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Abstract 
 

Three Essays in Environmental and Resource Economics 
By Stephen F. Kiebzak, III 

 
 

This dissertation studies three important and timely topics related to the use of 

natural resources and the generation of pollutants.  Chapter One explores the impact 

that state water management frameworks have on farm productivity.  Prior 

appropriation law states allow greater access to surface waters for use in irrigation, a 

critical input for crops.  I find that states operating under this form of water law have 

corn yields that are approximately 20 to 30 bushels per acre higher than their riparian 

law counterparts.  This represents an 18 to 28% increase on average.  Chapter Two 

addresses to what extent oil producers respond to changes in price and whether higher 

royalties on oil production result in a reduction in the life of a producing lease.  By 

exploiting a unique lease-level data set of monthly sales of oil from leases on federal 

properties, I estimate that production from the vast majority of currently producing 

leases is highly inelastic. Estimated elasticities are small and generally not significantly 

different than zero. This data set also includes data from the fourteen-year period during 

which marginal leases were granted royalty reductions by the Bureau of Land 

Management to stimulate production during periods of low price.  The most marginal of 

this class of leases, those that do not report sales regularly, have significantly higher 

elasticities.  Further, leases that participated in the royalty reduction program had a 15% 

lower probability of being shut-in than those leases that were not eligible for the 

program.  Finally, Chapter Three investigates a novel method to predict carbon dioxide 

emissions from developing countries, the primary driver of emissions growth over the past 

decade.  I employ an environmental Kuznets curve-type analysis to predict emissions, but 

rather than relating the level of per capita pollutant to a country's gross domestic 

product, I use a socio-economic status measure constructed from household 

characteristics and possessions survey data from developing countries. This approach 

improves on in-sample prediction of emissions which rely on gross domestic product 

alone, although data limitations prevent formal testing of this conclusion. 
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1

1 An Economic Analysis of The Role of Water Law in Im-

proving Corn Yields

Abstract

This paper studies the effect of U.S. state water laws on irrigation rates and corn

yields. Adequate supply of water is important for crop development and has been shown

to impact the amount of crop produced per acre of land. Rights governing the use of

water therefore play a role in farm productivity. The increased access to surface water

resources allowed in a prior appropriation system provides an opportunity to evaluate

the potential for yield improvements in riparian states if they were to allow non-riparian

farms similar access to surface water. I estimate that allowing non-riparians access to

surface water for irrigation increases corn yields in prior appropriation states by between

20 and 30 bushels per acre on average over states with a riparian water law system, an

18 to 28% increase. For an individual non-riparian farm in a riparian water law state,

this would amount to an increase in corn revenues of between $80 and $180 per acre,

depending on corn prices.

1.1 Introduction

Access to water at critical times before and during the growing season for plant evapotran-

spiration, whether through precipitation or irrigation, is important to the feasibility and

profitability of row crop farming. As westward expansion of the United States began in

earnest during the latter part of the nineteenth century, it became apparent that eastern

water laws were inadequate for supplying sufficient amounts in the semi-arid west (see for

example, Cadillac Desert by Reisner 1993). The common law riparian system of the east-

ern states associates rights to make “reasonable” use of surface waters with the ownership

of land adjacent to the water source (Beck 2004). In the wet eastern states, this legal

structure still allows widespread “dryland farming” on non-riparian lands. When needed,

supplemental irrigation can be supplied by groundwater wells in areas where access to suf-

ficient groundwater supplies is not restricted, although the costs associated with drilling

wells and pumping water can be prohibitive.
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To cope with the need for additional water for irrigation and other uses in the dryer

states west of the 100th meridian (e.g. California gold mining), laws evolved to disassociate

rights to use water from the ownership of adjacent land requirement. Instead, western laws

began to link the right to use water for “beneficial” purposes to the timing of the initial

withdrawal and use. In this prior appropriation system, the first ones to apply the water

to broadly defined beneficial uses established rights to that quantity of water, generally

regardless of the location of the use in relation to the source water. In times of drought the

more senior appropriators of water, those who established rights earlier, can continue their

withdrawals while the most junior appropriators must cease withdrawals. Importantly,

unlike in riparian law states, in prior appropriation states rights to water can be bought,

sold, or otherwise transferred to help direct resources to higher value uses. Figure 1 shows

the breakdown of states by water type.1

This paper considers how the main difference between these two types of water laws, the

possible use of surface water by non-riparians in the west, impacts agricultural outcomes.

I develop a model to estimate the impact of water law on irrigation rates and in turn

how irrigation rates impact corn yields. Corn was chosen for three reasons. First, there

is widespread cultivation of various types of maize throughout the United States, allowing

a large pool of counties to draw on. Second, the weather, technology, and crop yield

relationship at the core of the model has been frequently applied to corn production (Smith

1914; Wallace 1920; Thompson 1968, 1975, 1986, 1988; Garcia et al. 1987; Tannura et al.

2008), although previous studies focus on primarily eastern states without accounting for

the impact of irrigation. Third, U.S. corn production accounts for approximately 42%

of total global production,2 and any major impacts of state policies on corn yields could

potentially have large global implications.

1U.S. state water law, while modeled here as either prior appropriation or riparian, is actually more
diverse. There are variations on both types of systems, however, the key difference remains: the ability
of non-riparians in the west to establish rights to use surface waters for irrigation. While several eastern
states have moved towards more regulated water management frameworks, these regulations don’t modify
the underlying difference exploited by this study. Beck (2004) provides a detailed account of each states’
legal structure relating to water use. Florida has a legal approach to water use which can not be readily
categorized as either prior appropriation or riparian for the purposes of this analysis and it was therefore
excluded.

2USDA Foreign Agricultural Service, http://www.fas.usda.gov/psdonline/psdHome.aspx
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I compile a panel of county-level corn yield, precipitation, temperature, farm charac-

teristics, and irrigation data for 1995, 2000, and 2005. I then filter the data set to include

only those counties where corn farming comprises at least 70% of harvested cropland. The

resulting unbalanced panel is constrained in this fashion due to limitations of the irrigation

data which are not broken out by crop type, but rather county totals for the year, and are

only compiled every five years.

Using panel regression, as well as estimation of a two-stage model with pooled data, I

estimate that allowing non-riparians access to surface water increases corn yields in prior

appropriation counties by approximately 28 bushels per acre on average over counties in

riparian water law states. These results are robust to higher thresholds of corn in the

county, time trending specifications, exclusion of the counties in Nebraska (the main corn

producing state operating under a prior appropriation legal framework) and exclusion of

counties in southwestern states that may have multiple plantings in a year. Using these

alternate specifications, corn yields in counties in prior appropriation states are consistently

between 20 and 30 bushels per acre higher than in counties in riparian law states. For an

individual, non-riparian farm in a riparian water law state, this range of yield enhancements

would amount to an increase in revenue from corn of between $80 and $180 per acre3.

The remainder of the paper is organized as follows. Section 2 provides a brief overview

of some of the literature on water rights and summarizes the literature on modeling crop

production, focusing primarily on those studies related to corn yields. Sections 3 and 4

describe the empirical analyses employed in the study and the data used, respectively.

Section 5 presents the results from regression, testing and robustness checks, and Section

6 concludes.

1.2 Literature Review

Much has been written about the common law riparian legal constraints on water use in

the eastern U.S. from the legal and policy perspective (see for example, Maloney et al.

3These figures were calculated for corn grain prices in the range of $4 to $6 per bushel and do not deduct
the expenses of getting the water from the source to the field or the irrigation equipment necessary to apply
the water.
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1968; Eheart 2002; Dellapenna 2004; Marcus and Kiebzak 2008; Klein et al. 2009). Florida,

finding the nature of rights to water usage under a riparian system inadequate, went so

far as to convert to a statutory system based on permitting designed by legal experts at

the University of Florida (Maloney et al. 1972). Marcus and Kiebzak (2008) and McNider

et al. (2005) note that despite the semi-arid and desert climates of the western states, they

often have higher returns from agriculture than very wet eastern states such as Alabama.

Even in 2000, one of the driest years on record for Alabama, the flow of the Alabama

river in Monroe County was still a massive 10 million acre-feet per year. Yet farm crop

receipts were lower in Alabama than in New Mexico where the lower Rio Grande, the

primary source of surface water irrigation, averages a paltry 790,000 acre-feet per year

released flow (McNider et al. 2005). Marcus and Kiebzak conclude that water law, and

not the availability of water resources, is the primary impediment to improving yields, and

therefore agricultural revenues. Given reduced rainfall in the west and legal constraints to

surface water uses for irrigation in the east, it is no surprise that the 17 western states use

roughly 88% of the total amount of water used for irrigation in the United States annually

(Schlenker et al. 2006).

Crop yields in general, and corn yields in particular, have been studied in many contexts.

One of the primary areas of research has been the modeling of corn yield distributions

for crop insurance purposes (Ramirez 1997; Goodwin and Ker 1998; Ramirez et al. 2003;

Norwood et al. 2004; Ozaki et al. 2008; Harri et al. 2009). The University of Missouri’s Food

and Agricultural Policy Research Institute reports that over 80% of the nation’s corn acres

participated in insurance programs in 2009. This amounted to more than 70 million acres

of corn covered by insurance, approximately 10 million more acres than soybeans, the next

highest. Further, over half of the insured acres had coverage levels of 70% or higher (FAPRI

2010). In 2008/2009 total indemnities received by producers of all crops were more than $8

billion. In light of the large financial incentives involved in setting appropriate premiums,

the volume of research on corn yield distribution modeling is not surprising.

Several agronomists have approached crop yields from the standpoint of the interactions

between soil, nutrients, and weather through the development of complex growth simulation
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models (Jones and Kiniry 1986; Duchon 1986; Kaufmann and Snell 1997). These models

are founded on biology and experimental data from test plots. However, obtaining the

detailed information needed for the specific model parameters becomes problematic when

one proceeds beyond the plot level and attempts to apply the models more broadly to

large geographic areas, such as counties or regions. Hook (1994) provides one example of

the limited scope of such models. He uses crop growth and water use models for corn,

peanuts, and soybeans to estimate irrigation needs in the coastal plains region of south

Georgia to prevent crop losses during periods of drought. These models have also been

used to optimize the use of limited water resources. Paudel et al. (2005) combine crop

simulation models with hydrological and dynamic economic models to aid in irrigation

water allocations among different crops, including corn, during periods of water shortage

in the southeast.

A third area of corn yield research focuses on using regression models to estimate the

impacts of weather and technology on crop growth. These studies are aimed primarily at

determining what patterns of rainfall and temperature are optimum for the growth of corn

in the eastern U.S. (Runge and Odell 1958; Thompson 1968, 1975, 1986, 1988; Baier 1977;

Swanson and Nyankori 1979; Garcia et al. 1987; Dixon et al. 1994; Andresen et al. 2001; Hu

and Buyanovsky 2003; Tannura et al. 2008). They generally consider aggregate yields for

large geographic areas—usually states—based on measures of average state precipitation

totals and temperatures.4 These authors consider farms within a limited region around the

U.S. Corn Belt consisting of only riparian states. Implicit in these analyses is the assumption

of similar patterns and rates of irrigation. Further, average farm characteristics are ignored.

Finally, Mendelsohn and Dinar (2003), expanding the model of Mendelsohn et al. (1994),

attempt to measure the monetary impacts of irrigation through a so-called Ricardian ap-

proach that estimates how farm values are linked to climate, soil, and water. While they

incorporate data on irrigation rates and technology, their dependent variable of interest is

the value of farms from the 1997 U.S. Census of Agriculture. As they admit, the values

4Exceptions are Runge and Odell (1958), who study how local precipitation and temperature measure-
ments impact corn yields on an experimental farm, and Hu and Buyanovsky (2003), who study yields over
a 100 year period in central Missouri.
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are self-reported and based only on the farmers’ estimates of the market values of their

land and buildings. They find that the value of irrigated farms is not sensitive to precip-

itation, as would be expected. Schlenker et al. (2006) use the same Ricardian approach,

but instead incorporate climate variation with an alternative specification based on the

concept of growing degree days.5 Schlenker and Roberts (2006) model a nonlinear relation-

ship between a modified measure of growing degree days and corn yield. Their modified

degree days measure uses daily temperature data from 2.5 by 2.5 mile grids over the eastern

U.S. combined with data on crop locations within these grids. This research was aimed

at assessing the impact of temperatures on yield to aid in yield predictions in a warm-

ing climate. Schlenker and Roberts only apply their model to riparian states and assume

relatively constant patterns of irrigation.

Despite this body of work, a gap exists between the research that considers yields and

the studies looking at the impact of irrigation on farm values. The present study bridges

this gap, at least partially, by estimating how irrigation has impacted the actual yields of

a particular crop over a large geographic area. Further, previous agricultural economics

research has ignored the impact of legal frameworks relating to water use. This analysis,

therefore, breaks new ground in that dimension.

1.3 Empirical Analysis

In a prior appropriation system the initial right, and therefore allocation of the water, is

established by who uses it first. Importantly, as the rights can be bought, sold, or traded,

in theory water will be allocated to where its marginal product is highest. Most prior

appropriation states do place geographic limits on trades (within the same river basin, for

example), and to what use the traded water can be put (irrigation water rights sales may

be restricted to purchases for irrigation). However, the direction of trade will be toward

higher marginal product of the water, unlike the static water right in a riparian law state

5As they explain, growing degree days are defined as “the sum of degrees above a lower baseline and
below an upper threshold during the growing season...a day with a temperature below 8◦C results in 0
degree days; a day with a temperature between 8 and 32◦C contributes the number of degrees above 8◦C,
and a day with a temperature above 32◦C contributes 24 degree days. Degree days are then summed over
the growing period”.



7

which is tied to the ownership of land. While land can be traded or merged or used for

other purposes, this is a cumbersome way to transfer water rights. Further, a given amount

of riparian land can only make productive use of a certain amount of water, particularly for

agriculture. After a certain level of irrigation, additional water can hurt crop development.

Additional value can then only be realized by using the water on lands which may not be

held by the riparian landowner.

Although we are interested in testing the higher relative efficiency of water allocation

under a prior appropriation system, we cannot observe the marginal product of water

directly. Measuring the efficiency gained in a prior appropriation system can, however,

be accomplished using a predominant agricultural measure. The productivity of farms

are measured by the average product of land, defined as yield. In the case of corn, this

would be the number of bushels produced on the farm per acre of land planted in corn.

Water application increases plant production by increasing the moisture content of the soil

where it can then be drawn into the plant along with the nutrients it extracts from the

soil. Water is applied over a fixed unit of land—an acre—at a particular flow rate. Also,

water volumes are frequently measured using a unit of land as a reference, in acre-feet—the

volume of water that would correspond to that many feet of water sitting on an acre of

land. Using the average product of land to convey productivity improvements is, therefore,

a convenience which will provide a similar result should the average product of water be

measured directly. Further, using yield as a dependent variable will allow for consistency

and comparability with other research on agricultural outcomes.

I expand the models proposed by Thompson (1968) and Tannura et al. (2008) to in-

corporate the effect of water law on irrigation rates, and irrigation rates on yields. Instead

of aggregating the data to state level averages, I get richer variation by using county level

climate and yield data. This model also expands on previous research by incorporating

average county farm characteristics.6 As the type of water law directly impacts the access

6I currently only use average farm size, but will extend this to include potentially available data on chem-
ical usage and average soil quality, as represented by the soil’s K-factor. While farm level data accounting for
plant populations, maize hybrid type, grade of product, and soil characteristics would be ideal, such a data
set of any scale is not presently available to researchers. Regressions using percentage of county employed
in agriculture and percentage of the population who are immigrants were used, but these regressors were
not significant and did not appreciably impact the results.
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by non-riparians to irrigation water, and hence irrigation rates, but should not directly

impact yields, a two-stage model is appropriate:

Yit = α1 + γ1t + βIit + ζ
′
1Fit + δ

′
1Xit + εit, (1)

Iit = α2 + γ2t + ηLi + ζ
′
2Fit + δ

′
2Xit + υit. (2)

Yit is the corn yield per acre in county i in year t; Iit is the average daily rate of irrigation

per acre; γ1t and γ2t are year effects, which capture relevant factors that are roughly

equivalent across counties, such as changes in technology related to irrigation or tillage and

seed hybrids, for example; Li is an indicator of water law type in county i, taking on values

of 1 for counties in prior appropriation states and 0 for counties in riparian law states; Fit

is a vector of relevant average farm and county characteristics (see note 6); Xit is a vector

of average monthly temperatures and their squares, total monthly precipitation amounts

and their squares, and interactions between monthly temperature and precipitation for the

predominant months of the corn growing season (April - September); and υit and εit are

contemporaneous error terms. Water laws might be considered an endogenous treatment

in an irrigation-yield model since the adoption of prior appropriation law was based on the

need for additional water in the dry western states. However, by controlling for climate

with the exogenous temperature and rainfall measurements, the outcomes and treatment

are conditionally independent in this situation.

One approach is to estimate the two-stage model using control function techniques

(instrumental variable regression). To estimate the impact of water law, Li, on yield, Yit,

through irrigation, Iit, our statistic of interest would then be η̂×β̂. If the highly unbalanced

panel described in Section 1.4 is poolable, the model can be estimated using two-stage least

squares. Alternatively, the model can be estimated with the instrumental variable method

developed by Hausman and Taylor (1981) for panel data with time-invariant regressors.

However, given the triangular nature of the system described in (1) and (2), a convenient

simplification can be made by substituting the irrigation equation, (2), for Iit in the yield
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equation, (1).

Yit = (α1 + βα2) + (γ1t + βγ2t) + βηLi + (ζ
′
1 + βζ

′
2)Fit + (δ

′
1 + βδ

′
2)Xit + (εit + βυit). (3)

Equation 3 can now be estimated using panel techniques. Panel generalized least squares

is used with random and fixed effects estimators. While fixed effects estimation can not

identify β̂η as water law is time-invariant, a Hausman test does not reject the consistency

and efficiency of the random effects estimator, as discussed in Section 1.5.1.

Estimation of the models, however, is complicated by the multicollinearity of the indi-

vidual climate terms. Multicollinearity is also present, although with smaller correlations,

between irrigation rates and water law, and the climate terms. As a result, coefficient

estimates may be imprecise with large standard errors. My interest, however, is not in

determining the effect of the individual climate variables, but rather to use as controls a

set of measures that characterize climate, retaining the variation of the exogenous climate

variables across regions and time. I therefore combine the climate variables using weight-

ings from a principal component analysis (PCA). The components are created by applying

a specific weighting to each of the climate variables as follows:

PC1 = a11X1 + a12X2 + . . .+ a1nXn,

...

PCn = an1X1 + an2X2 + . . .+ annXn.

PC1,. . . , PCn is the vector of principal components and X1,. . . ,Xn is the vector of climate

variables being combined (in this case the average monthly temperatures and their squares,

total precipitation and their squares, and the interactions between temperature and pre-

cipitation ). Finally, a11,. . . , ann is the matrix of weights associated with each principal

component and variable. In a PCA using unstandardized data, the weights are the eigen-

vectors of the data’s correlation matrix. Each principal component then accounts for a

portion of the total variation in the original data. The amount of variation associated with
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each of the n principal components is calculated as the eigenvalue, λ, of each eigenvector

divided by n. The components are ordered so that PC1 explains the largest variation and

PCn explains the smallest.

I then replace the climate variables, Xit, in equations (1) and (2) with the principal com-

ponents accounting for the largest percentages of variation in the original data. Multiple

selection methods are tried. I use the Kaiser-Guttman Rule, only selecting those com-

ponents with eigenvalues greater than 1.00, (Draper and Smith 1981; Loehlin 1998) and

also apply the method in Myers (1986) by eliminating those components with the smallest

t-statistics. The final two-stage model that results is shown in (4) and (5) below.

Yit = α1 + γ1t + βIit + ζ
′
1Fit + δ

′
1PCit + εit, (4)

Iit = α2 + γ2t + ηLi + ζ
′
2Fit + δ

′
2PCit + υit, (5)

or the simplified version,

Yit = (α1 +βα2) + (γ1t +βγ2t) +βηLi + (ζ
′
1 +βζ

′
2)Fit + (δ

′
1 +βδ

′
2)PCit + (εit +βυit). (6)

If the estimated coefficients of the principal components are of interest, testing requires that

their standard errors be adjusted by dividing each component’s estimated standard error

by the square root of the component’s associated eigenvalue, λ (Fekedulegn et al. 2002).

1.4 Data

Water law information for each state was compiled from Beck’s Waters and Water Rights

(2004).7 Corn yield data was obtained for all U.S. counties where corn was grown from 1985

through 2010 from the U.S. Department of Agriculture’s National Agriculture Statistics

Service. The yields are not broken out by maize type, but are rather aggregate bushels

produced in the county per acre of harvested corn crop. Precipitation and temperature

data were obtained from the National Oceanic and Atmospheric Administration’s National

7in Marcus and Kiebzak (2008)
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Climate Data Center. Precipitation is reported as total inches per month and temperature

is reported as the average monthly value. This climate data is reported from each NOAA

monitoring station. Where there is more than one monitoring station per county, the values

are averaged to obtain a mean temperature and a mean precipitation total for each county

each month.

The irrigation data was obtained from the U.S. Geological Survey’s Estimated Use

of Water in the United States reports. The USGS has estimated and compiled annual

water use by county and type of use from 1985 through 2005 in five-year increments.8

Unfortunately for the researcher, this data is not supplied by crop. Daily irrigation rates

therefore include water used for all crops over an entire year period. If crops other than

corn are selectively irrigated, irrigation rates will be overestimated. I therefore only consider

counties where corn is the predominant harvested crop. To create this filter, I obtained data

on the amount of each crop harvested per county from the USDA’s Census of Agriculture.

The census is conducted every five years going back to 1987. However, only data from the

1997 census onward is readily available.9 As this data is not from the same years as the

USGS data on irrigation rates, care must be taken with its use. Two methods can be used

at this point to generate the data set. First, an assumption could be made that irrigation

rates did not change significantly between, for example, 1995 and 1997, and the panel could

be created for the years of the Census. Conversely, an assumption can be made that the

relative amounts of corn compared to other crops in the county did not change drastically

in the two-year interval between the collecting of irrigation data and the Census. The latter

assumption seems more plausible, particularly over two-year intervals, and is not as likely

to alter the results given that the percentage of corn in the county is only used as a filter.

To check the validity of the filter, I perform robustness checks by estimating the model at

minimum thresholds of corn as a percentage of all crops in the county between 50% and

90%.

8See the USGS National Handbook of Recommended Methods of Water Data Acquisition, available at
http://pubs.usgs.gov/chapter11/chapter11H.html, for details on the exhaustive array of methods used
to estimate irrigation water withdrawals, particularly where direct, metered data is not available.

9The data set used in the present study could be expanded with the USDA’s assistance in obtaining data
from the 1987 and 1992 censuses
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County farm characteristics (see note 6), are also obtained from the Census of Agri-

culture. Farm sizes may not change significantly in the two-year intervals, however, I run

the models with and without farm characteristics to see if they are of great import to the

estimation results. The data on county employment in agriculture and immigrants as a per-

centage of county population were obtained from the USDA Economic Research Service’s

Rural Atlas.10

The resulting panel is highly unbalanced, consisting of 234 total observations over the

three years for which data is readily available. 170 unique counties in 18 states are included,

however, only 54 counties have repeated observations over time and only 11 counties have

observations in each of the three years. Approximately 45% of the observations are in states

with prior appropriation water laws. Table 1 summarizes the data for those counties with

greater than 70% corn.

Given the aggregation of the irrigation data, summary statistics of corn yields in all

counties in prior appropriation and riparian law states are misleading. If the generally

wetter climate of the east and the use of supplemental groundwater irrigation were enough to

offset the lack of access to surface water by non-riparians, we should not see any significant

difference in yields between states operating under different water law frameworks. A higher

average yield in the east may even result given the over appropriation of western waters.

Indeed, by looking at summary statistics alone one might make this conclusion. Overall

corn yields in riparian states for the years considered in this study averaged 121 bushels

per acre, but only 113 in prior appropriation states. This, however, provides a misleading

picture of the impact of the laws on corn yields. Given a generally fixed access to water,

farmers are assumed to allocate their land and water resources among a variety of crops

to produce the highest return from their produce11. Within a county and even within an

individual farm, multiple crops are grown. Farmers may preferentially irrigate crops of

higher value (Paudel et al. 2005), and they may allocate corn to less desirable plots or rely

more on dryland farming for corn, where precipitation accounts for the only source of water.

10Available at http://www.ers.usda.gov/data/ruralatlas/download.htm
11see for example the Crop Water Allocator software developed at Kansas State University at http:

//www.ksre.ksu.edu/mil/cwa/, as well as Paudel et al. (2005)
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If this is occurring in the west, one would expect the wetter climate of the eastern states to

produce higher corn yields. Eastern farmers may also make this calculus and preferentially

grow higher-valued crops on plots adjacent to surface water sources, but given the wetter

conditions, higher corn yields should still be obtained.

When we consider those counties where corn is the primary crop, a different story

emerges. In these counties, switching out of corn and into other crops has not occurred to

any large degree for that particular observation year, and one should be able to isolate the

effects of the different laws on yields if enough such counties could be identified operating

under each legal system. While not sufficient to draw any conclusions, descriptive statistics

for counties where corn accounts for at least 70% of harvested cropland show an 18 bushel

per acre higher average yield in prior appropriation states compared to their wetter eastern

neighbors as shown in Table 2 (yields of 128 in prior appropriation counties versus 110

bushels per acre in riparian counties with more than 70% corn).

1.5 Results

1.5.1 Regression using individual climate variables

Regression results of equations (1) and (2) pooling the data are displayed in the “2SLS”

column of Table 3. I also estimate equation (3) using panel generalized least squares (GLS)

with random effects, and with pooled data by ordinary least squares (OLS). Given the

multicollinearity of the climate variables, few of them are significant (8 of 30 in the first

stage and 5 of 30 in the second stage are significant at the 5% level). All climate variables

are, however, jointly significant.

A bootstrap Hausman test with robust standard errors, comparing the two-stage model

and a random effects estimation, fails to reject endogeneity of the irrigation rate. Further,

the partial R2 and F-test of the instrument indicate that water law is a good instrument for

irrigation rate. A Hausman test also fails to reject the null of a random effects model versus

a fixed effects alternative (the estimated density of the individual-specific effects is in Figure

2; fixed effects estimation results are available upon request). An F-test of poolability of

the data over the three observation years, based on the residual sum of squares from OLS
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regressions, fails to reject poolability over time. However, the Breusch-Pagan Lagrangian

multiplier test rejects an OLS error structure in favor of random effects. Wooldridge’s

(2002) test of serial correlation rejects the null of no first order autocorrelation at the

1% level. Therefore, cluster-robust standard errors clustered at the county level are used.

Both pooled OLS and two-stage estimations with climate variables indicate approximately

46 bushels per acre higher corn yields in prior appropriation counties.12 The random effects

estimator is only slightly lower at 43 bushels per acre.

While the effect of average county farm size is significant in the random effects and

OLS estimations, the magnitude is quite small (an increase of 100 acres in average county

farm size decreases corn yield by about a third of a bushel). Finally, the year dummies

show increased yields in 2000 and 2005 relative to 1995 in the random effects model, but

they are only significant at the 10% level. A year trend in place of year dummies was also

considered for comparison with Tannura et al. (2008). As expected, there was no significant

difference observed in the impact of water law by accounting for technology changes with

either year dummies or a time trend. The average annual yield increase of 2.9 bushels per

acre estimated in the present study using a time trend variable is only slightly higher than

that obtained by Tannura et al. for their smaller three-state study between 1960 and 2006.

1.5.2 Regression using principal components

Table 4 shows the correlation between the climate variables in the entire data set. As

expected, precipitation rates for each month of the growing season are highly correlated,

with a minimum value of 0.68 and average of 0.76. Monthly temperatures are even more

highly correlated, with a minimum correlation of 0.73 and average of 0.82. While there

is no defined threshold to consider multicollinearity severe (Goldberger 1991), the lack of

significance of climate variables well-known to influence crop yields is an indicator that it is

influencing regression results. To eliminate the correlation between climate variables, a set

of principal components are generated that are, by construction, orthogonal. The climate

12In the case of the two-stage model, having a prior appropriation water law increases irrigation by about
1.9 thousand gallons per day per acre (η̂) as estimated in the first stage, and an increase in irrigation of one
thousand gallons per day per acre increases corn yields by 23.8 bushels per acre (β̂) from the second stage.
The impact of law on yield is therefore approximately 46 bushels per acre.
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variable weights from the principal component analysis are displayed in Table 5 for the four

components with eigenvalues greater than one. These four components collectively account

for 86% of the variation in the original climate data.

Estimation using these four principal components in place of the climate variables

markedly improves the regression results. Two-stage regression results of equations (4)

and (5) are displayed in the “2SLS” column of Table 6. Again, this result is compared to

estimation of equation (6) by GLS with random effects as well as pooled ordinary least

squares. Results from testing are consistent with those from estimates using the individ-

ual climate variables as regressors. The only exception is that Wooldridge’s (2002) test

of serial correlation now fails to reject the null of no first order autocorrelation. Cluster-

robust standard errors were still used and all coefficients remain highly significant. As in

panel GLS estimation using climate variables, regression using principal components fails

to reject random effects over a fixed effects model. Figure 2 compares the distribution of

the individual-specific effects from the GLS fixed effects models using climate variables to

that using principal components. While a Hausman test fails to reject the random effects

model in either case, the model using principal components to account for climate varia-

tion removes the outlying individual-specific effects. Although in both cases the effects are

approximately normally distributed.

Using principal components provides a more realistic estimate of the impact of water

law on corn yields. The multicollinearity inherent using the individual climate data ap-

pears, therefore, to be inflating the impact of water law on yields. Both the pooled OLS

and two-stage estimators show higher yields of approximately 27 bushels per acre in prior

appropriation counties compared to counties in riparian states. The GLS random effects

regression estimates 28 bushels per acre higher yield in prior appropriation counties. Two-

stage estimation indicates that prior appropriation counties have, on average, 2.5 thousand

gallons per day per acre higher irrigation rates than counties in riparian law states, con-

trolling for farm size, year, and climate variables (through principal components). Farm

size is now significant using all three estimators, as are all year dummies. While farm size

is significant, the direct impact of farm size on yield is quite small. However, including
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farm size, as in regression using the climate variables, increases the estimated impact of

irrigation on yield. Without controlling for farm size, the impact of water law on corn

yield is reduced to approximately 22 bushels per acre higher yield in prior appropriation

counties.

The first stage results, in which the first, second, and fourth principal components (PC1

and PC4) are significant at the 0.1% level, provide an interesting story of the impact of

precipitation on irrigation rates. With higher precipitation rates, one might assume that less

irrigation would be required to optimize corn yields. But the actual impact is somewhat less

clear. Higher values of PC1 and PC2 result from higher levels of precipitation throughout

the primary eastern corn growing season months between May and August, as indicated

by Table 5. Although given the square and interaction terms, the magnitude of the change

will depend on the temperaure and the initial precipitation level. Since the first stage

coefficients of PC1 and PC2 are greater than zero, higher precipitation during any month

of the growing season leads to higher average irrigation rates through these components.

This may indeed be the case in the west as higher precipitation will generally mean that

more water is available for irrigation, and higher irrigation rates will result as a consequence.

Higher precipitation has a mixed impact on PC4 depending on the month. If precip-

itation increases in May and August, PC4 will increase, but higher precipitation in June

and July result in slightly lower values of PC4. Since the coefficient of PC4 is negative,

increased precipitation in May and August lead to decreased average yearly irrigation rates

through PC4, but increased precipitation in June and July increase average yearly irriga-

tion rates. Similar results obtain by including additional months in the principal component

analysis or by excluding the temperature and precipitation interaction terms.

1.5.3 Robustness Checks

To check the validity of the results under different sets of assumptions, I perform three

robustness checks using the panel GLS random effects estimator with principal components,

represented by equation (6). I first check the impact of including counties with lower

amounts of corn as a percentage of total harvested cropland to see if the assumption of a
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70% threshold is sufficient to consider corn farming as the primary consumer of irrigation

water in a county. Second, I exclude Nebraska from the regressions. Nebraska is the

primary corn-growing state using a prior appropriation system, accounting for one half of

the observations in such states over the three years considered. By excluding Nebraska, I

can determine if there is something particular to the “corn-husker” state that may be biasing

my overall results. Finally, I run the regression using only observations in those states with

similar length growing seasons. Including the 24 observations from the counties in states

where growing seasons are longer and multiple plantings may occur, would challenge the

vailidity of controlling for climate using growing months between April and September. In

each of these alternative specifications, the estimated impacts of water law on corn yields

are of the same order of magnitude between 20 and 30 bushels per acre higher in prior

appropriation counties.

To check the validity of the threshold of 70% corn, I look at the impact of narrowing

and expanding the sample by varying the minimum amount of corn as a percentage of

total harvested cropland in a county used to filter the data set. If corn is the predominant

crop in a county, the total irrigation rate should be fairly representative of the rate used to

irrigate corn. If corn is not the predominant crop, we could expect three different irrigation

patterns: (1) all crops are irrigated at about the same rate, (2) corn is preferentially

irrigated, or (3) other crops are preferentially irrigated. The first two cases, if consistent

across counties, would likely still result in higher corn yields in prior appropriation states

regardless of the minimum corn percentage used. In the third case, however, we would

expect as the percentage of corn in a county decreases, the percentage of irrigation water

used for other crops relative to corn should increase. In this situation, increasing irrigation

rates in a county may not result in higher corn yields. This is precisely what happens as

counties with lower percentages of corn are included in the sample.

Figure 3 shows the impact that water law has on yields, changing the minimum threshold

at which counties are included in the analysis from forty-five percent corn to ninety percent

corn in five percent increments (these panel GLS with random effects regressions do not

include farm size as a regressor as this data was not collected for counties with less than 70%
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corn). Between 65% and 90% corn, there is a consistently higher yield in prior appropriation

counties of 20 to 22 bushels per acre compared to riparian law counties. The difference in

yields begins to drop sharply when counties 60% corn and below are included. The primary

explanation for this drop is the likelihood that scarce irrigation water in prior appropriation

states is being used on other crops and is therefore not being used to improve corn yields. As

evidence that this is the likely reason for this trend, irrigation water allocation simulators

show that when water is constrained, it is more profitable to use the water for crops other

then corn (e.g. Paudel et al. (2005) show that peanuts and cotton should be preferentially

irrigated).

I also checked the impact of changing the minimum corn threshold using the two-stage

model in equations (4) and (5) in order to see how irrigation rates were affected by water

law at various thresholds. The first stage estimates of η̂ continue to show statistically

significantly higher irrigation rates in prior appropriation counties of between 1.3 and 2.5

kGal/d/ac compared to counties in riparian law states. The second stage estimates of β̂,

however, begin to drop sharply when counties with 60% and less corn are included. When

the threshold is reduced to 50% corn, increasing county irrigation rates no longer results

in higher corn yields. When the sample includes counties with more than 65% corn, the

impact of water law remains consistently between 20 and 25 bushels per acre higher yield

in prior appropriation counties using the two-stage model, consistent with the results of

the random effects estimations. This result also rules out the potential that the higher

yields associated with prior appropriation law is an artifact of some regional difference

between eastern and western states. If this were the case, then dryland corn farming in

the west would be expected to have higher yields than dryland farm in the east. When

the percent of corn in a county is lower, the more likely that the corn is not irrigated. If

western agriculture was predisposed to higher corn yields, the difference between eastern

and western yields should remain as more counties are included, but in fact the opposite

occurs. I also verified this by substituting various monthly rainfall totals as proxies for

water law, and either incorporating the water law indicator into the principal component

in place of that monthly rainfall total or omitting the water law indicator completely. Since
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rainfall is highly correlated with the region of the country, if it was a regional effect leading

to higher yields, the regression results should not be substantially different by making

these changes. These changes did, however, alter the results significantly. I can therefore

conclude that I am not simply picking up a regional difference which also happens to be

highly correlated to water law.

Table 8 presents comparisons of the base random effects regression, the regression ex-

cluding counties in Nebraska, and regression excluding counties in those states without

similar growing seasons. The overall increase in yield in prior appropriation counties when

the 60 observations from Nebraska counties are excluded, is 24 bushels per acre, versus

the increase of 28 in the base regression. As a final robustness check I eliminate the 24

observations from the counties in Arizona, southern California, New Mexico, and Texas.

Estimating the model without these observations indicates that prior appropriation coun-

ties will have corn yields that are roughly 30 bushels per acre higher than those in riparian

law states, similar to the 28 bushels per acre increase estimated in the base regression.

1.6 Conclusions and Extensions

This paper quantifies the impact on corn yields of allowing non-riparians access to surface

water for irrigation in states with a riparian common law system of water rights. I compile

a county level data set which includes average corn yield, irrigation rate, farm size, and

monthly climate data. Using a two-stage model combining climate variables in a principal

component analysis, I find a robust and significant relationship between access to surface

water and corn yields for counties that are primarily engaged in corn farming. Estimation

under various assumptions indicates that counties in states with prior appropriation water

law, where use of surface waters for irrigation does not depend on ownership of adjacent

land, enjoy approximately 20 to 30 bushels per acre higher average yields than their riparian

counterparts in the eastern U.S. Given corn prices in the range of $4 to $6 per bushel, an

individual farmer in a riparian law state could increase revenues from corn sales on the order

of $80 to $180 per acre with increased access to surface water irrigation. While this analysis

does not encompass the broader implications of the general equilibrium and welfare effects
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that are likely to occur, it points to the disadvantages that eastern farmers face relative to

those in the west, despite a wetter climate seemingly better suited to crop production.

Should eastern rainfall and temperature norms begin to shift toward lower precipitation

and higher average temperatures as projected by climate modeling, increased access to

irrigation water may become a necessity to maintain yields and therefore the profitability

of the primarily rainfed agriculture of the eastern U.S. Further, as water availability in the

western U.S. becomes ever more of an issue given the competing and expanding demands

on water resources, agriculture may begin to shift to more water rich areas of the country.

Eastern states which adopt a more flexible approach to water management and use will be

at a competitive agricultural advantage relative to those that do not in taking advantage

of this shift. While residential and commercial uses of water also continue to grow in the

east, and fights over water such as that between Alabama, Georgia, and Florida are likely

to expand, appropriate legal frameworks will also help direct water to higher value uses.

Despite the apparent benefits of expanding water use rights to non-riparians and al-

lowing water trading in the eastern U.S., such changes would be met with skepticism and

even some open hostility. While non-riparian farmers would benefit directly, riparian farm-

ers would likely oppose this change as they currently have a distinct advantage over their

neighbors. Environmental groups in the eastern U.S. would also be opposed to any further

consumptive use of water resources. Alabama, for example, is home to more endangered

aquatic species than any other state. Changing current law to allow expanded productive

use of the state’s waters would face serious legislative and judicial hurdles. The failure of

legislation to allow water permit trading in Georgia during the 2003-2004 legislative session

provides just one example of the challenges such a change would entail. McNider et al.

(2005) propose an interesting approach to allowing expanded uses of water for agriculture

while still meeting the legitimate environmental questions of doing so. They advocate on-

farm storage systems wherein diversions are allowed to non-riparians during the wetter

winter months when eastern water resources are more than adequate to supply expanded

usage.

In contrast to environmental groups in the east, western environmental groups may
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welcome a change in eastern laws that could result in agriculture shifting to the wetter

east. The recent trend in the western U.S. is toward more “in-stream” water uses, for both

recreation and environmental purposes. If more fertile eastern acres in a wetter climate

can be used for agriculture by allowing access to surface water, some of the pressure on

western resources could be relieved. Further, reducing western water uses would diminish

water storage requirements and could allow the removal of some western dams. This is a

high priority for many western environmental groups.

As a future extension of this analysis, it would be of value to incorporate additional cli-

matic data. First, incorporating measurements of humidity and wind speed, provided these

are available, could improve regression results. Lower humidity and higher wind speeds

have been shown to decrease soil moisture and therefore increase the water requirement to

optimize yields. The effects of humidity, however, are likely to already be captured to some

extent in the measures of temperature and precipitation used presently. Another climatic

feature of interest would be the application of a modified “growing degree days” measure

as in Schlenker and Roberts (2006) (see note 5) rather than relying on a quadratic function

of average temperature. Using average monthly temperatures would tend to miss relatively

short periods within a month or even within a day where temperature extremes may dam-

age plant growth and reduce overall yields. Schlenker and Roberts’ measure accounts for

this by generating a composite value over the entire growing season related to the amount

of time crops spend at discretized temperature levels.
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Appendix A: Figures

Figure 1 – U.S. Water Laws by State

Riparian
Regulated Riparian
Prior Appropriation
P.A. − Hybrid
Statutory
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Figure 2 – Estimated density of the estimated county-specific ef-
fects, {α̂i}234i=1, from fixed effects regressions using (a)
climate variables, and (b) principal components.
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 Figure 3 – Random Effects Estimates of the Effect of Law on Corn
Yields by Varying Percent Corn
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Appendix B: Summary Statistics and Regression Results

Table 1 – Summary Statistics for Counties with greater than 70%
Corn (1995, 2000, 2005)

Variable Mean Std. Dev. Min. Max.

Corn Yield (Bu/Ac) 118 32.9 40 215
Avg Irr/Ac (kGal/d/ac) 1.58 2.50 0 26.5
Avg Farm Size (100AC) 7.92 16.8 0.64 211

Apr Precip. (in.) 3.12 2.39 0.06 17.1
May Precip. (in.) 5.07 3.87 0.01 23.3
Jun Precip. (in.) 4.50 6.71 0.02 84.9
Jul Precip. (in.) 4.10 7.30 0 65.5
Aug Precip. (in.) 4.88 11.75 0 156
Sep Precip. (in.) 4.00 7.91 0 59.4

Avg Apr Temp. (◦F ) 50.1 7.4 35.0 73.6
Avg May Temp. (◦F ) 59.2 6.9 45.6 81.7
Avg Jun Temp. (◦F ) 69.6 4.6 56.4 86.9
Avg Jul Temp. (◦F ) 74.5 4.1 61.5 87.6
Avg Aug Temp. (◦F ) 74.7 4.5 61.1 87.8
Avg Sep Temp. (◦F ) 65.0 5.8 53.9 86.5

Observations 234
Counties 170
States 18
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Table 2 – Summary Statistics by type of Water Law for Counties
with greater than 70% Corn (1995, 2000, 2005)

Overall Prior Approp Riparian
Variable Mean Mean Mean

Corn Yield (Bu/Ac) 118 128 110
Avg Irr/Ac (kGal/d/ac) 1.58 2.37 0.78
Avg Farm Size (100AC) 7.92 12.7 1.88

Apr Precip. (in.) 3.12 2.22 3.72
May Precip. (in.) 5.07 4.43 5.45
Jun Precip. (in.) 4.50 2.61 5.44
Jul Precip. (in.) 4.10 1.68 5.42
Aug Precip. (in.) 4.88 1.84 5.88
Sep Precip. (in.) 4.00 1.80 4.99

Avg Apr Temp. (◦F ) 50.1 49.6 50.3
Avg May Temp. (◦F ) 59.2 58.8 59.6
Avg Jun Temp. (◦F ) 69.6 68.8 70.5
Avg Jul Temp. (◦F ) 74.5 75.6 73.8
Avg Aug Temp. (◦F ) 74.7 75.7 74.2
Avg Sep Temp. (◦F ) 65.0 65.7 64.4

Observations 234 105 129
Counties 170 71 99
States 18 8 10
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Table 3 – Impact of Water Law on Corn Yields: 2SLS, Random Effects, and
Pooled OLS Regression Results Using Climate Variables

2SLS
1st Stage

Water Law, η̂ 1.94 (0.57)∗∗∗

Avg Farm Size (100AC) −0.020 (0.0088)∗

Year = 2000 −1.25 (0.56)∗

Year = 2005 −0.33 (0.67)
Apr Precip. (in.) 0.34 (0.78)
May Precip. (in.) −1.74 (0.73)∗

Jun Precip. (in.) −0.75 (1.05)
Jul Precip. (in.) 3.23 (1.42)∗

Aug Precip. (in.) 0.016 (0.85)
Sep Precip. (in.) −1.10 (0.93)
Avg Apr Temp. (◦F ) 0.29 (0.54)
Avg May Temp. (◦F ) −0.31 (0.65)
Avg Jun Temp. (◦F ) −2.92 (1.28)∗

Avg Jul Temp. (◦F ) 2.66 (1.97)
Avg Aug Temp. (◦F ) 0.047 (1.52)
Avg Sep Temp. (◦F ) 1.06 (1.04)
Apr P 2 0.077 (0.018)∗∗∗

May P 2 0.017 (0.009)+

Jun P 2 0.007 (0.003)∗

Jul P 2 0.003 (0.002)
Aug P 2 −0.002 (0.001)+

Sep P 2 −0.001 (0.003)
Apr T 2 −0.002 (0.005)
May T 2 0.002 (0.005)
Jun T 2 0.020 (0.009)∗

Jul T 2 −0.018 (0.013)
Aug T 2 0.0005 (0.010)
Sep T 2 −0.009 (0.008)
Constant −26.3 (50.1)

R2 0.52
Instrument F 11.5∗∗∗

Instrument partial R2 0.055
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Impact of Water Law on Corn Yields: 2SLS, Random Effects, and Pooled OLS Regression
Results Using Climate Variables, cont’d

2SLS
2nd Stage GLS, RE OLS

Water Law 43.3 (7.39)∗∗∗ 46.0 (6.98)∗∗∗

Avg Irr/Ac(kGal/d/ac), β̂ 23.8 (5.70)∗∗∗

Avg Farm Size (100AC) 0.12 (0.20) −0.36 (0.05)∗∗∗ −0.36 (0.06)∗∗∗

Year = 2000 37.3 (11.7)∗∗ 11.3 (6.64)+ 7.52 (6.81)
Year = 2005 15.1 (12.9) 13.1 (7.58)+ 7.27 (9.01)
Apr Precip. (in.) 8.17 (18.7) 12.2 (7.85) 16.2 (8.67)+

May Precip. (in.) 46.3 (15.8)∗∗ 9.61 (6.80) 4.87 (8.24)
Jun Precip. (in.) 10.5 (28.7) −13.0 (12.5) −7.43 (12.7)
Jul Precip. (in.) −56.0 (49.1) 14.7 (13.5) 20.6 (14.5)
Aug Precip. (in.) −11.9 (22.5) −13.4 (8.31) −11.6 (8.80)
Sep Precip. (in.) 32.7 (22.8) 10.7 (8.30) 6.47 (8.64)
Avg Apr Temp. (◦F ) −8.09 (9.48) 1.26 (6.19) −1.16 (6.23)
Avg May Temp. (◦F ) 24.2 (13.7)+ 11.2 (7.03) 16.8 (7.70)∗

Avg Jun Temp. (◦F ) 3.10 (14.3) −13.5 (16.3) 55.8 (28.9)∗

Avg Jul Temp. (◦F ) −23.5 (47.2) 20.1 (23.5) 39.7 (27.3)
Avg Aug Temp. (◦F ) −8.85 (32.3) −4.70 (17.8) −7.74 (20.0)
Avg Sep Temp. (◦F ) −12.2 (22.8) 10.4 (10.8) 13.02 (14.0)
Apr P 2 −1.97 (0.96)∗ 0.024 (0.19) −0.13 (0.18)
May P 2 −0.40 (0.20)∗ −0.041 (0.081) 0.015 (0.090)
Jun P 2 −0.15 (0.11) −0.003 (0.030) 0.002 (0.030)
Jul P 2 −0.088 (0.11) −0.009 (0.018) −0.010 (0.020)
Aug P 2 0.052 (0.038) 0.005 (0.009) 0.009 (0.010)
Sep P 2 0.020 (0.098) −0.002 (0.030) −0.007 (0.030)
Apr T 2 0.082 (0.093) 0.0098 (0.063) 0.035 (0.062)
May T 2 −0.19 (0.11)+ −0.097 (0.057) −0.14 (0.061)∗

Jun T 2 −0.35 (0.19)+ 0.0021 (0.11) 0.13 (0.12)
Jul T 2 0.16 (0.31) −0.15 (0.16) −0.27 (0.18)
Aug T 2 0.007 (0.22) 0.006 (0.12) 0.020 (0.13)
Sep T 2 0.10 (0.17) −0.08 (0.085) −0.10 (0.11)
Constant −875 (1100) −1240 (560)∗ −1500 (548)∗∗

Observations 234 234 234
R2 . 0.66 0.66
F 6.28∗∗∗ 35.2∗∗∗

Wald χ2 1060∗∗∗

Breusch-Pagan LM 18.5∗∗∗

Hausman Test: RE vs FE 28.3
Hausman Test: Irr.Endog. 104
Poolability F Test 0.04

Robust standard errors clustered at the county level, in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

RE and OLS estimates are from equation (3) while 2SLS estimates are from equations (1) and (2).

Interaction terms are not reported. The bootstrap Hausman test of irrigation rate endogeneity

using robust standard errors with 400 replications is reported.
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Table 4 – Climate Data Correlation Matrix

Apr P May P Jun P Jul P Aug P Sep P Apr T May T Jun T Jul T Aug T

May Precip (in.) 0.80
Jun Precip (in.) 0.75 0.79
Jul Precip (in.) 0.81 0.75 0.79
Aug Precip (in.) 0.79 0.68 0.73 0.78
Sep Precip (in.) 0.75 0.73 0.77 0.79 0.70

Avg Apr Temp (◦F ) −0.13 −0.17 −0.09 −0.12 −0.10 −0.11
Avg May Temp (◦F ) −0.12 −0.13 −0.08 −0.14 −0.11 −0.11 0.87
Avg Jun Temp (◦F ) −0.06 −0.14 −0.09 −0.05 −0.03 −0.06 0.83 0.77
Avg Jul Temp (◦F ) −0.20 −0.24 −0.20 −0.19 −0.16 −0.22 0.84 0.77 0.84
Avg Aug Temp (◦F ) −0.18 −0.19 −0.20 −0.20 −0.17 −0.25 0.73 0.74 0.76 0.90
Avg Sep Temp (◦F ) −0.13 −0.20 −0.11 −0.11 −0.11 −0.12 0.92 0.81 0.86 0.87 0.76
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Table 5 – Variable Weights from Principal Component Analysis

Comp 1 Comp 2 Comp 3 Comp 4

Apr Precip (in.) 0.231 0.100 −0.045 0.204
May Precip (in.) 0.226 0.081 0.294 0.251
Jun Precip (in.) 0.228 0.103 0.133 −0.104
Jul Precip (in.) 0.232 0.103 −0.089 −0.093
Aug Precip (in.) 0.219 0.104 −0.346 0.109
Sep Precip (in.) 0.225 0.094 0.075 −0.315
Avg Apr Temp (◦F ) −0.118 0.271 0.039 −0.075
Avg May Temp (◦F ) −0.113 0.258 0.102 −0.014
Avg Jun Temp (◦F ) −0.105 0.270 −0.059 −0.036
Avg Jul Temp (◦F ) −0.141 0.256 −0.035 0.054
Avg Aug Temp (◦F ) −0.135 0.236 −0.002 0.184
Avg Sep Temp (◦F ) −0.121 0.271 −0.001 −0.082
Apr P 2 0.207 0.095 −0.056 0.243
May P 2 0.185 0.077 0.417 0.324
Jun P 2 0.183 0.090 0.174 −0.151
Jul P 2 0.204 0.104 −0.119 −0.145
Aug P 2 0.169 0.094 −0.489 0.143
Sep P 2 0.189 0.090 0.086 −0.426
Avg Apr T 2 −0.118 0.273 0.034 −0.071
Avg May T 2 −0.113 0.259 0.098 −0.022
Avg Jun T 2 −0.106 0.272 −0.056 −0.040
Avg Jul T 2 −0.141 0.258 −0.030 0.052
Avg Aug T 2 −0.135 0.238 0.003 0.180
Avg Sep T 2 −0.121 0.271 −0.002 −0.079
Apr P × T 0.222 0.121 −0.054 0.196
May P × T 0.220 0.093 0.312 0.264
Jun P × T 0.225 0.112 0.118 −0.111
Jul P × T 0.227 0.111 −0.104 −0.094
Aug P × T 0.213 0.112 −0.363 0.119
Sep P × T 0.219 0.105 0.063 −0.336

Eigenvalues, λ 13.7 9.48 1.35 1.15
Proportion Variation, λ/n 0.46 0.32 0.05 0.04
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Table 6 – Impact of Water Law on Corn Yields: 2SLS, Random Effects, and Pooled OLS
Regression Results Using Principal Components

2SLS
1st Stage

Water Law, η̂ 2.51 (0.33)∗∗∗

Avg Farm Size (100AC) -0.011 (0.0093)
Year = 2000 -0.68 (0.44)
Year = 2005 -0.47 (0.38)
Component 1 0.68 (0.06)∗∗∗

Component 2 0.13 (0.03)∗∗∗

Component 3 0.0003 (0.33)
Component 4 -2.93 (0.71)∗∗∗

Constant 1.37 (0.30)∗∗∗

R2 0.26
Instrument F 58.5∗∗∗

Instrument partial R2 0.21

2SLS
2nd Stage GLS, RE OLS

Water Law 28.3 (4.54)∗∗∗ 26.8 (4.61)∗∗∗

Avg Irr/Ac (kGal/d/ac), β̂ 10.7 (2.66)∗∗∗

Avg Farm Size (100AC) −0.37 (0.061)∗∗∗ −0.47 (0.06)∗∗∗ −0.48 (0.06)∗∗∗

Year = 2000 20.8 (7.14)∗∗∗ 13.3 (4.05)∗∗∗ 13.5 (4.90)∗∗

Year = 2005 33.0 (6.69)∗∗∗ 25.9 (3.80)∗∗∗ 27.9 (4.41)∗∗∗

Component 1 −11.7 (1.79)∗∗∗ −3.28 (0.60)∗∗∗ −4.43 (0.54)∗∗∗

Component 2 −7.62 (1.06)∗∗∗ −5.84 (0.47)∗∗∗ −6.18 (0.48)∗∗∗

Component 3 −14.1 (6.56)∗∗∗ −13.8 (3.44)∗∗∗ −14.1 (3.59)∗∗∗

Component 4 11.4 (18.5) −26.2 (6.86)∗∗∗ −19.9 (6.97)∗∗∗

Constant 76.0 (8.99)∗∗∗ 92.3 (3.06)∗∗∗ 90.7 (2.81)∗∗∗

Observations 234 234 234
R2 . 0.45 0.45
F 13.0∗∗∗ 27.9∗∗∗

Wald χ2 313∗∗∗

Breusch-Pagan LM 30.6∗∗∗

Hausman Test of RE vs FE 12.2
Hausman Test of Irr. Endog. 655∗∗∗

Poolability F Test 0.83

Robust standard errors clustered at the county level, in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

RE and OLS estimates are from equation (6) while 2SLS estimates are from equations (4) and (5).

The bootstrap Hausman test of irrigation rate endogeneity using robust standard errors

with 400 replications is reported.
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Table 7 – Impact of Water Law on Corn Yields: Random Effects Regres-
sions of Single Stage Model With Climate Variables(CVs) and
Principal Components(PCs)

GLS, RE (CVs) GLS, RE (PCs)

Water Law 43.3 (6.46)∗∗∗ 28.3 (4.39)∗∗∗

Avg Farm Size (100AC) −0.36 (0.10)∗∗∗ −0.47 (0.11)∗∗∗

Year = 2000 11.3 (5.61)∗ 13.3 (3.95)∗∗∗

Year = 2005 13.1 (6.94)+ 25.9 (3.49)∗∗∗

Component 1 −3.28 (0.60)∗∗∗

Component 2 −5.84 (0.47)∗∗∗

Component 3 −13.8 (3.44)∗∗∗

Component 4 −26.2 (6.86)∗∗∗

Apr Precip. (in.) 12.2 (8.58)
May Precip. (in.) 9.61 (7.91)
Jun Precip. (in.) −13.0 (10.8)
Jul Precip. (in.) 14.7 (14.8)
Aug Precip. (in.) −13.4 (9.42)
Sep Precip. (in.) 10.7 (10.2)
Avg Apr Temp. (◦F ) 1.26 (6.06)
Avg May Temp. (◦F ) 11.2 (6.91)
Avg Jun Temp. (◦F ) 3.10 (13.8)
Avg Jul Temp. (◦F ) 20.1 (18.9)
Avg Aug Temp. (◦F ) −4.70 (14.8)
Avg Sep Temp. (◦F ) 10.4 (11.2)
Apr P 2 0.024 (0.20)
May P 2 −0.041 (0.10)
Jun P 2 −0.003 (0.035)
Jul P 2 −0.009 (0.024)
Aug P 2 0.005 (0.011)
Sep P 2 −0.002 (0.031)
Apr T 2 0.010 (0.06)
May T 2 −0.097 (0.056)+

Jun T 2 0.002 (0.100)
Jul T 2 −0.15 (0.130)
Aug T 2 0.006 (0.100)
Sep T 2 −0.081 (0.085)
Constant −1240 (560)∗ 92.3 (3.06)∗∗∗

Observations 234 234
R2 0.66 0.45
Wald χ2 1060∗∗∗ 313∗∗∗

Breusch-Pagan LM 18.5∗∗∗ 30.6∗∗∗

Hausman Test of RE vs FE 28.3 12.2

Robust standard errors clustered at the county level, in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

RE estimates using climate variables are from equation (3), and RE estimates

using principal components are from equation (6). Interaction terms are not reported.
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Table 8 – Base RE Results (1) Compared to RE Regressions without Nebraska (2)
and without California and Southwestern States (3)

(1) (2) (3)
Base RE Model RE Without RE Without

Nebraska CA & SW

Water Law 28.3 (4.54)∗∗∗ 23.7 (6.89)∗∗∗ 30.7 (4.01)∗∗∗

Avg Farm Size (100AC) −0.47 (0.06)∗∗∗ −0.45 (0.06)∗∗∗ −0.41 (0.05)∗∗∗

Year = 2000 13.2 (4.05)∗∗∗ 14.3 (5.10)∗∗∗ 13.1 (3.82)∗∗∗

Year = 2005 25.9 (3.80)∗∗∗ 22.2 (4.11)∗∗∗ 29.0 (3.80)∗∗∗

Component 1 −3.28 (0.60)∗∗∗ −4.44 (0.66)∗∗∗ −2.26 (0.52)∗∗∗

Component 2 −5.84 (0.47)∗∗∗ −6.29 (0.49)∗∗∗ −2.26 (0.49)∗∗∗

Component 3 −13.8 (3.44)∗∗∗ −16.9 (3.73)∗∗∗ −8.99 (2.94)∗∗∗

Component 4 −26.2 (6.86)∗∗∗ −31.2 (7.33)∗∗∗ −24.0 (6.19)∗∗∗

Constant 92.3 (3.06)∗∗∗ 92.3 (3.15)∗∗∗ 95.8 (3.06)∗∗∗

Observations 234 174 215
Wald χ2 312∗∗∗ 209∗∗∗ 387∗∗∗

Robust standard errors clustered at the county level, in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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2 The Effect of Production Royalties on a Non-Renewable

Resource: Oil Production from Marginal Wells

Abstract

Two questions addressed in this study consider to what extent oil producers respond

to changes in price and whether higher royalties on oil producers result in a reduction

in the life of a producing lease. This paper uses a unique federal lease-level data set to

estimate the response by oil producers to changing monthly prices between 1990 and

2011. In addition to the normal changes in price on the world market, variation is

also achieved by using the actual price that each producer received for oil sales each

month, rather than an average annual benchmark price of oil of the type used in most

studies. Further, marginal producers, which make up approximately 28% of federal

leases, were afforded royalty relief between 1992 and 2006, imparting additional price

variation. I find that production from these marginal volume leases is relatively more

elastic than other federal leases, regardless of the specification. Marginal leases with

regularly reported sales have a zero or small positive supply elasticity depending on

which price is used. The broader pool of leases not classified as marginal producers

have a small, negative, generally insignificant supply elasticity. Further, leases that

participated in the royalty reduction program have a roughly 15% lower probability of

being shut-in than those leases that were not eligible and were required to pay the full

royalty amount on production.

2.1 Introduction

Recent policy proposals by the federal executive branch, supported by polls of the American

public at large,13 call for the elimination of various incentives in the tax code aimed at

reducing oil exploration and production costs. The cost of these incentives is estimated

to be in the neighborhood of $4 billion in lost government revenue annually.14 On the

other hand, in an attempt to generate increased revenues from oil production, many states

have increased the production royalties for new leases on state lands or have increased

13See for example, Question 26 of the NBC News/Wall Street Journal Survey dated February 2011 avail-
able at http://online.wsj.com/public/resources/documents/wsj-nbcpoll03022011.pdf

14See for example, the President’s Fiscal Year 2013 Budget of the U.S. Government, p. 44, available at
http://www.whitehouse.gov/sites/default/files/omb/budget/fy2013/assets/budget.pdf.
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the severance taxes on oil production in the state. To assess the potential impact of such

policies, an understanding of how oil producers respond to changes in prices, including

taxes, is required. The present study examines this issue using micro-level data.

I investigate to what extent oil producers respond to changes in price, and whether

higher royalties on oil producers, an ad valorem tax, result in a reduction in the life of

a producing lease. To do so, I use a unique monthly data set of federal leases of wells

producing marginal volumes of oil between January 1990 and May 2011, as well as data

for all other federal leases beginning in January 1996, to estimate the price elasticity of oil

supply. Two key features of the data make it ideal for this task. First, the data set contains

the actual monthly sales price of oil from each lease and the actual royalty rate under which

the lease was operating each month. This provides variation within and across leases over

time rather than requiring generalizations based on benchmark prices and aggregate annual

U.S. production. Second, the impact of price on marginal volume, or “stripper,” wells can

be inferred from the data on leases which qualified for the Bureau of Land Management’s

(BLM) Stripper Oil Well Property Royalty Rate Reduction Program between October

1992 and February 2006. To qualify for the program, the lease was required to produce

less than fifteen barrels per day per well on average, and depending on how much below

the threshold it produced in a qualifying period, the royalty rate was reduced accordingly.

Overall, oil stripper wells on both public and private lands accounted for more than 16%

of U.S. oil production in 2009 (U.S. Energy Information Administration, 2011), and any

program designed to influence domestic oil production could have a potentially large impact

through its effect on these wells.

The study contributes to two important areas of resource economics. The first contri-

bution is to provide some clarity to a set of conflicting prior estimates of the price elasticity

of oil production. Virtually all existing studies rely on aggregate annual U.S. production

and average annual “oil” prices.15 Crude oil, however, is not a homogeneous resource and

different types of oil, defined generally by their so-called API gravity and sulfur content,

command vastly different prices. Further, producers face widely varying production costs

15The only exception I am aware of is Rao (2010), which is unpublished (see Section 2.3 for a discussion).
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depending on factors such as the geology of the formation, API gravity of the crude, how

long it has been producing, and the transportation costs from the well to the market. Per-

haps as a result of neglecting such differences, production studies relying on aggregate U.S.

data have found a wide range of supply elasticities, including negative short run elasticities

(for a review of these studies, see Section 2.3). For the purpose of making policy decisions,

these conflicting estimates are unhelpful. The present study, on the other hand, uses lease-

level data and thus allows for differences in product characteristics and production costs

to be picked up in fixed effects regressions, resulting in more accurate estimations of the

supply elasticity.

The second contribution is to perform an empirical analysis of the impact of taxation

on the supply of exhaustible resources, in the context of U.S. stripper wells. With con-

stant marginal extraction costs in a perfectly competitive market without uncertainty, the

Hotelling rule states that the asset price of a non-renewable resource will equal the scarcity

rent and grow at the rate of interest. Taking depletion of the resource into account, the

shadow price increases at a rate slower than the rate of interest “because extraction to-

day leads to higher costs tomorrow, and the owner internalizes this externality” (Slade

and Thille 2009, p. 245). For most exhaustible resources, however, the growth of prices

predicted by the Hotelling rule has not been realized, even accounting for the impact of

depletion (see for example Gaudet 2007, and Figures 4 and 5). One possible explanation is

that resource taxation impacts prices and extraction decisions (Gamponia and Mendelsohn

1985; Yucel 1988; Sweeney 1993; Gaudet 2007; Slade and Thille 2009). While theory tells

us how the extraction and price path should respond to taxation (Sweeney 1993; Dasgupta

and Heal 1979), much remains to be done in studying how particular industries actually

respond. In this paper I focus on the operation of oil leases, and in particular marginal

volume well leases.

Oil field operation differs from other exhaustible resource operations in that it is gener-

ally governed more by geology and the mechanics of the extraction process than by prices.

Once production commences from a lease, it will typically produce a maximum amount

that tapers off as the pressure in the reservoir declines (e.g., Kunce et al. 2003, p. 5). If, at
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this time, the market price less royalties and taxes is above some threshold and forecasted

to remain so, the operator will employ additional and more costly recovery techniques to

extend the producing life of the reservoir. So long as the effective price remains above the

higher marginal cost of maintaining reservoir pressure, the lease will continue to produce,

but at a decreasing rate. However, if the price falls too much, or costs to maintain the

same rate of production rise too much, the wells will be plugged and the field abandoned.

Plugged wells will generally not be brought back into service given the costs associated

with unplugging, reestablishing flow, and maintaining reservoir pressure. Therefore, the

decision to plug wells on a lease and stop production is not taken lightly and may lead

to production responses unlike those seen for mined resources where production rates can

be adjusted readily. Therefore, the only price responses of oil producers from currently

producing leases in the short term is the decision whether or not to shut wells to reduce

production, or to abandon an oil field altogether.

The BLM’s Stripper Oil Well Property Royalty Rate Reduction Program provides an

excellent vehicle with which to test producer responses to price changes for a subset of

marginal leases that are theoretically the most responsive within the broader pool of leases.

Five key results are of note. First, production from leases that qualified as federal strip-

per oil well leases is relatively more elastic than production from non-stripper well leases.

Second, stripper well leases with regularly reported sales (generally those with higher pro-

duction) have an estimated supply elasticity between 0 and 0.07. Non-stripper well leases

with regularly reported sales are relatively less elastic, with generally insignificant elastic-

ities estimated between 0 and −0.1.16 Third, the most marginal of the qualified leases

have a supply elasticity estimated to be between 0.09 and 0.56, while the most marginal

of the non-stripper well leases have an estimated supply elasticity of 0. Long run elasticity

estimates are also consistent with these results, with two important differences: (1) the

most marginal of non-stripper well leases have a small positive long-run elasticity of 0.06,

and (2) the most marginal of the stripper well leases have a long-run elasticity of 0.62.

Finally, a lease survival analysis indicates that leases that participated in the royalty re-

16These negative estimates are not robust to changes in the level of aggregation or to which price is used
(sale price or lagged sale price), and do not imply a negative price elasticity for domestic oil supply.
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duction program have an approximately 15% lower probability of being shut-in than those

leases that did not participate. Given the limited time-frame over which data is available

for non-stripper well leases, which results in the lack of an appropriate counterfactual, the

last result should be viewed with caution.

These results have important policy implications related to oil taxation. First, by

reducing production royalties for the most marginal of leases during periods of lower prices

(increasing the effective price that the producers receive for the oil), producers can be

expected to respond by investing to extend the producing life of reservoirs. This result

is predicted by theory, and the empirical analysis provides confirmation using an ideally

suited data set. Second, higher production royalties do not appear to deter production for

the bulk of federal leases. This suggests that additional revenue could be raised in the short

term by increasing royalties on federal lands from the current 121
2%, for example to a level

similar to that for production on state lands (generally 162
3%). Given that my estimates for

long-run elasticities for currently producing non-stripper well leases are also approximately

zero, the analysis suggests that producers of these wells are basing operation decisions on

something other than price. It is likely that once production commences, production rates

are based on geological features of the formation as well as the management of the reservoir

for maximum lifetime recovery. Only towards the end of a lease’s producing life does

price appear to affect production decisions. Thus, exploration and development decisions

(i.e., decisions in the “very long-run”) appear then to be the main production response to

changing prices. Finally, it is likely that the BLM’s royalty reduction program for stripper

well leases was too inclusive and a lower production threshold could have been used for

lease eligibility in the program.

This paper is organized as follows. Section 2.2 provides a discussion of the BLM’s

Stripper Oil Well Property Royalty Rate Reduction Program. Section 2.3 discusses the

previous studies that attempt to estimate oil supply elasticities, focusing primarily on those

studies using U.S. data. Sections 2.4 and 2.5 describe the estimation strategy and sources

of data used in this analysis, respectively. Section 2.6 discusses empirical results followed

by conclusions and extensions in Section 2.7.
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2.2 Stripper Well Royalty Reduction Program

The Stripper Oil Well Property Royalty Rate Reduction Program17 was designed to:

Provide an economic incentive for operators to restart production of marginal

or uneconomic oil wells and to increase production on Federal onshore leases

by drilling new wells, by reworking existing wells, and/or by implementing en-

hanced or secondary oil recovery projects (LaRouche 2001, p. 5).

Royalty rates for leases on federal properties are generally defined at a fixed 121
2% interest.

The lessee must pay the BLM 121
2% of the value of the oil sold, or transfer to the BLM

121
2% of the lease production on a monthly basis. Between October 1992 and February

2006, royalty rates were reduced based on the schedule of rates in Appendix B.

Importantly, rates for the entire period were determined by the average per well produc-

tion in the twelve-month qualifying period between August 1990 and July 1991, a period

of time prior to enactment of the program. This prevented producers from lowering their

production intentionally for a year in order to shift production to later years at a lower

royalty. If a lease was not producing during that period, the qualifying period became

the twelve months immediately preceding the shut-in of the wells on the lease. If average

per well production of the lease continued to decline, participating leases could reapply to

receive lower rates. However, if production subsequently increased, the royalty reverted

to the initial qualifying rate. As the program was designed to stimulate production from

marginal leases, even if the average production in years subsequent to the qualifying period

exceeded the threshold on which the initial qualifying rate was based, producers were still

only required to pay the initial rate. Indeed, LaRouche (2001) surveyed the 100 largest

benefiting leases in the program and found that 43% exceeded the fifteen BPD per well

annual average in 2001.

The program was discontinued by the BLM on February 1, 2006 with six months prior

notice. The termination resulted from a provision in the regulation allowing BLM to dis-

continue the incentive if the price of the benchmark West Texas Intermediate (WTI) crude

1743 CFR 3103.4–2
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exceeded $28 per barrel for six consecutive months (adjusted for inflation with 1991 as the

base year). This threshold was exceeded for the six consecutive months ending July 2005

when notice of termination was given by BLM (the inflation adjusted threshold was approx-

imately $36 per barrel). Overall, approximately 4,700 leases participated in the program,

40% of which were in New Mexico with another 40% in Wyoming. While the number of

individual operators participating over the lifetime of the program has not been published,

as of October 1999 that number stood at roughly 850. From the beginning of the program

until September 1999, approximately half the lifetime of the program, the total amount of

royalty relief was more than $139 million (1999 $).

2.3 Literature Review

2.3.1 Supply Elasticity of Oil

To analyze the effectiveness of such a program in fulfilling the stated goals of encouraging

production on marginal producing properties, an estimate of oil supply elasticity is required.

The literature, unfortunately, does not provide much guidance in creating an accurate

assessment. Early studies of domestic production yielded supply elasticity estimates that

ranged from 0 (MacAvoy 1982) to 2 (Mancke 1970). Studies conducted since the early

1970s vary from supply elasticities of −0.08 (Dahl and Yucel 1991) to 0.26 (Rao 2010).

Several authors have found negative short-run supply elasticities (Griffin 1985; Dahl and

Yucel 1991; Krichene 2005).

Error Correction and Cointegration: Global Supply Krichene (2005) estimates

world supply elasticity using two different econometric techniques. He estimates a system

of simultaneous supply and demand equations using an error correction model (ECM) to

obtain short-run elasticities and an error correction and cointegration method to obtain

long-run elasticities. In the short-run, the ECM indicates that global oil supply is price

inelastic (−0.03). The cointegration model indicates that global production response is

relatively more elastic in the long-run (0.25). While these insights are important in assessing

macroeconomic trends and global markets, they are less instructive for assessing the impact
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of domestic policy proposals. Further, he was studying production over a very long period

from 1918 through 2004. The negative sign is particularly troubling for a supply elasticity,

however, the world market can generally not be considered competitive given the control

over price that OPEC has exerted through it’s supply decisions. Kirchene explains that

. . . the negative sign of the supply price elasticity may derive from the short-run

price inelasticity of the demand function. Recognizing the inelastic nature of

short-run demand, producers may deliberately refrain from increasing output

at the time of a price rise in order to preserve gains in prices . . . (2005, p. 10).

However, this is unlikely to be the case for domestic producers of crude oil. Given the

competitive pressures from the large number of individual U.S. leaseholders in the present

study, a negative elasticity would not be expected.

Residual Supply Curve Approach: Aggregate U.S. Data Mancke (1970) attempts

to use inferred estimates of oil industry costs to characterize the shape and level of the

industry supply curve for the United States. Production costs in the industry are com-

prised of the costs of exploration, development, and operation of wells. Using a “sum of

components” method would entail adding together the expected values of each of the three

cost elements for each barrel of produced oil, although the data requirements for such a

study would obviously make it impractical. Instead, Mancke attempts to estimate from

available annual production and price data between 1955 and 1968 the percentage of crude

oil produced with costs that are near perfectly price-elastic. From this estimate, and an

estimate of total expected rents, he determines that the lower bound of supply elasticity

must be greater than one. At the time, the U.S. had import quotas restricting the amount

of oil that could be obtained from foreign sources at a cost below that which crude oil

could be produced domestically. Mancke’s analysis was an attempt to estimate the costs

of the import quotas to the U.S. in the form of higher oil prices compared to Canada’s

lower price. Unfortunately, this method only allows broad inferences as to the range of oil

supply elasticity and do not apply to current domestic production. Mancke’s analysis is

based on an expanding level of domestic production when most major producing areas of
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the country were not in decline, unlike the current reality of domestic production.

Two-Stage Least Squares Joint Supply and Demand Estimation: Aggregate

U.S. Data MacAvoy (1982) compares the results from OLS regression of annual oil supply

data between 1955 and 1973 to a two-stage least squares model with both demand and

supply equations. His supply model involves a regression on price, reserves, and lagged

supply. In both cases the coefficient on oil price is insignificant implying an elasticity of

zero. As summarized in Dahl and Duggan (1996) he accounts for simultaneity of the supply

and demand equations without finding significant differences with a supply model alone.

MacAvoy unfortunately does not account for the U.S. price controls or factors such as

depletion and technological change.

Ordinary Least Squares Estimation: Aggregate U.S. Data Griffin (1985) investi-

gates the market structures of both OPEC and non-OPEC countries. The basic model for

a cartel structure is:

lnQit = αi + γilnPt + βilnQ
OO
−it + εit

where Qit represents annual production in each OPEC country i at time t, Pt is the real

price of oil, and QOO−it is the amount of production in OPEC countries other than country i.

In this context, evaluation of different country market structures is achieved by estimating

the model individually for each country and then testing of various combinations of values

for γi and βi. Using quarterly production and price data from t = 1971 through 1983

he finds that the partial market sharing hypothesis that was anticipated for this group of

countries could not be rejected for all 11 countries (βi > 0 and γi 6= 0). His analysis of 11

non-OPEC countries proceeds in a similar fashion; however, a competitive market structure

model is also considered:

lnQit = αi + γilnPt + εit
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Using available annual data from 1971 through 1982, he finds that a competitive market

structure (γi > 0) could only be rejected for the U.S. Again, a significant, negative elasticity

is obtained for oil supply. Griffin attributes this to the domestic price controls in effect

throughout much of that period.

Jones (1990) conducts an analysis identical to Griffin in order to retest the hypotheses

during a period of falling prices with data through the fourth quarter of 1988. Again, the

partial market sharing hypothesis is not rejected for the 11 OPEC countries. Importantly,

the U.S. market, with the addition of the data after the end of price controls, has a statis-

tically significantly higher supply elasticity (a change of +0.07), indicating a shift towards

a competitive market structure.

Dahl and Yucel (1991) approach the question of market structure with an expanded

model using a U.S. time series which takes cost data and dynamic decision-making into

account. Their model is:

lnQt = β0 + βplnPt + βwlnW + βylnY + βqwlnQw + βclnC + β1lnI

where W is the number of wells drilled, Y is GDP, Qw is the production in the rest of the

world, C is production costs, and I is investment. Their data for non-OPEC countries are

annual aggregate production, price, cost, and investment data from t = 1971 through 1987.

Overall they find that OPEC countries act noncompetitively with some weak evidence

of coordination and swing production for some of the countries. While admitting data

limitations that yield rather weak results for non-OPEC countries, they find no evidence of

dynamic optimization or competitive behavior. They find the supply elasticity for the U.S.

to be −0.08 and insignificant, however, a large portion of their U.S. data was also from

during the period of price controls. While the approach that Dahl and Yucel (1991) employ

is the most comprehensive of the models previously discussed for estimating a domestic oil

supply elasticity, the required cost and investment data is not available at the level of the

individual producer. This precludes its use in studies which do not employ agregate data

sets.
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Two additional studies using aggregate data are also worth noting. Using U.S. data

from 1958 through 1987, Kandel (1990), as reported in Dahl and Duggan (1996), finds

a statistically insignificant coefficient when production level is regressed on price level,

indicating an elasticity of 0. Hogan (1989), using U.S. data from 1966 through 1987,

regressed the log of production on the log of price averaged over the previous six years,

a time trend to account for technological change and reserve depletion, and log of lagged

production. He finds a significant short run elasticity of 0.09 and a long-run elasticity of

0.58.

Ordinary Least Squares: California Well Data Finally, Rao (2010) uses a panel

of well-level production and field-level oil price data for California monthly production

between 1977 and 2008 to assess the likely impact on production decisions of a proposed

temporary tax increase. By using well-level panel data, which allows the use of well fixed

effects, Rao can account for the production cost heterogeneity in the absence of the required

data. With a simple model in levels that controls for well age, month-by-year dummies,

and well fixed effects, she finds that the price elasticity of supply for California wells using

OLS is between 0.21 and 0.26 depending on the specification.

2.3.2 Taxation of Exhaustible Resources

In addition to the standard taxes on corporate profits and property taxes, two types of

taxes have historically been levied on oil producers: excise taxes and ad valorem taxes.

Profit taxes, or the removal of incentives which would act as if they were higher taxes on

the profits of an oil company, would not be expected to impact the short run production

decisions of currently operating wells. Instead, such changes would reduce the supply of

capital to the industry for the purposes of exploration and development of new fields by

reducing the rate of return on capital investment.

Excise taxes would be expected to increase per unit costs and therefore reduce extraction

rates. Rao (2010) uses a highly detailed set of California well-level data in an attempt to

assess the welfare costs of excise taxes on oil production. Her assessment of the welfare
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impacts of the tax rely on an assumption of perfect knowledge of the price path by the

operator. Slade (1984) attempts to simulate the impacts of various taxes using cost and

production data from a copper mine. She finds that royalties decrease copper production

rates and ultimately lead to less cumulative extraction. She asserts that the results should

generalize to other exhaustible resources. If oil conformed to the results from Slade’s

copper mine, an increase in royalty rates or severance taxes, which are both ad valorem

taxes on production,18 would tend to reduce the amount of domestically produced crude

oil. This could be due to either reductions in the rate of extraction, or production lost from

those leases that could no longer profitably extract the oil and are shut in with additional

recoverable resource left in the ground (i.e. marginal costs become higher than the price

of oil less royalty payments and severance taxes). Kunce et al. (2003) cast doubt on the

applicability of Slade’s conclusion to oil resources. They use aggregate production, reserves,

and well data along with information on state taxes to estimate the parameters used in a

dynamic simulation model of the impact of severance taxes on Wyoming oil production.

They find that long-run production is relatively inelastic with respect to severance tax rate

(0.057). This estimate includes the impacts of tax rates on both exploration and production

decisions.

2.4 Empirical Analysis

Unfortunately, well-level data as used in Rao (2010) is not the appropriate level of aggre-

gation given how leases or units19 are operated. Where leases are unitized, investment

and production decisions are made at the unit-level and the unit’s aggregate production is

divided up amongst constituent leaseholders based on the sizes of the leaseholds in relation

to the size of the unit. Units or leases can have anywhere from one well to upwards of

one thousand wells spread over several thousand acres. Production of an individual well is

generally irrelevant. All the wells in a unit or individual lease are operated to maximize

18The state severance taxes on oil are generally ad valorem, unlike severance taxes on many other minerals
which are generally on a per unit extracted basis.

19Where individual leases produce from a common reservoir, the leases are often joined into a “unit” with
a single operator making production decisions for the unit as a whole. Proceeds from the production are
then distributed to the individual leaseholders based on a predetermined division.
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the profits of the lessee. Older, shallower wells may be abandoned or left to pump at their

capacity if not reworked, while additional wells in the unit or lease may be drilled to take

advantage of newer technology. Steps taken to increase the reservoir pressure could, given

the geology of the formation, impact production from all wells. Further, if a new well

is drilled tapping into the same reservoir, it can impact production of other wells in the

vicinity.

Production at the lease-level is collected by the federal government for the calculation

of royalties due from the lessees of federal lands. Where leases are operated individually,

this is clearly the level of aggregation preferred to accurately reflect producer response. In

cases where leases are unitized, the production at the unit-level would be required. Until

unit-level data is compiled by the relevant federal and state government agencies, data on

production from the constituent leases is the next best alternative. If a unit operator decides

to increase production from the unit as a whole by drilling more wells or employing enhanced

recovery methods, when the increased production is apportioned to each of the constituent

leases each lease will show increased production. As the share of the unit production per

lease is fixed, changes in unit production will always be reflected in the changes in individual

lease production. The problem with such an approach, however, is that producer response

is likely to be more significant than it otherwise would be since several observations will be

responding to changes in price with the same percentage response in supply.

2.4.1 Static Panel Analysis

I employ a model similar to that used in Rao (2010), but instead of regression in levels,

I consider regressions in logs in order to estimate the elasticity directly. Further, year

by month dummies are excluded in the present study. Events influencing all leases each

month are limited to either federal tax changes, which act on a yearly basis, or changes in

price on the world market. Changes in global oil price are already reflected in the monthly

average sales price reported by producers. I also model production with and without the

inclusion of an additional regressor to indicate when a lease permanently stops producing.

The decision by an operator to stop producing from the lease is governed by the price of
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oil after royalty payments and taxes, as well as the producing age of the lease and the cost

factors captured by the lease fixed effect. It is therefore conditionally exogenous in this

framework. Including the indicator controls for the production lost due to the operators’

decisions to abandon fields. The resulting production changes will then only be the result of

changes in the rate of production from leases that keep producing.20 Lease shut-in decisions

are modeled separately. My production model is as follows:

lnQit = β0 + βilnPit + γ1iAgeit + γ2iAge
2
it + ηiShutInit + δt + αi + εit (7)

Qit is the average daily production from lease i in month t; Pit is the actual sale price of

oil from each lease each month net of royalty payments and severance taxes; Ageit reflects

the number of months since first production from each lease to capture, along with its

square, the effect of depletion; ShutInit is an indicator that changes from 0 to 1 when a

lease permanently stops producing for the remainder of the sample; δt is a time trend to

capture technological advances; αi represents lease fixed effects and picks up production

cost heterogeneity reflected in characteristics such as the depth of the reservoir, gravity of

the oil (which is also partially reflected in the price), recovery method, and transport to

market.

In addition to the specification in equation (7), monthly price is replaced with lagged

price. Prices with up to twelve monthly lags are used, as well as three-month and twelve-

month average price. If expectations of the future price, which could be driving production

decisions, are based on prices in the previous months, lagged price may be more appropriate.

Furthermore, producers may have entered into crude oil supply contracts in previous months

based on prices in those months, and it could be those contractual obligations driving

supply. Total contract supply can also be met from production from other properties

leased by the producer, whether on private, state, federal, or Indian lands, however, it is

not possible to look at aggregate production decisions for each operator with the present

data set.

20These production decisions could include reducing rates deliberately from all wells on the lease, or taking
some wells out of service while allowing others to maintain production.
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Issues estimating appropriate standard errors arise from the likely presence of a high

degree of serially correlation, borne out by the results as indicated in Figures 8 and 9 and

discussed in section 2.6. Driskoll-Kraay standard errors, robust to both spatial and serial

error autocorrelation, are therefore estimated. The Levin et al. (2002) test of unit roots

in panel data fails to reject the null of nonstationarity of oil production, whereas a unit

root test on the first-difference strongly rejects the presence of unit roots in the panels. I

therefore also estimate a first-difference version of equation (7).

2.4.2 Error Correction Model

Given the potential for nonstationarity and cointegration, a dynamic specification is also

used to estimate the long-run production response to changes in price. Westerlund’s 2007

error correction-based tests of cointegration strongly reject the no cointegration null. To

account for these issues I employ a dynamic fixed effects estimator (DFE) for nonstationary

panels with both large cross-section and time dimensions, as described in Cameron and

Trivedi (2009).

The error correction reparameterization of the autoregressive distributed lag dynamic

panel specification of model (7) is as follows:21

∆qit = φi(qi,t−1 − θ0i − θ1ipit) + δ1i∆pit + γ1iAgeit + γ2iAge
2
it + ηiShutInit + δt + εit (8)

where the parameter of interest is θ1i, the long-run price elasticity of supply. For a complete

description of the parameters, see Pesaran and Smith (1995) or Blackburne and Frank

(2007).

2.4.3 Lease Survival Analysis

To assess the effectiveness of the Stripper Oil Well Property Royalty Rate Reduction Pro-

gram, I conduct a survival analysis to model the time to a lease shut-in event. If the

program was effective, then participating leases should have a lower probability of being

21For simplicity, an error correction reparameterization of an ARDL(1,1) panel specification is shown, but
it could be generalized to an ARDL(p,q). Lower case variables in the model refer to their natural logarithms.
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shut-in at a particular age, controlling for price and other relevant factors. A Cox propor-

tional hazard model is estimated using the combined data set of both stripper well and

non-stripper well leases. The probability that the lease will survive at a particular produc-

ing age, given that it is still producing, is theorized to be a function of the price of oil, the

volume of production, an interaction between the two, and an indicator of whether or not

the lease participated in the royalty reduction program. Given that the effect of price on

lease survival is highly non-linear, as discussed in Section 2.6.3, a fourth-order polynomial

in price is used. Further, hazard proportionalities of the higher-order functions of price are

rejected, so the interactions of these terms with the log of time (or in this case, the age of

the lease) are also included.

Production costs are also critical in determining the producing life of a lease. However,

this data is not presently available to researchers. Given the approximate normality of the

estimated fixed effects used to account for production cost heterogeneity in the models in

the preceding sections (see Figures 8 and 9), results from the hazard model may still be

informative about the success of the program on average.

2.5 Data

The data set compiled for this study was provided on a confidential basis from two federal

agencies within the Department of the Interior. Federal lease history data was provided

by the BLM. Although the components of this data can be accessed publicly through their

LR2000 web portal,22 it is not possible to compile large data sets in a convenient format in

this manner. The lease history data includes the location of each federal lease, the date of

first production, the base royalty rate, and the date of all changes in the royalty rate as a

result of participation in the stripper well royalty reduction program.

Data on monthly lease production was provided by the Office of Natural Resources

Revenue (ONRR) for all federal leases that reported production between January 1996

and May 2011. Data for the subset of producing leases that qualified for the stripper well

royalty reduction program was supplied from January 1990 onwards. The data includes the

22http://www.blm.gov/landandresourcesreports/rptapp/menu.cfm?appCd=2
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actual volume of oil sold each month by each lessee, the total value of the oil sold, and the

total amount of royalty paid to ONRR. From this information, daily average production,

the actual royalty rate, and the price net of royalties can be calculated. The price net

of severance taxes is then calculated from state severance rate data gathered from state

resource or tax agencies.23

For months when leases did not report oil sales, prices were not supplied and had to

be estimated for the particular type of oil that the lease typically produced. This was

accomplished by calculating the average ratio between the actual reported sales price of

the lease’s oil for the months when sales did occur and the monthly price of WTI. This

average ratio was then multiplied by the price of WTI to estimate what the lease’s oil could

have commanded on the market. Months with zero production were changed to a small

positive number to allow taking the natural log of the data.

For smaller producers, especially producers that rely on tanker trucks to move oil from

the field to refineries, inventory may be allowed to build until enough oil is collected to fill

a truck. Inspecting the sales history data, it is evident that for many leases several months

can pass between sales of several hundred barrels. In these situations, simply recording

a small positive number for months when sales did not occur would not reflect reality. I

try four methods to account for this issue. First, the cumulative production for months

between sales is averaged over that period. If no sales were made for three months, and then

in the fourth month a sales volume was recorded, Qit for each of those four months would

be the total sales in month four divided by four. I refer to this as the production averaging

method. Second, I aggregate the sales to quarterly sales data and use the average quarterly

price. Third, I aggregate to yearly sales and average yearly price. Fourth, I use data for

only those leases which report sales for more than 150, 200, and 250 months of the sample

period for stripper well leases, for which there are 257 total months (the corresponding

numbers for non-stripper well leases are 100, 150, and 180 out of 185 months). Shut in

months are counted as months for which there is a sales report since the producer has

decided to produce no oil. Production averages, as in the first method, are then used for

23Severance taxes are not assessed on the royalty interests due federal or state governments or to Indian
tribes.
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the small percentage of months without a reported sale.

Summary Statistics for federal leases which qualified for the Stripper Oil Well Property

Royalty Rate Reduction Program are supplied in Table 9 in Appendix D for leases with

more than 200 reported sales (out of 257 total months). Summary Statistics for non-stripper

well leases with more than 150 reported sales (out of 185 total months) can be found in

Table 24 in Appendix E. On average, stripper well leases have been producing longer than

those that did not qualify for the program; in May of 2011, their respective ages were 480

and 374 months. This is no surprise as stripper well leases are generally nearing the end

of their producing lives and older leases would be most likely to qualify for the program.

Average monthly production is slightly higher on stripper well leases than on non-stripper

well leases; 36.6 and 34.1 BPD respectively. Qualifying as a stripper well lease is based

on average per well production. Some very large leases with over a thousand wells could

have a very high total daily production and low per well average, thereby qualifying them

for royalty relief. This may lead to the slightly higher lease average production observed

if large leases were more likely to be included in the stripper well sample. An example

would be if older BLM auction parcels were larger in size than more recent auctions. In

addition, the near record prices after the end of the stripper well royalty reduction program

may have caused leases to start producing in areas with only small volumes of expected oil

that could previously not be economically recovered. These leases would produce at low

rates which would result in a reduction in average production for the pool of leases that

weren’t involved in the stripper well lease program. Approximately 25% of the non-stripper

well leases started production after the royalty reduction program had ended. Excluding

these leases increases the average production of non-stripper well leases to 38.3 BPD. The

average royalty paid on the oil from stripper well leases was 9.0% compared to roughly 12%

royalty for all other federal leases. Heavier oil wells were also afforded some royalty relief

and are included in the sample of non-stripper well leases, making the average slightly

lower than the standard 121
2% royalty for most federal leases. The average price net of

royalties and tax for stripper well leases was $29.70 (May 2011 dollars) compared to $38.70

for non-stripper well leases. The stripper well data includes the six additional years from
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1990 to 1995, when prices were lower on average, making the overall average price in the

stripper well sample lower.

Figures 6 and 7 are plots of production and price for a sample of stripper well and

non-stripper well leases, respectively. As is apparent from the plots of oil price, for this

sample of leases the prices across leases tend to follow each other closely. The period during

which royalty reductions were in effect is noted in Figure 6. The program was implemented

during a period of low prices and discontinued after prices started increasing sharply in

2005.

2.6 Results

2.6.1 Static Panel Regressions

Tables 10 through 20 in Appendix C are the estimates from equation (7) using data from

stripper well leases. Tables 25 through 35 in Appendix D are estimates from equation

(7) using data from non-stripper well leases. Tables 10 and 25 are the pooled OLS, panel

between effects, and panel random effects estimates for each group of leases counting no

sales report for a month as zero lease production. Tables 11 and 26 report corresponding

estimates from fixed effects regressions. Hausman tests strongly reject random effects in

favor of fixed effects for both pools of leases. While elasticity estimates are large and sig-

nificant with robust standard errors clustered at the lease-level, assumptions that no sales

report for a month indicates zero production are clearly not warranted. Further evidence

challenging this assumption is given by the very low predictive power these estimates pro-

vide. Also of note are the lack of significance when Driscoll-Kraay standard errors are

estimated. Wooldridge’s (2002) test of serial correlation in panel data strongly rejects the

null of zero first order autocorrelation for both stripper and non-stripper well qualified

properties. By accounting for the high degree of serial correlation in the residuals, highly

significant elasticity estimates become insignificant.

Tables 12 and 27 provide GLS fixed effects estimates when production averaging is used

to account for periodic sales of cumulative production. For the pool of leases qualified as

stripper well properties, significant elasticities of approximately 0.24 are obtained. Elastic-
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ity estimates are small and insignificant for all other leases. In both cases, the predictive

power of the models are vastly improved. Using lagged prices provides similar results in

both cases.

Tables 13 and 28 provide GLS fixed effects estimates when production is aggregated

quarterly and the average quarterly price is used. Tables 14 and 29 provide GLS fixed

effects estimates when production is aggregated annually and average annual price is used.

While non-stripper well lease elasticities are still small and insignificant, those for the

stripper well leases are again significant and inflated. Explanatory power is quite low in

all four cases compared to the model using production averaging. The remainder of the

results therefore use production averaging to account for producing months without a sales

report.

Using production averaging results in a loss of variation in monthly production rates

and also requires the use of estimates of monthly prices for the months when sales did not

occur. This could impact estimates of the responsiveness of producers to changes in price.

To overcome this, I next look at those leases for which sales are reported with varying

frequencies. I look at leases with sales in more than roughly 60% of the sample period, less

than 60% of the sample period, more than 80%, and more than 95% of the sample period.

For stripper well leases the results are presented in Tables 15, 16, 17, and 18, respectively.

The corresponding results for non-stripper well leases are presented in Tables 30, 31, 32,

and 33, respectively.

For stripper well leases, the higher the percentage of months with a reported sale, the

smaller and less significant is the elasticity estimate. Estimates range from 0.14 with a p-

value less than 0.001 (more than 60% of months with sales reports), down to 0.03 significant

at 10% (more than 95% of months with sales reports). Results also vary slightly by using

lagged prices, and the estimates generally lose considerable explanatory power by using

average twelve month prices. When only leases with sales reports in less than roughly

60% of the sample period are used, which generally indicates that the lease produces small

amounts of oil daily, the estimated elasticity is quite high compared to other stripper

well leases (between 0.44 and 0.56 depending on which price is used). As the number of
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months between sales varies between two months to over a year, it is unclear to which price

producers are responding as they may not know in advance the ultimate sales price, absent

a supply contract with a refiner. Given the length of time between sales, it is more likely

that elasticities for these leases are reflecting either the shutting down of wells on the lease

over time, potentially drilling new wells, or implementing enhanced recovery methods to

increase production. These are changes that could easily occur between sales reports.

Results with varying frequencies of sales reports are not as clear for non-stripper well

leases. For leases with sales reported in less than roughly 60% of the months, elasticities

are small and positive, yet insignificant given relatively large standard errors. For leases

with sales reported in more than 60% of the months, elasticities are small, negative, and

insignificant. For leases with sales in more than both 80% and 95% of the months, results

are small, negative, and marginally significant. When lagged prices are used, however,

elasticities are closer to zero and insignificant. Again, using the average of the previous

twelve-month price reduces the explanatory power of the model considerably.

To check the robustness of results with prices over longer time horizons, I also run

regressions with three-month and twelve-month rolling average production and price for

data with varying frequencies of sales reports. This smooths out variations based on short-

term production decisions that may be related to, for example, issues with oil storage

capacity or temporary refining bottlenecks in certain regions. These results are presented in

Tables 19 and 20 for stripper well leases and in Tables 34 and 35 for non-stripper well leases.

Results are generally consistent with the results described previously. However, the results

of dynamic panel regressions are a more effective analysis for production responses over

longer time horizons with panel data consisting of large time and cross section components.

These results are discussed in Section 2.6.2.

Similarly, the results of first-difference estimation, found in Tables 21 and 36, largely

conform to the elasticity estimates described above. There are two main exceptions. The

elasticity of supply for stripper well leases with less than 150 sales is 0.086, significantly less

than the fixed effects estimates. Also, the elasticity estimates for non-stripper well leases

are more significant and tend to be smaller negative numbers.
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2.6.2 Dynamic Panel Regressions

Estimates from the dynamic fixed effects model yield long-run results which are largely

consistent with the static analysis above. Estimates of equation (8) for stripper well leases

are presented in Table 22 and the corresponding non-stripper well lease results can be found

in Table 37. For stripper well leases with regularly reported production, long-run elasticities

range from zero to 0.06. Those stripper well leases without regularly reported sales have

a long-run elasticity of approximately 0.62, slightly higher than the static panel estimates.

Non-stripper well leases with regularly reported sales have small negative, insignificant long-

run elasticities. Unlike the static panel analysis, however, non-stripper well leases without

regularly reported sales have a marginally significant long-run elasticity of approximately

0.06. Differenced log prices up to nine lags are used; an ARDL(1,9) model. The inclusion

of additional lags are not informative.

2.6.3 Lease Survival Analysis

The results of a log-rank test of equality of the survivor functions for the stripper well

and non-stripper well program leases strongly rejects equality. A plot of the Kaplan-Meier

survival estimates shown in Figure 10 confirms this and provides evidence that participating

in the program extended the producing lives of leases. Table 23 shows the results from the

Cox proportional hazard model. A test of the proportional hazards assumption based

on the scaled Schoenfeld residuals rejects proportional hazard of the higher-order price

terms, indicating that interactions with lease age should be included (the log of lease age is

used in the interaction variable). From this final model, the estimated hazard ratio of the

stripper well indicator shows that participation in the Stripper Oil Well Property Royalty

Rate Reduction Program lead to a decrease in the probability that a lease was shut-in

of approximately 15%, controlling for price, the rate of production in the month prior to

shut-in, an interaction between price and production, and interactions of the higher-order

price variables and time.

This result should be viewed with caution, however, given the lack of data for marginal

properties that may have been shut-in prior to the start of the program. Data for leases
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that participated in the royalty reduction program was supplied from 1990 onward, about

three years prior to its start. Data for all leases was supplied beginning in 1996, about 3

years after the program started. Therefore, a marginal lease that shut-in between January

1990 and the start of the program at the end of 1992 when oil prices were relatively low,

will not be included in the data. Since prices remained relatively high after the program

was discontinued, and presumably all eligible properties participated, the current data does

not provide the type of counterfactual that would be necessary to verify these results. This

can be rectified with assistance from the ONRR to generate the required data.

The coefficients on price up to a fourth-order polynomial, apart from the quadratic

term, were significant in this model. At higher price levels, particularly above $60 per

barrel, changes in price lead to an exponentially smaller probability that a lease will stop

producing than at lower levels, as inferred from the coefficients of the price terms. Further,

the significance of the time varying coefficients indicates that the reduction in probability

a lease will be shut-in when a price increases will be smaller as a lease has been producing

longer. This would make sense if costs are expected to increase over time as the producing

life of the lease increases. Larger price increases would therefore be necessary to prevent

shut-in.

2.7 Conclusions and Extensions

Based on this analysis, I can conclude that production from the class of leases that qualified

as federal stripper oil well leases is relatively more elastic than production from non-stripper

well leases, regardless of the specification. However, all but the most marginal of producing

leases—those leases that participated in the program and did not report regular sales—have

estimated price elasticities of supply not significantly different than zero in most cases. Zero

supply elasticities should not be taken as a lack of a competitive market structure. This

data set captures only the price response once operators start producing. Decisions to

invest in exploration and to bring new producing leases online in response to high prices

is not captured by the analysis conducted here. It is at this extensive margin that the

overall supply elasticity will be determined. By looking at leasing and exploratory drilling
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decisions as a function of state versus federal fiscal regimes (royalty, taxes, lease bonus bids,

and lease rental rates), more insight can be gained about producer responses.

These results have important implications for policy related to oil taxation. First, by

reducing production royalties for the most marginal of leases during periods of lower prices,

producers can be expected to respond by making the additional investments required to

extend the producing life of reservoirs. While this result is not unexpected, this analysis

provides evidence using a unique data set and lends justification to the Stripper Oil Well

Property Royalty Rate Reduction Program. Second, and perhaps most importantly from

a fiscal standpoint, higher production royalties do not appear to deter production for the

bulk of federal leases. This suggests that additional revenue could be raised by increasing

royalties on federal lands from 121
2% for new leases, for example to a level more in line

with those required by state governments from production on state lands (generally 162
3%).

Combining these two results suggests that a higher initial royalty rate, in concert with a

lower rate for marginal leases during periods of lower relative oil price, can be an effective

means to raise revenue without negatively impacting producing life. Further analysis, as

described above, must be conducted to see what impact higher initial production royalties

will have at the extensive margin.

In an attempt to address estimation issues related to the unitization of leases, using

correlations between lease production within each state can be explored as a means to de-

termine which federal leases belong to units and should therefore have their productions

combined. Highly correlated production rates approaching one for leases within the same

county, or in neighboring counties, signify that they stem from a common production di-

vided up amongst the leases that form the unit. Preliminary results suggest production

from a number of federal leases within the same counties do tend to be highly correlated,

suggesting that they are part of units. If a sample of these highly correlated leases are

tracked down to see if they are actually part of a common unit, this correlation approach

could be confirmed. The results can be rechecked after the highly correlated lease produc-

tions are added together. However, given the lack of significance for most results, this is

not likely to change the core findings of this study.
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Appendix C: Schedule of Royalty Rate Reductions

 Source: LaRouche 2001
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Appendix D: Figures

Figure 4 – U.S. Wellhead First Purchase Crude Oil Price 1900 - 2011
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U.S. Wellhead First Purchase Price 

Data sources: U.S. Energy Information Administration at http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx 

                   Bureau of Labor Statistics at http://www.bls.gov/cpi/tables.htm 

 

Figure 5 – Rate of Change of U.S. Oil Price, 1900 - 2011
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Figure 6 – Log of Avg Daily Production and Price net of Royalty and Severance
Tax (May 2011 $) for a sample of Stripper Well Leases (Jan. 1990 –
May 2011)
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Figure 7 – Log of Avg Daily Production and Price net of Royalty and Severance Tax
(May 2011 $) for a sample of Non–Stripper Well Leases (Jan. 1996 –
May 2011)
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Figure 8 – Estimated density of the estimated lease-specific effects, {α̂i}2,657i=1

(left), and time series plots of {ε̂it} from a sample of five leases
(right)
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These results apply to fixed effects regressions of equation (7) for the 2,657 stripper well
leases with > 200 reported sales.

Figure 9 – Estimated density of the estimated lease-specific effects, {α̂i}4,116i=1

(left), and time series plots of {ε̂it} from a sample of five leases
(right)
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These results apply to fixed effects regressions of equation (7) for the 4,116 non–stripper
well leases with > 150 reported sales.
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Figure 10 – Kaplan–Meier Survival Estimates for Stripper Well and Non–
Stripper Well Leases
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Appendix E: Stripper Oil Well Lease Summary Statistics and Regression

Results

Table 9 – Summary Statistics for Stripper Well Leases with more
than 200 Reported Sales (Jan. 1990 – May 2011)

Variable Mean Std. Dev. N

Avg Daily Prod, BPD 36.60 138 687,512
Age in May 2011 480 197 2,657
Shut-In Status 0.038 0.191 687,512
Price Net of Royalty 29.70 20.40 681,344
Royalty Rate 0.090 0.041 687,512
Total Quarterly Production 3,347 12,474 227,404
Avg Quarterly Oil Price 29.29 19.70 225,364
Total Yearly Production 13,400 49,412 56,205
Avg Yearly Oil Price 28.80 18.25 55,701

Number of Leases 2,657
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Table 10 – Oil Production Regression Results for the Stripper Well Lease
Full Sample: OLS, BE, and RE Model Comparisons Treating
no Sales Report for a Month as Zero Lease Production

OLS BE RE

Log Price, εs 0.267*** −3.470*** 0.510***
(0.054) (0.556) (0.031)

Months Producing −2.5e-04 −1.9e-06 1.4e-03*
(8.4e-04) (1.2e-03) (6.3e-04)

Months Producing Sqrd 4.9e-06*** 4.5e-06** 2.9e-06***
(9.5e-07) (1.4e-06) (6.7e-07)

Shut-In Status −8.624*** −14.569*** −4.406***
(0.075) (0.417) (0.129)

Trend −0.007*** 0.039*** −0.011***
(0.000) (0.008) (0.000)

Constant −2.06*** 5.05** −2.81***
(0.23) (1.96) (0.16)

No. Obs. 1,201,152 1,201,152 1,201,152
No. Groups 4,731 4,731
F 3,937 303

R2 0.12 0.24

R2
o 0.056 0.11

R2
b 0.24 0.16

R2
w 0.0022 0.052

σα 3.67
σe 3.85
ρ (Var. fraction due to αi) 0.48

Robust standard errors clustered at the lease level in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 11 – Oil Production Regression Results for the Stripper Well Lease
Full Sample: Panel Fixed Effects Model Treating no Sales Re-
port for a Month as Zero Lease Production

GLS, FE FE, DK FE–REGAR

Log Price, εs 0.511∗∗∗ 0.511∗∗∗ 0.527∗∗∗

(0.031) (0.122) (0.013)
Months Producing −9.9e-03∗∗∗ −9.9e-03∗∗∗ −9.7e-03∗∗∗

(5.9e-04) (1.3e-03) (1.4e-04)
Months Producing Sqrd 2.9e-06∗∗∗ 2.9e-06∗∗∗ 2.7e-06∗∗∗

(6.8e-07) (4.3e-07) (1.6e-07)
Shut-In Status −4.4∗∗∗ −4.4∗∗∗ −4.7∗∗∗

(0.13) (0.33) (0.03)
Constant −0.26+ −0.26 −0.36∗∗∗

(0.13) (0.23) (0.03)

No. Obs. 1,201,152 1,201,152 1,196,421
No. Groups 4,731 4,731 4,731
F 538 467 11,550

R2
w 0.052 0.052 0.037

σα 4.48 4.48
σe 3.85 3.85
ρ (Var. fraction due to αi) 0.57 0.57

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 12 – Oil Production Regression Results for the Stripper Well Lease
Full Sample: Panel Fixed Effects Model Using Production Av-
eraging to Account for Intermittent Sales of Cumulative Pro-
duction

GLS, FE FE, DK FE, DK

Log Price, εs 0.240∗∗∗ 0.240∗∗∗

(0.014) (0.045)
Log 2-Month Lag Price, εs 0.232∗∗∗

(0.047)
Months Producing −4.9e-03∗∗∗ −4.9e-03∗∗∗ −4.8e-03∗∗∗

(2.8e-04) (4.4e-04) (4.5e-04)
Months Producing Sqrd 7.1e-07∗ 7.1e-07∗∗∗ 6.9e-07∗∗∗

(3.1e-07) (1.2e-07) (1.2e-07)
Shut-In Status −13.0∗∗∗ −13.0∗∗∗ −13.0∗∗∗

(0.07) (0.40) (0.40)
Constant 5.17∗∗∗ 5.17∗∗∗ 5.16∗∗∗

(0.06) (0.09) (0.08)

No. Obs. 1,201,243 1,201,243 1,192,347
No. Groups 4,731 4,731 4,731
F 10,969 904 1,000

R2
w 0.79 0.79 0.79

σα 2.31 2.31 2.30
σe 1.14 1.14 1.14
ρ (Var. fraction due to αi) 0.80 0.80 0.80

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 13 – Oil Production Regression Results for the Stripper Well Lease Full
Sample: Panel Fixed Effects Model Using Quarterly Aggregation

GLS, FE FE, DK FE, DK

Log Avg Quarterly Price, εs 0.488∗∗∗ 0.488∗∗∗

(0.032) (0.089)
Log 2-Quarter Lag Price, εs 0.355∗∗

(0.129)
Months Producing −9.2e-03∗∗∗ −9.2e-03∗∗∗ −8.6e-03∗∗∗

(5.4e-04) (9.4e-04) (1.2e-03)
Months Producing Sqrd 2.9e-06∗∗∗ 2.9e-06∗∗∗ 3.0e-06∗∗∗

(6.1e-07) (2.7e-07) (2.9e-07)
Shut-In Status −5.4∗∗∗ −5.4∗∗∗ −5.3∗∗∗

(0.14) (0.34) (0.33)
Constant 5.38∗∗∗ 5.38∗∗∗ 5.62∗∗∗

(0.12) (0.23) (0.23)

No. Obs. 397,348 397,348 388,408
No. Groups 4,731 4,731 4,731
F 603 72 72

R2
w 0.091 0.091 0.089

σα 3.72 3.72 3.67
σe 3.08 3.08 3.08
ρ (Var. fraction due to αi) 0.59 0.59 0.59

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 25 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 14 – Oil Production Regression Results for the Stripper Well Lease
Full Sample: Panel Fixed Effects Model Using Yearly Aggrega-
tion

GLS, FE FE, DK FE, DK

Log Avg Yearly Price, εs 0.316∗∗∗ 0.316∗∗∗

(0.036) (0.058)
Log Avg 2-Year Price, εs 0.514∗∗∗

(0.073)
Months Producing −6.6e-03∗∗∗ −6.6e-03∗∗∗ −7.1e-03∗∗∗

(4.9e-04) (6.6e-04) (4.6e-04)
Months Producing Sqrd 2.0e-06∗∗∗ 2.0e-06∗∗∗ 1.5e-06∗∗∗

(5.4e-07) (1.2e-07) (1.6e-07)
Shut-In Status −5.4∗∗∗ −5.4∗∗∗ −5.2∗∗∗

(0.14) (0.66) (0.63)
Constant 7.42∗∗∗ 7.42∗∗∗ 7.03∗∗∗

(0.12) (0.10) (0.17)

No. Obs. 98,267 98,267 89,212
No. Groups 4,731 4,731 4,731
F 557 135 229

R2
w 0.15 0.15 0.14

σα 2.88 2.88 3.03
σe 2.30 2.30 2.27
ρ (Var. fraction due to αi) 0.61 0.61 0.64

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 10 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 15 – Oil Production Regression Results for Stripper Well Leases With More Than 150 Reported
Sales: Panel Fixed Effects Model Averaging Production for Months with no Sales Report

GLS, FE FE, DK FE, DK FE, DK FE, DK

Log Price, εs 0.140∗∗∗ 0.140∗∗∗

(0.015) (0.025)
Log 2-Month Lag Price, εs 0.140∗∗∗

(0.027)
Log 4-Month Lag Price, εs 0.128∗∗∗

(0.032)
Log Avg 12 Month Lag Price, εs 0.248∗∗∗

(0.074)
Months Producing −4.1e-03∗∗∗ −4.1e-03∗∗∗ −4.1e-03∗∗∗ −4.0e-03∗∗∗ −7.4e-03∗∗∗

(3.0e-04) (2.1e-04) (2.1e-04) (2.2e-04) (7.8e-04)
Months Producing Sqrd 2.0e-07 2.0e-07 1.9e-07 2.0e-07 1.5e-06∗∗∗

(3.3e-07) (1.8e-07) (1.9e-07) (2.0e-07) (2.1e-07)
Shut-In Status −14∗∗∗ −14∗∗∗ −14∗∗∗ −14∗∗∗ −6.6∗∗∗

(0.085) (0.34) (0.34) (0.34) (0.88)
Constant 5.96∗∗∗ 5.96∗∗∗ 5.95∗∗∗ 5.96∗∗∗ 2.08∗∗∗

(0.07) (0.05) (0.05) (0.05) (0.13)

No. Obs. 871,394 871,394 864,860 858,311 831,981
No. Groups 3,416 3,416 3,416 3,416 3,416
F 8,127 1,773 1,958 2,130 525

R2
w 0.78 0.78 0.78 0.78 0.090

σα 2.18 2.18 2.18 2.18 3.04
σe 1.05 1.05 1.05 1.05 3.29
ρ (Var. fraction due to αi) 0.81 0.81 0.81 0.81 0.46

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 16 – Oil Production Regression Results for Stripper Well Leases With Less Than 150 Reported
Sales: Panel Fixed Effects Model Averaging Production for Months with no Sales Report

GLS, FE DK, FE DK, FE DK, FE DK, FE

Log Price, εs 0.503∗∗∗ 0.503∗∗∗

(0.032) (0.094)
Log 2-Month Lag Price, εs 0.469∗∗∗

(0.093)
Log 4-Month Lag Price, εs 0.439∗∗∗

(0.100)
Log Avg 12 Month Lag Price, εs 0.563∗∗∗

(0.096)
Months Producing −7.4e-03∗∗∗ −7.4e-03∗∗∗ −7.1e-03∗∗∗ −6.9e-03∗∗∗ −7.1e-03∗∗∗

(6.0e-04) (9.4e-04) (9.6e-04) (1.0e-03) (8.3e-04)
Months Producing Sqrd 3.2e-06∗∗∗ 3.2e-06∗∗∗ 3.2e-06∗∗∗ 3.2e-06∗∗∗ 3.0e-06∗∗∗

(8.0e-07) (2.2e-07) (2.1e-07) (2.0e-07) (1.6e-07)
Shut-In Status −12∗∗∗ −12∗∗∗ −12∗∗∗ −12∗∗∗ −12∗∗∗

(0.083) (0.16) (0.16) (0.16) (0.18)
Constant 3.06∗∗∗ 3.06∗∗∗ 3.09∗∗∗ 3.12∗∗∗ 2.79∗∗∗

(0.13) (0.17) (0.16) (0.16) (0.15)

No. Obs. 327,158 327,158 324,814 322,457 312,892
No. Groups 1,304 1,304 1,304 1,304 1,304
F 7,887 5,102 5,153 4,888 6,686

R2
w 0.80 0.80 0.80 0.80 0.81

σα 1.68 1.68 1.66 1.65 1.68
σe 1.30 1.30 1.30 1.30 1.29
ρ (Var. fraction due to αi) 0.63 0.63 0.62 0.62 0.63

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 17 – Oil Production Regression Results for Stripper Well Leases With More Than 200 Reported
Sales: Panel Fixed Effects Model Averaging Production for Months with no Sales Report

GLS, FE FE, DK FE, DK FE, DK FE, DK

Log Price, εs 0.069∗∗∗ 0.069∗∗∗

(0.015) (0.021)
Log 2-Month Lag Price, εs 0.071∗∗

(0.025)
Log 4-Month Lag Price, εs 0.059+

(0.031)
Log Avg 12 Month Lag Price, εs 0.029

(0.094)
Months Producing −3.6e-03∗∗∗ −3.6e-03∗∗∗ −3.6e-03∗∗∗ −3.5e-03∗∗∗ −4.2e-03∗∗∗

(3.2e-04) (2.4e-04) (2.4e-04) (2.3e-04) (6.9e-04)
Months Producing Sqrd −7.7e-09 −7.7e-09 −1.1e-08 1.4e-08 −3.2e-07

(3.4e-07) (2.4e-07) (2.5e-07) (2.6e-07) (3.3e-07)
Shut-In Status −14∗∗∗ −14∗∗∗ −14∗∗∗ −14∗∗∗ −8.3∗∗∗

(0.11) (0.43) (0.43) (0.43) (0.80)
Constant 6.36∗∗∗ 6.36∗∗∗ 6.35∗∗∗ 6.37∗∗∗ 2.88∗∗∗

(0.08) (0.05) (0.06) (0.07) (0.11)

No. Obs. 681,344 681,344 676,160 670,965 650,101
No. Groups 2,657 2,657 2,657 2,657 2,657
F 4,503 3,281 3,104 3,368 447

R2
w 0.78 0.78 0.78 0.78 0.15

σα 2.12 2.12 2.13 2.12 2.46
σe 0.93 0.93 0.92 0.92 2.53
ρ (Var. fraction due to αi) 0.84 0.84 0.84 0.84 0.49

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 18 – Oil Production Regression Results for Stripper Well Leases With More Than 250 Reported
Sales: Panel Fixed Effects Model Averaging Production for Months with no Sales Report

GLS, FE FE, DK FE, DK FE, DK FE, DK

Log Price, εs 0.031+ 0.031+

(0.017) (0.018)
Log 2-Month Lag Price, εs 0.034∗

(0.016)
Log 4-Month Lag Price, εs 0.024

(0.015)
Log Avg 12 Month Lag Price, εs 0.035∗∗∗

(0.008)
Months Producing −2.9e-03∗∗∗ −2.9e-03∗∗∗ −2.9e-03∗∗∗ −2.9e-03∗∗∗ −3.0e-03∗∗∗

(4.0e-04) (3.4e-04) (3.4e-04) (3.4e-04) (4.5e-04)
Months Producing Sqrd −2.1e-07 −2.1e-07 −1.9e-07 −1.6e-07 −1.2e-07

(4.0e-07) (3.6e-07) (3.6e-07) (3.6e-07) (4.5e-07)
Shut-In Status −14∗∗∗ −14∗∗∗ −14∗∗∗ −14∗∗∗ −11∗∗∗

(0.26) (0.63) (0.62) (0.62) (0.16)
Constant 6.81∗∗∗ 6.81∗∗∗ 6.80∗∗∗ 6.82∗∗∗ 3.36∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.10)

No. Obs. 372,647 372,647 369,750 366,850 355,240
No. Groups 1,450 1,450 1,450 1,450 1,450
F 907 1,690 1,645 1,875 4,947

R2
w 0.68 0.68 0.68 0.68 0.41

σα 2.19 2.19 2.20 2.19 2.19
σe 0.78 0.78 0.78 0.77 1.08
ρ (Var. fraction due to αi) 0.89 0.89 0.89 0.89 0.80

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 19 – Oil Production Regression Results for Stripper Well Leases: Panel Fixed Effects Model Using 3-month
Rolling Average Product and Price

All Leases All Leases > 150 Sales > 200 Sales > 250 Sales
GLS, FE FE, DK FE, DK FE, DK FE, DK

Log 3 Month Rolling Avg Price, εs 0.501∗∗∗ 0.501∗∗∗ 0.190∗∗∗ 0.055 0.040+

(0.032) (0.081) (0.043) (0.041) (0.023)
Months Producing −9.3e-03∗∗∗ −9.3e-03∗∗∗ −5.0e-03∗∗∗ −3.3e-03∗∗∗ −2.9e-03∗∗∗

(5.4e-04) (8.1e-04) (4.5e-04) (6.2e-04) (4.1e-04)
Months Producing Sqrd 3.0e-06∗∗∗ 3.0e-06∗∗∗ 7.1e-07∗∗ −2.3e-07 −1.2e-07

(6.0e-07) (2.2e-07) (2.6e-07) (4.7e-07) (4.3e-07)
Shut-In Status −5.0∗∗∗ −5.0∗∗∗ −7.1∗∗∗ −7.9∗∗∗ −8.0∗∗∗

(0.13) (0.44) (0.30) (0.46) (1.2)
Constant 0.87∗∗∗ 0.87∗∗∗ 2.28∗∗∗ 2.82∗∗∗ 3.37∗∗∗

(0.12) (0.19) (0.10) (0.08) (0.11)

No. Obs. 1,192,331 1,192,331 864,853 676,153 369,744
No. Groups 4,731 4,731 3,416 2,657 1,450
F 612 57 600 215 864

R2
w 0.089 0.089 0.19 0.29 0.40

σα 3.74 3.74 2.49 2.21 2.19
σe 3.08 3.08 2.15 1.56 0.82
ρ (Var. fraction due to αi) 0.60 0.60 0.57 0.67 0.88

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 20 – Oil Production Regression Results for Stripper Well Leases: Panel Fixed Effects Model Using 12-month
Rolling Average Product and Price

All Leases All Leases > 150 Sales > 200 Sales > 250 Sales
GLS, FE FE, DK FE, DK FE, DK FE, DK

Log 12 Month Rolling Avg Price, εs 0.336∗∗∗ 0.336∗∗∗ 0.089∗∗ 0.010 0.019
(0.035) (0.058) (0.032) (0.028) (0.029)

Months Producing −6.9e-03∗∗∗ −6.9e-03∗∗∗ −4.1e-03∗∗∗ −3.4e-03∗∗∗ −2.8e-03∗∗∗

(4.9e-04) (6.3e-04) (4.9e-04) (5.7e-04) (3.7e-04)
Months Producing Sqrd 2.2e-06∗∗∗ 2.2e-06∗∗∗ 6.3e-07 2.5e-07 −1.4e-07

(5.4e-07) (1.7e-07) (4.2e-07) (5.1e-07) (4.0e-07)
Shut-In Status −5.0∗∗∗ −5.0∗∗∗ −6.9∗∗∗ −7.2∗∗∗ −5.9∗∗∗

(0.13) (0.81) (0.69) (0.89) (1.3)
Constant 1.53∗∗∗ 1.53∗∗∗ 2.61∗∗∗ 3.06∗∗∗ 3.43∗∗∗

(0.12) (0.13) (0.09) (0.10) (0.12)

No. Obs. 1,152,006 1,152,006 835,319 652,745 356,700
No. Groups 4,731 4,731 3,416 2,657 1,450
F 536 81 190 390 894

R2
w 0.14 0.14 0.29 0.38 0.30

σα 2.92 2.92 2.27 2.14 2.19
σe 2.24 2.24 1.57 1.16 0.78
ρ (Var. fraction due to αi) 0.63 0.63 0.68 0.77 0.89

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 100 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 21 – Oil Production Regression Results for Stripper Well Leases: First–Difference Regressions Aver-
aging Production for Months with no Sales Report

All Leases < 150 Sales > 150 Sales > 200 Sales > 250 Sales

OLS, FD OLS, FD OLS, FD OLS, FD OLS, FD

∆Ln(Pit) 0.059*** 0.086*** 0.049** 0.042+ 0.059+
(0.015) (0.021) (0.018) (0.021) (0.030)

∆MonthsProducing . . . . .
. . . . .

∆MonthsProducingSqrd 5.2e-07 6.1e-06*** −7.0e-07 −7.7e-07+ −2.1e-06***
(4.0e-07) (9.8e-07) (4.5e-07) (4.4e-07) (5.0e-07)

∆Shut− In −12.0*** −11.7*** −12.2*** −12.2*** −12.4***
(0.0) (0.1) (0.1) (0.1) (0.1)

Constant −0.004*** −0.007*** −0.003*** −0.003*** −0.002***
(0.000) (0.001) (0.000) (0.000) (0.000)

No. Obs. 1,196,799 325,988 868,129 678,754 371,199
No. Clusters 4,731 1,304 3,416 2,657 1,450
F 25,962 11,551 15,134 11,419 5,734

R2 0.47 0.57 0.43 0.43 0.47

Robust standard errors clustered at the lease level in parentheses

∆MonthsProducing is omitted due to collinearity with the Constant term which results from the inclusion

of a time trend in the orignal model

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 22 – Oil Production Regression Results for Stripper Well Leases: Dy-
namic Panel Fixed Effects Model

> 200 Sales > 250 Sales < 150 Sales
ARDL(1,9) ARDL(1,9) ARDL(1,9)

Error Correction, LR

Log Price, εs 0.057∗∗ 0.026 0.619∗∗∗

(0.021) (0.024) (0.044)

SR

φ̂ −0.395∗∗∗ −0.402∗∗∗ −0.289∗∗∗

(0.008) (0.015) (0.009)

∆Ln(Pt−1) −0.135∗∗ −0.083+ −0.901∗∗∗

(0.042) (0.048) (0.074)
∆Ln(Pt−2) 0.701∗∗∗ 0.573∗∗∗ 3.589∗∗∗

(0.156) (0.172) (0.278)
∆Ln(Pt−3) −1.415∗∗∗ −1.312∗∗ −7.806∗∗∗

(0.370) (0.400) (0.663)
∆Ln(Pt−4) 1.767∗∗ 1.951∗∗ 10.835∗∗∗

(0.589) (0.629) (1.044)
∆Ln(Pt−5) −1.259∗ −1.783∗∗ −9.985∗∗∗

(0.642) (0.681) (1.110)
∆Ln(Pt−6) 0.461 1.036∗ 6.139∗∗∗

(0.474) (0.501) (0.792)
∆Ln(Pt−7) −0.045 −0.389 −2.440∗∗∗

(0.226) (0.240) (0.366)
∆Ln(Pt−8) −0.020 0.091 0.568∗∗∗

(0.063) (0.067) (0.099)
∆Ln(Pt−9) 4.8e-03 −1.0e-02 −5.9e-02∗∗∗

(7.9e-03) (8.4e-03) (1.2e-02)

Months Producing −1.2e-03∗∗∗ −1.1e-03∗∗∗ −2.0e-03∗∗∗

(1.4e-04) (1.8e-04) (1.8e-04)
Months Producing Sqrd −2.3e-07 −1.7e-07 7.7e-07∗∗

(1.4e-07) (1.7e-07) (2.4e-07)
Shut-In Status −6.58∗∗∗ −7.61∗∗∗ −4.20∗∗∗

(0.12) (0.21) (0.11)
Constant 2.50∗∗∗ 2.73∗∗∗ 0.74∗∗∗

(0.07) (0.11) (0.05)

σe 1.042 1.031 0.889

Robust standard errors clustered at the lease level in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 23 – Results from Cox Proportional Hazard Analysis of
Lease Survival Based on Age Since First Produc-
tion (Jan. 1996 - May 2011)

Coefficient Hazard Ratio

SW Indicator -0.158∗∗∗ 0.854
(0.022)

Price -0.175∗∗∗ 0.839
(0.006)

Price3 5.33e-05∗∗∗ 1.000
(4.09e-06)

Price4 -4.07e-07∗∗∗ 1.000
(4.05e-08)

Prod. Prior to Shut–In -0.0113∗∗∗ 0.989
(0.0012)

Price×Production 1.11e-04∗∗∗ 1.045
(1.114e-05)

Time Varying Covariates

Price3 1.46e-06∗∗∗ 1.000
(5.97e-07)

Price4 -1.29e-08∗∗∗ 1.000
(6.42e-09)

Leases 15,027
No. of Shut–in Events 9,541
Wald χ2 4,556∗∗∗

Robust standard errors clustered at the lease level in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Time varying covariates were interacted with ln(t).
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Appendix F: Non–Stripper Oil Well Lease Summary Statistics and Re-

gression Results

Table 24 – Summary Statistics for Non–Stripper Well Leases
with more than 150 Reported Sales (Jan. 1996 – May
2011)

Variable Mean Std. Dev. N

Avg Daily Prod, bbls/d 34.06 275.3 767,524
Age in May 2011 374 206 4,116
Shut-In Status 0.12 0.33 767,524
Price Net of Royalty 38.73 20.71 756,986
Royalty Rate 0.123 0.020 767,524
Total Quarterly Production 3,119 2,5088 253,184
Avg Quarterly Oil Price 38.20 20.01 249,708
Total Yearly Production 12,505 10,0260 62,376
Avg Yearly Oil Price 37.68 18.64 61,515

Number of Leases 4,116
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Table 25 – Oil Production Regression Results for the Non–Stripper Well
Lease Full Sample: OLS, BE, and RE Model Comparisons
Treating no Sales Report for a Month as Zero Lease Production

OLS BE RE

Log Price, εs 0.044 −0.492*** −0.068***
(0.047) (0.149) (0.017)

Months Producing −8.2e-03*** −1.1e-02*** −7.7e-03***
(5.3e-04) (7.3e-04) (4.8e-04)

Months Producing Sqrd 9.3e-06*** 1.2e-05*** 9.1e-06***
(7.1e-07) (9.3e-07) (6.4e-07)

Shut-In Status −7.815*** −11.019*** −3.382***
(0.047) (0.147) (0.067)

Trend 0.008*** 0.012*** 0.003***
(0.001) (0.002) (0.000)

Constant −2.67*** −0.25 −2.35***
(0.16) (0.50) (0.09)

No. Obs. 1,905,530 1,905,530 1,905,530
No. Groups 11,729 11,729
F 5,923 1,174

R2 0.18 0.33

R2
o 0.18 0.17

R2
b 0.33 0.31

R2
w 0.045 0.046

σα 3.94
σe 3.41
ρ (Var. fraction due to αi) 0.57

Robust standard errors clustered at the lease level in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



79

Table 26 – Oil Production Regression Results for the Non–Stripper Well
Lease Full Sample: Panel Fixed Effects Model Treating no
Sales Report for a Month as Zero Lease Production

GLS, FE FE, DK FE–REGAR

Log Price, εs −0.070∗∗∗ −0.070 −0.081∗∗∗

(0.017) (0.105) (0.011)
Months Producing −5.2e-03∗∗∗ −5.2e-03∗∗ −3.5e-03∗∗∗

(4.9e-04) (1.8e-03) (1.6e-04)
Months Producing Sqrd 9.1e-06∗∗∗ 9.1e-06∗∗∗ 8.0e-06∗∗∗

(6.5e-07) (7.2e-07) (1.7e-07)
Shut-In Status −3.326∗∗∗ −3.326∗∗∗ −3.840∗∗∗

(0.068) (0.219) (0.017)
Constant −2.86∗∗∗ −2.86∗∗∗ −3.12∗∗∗

(0.09) (0.10) (0.02)

No. Obs. 1,905,530 1,905,530 1,893,801
No. Groups 11,729 11,729 11,727
F 691 326 15,665

R2
w 0.046 0.046 0.032

σα 4.43 4.43
σe 3.41 3.41
ρ (Var. fraction due to αi) 0.63 0.63

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 27 – Oil Production Regression Results for the Non–Stripper Well
Lease Full Sample: Panel Fixed Effects Model Using Produc-
tion Averaging to Account for Intermittent Sales of Cumulative
Production

GLS, FE FE, DK FE, DK

Log Price, εs −0.017∗ −0.017
(0.009) (0.059)

Log 2-Month Lag Price, εs −0.006
(0.069)

Months Producing −4.3e-03∗∗∗ −4.3e-03∗∗∗ −4.3e-03∗∗∗

(2.6e-04) (7.0e-04) (6.8e-04)
Months Producing Sqrd 5.6e-06∗∗∗ 5.6e-06∗∗∗ 5.6e-06∗∗∗

(3.5e-07) (2.0e-07) (2.1e-07)
Shut-In Status −12.152∗∗∗ −12.152∗∗∗ −12.135∗∗∗

(0.045) (0.495) (0.493)
Constant 3.47∗∗∗ 3.47∗∗∗ 3.43∗∗∗

(0.05) (0.10) (0.11)

No. Obs. 1,905,530 1,905,530 1,888,174
No. Groups 11,729 11,729 11,729
F 19,713 1,017 1,301

R2
w 0.81 0.81 0.81

σα 2.55 2.55 2.55
σe 1.28 1.28 1.28
ρ (Var. fraction due to αi) 0.80 0.80 0.80

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 28 – Oil Production Regression Results for the Non–Stripper Well
Lease Full Sample: Panel Fixed Effects Model Using Quarterly
Aggregation

GLS, FE FE, DK FE, DK

Log Avg Quarterly Price, εs 0.043∗ 0.043
(0.019) (0.129)

Log 2-Quarter Lag Price, εs −0.065
(0.120)

Months Producing −6.5e-03∗∗∗ −6.5e-03∗∗∗ −5.3e-03∗∗

(4.8e-04) (1.9e-03) (1.8e-03)
Months Producing Sqrd 1.1e-05∗∗∗ 1.1e-05∗∗∗ 1.0e-05∗∗∗

(6.6e-07) (8.9e-07) (8.5e-07)
Shut-In Status −3.605∗∗∗ −3.605∗∗∗ −3.531∗∗∗

(0.078) (0.305) (0.281)
Constant 2.49∗∗∗ 2.49∗∗∗ 2.54∗∗∗

(0.09) (0.17) (0.16)

No. Obs. 628,411 628,411 610,669
No. Groups 11,724 11,724 11,724
F 610 397 1,515

R2
w 0.062 0.062 0.059

σα 4.13 4.13 4.17
σe 3.07 3.07 3.05
ρ (Var. fraction due to αi) 0.64 0.64 0.65

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 20 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 29 – Oil Production Regression Results for the Non–Stripper Well
Lease Full Sample: Panel Fixed Effects Model Using Yearly
Aggregation

GLS, FE FE, DK FE, DK

Log Avg Yearly Price, εs −0.010 −0.010
(0.028) (0.160)

Log Avg 2-Year Price, εs 0.025
(0.124)

Months Producing −8.6e-03∗∗∗ −8.6e-03∗∗∗ −8.0e-03∗∗∗

(5.1e-04) (1.9e-03) (1.5e-03)
Months Producing Sqrd 1.3e-05∗∗∗ 1.3e-05∗∗∗ 1.2e-05∗∗∗

(6.7e-07) (8.2e-07) (4.3e-07)
Shut-In Status −3.354∗∗∗ −3.354∗∗∗ −2.883∗∗∗

(0.084) (0.562) (0.480)
Constant 5.26∗∗∗ 5.26∗∗∗ 5.03∗∗∗

(0.09) (0.10) (0.09)

No. Obs. 155,284 155,284 136,838
No. Groups 11,698 11,698 11,698
F 512 1,903 2,619

R2
w 0.082 0.082 0.061

σα 3.62 3.62 3.72
σe 2.67 2.67 2.59
ρ (Var. fraction due to αi) 0.65 0.65 0.67

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation

up to 10 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 30 – Oil Production Regression Results for Non–Stripper Well Leases With More Than 100 Re-
ported Sales: Panel Fixed Effects Model, Averaging Production for Months with no Sales
Report

GLS, FE FE, DK FE, DK FE, DK FE, DK

Log Price, εs −0.036∗∗∗ −0.036+

(0.009) (0.020)
Log 2-Month Lag Price, εs −0.021

(0.025)
Log 4-Month Lag Price, εs −0.026

(0.034)
Log Avg 12 Month Lag Price, εs −0.154+

(0.082)
Months Producing −4.2e-03∗∗∗ −4.2e-03∗∗∗ −4.3e-03∗∗∗ −4.3e-03∗∗∗ −5.3e-03∗∗∗

(2.8e-04) (4.7e-04) (3.7e-04) (3.4e-04) (8.5e-04)
Months Producing Sqrd 3.4e-06∗∗∗ 3.4e-06∗∗∗ 3.4e-06∗∗∗ 3.3e-06∗∗∗ 3.7e-06∗∗

(3.6e-07) (3.7e-07) (3.7e-07) (3.7e-07) (1.1e-06)
Shut-In Status −13.26∗∗∗ −13.26∗∗∗ −13.23∗∗∗ −13.21∗∗∗ −5.01∗∗∗

(0.068) (0.354) (0.352) (0.351) (0.653)
Constant 4.72∗∗∗ 4.72∗∗∗ 4.69∗∗∗ 4.69∗∗∗ 0.58∗∗

(0.05) (0.06) (0.08) (0.09) (0.21)

No. Obs. 1,179,601 1,179,601 1,168,268 1,156,727 1,109,620
No. Groups 6,489 6,489 6,489 6,489 6,489
F 10,406 5,047 2,560 2,454 593

R2
w 0.83 0.83 0.83 0.83 0.10

σα 2.38 2.38 2.38 2.39 3.45
σe 1.12 1.12 1.12 1.11 2.93
ρ (Var. fraction due to αi) 0.82 0.82 0.82 0.82 0.58

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 31 – Oil Production Regression Results for Non–Stripper Well Leases With Less Than 100
Reported Sales: Panel Fixed Effects Model, Averaging Production for Months with no
Sales Report

GLS, FE FE, DK FE, DK FE, DK FE, DK

Log Price, εs 0.034∗ 0.034
(0.017) (0.117)

Log 2-Month Lag Price, εs 0.036
(0.126)

Log 4-Month Lag Price, εs 0.023
(0.126)

Log Avg 12 Month Lag Price, εs 0.014
(0.158)

Months Producing -2.5e-03∗∗∗ -2.5e-03 -2.3e-03 -2.0e-03 -1.5e-03
(5.3e-04) (1.9e-03) (1.9e-03) (1.9e-03) (2.1e-03)

Months Producing Sqrd 6.9e-06∗∗∗ 6.9e-06∗∗∗ 7.0e-06∗∗∗ 7.1e-06∗∗∗ 7.4e-06∗∗∗

(7.2e-07) (9.8e-07) (9.7e-07) (9.8e-07) (1.0e-06)
Shut-In Status -11.4∗∗∗ -11.4∗∗∗ -11.4∗∗∗ -11.4∗∗∗ -11.4∗∗∗

(0.051) (0.175) (0.179) (0.181) (0.189)
Constant 1.26∗∗∗ 1.26∗∗∗ 1.19∗∗∗ 1.16∗∗∗ 1.02∗∗∗

(0.10) (0.21) (0.18) (0.16) (0.13)

No. Obs. 718,057 718,057 712,106 706,048 681,445
No. Groups 5,194 5,194 5,194 5,194 5,194
F 15,586 3,408 3,865 4,258 4,462

R2
w 0.80 0.80 0.80 0.80 0.80

σα 2.56 2.56 2.59 2.62 2.71
σe 1.45 1.45 1.45 1.45 1.44
ρ (Var. fraction due to αi) 0.76 0.76 0.76 0.77 0.78

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 32 – Oil Production Regression Results for Non–Stripper Well Leases With More Than 150
Reported Sales: Panel Fixed Effects Model, Averaging Production for Months with no
Sales Report

GLS, FE FE, DK FE, DK FE, DK FE, DK

Log Price, εs −0.038∗∗∗ −0.038∗∗

(0.011) (0.014)
Log 2-Month Lag Price, εs −0.017

(0.018)
Log 4-Month Lag Price, εs −0.019

(0.023)
Log Avg 12 Month Lag Price, εs −0.124∗∗∗

(0.018)
Months Producing −3.9e-03∗∗∗ −3.9e-03∗∗∗ −4.0e-03∗∗∗ −4.0e-03∗∗∗ −4.2e-03∗∗∗

(3.0e-04) (3.8e-04) (3.2e-04) (2.6e-04) (1.8e-04)
Months Producing Sqrd 2.7e-06∗∗∗ 2.7e-06∗∗∗ 2.7e-06∗∗∗ 2.6e-06∗∗∗ 2.1e-06∗∗∗

(3.5e-07) (3.1e-07) (3.2e-07) (3.2e-07) (2.6e-07)
Shut-In Status −14.18∗∗∗ −14.18∗∗∗ −14.16∗∗∗ −14.13∗∗∗ −7.91∗∗∗

(0.096) (0.489) (0.493) (0.499) (0.612)
Constant 5.33∗∗∗ 5.33∗∗∗ 5.30∗∗∗ 5.29∗∗∗ 1.92∗∗∗

(0.05) (0.04) (0.05) (0.05) (0.07)

No. Obs. 756,986 756,986 749,451 741,802 710,584
No. Groups 4,116 4,116 4,116 4,116 4,116
F 6,033 2,694 2,887 3,273 985

R2
w 0.84 0.84 0.84 0.83 0.25

σα 2.21 2.21 2.22 2.22 2.55
σe 0.95 0.95 0.95 0.94 2.05
ρ (Var. fraction due to αi) 0.84 0.84 0.85 0.85 0.61

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 33 – Oil Production Regression Results for Non–Stripper Well Leases With More Than 180
Reported Sales: Panel Fixed Effects Model, Averaging Production for Months with no
Sales Report

GLS, FE FE, DK FE, DK FE, DK FE, DK

Log Price, εs −0.050∗∗∗ −0.050∗

(0.013) (0.021)
Log 2-Month Lag Price, εs −0.030

(0.026)
Log 4-Month Lag Price, εs −0.027

(0.029)
Log Avg 12 Month Lag Price, εs −0.036

(0.033)
Months Producing −3.1e-03∗∗∗ −3.1e-03∗∗∗ −3.3e-03∗∗∗ −3.3e-03∗∗∗ −3.9e-03∗∗∗

(3.5e-04) (2.5e-04) (2.3e-04) (1.9e-04) (2.2e-04)
Months Producing Sqrd 2.2e-06∗∗∗ 2.2e-06∗∗∗ 2.2e-06∗∗∗ 2.2e-06∗∗∗ 2.2e-06∗∗∗

(3.9e-07) (3.0e-07) (3.0e-07) (2.9e-07) (1.1e-07)
Shut-In Status −14.83∗∗∗ −14.83∗∗∗ −14.78∗∗∗ −14.75∗∗∗ −10.87∗∗∗

(0.194) (0.781) (0.785) (0.791) (0.203)
Constant 5.66∗∗∗ 5.66∗∗∗ 5.64∗∗∗ 5.63∗∗∗ 2.41∗∗∗

(0.07) (0.06) (0.06) (0.06) (0.07)

No. Obs. 449,866 449,866 445,043 440,192 420,736
No. Groups 2,432 2,432 2,432 2,432 2,432
F 1,566 7,656 7,987 7,824 1,889

R2
w 0.76 0.76 0.75 0.75 0.45

σα 2.14 2.14 2.14 2.14 2.15
σe 0.82 0.82 0.82 0.81 1.14
ρ (Var. fraction due to αi) 0.87 0.87 0.87 0.87 0.78

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 34 – Oil Production Regression Results for Non–Stripper Well Leases: Panel Fixed Effects Model Using 3-
month Rolling Average Product and Price

All Leases All Leases > 100 Sales > 150 Sales > 180 Sales
GLS, FE FE, DK FE, DK FE, DK FE, DK

Log 3 Month Rolling Avg Price, εs 0.046∗ 0.046 −0.080∗ −0.073∗∗∗ −0.060∗∗

(0.018) (0.122) (0.039) (0.011) (0.021)
Months Producing −6.6e-03∗∗∗ −6.6e-03∗∗∗ −5.5e-03∗∗∗ −4.5e-03∗∗∗ −3.7e-03∗∗∗

(4.8e-04) (1.7e-03) (5.7e-04) (4.2e-04) (4.5e-04)
Months Producing Sqrd 1.1e-05∗∗∗ 1.1e-05∗∗∗ 5.9e-06∗∗∗ 3.7e-06∗∗∗ 2.9e-06∗∗∗

(6.6e-07) (7.5e-07) (1.3e-06) (4.7e-07) (5.0e-07)
Shut-In Status −3.4∗∗∗ −3.4∗∗∗ −5.4∗∗∗ −7.6∗∗∗ −8.9∗∗∗

(0.072) (0.38) (0.20) (0.42) (1.4)
Constant −2.04∗∗∗ −2.04∗∗∗ 0.84∗∗∗ 1.90∗∗∗ 2.38∗∗∗

(0.09) (0.14) (0.15) (0.04) (0.07)

No. Obs. 1,888,174 1,888,174 1,168,268 749,451 445,043
No. Groups 11,729 11,729 6,489 4,116 2,432
F 638 1,095 278 1,507 9,603

R2
w 0.060 0.060 0.19 0.41 0.48

σα 4.15 4.15 3.10 2.45 2.17
σe 3.05 3.05 2.18 1.44 0.91
ρ (Var. fraction due to αi) 0.65 0.65 0.67 0.74 0.85

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 35 – Oil Production Regression Results for Non–Stripper Well Leases: Fixed Effects Model Using 12-month
Rolling Average Product and Price

All Leases All Leases > 100 Sales > 150 Sales > 180 Sales
GLS, FE FE, DK FE, DK FE, DK FE, DK

Log 12 Month Rolling Avg Price, εs −0.059∗ −0.059 −0.190∗∗ −0.144∗ −0.108+

(0.025) (0.139) (0.073) (0.065) (0.061)
Months Producing −8.1e-03∗∗∗ −8.1e-03∗∗∗ −7.4e-03∗∗∗ −6.7e-03∗∗∗ −4.1e-03∗∗∗

(5.1e-04) (1.7e-03) (1.1e-03) (9.2e-04) (4.5e-04)
Months Producing Sqrd 1.3e-05∗∗∗ 1.3e-05∗∗∗ 8.7e-06∗∗∗ 6.4e-06∗∗∗ 3.8e-06∗∗∗

(6.8e-07) (7.9e-07) (1.3e-06) (6.1e-07) (4.1e-07)
Shut-In Status −3.1∗∗∗ −3.1∗∗∗ −5.3∗∗∗ −7.1∗∗∗ −7.5∗∗∗

(0.70) (0.59) (0.38) (0.72) (1.4)
Constant −0.64∗∗∗ −0.64∗∗∗ 1.79∗∗∗ 2.56∗∗∗ 2.53∗∗∗

(0.09) (0.11) (0.10) (0.14) (0.09)

No. Obs. 1,807,607 1,807,607 1,115,586 714,536 423,168
No. Groups 11,729 11,729 6,489 4,116 4,432
F 493 820 1,097 629 2,898

R2
w 0.073 0.073 0.26 0.43 0.39

σα 3.68 3.68 2.93 2.47 2.23
σe 2.57 2.57 1.74 1.26 0.91
ρ (Var. fraction due to αi) 0.67 0.67 0.74 0.79 0.86

Robust standard errors clustered at the lease level in parentheses

Trend omitted due to collinearity with “Months Producing” variable

FE, DK: Panel Fixed Effects with Driscoll-Kraay standard errors (autocorrelation up to 75 lags)
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 36 – Oil Production Regression Results for Non–Stripper Well Leases: First–Difference Regressions
Averaging Production for Months with no Sales Report

All Leases < 100 Sales > 100 Sales > 150 Sales > 180 Sales

OLS, FD OLS, FD OLS, FD OLS, FD OLS, FD

∆LN(Pit) −0.121*** −0.127*** −0.119*** −0.108*** −0.065***
(0.012) (0.024) (0.014) (0.016) (0.017)

∆MonthsProducing . . . . .
. . . . .

∆MonthsProducingSqrd −4.7e-05*** −9.2e-05*** −1.8e-05*** −9.3e-06*** 2.5e-06***
(1.0e-06) (2.2e-06) (9.0e-07) (9.4e-07) (6.7e-07)

∆Shut− In −11.4*** −10.9*** −12.0*** −12.4*** −12.3***
(0.031) (0.040) (0.048) (0.062) (0.093)

Constant 0.042*** 0.085*** 0.015*** 0.008*** −0.004***
(0.001) (0.002) (0.001) (0.001) (0.001)

No. Obs. 1,896,914 715,100 1,173,978 753,245 447,462
No. Clusters 11,729 5,194 6,489 4,116 2,432
F 43,867 24,985 20,474 13,770 5,878

R2 0.42 0.44 0.41 0.45 0.47

Robust standard errors clustered at the lease level in parentheses

∆MonthsProducing is omitted due to collinearity with the Constant term which results from the inclusion

of a time trend in the orignal model

+ p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 37 – Oil Production Regression Results for Non–Stripper Well Leases:
Dynamic Panel Fixed Effects Model

> 150 Sales > 180 Sales < 100 Sales

ARDL(1,9) ARDL(1,9) ARDL(1,9)

Error Correction, LR

Log Price, εs −0.014 −0.006 0.058∗

(0.018) (0.023) (0.029)

SR

φ̂ −0.480∗∗∗ −0.439∗∗∗ −0.433∗∗∗

(0.007) (0.010) (0.006)

∆Ln(Pt−1) −0.199∗∗∗ −0.189∗∗∗ −0.548∗∗∗

(0.044) (0.046) (0.068)
∆Ln(Pt−2) 0.531∗∗∗ 0.528∗∗∗ 2.063∗∗∗

(0.153) (0.159) (0.256)
∆Ln(Pt−3) −1.075∗∗ −0.906∗ −4.923∗∗∗

(0.352) (0.372) (0.612)
∆Ln(Pt−4) 1.215∗ 0.780 7.232∗∗∗

(0.546) (0.586) (0.963)
∆Ln(Pt−5) −0.621 0.011 −6.828∗∗∗

(0.579) (0.633) (1.020)
∆Ln(Pt−6) −0.051 −0.634 4.199∗∗∗

(0.418) (0.464) (0.722)
∆Ln(Pt−7) 0.218 0.552∗ −1.652∗∗∗

(0.197) (0.221) (0.330)
∆Ln(Pt−8) −0.098+ −0.205∗∗∗ 0.382∗∗∗

(0.055) (0.061) (0.088)
∆Ln(Pt−9) 1.5e-02∗ 3.0e-02∗∗∗ −4.0e-02∗∗∗

(6.8e-03) (7.5e-03) (1.0e-02)

Months Producing −1.4e-03∗∗∗ −1.2e-03∗∗∗ −1.1e-03∗∗∗

(1.7e-04) (1.8e-04) (2.5e-04)
Months Producing Sqrd 6.2e-07∗∗∗ 5.3e-07∗∗ 4.0e-06∗∗∗

(1.8e-07) (1.8e-07) (3.3e-07)
Shut-In Status −7.39∗∗∗ −7.73∗∗∗ −5.49∗∗∗

(0.11) (0.16) (0.07)
Constant 2.53∗∗∗ 2.48∗∗∗ 0.45∗∗∗

(0.05) (0.07) (0.05)

σe 1.229 1.087 1.582

Robust standard errors clustered at the lease level in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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3 Predicting CO2 Emissions in Developing Countries

Abstract

Forecasts of carbon emissions are critical inputs to climate models which are used to

predict the possible impacts of climate change. Unfortunately, most prediction models

used to date have consistently underestimated carbon emissions. To predict emissions

from developed countries, this paper uses the relationship between per capita GDP

and carbon dioxide (CO2) emissions, an environmental Kuznets curve (EKC) analy-

sis. To make forecasts for developing economies, however, I propose an alternative

specification in which the independent variable of interest is a measure of the country’s

socio-economic status (SES) based on available surveys of household characteristics and

possessions. A measure of household characteristics such as SES should more closely

correlate to the consumption-induced emission of carbon dioxide than a highly aggre-

gated measure such as per capita GDP would. Per capita GDP will mask potential

widespread income inequalities, whereas household level data avoids this problem. Us-

ing SES produces a statistically significant quadratic increase in emissions for countries

as SES increases and improves on in-sample prediction of carbon emissions which rely

on GDP per capita alone.

3.1 Introduction

Forecasting CO2 emissions has been the focus of many prominent studies (Nordhaus and

Yohe 1983; Reilly et al. 1987; IPCC 1990; Manne and Richels 1992; IPCC 2001). These

forecasts rely on models of per capita GDP growth rates which attempt to take into account

changes in those sectors that contribute to carbon emissions using various assumptions

about technological change and population growth. While the models vary in methodology

and complexity, they consistently underestimate global carbon emissions. The IPCC (2007)

notes that there are nearly 400 emission forecasts (they refer to the them as scenarios)

assuming no global policy intervention. Figures 11 and 12 compare the primary scenarios

to the actual level of emissions. Notably, the predictions by Holtz-Eakin and Selden (1995)

based on a much less computationally intensive method appear to bracket the actual level

of emissions (referred to as HE&S Level and HE&S Log). Their predictions use a reduced
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form model of per capita GDP and per capita carbon dioxide emissions of the type used in

environmental Kuznets curve analyses.

The relationship between per capita income and environmental pollutants is based on

Simon Kuznets’ work on income inequality (1955). This type of analysis has generated

a prolific amount of empirical research in the past twenty years. Researchers hypothesize

that as a country initially develops, pollutant emissions will increase along with economic

development until the costs of the resulting environmental degradation, to both health and

environmental quality, are taken into account by a wealthier population. The demand for

improved health and less pollution thereby increases, causing per capita emissions to peak

and eventually decrease. This is known as the environmental Kuznets curve (EKC). This

type of relationship between economic development, as measured by real GDP per capita,

and per capita emissions has been verified for a wide range of pollutants using reduced-

form models (e.g. Grossman and Krueger 1995; Selden and Song 1994; List and Gallet 1999;

Millimet et al. 2003). A survey of much of this literature is found in Panayotou (2000) as well

as Yavapolkul (2005). For pollutants such as CO2 with long-term, global impacts, however,

a monotonically increasing relationship is expected and has been confirmed by most studies

(Holtz-Eakin and Selden 1995; Cole et al. 1997; Moomaw and Unruh 1997; Galeotti and

Lanza 1999; Sun 1999; Friedl and Getzner 2003; Aldy 2005; Bertinelli and Strobl 2005;

Dijkgraaf and Vollebergh 2005; Frankel and Rose 2005; Azomahou et al. 2006).

Holtz-Eakin and Selden (1995) use this EKC approach to estimate what per capita

CO2 emissions will be at various levels of per capita GDP and, combined with United

Nations population projections and a simple forecast model of per capita GDP growth,

they generate emissions paths which have largely bracketed actual emissions since 1985.

Despite their relative “success” in predicting the range of CO2 emissions over the short run

compared to the more structural models shown, the rapid increase in emissions since 2003

has pushed total emissions outside of this range in 2007 (the most recent year for which

data has been reported). Figure 13 shows the total level of carbon emissions, as well as the

amount of emissions attributable to both developing and developed (OECD) countries. It

is clear that while total emissions from developed countries have remained relatively flat
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since the early 1990s, the total emissions from developing countries have increased rapidly,

particularly since 2000.

In an attempt to improve on these forecasts for developing countries, I propose a modi-

fication to Holtz-Eakin and Selden’s EKC approach. Per capita GDP is a highly aggregated

measure which may not have as much meaning for developing countries. It can mask dif-

ferences between countries with households that have a fairly consistent level of wealth

and those where resource wealth is highly concentrated while large fractions of the popu-

lation live at the subsistence level. In this latter group of countries, emissions incurred by

consumption are likely to be very low. This is evident from an inspection of the uncondi-

tional emission vs. GDP relationship in Figure 14, where the same level of per capita GDP

can be associated with a wide range of per capita emissions. To overcome this problem,

some measure of household level data should correspond more closely to emissions. Since

household income and expenditure data are difficult to measure and interpret given the

problems laid out in Vyas and Kumaranayake (2006) and Gwatkin et al. (2007), data on

observable household characteristics and possessions has been extensively used since the

late 1990s. For the subsample of developing economies I use this type of household data to

create country socio-economic status (SES) indicators for those years with available data.

I then use this SES measure in a Kuznets curve model instead of per capita GDP.

Using this SES measure produces a statistically significant quadratic increase in CO2

emissions for developing countries as SES increases. Further, by incorporating this SES–

emissions relationship for developing countries into predictions of global emissions, in-

sample predictions appear to be more accurate than just relying on GDP per capita alone,

although forecasting assumptions given data limitations would render tests of this to have

relatively low power.

This paper is organized as follows. Section 3.2 discusses the previous literature aimed

at forecasting global carbon emissions. Section 3.3 discusses the empirical analysis used in

the present study. Sections 3.4 and 3.5 describe the data and results, respectively. Section

3.6 concludes.
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3.2 Literature Review

Several studies have undertaken the task of forecasting future emissions of CO2 (Nordhaus

and Yohe 1983; Reilly et al. 1987; IPCC 1990; Manne and Richels 1992; IPCC 2001).

The Intergovernmental Panel on Climate Change (IPCC) has been the primary source of

emissions forecasts since 1992 when they included six scenarios of future emissions in an

assessment report (IPCC 1992). Currently, the IPCC uses a set of scenarios developed to

capture a range of potential drivers of greenhouse gas (GHG) emissions (IPCC 2000). The

IPCC groups the scenarios into four categories (A1, A2, B1, and B2). They describe these

categories thusly:

The A1 storyline assumes a world of very rapid economic growth, a global

population that peaks in mid-century and rapid introduction of new and more

efficient technologies. A1 is divided into three groups that describe alternative

directions of technological change: fossil intensive (A1FI), non-fossil energy re-

sources (A1T) and a balance across all sources (A1B). B1 describes a convergent

world, with the same global population as A1, but with more rapid changes in

economic structures toward a service and information economy. B2 describes

a world with intermediate population and economic growth, emphasizing local

solutions to economic, social, and environmental sustainability. A2 describes a

very heterogeneous world with high population growth, slow economic develop-

ment and slow technological change.

With the assumptions from these families of scenarios, the estimated emissions paths are

then forecast using a number of models24 of economic growth. These models have assump-

tions about GDP growth in various sectors of country or regional economies. Using the

scenario assumptions on population growth, economic growth, and technological change,

the models then forecast what emissions will be. The dashed lines in Figures 11 and 12

24The models include: (1) Asian Pacific Integrated Model (AIM), (2) Atmospheric Stabilization Frame-
work Model (ASF), (3) Integrated Model to Assess the Greenhouse Effect (IMAGE), (4) Multiregional
Approach for Resource and Industry Allocation (MARIA), (5) Model for Energy Supply Strategy Alterna-
tives and their General Environmental Impact (MESSAGE), and (6)The Mini Climate Assessment Model
(MiniCAM).
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show the forecast emissions25 from fossil fuel and industrial processes over the medium and

short terms, respectively, from one scenario in each of the four categories. The A1 and B1

scenarios represent the best and worst cases, respectively, and fall well outside of the bulk

of scenario forecasts. The A2 and B2 scenarios are more in line with the median IPCC

forecasts. While the IPCC does not take a position on which of the scenarios represent

the likely path of emissions, their approach in general seems to be to cast a huge net of

possibilities, thus assuring that the actual lies somewhere within. In this instance, the

actual does lie within the best and worst case scenarios, however, preliminary data from

2010 indicate that emissions have since exceeded the worst case.

Contrasted with the approach of the IPCC discussed above, Holtz-Eakin and Selden

(1995) use an innovative approach that is much less reliant on assumptions about growth

in different sectors of national economies, how each of those sectors will contribute to emis-

sions, and how technology will evolve over time. Given a forecast of country populations,

the approach taken by Holtz-Eakin and Selden (1995) relies on only two assumptions: (1)

GDP growth rates will tend to converge, such that future growth will follow past growth

trends, and (2) the underlying relationship between per capita GDP and per capita CO2

will be the same across countries. The former is estimated with a simple model of GDP

growth and the latter using an environmental Kuznets curve model. Their approach will be

discussed in more detail in Section 3.3.1. Results of their analysis compared to the IPCC

forecasts are displayed in Figures 11 and 12, along with earlier forecasts by Nordhaus and

Yohe (1983), Reilly et al. (1987), and Manne and Richels (1992). The actual atmospheric

concentration of CO2 and IPCC forecast concentration are shown in Figure 11 for reference.

The Holtz-Eakin and Selden forecasts from regressions in logs and levels largely bracket

actual global emissions, however, did not pick up the large growth in emissions beginning

in 2003. The IPCC worst case scenario does predict such an increase, but it is unclear

from the published results if the IPCC forecast growth was due to increased emissions in

developing countries, developed countries, or both. From Figure 13 it is clear that the

increase in emissions in recent years is primarily from developing countries.

25Results are generally displayed as “Carbon Emissions” rather than “CO2 Emissions”. To convert the
latter to the former, simply divide by 3.664 (the mass of carbon per unit of CO2).



96

3.3 Empirical Analysis

3.3.1 Predicting Carbon Emissions from GDP Forecasts

Holtz-Eakin and Selden’s method is computationally more attractive than those used in the

IPCC forecasts because it relies primarily on past data to make its forecasts, rather than the

unknowables in the IPCC approach. The first requirement for forecasting CO2 emissions

is to develop some relationship between the level of emissions and economic conditions in

each county. An EKC analysis provides this type of a relationship. EKC theory suggests

that as a country initially develops, pollutant emissions will increase along with economic

development until the costs of the resulting environmental degradation, to both health and

environmental quality, are taken into account by a wealthier population. The demand for

improved health and less pollution thereby increases, causing per capita emissions to peak

and eventually decrease. This hypothesis would lead to a relationship that is quadratic in

per capita GDP. Some authors suggest that a cubic relationship could result if emissions

begin to increase after an initial plateau as new technologies may be discovered that lead to

increases in emissions through consumption of new goods. This new consumption may offset

any increases in efficiencies the new technology may afford. Incorporating the potential for

a quadratic or cubic relationship, the basic reduced form model is:

Eit = β0 + β1Yit + β2Y
2
it + β3Y

3
it + fi + γt + εit, (9)

where Eit is the per capita environmental indicator, in this case metric tons (mt) of CO2

emissions per person, of country i in year t, Yit is the per capita GDP of country i in year

t, fi are fixed effects for country i, and γt is a linear time trend which accounts for factors

such as technological change affecting all countries.

Holtz-Eakin and Selden (1995) point out that per capita GDP is used “to assess both the

direct and indirect consequence of growth, [therefore] those variables that are endogenous

consequences of growth–e.g. the composition of output, regulations and taxes influenc-

ing fossil fuel consumption, patterns of urbanization and sub-urbanization, etc.–should be

omitted from this simple model.” As a result, we are not able to attain causal linkages,
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but can understand the underlying relationship between growth and emissions, controlling

for country-specific and time-specific factors.

The estimated model from equation (9) can be used to forecast future carbon emissions

if forecasts of GDP can be made. Holtz-Eakin and Selden (1995, p. 92) forecast GDP

growth for all countries using the estimated equation:

̂ln(yit+1)− ln(yit) = 0.0178 + 0.00822ln(yit)− 0.00212[ln(yit)]
2 + τit. (10)

While they do not define τit, it appears to represent a forecast error term. This model cap-

tures the theory of convergence in growth rates between developed and developing countries.

Growth rates initially expand as a country develops, then plateau and begin to fall. I re-

estimate their model using the data as described in section 3.4 and use it to make in-sample

predictions of aggregate carbon emissions starting in 1991. Making these predictions is a

simple matter of first using the per capita GDP for country i in 1990 in the re-estimated

version of equation (10) to obtain a forecast of per capita GDP in 1991. With this forecast

of GDP, I forecast per capita CO2 using estimates of equation (9). To obtain each country’s

carbon emission I multiply this result by country i’s population in 1991 and divide by 3.664

(the amount of carbon by mass in each unit of CO2). Annual global emissions are then the

aggregate of each country’s carbon emissions calculated by this method for each year.

3.3.2 Predicting Carbon Emissions from a SES Measure for Developing Coun-

tries

Per capita GDP is a highly aggregated measure which may not have as much meaning for

developing countries. It can mask differences between countries with households that have

a fairly consistent level of wealth and those where resource wealth is highly concentrated

while large fractions of the population live at the subsistence level. In this latter group

of countries, emissions incurred by consumption are likely to be very low. This is evident

from an inspection of the unconditional GDP–emissions relationship in Figure 14, where the

same level of per capita GDP can be associated with a wide range of per capita emissions.
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To overcome this problem, a measure of household level data that still captures the relative

wealth of countries should correspond more closely to emissions. Like GDP, a measure of

household level data will account for emissions from the manufacture and consumption of

domestically produced goods and should partially account for emissions from the manu-

facture of exported goods through wages paid to households. The wages will be used to

expand household consumption, which will be picked up by household level data. What will

not be picked up by this data, however, are emissions from manufacturing where workers

are paid only a subsistence wage that does not result in discernible changes to household

characteristics or possessions. Since household income and expenditure data are difficult

to measure and interpret given the problems laid out in Vyas and Kumaranayake (2006)

and Gwatkin et al. (2007), data on observable household characteristics and possessions

has been extensively used since the late 1990s to assess the wealth of those households.

To improve on the shortcomings of using the GDP–emissions relationship to estimate

emissions in developing countries, I therefore use household characteristic and possession

data to create country socio-economic status (SES) indicators. Vyas and Kumaranayake

(2006), Houweling et al. (2003), and McKenzie (2003), for example, discuss how these types

of indicators can be generated at the household level and used to assess outcomes across

households. In this paper I generate SES measures at the country level and use them to

assess environmental outcomes. To create this SES measure I combine data on household

characteristics and possessions using weightings from a principal component analysis (PCA)

as described in Vyas and Kumaranayake (2006). The components are created by applying

a specific weighting to each of the household variables as follows:

PC1 = a11X1 + a12X2 + . . .+ a1nXn,

...

PCn = an1X1 + an2X2 + . . .+ annXn.

PC1,. . . , PCn is the vector of principal components, X1,. . . ,Xn is the vector of household

variables being combined, and a11,. . . , ann is the matrix of weights associated with each
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principal component and variable. In a PCA using unstandardized data, the weights are the

eigenvectors of the data’s correlation matrix. Each principal component then accounts for a

portion of the total variation in the original data. The amount of variation associated with

each of the n principal components is calculated as the eigenvalue, λ, of each eigenvector

divided by n. The components are ordered so that PC1 explains the largest variation and

PCn explains the smallest. PC1 is then taken to represent the country’s socio-economic

status for the year when the data was collected.

To determine the relationship between socio-economic status and per capita CO2 emis-

sions, I replace Yit in equation (9) with the SES measure of country i in year t:

Eit = β0 + β1Sit + β2S
2
it + β3S

3
it + γt + εit. (11)

Given the data limitations described in the next section, I am unable to use a fixed effects

specification, however, this appears to be unnecessary.

Making in-sample predictions of CO2 emissions using the results of equation (11) fol-

lows a method similar to that described in section 3.3.1. Unfortunately, the frequency of

household surveys used to generate data for the SES analysis precludes a forecast of the

type used for per capita GDP. Fortunately, however, the SES appears to grow in a roughly

linear fashion in each country as described in section 3.5.2. I therefore use a simple linear

growth path of the SES measure for each country to calculate in-sample carbon emissions

predictions for the developing countries that have been surveyed, combined with the GDP

analysis described in section 3.3.1 for all other countries.

3.4 Data

The per capita CO2 emissions data were obtained from the Oak Ridge National Laboratory

(ORNL) for 162 countries from 1980 through 2007. This is the most comprehensive source

of CO2 emissions data and is the primary source for previous studies. The data includes

CO2 emitted by fossil fuel consumption, the manufacture of cement, and gas flaring, but

notably omits the difficult to quantify emissions from changing patterns of land use. The
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latter could be significant for developing countries and if good estimates of this could be

obtained it would be of value for future studies. Per capita GDP were obtained for the same

countries and years from Penn World Table Version 7.0. Missing GDP data were obtained

from the World Bank’s World Development Indicators. Yearly country populations were

also obtained from the World Bank’s World Development Indicators. The GDP data are

expressed on a purchasing power parity basis in 2005 dollars to account for inflation and

currency purchasing power. The result is a panel over 28 years consisting of 4,190 total

observations.

Household characteristic and possession data used to generate the SES indicator were

collected by the Demographic and Health Survey (DHS) program. This program is a collab-

oration between Macro International and the U.S. Agency for International Development.

The surveys were conducted between 1990 and 2007 in 75 developing countries throughout

the world. The survey contains data relating to the construction of the house (only informa-

tion on flooring material was used in this study), the source of water, household sanitation

facilities, whether or not the house has electricity, and the presence of possessions such as

radios, telephones, televisions, bicycles, motorcycles, refrigerators, and automobiles. Table

38 provides a summary of the data on the 20 variables used to generate the SES indica-

tor. Each number represents the percentage of households which have the characteristic or

possession. Only the surveys from 63 countries contained all of the information required

to calculate an indicator. The result is a pooled sample of 140 observations on the 20

variables. A complete listing of the 63 countries is included in Table 39 in Appendix G.

The available data was collected at varying frequencies for the countries, so only one year

is available for some, while five years are available for others. Further, the years when data

was collected are not consistent across countries.

3.5 Results

3.5.1 Results of GDP EKC Analysis

I first generate pooled ordinary least squares (OLS) estimates and robust standard errors

of equation (9). I test for and confirm serial correlation in the residuals and rerun the
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OLS regression with robust standard errors clustered at the country level. I then estimate

the model using a fixed effects GLS procedure with heteroskedastic errors and an AR(1)

autocorrelation process, allowing for country-specific AR(1) parameters, ρi. Stern et al.

(1996) noted that simultaneity may be a problem if environmental degradation affects

economic output. Therefore, following Cole et al. (1997) I use a Hausman test to verify

the exogenity of current GDP in the EKC model, where lagged income is the instrumental

variable. OLS and panel GLS estimates are shown in Table 40. To highlight the problems

associated with using GDP to predict emissions in developing countries, I re-estimate model

(9) for those countries with less than $10,000 per capita GDP. Figure 14 compares the

resulting predicted per capita CO2 emissions from OLS and GLS fixed–effects estimations

to the actual emissions in each country each year (the prediction uses the average country

effect).

I next re-estimate equation (10) for GDP growth using a panel fixed effects regression.

The results of this regression, using robust standard errors clustered at the country level,

are presented in Table 42. The coefficients are similar in magnitude to those obtained by

Holtz-Eakin and Selden (1995) with data between 1951 and 1986.26 From this analysis,

GDP growth rates are forecast to peak at approximately $9,300 (2005 US dollars) and

fall slowly thereafter. Combined with estimates of equation (9) and country populations, I

calculate the path of total carbon emissions between 1991 and 2008. The results are plotted

in Figure 19 and labeled as “GDP (HE&S Method).”

3.5.2 Results of SES Analysis

Table 38 shows the weightings for the first principal component of each of the household

characteristics and possessions used to generate the socio-economic status measure. Figure

15 plots the calculated SES indicator for each country and year versus per capita CO2

emissions. A relatively smooth trend with few outliers is evident. Figure 16 compares

the per capita emissions versus SES relationship to the emissions versus per capita GDP

26The coefficients are not directly comparable for two reasons. First, Holtz-Eakin and Selden’s data were
in 1986 US dollars whereas mine are in 2005 US dollars. Second, Holtz-Eakin and Selden run regressions
using natural logs of data in thousands of dollars, whereas I use dollars. The constant and coefficient on
ln(yit) in Table 42 would therefore be expected to differ.
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relationship for the same countries and years. While no unambiguous relationship between

GDP and emissions is evident from the graph, a case could be made that emissions are

tending to flatten out above roughly $3,000 per capita. Such is not the case using a

household level measure of country wealth to predict emissions. Table 41 shows OLS

estimates of equation (11), which is used to predict emissions depending on a country’s

SES. The resulting predicted emissions curve is shown in Figure 15.

In order to make predictions of global annual carbon emissions using this SES–CO2

emissions relationship, a method must be devised to predict what each country’s SES

measure would have been between sample years, and also what it might be into the future.

Figures 17 and 18 are plots of the SES measure over time for the 25 developing countries

with survey data for three or more years. Trend lines are also displayed for each country,

with the slope displayed in the legend. The plots are divided between non-African and

African countries for ease of viewing. While the sample size is small and care must be

taken in drawing conclusions, rough approximations of how the SES evolves over time can

be made. Fifteen of these 25 countries display linear growth in SES with R2 values greater

than 0.90. Zambia shows a decline in SES over time. Of the remaining nine countries,

only linear models of Jordan and Peru have R2 less than 0.75. The average increase in

the SES of African countries is approximately 0.074 per year (standard deviation of 0.04),

while non-African countries experience a slightly higher 0.11 increase per year (standard

deviation of 0.06). The overall average increase is 0.09 (standard deviation of 0.05). There

are an additional 18 countries with only two data points each. The average rate of change

in SES for these 18 countries is also a growth of 0.091 per year, however, there is a good

deal of variation as the standard deviation for this group is 0.29.

The lack of data in this case suggests that the most appropriate SES growth forecast

model is a simple one that can be refined after additional surveys are conducted. I therefore

apply a 0.09 across the board growth in SES per year starting in 1991 for the 63 developing

countries for which survey data is available. I then forecast carbon emissions for each of

these countries each year from the estimates of equation (11). For all other countries, the

results described in Section 3.5 are used. The global annual carbon emissions forecast using
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this method are also displayed in Figure 19. This method indicates an improvement over

using per capita GDP to predict emissions in developing countries. A formal test of the

difference between the two forecasts is not conducted given the very broad assumption

about the growth in SES over time, which is likely to impart large errors in the resulting

carbon emissions. Directionally, however, the closer approximation of actual emissions is

not unexpected given the shape of the SES–emissions relationship compared to that of the

GDP–emissions relationship in developing countries.

While the SES approach toward predicting carbon emissions did not forecast the rapid

increase in emissions beginning in 2002 and 2003, there is a simple explanation for this:

China. Household surveys in China have not been conducted as part of the DHS, which

required using the GDP–emissions relationship instead. While it is unclear that the SES

approach would have predicted the rapid increase even if survey data from China was

available over several years before and after the increase, Figure 20 compares predictions

using the two methods to actual emissions if China is ignored. Using the GDP–emissions

relationship alone appears to yield good predictions up until 2002, at which point increasing

emissions in the developing world, even without the contribution of China, cause it to under

predict emissions. Using the SES–emissions relationship for developing countries appears

to over predict emissions. This could be the result of an oversimplified forecast for SES

growth.

3.6 Conclusions and Extensions

Rather than relying on complex models and guesses at possible futures to forecast car-

bon emissions, Holtz-Eakin and Selden (1995) use a simple computational approach with

straightforward models of GDP growth and the relationship between income and emissions.

I employ a similar approach, but attempt to improve on predictions of emissions in devel-

oping countries by using a measure of socio-economic status rather than GDP. This SES

measure can be generated from household characteristics and possessions survey data using

a principal component analysis, and to my knowledge has not been applied to the study of

environmental outcomes previously.
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Using this approach, I find that the SES–emissions relationship in developing countries

is a relatively smooth, quadratically increasing function. This is in stark contrast to the

ambiguous GDP–emissions relationship for the same countries. I also find that with an

assumption of linear growth in a country’s SES over time, this approach appears to improve

in-sample predictions of global carbon emissions. While data limitations precludes formal

testing of this proposition, these results provide a promising path for further study when

additional surveys are conducted.

Further work in the forecast of carbon emissions using this method will require addi-

tional years of household survey data, as well as the inclusion of large emitters like China.

Its absence from the DHS data is notable. This approach can potentially be applied to

study the relationship between wealth and the emission of other pollutants. While we are

not likely to see per capita carbon emissions peak and fall within a sample of develop-

ing countries, other pollutants with more local and directly discernible environmental and

health impacts may behave in such a manner when compared to SES.
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Appendix G: Figures

Figure 11 – Comparing Prediction Models: Actual (1950 through 2008) and Pre-
dicted Global Carbon Emissions
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Figure 12 – Comparing Prediction Models: Actual (1985 through 2008) and
Predicted Global Carbon Emissions
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Figure 13 – Global Carbon Emissions from Developing and Developed Countries
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Figure 14 – Developing Country CO2 Emissions per capita: 122 Countries between
1980 – 2007
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Figure 15 – SES vs CO2 Emissions in Developing Countries
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Figure 16 – Comparing SES and GDP per capita predictors of per capita CO2 Emissions in Developing Countries
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Figure 17 – SES Trends for non–African Countries
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Figure 18 – SES Trends for African Countries
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The slope of the trend line for each country is displayed in parentheses in the legend.
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Figure 19 – Comparing Actual Carbon Emissions to in-sample Predictions using the SES EKC Combined with
the GDP EKC (SES + GDP), as well as the GDP EKC on its own (GDP)
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Note: Minor differences in total emissions between this figure and Figures 11 and 12 are the result of the exclusion
of some smaller countries that do not have consistently reported data between 1980 and 2008 in this comparison.
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Figure 20 – Comparing Actual Carbon Emissions Excluding China to in-sample Predictions

 

4.0

4.5

5.0

5.5

6.0

6.5

1980 1985 1990 1995 2000 2005 2010

T
o
ta

l 
C

a
rb

o
n
 E

m
is

si
o
n
s 
F

o
r 
In

cl
u
d
ed

  
 C

o
u
n
tr

ie
s 

w
it

h
o
u
t 
C

h
in

a
  
(G

ig
a
to

n
s/

y
r)

 

Actual

SES+GDP

GDP (HE&S
Method)



113

Appendix H: Tables

Table 38 – Mean Household Percentages and Component Weights from SES PCA

Mean PC1 Weight Mean PC1 Weight

Piped Water 41.8 0.269 Electricity 45.7 0.323
Well Water 33.7 −0.225 Radio 58.1 0.201
Surface Water 16.4 −0.177 Television 36.9 0.323
Rain Water 1.6 0.078 Telephone 11.8 0.274
Tanker Truck 1.1 0.049 Refrigerator 24.4 0.328
Bottled Water 2.5 0.124 Bicycle 22.4 −0.225

Motorcycle 7.1 0.052
Car 7.6 0.259

Flush Toilet 27.1 0.307 Natural Floor 43.0 −0.295
Pit Toilet 42.6 −0.147 Rudimentary 9.6 0.099
No Facility 28.2 −0.192 Finished 46.8 0.248

Countries 63

PC1 λ/n 0.42
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Table 39 – Developing Countries Included in the Demographic and Health
Surveys for which Household Characteristic and Possession
Data is Available

Angola Egypt Moldova Senegal
Armenia Eritrea Madagascar Sierra Leone
Azerbaijan Ethiopia Maldives Swaziland
Benin Gabon Mali Togo
Burkina Faso Ghana Mozambique Turkmenistan
Bangladesh Guinea Mauritania Tanzania
Bolivia Guatemala Malawi Uganda
Brazil Haiti Namibia Ukraine
Central African Rep Indonesia Niger Uzbekistan
Cote d’Ivoire India Nigeria Vietnam
Cameroon Jordan Nicaragua Yemen
Congo Kenya Nepal South Africa
Congo Demo Rep Kyrgyz Republic Pakistan Zambia
Colombia Cambodia Peru Kazakhstan
Comoros Liberia Philippines Chad
Dominican Rep Morocco Rwanda Lesotho

Table 40 – Per Capita CO2 Emissions Pooled OLS and GLS Fixed Effects
Regression Results for the Full Sample of Developing and Devel-
oped Countries

——OLS—— —–GLS, FE—–

GDP (2005 $/person, PPP) 0.677∗∗∗ 0.732∗∗∗

(0.028) (0.073)
GDP2 −0.014∗∗∗ −0.016∗∗∗

(0.0015) (0.0022)
GDP3 1.0e-04∗∗∗ 1.0e-04∗∗∗

(2.0e-05) (2.0e-05)
Trend −0.031∗∗∗ −0.027∗∗∗

(0.006) (0.007)
Constant 0.094 0.020

(0.105) (0.338)

Observations 4,190 4,190
R2 0.651 0.330
F 1,162 45.91∗∗∗

Hausman Test of GDP Exogeneity 107

Robust standard errors clustered at the country level in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



115

Table 41 – Per Capita CO2 Emissions pooled
OLS Regression Results using the
SES Measure

——OLS——

SES 0.356∗∗∗

(0.089)
SES2 0.049∗∗∗

(0.015)
SES3 -0.006

(0.004)
Trend 0.005

(0.010)
Constant 0.513∗∗∗

(0.141)

Observations 140
R2 0.51
F (4, 135) 74.3 ∗∗∗

Robust standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 42 – Results from Estimation of per capita GDP
Growth Rate Model

ln(yit+1)− ln(yit) ——GLS, FE——

ln(yit) 0.0329∗

(0.0155)
[ln(yit)]

2 −0.0018∗

(9.0e-04)
Constant −0.134∗

(0.0657)

Observations 4,190
R2 0.06
F (2, 4187) 7.73∗∗∗

Robust standard errors clustered at the country level in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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