a

k+1
L−1) +∇ak+1

L−1
ϕ(Wk+1

L−1, z
k+1
L−1, a

k+1
L−2, u

k)− τ k+1
L−1 ◦ (a

k+1
L−1 − a

k+1
L−1)

− ρ(W k+1

L)T (W
k+1

L ak+1
L−1 − z

k+1
L − uk/ρ)− ν(ak+1

L−1 − fL−1(z
k+1
L−1))

+ ρ(W k+1
L)T (W k+1

L ak+1
L−1 − z

k+1
L − uk+1/ρ) + ν(ak+1

L−1 − fL−1(z
k+1
L−1))

Because

∥ − τ k+1
L−1 ◦ (a

k+1
L−1 − a

k+1
L−1)− ρ(W

k+1

L)T (W
k+1

L ak+1
L−1 − z

k+1
L − uk/ρ)

− ν(ak+1
L−1 − fL−1(z

k+1
L−1)) + ρ(W k+1

L)T (W k+1
L ak+1

L−1 − z
k+1
L − uk+1/ρ)

+ ν(ak+1
L−1 − fL−1(z

k+1
L−1))∥

≤ ∥τ k+1
L−1 ◦ (a

k+1
L−1 − a

k+1
L−1)∥+ ν∥ak+1

L−1 − a
k+1
L−1∥

+ ρ∥(W k+1
L)T zk+1

L − (W
k+1

L)T zk+1
L ∥+ ∥(W k+1

L)Tuk+1 − (W
k+1

L)Tuk∥

+ ρ∥(W k+1
L)TW k+1

L ak+1
L−1 − (W

k+1

L)TW
k+1

L ak+1
L−1∥(Triangle Inequality)

Then we need to show that ρ∥(W k+1
L)T zk+1

L − (W
k+1

L)T zk+1
L ∥,

∥(W k+1
L)Tuk+1−(W k+1

L)Tuk∥ and ρ∥(W k+1
L)TW k+1

L ak+1
L−1−(W

k+1

L)TW
k+1

L ak+1
L−1∥ are up-

per bounded by ∥Wk+1 −W
k+1∥, ∥zk+1 − zk+1∥, ∥ak+1 − ak+1∥ and ∥zk+1 − zk∥.

ρ∥(W k+1
L)T zk+1

L − (W
k+1

L)T zk+1
L ∥

= ρ∥(W k+1
L)T zk+1

L − (W
k+1

L)T zk+1
L + (W

k+1

L)T zk+1
L − (W

k+1

L)T zk+1
L ∥

≤ ρ∥zk+1
L ∥∥W k+1

L −W k+1

L ∥+ ρ∥W k+1

L ∥∥zk+1
L − zk+1

L ∥

(Triangle Inequality, Cauchy-Schwarz inequality)

A.3. PROOF OF THEOREM 1 139

Because ∥zk+1
L ∥ and ∥W k+1

L ∥ are upper bounded, ρ∥(W k+1
L)T zk+1

L − (W
k+1

L)T zk+1
L ∥ is

therefore upper bounded by a combination of ∥W k+1
L −W k+1

L ∥ and ∥zk+1
L − zk+1

L ∥.

∥(W k+1
L)Tuk+1 − (W

k+1

L)Tuk∥

= ∥(W k+1
L)Tuk+1 − (W k+1

L)Tuk + (W k+1
L)Tuk − (W

k+1

L)Tuk∥

≤ ∥(W k+1
L)T (uk+1 − uk)∥+ ∥(W k+1

L −W k+1

L)Tuk∥(Triangle Inequality)

≤ ∥W k+1
L ∥∥uk+1 − uk∥+ ∥W k+1

L −W k+1

L ∥∥uk∥(Cauthy-Schwarz inequality)

= ∥W k+1
L ∥∥∇zk+1

L
R(zk+1

L ; y)−∇zkL
R(zkL; y)∥+ ∥W k+1

L −W k+1

L ∥∥uk∥ (Lemma 11)

≤ H∥W k+1
L ∥∥zk+1

L − zkL∥+ ∥W k+1
L −W k+1

L ∥∥uk∥

(R(zL; y) is Lipschitz differentiable)

Because ∥W k+1
L ∥ and ∥uk∥ are bounded, ∥(W k+1

L)Tuk+1 − (W
k+1

L)Tuk∥ can be upper

bounded by a combination of ∥zk+1
L − zkL∥ and ∥W k+1

L −W k+1

L ∥.

ρ∥(W k+1
L)TW k+1

L ak+1
L−1 − (W

k+1

L)TW
k+1

L ak+1
L−1∥

= ρ∥(W k+1
L)TW k+1

L ak+1
L−1 − (W k+1

L)TW k+1
L ak+1

L−1 + (W k+1
L)TW k+1

L ak+1
L−1

− (W k+1
L)TW

k+1

L ak+1
L−1 + (W k+1

L)TW
k+1

L ak+1
L−1 − (W

k+1

L)TW
k+1

L ak+1
L−1∥

≤ ρ∥(W k+1
L)TW k+1

L (ak+1
L−1 − a

k+1
L−1)∥+ ρ∥(W k+1

L)T (W k+1
L −W k+1

L)ak+1
L−1∥

+ ρ∥(W k+1
L −W k+1

L)TW
k+1

L ak+1
L−1∥(Triangle Inequality)

≤ ρ∥W k+1
L ∥∥W k+1

L ∥∥ak+1
L−1 − a

k+1
L−1∥+ ρ∥W k+1

L ∥∥W k+1
L −W k+1

L ∥∥ak+1
L−1∥

+ ρ∥W k+1
L −W k+1

L ∥∥W
k+1

L ∥∥ak+1
L−1∥(Cauchy-Schwarz inequality)

Because ∥W k+1
L ∥, ∥W k+1

L ∥ and ∥ak+1
L−1∥ are upper bounded, ρ∥(W k+1

L)TW k+1
L ak+1

L−1 −

(W
k+1

L)TW
k+1

L ak+1
L−1∥ is therefore upper bounded by a combination of ∥W k+1

L −W k+1

L ∥

and ∥ak+1
L − ak+1

L ∥.

A.4. PROOF OF THEOREM 3 140

For uk+1,

∇uk+1
l
Lρ = ∇uk+1

l
ϕ(Wk+1, zk+1, ak+1, uk+1)

= zk+1
L −W k+1

L ak+1
L

= (1/ρ)(uk+1 − uk)

= (1/ρ)(∇zkL
R(zkL; y)−∇zk+1

L
R(zk+1

L ; y))(Lemma 11)

Because

∥(1/ρ)(∇zkL
R(zkL; y)−∇zk+1

L
R(zk+1

L ; y))∥

≤ (H/ρ)∥zk+1
L − zkL∥(R(zL; y) is Lipschitz differentiable)

Therefore, ∥∇uk+1
l
Lρ∥ is upper bounded by ∥zk+1

L − zkL∥.

A.4 Proof of Theorem 3

Proof. To prove this theorem, we will first show that ck satisfies two conditions: (1).

ck ≥ ck+1. (2).
∑∞

k=0 ck is bounded. We then conclude the convergence rate of o(1/k)

based on these two conditions. Specifically, first, we have

ck = min0≤i≤k(
∑L

l=1
(∥θi+1

l ◦ (W i+1

l −W k
l)

◦2∥1/2 + ∥θi+1
l ◦ (W i+1

l −W i+1

l)◦2∥1/2)

+ ∥τ i+1
l ◦ (ai+1

l − ail)◦2∥1/2 + ∥τ i+1
l ◦ (ai+1

l − ai+1
l)◦2∥1/2) + C2∥zi+1

L − ziL∥22

+ C1∥zi+1
L − zi+1

L ∥
2
2)

≥ min0≤i≤k+1(
∑L

l=1
(∥θi+1

l ◦ (W i+1

l −W k
l)

◦2∥1/2 + ∥θi+1
l ◦ (W i+1

l −W i+1

l)◦2∥1/2)

+
∑L−1

l=1
(∥τ i+1

l ◦ (ai+1
l − ail)◦2∥1/2 + ∥τ i+1

l ◦ (ai+1
l − ai+1

l)◦2∥1/2) + C2∥zi+1
L − ziL∥22

+ C1∥zi+1
L − zi+1

L ∥
2
2)

= ck+1

A.4. PROOF OF THEOREM 3 141

Therefore ck satisfies the first condition. Second,

∑∞

k=0
ck

=
∑∞

k=0
min0≤i≤k(

∑L

l=1
(∥θi+1

l ◦ (W i+1

l −W k
l)

◦2∥1/2 + ∥θi+1
l ◦ (W i+1

l −W i+1

l)◦2∥1/2)

+
∑L−1

l=1
(∥τ i+1

l ◦ (ai+1
l − ail)◦2∥1/2 + ∥τ i+1

l ◦ (ai+1
l − ai+1

l)◦2∥1/2) + C2∥zi+1
L − ziL∥22

+ C1∥zi+1
L − zi+1

L ∥
2
2)

≤
∑∞

k=0
(
∑L

l=1
(∥θk+1

l ◦ (W k+1

l −W k
l)

◦2∥1/2 + ∥θk+1
l ◦ (W k+1

l −W k+1

l)◦2∥1/2)

+
∑L−1

l=1
(∥τ k+1

l ◦ (ak+1
l − akl)◦2∥1/2 + ∥τ k+1

l ◦ (ak+1
l − ak+1

l)◦2∥1/2) + C2∥zk+1
L − zkL∥22

+ C1∥zk+1
L − zk+1

L ∥22)

≤ Lρ(W
0, z0, a0, u0)− Lρ(W

∗, z∗, a∗, u∗) (Property 2)

So
∑∞

k=0 ck is bounded and ck satisfies the second condition. Finally, it has been

proved that the sufficient conditions of convergence rate o(1/k) are: (1) ck ≥ ck+1,

and (2)
∑∞

k=0 ck is bounded, and (3) ck ≥ 0 (Lemma 1.2 in [26]). Since we have

proved the first two conditions and the third one ck ≥ 0 is obvious, the convergence

rate of o(1/k) is proven.

APPENDIX B. APPENDIX OF THE MDLAM ALGORITHM 142

Appendix B

Appendix of the mDLAM

Algorithm

B.1 Definition

Several definitions are shown here for the sake of convergence analysis.

Definition 7 (Coercivity). Any arbitrary function G2(x) is coercive over a nonempty

set dom(G2) if as ∥x∥ → ∞ and x ∈ dom(G2), we have G2(x)→∞, where dom(G2)

is a domain set of G2.

Definition 8 (Multi-convexity). A function f(x1, x2, · · · , xm) is a multi-convex func-

tion if f is convex with regard to xi(i = 1, · · · ,m) while fixing other variables.

Definition 9 (Lipschitz Differentiability). A function f(x) is Lipschitz differentiable

with Lipschitz coefficient L > 0 if for any x1, x2 ∈ R, the following inequality holds:

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥.

For Lipschitz differentiability, we have the following lemma (Lemma 2.1 in [2]):

B.1. DEFINITION 143

Lemma 15. If f(x) is Lipschitz differentiable with L > 0, then for any x1, x2 ∈ R

f(x1) ≤ f(x2) +∇fT (x2)(x1 − x2) +
L

2
∥x1 − x2∥2.

Definition 10 (Fréchet Subdifferential). For each x1 ∈ dom(u1), the Fréchet sub-

differential of u1 at x1, which is denoted as ∂̂u1(x1), is the set of vectors v, which

satisfy

lim
x2 ̸=x1

inf
x2→x1

(u1(x2)− u1(x1)− vT (x2 − x1))/∥x2 − x1∥ ≥ 0.

The vector v ∈ ∂̂u1(x1) is a Fréchet subgradient.

Then the definition of the limiting subdifferential, which is based on Fréchet sub-

differential, is given in the following [84]:

Definition 11 (Limiting Subdifferential). For each x ∈ dom(u2), the limiting subd-

ifferential (or subdifferential) of u2 at x is

∂u2(x) ={v1|∃ xk → x, s.t. u2(x
k)→ u2(x), v

k ∈ ∂̂u2(xk), vk → v}.

where xk is a sequence whose limit is x and the limit of u2(x
k) is u2(x), v

k is a

sequence, which is a Fréchet subgradient of u2 at x
k and whose limit is v. The vector

v ∈ ∂u2(x) is a limiting subgradient.

Specifically, when u2 is convex, its limiting subdifferential is reduced to regular

subdifferential [84], which is defined as follows:

Definition 12 (Regular Subdifferential). For each x1 ∈ dom(f), the regular subdif-

ferential of a convex function f at x1, which is denoted as ∂f(x1), is the set of vectors

B.1. DEFINITION 144

v, which satisfy

f(x2) ≥ f(x1) + vT (x2 − x1).

The vector v ∈ ∂f(x1) is a regular subgradient.

Definition 13 (Quasilinearity). A function f(x) is quasiconvex if for any sublevel

set Sν(f) = {x|f(x) ≤ ν} is a convex set. Likewise, A function f(x) is quasiconcave

if for any superlevel set Sν(f) = {x|f(x) ≥ ν} is a convex set. A function f(x) is

quasilinear if it is both quasiconvex and quasiconcave.

Definition 14 (Locally Strong Convexity). A function f(x) is locally strongly convex

within a bound set D with a constant µ if

f(y) ≥ f(x) + gT (y − x) + µ

2
∥x− y∥22 ∀ g ∈ ∂f(x) and x, y ∈ D.

Simply speaking, a locally strongly convex function lies above a quadratic function

within a bounded set.

Definition 15 (Kurdyka-Lojasiewicz (KL) Property). A function f(x) has the KL

Property at x ∈ dom ∂f = {x ∈ R : ∂f(x) ̸= ∅} if there exists η ∈ (0,+∞], a

neighborhood X of x and a function ψ ∈ Ψη, such that for all

x ∈ X ∩ {x ∈ R : f(x) < f(x) < f(x) + η},

the following inequality holds

ψ
′
(f(x)− f(x))dist(0, ∂f(x)) ≥ 1,

where Ψη stands for a class of function ψ : [0, η] → R+ satisfying: (1). ϕ is concave

and ψ
′
(x) continuous on (0, η); (2). ψ is continuous at 0, ψ(0) = 0; and (3). ψ

′
(x) >

B.2. PRELIMINARY LEMMAS 145

0,∀x ∈ (0, η).

The following lemma shows that a locally strongly convex function satisfies the

KL Property:

Lemma 16 ([115]). A locally strongly convex function f(x) with a constant µ satisfies

the KL Property at any x ∈ D with ψ(x) = 2
µ

√
x and X = D ∩ {y : f(y) ≥ f(x)}.

B.2 Preliminary Lemmas

In this section, we present preliminary lemmas of the proposed mDLAM algorithm.

The limiting subdifferential is used to prove the convergence of the proposed mD-

LAM algorithm in the following convergence analysis. Without loss of generality, ∂R

is assumed to be nonempty, and the limiting subdifferential of F defined in Problem

3 is [115]:

∂F (W, z, a) = ∂WF × ∂zF × ∂aF,

where × means the Cartesian product.

Lemma 17. If Equation (3.3) holds, then

∇
W

k+1
l
ϕ+ θk+1

l (W k+1
l −W k+1

l) = 0.

Likewise, if Equation (3.4) holds, then there exists q such that

∇zk+1
l
ϕ+ ρ(zk+1

l − zk+1
l) + q = 0,

where q is a subgradient with regard to zk+1
l to satisfy the constraint fl(z

k+1
l)− ε ≤

akl ≤ fl(z
k+1
l) + ε.

B.3. MAIN PROOFS 146

If Equation (3.5) holds, then there exists u ∈ ∂R(zk+1
L ; y) such that

∇zk+1
L
ϕ+ ρ(zk+1

L − zk+1
L) + u = 0.

If Equation (3.6) holds, then there exists v such that

∇ak+1
l
ϕ+ τ k+1

l (ak+1
l − ak+1

l) + v = 0,

where v is a subgradient with regard to ak+1
l to satisfy the constraint fl(z

k+1
l)− ε ≤

ak+1
l ≤ fl(z

k+1
l) + ε.

Proof. These can be obtained by directly applying the optimality conditions of Equa-

tion (3.3), Equation (3.4), Equation (3.5) and Equation (3.6), respectively.

Lemma 18. For Equation (3.4) and Equation (3.5), the following inequalities hold:

V k+1
l (zk+1

l) ≥ ϕ(ak+1
l−1 ,W

k+1
l , zk+1

l). (B.1)

Proof. Because ϕ(al−1,Wl, zl) is Lipschitz differentiable with respect to zl with Lips-

chitz coefficient ρ, we directly apply Lemma 15 to ϕ to obtain Equation (B.1).

B.3 Main Proofs

Proof of Lemma 1

Proof. In Algorithm 4, we only show Equation (3.7) because Equation (3.8) and

Equation (3.9) follow the same routine of Equation (3.7).

In Line 7 of Algorithm 4, if F (Wk+1
≤l , z

k+1
≤l−1, a

k+1
≤l−1) < F (Wk+1

≤l−1, z
k+1
≤l−1, a

k+1
≤l−1), then

obviously there exists αk+1
l > 0 such that Equation (3.7) holds. Otherwise, according

B.3. MAIN PROOFS 147

to Line 8 of Algorithm 4, because ϕ(al−1,Wl, zl) is convex with regard toWl, according

to the definition of regular subgradient, we have

ϕ(ak+1
l−1 ,W

k
l , z

k
l) ≥ ϕ(ak+1

l−1 ,W
k+1

l , zkl) +∇W
k+1
l
ϕT (W k

l −W
k+1

l), (B.2)

Therefore, we have

F (Wk+1
≤l−1, z

k+1
≤l−1, a

k+1
≤l−1)− F (W

k+1
≤l , z

k+1
≤l−1, a

k+1
≤l−1)

= ϕ(ak+1
l−1 ,W

k
l , z

k
l)− ϕ(ak+1

l−1 ,W
k+1
l , zkl) (Definition of F in Problem 3)

≥ −(∇
W

k+1
l
ϕ)T (W k+1

l −W k+1

l)− θk+1
l

2
∥W k+1

l −W k+1

l ∥22

− ϕ(ak+1
l−1 ,W

k+1

l , zkl) + ϕ(ak+1
l−1 ,W

k
l , z

k
l) (Equation (3.2))

≥ −(∇
W

k+1
l
ϕ)T (W k+1

l −W k
l)−

θk+1
l

2
∥W k+1

l −W k+1

l ∥22 (Equation (B.2))

= θk+1
l (W k+1

l −W k+1

l)T (W k+1
l −W k

l)−
θk+1
l

2
∥W k+1

l −W k+1

l ∥22 (Lemma 17)

=
θk+1
l

2
∥W k+1

l −W k
l ∥22 (W

k+1

l = W k
l).

Let αk+1
l = θk+1

l , then Equation (3.7) still holds.

Proof of Lemma 3

Proof. In Algorithm 4:

(a). We sum Equation (3.7), Equation (3.8) and Equation (3.9) from l = 1 to L and

from k = 0 to K to obtain

F (W0, z0, a0)− F (WK , zK , aK)

≥
∑K

k=0
(
∑L

l=1
(
αk+1
l

2
∥W k+1

l −W k
l ∥22 +

γk+1
l

2
∥zk+1

l − zkl ∥22)

+
∑L−1

l=1

δk+1
l

2
∥ak+1

l − akl ∥22). (B.3)

So F (WK , zK , aK) ≤ F (W0, z0, a0). This proves the upper boundness of F . Let

B.3. MAIN PROOFS 148

K →∞ in Equation (B.3), since F > 0 is lower bounded, we have

∑K

k=0
(
∑L

l=1
(
αk+1
l

2
∥W k+1

l −W k
l ∥22 +

γk+1
l

2
∥zk+1

l − zkl ∥22) +
∑L−1

l=1

δk+1
l

2
∥ak+1

l − akl ∥22)

<∞. (B.4)

Since the sum of this infinite series is finite, every term converges to 0. This means

that limk→∞W k+1
l −W k

l = 0, limk→∞ zk+1
l −zkl = 0 and limk→∞ ak+1

l −akl = 0. In other

words, limk→∞Wk+1 −Wk = 0, limk→∞ zk+1 − zk = 0, and limk→∞ ak+1 − ak = 0.

(b). Because F (Wk, zk, ak) is bounded, by the definition of coercivity and Assumption

4, (Wk, zk, ak) is bounded.

Proof of Lemma 4

Proof. As shown in Remark 2.2 in [115],

∂Wk+1F = {∂Wk+1
1

F} × {∂Wk+1
2

F} × · · · × {∂Wk+1
L

F},

where × denotes Cartesian Product.

In Algorithm 4, for W k+1
l , according to Line 6 of Algorithm 4, if

F (Wk+1
≤l , z

k+1
≤l−1, a

k+1
≤l−1) < F (Wk+1

≤l−1, z
k+1
≤l−1, a

k+1
≤l−1), then

∂Wk+1
l

F = ∇Wk+1
l

ϕ(ak+1
l−1 ,W

k+1
l , zk+1

l) (Definition of F in Problem 3)

= ∇Wk+1
l

ϕ(ak+1
l−1 ,W

k+1
l , zk+1

l)−∇
W

k+1
l

ϕ(ak+1
l−1 ,W

k+1
l , zkl)− θk+1

l (W k+1
l −W

k+1
l)

+∇
W

k+1
l

ϕ(ak+1
l−1 ,W

k+1
l , zkl) + θk+1

l (W k+1
l −W

k+1
l)

= ρ(W k+1
l −W

k+1
l)ak+1

l−1 (a
k+1
l−1)

T − ρ(zk+1
l − zkl)(a

k+1
l−1)

T − θk+1
l (W k+1

l −W
k+1
l)

+∇
W

k+1
l

ϕ(ak+1
l−1 ,W

k+1
l , zkl) + θk+1

l (W k+1
l −W

k+1
l). (B.5)

B.3. MAIN PROOFS 149

On one hand, we have

∥ρ(W k+1
l −W k+1

l)ak+1
l−1 (a

k+1
l−1)

T − ρ(zk+1
l − zkl)(ak+1

l−1)
T − θk+1

l (W k+1
l −W k+1

l)∥

≤ ρ∥(W k+1
l −W k+1

l)ak+1
l−1 (a

k+1
l−1)

T∥+ ρ∥(zk+1
l − zkl)(ak+1

l−1)
T∥+ θk+1

l ∥W k+1
l −W k+1

l ∥

(Triangle Inequality)

≤ ρ∥W k+1
l −W k+1

l ∥∥ak+1
l−1 ∥∥a

k+1
l−1 ∥+ ρ∥zk+1

l − zkl ∥∥ak+1
l−1 ∥+ θk+1

l ∥W k+1
l −W k+1

l ∥

(Cauchy-Schwarz Inequality)

≤ ρMa∥zk+1
l − zkl ∥+ (ρM2

a + θk+1
l)∥W k+1

l −W k+1

l ∥ (Lemma 3) (B.6)

≤ ρMa∥zk+1
l − zkl ∥+ (ρM2

a + θk+1
l)∥W k+1

l − (W k
l + ωk(W k

l −W k−1
l))∥

(Nesterov Acceleration)

≤ ρMa∥zk+1
l − zkl ∥+ (ρM2

a + θk+1
l)∥W k+1

l −W k
l ∥+ (ρM2

a + θk+1
l)∥W k

l −W k−1
l ∥

(Triangle Inequality and ωk < 1).

On the other hand, Lemma 17 holds, that is

∇
W

k+1
l
ϕ(ak+1

l−1 ,W
k+1

l , zkl) + θk+1
l (W k+1

l −W k+1

l) = 0.

Therefore, there exists gk+1
1,l ∈ ∂Wk+1

l
F such that

∥gk+1
1,l ∥ ≤ ρMa∥zk+1

l − zkl ∥+(ρM2
a+θ

k+1
l)∥W k+1

l −W k
l ∥+(ρM2

a + θk+1
l)∥W k

l −W k−1
l ∥.

This shows that there exists gk+1
1 = gk+1

1,1 × gk+1
1,2 × · · · × gk+1

1,L ∈ ∂Wk+1F and C2 =

max(ρMa, ρM
2
a + θk+1

1 , ρM2
a + θk+1

2 , · · · , ρM2
a + θk+1

L) such that

∥gk+1
l ∥ ≤ C2(∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥Wk −Wk−1∥). (B.7)

B.3. MAIN PROOFS 150

Otherwise, we have

∥ρ(W k+1
l −W k+1

l)ak+1
l−1 (a

k+1
l−1)

T − ρ(zk+1
l − zkl)(ak+1

l−1)
T − θk+1

l (W k+1
l −W k+1

l)∥

≤ ρMa∥zk+1
l − zkl ∥+ (ρM2

a + θk+1
l)∥W k+1

l −W k+1

l ∥(Equation (B.6))

= ρMa∥zk+1
l − zkl ∥+ (ρM2

a + θk+1
l)∥W k+1

l −W k
l ∥(W

k+1

l = W k
l).

Similarly, Lemma 17 holds, that is

∇
W

k+1
l
ϕ(ak+1

l−1 ,W
k+1

l , zkl) + θk+1
l (W k+1

l −W k+1

l) = 0.

By Equation (B.5), we know that there exists gk+1
1,l ∈ ∂Wk+1

l
F such that

∥gk+1
1,l ∥ ≤ ρMa∥zk+1

l − zkl ∥+ (ρM2
a + θk+1

l)∥W k+1
l −W k

l ∥. (B.8)

Combining Equation (B.7) with Equation (B.8), we show that there exists gk+1
1 =

gk+1
1,1 ×gk+1

1,2 ×· · ·×gk+1
1,L ∈ ∂Wk+1F and C2 = max(ρMa, ρM

2
a+θ

k+1
1 , ρM2

a+θ
k+1
2 , · · · , ρM2

a+

θk+1
L) such that

∥gk+1
l ∥ ≤ C2(∥Wk+1 −Wk∥+ ∥zk+1 − zk∥+ ∥Wk −Wk−1∥).

Proof of Lemma 2

Proof. We add Equation (3.7), Equation (3.8), and Equation (3.9) from l = 1 to L

to obtain

F (Wk, zk, ak)− F (Wk+1, zk+1, ak+1)

≥
∑L

l=1
(
αk+1
l

2
∥W k+1

l −W k
l ∥22 +

γk+1
l

2
∥zk+1

l − zkl ∥22) +
∑L−1

l=1

δk+1
l

2
∥ak+1

l − akl ∥22.

B.3. MAIN PROOFS 151

Let C5 = min(
αk+1
l

2
,
γk+1
l

2
,
δk+1
l

2
) > 0, we have

F (Wk, zk, ak)− F (Wk+1, zk+1, ak+1)

≥ C5(
∑L

l=1
(∥W k+1

l −W k
l ∥22 + ∥zk+1

l − zkl ∥22) +
∑L−1

l=1
∥ak+1

l − akl ∥22)

= C5(∥Wk+1 −Wk∥22 + ∥zk+1 − zk∥22 + ∥ak+1 − ak∥22) (B.9)

≥ 0.

By Lemma 3(b) and a monotone sequence is convergent if it is bounded, then

F (Wk, zk, ak) is convergent.

Proof of Theorem 4

Proof. By Lemma 3 (a), limk→∞ Wk+1 −Wk = 0. By Lemma 3 (b), there exists a

subsequence Ws such that Ws →W∗, where W ∗ is a limit point. From Lemma 4,

there exist gs1 ∈ ∂WsF such that ∥gs1∥ → 0 as s→∞. According to the definition of

limiting subdifferential, we have 0 ∈ ∂W∗F . In other words, W∗ is a stationary point

of F in Problem 3.

Proof of Theorem 5

Proof. In Algorithm 4, we prove this by the KL Property.

Firstly, we consider Equation (3.4) and Equation (3.6), by Lemma 3, fl(z
k+1
l −

∇ϕzk+1
l
/ρ) − akl and fl(z

k+1) − ak+1
l + ∇ak+1

l
ϕ/τ k+1

l are bounded, i.e. there exist

constants D1 and D2 such that

| fl(zk+1
l −∇zk+1

l
ϕ/ρ)− akl |< D1.

| fl(zk+1)− ak+1
l +∇ak+1

l
ϕ/τ k+1

l |< D2.

Let ε = max(D1, D2), then the solutions to Equation (3.4) and Equation (3.6) are

B.3. MAIN PROOFS 152

simplified as follows:

zk+1
l ← zk+1

l −∇zk+1
l
ϕ/ρ. (B.10)

ak+1
l ← ak+1

l −∇ak+1
l
ϕ/τ k+1

l . (B.11)

This is because fl(z
k+1
l)−ε ≤ akl ≤ fl(z

k+1
l)+ε and fl(z

k+1
l)−ε ≤ ak+1

l ≤ fl(z
k+1
l)+ε

hold in Equation (3.4) and Equation (3.6), respectively.

Next, we prove that given ε = max(D1, D2), there exists C3 = max(ρM2
W+τ k+1

1 , ρM2
W+

τ k+1
2 , ρM2

W + τ k+1
3 , · · · , ρM2

W + τ k+1
L−1, 2ρMWMa + ρMz), some gk+1

3 ∈ ∂zk+1F and

gk+1
4 ∈ ∂ak+1F such that

∥gk+1
3 ∥ = 0,

∥gk+1
4 ∥ ≤ C3(∥ak+1 − ak∥+ ∥ak − ak−1∥+ ∥Wk+1 −Wk∥+ ∥zk+1 − zk∥).

As shown in [107, 115],

∂zk+1F = ∂zk+1
1
F × ∂zk+1

2
F × · · · × ∂zk+1

L
F,

∇ak+1F = ∇ak+1
1
F ×∇ak+1

2
F × · · · × ∇ak+1

L−1
F,

where × denotes Cartesian Product.

For zk+1
l (l < L), according to Line 18 of Algorithm 4, no matter

B.3. MAIN PROOFS 153

F (Wk+1
≤l , z

k+1
≤l , a

k+1
≤l−1) ≥ F (Wk+1

≤l , z
k+1
≤l−1, a

k+1
≤l−1) or not, we have

∂zk+1
l
F = ∇zk+1

l
ϕ(ak+1

l−1 ,W
k+1
l , zk+1

l)

= ∇zk+1
l
ϕ(ak+1

l−1 ,W
k+1
l , zk+1

l)−∇zk+1
l
ϕ(ak+1

l−1 ,W
k+1
l , zk+1

l)− ρ(zk+1
l − zk+1

l)

(Equation (B.10))

= 0.

For zk+1
L , according to Line 12 of Algorithm 4, no matter

F (Wk+1
≤L , z

k+1
≤L , a

k+1
≤L−1) ≥ F (Wk+1

≤L , z
k+1
≤L−1, a

k+1
≤L−1) or not, we have

∂zk+1
L
F = ∇zk+1

L
ϕ(ak+1

L−1,W
k+1
L , zk+1

L) + ∂R(zk+1
L ; y)

= ∇zk+1
L
ϕ(ak+1

L−1,W
k+1
L , zk+1

L) + ∂R(zk+1
L ; y) +∇zk+1

L
ϕ(ak+1

L−1,W
k+1
L , zk+1

L)

+ ρ(zL − zk+1
L)−∇zk+1

L
ϕ(ak+1

L−1,W
k+1
L , zk+1

L)− ρ(zk+1
L − zk+1

L)

= ∇zk+1
L
ϕ(ak+1

L−1,W
k+1
L , zk+1

L)−∇zk+1
L
ϕ(ak+1

L−1,W
k+1
L , zk+1

L)− ρ(zk+1
L − zk+1

L)

(0 ∈ ∂R(zk+1
L ; y) +∇zk+1

L
ϕ(ak+1

L−1,W
k+1
L , zk+1

L) + ρ(zk+1
L − zk+1

L)

by the optimality condition of Equation (3.5))

= 0.

Therefore, there exists gk+1
3,l = ∇zk+1

l
F such that ∥gk+1

3,l ∥ = 0. This shows that there

exists gk+1
3 = gk+1

3,1 × gk+1
3,2 × · · · × gk+1

3,L = ∇zk+1F such that

∥gk+1
3 ∥ = 0. (B.12)

B.3. MAIN PROOFS 154

For ak+1
l , we have

∂ak+1
l

F = ∇ak+1
l

ϕ(ak+1
l ,W k

l+1, z
k+1
l+1)

= ∇ak+1
l

ϕ(ak+1
l ,W k+1

l+1 , zk+1
l+1)−∇ak+1

l
ϕ(ak+1

l ,W k
l+1, z

k
l+1)− τk+1

l (ak+1
l − ak+1

l)

(Equation (B.11))

= ρ(W k+1
l+1)T (W k+1

l+1 ak+1
l − zk+1

l+1)− ρ(W k
l+1)

T (W k
l+1a

k+1
l − zkl+1)

− τk+1
l (ak+1

l − ak+1
l)

= ρ(W k+1
l+1)TW k+1

l+1 (ak+1
l − ak+1

l) + ρ(W k+1
l+1)T (W k+1

l+1 −W k
l+1)a

k+1
l

+ ρ(W k+1
l+1 −W k

l+1)
TW k

l+1a
k+1
l − ρ(W k+1

l+1)T (zk+1
l+1 − zkl+1)− ρ(W k+1

l+1 −W k
l+1)

T zkl+1

− τk+1
l (ak+1

l − ak+1
l).

Therefore

∥∂ak+1
l

F∥ ≤ ρ∥W k+1
l+1 ∥∥W

k+1
l+1 ∥∥a

k+1
l − ak+1

l ∥+ ρ∥W k+1
l+1 ∥∥W

k+1
l+1 −W k

l+1∥∥ak+1
l ∥

+ ρ∥W k+1
l+1 −W k

l+1∥∥W k
l+1∥∥ak+1

l ∥+ ρ∥W k+1
l+1 ∥∥z

k+1
l+1 − zkl+1∥

+ ρ∥W k+1
l+1 −W k

l+1∥∥zkl+1∥+ τk+1
l ∥ak+1

l − ak+1
l ∥

(Triangle Inequality and Cauthy-Schwarz Inequality)

≤ ρM2
W∥ak+1

l − ak+1
l ∥

+ ρMW∥W k+1
l+1 −W k

l+1∥Ma + ρ∥W k+1
l+1 −W k

l+1∥MWMa + ρMW∥zk+1
l+1 − zkl+1∥

+ ρ∥W k+1
l+1 −W k

l+1∥Mz + τk+1
l ∥ak+1

l − ak+1
l ∥ (Lemma 3)

= (ρM2
W + τk+1

l)∥ak+1
l − ak+1

l ∥+ (2ρMWMa + ρMz)∥W k+1
l+1 −W k

l+1∥

+ ρMW∥zk+1
l+1 − zkl+1∥.

According to Line 22 of Algorithm 4, if

B.3. MAIN PROOFS 155

F (Wk+1
≤l , z

k+1
≤l , a

k+1
≤l) < F (Wk+1

≤l , z
k+1
≤l , a

k+1
≤l−1), then we have

∥∂ak+1
l
F∥ ≤ (ρM2

W + τ k+1
l)∥ak+1

l − akl − (akl − ak−1
l)ωk∥

+ (2ρMWMa + ρMz)∥W k+1
l+1 −W

k
l+1∥+ ρMW∥zk+1

l+1 − z
k
l+1∥

(Nestrov Acceleration)

≤ (ρM2
W + τ k+1

l)∥ak+1
l − akl ∥+ (ρM2

W + τ k+1
l)∥akl − ak−1

l ∥+

(2ρMWMa + ρMz)∥W k+1
l+1 −W

k
l+1∥+ ρMW∥zk+1

l+1 − z
k
l+1∥

(Triangle Inequality and ωk < 1).

Therefore, there exists gk+1
4,l ∈ ∂ak+1

l
F such that

∥gk+1
4,l ∥ ≤ (ρM2

W + τ k+1
l)∥ak+1

l − akl ∥+ (ρM2
W + τ k+1

l)∥akl − ak−1
l ∥

+ (2ρMWMa + ρMz)∥W k+1
l+1 −W

k
l+1∥+ ρMW∥zk+1

l+1 − z
k
l+1∥. (B.13)

Otherwise,

∥∂ak+1
l
F∥ ≤ (ρM2

W + τ k+1
l)∥ak+1

l − akl ∥+ (2ρMWMa + ρMz)∥W k+1
l+1 −W

k
l+1∥

+ ρMW∥zk+1
l+1 − z

k
l+1∥ (ak+1

l = akl).

Therefore, there exists gk+1
4,l ∈ ∂ak+1

l
F such that

∥gk+1
4,l ∥ ≤ (ρM2

W + τ k+1
l)∥ak+1

l − akl ∥+ (2ρMWMa + ρMz)∥W k+1
l+1 −W

k
l+1∥

+ ρMW∥zk+1
l+1 − z

k
l+1∥. (B.14)

Combining Equation (B.13) and Equation (B.14), we show that there exists gk+1
4 =

gk+1
4,1 × gk+1

4,2 × · · · × gk+1
4,L ∈ ∂ak+1F and C3 = max(ρM2

W + τ k+1
1 , ρM2

W + τ k+1
2 , ρM2

W +

B.3. MAIN PROOFS 156

τ k+1
3 , · · · , ρM2

W + τ k+1
L−1, 2ρMWMa + ρMz) such that

∥gk+1
4 ∥ ≤ C3(∥ak+1 − ak∥+ ∥ak − ak−1∥+ ∥Wk+1 −Wk∥+ ∥zk+1 − zk∥). (B.15)

Combining Lemma 4, Equation (B.12) and Equation (B.15), we prove that there exists

gk+1 ∈ ∂F (Wk+1, zk+1, ak+1) = {∂Wk+1F, ∂zk+1F, ∂ak+1F} and C4 = max(C2, C3, ρ)

such that

∥gk+1∥ ≤ C4(∥ak+1 − ak∥+ ∥ak − ak−1∥+ ∥Wk+1 −Wk∥

+ ∥Wk −Wk−1∥+ ∥zk+1 − zk∥). (B.16)

Finally, we prove the linear convergence rate by the KL Property given Equation

(B.16) and Equation (B.9). Because F is locally strongly convex with a constant µ,

F satisfies the KL Property by Lemma 16. Let F ∗ = F (W∗, z∗, a∗) be the convergent

value of F , by Lemma 2, F (Wk, zk, ak) → F ∗, then for any η1 > 0 there exists

k2 ∈ N such that it holds for k > k2 that F ∗ < F (Wk, zk, ak) < F ∗ + η1. Also by

Lemma 3(a) and Equation (B.16), gk+1 → 0 as k → ∞, then for any η2 > 0 there

exists k3 ∈ N, such that it holds for k > k3 that ∥gk+1∥ < η2. Therefore, for any

k > k1 = max(k2, k3), (W
k, zk, ak) ∈ {(W, z, a) : |F ∗ < F (W, z, a) < F ∗ + η1 ∩ ∃g ∈

B.3. MAIN PROOFS 157

F (W, z, a) s.t. ∥g∥ < η2}. By the KL Property and Lemma 16, it holds that

1 ≤ ∥gk+1∥/(µ
√
F (Wk+1, zk+1,ak+1)− F ∗)

≤ C4(∥ak+1 − ak∥+ ∥ak − ak−1∥+ ∥Wk+1 −Wk∥+ ∥Wk −Wk−1∥+ ∥zk+1 − zk∥)

/(µ

√
F (Wk+1, zk+1,ak+1)− F ∗) (Equation (B.16))

≤ C2
4 (∥ak+1 − ak∥+ ∥ak − ak−1∥+ ∥Wk+1 −Wk∥+ ∥Wk −Wk−1∥+ ∥zk+1 − zk∥)2

/(µ2(F (Wk+1, zk+1,ak+1)− F ∗))

≤ (5C2
4 (∥ak+1 − ak∥22 + ∥ak − ak−1∥22 + ∥Wk+1 −Wk∥22 + ∥Wk −Wk−1∥22

+ ∥zk+1 − zk∥22))/(µ2(F (Wk+1, zk+1,ak+1)− F ∗))(Mean Inequality)

≤ (5C2
4 (F (Wk−1, zk−1,ak−1)− F (Wk+1, zk+1,ak+1)))

/(C5µ
2(F (Wk+1, zk+1,ak+1)− F ∗)) (Equation (B.9)).

This indicates that

(C5µ
2 + 5C2

4)(F (W
k+1, zk+1, ak+1)− F ∗) ≤ 5C2

4(F (W
k−1, zk−1, ak−1)− F ∗).

Let 0 < C1 =
5C2

4

C5µ2+5C2
4
< 1, we have

F (Wk+1, zk+1, ak+1)− F ∗ ≤ C1(F (W
k−1, zk−1, ak−1)− F ∗).

So in summary, for any ρ, there exist ε = max(D1, D2), k1 = max(k2, k3), and

0 < C1 =
5C2

4

C5µ2+5C2
4
< 1 such that

F (Wk+1, zk+1, ak+1)− F ∗ ≤ C1(F (W
k−1, zk−1, ak−1)− F ∗).

for k > k1. In other words, the linear convergence rate is proven.

APPENDIX C. APPENDIX OF THE PDADMM ALGORITHM 158

Appendix C

Appendix of the pdADMM

Algorithm

C.1 Preliminary Results

Lemma 19. It holds for every k ∈ N and l = 1, · · · , L− 1 that

ukl = ν(qkl − fl(zkl))

Proof. This follows directly from the optimality condition of qkl and Equation (4.6).

Lemma 20. It holds for every k ∈ N and l = 1, · · · , L− 1 that

∥uk+1
l − ukl ∥ ≤ ν∥qk+1

l − qkl ∥+ νS∥zk+1
l − zkl ∥

C.1. PRELIMINARY RESULTS 159

Proof.

∥uk+1
l − ukl ∥

= ∥ν(qk+1
l − fl(zk+1

l))− ν(qkl − fl(zkl))∥(Lemma 19)

≤ ν∥qk+1
l − qkl ∥+ ν∥fl(zk+1

l)− fl(zkl)∥(Triangle Inequality)

≤ ν∥qk+1
l − qkl ∥+ νS∥zk+1

l − zkl ∥(Assumption 5)

Lemma 21. It holds for every k ∈ N and l = 1, · · · , L− 1 that

∥uk+1
l − ukl ∥22 ≤ 2ν2(∥qk+1

l − qkl ∥22 + S2∥zk+1
l − zkl ∥22)

Proof.

∥uk+1
l − ukl ∥22 = ν2∥qk+1

l − fl(zk+1
l)− qkl + fl(z

k
l)∥22(Lemma 19)

≤ 2ν2(∥qk+1
l − qkl ∥22 + ∥fl(zk+1

l)− fl(zkl)∥22)(Mean Inequality)

≤ 2ν2(∥qk+1
l − qkl ∥22 + S2∥zk+1

l − zkl ∥22)(Assumption 5)

Lemma 22. For every k ∈ N, it holds that

Lρ(p
k,Wk, zk,qk,uk)− Lρ(p

k+1,Wk, zk,qk,uk) ≥
∑L

l=2
(τ k+1

l /2)∥pk+1
l − pkl ∥22

(C.1)

Lρ(p
k+1,Wk, zk,qk,uk)− Lρ(p

k+1,Wk+1, zk,qk,uk)

≥
∑L

l=1
(θk+1

l /2)∥W k+1
l −W k

l ∥22 (C.2)

Lρ(p
k+1,Wk+1, zk,qk,uk)− Lρ(p

k+1,Wk+1, zk+1,qk,uk)

≥ (ν/2)
∑L

l=1
∥zk+1

l − zkl ∥22 (C.3)

C.1. PRELIMINARY RESULTS 160

Proof. Generally, all inequalities can be obtained by applying optimality conditions

of updating p, W, and z, respectively. We only prove Inequalities (C.1), and (C.3).

This is because Inequality (C.2) follows the same routine of Inequality (C.1).

Firstly, we focus on Inequality (C.1). The choice of τ k+1
l requires

ϕ(pk+1
l ,W k

l , z
k
l , q

k
l−1, u

k
l−1) ≤ Ul(p

k+1
l ; τ k+1

l) (C.4)

Moreover, the optimality condition of Equation (4.1) leads to

∇pkl
ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1) + τ k+1

l (pk+1
l − pkl) = 0 (C.5)

Therefore

Lρ(p
k,Wk, zk,qk,uk)− Lρ(p

k+1,Wk, zk,qk,uk)

=
∑L

l=2
(ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1)− ϕ(pk+1

l ,W k
l , z

k
l , q

k
l−1, u

k
l−1))

≥
∑L

l=2
(ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1)− Ul(p

k+1
l ; τ k+1

l))(Inequality (C.4))

=
∑L

l=2
(−∇pkl

ϕT (pkl ,W
k
l , z

k
l , q

k
l−1, u

k
l−1)(p

k+1
l − pkl)− (τ k+1

l /2)∥pk+1
l − pkl ∥22)

=
∑L

l=2
(τ k+1

l /2)∥pk+1
l − pkl ∥22 (Equation (C.5))

Next, we prove Inequality (C.3). Because zk+1
l minimizes Equation (4.3), we have

(ν/2)∥zk+1
l −W k+1

l pk+1
l ∥

2
2 + (ν/2)∥qkl − fl(zk+1

l)∥22 + (ν/2)∥zk+1
l − zkl ∥22

≤ (ν/2)∥zkl −W k+1
l pk+1

l ∥22 + (ν/2)∥qkl − fl(zkl)∥22 (C.6)

C.1. PRELIMINARY RESULTS 161

And

R(zkL; y) + (ν/2)∥zkL −W k+1
L pk+1

L ∥
2
2 −R(zk+1

L ; y)− (ν/2)∥zk+1
L −W k+1

L pk+1
L ∥

2
2

= R(zkL; y)−R(zk+1
L ; y) + (ν/2)∥zkL − zk+1

L ∥22 + ν(zk+1
L −W k+1

L pk+1
L)T (zkL − zk+1

L)

(∥a− b∥22 − ∥a− c∥22 = ∥b− c∥22 + 2(c− a)T (b− c) where

a = W k+1
L pk+1

L , b = zkL, and c = zk+1
L) (C.7)

≥ sT (zkL − zk+1
L) + (ν/2)∥zkL − zk+1

L ∥22 + ν(zk+1
L −W k+1

L pk+1
L)T (zkL − zk+1

L)

(s ∈ ∂R(zk+1
L ; y) is a subgradient of R(zk+1

L ; y))

= (ν/2)∥zk+1
L − zkL∥22 (C.8)

(0 ∈ s+ ν(zk+1
L −W k+1

L pk+1
L) by the optimality condition of Equation (4.4))

Therefore

Lρ(p
k+1,Wk+1, zk,qk,uk)− Lρ(p

k+1,Wk+1, zk+1,qk,uk)

=
∑L−1

i=1
((ν/2)∥zkl −W k+1

l pk+1
l ∥22 + (ν/2)∥qkl − fl(zkl)∥22

− (ν/2)∥zk+1
l −W k+1

l pk+1
l ∥

2
2 − (ν/2)∥qkl − fl(zk+1

l)∥22)

+R(zkL; y) + (ν/2)∥zkL −W k+1
L pk+1

L ∥
2
2 −R(zk+1

L ; y)− (ν/2)∥zk+1
L −W k+1

L pk+1
L ∥

2
2

≥ (ν/2)
∑L

l=1
∥zk+1

l − zkl ∥22 (Inequalities (C.6) and (C.8))

Lemma 23. For every k ∈ N , it holds that

Lρ(p
k+1,Wk+1, zk+1,qk,uk)− Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

≥
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)∥qk+1

l − qkl ∥22 − (2ν2S2/ρ)∥zk+1
l − zkl ∥22) (C.9)

C.2. MAIN PROOFS 162

Proof.

Lρ(p
k+1,Wk+1, zk+1,qk,uk)− Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

=
∑L−1

l=1
((ν/2)∥fl(zk+1

l)− qkl ∥22 − (ν/2)∥fl(zk+1
l)− qk+1

l ∥22 − (uk+1
l)T (qkl − qk+1

l)

+ (ρ/2)∥qk+1
l − qkl ∥22 − (1/ρ)∥uk+1

l − ukl ∥22)

=
∑L−1

l=1
((ν/2)∥fl(zk+1

l)− qkl ∥22 − (ν/2)∥fl(zk+1
l)− qk+1

l ∥22

− ν(qk+1
l − fl(zk+1

l))T (qkl − qk+1
l) + (ρ/2)∥qk+1

l − qkl ∥22 − (1/ρ)∥uk+1
l − ukl ∥22)

(Lemma 19)

≥
∑L−1

l=1
(−(ν/2)∥qk+1

l − qkl ∥22 + (ρ/2)∥qk+1
l − qkl ∥22 − (1/ρ)∥uk+1

l − ukl ∥22)

(−ν(ql − fl(zk+1
l)) = −(ν/2)∇ql∥ql − fl(zk+1

l)∥22 is lipschitz continuous

with regard to ql and Lemma 2.1 in [2])

≥
∑L−1

l=1
(−(ν/2)∥qk+1

l − qkl ∥22 + (ρ/2)∥qk+1
l − qkl ∥22 − (2ν2/ρ)∥qk+1

l − qkl ∥22

− (2ν2S2/ρ)∥zk+1
l − zkl ∥22) (Lemma 21)

=
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)∥qk+1

l − qkl ∥22 − (2ν2S2/ρ)∥zk+1
l − zkl ∥22)

C.2 Main Proofs

Proof of Lemma 5

Proof. We sum up Inequalities (C.1), (C.2), (C.3), and (C.9) to obtain Inequality

(4.7).

Proof of Lemma 6

C.2. MAIN PROOFS 163

Proof. There exists q
′
such that pkl+1 = q

′

l and

F (pk,Wk, zk,q
′
) ≥ minp,W,z,q{F (p,W, z,q)|pl+1 = ql} > −∞

Therefore, we have

Lρ(p
k,Wk, zk,qk,uk)

= F (pk,Wk, zk,qk) +
∑L

l=1
(ukl)

T (pkl+1 − qkl) + (ρ/2)∥pkl+1 − qkl ∥22

= R(zkL; y) + (ν/2)(
∑L

l=1
∥zkl −W k

l p
k
l ∥22 +

∑L−1

l=1
∥qkl − fl(zkl)∥22)

+
∑L−1

l=1
((ukl)

T (pkl+1 − qkl) + (ρ/2)∥pkl+1 − qkl ∥22)

= R(zkL; y) + (ν/2)(
∑L

l=1
∥zkl −W k

l p
k
l ∥22 +

∑L−1

l=1
∥qkl − fl(zkl)∥22)

+
∑L−1

l=1
(ν(qkl − fl(zkl))T (q

′

l − qkl) + (ρ/2)∥pkl+1 − qkl ∥22)

(pkl+1 = q
′

l and Lemma 19)

≥ R(zkL; y) + (ν/2)(
∑L

l=1
∥zkl −W k

l p
k
l ∥22 +

∑L−1

l=1
∥q′l − fl(zkl)∥22)

−
∑L−1

l=1
(ν/2)∥q′l − qkl ∥22 +

∑L−1

l=1
(ρ/2)∥pkl+1 − qkl ∥22)

(ν(ql − fl(zk+1
l)) = (ν/2)∇ql∥ql − fl(zk+1

l)∥22 is lipschitz continuous

with regard to ql and Lemma 2.1 in [2])

= F (pk,Wk, zk,q
′
) + (ρ− ν)/2∥pkl+1 − qkl ∥22 > −∞

Therefore, F (pk,Wk, zk,q
′
) and (ρ− ν)/2∥pkl+1 − qkl ∥22 are upper bounded by

Lρ(p
k,Wk, zk,qk,uk) and hence Lρ(p

0,W0, z0,q0,u0) (Lemma 5). From Assumption

5, (pk,Wk, zk) is bounded. qk is also bounded because (ρ−ν)/2∥pkl+1− qkl ∥22 is upper

bounded. uk is bounded because of Lemma 19.

Proof of Lemma 7

Proof. We know that ∂Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)

= {∇pk+1Lρ,∇Wk+1Lρ, ∂zk+1Lρ,∇qk+1Lρ,∇uk+1Lρ} [101]. Specifically, we prove that

C.2. MAIN PROOFS 164

∥g∥ is upper bounded by the linear combination of ∥pk+1−pk∥,∥Wk+1−Wk∥, ∥zk+1−

zk∥, ∥qk+1 − qk∥, and ∥uk+1 − uk∥.

For pk+1
l ,

∇pk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇pk+1
l
ϕ(pk+1

l ,W k+1
l , zk+1

l , qk+1
l−1 , u

k+1
l−1)

= ∇pkl
ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1) + τ k+1

l (pk+1
l − pkl)− τ k+1

l (pk+1
l − pkl)

+ ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)
TW k

l p
k
l − ν(W k+1

l)T zk+1
l + ν(W k

l)
T zkl

+ (uk+1
l−1 − u

k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)

= −τ k+1
l (pk+1

l − pkl) + ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)
TW k

l p
k
l

− ν(W k+1
l)T zk+1

l + ν(W k
l)

T zkl + (uk+1
l−1 − u

k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)

(The optimality condition of Equation (4.1))

C.2. MAIN PROOFS 165

So

∥∇pk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥τ k+1
l (pk+1

l − pkl) + ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)
TW k

l p
k
l

− ν(W k+1
l)T zk+1

l + ν(W k
l)

T zkl + (uk+1
l−1 − u

k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)∥

≤ τ k+1
l ∥pk+1

l − pkl ∥+ ν∥(W k+1
l)TW k+1

l pk+1
l − (W k

l)
TW k

l p
k
l ∥

+ ν∥(W k+1
l)T zk+1

l − (W k
l)

T zkl ∥+ ∥uk+1
l−1 − u

k
l−1∥+ ρ∥pk+1

l − pkl ∥+ ρ∥qk+1
l−1 − q

k
l−1∥

(Triangle Inequality)

= τ k+1
l ∥pk+1

l − pkl ∥+ ν∥(W k+1
l)TW k+1

l (pk+1
l − pkl) + (W k+1

l)T (W k+1
l −W k

l)p
k
l

+ (W k+1
l −W k

l)
TW k

l p
k
l ∥+ ν∥(W k+1

l)T (zk+1
l − zkl) + (W k+1

l −W k
l)

T zkl ∥

+ ∥uk+1
l−1 − u

k
l−1∥+ ρ∥pk+1

l − pkl ∥+ ρ∥qk+1
l−1 − q

k
l−1∥

≤ τ k+1
l ∥pk+1

l − pkl ∥+ ν∥W k+1
l ∥2∥pk+1

l − pkl ∥+ ν∥W k+1
l ∥∥W k+1

l −W k
l ∥∥pkl ∥

+ ν∥W k+1
l −W k

l ∥∥W k
l ∥∥pkl ∥+ ν∥W k+1

l ∥∥zk+1
l − zkl ∥+ ν∥W k+1

l −W k
l ∥∥zkl ∥

+ ν(∥qk+1
l−1 − q

k
l−1∥+ S∥zk+1

l−1 − z
k
l−1∥) + ρ∥pk+1

l − pkl ∥+ ρ∥qk+1
l−1 − q

k
l−1∥

(Triangle Inequality, Cauthy-Schwartz Inequality and Lemma 20)

≤ τ k+1
l ∥pk+1

l − pkl ∥+ νN2
W∥pk+1

l − pkl ∥+ 2νNWNp∥W k+1
l −W k

l ∥

+ νNW∥zk+1
l − zkl ∥+ νNz∥W k+1

l −W k
l ∥

+ 2ν2(∥qk+1
l−1 − q

k
l−1∥22 + S2∥zk+1

l−1 − z
k
l−1∥22) + ρ∥pk+1

l − pkl ∥+ ρ∥qk+1
l−1 − q

k
l−1∥

(Lemma 6)

C.2. MAIN PROOFS 166

For W k+1
1 ,

∇Wk+1
1

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇Wk+1
1

ϕ(pk+1
1 ,W k+1

1 , zk+1
1)

= ∇Wk
1
ϕ(pk+1

1 ,W k
1 , z

k
1) + θk+1

1 (W k+1
1 −W k

1) + ν(W k+1
1 −W k

1)p
k+1
1 (pk+1

1)T

− ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)

= ν(W k+1
1 −W k

1)p
k+1
1 (pk+1

1)T − ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)

(The optimality condition of Equation (4.2))

So

∥∇Wk+1
1

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥ν(W k+1
1 −W k

1)p
k+1
1 (pk+1

1)T − ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)∥

≤ ν∥W k+1
1 −W k

1 ∥∥pk+1
1 ∥2 + ν∥zk+1

1 − zk1∥∥pk+1
1 ∥+ θk+1

1 ∥W k+1
1 −W k

1 ∥

(Triangle Inequality and Cauthy-Schwartz Inequality)

≤ ν∥W k+1
1 −W k

1 ∥N2
p + ν∥zk+1

1 − zk1∥Np + θk+1
1 ∥W k+1

1 −W k
1 ∥ (Theorem 6)

For W k+1
l (1 < l ≤ L),

∇Wk+1
l

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇Wk+1
l

ϕ(pk+1
l ,W k+1

l , zk+1
l , pk+1

l−1 , u
k+1
l−1)

= ∇Wk
l
ϕ(pk+1

l ,W k
l , z

k
l , p

k
l−1, u

k
l−1) + θk+1

l (W k+1
l −W k

1) + ν(W k+1
l −W k

l)p
k+1
l (pk+1

l)T

− ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)

= ν(W k+1
l −W k

l)p
k+1
l (pk+1

l)T − ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)

(The optimality condition of Equation (4.2))

C.2. MAIN PROOFS 167

So

∥∇Wk+1
l

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥ν(W k+1
l −W k

l)p
k+1
l (pk+1

l)T − ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)∥

≤ ν∥W k+1
l −W k

l ∥∥pk+1
l ∥2 + ν∥zk+1

l − zkl ∥∥pk+1
l ∥+ θk+1

l ∥W k+1
l −W k

l ∥

(Triangle Inequality and Cauthy-Schwartz Inequality)

≤ ν∥W k+1
l −W k

l ∥N2
p + ν∥zk+1

l − zkl ∥Np + θk+1
l ∥W k+1

l −W k
l ∥ (Theorem 6)

For zk+1
l (l < L),

∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

= ∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk,uk) + ν(zk+1
l − zkl)− ν(zk+1

l − zkl)

− ν∂fl(zk+1
l) ◦ (qk+1

l − qkl) (◦ is Hadamard product)

= −ν(zk+1
l − zkl)− ν∂fl(zk+1

l) ◦ (qk+1
l − qkl)

(0 ∈ ∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk,uk) + ν(zk+1
l − zkl))

So

∥∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥ − ν(zk+1
l − zkl)− ν∂fl(zk+1

l) ◦ (qk+1
l − qkl)∥

≤ ν∥zk+1
l − zkl ∥+ ν∥∂fl(zk+1

l)∥∥qk+1
l − qkl ∥

(Cauthy-Schwartz Inequality and Triangle Inequality)

≤ ν∥zk+1
l − zkl ∥+ νM∥qk+1

l − qkl ∥(∥∂fl(zk+1
l)∥ ≤M)

For zk+1
L , ∂zk+1

L
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1) = 0 by the optimality condition of

Equation (4.4).

C.2. MAIN PROOFS 168

For qk+1
l ,

∇qk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇qk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk) + uk+1
l − ukl

= uk+1
l − ukl (∇qk+1

l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk) = 0

by the optiamlity condition of Equation (4.5))

So ∥∇qk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥ = ∥uk+1
l − ukl ∥.

For uk+1
l ,

∇uk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1) = (pk+1
l+1 − q

k+1
l) = (uk+1

l − ukl)/ρ

So ∥∇uk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥ = ∥uk+1
l − ukl ∥/ρ.

In summary, we prove that ∇pk+1Lρ,∇Wk+1Lρ, ∂zk+1Lρ,∇qk+1Lρ,∇uk+1Lρ are upper

bounded by the linear combination of ∥pk+1−pk∥,∥Wk+1−Wk∥, ∥zk+1−zk∥, ∥qk+1−

qk∥, and ∥uk+1 − uk∥.

Proof of Theorem 8

Proof. To prove this theorem, we will first show that ck satisfies two conditions: (1).

ck ≥ ck+1. (2).
∑∞

k=0 ck is bounded. Specifically, first, we have

ck = min0≤i≤k(
∑L

l=2
(τ i+1

l /2)∥pi+1
l − pil∥22 +

∑L

l=1
(θi+1

l /2)∥W i+1
l −W i

l ∥22

+
∑L−1

l=1
C1∥zi+1

l − zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +

∑L−1

l=1
C2∥qi+1

l − qil∥22)

≥ min0≤i≤k+1(
∑L

l=2
(τ i+1

l /2)∥pi+1
l − pil∥22 +

∑L

l=1
(θi+1

l /2)∥W i+1
l −W i

l ∥22

+
∑L−1

l=1
C1∥zi+1

l − zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +

∑L−1

l=1
C2∥qi+1

l − qil∥22)

= ck+1

C.2. MAIN PROOFS 169

Therefore ck satisfies the first condition. Second,

∑∞

k=0
ck =

∑∞

k=0
min0≤i≤k(

∑L

l=2
(τ i+1

l /2)∥pi+1
l − pil∥22 +

∑L

l=1
(θi+1

l /2)∥W i+1
l −W i

l ∥22

+
∑L−1

l=1
C1∥zi+1

l − zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +

∑L−1

l=1
C2∥qi+1

l − qil∥22)

≤
∑∞

k=0
(
∑L

l=2
(τk+1

l /2)∥pk+1
l − pkl ∥22 +

∑L

l=1
(θk+1

l /2)∥W k+1
l −W k

l ∥22

+
∑L−1

l=1
C1∥zk+1

l − zkl ∥22 + (ν/2)∥zk+1
L − zkL∥22 +

∑L−1

l=1
C2∥qk+1

l − qkl ∥22)

≤ Lρ(p
0,W0, z0,q0,u0)− Lρ(p

∗,W∗, z∗,q∗,u∗)

(Lemma 5)

So ck satisfies the second condition. Finally, since we have proved the first two

conditions and the third one ck ≥ 0 is obvious, the convergence rate of o(1/k) is

proven (Lemma 1.2 in [26]).

APPENDIX D. APPENDIX OF THE PDADMM-G ALGORITHM 170

Appendix D

Appendix of the pdADMM-G

Algorithm

D.1 Convergence Proofs

D.1.1 Preliminary Results

Lemma 24. It holds for every k ∈ N and l = 1, · · · , L− 1 that

ukl = ν(qkl − fl(zkl)).

Proof. This follows directly from the optimality condition of qkl and Equation (4.6).

Lemma 25. It holds for every k ∈ N and l = 1, · · · , L− 1 that

∥uk+1
l − ukl ∥ ≤ ν∥qk+1

l − qkl ∥+ νS∥zk+1
l − zkl ∥.

D.1. CONVERGENCE PROOFS 171

Proof.

∥uk+1
l − ukl ∥

= ∥ν(qk+1
l − fl(zk+1

l))− ν(qkl − fl(zkl))∥(Lemma 24)

≤ ν∥qk+1
l − qkl ∥+ ν∥fl(zk+1

l)− fl(zkl)∥(Triangle Inequality)

≤ ν∥qk+1
l − qkl ∥+ νS∥zk+1

l − zkl ∥(Assumption 6).

Lemma 26. It holds for every k ∈ N and l = 1, · · · , L− 1 that

∥uk+1
l − ukl ∥22 ≤ 2ν2(∥qk+1

l − qkl ∥22 + S2∥zk+1
l − zkl ∥22).

Proof.

∥uk+1
l − ukl ∥22 = ν2∥qk+1

l − fl(zk+1
l)− qkl + fl(z

k
l)∥22(Lemma 24)

≤ 2ν2(∥qk+1
l − qkl ∥22 + ∥fl(zk+1

l)− fl(zkl)∥22)(Mean Inequality)

≤ 2ν2(∥qk+1
l − qkl ∥22 + S2∥zk+1

l − zkl ∥22)(Assumption 6).

D.1. CONVERGENCE PROOFS 172

Lemma 27. For every k ∈ N, it holds that

Lρ(p
k,Wk, zk,qk,uk)−Lρ(p

k+1,Wk, zk,qk,uk) ≥
∑L

l=2
(τ k+1

l /2)∥pk+1
l − pkl ∥22,

(D.1)

Lρ(p
k+1,Wk, zk,qk,uk)−Lρ(p

k+1,Wk+1, zk,qk,uk)≥
∑L

l=1
(θk+1l /2)∥W k+1

l −W
k
l ∥22,

(D.2)

Lρ(p
k+1,Wk+1, zk,qk,uk)−Lρ(p

k+1,Wk+1, zk+1,qk,uk) ≥ (ν/2)
∑L

l=1
∥zk+1l −z

k
l ∥22,

(D.3)

βρ(p
k,Wk, zk,qk,uk) ≥ βρ(p

k+1,Wk, zk,qk,uk), (D.4)

βρ(p
k+1,Wk, zk,qk,uk)−βρ(pk+1,Wk+1, zk,qk,uk)≥

∑L

l=1
(θk+1l /2)∥W k+1

l −W
k
l ∥22,

(D.5)

βρ(p
k+1,Wk+1, zk,qk,uk)−βρ(pk+1,Wk+1, zk+1,qk,uk) ≥ (ν/2)

∑L

l=1
∥zk+1l −z

k
l ∥22.

(D.6)

Proof. Generally, all inequalities can be obtained by applying optimality conditions

of updating p, W, and z, respectively. We only prove Inequalities (D.1), (D.3)

and (D.4). This is because Inequalities (D.2) and (D.5) follow the same routine of

Inequality (D.1), and Inequality (D.6) follows the same routine of Inequality (D.3).

Firstly, we focus on Inequality (D.1). The choice of τ k+1
l requires

ϕ(pk+1
l ,W k

l , z
k
l , q

k
l−1, u

k
l−1) ≤ Ul(p

k+1
l ; τ k+1

l). (D.7)

Moreover, the optimality condition of Equation (4.1) leads to

∇pkl
ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1) + τ k+1

l (pk+1
l − pkl) = 0. (D.8)

D.1. CONVERGENCE PROOFS 173

Therefore

Lρ(p
k,Wk, zk,qk,uk)−Lρ(p

k+1,Wk, zk,qk,uk)

=
∑L

l=2
(ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1)− ϕ(pk+1

l ,W k
l , z

k
l , q

k
l−1, u

k
l−1))

≥
∑L

l=2
(ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1)− Ul(p

k+1
l ; τ k+1

l))(Inequality (D.7))

=
∑L

l=2
(−∇pkl

ϕT (pkl ,W
k
l , z

k
l , q

k
l−1, u

k
l−1)(p

k+1
l − pkl)− (τ k+1

l /2)∥pk+1
l − pkl ∥22)

=
∑L

l=2
(τ k+1

l /2)∥pk+1
l − pkl ∥22(Equation (D.8)).

Next we prove Inequality (D.3). Because zk+1
l minimizes Equation (4.3) and Equation

(4.4), we have

(ν/2)∥zk+1
l −W k+1

l pk+1
l ∥

2
2 + (ν/2)∥qkl − fl(zk+1

l)∥22 + (ν/2)∥zk+1
l − zkl ∥22

≤ (ν/2)∥zkl −W k+1
l pk+1

l ∥22 + (ν/2)∥qkl − fl(zkl)∥22, (D.9)

and

R(zkL; y) + (ν/2)∥zkL −W k+1
L pk+1

L ∥
2
2 −R(zk+1

L ; y)− (ν/2)∥zk+1
L −W k+1

L pk+1
L ∥

2
2

= R(zkL; y)−R(zk+1
L ; y) + (ν/2)∥zkL − zk+1

L ∥22 + ν(zk+1
L −W k+1

L pk+1
L)T (zkL − zk+1

L)

(∥a− b∥22 − ∥a− c∥22 = ∥b− c∥22 + 2(c− a)T (b− c) where a = W k+1
L pk+1

L , b = zkL,

and c = zk+1
L)

≥ sT (zkL − zk+1
L) + (ν/2)∥zkL − zk+1

L ∥22 + ν(zk+1
L −W k+1

L pk+1
L)T (zkL − zk+1

L)

(s ∈ ∂R(zk+1
L ; y) is a subgradient of R(zk+1

L ; y))

= (ν/2)∥zk+1
L − zkL∥22 (D.10)

(0 ∈ s+ ν(zk+1
L −W k+1

L pk+1
L) by the optimality condition of Equation (4.4)).

D.1. CONVERGENCE PROOFS 174

Therefore

Lρ(p
k+1,Wk+1, zk,qk,uk)−Lρ(p

k+1,Wk+1, zk+1,qk,uk)

=
∑L−1

i=1
((ν/2)∥zkl −W k+1

l pk+1
l ∥22 + (ν/2)∥qkl − fl(zkl)∥22

− (ν/2)∥zk+1
l −W k+1

l pk+1
l ∥

2
2 − (ν/2)∥qkl − fl(zk+1

l)∥22)

+R(zkL; y) + (ν/2)∥zkL −W k+1
L pk+1

L ∥
2
2 −R(zk+1

L ; y)− (ν/2)∥zk+1
L −W k+1

L pk+1
L ∥

2
2

≥ (ν/2)
∑L

l=1
∥zk+1

l − zkl ∥22(Inequalities (D.9) and (D.10)).

Finally Inequality (D.4) follows directly the optimality condition of pk+1.

Lemma 28. For every k ∈ N , it holds that

Lρ(p
k+1,Wk+1, zk+1,qk,uk)− Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

≥
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)∥qk+1

l − qkl ∥22 − (2ν2S2/ρ)∥zk+1
l − zkl ∥22) (D.11)

βρ(p
k+1,Wk+1, zk+1,qk,uk)− βρ(pk+1,Wk+1, zk+1,qk+1,uk+1)

≥
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)∥qk+1

l − qkl ∥22 − (2ν2S2/ρ)∥zk+1
l − zkl ∥22). (D.12)

Proof. We only prove Inequality (D.11) because Inequality (D.12) follows the same

D.1. CONVERGENCE PROOFS 175

routine of Inequality (D.11).

Lρ(p
k+1,Wk+1, zk+1,qk,uk)− Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

=
∑L−1

l=1
((ν/2)∥fl(zk+1

l)− qkl ∥22 − (ν/2)∥fl(zk+1
l)− qk+1

l ∥22 − (uk+1
l)T (qkl − qk+1

l)

+ (ρ/2)∥qk+1
l − qkl ∥22 − (1/ρ)∥uk+1

l − ukl ∥22)

=
∑L−1

l=1
((ν/2)∥fl(zk+1

l)− qkl ∥22 − (ν/2)∥fl(zk+1
l)− qk+1

l ∥22

− ν(qk+1
l − fl(zk+1

l))T (qkl − qk+1
l) + (ρ/2)∥qk+1

l − qkl ∥22 − (1/ρ)∥uk+1
l − ukl ∥22)

(Lemma 24)

≥
∑L−1

l=1
(−(ν/2)∥qk+1

l − qkl ∥22 + (ρ/2)∥qk+1
l − qkl ∥22 − (1/ρ)∥uk+1

l − ukl ∥22)

(−ν(ql − fl(zk+1
l)) = −(ν/2)∇ql∥ql − fl(zk+1

l)∥22 is lipschitz continuous concerning ql

and Lemma 2.1 in [2])

≥
∑L−1

l=1
(−(ν/2)∥qk+1

l − qkl ∥22 + (ρ/2)∥qk+1
l − qkl ∥22 − (2ν2/ρ)∥qk+1

l − qkl ∥22

− (2ν2S2/ρ)∥zk+1
l − zkl ∥22) (Lemma 26)

=
∑L−1

l=1
((ρ/2− 2ν2/ρ− ν/2)∥qk+1

l − qkl ∥22 − (2ν2S2/ρ)∥zk+1
l − zkl ∥22).

D.1.2 Proof of Lemma 8

Proof. We sum up Inequalities (D.1), (D.2), (D.3), and (D.11) to obtain Inequality

(5.2), and we sum up Inequalities (D.4), (D.5), (D.6), and (D.12) to obtain Inequality

(5.3).

D.1.3 Proof of Lemma 9

Proof. (1) There exists q
′
such that pkl+1 = q

′

l and

F (pk,Wk, zk,q
′
) ≥ minp,W,z,q{F (p,W, z,q)|pl+1 = ql} > −∞.

D.1. CONVERGENCE PROOFS 176

Therefore, we have

Lρ(p
k,Wk, zk,qk,uk)

= F (pk,Wk, zk,qk) +
∑L

l=1
(ukl)

T (pkl+1 − qkl) + (ρ/2)∥pkl+1 − qkl ∥22

= R(zkL; y) + (ν/2)(
∑L

l=1
∥zkl −W k

l p
k
l ∥22 +

∑L−1

l=1
∥qkl − fl(zkl)∥22)

+
∑L−1

l=1
((ukl)

T (pkl+1 − qkl) + (ρ/2)∥pkl+1 − qkl ∥22)

= R(zkL; y) + (ν/2)(
∑L

l=1
∥zkl −W k

l p
k
l ∥22 +

∑L−1

l=1
∥qkl − fl(zkl)∥22)

+
∑L−1

l=1
(ν(qkl − fl(zkl))T (q

′

l − qkl) + (ρ/2)∥pkl+1 − qkl ∥22)

(pkl+1 = q
′

l and Lemma 24)

≥ R(zkL; y) + (ν/2)(
∑L

l=1
∥zkl −W k

l p
k
l ∥22 +

∑L−1

l=1
∥q′l − fl(zkl)∥22)

−
∑L−1

l=1
(ν/2)∥q′l − qkl ∥22 +

∑L−1

l=1
(ρ/2)∥pkl+1 − qkl ∥22)

(ν(ql − fl(zk+1
l)) = (ν/2)∇ql∥ql − fl(zk+1

l)∥22 is lipschitz continuous concerning ql

and Lemma 2.1 in [2])

= F (pk,Wk, zk,q
′
) + ((ρ− ν)/2)∥pkl+1 − qkl ∥22 > −∞.

Therefore, F (pk,Wk, zk,q
′
) and ((ρ− ν)/2)∥pkl+1 − qkl ∥22 are upper bounded by

Lρ(p
k,Wk, zk,qk,uk) and hence Lρ(p

0,W0, z0,q0,u0) (Lemma 8). From Assumption

6, (pk,Wk, zk) is bounded. qk is also bounded because (ρ−ν)/2∥pkl+1− qkl ∥22 is upper

bounded. uk is bounded because of Lemma 24.

(2). It follows the same routine as (1).

D.1.4 Proof of Theorem 9

Proof. (1). From Lemmas 8 and 9, we know that Lρ(p
k,Wk, zk,qk,uk) is convergent

because a monotone bounded sequence converges. Moreover, we take the limit on

D.1. CONVERGENCE PROOFS 177

both sides of Inequality (5.2) to obtain

0 = limk→∞ Lρ(p
k,Wk, zk,qk,uk)− limk→∞ Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

≥ limk→∞(
∑L

l=2
(τ k+1

l /2)∥pk+1
l −pkl ∥22 +

∑L

l=1
(θk+1l /2)∥W k+1

l −W
k
l ∥22

+
∑L−1

l=1
C1∥zk+1

l − zkl ∥22 + (ν/2)∥zk+1
L − zkL∥22 +

∑L−1

l=1
C2∥qk+1

l − qkl ∥22) ≥ 0.

Because Lρ(p
k,Wk, zk,qk,uk) is convergent, then limk→∞ ∥pk+1 − pk∥22 = 0,

limk→∞ ∥Wk+1−Wk∥22 = 0, limk→∞ ∥zk+1− zk∥22 = 0, and limk→∞ ∥qk+1−qk∥22 = 0.

limk→∞ ∥uk+1 − uk∥22 = 0 is derived from Lemma 26 in Section D.1 in the Appendix.

(2). The proof follows the same procedure as (1).

Proof of Lemma 10

Proof. (1). We know that ∂Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)

= {∇pk+1Lρ,∇Wk+1Lρ, ∂zk+1Lρ,∇qk+1Lρ,∇uk+1Lρ} [101]. Specifically, we prove that

∥g∥ is upper bounded by the linear combination of ∥pk+1−pk∥,∥Wk+1−Wk∥, ∥zk+1−

zk∥, ∥qk+1 − qk∥, and ∥uk+1 − uk∥.

For pk+1
l ,

∇pk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇pk+1
l
ϕ(pk+1

l ,W k+1
l , zk+1

l , qk+1
l−1 , u

k+1
l−1)

= ∇pkl
ϕ(pkl ,W

k
l , z

k
l , q

k
l−1, u

k
l−1) + τ k+1

l (pk+1
l − pkl)− τ k+1

l (pk+1
l − pkl)

+ ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)
TW k

l p
k
l − ν(W k+1

l)T zk+1
l + ν(W k

l)
T zkl

+ (uk+1
l−1 − u

k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)

= −τ k+1
l (pk+1

l − pkl) + ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)
TW k

l p
k
l

− ν(W k+1
l)T zk+1

l + ν(W k
l)

T zkl + (uk+1
l−1 − u

k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)

(The optimality condition of Equation (4.1))

D.1. CONVERGENCE PROOFS 178

So

∥∇pk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥ − τ k+1
l (pk+1

l − pkl) + ν(W k+1
l)TW k+1

l pk+1
l − ν(W k

l)
TW k

l p
k
l

− ν(W k+1
l)T zk+1

l + ν(W k
l)

T zkl + (uk+1
l−1 − u

k
l−1) + ρ(pk+1

l − pkl)− ρ(qk+1
l−1 − q

k
l−1)∥

≤ τ k+1
l ∥pk+1

l − pkl ∥+ ν∥(W k+1
l)TW k+1

l pk+1
l − (W k

l)
TW k

l p
k
l ∥

+ ν∥(W k+1
l)T zk+1

l − (W k
l)

T zkl ∥+ ∥uk+1
l−1 − u

k
l−1∥+ ρ∥pk+1

l − pkl ∥+ ρ∥qk+1
l−1 − q

k
l−1∥

(Triangle Inequality)

= τ k+1
l ∥pk+1

l − pkl ∥+ ν∥(W k+1
l)TW k+1

l (pk+1
l − pkl) + (W k+1

l)T (W k+1
l −W k

l)p
k
l

+ (W k+1
l −W k

l)
TW k

l p
k
l ∥+ ν∥(W k+1

l)T (zk+1
l − zkl) + (W k+1

l −W k
l)

T zkl ∥

+ ∥uk+1
l−1 − u

k
l−1∥+ ρ∥pk+1

l − pkl ∥+ ρ∥qk+1
l−1 − q

k
l−1∥

≤ τ k+1
l ∥pk+1

l − pkl ∥+ ν∥W k+1
l ∥2∥pk+1

l − pkl ∥+ ν∥W k+1
l ∥∥W k+1

l −W k
l ∥∥pkl ∥

+ ν∥W k+1
l −W k

l ∥∥W k
l ∥∥pkl ∥+ ν∥W k+1

l ∥∥zk+1
l − zkl ∥+ ν∥W k+1

l −W k
l ∥∥zkl ∥

+ ν(∥qk+1
l−1 − q

k
l−1∥+ S∥zk+1

l−1 − z
k
l−1∥) + ρ∥pk+1

l − pkl ∥+ ρ∥qk+1
l−1 − q

k
l−1∥

(Triangle Inequality, Cauthy-Schwartz Inequality and Lemma 20)

≤ τ k+1
l ∥pk+1

l − pkl ∥+ νN2
W∥pk+1

l − pkl ∥+ 2νNWNp∥W k+1
l −W k

l ∥

+ νNW∥zk+1
l − zkl ∥+ νNz∥W k+1

l −W k
l ∥+ 2ν2(∥qk+1

l−1 − q
k
l−1∥22 + S2∥zk+1

l−1 − z
k
l−1∥22)

+ ρ∥pk+1
l − pkl ∥+ ρ∥qk+1

l−1 − q
k
l−1∥ (Lemma 6).

D.1. CONVERGENCE PROOFS 179

For W k+1
1 ,

∇Wk+1
1

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇Wk+1
1

ϕ(pk+1
1 ,W k+1

1 , zk+1
1)

= ∇Wk
1
ϕ(pk+1

1 ,W k
1 , z

k
1) + θk+1

1 (W k+1
1 −W k

1) + ν(W k+1
1 −W k

1)p
k+1
1 (pk+1

1)T

− ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)

= ν(W k+1
1 −W k

1)p
k+1
1 (pk+1

1)T − ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)

(The optimality condition of Equation (4.2)).

So

∥∇Wk+1
1

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥ν(W k+1
1 −W k

1)p
k+1
1 (pk+1

1)T − ν(zk+1
1 − zk1)(pk+1

1)T − θk+1
1 (W k+1

1 −W k
1)∥

≤ ν∥W k+1
1 −W k

1 ∥∥pk+1
1 ∥2 + ν∥zk+1

1 − zk1∥∥pk+1
1 ∥+ θk+1

1 ∥W k+1
1 −W k

1 ∥

(Triangle Inequality and Cauthy-Schwartz Inequality)

≤ ν∥W k+1
1 −W k

1 ∥N2
p + ν∥zk+1

1 − zk1∥Np + θk+1
1 ∥W k+1

1 −W k
1 ∥ (Theorem 6).

For W k+1
l (1 < l ≤ L),

∇Wk+1
l

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇Wk+1
l

ϕ(pk+1
l ,W k+1

l , zk+1
l , pk+1

l−1 , u
k+1
l−1)

= ∇Wk
l
ϕ(pk+1

l ,W k
l , z

k
l , p

k
l−1, u

k
l−1) + θk+1

l (W k+1
l −W k

1) + ν(W k+1
l −W k

l)p
k+1
l (pk+1

l)T

− ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)

= ν(W k+1
l −W k

l)p
k+1
l (pk+1

l)T − ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)

(The optimality condition of Equation (4.2)).

D.1. CONVERGENCE PROOFS 180

So

∥∇Wk+1
l

Lρ(p
k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥ν(W k+1
l −W k

l)p
k+1
l (pk+1

l)T − ν(zk+1
l − zkl)(pk+1

l)T − θk+1
l (W k+1

l −W k
l)∥

≤ ν∥W k+1
l −W k

l ∥∥pk+1
l ∥2 + ν∥zk+1

l − zkl ∥∥pk+1
l ∥+ θk+1

l ∥W k+1
l −W k

l ∥

(Triangle Inequality and Cauthy-Schwartz Inequality)

≤ ν∥W k+1
l −W k

l ∥N2
p + ν∥zk+1

l − zkl ∥Np + θk+1
l ∥W k+1

l −W k
l ∥ (Theorem 6).

For zk+1
l (l < L),

∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

= ∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk,uk) + ν(zk+1
l − zkl)− ν(zk+1

l − zkl)

− ν∂fl(zk+1
l) ◦ (qk+1

l − qkl) (◦ is Hadamard product)

= −ν(zk+1
l − zkl)− ν∂fl(zk+1

l) ◦ (qk+1
l − qkl)

(0 ∈ ∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk,uk) + ν(zk+1
l − zkl)).

So

∥∂zk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥

= ∥ − ν(zk+1
l − zkl)− ν∂fl(zk+1

l) ◦ (qk+1
l − qkl)∥

≤ ν∥zk+1
l − zkl ∥+ ν∥∂fl(zk+1

l)∥∥qk+1
l − qkl ∥

(Cauchy-Schwartz Inequality and Triangle Inequality)

≤ ν∥zk+1
l − zkl ∥+ νM∥qk+1

l − qkl ∥(∥∂fl(zk+1
l)∥ ≤M).

For zk+1
L , ∂zk+1

L
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1) = 0 by the optimality condition of

Equation (4.4).

D.1. CONVERGENCE PROOFS 181

For qk+1
l ,

∇qk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)

= ∇qk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk) + uk+1
l − ukl

= uk+1
l − ukl (by the optimality condition of Equation (4.5)).

So ∥∇qk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥ = ∥uk+1
l − ukl ∥.

For uk+1
l ,

∇uk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1) = (pk+1
l+1 − q

k+1
l) = (uk+1

l − ukl)/ρ.

So ∥∇uk+1
l
Lρ(p

k+1,Wk+1, zk+1,qk+1,uk+1)∥ = ∥uk+1
l − ukl ∥/ρ.

In summary, we prove that ∇pk+1Lρ,∇Wk+1Lρ, ∂zk+1Lρ,∇qk+1Lρ,∇uk+1Lρ are upper

bounded by the linear combination of ∥pk+1−pk∥,∥Wk+1−Wk∥, ∥zk+1−zk∥, ∥qk+1−

qk∥, and ∥uk+1 − uk∥.

(2). It follows exactly the proof of (1) except for pk+1
l .

D.1.5 The proof of Theorem 10

Proof. From Lemma 9(1), (pk,Wk, zk,qk,uk) has at least a limit point

(p∗,W∗, z∗,q∗,u∗) because a bounded sequence has at least a limit point. From

Lemma 10 and Theorem 9, ∥gk+1∥ → 0 as k → ∞. According to the definition of

general subgradient (Definition 8.3 in [84]), we have 0 ∈ ∂Lρ(p
∗,W∗, z∗,q∗,u∗). In

other words, every limit point (p∗,W∗, z∗,q∗,u∗) is a stationary point.

D.1.6 The proof of Theorem 11

Proof. From Lemma 9(2), (Wk, zk,qk,uk) has at least a limit point (W∗, z∗,q∗,u∗)

because a bounded sequence has at least a limit point. pk has at least a limit point

D.1. CONVERGENCE PROOFS 182

p∗ because pk ∈ ∆ and ∆ is finite. From Lemma 10(2) and Theorem 9, ∥gk+1
W ∥ → 0,

∥gk+1
z ∥ → 0, ∥gk+1

q ∥ → 0, ∥gk+1
u ∥ → 0 as k →∞. According to the definition of gen-

eral subgradient (Defintion 8.3 in [84]), we have ∇W∗βρ(p
∗,W∗, z∗,q∗,u∗) = 0, 0 ∈

∂z∗βρ(p
∗,W∗, z∗,q∗,u∗),∇q∗βρ(p

∗,W∗, z∗,q∗,u∗) = 0 and∇u∗βρ(p
∗,W∗, z∗,q∗,u∗)=

0 (i.e. p∗l+1 = q∗l). In other words, every limit point (W∗, z∗,u∗) is a stationary point of

Problem 7. Moreover, τ kl has a limit point τ ∗l because it is bounded. Let τ k = {τ kl }Ll=2.

Consider a subsequence (ps,Ws, zs,qs,us, τ s+1) → (p∗,W∗, z∗,q∗,u∗, τ ∗). Because

us+1
l = usl + ρ(psl+1 − qsl) and us+1

l → usl , thus p
s
l+1 → qsl , and p

s+1
l+1 → qs+1

l . Because

qs+1
l → qsl , then p

s+1
l+1 → psl+1 for any l. In other words, ps+1 → ps. Because ps → p∗,

then ps+1 → p∗. The optimality condition of ps+1 (i.e. Equation (5.1)) leads to

ps+1
l ← argminδ∈∆ ∥δ − psl −∇psl

ϕ(psl ,W
s
l , z

s
l , q

s
l−1, u

s
l−1)/τ

s+1
l)∥.

Taking s→∞ on both sides, we have

p∗l ← argminδ∈∆ ∥δ − (p∗l −∇p∗l
ϕ(p∗l ,W

∗
l , z

∗
l , q

∗
l−1, u

∗
l−1)/τ

∗
l)∥.

Because∇p∗l
F (p∗,W∗, z∗,q∗) = νW T

l (z
∗
l−W ∗

l p
∗
l) = ∇p∗l

ϕ(p∗l ,W
∗
l , z

∗
l , q

∗
l−1, u

∗
l−1). Then

p∗l ← argminδ∈∆ ∥δ − (p∗l −∇p∗l
F (p∗,W∗, z∗,q∗)/τ ∗l)∥.

Namely, p∗ is a quantized stationary point of Problem 7.

D.1.7 The proof of Theorem 12

Proof. (1). To prove this, we will first show that ck satisfies two conditions: (1).

ck ≥ ck+1. (2).
∑∞

k=0 ck is bounded. We then conclude the convergence rate of o(1/k)

D.1. CONVERGENCE PROOFS 183

based on these two conditions. Specifically, first, we have

ck=min0≤i≤k(
∑L

l=2
(τ i+1

l /2)∥pi+1
l −p

i
l∥22 +

∑L

l=1
(θi+1l /2)∥W i+1

l −W
i
l ∥22

+
∑L−1

l=1
C1∥zi+1

l − zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +

∑L−1

l=1
C2∥qi+1

l − qil∥22)

≥min0≤i≤k+1(
∑L

l=2
(τ i+1

l /2)∥pi+1
l −p

i
l∥22 +

∑L

l=1
(θi+1l /2)∥W i+1

l −W
i
l ∥22

+
∑L−1

l=1
C1∥zi+1

l − zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +

∑L−1

l=1
C2∥qi+1

l − qil∥22)

= ck+1.

Therefore ck satisfies the first condition. Second,

∑∞

k=0
ck

=
∑∞

k=0
min0≤i≤k(

∑L

l=2
(τ i+1

l /2)∥pi+1
l −p

i
l∥22 +

∑L

l=1
(θi+1l /2)∥W i+1

l −W
i
l ∥22

+
∑L−1

l=1
C1∥zi+1

l − zil∥22 + (ν/2)∥zi+1
L − ziL∥22 +

∑L−1

l=1
C2∥qi+1

l − qil∥22)

≤
∑∞

k=0
(
∑L

l=2
(τ k+1

l /2)∥pk+1
l −pkl ∥22 +

∑L

l=1
(θk+1l /2)∥W k+1

l −W
k
l ∥22

+
∑L−1

l=1
C1∥zk+1

l − zkl ∥22 + (ν/2)∥zk+1
L − zkL∥22 +

∑L−1

l=1
C2∥qk+1

l − qkl ∥22)

≤ Lρ(p
0,W0, z0,q0,u0)− Lρ(p

∗,W∗, z∗,q∗,u∗)(Lemma 8).

So
∑∞

k=0 ck is bounded and ck satisfies the second condition. Finally, it has been

proved that the sufficient conditions of convergence rate o(1/k) are: (1) ck ≥ ck+1,

and (2)
∑∞

k=0 ck is bounded, and (3) ck ≥ 0 (Lemma 1.2 in [26]). Since we have

proved the first two conditions and the third one ck ≥ 0 is obvious, the convergence

rate of o(1/k) is proven.

(2). It follows the same procedure as (1).

D.2. MORE EXPERIMENTAL RESULTS 184

D.2 More Experimental Results

D.2.1 The Settings of All Hyperparameters

This section provides more details on the hyperparameter settings of all datasets, lr

denotes learning rate, which are shown in the following tables.

Dataset Cora PubMed Citeseer

lr(GD) 10−1 5 × 10−2 10−1

lr(Adadelta) 10−3 10−3 10−3

lr(Adagrad) 10−3 10−3 10−3

lr(Adam) 10−4 10−4 10−3

ρ, ν(pdADMM-G) 10−4 10−4 10−4

ρ, ν(pdADMM-G-Q) 10−4 10−3 10−3

Dataset
Amazon

Computers

Amazon

Photo

Coauthor

CS

lr(GD) 10−2 10−2 10−1

lr(Adadelta) 10−3 10−3 10−3

lr(Adagrad) 10−3 10−3 10−3

lr(Adam) 10−3 10−3 10−3

ρ, ν(pdADMM-G) 10−3 10−3 10−2

ρ, ν(pdADMM-G-Q) 10−3 10−3 10−2

Dataset
Coauthor

Physics
Flickr Ogbn-Arxiv

lr(GD) 10−1 10−3 10−2

lr(Adadelta) 10−3 10−2 10−1

lr(Adagrad) 10−3 10−3 10−3

lr(Adam) 10−3 10−3 10−3

ρ, ν(pdADMM-G) 10−2 10−4 10−4

ρ, ν(pdADMM-G-Q) 10−2 10−4 10−4

Table D.1: Hyperparameter settings
of all methods on nine benchmark
datasets when the number of neurons
is 100.

Dataset Cora PubMed Citeseer

lr(GD) 10−1 5 × 10−3 10−1

lr(Adadelta) 10−3 10−4 10−3

lr(Adagrad) 10−3 10−3 10−3

lr(Adam) 10−4 10−4 10−4

ρ, ν(pdADMM-G) 10−4 10−4 10−3

ρ, ν(pdADMM-G-Q) 10−4 10−3 10−3

Dataset
Amazon

Computers

Amazon

Photo

Coauthor

CS

lr(GD) 10−2 10−2 10−1

lr(Adadelta) 10−3 10−3 10−3

lr(Adagrad) 10−3 10−3 10−3

lr(Adam) 10−4 10−4 10−4

ρ, ν(pdADMM-G) 10−3 10−3 10−3

ρ, ν(pdADMM-G-Q) 10−3 10−3 10−3

Dataset
Coauthor

Physics
Flickr Ogbn-Arxiv

lr(GD) 10−2 10−2 10−2

lr(Adadelta) 10−3 10−2 10−1

lr(Adagrad) 10−3 10−3 10−3

lr(Adam) 10−4 10−3 10−3

ρ, ν(pdADMM-G) 10−2 10−4 10−4

ρ, ν(pdADMM-G-Q) 10−2 10−4 10−4

Table D.2: Hyperparameter settings
of all methods on nine benchmark
datasets when the number of neurons
is 500.

D.2.2 The Performance of Validation Sets

This section provides more experimental results on the validation sets of all datasets,

which are shown in the following tables.

D.2. MORE EXPERIMENTAL RESULTS 185

Dataset Cora PubMed Citeseer

GD
0.704

±0.037

0.626

± 0.072

0.619

±0.045

Adadelta
0.652

±0.064

0.720

±0.035

0.620

±0.022

Adagrad
0.720

± 0.022

0.762

± 0.012

0.604

±0.027

Adam
0.720

±0.034

0.745

± 0.014

0.624

±0.014

pdADMM-G
0.750

±0.005

0.788

±0.004

0.724

±0.005

pdADMM-G-Q
0.754

± 0.002

0.793

±0.002

0.722

±0.002

Dataset
Amazon

Computers

Amazon

Photo

Coauthor

CS

GD
0.654

±0.033

0.730

±0.165

0.875

±0.007

Adadelta
0.136

±0.062

0.343

±0.046

0.781

±0.084

Adagrad
0.750

±0.095

0.808

±0.018

0.889

±0.006

Adam
0.740

±0.010

0.850

±0.006

0.887

±0.009

pdADMM-G
0.753

±0.005

0.846

±0.014

0.913

±0.003

pdADMM-G-Q
0.688

±0.063

0.822

±0.013

0.916

±0.003

Dataset
Coauthor

Physics
Flickr Ogbn-Arxiv

GD
0.921

±0.009

0.464

±0.008

0.378

±0.004

Adadelta
0.918

±0.014

0.461

±0.006

0.514

±0.014

Adagrad
0.928

±0.005

0.480

±0.003

0.574

±0.008

Adam
0.919

± 0.010

0.512

±0.004

0.681

±0.003

pdADMM-G
0.933

±0.001

0.514

±0.001

0.649

±0.012

pdADMM-G-Q
0.935

±0.002

0.506

±0.004

0.661

±0.004

Table D.3: The validation perfor-
mance of all methods when the num-
ber of neurons is 100.

Dataset Cora PubMed Citeseer

GD
0.731

±0.018

0.651

±0.034

0.679

±0.008

Adadelta
0.716

±0.061

0.688

±0.024

0.597

±0.025

Adagrad
0.765

±0.014

0.776

±0.006

0.668

±0.028

Adam
0.758

±0.013

0.778

±0.008

0.668

±0.020

pdADMM-G
0.753

±0.004

0.792

±0.004

0.729

±0.003

pdADMM-G-Q
0.757

±0.005

0.792

±0.003

0.730

±0.004

Dataset
Amazon

Computers

Amazon

Photo

Coauthor

CS

GD
0.727

± 0.012

0.809

±0.012

0.897

±0.003

Adadelta
0.246

±0.073

0.371

±0.075

0.884

±0.003

Adagrad
0.766

±0.011

0.860

±0.003

0.912

±0.004

Adam
0.750

±0.017

0.872

±0.020

0.893

±0.013

pdADMM-G
0.778

±0.007

0.861

±0.005

0.912

±0.003

pdADMM-G-Q
0.764

±0.008

0.850

±0.009

0.910

±0.003

Dataset
Coauthor

Physics
Flickr Ogbn-Arxiv

GD
0.928

±0.001

0.466

±0.001

0.451

±0.033

Adadelta
0.932

±0.006

0.462

±0.004

0.591

±0.017

Adagrad
0.935

±0.005

0.488

±0.007

0.646

±0.010

Adam
0.933

±0.007

0.516

±0.002

0.692

±0.008

pdADMM-G
0.932

±0.001

0.514

±0.003

0.661

±0.005

pdADMM-G-Q
0.933

±0.002

0.514

±0.001

0.667

±0.003

Table D.4: The validation performance of all
methods when the number of neurons is 500.

BIBLIOGRAPHY 186

Bibliography

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375, 2018.

[2] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202,

2009.

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy

layer-wise training of deep networks. Advances in neural information processing

systems, 19, 2006.

[4] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for

large-scale machine learning. Siam Review, 60(2):223–311, 2018.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Foundations and Trends® in Machine Learning, 3(1):

1–122, 2011.

[7] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral

BIBLIOGRAPHY 187

networks and locally connected networks on graphs. International Conference

on Learning Representations (ICLR), 2014.

[8] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning

graph representations. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 30, 2016.

[9] Miguel Carreira-Perpinan andWeiran Wang. Distributed optimization of deeply

nested systems. In Artificial Intelligence and Statistics, pages 10–19, 2014.

[10] Tsung-Hui Chang. A proximal dual consensus admm method for multi-agent

constrained optimization. IEEE Transactions on Signal Processing, 64(14):

3719–3734, 2016.

[11] Tsung-Hui Chang, Mingyi Hong, and Xiangfeng Wang. Multi-agent distributed

optimization via inexact consensus admm. IEEE Transactions on Signal Pro-

cessing, 63(2):482–497, 2014.

[12] Tsung-Hui Chang, Mingyi Hong, Wei-Cheng Liao, and Xiangfeng Wang. Asyn-

chronous distributed admm for large-scale optimization—part i: Algorithm and

convergence analysis. IEEE Transactions on Signal Processing, 64(12):3118–

3130, 2016.

[13] Tsung-Hui Chang, Wei-Cheng Liao, Mingyi Hong, and Xiangfeng Wang. Asyn-

chronous distributed admm for large-scale optimization—part ii: Linear con-

vergence analysis and numerical performance. IEEE Transactions on Signal

Processing, 64(12):3131–3144, 2016.

[14] Rick Chartrand and Brendt Wohlberg. A nonconvex admm algorithm for

group sparsity with sparse groups. In Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on, pages 6009–6013. IEEE,

2013.

BIBLIOGRAPHY 188

[15] Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus

graph-augmented mlps. In Ninth International Conference on Learning Repre-

sentations, 2021.

[16] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and

efficient machine learning library for heterogeneous distributed systems. arXiv

preprint arXiv:1512.01274, 2015.

[17] François Chollet et al. Keras. https://keras.io, 2015.

[18] Francois Chollet. Deep learning with python. Manning Publications Co., 2017.

[19] Anna Choromanska, Benjamin Cowen, Sadhana Kumaravel, Ronny Luss, Mat-

tia Rigotti, Irina Rish, Paolo Diachille, Viatcheslav Gurev, Brian Kingsbury,

Ravi Tejwani, et al. Beyond backprop: Online alternating minimization with

auxiliary variables. In International Conference on Machine Learning, pages

1193–1202. PMLR, 2019.

[20] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki

Yamamoto, and David Ha. Deep learning for classical japanese literature. In

NeurIPS 2018 Workshop on Machine Learning for Creativity and Design, 2018.

[21] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2022.

[22] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In

Advances in neural information processing systems, pages 3123–3131, 2015.

[23] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. Learning

BIBLIOGRAPHY 189

steady-states of iterative algorithms over graphs. In International conference

on machine learning, pages 1106–1114. PMLR, 2018.

[24] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremen-

tal gradient method with support for non-strongly convex composite objectives.

Advances in neural information processing systems, 27, 2014.

[25] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Proceedings of

the 30th International Conference on Neural Information Processing Systems,

pages 3844–3852, 2016.

[26] Wei Deng, Ming-Jun Lai, Zhimin Peng, and Wotao Yin. Parallel multi-block

admm with o (1/k) convergence. Journal of Scientific Computing, 71(2):712–

736, 2017.

[27] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas

Poczos. Gradient descent can take exponential time to escape saddle points.

Advances in neural information processing systems, 30, 2017.

[28] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

Research, 12(Jul):2121–2159, 2011.

[29] Claudio Gallicchio and Alessio Micheli. Graph echo state networks. In The

2010 International Joint Conference on Neural Networks (IJCNN), pages 1–8.

IEEE, 2010.

[30] Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex

nonlinear and stochastic programming. Mathematical Programming, 156(1-2):

59–99, 2016.

BIBLIOGRAPHY 190

[31] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pages 249–256, 2010.

[32] Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and Nicolas R

Gauger. Layer-parallel training of deep residual neural networks. SIAM Journal

on Mathematics of Data Science, 2(1):1–23, 2020.

[33] Ke Guo, Deren Han, David ZW Wang, and Tingting Wu. Convergence of

admm for multi-block nonconvex separable optimization models. Frontiers of

Mathematics in China, 12(5):1139–1162, 2017.

[34] Davood Hajinezhad and Mingyi Hong. Nonconvex alternating direction method

of multipliers for distributed sparse principal component analysis. In 2015 IEEE

Global Conference on Signal and Information Processing (GlobalSIP), pages

255–259. IEEE, 2015.

[35] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Proceedings of the 31st International Conference

on Neural Information Processing Systems, pages 1025–1035, 2017.

[36] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell. Tictac:

Accelerating distributed deep learning with communication scheduling. In Pro-

ceedings of the 2nd SysML Conference, 2019.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[38] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on

graph-structured data. preprint arXiv:1506.05163, 2015.

BIBLIOGRAPHY 191

[39] Mingyi Hong. A distributed, asynchronous, and incremental algorithm for non-

convex optimization: an admm approach. IEEE Transactions on Control of

Network Systems, 5(3):935–945, 2017.

[40] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. Convergence analysis of

alternating direction method of multipliers for a family of nonconvex problems.

SIAM Journal on Optimization, 26(1):337–364, 2016.

[41] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets

for machine learning on graphs. In Advances in neural information processing

systems, pages 22118–22133, 2020.

[42] Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra, and

Meisam Razaviyayn. Alternating direction method of multipliers for quanti-

zation. In International Conference on Artificial Intelligence and Statistics,

pages 208–216. PMLR, 2021.

[43] Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using

features replay. In Advances in Neural Information Processing Systems, pages

6659–6668, 2018.

[44] Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation

with convergence guarantee. In International Conference on Machine Learning,

pages 2098–2106. PMLR, 2018.

[45] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International confer-

ence on machine learning, pages 448–456. PMLR, 2015.

[46] Md Saiful Islam, Tonmoy Sarkar, Sazzad Hossain Khan, Abu-Hena Mostofa

Kamal, SM Murshid Hasan, Alamgir Kabir, Dalia Yeasmin, Mohammad Ariful

BIBLIOGRAPHY 192

Islam, Kamal Ibne Amin Chowdhury, Kazi Selim Anwar, et al. Covid-19–related

infodemic and its impact on public health: A global social media analysis. The

American journal of tropical medicine and hygiene, 103(4):1621, 2020.

[47] Gauri Jagatap and Chinmay Hegde. Learning relu networks via alternating

minimization. arXiv preprint arXiv:1806.07863, 2018.

[48] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-

rnn: Deep learning on spatio-temporal graphs. In Proceedings of the ieee con-

ference on computer vision and pattern recognition, pages 5308–5317, 2016.

[49] Jae-wook Jang, Jiyoung Woo, Jaesung Yun, and Huy Kang Kim. Mal-netminer:

malware classification based on social network analysis of call graph. In Proceed-

ings of the 23rd International Conference on World Wide Web, pages 731–734,

2014.

[50] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using

predictive variance reduction. Advances in neural information processing sys-

tems, 26, 2013.

[51] Farkhondeh Kiaee, Christian Gagné, and Mahdieh Abbasi. Alternating di-

rection method of multipliers for sparse convolutional neural networks. arXiv

preprint arXiv:1611.01590, 2016.

[52] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. Proceedings of the 3rd International Conference on Learning Representa-

tions (ICLR), 2015.

[53] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representa-

tions (ICLR), 2017.

BIBLIOGRAPHY 193

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[55] Alex Krizhevsky et al. Learning multiple layers of features from tiny images.

Technical report, Citeseer, 2009.

[56] Sandeep Kumar, Rahul Jain, and Ketan Rajawat. Asynchronous optimization

over heterogeneous networks via consensus admm. IEEE Transactions on Signal

and Information Processing over Networks, 3(1):114–129, 2016.

[57] Tim Tsz-Kit Lau, Jinshan Zeng, Baoyuan Wu, and Yuan Yao. A proximal block

coordinate descent algorithm for deep neural network training. In International

Conference on Learning Representations Workshop, 2018.

[58] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE, 86

(11):2278–2324, 1998.

[59] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521

(7553):436, 2015.

[60] Guoyin Li and Ting Kei Pong. Global convergence of splitting methods for non-

convex composite optimization. SIAM Journal on Optimization, 25(4):2434–

2460, 2015.

[61] Hongyi Li, Junxiang Wang, Yongchao Wang, Yue Cheng, and Liang Zhao.

Community-based layerwise distributed training of graph convolutional net-

works. NeurIPS 2021 Workshop on Optimization for Machine Learning (OPT

2021), 2021.

BIBLIOGRAPHY 194

[62] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional

recurrent neural network: Data-driven traffic forecasting. In International Con-

ference on Learning Representations, 2018.

[63] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph

sequence neural networks. International Conference on Learning Representa-

tions (ICLR), 2016.

[64] Qinghua Liu, Xinyue Shen, and Yuantao Gu. Linearized admmfor nonconvex

nonsmooth optimization with convergence analysis. IEEE Access, 7:76131–

76144, 2019.

[65] Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods

with dynamic bound of learning rate. In International Conference on Learning

Representations, 2019.

[66] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In ICML Workshop on Deep Learning

for Audio, Speech and Language Processing. Citeseer, 2013.

[67] Sindri Magnússon, Pradeep Chathuranga Weeraddana, Michael G Rabbat, and

Carlo Fischione. On the convergence of alternating direction lagrangian meth-

ods for nonconvex structured optimization problems. IEEE Transactions on

Control of Network Systems, 3(3):296–309, 2015.

[68] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hen-

gel. Image-based recommendations on styles and substitutes. In Proceedings of

the 38th international ACM SIGIR conference on research and development in

information retrieval, pages 43–52, 2015.

[69] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev

BIBLIOGRAPHY 195

Khudanpur. Recurrent neural network based language model. In Eleventh An-

nual Conference of the International Speech Communication Association, 2010.

[70] João FC Mota, João MF Xavier, Pedro MQ Aguiar, and Markus Püschel. Dis-

tributed admm for model predictive control and congestion control. In 2012

IEEE 51st IEEE Conference on Decision and Control (CDC), pages 5110–5115.

IEEE, 2012.

[71] Geoffrey Negiar, Armin Askari, Fabian Pedregosa, and Laurent El Ghaoui.

Lifted neural networks for weight initialization. 10th NIPS Workshop on Opti-

mization for Machine Learning (NIPS 2017), 2017.

[72] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and

Andrew Y. Ng. Reading digits in natural images with unsupervised feature

learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learn-

ing 2011, 2011. URL http://ufldl.stanford.edu/housenumbers/nips2011_

housenumbers.pdf.

[73] Elizabeth Newman, Lars Ruthotto, Joseph Hart, and Bart van Bloemen Waan-

ders. Train like a (var) pro: efficient training of neural networks with variable

projection. SIAM Journal on Mathematics of Data Science, 3(4):1041–1066,

2021.

[74] Elizabeth Newman, Julianne Chung, Matthias Chung, and Lars Ruthotto.

slimtrain—a stochastic approximation method for training separable deep neu-

ral networks. SIAM Journal on Scientific Computing, 44(4):A2322–A2348,

2022.

[75] Mark EJ Newman, Stephanie Forrest, and Justin Balthrop. Email networks

and the spread of computer viruses. Physical Review E, 66(3):035101, 2002.

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

BIBLIOGRAPHY 196

[76] Seol-Hyun Noh. Analysis of gradient vanishing of rnns and performance com-

parison. Information, 12(11):442, 2021.

[77] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang

Chen, Jinyang Gao, Zhaojing Luo, Anthony KH Tung, Yuan Wang, et al. Singa:

A distributed deep learning platform. In Proceedings of the 23rd ACM interna-

tional conference on Multimedia, pages 685–688. ACM, 2015.

[78] S Pan, R Hu, G Long, J Jiang, L Yao, and C Zhang. Adversarially regular-

ized graph autoencoder for graph embedding. In IJCAI International Joint

Conference on Artificial Intelligence, 2018.

[79] Panos Parpas and Corey Muir. Predict globally, correct locally: Parallel-in-time

optimal control of neural networks. arXiv preprint arXiv:1902.02542, 2019.

[80] Boris T Polyak. Some methods of speeding up the convergence of iteration

methods. USSR Computational Mathematics and Mathematical Physics, 4(5):

1–17, 1964.

[81] Linbo Qiao, Tao Sun, Hengyue Pan, and Dongsheng Li. Inertial proximal

deep learning alternating minimization for efficient neutral network training. In

ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3895–3899. IEEE, 2021.

[82] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam

and beyond. In International Conference on Learning Representations, 2018.

[83] Herbert Robbins and S Monro. A stochastic approximation method, annals

math. Statistics, 22:400–407, 1951.

[84] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317.

Springer Science & Business Media, 2009.

BIBLIOGRAPHY 197

[85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. nature, 323(6088):533, 1986.

[86] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,

and Tina Eliassi-Rad. Collective classification in network data. AI magazine,

29(3):93–93, 2008.

[87] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.

Structured sequence modeling with graph convolutional recurrent networks.

In International Conference on Neural Information Processing, pages 362–373.

Springer, 2018.

[88] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed

deep learning in TensorFlow. arXiv preprint arXiv:1802.05799, 2018.

[89] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. Pitfalls of graph neural network evaluation. Relational Represen-

tation Learning Workshop (R2L),NeurIPS, 2018.

[90] Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear conver-

gence of the admm in decentralized consensus optimization. IEEE Transactions

on Signal Processing, 62(7):1750–1761, 2014.

[91] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the

importance of initialization and momentum in deep learning. In International

conference on machine learning, pages 1139–1147, 2013.

[92] Yu Tang, Zhigang Kan, Dequan Sun, Linbo Qiao, Jingjing Xiao, Zhiquan Lai,

and Dongsheng Li. Admmirnn: Training rnn with stable convergence via an effi-

cient admm approach. In Frank Hutter, Kristian Kersting, Jefrey Lijffijt, and Is-

abel Valera, editors, Machine Learning and Knowledge Discovery in Databases,

BIBLIOGRAPHY 198

pages 3–18, Cham, 2021. Springer International Publishing. ISBN 978-3-030-

67661-2.

[93] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom

Goldstein. Training neural networks without gradients: A scalable admmap-

proach. In International Conference on Machine Learning, pages 2722–2731,

2016.

[94] Andreas Themelis and Panagiotis Patrinos. Douglas–rachford splitting and

admm for nonconvex optimization: Tight convergence results. SIAM Journal

on Optimization, 30(1):149–181, 2020.

[95] T Tieleman and G Hinton. Divide the gradient by a running average of its

recent magnitude. coursera: Neural networks for machine learning. Technical

report, Technical Report., 2017.

[96] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen

Dong, and Michael M. Bronstein. Understanding over-squashing and bottle-

necks on graphs via curvature. In International Conference on Learning Rep-

resentations, 2022. URL https://openreview.net/forum?id=7UmjRGzp-A.

[97] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embed-

ding. In Proceedings of the 22nd ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 1225–1234, 2016.

[98] Junxiang Wang and Liang Zhao. The application of multi-block admm on iso-

tonic regression problems. 11th Workshop on Optimization for Machine Learn-

ing (OPT 2019), co-located with NeurIPS 2019, 2019.

[99] Junxiang Wang and Liang Zhao. Nonconvex generalization of alternating direc-

tion method of multipliers for nonlinear equality constrained problems. Results

https://openreview.net/forum?id=7UmjRGzp-A

BIBLIOGRAPHY 199

in Control and Optimization, page 100009, 2021. ISSN 2666-7207. doi: https://

doi.org/10.1016/j.rico.2021.100009. URL https://www.sciencedirect.com/

science/article/pii/S2666720721000035.

[100] Junxiang Wang and Liang Zhao. Convergence and applications of alternating

direction method of multipliers on the multi-convex problems. Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), 2022.

[101] Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. Admm for effi-

cient deep learning with global convergence. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

page 111–119, 2019.

[102] Junxiang Wang, Zheng Chai, Yue Chen, and Liang Zhao. Tunable subnet-

work splitting for model-parallelism of neural network training. In ICML 2020

Workshop: Beyond First Order Methods in Machine Learning, 2020.

[103] Junxiang Wang, Zheng Chai, Yue Cheng, and Liang Zhao. Toward model

parallelism for deep neural network based on gradient-free admmframework. In

2020 IEEE International Conference on Data Mining (ICDM), pages 591–600.

IEEE, 2020.

[104] Junxiang Wang, Junji Jiang, and Liang Zhao. An invertible graph diffusion neu-

ral network for source localization. In Proceedings of the ACM Web Conference

2022, pages 1058–1069, 2022.

[105] Junxiang Wang, Hongyi Li, Zheng Chai, Yongchao Wang, Yue Cheng, and

Liang Zhao. Towards quantized model parallelism for graph-augmented mlps

based on gradient-free admm framework. IEEE Transactions on Neural Net-

works and Lerning Systems, 2022.

https://www.sciencedirect.com/science/article/pii/S2666720721000035
https://www.sciencedirect.com/science/article/pii/S2666720721000035

BIBLIOGRAPHY 200

[106] Junxiang Wang, Hongyi Li, and Liang Zhao. Accelerated gradient-free neural

network training by multi-convex alternating optimization. Neurocomputing,

487:130–143, 2022.

[107] Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in

nonconvex nonsmooth optimization. Journal of Scientific Computing, pages

1–35, 2015.

[108] Ermin Wei and Asuman Ozdaglar. Distributed alternating direction method

of multipliers. In 2012 IEEE 51st IEEE Conference on Decision and Control

(CDC), pages 5445–5450. IEEE, 2012.

[109] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Terngrad: Ternary gradients to reduce communication in distributed

deep learning. In Advances in neural information processing systems, pages

1509–1519, 2017.

[110] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kil-

ian Weinberger. Simplifying graph convolutional networks. In International

conference on machine learning, pages 6861–6871. PMLR, 2019.

[111] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. A comprehensive survey on graph neural networks. IEEE trans-

actions on neural networks and learning systems, 2020.

[112] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747, 2017.

[113] Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, and Zhouchen Lin.

Differentiable linearized admm. In International Conference on Machine Learn-

ing, pages 6902–6911, 2019.

BIBLIOGRAPHY 201

[114] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of

rectified activations in convolutional network. arXiv preprint arXiv:1505.00853,

2015.

[115] Yangyang Xu and Wotao Yin. A block coordinate descent method for regular-

ized multiconvex optimization with applications to nonnegative tensor factor-

ization and completion. SIAM Journal on imaging sciences, 6(3):1758–1789,

2013.

[116] Zheng Xu, Gavin Taylor, Hao Li, Mário AT Figueiredo, Xiaoming Yuan, and

Tom Goldstein. Adaptive consensus admmfor distributed optimization. In

Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 3841–3850. JMLR. org, 2017.

[117] Babak Zamanlooy and Mitra Mirhassani. Efficient vlsi implementation of neural

networks with hyperbolic tangent activation function. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 22(1):39–48, 2014.

[118] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[119] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-

tor Prasanna. Graphsaint: Graph sampling based inductive learning method.

In International Conference on Learning Representations, 2020.

[120] Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. Global convergence

of block coordinate descent in deep learning. In Kamalika Chaudhuri and Ruslan

Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research,

pages 7313–7323, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

BIBLIOGRAPHY 202

[121] Guoqiang Zhang and W Bastiaan Kleijn. Training deep neural networks via

optimization over graphs. In 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 4119–4123. IEEE, 2018.

[122] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang,

Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. Poseidon: An efficient

communication architecture for distributed deep learning on gpu clusters. In

2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 181–

193, 2017.

[123] Ruiliang Zhang and James Kwok. Asynchronous distributed admm for con-

sensus optimization. In International Conference on Machine Learning, pages

1701–1709, 2014.

[124] Ziming Zhang and Matthew Brand. Convergent block coordinate descent for

training tikhonov regularized deep neural networks. In Advances in Neural

Information Processing Systems, pages 1721–1730, 2017.

[125] Ziming Zhang, Yuting Chen, and Venkatesh Saligrama. Efficient training of

very deep neural networks for supervised hashing. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1487–1495,

2016.

[126] Shengyu Zhu, Mingyi Hong, and Biao Chen. Quantized consensus admm for

multi-agent distributed optimization. In 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 4134–4138. IEEE,

2016.

[127] Huiping Zhuang, Yi Wang, Qinglai Liu, and Zhiping Lin. Fully decoupled

neural network learning using delayed gradients. IEEE Transactions on Neural

Networks and Learning Systems, 2021.

BIBLIOGRAPHY 203

[128] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha

Dvornek, Xenophon Papademetris, and James Duncan. Adabelief optimizer:

Adapting stepsizes by the belief in observed gradients. Advances in Neural

Information Processing Systems, 33, 2020.

[129] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized

stochastic gradient descent. In Advances in neural information processing sys-

tems, pages 2595–2603, 2010.

	Introduction
	Contributions
	The Organization of the dissertation

	The dlADMM Algorithm
	Introduction
	Related Work
	dlADMM
	Problem Transformation
	the Proposed dlADMM Algorithm
	The Quadratic Approximation and Backtracking

	Convergence Analysis
	Assumptions
	Key Properties

	Experiments
	Experiment Setup
	Experimental Results

	Conclusion

	The mDLAM Algorithm
	Introduction
	Related Work
	Model and Algorithm
	Inequality Approximation for Deep Learning
	Alternating Optimization

	Convergence Analysis
	Convergence Properties
	Convergence of the Proposed mDLAM Algorithm
	Discussion

	Experiments
	Datasets and Parameter Settings
	Convergence
	Performance
	Sensitivity Analysis

	Conclusion

	The pdADMM Algorithm
	Introduction
	Related Work
	pdADMM
	Problem Reformulation
	Solutions to All Subproblems

	Convergence Analysis
	Experiments
	Datasets
	Speedup
	Convergence
	Performance

	Conclusion

	The pdADMM-G and pdADMM-G-Q Algorithms
	Introduction
	Related Work
	The pdADMM-G Algorithm
	Problem Formulation
	The pdADMM-G Algorithm
	Quantization Extension of pdADMM-G(pdADMM-G-Q)

	Convergence Analysis
	Experiments
	Datasets and Settings
	Comparison Methods
	Convergence
	Speedup
	Communication Overheads
	Performance

	Conclusion

	Conclusion and Future Works
	Research Tasks
	The dlADMM Algorithm
	The mDLAM Algorithm
	The pdADMM Algorithm
	The pdADMM-G and pdADMM-G-Q Algorithms
	The IVGD Model

	Discussion
	Current Publications
	Contributions of Published Papers Contributing to dissertation
	Published Papers During My Ph.D.
	Papers Published Before Ph.D.
	Submitted and In-preparation Papers

	Future Research Directions
	Parallel Training of Graph Neural Networks on Large-Scale Graphs
	Stochastic AM Algorithms for Large-Scale Datasets

	Appendix Appendix of the dlADMM Algorithm
	Algorithms to Update Wk+1l and ak+1l
	Preliminary Lemmas
	Proof of Theorem 1
	Proof of Theorem 3

	Appendix Appendix of the mDLAM Algorithm
	Definition
	Preliminary Lemmas
	Main Proofs

	Appendix Appendix of the pdADMM Algorithm
	Preliminary Results
	Main Proofs

	Appendix Appendix of the pdADMM-G Algorithm
	Convergence Proofs
	Preliminary Results
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 9
	The proof of Theorem 10
	The proof of Theorem 11
	The proof of Theorem 12

	More Experimental Results
	The Settings of All Hyperparameters
	The Performance of Validation Sets

	Bibliography

