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Abstract

Advanced Sparse Concept Detection and Recognition in Biomedical Texts via
Few-Shot Learning Algorithms
By Yao Ge

Many natural language processing (NLP) problems involving biomedical texts
have limited annotated data available. Traditional supervised machine learning and
deep learning algorithms require large volumes of annotated data and underperform
with small annotated datasets. Few-shot learning (FSL) methods aim to enable ef-
fective learning in the absence of large annotated datasets, but the performances of
FSL-based NLP methods are suboptimal, particularly for biomedical texts, limiting
their application in real-world settings. The overarching objective of this thesis is
to rigorously validate the current state-of-the-art in FSL methods for named entity
recognition (NER) from biomedical texts and to propose novel FSL approaches that
can improve upon the state-of-the-art methods.

Given the emerging interest and early-stage development of FSL approaches in
biomedical NLP, we conducted a systematic review and benchmarking of existing
methods, revealing their underperformance on most biomedical datasets. To address
data sparsity problems in FSL, we proposed a novel method combining data augmen-
tation with a nearest neighbor classifier (DANN). We extended this method by adding
a synthetic data generation module (HILGEN) that leverages hierarchical informa-
tion of the Unified Medical Language System (UMLS) and information generated by
large language models (LLMs). Finally, building on progress made in recent times,
we further enhanced NER performance by leveraging LLMs with prompt engineering
and a dynamic prompting strategy involving retrieval-augmented generation (RAG).

These methods improved NER performance across multiple datasets in FSL set-
tings, including MIMIC III, NCBI disease, BC5CDR, and a dataset (Reddit-Impacts)
specifically created as part of this research. For example, on MIMIC III in a 5-shot set-
ting, BERT’s near-zero F1 score improved to 19.69 with our DANN model, 58.68 with
HILGEN-generated synthetic data, and 76.24 using RAG-based dynamic prompt-
ing. Similar gains were observed across other datasets. Our research demonstrates
that combining enriched data representation, domain knowledge, synthetic data, and
context-aware prompting effectively addresses data sparsity, enhancing biomedical
NER in FSL settings. These advancements mark significant progress toward opera-
tionalizing FSL-based NER systems for biomedical applications.
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Chapter 1

Introduction

1.1 Overview

The task of named entity recognition (NER) aims to identify entity names in unstruc-
tured texts, and classify them into pre-defined entity types. In biomedical domain-
specific datasets, common entity types include drug names, genes, adverse drug events
(ADESs), indications, and symptoms, to name a few [22, 78, 159]. In recent years, deep
neural network based methods (a.k.a., deep learning) have achieved significant suc-
cess in NER tasks when large labeled datasets are available [15, 89, 106], especially
using self-supervised pre-trained language models (PLMs), such as BERT [35] and
RoBERTa [111].

There are, however, still many open challenges in NER, especially for biomedical
domain-specific texts and when the number of annotated instances is small [66]. In
supervised learning settings with limited training instances, the application of tra-
ditional NER methods typically leads to overfitting (i.e., the learner is incapable of
generalizing the characteristics of the training data) [36, 103|. Within the biomedical
domain, text-based datasets are often small (e.g., for rare or novel diseases), and the

availability of labeled data is limited. Even when large labeled datasets are created



for targeted tasks, due to restrictions associated with data privacy and patient secu-
rity, it can be difficult or impossible to release or share them if they originate from
biomedical sources, such as electronic health records (EHRs). Oftentimes, there is
just not enough data to annotate, and even when data is available, manually annotat-
ing them can be time-consuming, error-prone and/or costly, and require high-skilled
annotators [48].

The paradigm of few-shot learning (FSL) presents viable approaches to address
the issue of learning from datasets where labeled data is sparse. Early FSL research
progress in natural language processing (NLP) has been notably slower, primarily due
to greater difficulties posed by natural language data and the lack of unified bench-
marks in few-shot NLP [69]. Achieving high machine learning performances has also
been challenging in few-shot settings. Text-based data often contain ambiguities and
connotations that make generalization complicated. The presence of domain-specific
terminologies, expressions, and associations in biomedical texts further exacerbates
the difficulties of FSL [66]. Due to the potential utility of FSL in biomedical NLP, re-
search on the topic is receiving growing attention, and progress has primarily occurred
by building on a small set of related but distinct promising categories of approaches.

During the course of the research associated with this thesis, research within the
field of FSL has undergone a significant shift. The widespread recognition and utiliza-
tion of large language models (LLMs) such as the Generative Pre-trained Transformer
(GPT [13, 135]) series have opened up unprecedented opportunities to explore and
evaluate their potential in FSL settings [13]. These models, known for their ability
to generate human-like text, have demonstrated remarkable proficiency in NLP tasks
with relatively small training data. By leveraging the vast knowledge acquired during
pre-training, LLMs can often effectively generalize from a few examples, and offer a
promising approach to tackle unmet challenges in NLP and beyond. Designing effec-

tive prompts that guide the model to understand and perform the task correctly is



also a critical aspect of leveraging LLMs for FSL [105, 186]. Consequently, the in-
creasing popularity of LLMs presents an exciting avenue for research and application
in the space of FSL, providing a platform to investigate the extent of their capabilities
and optimize their performance for distinct tasks.

In this thesis, we address the problem of sparse annotated data for NER in biomed-
ical texts, a critical challenge exacerbated by the complexities of biomedical terminolo-
gies, privacy restrictions, and the resource-intensive nature of manual annotation. Our
focus is on advancing the capabilities of FSL to overcome some of these challenges,
and move the field forward towards robust and scalable biomedical NER systems.
Specifically, we propose innovative approaches that leverage semantic augmentation,
synthetic data generation through domain-specific knowledge bases like UMLS, and
dynamic prompting within a RAG framework to enhance contextual understanding
and performance, even in low-resource settings. This work seeks to bridge the gap
between the current limitations of FSL-based NER methods and their potential for

impactful applications in biomedical informatics.

1.2 Few-shot Learning for Biomedical Named Entity
Recognition

In this section, we introduce some of the concepts of NLP that are associated with FSL
and NER, emphasizing their importance and challenges in biomedical applications.
Specifically, we explain how the problem of data sparsity in biomedical text pro-
cessing necessitates the development of innovative FSL approaches. These methods
aim to enable effective learning from limited annotated data, addressing challenges
such as the sparsity of domain-specific entity types, the variability of biomedical ter-
minologies, and the difficulties in generalizing to new entity classes. By exploring

the interplay between FSL methodologies, NER tasks, and advancements in lever-



aging LLMs, we outline the current state of research and the strategies proposed to

overcome the unique challenges in biomedical informatics.

1.2.1 Few-shot Learning

Few-shot learning is a machine learning paradigm designed to enable models to learn
and perform specific tasks with only a limited amount of labeled training data. Unlike
traditional supervised learning approaches that require large annotated datasets to
achieve high performance, FSL aims to generalize from a small number of examples,
often as few as one or five per class [130, 154]. This capability is particularly critical
in domains where data annotation is labor-intensive, expensive, or constrained by
domain expertise, such as biomedical informatics, where specialized knowledge is
required to label data accurately [82].

The significance of FSL lies in its potential to address the limitations of annotated
data sparsity without compromising performance [41|. By enabling effective learning
in low data scenarios, FSL opens avenues for applying machine learning techniques
in settings where traditional methods fail [171]. However, the inherent challenges of
FSL make it a non-trivial problem. The limited availability of labeled data restricts
the model’s ability to capture diverse patterns, leading to issues such as insufficient
coverage of the feature space [80, 88]. Moreover, models often struggle to generalize
to unseen examples, as the paucity of training data leads to overfitting [144]. These
challenges necessitate the development of algorithms and architectures specifically

tailored to the unique demands of FSL.

1.2.2 FSL for Biomedical NER

Named Entity Recognition is a core task in NLP that aims to identify and classify
entities within text into predefined categories such as names of people, organizations,

locations, or domain-specific terms [125]. The task involves two primary steps: locat-



ing entity mentions within unstructured text and assigning them to the appropriate
category. NER is foundational for numerous downstream applications, serving as a
critical building block for tasks such as information extraction, question answering,
and text summarization [100]. Despite its straightforward definition, NER is a non-
trivial problem due to the inherent complexity of human language, which includes
variations in syntax, ambiguity, and the presence of out-of-vocabulary terms [136].
The development of robust NER systems often requires advanced algorithms capa-
ble of understanding linguistic nuances and incorporating contextual information to
resolve ambiguities effectively [1, 39, 100]. As a result, NER remains an active area
of research in NLP, with methods evolving to address its diverse challenges across
different languages and domains.

In the biomedical domain, NER involves identifying and classifying specific en-
tities, such as names of diseases, drugs, anatomical terms, or procedures, within
unstructured text [60]. It plays a critical role in extracting meaningful information
from clinical narratives, scientific literature [96], and other lexical resources [184],
enabling downstream applications such as information retrieval |65, 76|, knowledge
graph construction [21, 62|, and decision support systems |[72]. Unlike general NER
tasks, biomedical NER is particularly challenging due to its dual objectives of entity
detection (locating entity mentions in text) and entity classification (assigning these
mentions to predefined categories) [170]. These objectives are inherently complex,
as biomedical NER relies heavily on understanding contextual information to disam-
biguate terms that often appear in highly variable, domain-specific language [54].

FSL for NER magnifies these challenges due to the limited number of annotated
examples typically available, particularly in low-resource settings [44|. Biomedical
NER, in particular, faces significant difficulties because of the sparse distribution of
entity labels. Annotating clinical narratives or scientific literature also often requires

domain expertise [2|, making large-scale labeling infeasible. In few-shot scenarios,



the available training data may cover only a small fraction of possible entity types,
exacerbating the problem of generalizing to unseen categories during inference.
Another key difficulty in biomedical NER under FSL lies in the ability to generalize
to new entity classes that are absent from the training set [149|. For example, a model
trained on mentions of drugs and diseases may need to identify entirely new terms
related to anatomical structures or procedures, which are semantically distinct. This
highlights the need for models that can leverage domain knowledge and contextual
cues effectively to bridge the gap between limited training data and the broader range
of biomedical entities encountered in practice [57, 185]. These challenges underscore
the importance of developing innovative FSL approaches that integrate contextual

understanding and domain adaptation for biomedical NER tasks.

1.2.3 Early Approaches to FSL for NER

Early FSL research primarily focused on the field of computer vision, particularly
with the goal of replicating how children learn to distinguish objects with minimal or
no supervision [51, 137, 167]. FSL research progress in NLP has been notably slower,
primarily due to greater difficulties posed by natural language data and the lack of
unified benchmarks in few-shot NLP [69]. Attaining high machine learning perfor-
mances has also been challenging in few-shot settings. Unlike images, text-based
data often contain ambiguities and connotations that make generalization compli-
cated. The presence of domain-specific terminologies, expressions, and associations
in biomedical texts further exacerbates the difficulties of FSL [66]. Due to the po-
tential utility of FSL in biomedical NLP, research on the topic is receiving growing
attention, and progress has primarily occurred by building on a small set of related
but distinct promising categories of approaches.

As only small numbers of labeled examples are available in the training data,

prior knowledge, which is the knowledge the learner has before training, plays an



indispensable role in FSL [148|. Using prior knowledge, FSL can potentially generalize
to new tasks in an effective manner as the small number of training instances are
sufficient for fine-tuning the models for the task [171]. Wang et al. [171] divides FSL
methods into three categories based on how prior knowledge is used: (i) data, which
use prior knowledge to augment training data; (ii) model, which use prior knowledge
to constrain hypothesis space; and (iii) algorithm, which use prior knowledge to guide
how parameters are obtained.

One set of promising FSL approaches involves meta-learning (a.k.a., “learning to
learn” [67]). Meta-learning has perhaps been the most common framework for FSL,
and is a branch of metacognition, which is concerned with learning about one’s own
learning and learning processes [147]. In the classical machine learning framework,
training data is used to optimize a model for a specific task, and a separate set is used
to evaluate the performance of the trained model. In the meta-learning framework,
a model is trained using a set of training tasks, not data, and model performance is
evaluated on a set of test tasks. In the experimental setting, the learner obtains prior
knowledge by incorporating generic knowledge across different tasks (i.e., algorithm
level prior knowledge). The small number of labeled instances for the target task is
then used to fine-tune the model. Figure 1.1a illustrates the meta-learning framework
using a simple example—an entity recognition model is trained using different tasks
involving news and music data, and is evaluated on a biomedical task.

Several additional classes of FSL methods have evolved over the years, some
building on meta-learning. Ravi and Larochelle [137] presented a long-short term
memory (LSTM) based meta-learner that is trained and customized separately for
mini-batches of training data (referred to as episodes), rather than as a single model
over all the mini-batches. Separately, matching networks were recently proposed,
and they attempt to use two embedding functions (i.e., functions that project data

into vector space while capturing relevant semantics)—one for the training sets and



one for the test sets—to imitate how humans generalize the knowledge learned from
examples. The framework attempts to optimize the two embedding functions from
the training (support sets) and the validation examples (query sets), and attempts to
measure how well the trained model can generalize [7, 167|. Figure 1.1b illustrates
the functionality of matching networks in a simplified manner. A variant of matching
networks utilizes active learning by adding a sample selection step that augments the
training data by labeling the most beneficial unlabeled sample (i.e., model level prior
knowledge).

Another related class of FSL approaches known as metric learning employs distance-
based metrics (e.g., nearest neighbor). Given a support set, metric learning methods
typically produce weighted nearest neighbor classifiers via non-linear transformations
in an embedding space, and the examples in the support set close to the query exam-
ple (based on the metric applied) are used to make classification decisions, imitating
how humans use similar examples or analogies to learn. Prototypical networks [153],
yet another similar class of approaches, particularly attempt to address the issue
of overfitting due to small training samples by generating prototype representations
of classes from the training samples, similar to how humans summarize knowledge
learned from examples. Prediction of unknown data samples can be performed by
computing distances to the class prototypes (e.g., support set means), and choosing
the nearest one as the predicted label. Figure 1.1c visually illustrates the function-
ality of a prototypical network. A semi-supervised variant of prototypical networks
applies soft assignment on unlabeled samples, and incorporates these as prior knowl-
edge (i.e., data level prior knowledge. Transfer learning, a commonly used approach
in FSL, also incorporates prior knowledge at the data level as knowledge learned from
data in prior tasks are transferred to new few-shot tasks [129].

The problems that these and other FSL methods attempt to solve are closely

aligned with the practical challenges faced by many biomedical NLP tasks. While a



number of FSL strategies have been explored for biomedical texts by distinct research
communities (e.g., health informatics, computational linguistics), there is currently no
review that compares the performances of these strategies or summarizes the current
state of the art. There is also no study that has compiled the reported performances
of FSL methods on distinct biomedical NLP data/tasks. We attempt to address these
gaps in this systematic review. Specifically, we review FSL methods for biomedical
NLP tasks, and characterize each reviewed article in terms of type of task (e.g.,
text classification, NER), primary aim(s), dataset(s), evaluation metrics, and other
relevant aspects. We summarize our findings about FSL methods for biomedical
NLP, and discuss challenges, limitations, opportunities and necessary future efforts

for progressing research on the topic.

1.2.4 LLMs on FSL for Biomedical NER

Recent advancements highlight the potential of large language models (LLMs) such
as Generative Pre-trained Transformer (GPT), for few-shot NER, especially when
combined with domain-specific knowledge bases [168, 169]. The capabilities of LLMs
offer an opportunity to evaluate their capabilities in few-shot scenarios by generating
human-like texts and providing external knowledge with limited examples [13]. LLMs
excel in generating natural language across domains and tasks, and their adaptabil-
ity is enhanced by prompt-based strategies, which can significantly improve accu-
racy [105, 186].

Information extraction from biomedical text involves deriving valuable insights
from sources such as biomedical records, which often contain scarce, sensitive, and
imbalanced data. The ability of LLMs to generate coherent and contextually rele-
vant text offers new opportunities to address the intricacies of NLP tasks involving
biomedical data. By generating synthetic texts that closely mimic real-world biomed-

ical text, LLMs can provide additional training data that enhances the performance
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(a) Meta-learning: each task mimics the few-shot scenario and
can be completely non-overlapping. Support sets are used to
train; query sets are used to evaluate the model.
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(b) Matching networks: a small support set contains some in-
stances with their labels (one instance per label in the figure).
Given a query, the goal is to calculate a value that indicates
if the instance is an example of a given class. Two embedding
functions g() and f() are applied to transform the inputs.
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(c) Prototypical network: a class’s prototype is the mean of its
support set in the embedding space. Given a query, its distance
to each class’s prototype is computed to decide its label.

Figure 1.1: Architectures of three popular few-shot learning methodologies. (a) Meta-
learning. (b) Matching networks. (c) Prototypical network. Note: (b) and (c) use
the DASH 2020 Drug Data [52].
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of downstream tasks, such as NER and other critical applications in healthcare [152].
This ability to augment existing datasets with high-quality, contextually relevant text
could significantly improve the accuracy and reliability of biomedical information ex-
traction models. However, LLMs like GPTs might face problems like hallucination [6]
and homogenization [5] when dealing with specialized biomedical concepts.

The advent of LLMs has shifted the focus towards prompt-based learning, which
has shown promise in few-shot NLP [110, 133|. Figure 1.2 shows the shifts from three
popular few-shot learning models to LLMs. The potential of LLMs and prompt-based
strategies in few-shot settings is demonstrated by techniques like LM-BFF [104], which
fine-tunes models using prompts, and PPT [55], which enhances prompt effectiveness
through unsupervised pre-training. Incorporating biomedical knowledge bases like
UMLS has also been explored [4, 121], demonstrating improvements over general-
purpose models. Leveraging knowledge from both domain-specific knowledge bases
and in-context information extracted by LLMs, however, is still relatively new. Thus,
this presents a research gap that may have significant utility for challenging NLP
tasks. We explore this potential utility on the task of few-shot NER using multiple

biomedical datasets.

1.3 Research Questions

Biomedical NER remains a challenging task, especially in low data settings. As
discussed, FSL offers a promising approach to addressing the data sparsity problem
by enabling models to learn effectively from limited labeled examples. However,
significant gaps persist in this area. Existing FSL approaches for open-domain NER
often fail to generalize well to biomedical datasets due to the unique linguistic and
domain-specific challenges, such as the variability of biomedical terminology and the

need for contextual disambiguation. Moreover, the lack of standardized few-shot
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Figure 1.2: The average and standard deviation of critical parameters for Large Lan-
guage Models.

datasets and benchmarking practices for biomedical NER hinders progress in the
field.

To overcome these limitations, it is critical to explore innovative solutions that
address data sparsity and adapt to the complex linguistic patterns of biomedical text.
This thesis aims to fill these gaps by answering the following research questions, which
collectively address the challenges and opportunities for advancing few-shot learning

methods in biomedical NER:

e RQ1: How do existing FSL approaches for open-domain NER perform on

biomedical datasets?

e RQ2: How can we address the challenge of data sparsity via data augmentation

strategies?

e RQ3: How can we leverage knowledge from the Unified Medical Language Sys-
tem (UMLS) and LLMs to generate synthetic training examples for effectively

expanding a few-shot dataset?
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e RQ4: How can we employ effective techniques to transform static prompts
into dynamic prompts for improving few-shot NER with retrieval augmented

generation (RAG)?

Our contributions may be summarized as follows:

e C1: We conducted an in-depth review of FSL methods for biomedical NLP
tasks [48]. Our findings revealed the lack of standardized few-shot datasets
and benchmarking work for biomedical NER. We also proposed possible future

research directions for few-shot biomedical NER.

e C2: We performed extensive benchmarking experiments to conduct head-to-
head relative performance comparisons of FSL systems on public NER datasets,

which demonstrated their severe underperformance [47].

e C3: We introduced REDDIT-IMPACTS, a challenging NER dataset representing
clinical and social impacts of substance use mentioned on social media, which
is naturally suitable for FSL research due to the sparse occurrence of these

concepts [50].

e C4: We proposed a novel method for FSL-based NER that uses data augmen-
tation combined with a nearest neighbor classifier to address the data sparsity

problem, and we also explored the influences of different distance metrics [49].

e C5: We explored knowledge augmentation methods based on the UMLS for
improving NER in few-shot settings. We further leveraged LLMs for generating
synthetic data to supplement UMLS knowledge to boost NER performance in

the biomedical domain.

e C6: We explored the viability of employing LLMs for the extraction of named

entities by utilizing task-specific static prompt engineering techniques, then en-
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hanced it by employing RAG-based dynamic prompting, which further improves

biomedical NER in few-shot settings.

While contributions C1-C3 are aimed at answering RQ1, C4 and C5 are motivated

by RQ2 and RQ3, respectively, and C6 attempt to answer RQ4.

Figure 1.3 visually illustrates the research questions addressed and contributions

made by this thesis.
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Figure 1.3: Overview of my research in FSL, including my contributions on liter-
ature review, benchmarking, proposing a new dataset, data augmentation method,
synthetic data generation method and RAG-based dynamic prompting techniques to
improve performance on inference from LLMs.

1.4 Thesis Outline

Chapter 2 provides a detailed overview of relevant literature on FSL for NER, with

a focus on biomedical applications. It identifies gaps in existing approaches, includ-
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ing the lack of standardized datasets, inconsistent evaluation strategies, and limited
adaptability to the complexities of biomedical text. By synthesizing findings from
prior studies, this chapter highlights the need for tailored methods and resources to
address the unique challenges of biomedical NER in few-shot settings, forming the
foundation for the research contributions in this thesis.

Chapter 3 presents a detailed explanation of the data we use. In particular, it
discusses our corpus, which is specialized for few-shot NER. It also presents various
corpus statistics, and the annotation process which was carried out as part of this
research.

Chapter 4 describes our benchmarking work, which compares the performance
of traditional NER models (e.g., BERT-Linear Classifier, BERT-CRF, SANER) and
FSL-based models (e.g., StructShot, NNShot, Few-Shot Slot Tagging, ProtoNER)
across five biomedical text datasets. The results demonstrate that while traditional
models perform well with sufficient training data, all models exhibit poor performance
in low data scenarios, highlighting the need for further advancements in FSL methods.

Chapter 5 details our DANN model, which combines semantic augmentation with
a nearest neighbor classifier to address data sparsity in few-shot biomedical NER.
Evaluated across five biomedical datasets, DANN demonstrates improved perfor-
mance over baselines in several tasks, with Manhattan and 3-norm distances per-
forming best under specific settings. However, challenges remain in noisy datasets
like social media-based biomedical texts, highlighting the need for further domain-
specific optimizations.

In Chapter 6, we identify possible approaches for generating synthetic data to
address the challenges of data sparsity in few-shot biomedical NER. The proposed
framework—HILGEN—Ileverages UMLS hierarchical knowledge and GPT-3.5 to cre-
ate diverse and contextually rich training examples. By incorporating related con-

cepts, parent-child relationships, and synthetically generated sentences, HILGEN en-
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hances model performance across multiple datasets. The ensemble method, combining
UMLS and GPT-generated outputs, further boosts precision and recall, showcasing
the synergy between structured domain knowledge and generative models for tackling
data limitations in biomedical NER.

Chapter 7 explores the transition from static to dynamic prompting. It begins
by addressing the limitations of static prompts, which rely on predefined templates,
and demonstrates their effectiveness as a baseline. The chapter then introduces a
RAG-based dynamic prompting framework, highlighting its ability to adapt to con-
textual relevance, thereby significantly enhancing performance in low-resource sce-
narios. Comparative evaluations underscore the advantages of dynamic prompting
over static methods in improving model flexibility and accuracy.

Finally, in Chapter 8, we conclude with a summary of the thesis, outlining future

directions and possible applications of the work.
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Chapter 2

Literature Review

Few-shot learning, also referred to as low-shot learning, is a machine learning paradigm
where models learn to make predictions on a new class with only a small number of
examples [153, 162]. This contrasts with traditional deep learning models that re-
quire large amounts of data [36, 103|. The goal of FSL is to train a model that
can generalize to new classes with only a few examples, which makes it particularly
useful for fine-grained classification tasks such as NER tasks, where obtaining large
amounts of data for each class can be challenging, although it is conceptually possible

to accomplish the tasks with small numbers of examples [90].

2.1 Search strategy

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) protocol to conduct this review [123]. FSL for NLP is a relatively recent
research topic, so we concentrated on a short time range for our literature search—
January 2016 to August 2021. We searched the following bibliographic databases to
identify relevant papers: (1) PubMed/Medline, (2) Embase, (3) IEEE Xplore Digital
Library, (4) ACL Anthology, and (5) Google Scholar, the latter being a meta-search

engine, not a database. We included ACL Anthology (the primary source for the
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latest NLP research) and IEEE Xplore, in addition to EMBASE and PubMed/Med-
line, because much of the methodological progress in FSL has been published in
non-medical journals and conference proceedings. At the time of searching (Septem-
ber 2021), ACL Anthology hosted 71,290, and IEEE Xplore hosted over 5.4 million
articles, although most articles in the latter did not focus on NLP or medicine. Over
recent years, preprint servers have emerged as major sources of the latest information
regarding research progress in computer science and NLP, and we used Google Scholar
primarily as a medium for searching these preprint servers or published papers from
other sources. Note that we also searched the ACM Digital Library*, but discovered
no additional articles. Hence, we do not report it as a data source for our review.
We applied marginally different search strategies depending on the database to

account for the differences in their contents. We used three types of queries:

1. Queries focusing on the technical field of research (phrases included: ‘natural
language processing’, ‘text mining’, ‘text classification’, ‘named entity recogni-

tion’, and ‘concept extraction’);

2. Queries focusing on the learning strategy (phrases included: ‘few-shot’, ‘low-

shot’, ‘one-shot’, and ‘zero-shot’); and

3. Queries focusing on the domain of interest (phrases included: ‘medical’, ‘clini-

cal’, ‘biomedical’, ‘health’, ‘health-related’).

All articles on PubMed and Embase fall within the broader biomedical domain,
so we used combinations of the phrases in 1 and 2 above for searching these two
databases, leaving out the phrases in 3. All articles in the ACL Anthology involve
NLP, so we used phrases from 2 and 3 for this source. For IEEE Xplore and Google
Scholar, the articles can be from any domain and on any topic, so we used combi-

nations of all three sets of phrases for searching. PubMed, Embase, and IEEE only

*https://dl.acm.org/
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returned articles that entirely matched the queries. However, ACL Anthology and
Google Scholar retrieved larger sets of articles and ranked them by relevance. For
ACL Anthology, the articles retrieved were reviewed sequentially in decreasing order
of relevance. For each query combination, we continued reviewing candidate articles
until we came across at least two pages (about 20 articles) of no relevant articles,
at which point we decided that no relevant articles would be found in the following
pages. Since FSL is a relatively new research area, we anticipated that there would be
some relevant research papers that are not yet indexed in PubMed, Embase, or ACL
Anthology. Specifically, preprint servers such as arXiv, biorXiv, and medrXiv are
very popular among machine learning and NLP researchers as they enable the pub-
lication of the latest research progress early. We used Google Scholar as an auxiliary
search engine to identify potentially relevant articles indexed in such preprint servers
or other sources (e.g., Open Review'). Google Scholar, like ACL Anthology, sorts re-
turned articles by relevance, but the total number of articles returned is much larger.
For this search engine, therefore, we reviewed the top 40 articles returned by each

query combination, excluding those that were retrieved from the other databases.

2.2 Study selection and exclusion criteria

All articles shortlisted from initial searches were screened for eligibility by two authors
of the manuscript (YGe and AS). We removed duplicate articles and those that either
did not include at least one dataset from the biomedical domain or did not involve
NLP. While it was always possible to identify the technical field /topic (NLP or not)
from the titles and abstracts, to determine domain, we had to review full articles
because a subset of papers included multiple datasets, and only some of these datasets
were from the biomedical domain. We excluded papers if none of the datasets were

related to medicine/health, or did not explicitly focus on few/low-shot settings, and

"https://openreview.net/
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reviewed the remaining articles.

2.3 Data abstraction and synthesis

We abstracted the following details from each article, if available: publication year,
data source, primary research aim(s), training set size(s), number of entities/classes,
entity type for training, entity type for evaluation/testing, primary method(s), and
evaluation methodology. For studies including data from multiple sources, we only
abstracted those related to health/medicine. In terms of primary aim(s), some stud-
ies reported multiple objectives, and we abstracted all the NLP-oriented ones (e.g.,
text classification, concept extraction). With respect to training set sizes, we ab-
stracted information about the number of instances that were used for training, and,
if applicable, how larger datasets were reconstructed to create few-shot samples. We
also extracted the number of labels for each study/task; for NER /concept extraction
methods, we identified the number of entities/concepts, and for classification, we iden-
tified the type of classification (i.e., multi-label or multi-class) along with the number
of classes. We also noted down the training domain(s) and test/evaluation domain(s)
for each few-shot method, when applicable. Abstracting primary approach(es) and
evaluation methodology was more challenging due to the complexities of some of the
model implementations, and we reviewed and summarized the descriptions provided
in each paper. For evaluation, we abstracted evaluation strategies and reported per-

formances.
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Figure 2.1: PRISMA flow diagram for the process of depicting the number of articles
at each stage of collection and filtering.

2.4 Results

2.4.1 Data collection results

Our inclusion criteria were met by 31 studies. Initial searches retrieved 1241 articles
from PubMed, Embase, IEEE Xplore, and ACL Anthology, and an additional 459

from Google Scholar. Figure 2.1 presents the screening procedures and numbers at
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each stage. After initial filtering, we reviewed 46 full-text articles for eligibility, and
excluded 15 from the final review. The first included study was from 2018, and most
articles (22/31; 71%) were from 2020 and 2021, although for the latter year, only

studies published prior to August 31 were included.

2.4.2 Dimensions of characterization

Table A.1 in Appendix A summarizes some fundamental characteristics of each study
(authors, year, data source, retrieval search engine, and number of entities/classes);
further abstracted statistics described in this paragraph are provided in Table S1 of
the supplement (research aims, training set sizes, and training and evaluation entity
types). In terms of training data sizes, 7/31 (23%) studies included zero-shot scenarios
(i.e., prediction without any labeled instances) into their research scope, including
two on zero-shot learning only. 1-shot, 5-shot, and 10-shot were the most common
‘shot’ settings, representing 12/31 (39%) of the reviewed studies. 6/31 (19%) reviewed
studies used samples of larger datasets for training, often specified in percentages (e.g.,
25%, 50%). 3/31 (10%) studies did not explicitly specify shot values. 2 studies did not
perform experiments in accordance with traditional few-shot scenarios, and divided
all labels into three categories according to the frequency of occurrences (frequent
group contained all labels occurring more than 5 times; few-shot group contained
labels occurring between 1 and 5 times; and the zero-shot group included labels that
never occurred in the training dataset), causing some labels to have large numbers of
annotated samples. 11/13 (85%) few-shot NER tasks explicitly mentioned the number
of entity types. For few-shot classification, 50% (5/10) specified the approximate
number of classes. 7/31 (23%) studies involved cross-domain transfer, with different
domains of training and test/evaluation data. In most cases, however, the training
sets and test sets used were from the same domain.

Table A.2 in Appendix A provides summaries of the methods proposed, and the
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evaluation strategies. Variants of neural network based (deep learning) algorithms,
such as Siamese Convolutional Neural Networks [178|, were the most common. Only
3/31 (10%) articles proposed new datasets, and 2/31 (7%) presented benchmarks
for comparing multiple few-shot methods. Evaluation strategies had considerably
less diversity. Almost all evaluation methodologies for classification tasks involved
standard metrics such as accuracy, precision, recall, and F;-scores, and NER tasks

mainly relied on Fi-scores only.

2.4.3 Data characteristics

We grouped the datasets used into three categories: (i) publicly downloadable (de-
identified) data; (ii) datasets from shared tasks; and (iii) new datasets specifically
created for the target tasks. We found that datasets belonging to (ii) and (iii) were
particularly difficult to obtain—shared task data are often difficult to obtain after
their completion, and specialized datasets are often not made public, particularly if
they contain protected health information (PHI). Studies using datasets from category
(i) often reported performances on multiple datasets, consequently making the evalua-
tions more comparable. Overlap of datasets among different studies was relatively low,
making comparative analyses difficult. The MIMIC-III (Medical Information Mart
for Intensive Care) dataset [78|, was the most frequently used across studies (7/31;
23%), particularly for few-shot classification and NER tasks. This was likely due to
the public availability of the dataset and the presence of many labels in it (7000) [141].
6 papers used datasets from shared tasks, of which 4 were from BioNLP [11, 127],
one from the Social Media Mining for Health Applications (SMM4H) [174], and one
from the Medical Document Anonymization (MEDDOCAN) shared task [120]. Only
3 papers constructed new datasets, reflecting the paucity of corpora built to support

FSL for biomedical NLP.
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Reconstruction of datasets

There are 19/31 (61%) reviewed studies reconstructed existing datasets for conducting
experiments in few-shot settings (i.e., subsets of labeled instances were extracted from
larger datasets). For multi-label text classification tasks, especially when the number
of labels is very large, and for few-shot NER tasks, reconstructing datasets can be
complex. A common way to represent data is K-Shot-N-Way, meaning that each of N
classes or entities contains K labeled samples, as well as several queries from each class
for each test batch. However, for multi-label classification tasks, each instance may
have more than one class, often making it difficult to ensure that the reconstructed
datasets included only K labeled samples for each class. Similar challenges exist for
NER tasks, as each text segment may have overlapping entities. 39% (12/31) of the
studies did not construct special datasets to represent few-shot settings. 16% (5/31)
used existing datasets with high class imbalances, and the few-shot algorithms were

focused on sparsely-occurring labels.

2.4.4 A summary of methodologies

23/31 (74%) studies addressed text classification or NER/concept extraction tasks

while only 8 (26%) studies focused on others.

Few-shot text classification

10/31 studies (33%) focused on few-shot classification, with half of them involving
multi-label text classification. Multi-label classification is a popular task because the
associated datasets generally contain some very low-frequency classes. 7/10 (70%)
classification papers proposed deep learning algorithms, and 3/10 (30%) were inspired
by label-wise attention mechanisms. 2,/10 (20%) combined few-shot tasks with graphs,
such as similarity or co-occurrence graphs, or hierarchical structures that encode

relationships between labels for knowledge aggregation. While convolutional neural
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networks have been popular for FSL, transformer-based models such as BERT [35]
and RoBERTa [111] rarely appeared in these articles. Only 1 paper [19] mentioned
applying BERT to generate instance embeddings, and then passing top-level output

representations into a label-wise attention mechanism.

Few-shot NER or concept extraction

8 reviewed papers were described as NER; 5 as concept extraction. Generally, stud-
ies described as concept extraction had fewer commonalities in their methods and
involved task-specific configurations based on the characteristics of the data and/or
extraction objectives. 63% (5/8) of the studies described as NER employed transfer
learning, with training and testing data from different domains. Studies commonly
used the BIO (beginning, inside, outside) or IO tagging schemes. 2 papers inves-
tigated both BIO and IO tagging schemes, concluding that systems trained using
IO schemes outperform those trained using BIO schemes. Studies reported that the
O (outside) tag was often ill-defined, as specific entities (e.g., time entities such as
‘today’, ‘tomorrow’) would be tagged as O if they were not the primary focus of
the dataset. 5 papers used BIO schemes, while 1 considered only the entity names
without any tagging schemes. The NLP /machine learning strategies employed varied
significantly, and included, for example, the application of fusion layers for com-
bining features [180], biological semantic and positional features [56|, prototypical
representations and nearest neighbor classifiers [179], transition scorers for modeling
transition probabilities between abstract labels [68, 71, 179], self-supervised meth-
ods |71, 86, 116|, noise networks for auxiliary training |74, 86|, and LSTM cells for

encoding multiple entity type sequences [74].
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Overview of other methods

6/31 (19%) studies applied meta-learning strategies, and 12/31 (39%) articles demon-
strated the advantages of attention mechanisms in few-shot scenarios, such as han-
dling the difficulty of recognizing multiple unseen labels. Among the latter, 5/12
used self-attention-related methods, and 4/12 used label-wise attention mechanisms.
8/31 (26%) studies reproduced prototypical networks, and/or added enhancements
to them. Only 1 article used matching networks, and 2 studies included them as

baselines.

2.4.5 Performance ranges

9/31 (29%) studies used accuracy, and the reported values varied considerably, be-
tween 44% and 97%. Two-thirds (6/9) reported accuracies higher than 70%. For
the 17/31 (55%) studies that reported Fi-score, performance variations were even
larger—from 11.7% to 95.7% (median: 68.6%). We were unable to determine in most
cases if the performance differences were due to the effectiveness of the FSL methods,

or if the dataset characteristics were primarily responsible.

2.5 Discussion

In this review, we systematically collected and compared 31 studies that lie at the
intersection of FSL, NLP, and health. We generally found it difficult to perform
head-to-head comparisons of the proposed methods due to the use of different evalua-
tion strategies, training/test data, and experimental settings. For example, Chalkidis
et al. [19] used 50 or less instances in their few-shot setting, while Rios and Kavu-
luru [140] used 5 or less. It was also often impossible to objectively compare perfor-
mances with those reported in prior literature, as few-shot methods were expected

to underperform compared to methods trained and evaluated on the same domain
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and/or larger training sets. However, the review led to several observations that
were relatively consistent across studies: (i) under the same experimental parame-
ters, the performances reported on biomedical data were worse than those reported
on data from other domains |71, 178, 179]; and (ii) creating specialized datasets for
transfer learning typically produced better results than low-quality datasets (such
as datasets lacking completeness, not specifically designed for FSL, or with unclear
specifications) [68, 116, 179].

K-Shot-N-Way datasets were commonly reported for simulating few-shot scenarios
for evaluations. In such synthetically created datasets, the number of instances for
training is predetermined. Such consistency in characteristics is almost never the
case with real-world text-based biomedical data. Though this design attempts to
make direct comparisons between different methods or tasks easier, only speculative
estimates can be made about how the proposed methods may perform if deployed
in real-world settings. There is a need to evaluate systems on naturally distributed
biomedical text data so that the deployment performances can be estimated—an
aspect that future research should consider.

Few articles created new datasets specialized for FSL, or provided benchmarks
that future studies could use for comparison. Considering the fact that FSL is still a
relatively new field, such datasets and benchmarks are essential for promoting future
development. The lack of standardized datasets, and the consequent need to recon-
struct datasets for simulating few-shot scenarios is a notable obstacle to research in
this space. Reconstructed datasets often use randomly sampled subsets for evaluation,
making direct comparisons between systems difficult (since the specific training and
test instances may not be known), and increasing the potential for biased performance

estimates.



28

Chapter 3

Datasets

In this thesis, we used nine biomedical text datasets for building benchmarks and
proposing new approaches. The datasets included eight existing publicly available
datasets and the REDDIT-IMPACTS dataset, which we collected from Reddit and

annotated as part of the research described in this thesis.

3.1 Publicly Available Datasets

MIMIC IIT [79] is a large, single-center database that contains information relat-
ing to patients admitted to critical care units at a large tertiary care hospital and
is publicly available. Data includes medications, laboratory measurements, observa-
tions and notes charted by care providers, diagnostic codes, imaging reports, hospital
length of stay, survival data, etc. MIMIC III was one of the most frequently used

datasets for few-shot classification and NER tasks.

N2C2 2018 [64] focuses on adverse drug events (ADE) and medication mentions.
The dataset is used for tasks related to identifying and classifying medication-related

entities and their associated adverse effects within electronic health records (EHRs).
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I12B2 2014 [159] focuses on de-identification of longitudinal biomedical records.
The primary task associated with this dataset is to identify and remove protected
health information (PHI) from clinical narratives to ensure patient privacy. This
involves detecting various types of PHI such as names, dates, locations, and other

personal identifiers in biomedical records.

BioNLP 2016 [17] focuses on descriptions of genetic and molecular mechanisms
from scientific articles. This dataset is used for tasks related to identifying vari-
ous biological events and entities within the context of molecular biology, such as
gene expression, protein interactions, and regulatory relationships. The goal is to
facilitate the automatic extraction of detailed and structured information from the
biomedical literature, which can support various applications in bioinformatics and

computational biology.

SMMA4H 2021 [174] focuses on ADE mentions in social media data. This dataset
is part of a shared task series that aims to leverage social media platforms like Twit-
ter (X) to identify and analyze health-related information, specifically ADEs. The
challenge involves developing models that can accurately detect and classify mentions

of adverse drug reactions in the noisy and informal text found in social media posts.

BC5CDR  [99] is a resource specifically designed for relationships between chemi-
cals and diseases from scientific literature. This corpus consists of biomedical articles
annotated for mentions of chemicals, diseases, and the interactions between them; the
primary goal of this dataset is to enable the development and evaluation of systems
that can automatically identify these entities, which are crucial for various applica-
tions in biomedical research, including drug discovery, toxicology, and understanding

disease mechanisms.
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Med-Mentions [122] is a large biomedical corpus annotated with UMLS concepts.
This dataset consists of scientific articles from PubMed, annotated for a wide range of
biomedical entities linked to UMLS concepts. The annotations cover various types of
biomedical information, including diseases, chemicals, genes, and anatomical terms.
Med-Mentions supports tasks such as information extraction, literature mining, and

knowledge base construction in the biomedical domain.

NCBI Disease [37] consists of a collection of PubMed abstracts annotated with
disease names, linking these mentions to standardized concepts in the Medical Subject
Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) databases. This
corpus is used to train and evaluate models for the tasks of recognizing disease names
in biomedical texts and normalizing these mentions to a consistent set of biomedical

concepts.

Table 3.1: Statistics of the eight standardized biomedical datasets we used, including
the source and aim of their tasks, training and test sizes (number of tokens), the
number of entity types and the number of entities in each dataset.

Datasets Training Size Test Size Entity Types Entities
N2C2 2018 track 2 (adverse drug events and medication extraction) 611.0k 411.0k 9 76.9k
I12B2 2014 (de-identification of longitudinal medical records) 490.3k 206.1k 23 20.7k
MIMIC III (information relating to patients) 36.4k 6.4k 12 8.7k
BioNLP 2016 (Genetic and molecular mechanisms) 515.4k 148.5k 1 28.6k
SMM4H 2021 task 1b (distinguishing adverse effect mentions) 30.6k 4.5k 1 1.3k
BC5CDR (extracting relationships between chemicals and diseases) 228.8k 122.2k 2 28.8k
Med-Mentions (annotated with UMLS concepts) 847.9k 593.6k 1 340.9k
NCBI Disease (PubMed abstracts annotated with disease names) 134.0k 20.5k 4 6.3k

Table 3.1 presents relevant statistics for all publicly available datasets we used,
presenting the source and aim of each NER task, training and test set sizes, the

number of entity types, and the number of entities in each dataset.
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3.2 REDDIT-IMPACTS Dataset

In our literature review, we found that there is a paucity of datasets that are naturally
suited specifically for FSL, but such datasets are essential for promoting future de-
velopment. Therefore, we collected and created REDDIT-IMPACTS [50], a challenging
NER dataset curated from subreddits dedicated to discussions on prescription and
illicit opioids, as well as medications for opioid use disorder.

Substance use disorders represent a critical challenge in public health, with both
clinical and social consequences impacting individuals and communities worldwide [92,
114]. The pervasive nature of substance use, encompassing both prescription and
illicit drugs, necessitates a deeper understanding of its impacts to inform more ef-
fective interventions and preventative measures [26, 31]. We introduce the REDDIT-
IMPACTS dataset, a unique corpus derived from Reddit, a platform known for its
rich, anonymized discussions among diverse groups, including individuals who use
drugs [58, 139, 145]. The dataset includes posts from 14 opioid-related subreddits,
capturing a broad spectrum of experiences and discussions related to substance use.

Our research specifically focuses on the clinical and social impacts of nonmedi-
cal substance use. These impacts are critical yet under-represented in the available
data, making them an ideal focus for applying FSL techniques to improve NER. The
clinical impacts encompass the direct effects on an individual’s health, while social
impacts involve the broader consequences on relationships, communities, and soci-
etal structures. While such information is abundant on Reddit, they are embedded
in vast volumes of other unrelated information, making it extremely challenging to
detect them automatically with high accuracy from naturally distributed data. In
this section, we detail the creation of the REDDIT-IMPACTS dataset, describe our

annotation process, and provide data statistics.
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3.2.1 Data collection

Reddit is popular in the broader community of people who use drugs as it offers
anonymity, and Reddit has seen rapid growth in its user base over the last several
years. Reddit communities have also been found to serve as a means of social support
for people who use drugs. We chose Reddit over other social networks or web-based
forums such as Twitter, Bluelight, and Discord for several reasons. While all these
sources contain information about substance use, the substance use community of
Reddit is much larger and has been extensively used in peer-reviewed research related
to substance use and emerging substance use trends. Additionally, Reddit threads
are also heavily moderated, and posts must follow community-specific rules. Conse-
quently, while these rules restrict some types of information from being posted, they
also ensure that the data are reflective of the topical areas and the volume of spam,
posts from bots, or irrelevant content is thereby lower. The existence of standard
application programming interfaces (APIs) also makes data collection from Reddit
relatively straightforward.

To identify potential Redditors (Reddit subscribers) who self-report opioid usage
on Reddit, we identified 14 opioid-related subreddits spanning discussions on prescrip-
tion and illicit opioids, and collected all retrievable posts using the Python-Reddit
API Wrapper for Reddit (PRAW).*

The choice of these subreddits was based on their topical relevance and high levels
of community discussion and engagement. Collection of data from these subreddits
was not keyword-based. Instead, the API allowed the retrieval of all publicly posted
threads and the associated comments. After retrieving all available posts of the 47,327
Redditors who had posted on the selected subreddits, we selected a random sample
of these Redditors (N=13,812) and collected each of their past public posts across all

subreddits (i.e., their longitudinal timelines) between November 2006 (corresponding

*https://praw.readthedocs.io/en/latest/
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to the earliest post available) and March 2019 (corresponding to the last date of data

collection).

3.2.2 Annotation

From the 13,812 public timelines we collected, we randomly selected 40 Redditors’
timelines (i.e., all their posts in different subreddits) for manual review and anno-
tation. This process finally yielded 26,126 posts for annotation. The annotation
process was iterative and involved several steps. The posts were manually analyzed
to develop the annotation guidelines, and then preliminary rounds of annotation were
performed. We then discussed the disagreements, and updated the annotation guide-
lines for further clarity, and the final annotation was performed on a total of 91,601
sentences (2,500,489 tokens).

Due to the complexity of the annotation task, involving many entity types, and
large numbers of posts that contained no entities at all, rather than annotating sep-
arately and then computing inter-annotator agreement, the data was first annotated
by the lead annotator based on annotation guidelines and reviewed by two members
of the study team. Following the annotation of all posts by two annotators, the an-
notations were reviewed by the full team, disagreements were resolved via discussion,
and the annotation guideline was updated. Subsequent annotations were carried out
in the same manner, adhering to the annotation guideline. All disagreements were
resolved via discussion.

Based on the annotation guidelines we annotated lexical expressions in posts into
30 entity types that are independent of each other. Among them, 10 entity types
belong to the basic personal information category, such as Age, Gender, Marital
status, Location, Income, etc. 20 entity types related to medication information,
such as Medicine intake, Illegal drug use, NMPDU, Method of intake, etc. Figure 3.1

shows all 30 entity types and their statistics in the annotated dataset.
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Entity Types

Advice to Others 273
Age 107
Alcohol: Co-ingestion or Amount or Frequency 21
Amount

Clinical Impacts 246
Co-ingestion 19
Country of Residence 6
Education Level 17
Ethnicity 8
Gender 70
Household Income 10
IDU: Switch From or Instead of Prescription or In Addition .. 30
Illegal Drug Use -
Location 193
Marital Status 149

Medical Condition
Medicine Intake

Method of Intake 301
Monmedical Prescription Drug Use 412
Occupation 49
Relapse 67
Social Impacts 72
Source of Drug 20
Supplements 162
Tobacco Use 19
Transition From Use to Abuse/misuse 13
Transition to IDU 3
VVape Flavor 2
Vape Use 24

Figure 3.1: Entity types and the frequency of each entity type.

The annotation process of our extensive dataset highlighted the prevalence of
readily identifiable concepts such as medicine intake and illegal drug use. It also re-
vealed that instances of clinical and social impacts—central to our study—are notably
scarce. This scarcity poses significant challenges for research, as these impacts are
crucial for understanding the broader consequences of nonmedical substance use on
individual health and societal dynamics. To address these challenges and align with
our objective of developing more effective public health strategies, we have concen-
trated our efforts on these two underrepresented entity types, thereby creating the
specialized REDDIT-IMPACTS dataset. This focused approach aims to enhance our

ability to detect and study these rare but critical impacts in the discourse surrounding
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substance use.

3.2.3 Dataset creation

From the total of 26,126 posts, only 318 posts (approximately 1.22%) were annotated
as having clinical or social impacts. This extremely low occurrence rate underscores
the sparsity of relevant data within the larger dataset. Due to the vast size and sparse
nature of the original dataset, we opted to randomly select a subset of 1,380 posts
for our experiments. We divided the annotated data into 3 sets: 60% for training,
20% for validation, and 20% for testing/evaluation. In summary, REDDIT-IMPACTS

comprises 843 posts for training, 259 for validation, and 278 for testing.

Table 3.2: Statistics of REDDIT-IMPACTS dataset, including training and test sizes,
the number of entity types and the number of entities in the dataset.

Datasets Entity Types Training Size Test Size Entities

Clinical Impacts, 30k tokens 6k tokens 0.2k tokens

REDDIT-IMPACTS
Social Impacts 1,102 posts 278 posts 318 posts

This refined dataset formation was pivotal for our experiments and subsequent
release of the REDDIT-IMPACTS dataset for the SMM4H 2024 shared task, aiming
to provide a resource that is both concentrated and rich in the entities of interest—
clinical impacts and social impacts. The number of instances of our REDDIT-IMPACTS
dataset is also shown in Table 3.2. In addition, Figure 3.2 presents an example of

posts and their labels.
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Clinical Impacts Social Impacts

| went into|drug-induced psychosis|, which is honestly the scariest

thing | have ever experienced- and | am so lucky that | snapped
out of the psychotic episode and went back to being my ‘self’ who |

am today.

In PA|at a 28 day detox / rehab | they used methadone to get me

off of bupe.
This was in the late 1990's, and in the year 2000, | was tired of it, |

had no money|, and|l was a homeless .

Figure 3.2: Sample posts in the REDDIT-IMPACTS dataset.
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Chapter 4

Few-shot Learning for Biomedical

NER: Benchmarking Studies

FSL for biomedical NER is an emerging research topic, and so there is a lack of
benchmarks that allow the assessment of how well different approaches perform on the
same data. To the best of our knowledge, no past research attempted to benchmark
different FSL-based NER approaches on biomedical texts, and, at the same time,
compared their performances to traditional NER models on the same datasets. In
past related studies (e.g. [71]), only 1-2 biomedical text datasets were benchmarked
on the same datasets. We attempt to address this gap in research. Specifically, we

make the following contributions:

1. We benchmark several few-shot NER approaches on five standard biomedical

text datasets.

2. We compare the performances of six models including three traditional NER

models: BERT-Linear Classifier (BLC)*, BERT-CRF (BC)" and SANER, and

*https://github.com/smitkiri/ehr-relation-extraction
"https://github.com/kyzhouhzau/BERT-NER
‘https://github.com/cuhksz-nlp/SANER
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three few-shot learning NER models: StructShot & NNShot®, Few-Shot Slot

Tagging (FS-ST)Y and ProtoNER! on five biomedical text datasets.

3. We present a discussion of current research challenges for few-shot NER in the

biomedical domain, and summarize important future research directions.

4.1 Traditional and FSL NER Models

4.1.1 Traditional NER Models

We employed the base BERT model followed by a linear classifier as our first tra-
ditional NER model, and the model architecture is shown in Figure 4.1a. Taking
advantage of self-supervised PLMs [35], we decided to use BERT to extract the con-
textualized representation of each token. The output of each token from BERT is
passed through a fully connected neural network with a linear layer and a softmax
layer at the end that projects tokens into entities. This architecture is typical for NER,
and has been shown to achieve state-of-the-art performance on various datasets when
sufficient training data is available. [89, 155]

The second traditional NER scheme we used is also based on BERT but with a
conditional random fields (CRF) layer after the softmax layer instead of a linear layer
like the previous system. Figure 4.1b shows the basic architecture of this model. The
linear classifier leads to the conditional independence of each classification decision,
and thus, it is necessary to design a transition matrix with context relevance. The
CRF layer can explicitly model the dependencies between entities as a table with
transition scores between all pairs of entity types and add some constraints to ensure
that the final prediction result is valid. These constraints can be automatically learned

by the CRF layer during the training phase. For NER, texts are usually encoded in

Shttps://github.com/asappresearch/structshot
Ihttps://github.com/AtmaHou/FewShotTagging
Inttps://github.com/Fritz449/ProtoNER


https://github.com/asappresearch/structshot
https://github.com/AtmaHou/FewShotTagging
https://github.com/Fritz449/ProtoNER

39

BIO or 10 format ("B" represents "the beginning of the entity", "I" represents "the
inside of the entity", and "O" represents "outside"). CRFs are effective in capturing
dependencies between entities (e.g., [-Drug cannot follow O, it must always follow B-
Drug). In addition to the transition matrix, a CRF learner also includes an emission
matrix. This emission matrix can be trained with Bi-LSTM, or it can be initialized
randomly, but the performance is typically not as good as BERT. Consequently, we

chose the BERT-CRF model as one of the traditional NER models in our experiments.

Taz
— |[CLS =
[ ] Prob. I B O
gext E = [token]| ——t — =— 0 —[01 08 01]
=1 !
—_— O Tag
= Prob. I B O
% - [tDkEﬂ] —_— = O — [[]'.'j._ D.E'._ [}_1]
— [SEP]
(a) BERT-Linear Classifier (BLC)
— [CLS] Tag
bt A Prob. I B O
gext % > [token] —> © —>  —*[0.1,08,0.1]
eq.
_q.. O —~ Tag
3 £ B pp1 B O
m > [token]—> L, —> [0.6, 0.3, 0.1]

— [SEP]

(b) BERT-CRF (BC)

Figure 4.1: Architectures of two traditional NER models based on BERT. (a) BERT-
Linear Classifier (BLC): The output of each token from BERT is passed through a
fully connected neural network with a linear layer and a softmax layer at the end
that projects tokens into entities. (b) BERT-CRF (BC): The output of each token
from BERT is fed into the CRF layer, which explicitly models dependencies between
entities and adds constraints to ensure valid predictions.

The last traditional NER model we employed is SANER [128]. SANER is a
neural-based NER method for social media text that utilizes augmented semantics to

improve performance. The system contains a semantic enhancement module and a
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gate module to encode and aggregate information separately so as to solve the prob-
lems of data sparsity when dealing with short and informal texts. We included this
model since biomedical texts invariably contain domain-specific formal or informal

language and abbreviations.

4.1.2 Few-shot Learning NER Models

The first two FSL-based NER models we explored were StructShot and NNShot [179].
StructShot uses contextual representations for each token in the support (training)
set, and then uses a nearest neighbor (NN) and a Viterbi decoder to capture label
dependencies. The authors of this model use a standard and reproducible evaluation
setup for the few-shot NER task by using standard test sets and development sets
from several domains. NNShot is a simpler variant of StructShot, which computes a
similarity score between a token in the test example and all tokens in the support set
without using the Viterbi decoder. The performance of StructShot was shown to be
better than that of NNShot.

The second model we included is the Few-Shot Slot Tagging model (FS-ST) [68],
which also includes a CRF layer. Since CRF considers both the transition score
and the emission score to find the global optimal label sequence for each input, the
framework in this paper includes two components: Transition Scorer and Emission
Scorer. The transition scorer component captures the dependencies between labels.
The authors introduce a collapsed dependency transfer mechanism into the CRF to
transfer abstract label dependency patterns as transition scores. Specifically, they
collapse specific labels into three abstract labels: O, B and I and modeled the tran-
sition from B and I to the same B (sB), a different B (dB), the same I (sI) and a
different I (dI). To calculate the label transition probability for a new domain, the
authors evenly distribute the abstract transition probabilities into corresponding tar-

get transitions. Then, the similarity between the word and each entity type is used
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as the CRF emission score. In order to calculate this similarity, the paper proposes a
label-enhanced task-adaptive projection network (L-TapNet) based on the few-shot
classification model TapNet, which represents labels by using label name semantics.
Unlike StructShot model, FS-ST model uses the more popular meta-learning frame-
work for training and evaluation.

The third few-shot NER model is the ProtoNER model [44]. Metric learning
methods, such as prototypical networks [153], which use prototypes (the average
embeddings of support instances of each class) as the representations of each class,
then compare the similarities between query instances and prototypes of each class
based on certain distance metrics, showed state-of-the-art results in FSL for image
classification tasks. Despite its success in image processing, metric learning has not
been widely used in NLP tasks. Instead, in FSL settings for NLP, transfer learning is
a more popular approach. Therefore, trying to adapt prototype-based methods such
as prototypical networks for few-shot NER tasks naturally becomes another way of

solving this problem. The ProtoNER model explored this possibility.

4.2 Data Collection and Preparation

Datasets are often reconstructed from existing ones to fit FSL scenarios. Since the
most common way to represent data is K-Shot-N-Way, in this study, we conducted
four sets of experiments using various proportions of the training data for the three
traditional NER modes: 1-shot, 5-shot, 10%, and 100%. For the FSL models (Struct-
Shot & NNShot and FS-ST), we conducted experiments using 1-shot, 5-shot, and
15-shot settings. For the 10% setting, we randomly sampled 10% of the training set,
and for 100% setting, we used the full training set.

For few-shot NER tasks, reconstructing datasets can be complex, as each text

segment may contain more than one entity, often making it difficult to ensure that the



42

reconstructed datasets include only K labeled samples for each entity type. Therefore,
we followed the construction method proposed by Yang et al. [179], and used the
greedy sampling strategy to construct the training sets (support sets). In particular,
we sampled entity sentences in increasing order relative to their frequency. Take 5-
shot setting (K=5) as an example. We first extracted the entity type with the lowest
frequencies, and after collecting 5 text segments containing this entity, we considered
the entity type with the second lowest frequency and checked whether it appeared
in the support set less than 5 times, as selected text segments may contain multiple
entities. If it did occur less than 5 times, then we added more segments until it
occurred 5 times. We followed these steps until all the entity types were included.
The result of the greedy sampling strategy is to ensure that all entity types appear
in the support set at least K times. If any (instance, entity) pair is deleted from

the support set, at least one entity type appears in the support set less than K times.

4.3 Experimental Setup

Due to the structural differences in the included models, we could not use uniform
parameter settings for all of them. Thus, we implemented experiments according
to the parameter settings described in the publication associated with each model,
including the number of training epochs, batch size, learning rate, and random seed

numbers.

4.4 Results

Table 4.1 presents the F-scores of six NER models on each biomedical dataset. The
table shows that all traditional NER models have relatively good performances when
using full training data during training phases, especially on the relatively high-quality

datasets (i.e., datasets which were collected and analyzed using a strict set of guide-
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Table 4.1: Fi-scores of six NER models on five biomedical datasets. The best per-
formance in 5-shot settings and 1-shot settings has been highlighted in bold and
underlined.

Models Training Size N2C2 2018 | I12B2 2014 | MIMIC III | BioNLP 2016 | SMM4H 2021
‘Whole training data | 80.63 90.62 66.57 81.78 44.56
SANER 10% training data 79.27 80.67 46.68 70.50 234
(traditional NER model) 5-shot 10.27 36.38 21.25 23.14 0.00
1-shot 7.92 31.14 7.07 4.32 0.00
Whole training data | 59.47 76.47 65.71 81.23 47.30
BERT + Classifier 10% training data 42.32 34.69 30.29 58.44 25.83
(traditional NER model) 5-shot 3.27 0.00 0.00 1.71 0.00
1-shot 0.00 0.21 0.57 0.15 0.00
‘Whole training data | 82.79 80.63 59.58 77.62 45.45
BERT + CRF 10% training data 64.09 27.84 20.5 61.35 2.74
(traditional NER model) 5-shot 0.00 0.00 0.00 0.00 0.00
1-shot 0.00 0.00 0.00 0.00 0.00
5-shot 25.44 20.30 3.18 0.03 0.00
StructShot (few-shot model) | 1-shot 17.59 20.26 0.63 0.00 0.00
5-shot 25.29 19.73 19.71 28.88 0.00
NNShot (few-shot model) 1-shot 16.70 16.35 15.37 6.42 0.00
FewShot-Tagging 5-shot 0.94 0.27 0.60 3.32 0.32
(few-shot model) 1-shot 4.59 0.14 5.17 6.81 0.35

lines that ensure consistency and accuracy (low ambiguity), such as the N2C2 2018
and 12B2 2014 datasets). Even on the relatively noisy SMM4H dataset (social media),
which has a small training set size, only one entity type, and relatively ambiguous
annotations, their performances have been shown to be quite good [56]. SANER out-
performed the other two traditional NER models on most datasets and most settings.
In the few-shot scenarios, however, the Fi-scores for the BLC and BC models are
mostly 0.00, suggesting that it is difficult for these models to generalize the charac-
teristics from such small training data.

From the table, we can also see that NNShot outperforms most other models in
few-shot settings. This finding contrasts the performances reported previously in the
literature. We suspect that compared with StructShot, NNShot might have a better
ability to extract and generalize features from biomedical texts. Another somewhat
surprising result comes from the FS-ST model. In their original work, FS-ST model

used the Ontonotes 5.0 dataset [173], WikiGold dataset [59]|, and several domains of
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the SNIPS dataset [27] for training, and the remaining domains of SNIPS were used
as the test set for evaluating. The reported performances of the FS-ST model on
these datasets are far better than those for the biomedical domain data that we used.
This suggests that both the similarity of texts and the overlap of entity types between
these three datasets are higher than those of the biomedical datasets.

Table 4.2 shows the results of ProtoNER model. This model does not reconstruct
datasets for satisfying few-shot settings. Instead, it randomly selected N sentences
for training from the original dataset whose entity types are not evenly distributed.
Then, it conducts separate experiments for each entity type. Therefore, we were
unable to obtain the Fi-score for the entire dataset, and thus did not compare its
results with other models. However, the values in table 4.2 show that, when the
number of instances of an entity is obviously insufficient, the F-score is also very low,
even going down to zero on occasions. In contrast to the success of the prototypical
network in the field of image classification, its performance on few-shot NER tasks
is not as competitive. The performances shown in the table are not high enough for

application in real-life settings.

4.5 Discussion

In the benchmarking results shown in Table 4.1 and Table 4.2, the most important
observation is perhaps that in few-shot biomedical NLP settings, all the models per-
form relatively poorly. The Fi-scores almost invariably fall below 30%, which renders
them unsuitable for practical applications. More research is clearly required to de-
velop FSL methods that are applicable in practical settings. This is particularly true
for NER tasks involving biomedical data. Some of their performances in low-shot
settings were, however, higher than the performances of traditional NER systems,

which suggests that there is some promise for FSL NER methods.
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Table 4.2: Fi-scores of ProtoNER model. The results obtained according to each
entity type of each dataset. The entity types with less than 10 instances and their

performance have been highlighted in bold and underlined.

Datasets Labels Instances | F-

of label score

Drug 12510 63.92

Strength 5519 83.45

Form 5398 87.93

N2C2 Frequency 4062 63.57

Dosage 3280 75.12

2018 Route 4672 85.72
Duration 461 0.00

Reason 2962 40.81

ADE 692 24.24

PATIENT 903 61.81

DOCTOR 1986 63.37

USERNAME 60 93.88

PROFESSION 161 66.67

HOSPITAL 945 55.03

ORGANIZATION 88 19.99

STREET 162 96.87

CITY 293 69.99

STATE 250 76.71

COUNTRY 61 85.71

12B2 7ZI1P 164 90.14
LOCATION-OTHER 4 0.00

2014 AGE 874 79.99

DATE 5087 69.31

PHONE 175 81.97

FAX 5 0.00

EMAIL 2 0.00

URL 6 0.00
HEALTHPLAN 1 0.00

MEDICALRECORD 337 78.57

IDNUM 78 54.05

DEVICE 7 0.00

BIOID 1 0.00

CONDITION/SYMPTOM | 2365 40.01

DRUG 690 65.24

AMOUNT 403 50.01

TIME 326 40.63

MEASUREMENT 665 49.85

MIMIC LOCATION 618 47.31

I EVENT 757 36.86
FREQUENCY 62 0.00

ORGANIZATION 114 28.62

DATE 2 0.00

AGE 44 95.25

GENDER 36 99.98

BioNLP 2016 | GENE 18258 27.87
SMM4H 2021 | ADE 1124 7.84
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We found that the quality of (e.g., in terms of ambiguity) or the amount of noise
in the datasets also plays a very important role in the performance of models on
them. Although it is not shown in the tables, the performances of many models
on the high-quality CoNLL 2003 dataset [143] are much better than that on other
datasets (StructShot 1-shot on CoNLL 2003: 74.82%, FS-ST 1-shot on CoNLL 2003:
43.25%). It can also be seen in the table that almost all models have Fi-scores
of 0.00 on the SMM4H dataset when the labeled data is very few. The SMM4H
dataset is the only one that involves data from social media. Past research has shown
that social media based biomedical NLP datasets are more difficult to obtain high
performances on compared to biomedical datasets from other sources [146]. This is
because social media data has specific characteristics that make NLP challenging,
such as the presence of misspellings, colloquial expressions and noise. For example,
“nosleep”, as a symptom after taking drugs is marked as “adverse drug event” in one
tweet, but not in another tweet, which might be due to the subtle differences in
the contexts in which they are mentioned (i.e., it can be an adverse event in some
contexts and symptom in others, and it is not a standard biomedical term for either
and therefore is unlikely to occur in other biomedical datasets).

The overarching aim of FSL is to enable systems to learn from few examples, as
humans are often capable of doing [12]. Improving the intrinsic evaluation perfor-
mances of FSL methods, especially on the datasets that have been explored, will still
be one of the most important works in the future. Perhaps the other most influential
work can be the creation of standardized publicly available datasets that will replicate
real-world scenarios, and present actual FSL challenges. Currently, there is a paucity
of such datasets, resulting in the need to reconstruct existing datasets to represent
few-shot settings. Reconstructed datasets often do not accurately capture real-world
scenarios. Specialized datasets representing few-shot scenarios will facilitate the thor-

ough comparison of different FSL NER strategies, as well as the comparison of FSL
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NER methods with traditional NER methods. Furthermore, there is currently no
specialized dataset for FSL-based biomedical NLP, and contributions in this space
are necessary to move the state-of-the-art in FSL-based NER for biomedical text for-
ward. Future shared tasks should consider designing problems relevant to FSL-based

NLP approaches.

4.6 Conclusion

In this chapter, we addressed the gap in benchmarking FSL approaches for biomedical
NER by evaluating a variety of traditional and FSL-based models across multiple
biomedical datasets. Our results demonstrated that traditional NER models perform
well when ample labeled data is available, but their performance drastically declines in
low-resource scenarios. In contrast, FSL models exhibited varying levels of success,
with some outperforming traditional models in few-shot settings, but their overall
performance remains far from practical applicability.

Our findings highlight several challenges in F'SL-based biomedical NER, including
the impact of dataset quality, noise, and the difficulty in generalizing across diverse
biomedical domains. The results suggest a clear need for developing more robust FSL
methods tailored to the biomedical domain. Additionally, the lack of standardized
datasets specifically designed for FSL further complicates the evaluation and compar-
ison of models, underscoring the importance of creating publicly available benchmark
datasets that replicate real-world few-shot scenarios.

In conclusion, while current FSL approaches for biomedical NER show promise,
significant improvements are needed to make them viable for real-world applications.
Future work should focus on advancing FSL methodologies, improving dataset qual-
ity, and fostering the development of standardized benchmarks to enable rigorous

evaluation and progress in this critical area of research.
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Chapter 5

Data Augmentation with Nearest

Neighbor Classifier

Data sparsity being the major issue in applying few-shot methods to biomedical NER,
we explore data augmentation as a potential solution [29]. In the biomedical domain,
the availability of labeled data is often limited, making it challenging to train robust
models using few-shot learning techniques [36, 103].

One promising approach is semantic augmentation [24, 172]. Semantic augmenta-
tion adds semantic information such as synonyms, contextual data, or broader seman-
tic relationships to the original data [102]. This makes the data more comprehensive,
reducing the problems caused by information gaps due to data sparsity.

We also consider nearest neighbor (NN) classifier [87, 131] at inference, which is
a simple and intuitive algorithm that makes predictions based on the closest training
examples in the feature space. This approach helps preserve the local context of
the data, which is crucial for biomedical NER, where the meaning and classification
of entities often depend heavily on the surrounding context [28|. In scenarios with
limited labeled data, the goal is often to classify data points into previously unseen

classes based on a few examples. NN can seamlessly incorporate these new classes
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into its decision-making process by simply including the new examples in its reference

dataset [151].

5.1 Proposed Approach

The overarching aim of FSL-based NER systems is to learn from few examples to
label names of entities of interest in text documents. In the following subsections,
we first introduce the encoding procedure for augmenting semantic information, and
then we present different distance metrics to explore the influences of methods for
calculating similarities.

Rich semantic information is implicitly preserved in pre-trained word embeddings,
making them potentially ideal resources for semantic augmentation. In order to gen-
erate contextual representations for all input tokens, we used a NER model with
semantic augmentation [128| trained on the source domain as a token embedder to
generate contextual representations of all tokens. The architecture of this data aug-
mentation method combined with the nearest neighbor classifier (DANN) is shown
in Figure 5.1. Considering a popular neural architecture for supervised NER mod-
els: a BERT-based NER model. For training these models on the source domain,
we will follow the setting from Nie’s paper [128]. After we obtain the pre-trained
embeddings from the BERT-based NER model, for each token in the input sentence,
we extract the most similar words of the token according to their pre-trained embed-
dings. Specifically, for each token x; € X', we try to use pre-trained word embeddings
from GloVe to extract the top m words that are most similar to z; based on cosine

similarities and denote them as:

Ci={ci, i, Cijy v Cim} (5.1)

Then use the BERT-based NER model again to get the embeddings e; ; of the ex-
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Tagging Procedure Semantic Augmentation

Nearest Neighbor Claassifier Augmentation Module

O\\’Or L=z225 |:|:|:|17
g ¢ e @ ------------ —
. T 4 &
A :

Gating Module

. bronchitis — [ [ ]
poisoning — [ [ [ ] O—

| Linear ‘ | Linear | -

choking —= [ 1] O——
4 asttma — [TT] O—
T heattbun —— [ ] @O——
~
Context Encoding *
. J
Embedding Layer
O O O O - Extractor
T bronchitis poisoning seizure
diarrh strep hiccups choking
larrhnea
Input asthma hives heartburn
... complaint of diarrhea and ...
.

Figure 5.1: The overall architecture of our proposed model DANN: data augmentation
method combined with Nearest Neighbor Classifier. An example sentence is given,
where the augmented semantic information for the word "diarrhea" is also illustrated
with the processing through the augmentation module and the gate module. After
the gate module, the nearest neighbor classifier computes a similarity score between
each token in the test set and all tokens in the support set, and it assigns the test
token a tag c corresponding to the most similar token in the support set.
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tracted words ¢; ;. Since not all extracted words are helpful, afterwards, the augmen-
tation module is used with an attention mechanism to weigh the semantic information
carried by the extracted words. Specifically, for each token z;, the augmentation mod-

ule assigns a weight to each word ¢; ; € C; by:

o exp (hl : eiyj)
Pia = >imiexp (h; - e;)

where h; is the hidden vector for z; obtained from the context encoder with its

(5.2)

dimension matching that of the embedding (i.e., €;;) of ¢; ;. Then, applying the
weight p; ; to the word ¢; ; to compute the final augmented semantic representation

by:

A\ Zpi,jei,j (5-3)
j=1

Therefore, the augmentation module ensures that the augmented semantic infor-
mation is weighted based on their contributions. After the semantic augmentation
module, a gate module [128] will be applied since the contribution of the obtained
augmented semantic information to the NER task varied in different contexts. Par-

ticularly, we will use a RESET gate to control the information flow by:

g:U(Wl'hi+W2'Vi+bg> (54)

where W; and W are trainable matrices and by is the corresponding bias term.
Afterwards, we use:

w,=[goh]®[(1—-g)ovy] (5.5)

to balance the information from the context encoder and the augmentation mod-

ule, where u; is the derived output of the gate module; o represents the element-wise
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multiplication operation and 1 is a 1-vector with its all elements equal to 1.

At inference, given a test example x = {xt}lT and a K-shot entity support set S =
{ (ngup ), yq({sup ) }:[_1 comprising N sentences, we employed a token embedder fp(z) =
T to obtain contextual representations for all tokens in their respective sentences.
Next, different distance metrics are used for computing similarities between tokens in

the nearest neighbor classification.

5.1.1 Different Distance Methods

To improve the performance, we proposed two methods: replacing the representa-
tion of embeddings and changing the distance methods. For distance methods, we
experimented with five approaches: squared Euclidean distance, cosine similarity,
manhattan distance, infinity norm distance, and 3-norm distance, which are both
commonly used measures of distance or dissimilarity.

The Euclidean distance between two points in Euclidean space is the length of a

line segment between the two points.* The formula of Squared Euclidean Distance is:

n

dp,q) => (g —pi)° (5.6)

i=1
where p, ¢ are two points in Euclidean n-space, ¢;, p; are Euclidean vectors, starting
from the origin of the space (initial point), and n represents the n-space.
In the Euclidean space, Euclidean distance (2-norm distance) is usually used to
compute the distance between two points. Other distances, based on other norms,
are sometimes used instead.” For a point (1, s, ...,7,) and a point (yi,va, . .., Yn),

the Minkowski distance of order p (p-norm distance) is defined as:

*https://en.wikipedia.org/wiki/Euclidean_distance
"https://en.wikipedia.org/wiki/Distance


https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Distance

53

1-norm distance = Z lz; — yil |

n 1/2
2-norm distance = (Z |z — yi|2>
n 1/p
p-norm distance = (Z |z — yi|1’> (5.7)

n 1/p
infinity norm distance = lim (Z lz; — yil” )

p—00
i=1

=max (|z1 — w1, |2 — ol , .- -, |T0n — Ynl)

The 2-norm distance is the Euclidean distance, and the 1-norm distance is more
colorfully called Manhattan distance because it is the distance a car would drive in
a city laid out in square blocks (if there are no one-way streets). The infinity norm
distance is also called the Chebyshev distance. The p-norm is rarely used for values
of p other than 1, 2, and infinity, so in our experiment, we only tried 3-norm.

Cosine similarity is a metric helpful in determining how similar the data objects
are, irrespective of their size. In cosine similarity, data objects in a dataset are treated

as a vector. The formula to find the cosine similarity between two vectors is:

AB Y AB
[ANBI />0, A2 /> B?

cosine similarity = S¢(A, B) := cos(0) (5.8)

where A and B are two given vectors, A; and B; are components of vector A and

B respectively.

5.2 Results and Discussion

Table 5.1 shows the Fi-scores of our proposed model DANN with different distance

metrics on five biomedical datasets, which we used in our benchmark. From the
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Table 5.1: Fl-scores of our proposed DANN model with four different distance met-
rics on five biomedical datasets compared with NNShot. The best performance of
our models in 5-shot settings and 1-shot settings has been highlighted in bold and
underlined.

Models Training Size | N2C2 2018 | 12B2 2014 | MIMIC III | BioNLP 2016 | SMM4H 2021

5-shot 25.29 19.73 19.51 28.88 0.00
NNShot (few-shot model) 1-shot 16.70 16.35 15.37 6.42 0.00
DANN —+ 5-shot 0.21 25.18 19.34 24.02 0.00
Squared euclidean distance 1-shot 2.25 11.95 9.55 22.68 0.00

5-shot 0.16 27.29 19.68 24.21 0.00
DANN + Manhattan distance

1-shot 1.95 10.81 5.38 22.97 0.00
DANN —+ 5-shot 0.13 16.99 16.99 23.97 0.00
Infinity norm distance 1-shot 1.68 16.99 9.70 22.84 0.00

5-shot 0.14 22.87 18.98 23.93 0.00
DANN + 3-norm distance

1-shot 2.25 13.92 10.54 23.16 0.00

table, we see that our experimental results outperform the comparison model on most
tasks, and our model’s performance is the best one when conducting experiments on
the 12B2 2014 dataset. On other datasets with different settings, the performance of
our model is also already close to that of the baseline model, except for the N2C2
2018 dataset. We found that the experimental results on this dataset show that it
is difficult for our model to extract useful semantic information from a few examples
of this dataset. This is probably because the size of the N2C2 2018 dataset is the
largest. Hence, the numbers of "O" entity types in the dataset are much higher
than in other datasets, thus leading to the introduction of more noise. The table also
shows that for the social media dataset (SMM4H 2021), none of the models are able to
make accurate predictions with few samples. Previous research has shown that social
media based biomedical NLP datasets are more difficult to obtain high performances
as social media data has specific characteristics that make NLP challenging, such as
the presence of misspellings and colloquial expressions.

For the same settings of the DANN model, we can horizontally compare five
methods for calculating similarity. From Table 5.1, we see that Manhattan distance

performs relatively well in the 5-shot setting, slightly outperforming other distance
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metrics on three datasets. Meanwhile, the best-performing distance method in the
1-shot setting is the least frequently used 3-norm distance metric, which performs the
best on three datasets.

The essence of our method is to change the input from the simple embedding
generated by the BERT model to a more complex generation method. Specifically,
we use a data augmentation module based on the nearest neighbor classifier. In
this experiment, we used a BERT-based NER model to generate encodings, and
used GloVe to select words that are similar to the input tokens. These are both
good mechanisms for obtaining word vectors, but they have no unique advantages for
biomedical data. Therefore, we also experimented with more domain-specific models,
such as BioBERT and Clinical BERT, to try to obtain the representations of tokens
that are learned from biomedical or scientific data. These experiments, however, did

not produce results better than other approaches.

5.3 Conclusion

In this chapter, we introduced the DANN (Data Augmentation with Nearest Neigh-
bor) model, which combines semantic data augmentation with a nearest neighbor
classifier to address data sparsity in few-shot biomedical NER tasks. By leveraging
pre-trained embeddings to enhance semantic representation and incorporating a gat-
ing mechanism to balance augmented information with contextual features, DANN
effectively preserves the local context critical for accurate biomedical NER.

Our experimental results demonstrate that the DANN model outperforms baseline
methods on several biomedical datasets, particularly in low-resource scenarios such as
1-shot and 5-shot settings. We found that the choice of distance metric plays a signif-
icant role in model performance, with Manhattan and 3-norm distances performing

best in different settings. However, the model faced challenges in extracting useful se-
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mantic information from datasets with high noise or imbalanced entity distributions,
such as the N2C2 2018 dataset.

While DANN shows promise in addressing data sparsity and improving few-shot
NER, its performance on noisy social media datasets like SMM4H highlights the
need for further advancements. Future work should explore more domain-specific
embedding models and refined augmentation techniques tailored to biomedical text
characteristics. Additionally, addressing dataset imbalance and noise remains a key
challenge for achieving robust and generalizable NER systems in real-world applica-
tions. Overall, DANN provides a foundation for advancing data-efficient methods in

biomedical NLP and paves the way for more effective few-shot learning solutions.
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Chapter 6

HILGEN: Hierarchically-Informed
Data Generation for Biomedical NER

Using Knowledge Bases and LLMs

While the data augmentation method described in the previous chapter improved
NER performance in biomedical text, there is room for further improvement in model
performance. Our experiments and error analyses revealed that the NER perfor-
mances vary substantially depending on the instances chosen for the training set.
Therefore, our intuition was that expanding a given few-shot training set with syn-
thetic data may help boost performance. In this chapter, we explore two synthetic
data generation strategies that leverage knowledge encoded in the UMLS and LLMs.
The UMLS has been curated and maintained for over two decades now, and conse-
quently, it encapsulates a large volume of biomedical domain knowledge. Meanwhile,
in recent years, the emergence of generative LLMs that can generate contextually
relevant texts has opened up novel opportunities for generating problem-specific syn-
thetic data. However, generic LLLMs may face challenges when dealing with specialized

biomedical concepts, as they may lack domain-specific knowledge and may generate
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context-irrelevant or incorrect biomedical information [183].

To leverage encoded knowledge for generating synthetic data, we propose HILGEN
(Hierarchically-Informed Data Generation for Biomedical NER, Using Knowledge bases
and LLMs), which infuses domain knowledge and hierarchical information from the
UMLS [9], with synthetic data generated by LLMs. Our approach aims to enrich the
representations of sparsely occurring biomedical concepts, thereby enhancing perfor-
mance in few-shot learning for biomedical NER tasks—a relatively underexplored

research space.

6.1 Background

6.1.1 UMLS in Biomedical Natural Language

The UMLS is widely used in biomedical NLP for its comprehensive repository of
biomedical terminologies, concepts, and relationships, serving as a critical resource
for tasks like NER, information extraction, and text classification. It provides a
structured repository containing over two million concepts, including synonyms, hi-
erarchical relationships, and semantic types, making it an invaluable resource for
disambiguating, and standardizing biomedical terms, facilitating NLP systems in pro-
cessing clinical and research data more accurately. By leveraging UMLS in this study,
we ground LLM-generated examples in accurate biomedical contexts, ensuring that
the representations of biomedical entities remain semantically coherent and clinically
relevant. This integration enables the dynamic generation of enriched examples in-
formed by UMLS, enhancing the model’s understanding of rare biomedical terms and
its ability to generalize across diverse biomedical datasets. Furthermore, the use of
UMLS helps mitigate potential biases inherent in the training data of LLMs by pro-
viding a more balanced perspective on biomedical knowledge, ultimately resulting in

more reliable outcomes in biomedical NER tasks.



59

6.1.2 Synthetic Data Generation

Data augmentation and transfer learning are widely used techniques in machine learn-
ing to address data sparsity by generating or utilizing additional data, such as syn-
thetic or noisy data, to improve data representation and diversity. However, synthetic
datasets often struggle to capture the naturalness and realism of human-written texts,
particularly in biomedical domains, and they may introduce biases that affect the va-
lidity of downstream tasks. LLMs have been explored for generating biomedical text,
leveraging their capacity to store and produce health-related information. Recent
studies have demonstrated the potential of LLMs in data augmentation for clinical
tasks, employing techniques such as the label-to-data method to mitigate the scarcity
and sensitivity of biomedical data. Traditional data augmentation approaches using
pretrained language models often involve fine-tuning on existing datasets to generate
synthetic data. More recent methods focus on generating synthetic data with minimal
supervision, using carefully crafted prompts or reverse tasks to produce high-quality
data points. Unlike these approaches, our work augments data by incorporating
domain knowledge from UMLS alongside LLMs, leading to the generation of high-
quality synthetic data that enhances the performance of biomedical NER tasks in

FSL settings.

6.2 Proposed Approach

Our method, HILGEN, generates synthetic data by comparing and integrating lin-
guistic structures from LLMs with information extracted from the UMLS. The overall
architecture of the proposed approach is shown in Figure 6.1. Our approach leverages
the hierarchical information and structured knowledge encapsulated in the UMLS and
its semantic networks to automatically retrieve concepts related to the named entities

in the few-shot training data. We employ the GPT model to generate additional ex-
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amples based on few-shot training examples. These related concepts are added to the
few-shot training data to create additional synthetic instances. The new synthetic
instances are then added to the original few-shot training data, and the models are
fine-tuned on the augmented data. While UMLS-based data generation helps us aug-
ment the data with domain-specific knowledge, GPT-based data generation allows us
to leverage the vast amount of open-domain data. We now provide further details

about the data generation strategies and resources leveraged.
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Figure 6.1: The overall architecture of the HILGEN model. UMLS- and GPT-based
methods are first employed for synthetic training data generation. An ensemble of
the two approaches is used for the final training data generation.

6.2.1 Hierarchical Information and Semantic Network in UMLS

One of the key features of the UMLS is its hierarchical organization of concepts,
which represents the relationships between concepts in a hierarchical structure [9],
similar to a tree. The hierarchy of information in the UMLS provides a way to

access information about concepts organizationally related to a given concept. This
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hierarchical structure allows for easy navigation of the UMLS and helps to organize
and categorize concepts based on their relationships. The hierarchy includes several
different types of relationships between concepts, including ‘isa’ (is a), ‘has_parent’,

and ‘has_child’ relationships. Figure 6.2 shows an example of the tree-like structure

of the UMLS.
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Figure 6.2: A subtree of the hierarchical structure of concept "diarrhea" in
SNOMEDCT _US dictionary (Systematized Nomenclature of Medicine—Clinical
Terms).

In addition to the hierarchy of concepts, the UMLS also includes a semantic
network that describes the relationships between concepts in semantic space. The
semantic network® in the UMLS represents the relationships between concepts based
on their semantic similarity rather than their hierarchical relationships. A portion
of the UMLS semantic network is shown in Figure 6.3. The semantic network is
organized into a set of categories, such as ‘Anatomy’, ‘Chemicals and Drugs’, and
‘Physiology’, each of which represents a different area of biomedical and health-related
concepts [109]. Within each category, concepts are further organized based on their
relationships to other concepts, such as ‘isa’ relationships or ‘part of’ relationships.

Both the hierarchical information and the semantic network are important for

*https://www.ncbi.nlm.nih.gov/books/NBK9679/
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Figure 6.3: A portion of the UMLS semantic network. ‘isa’ links and ‘non-isa’ rela-
tions are represented in the figure, respectively.
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understanding the relationships between concepts in the UMLS. The hierarchy allows
for navigation and understanding of general relationships, while the semantic network
provides insight into specific relationships based on semantic similarity. Together,
these two approaches help to provide a fairly comprehensive understanding of the

relationships between concepts within the UMLS.

6.2.2 UMLS-Based Data Generation

Our approach utilizes the UMLS to generate new examples in several ways. When
faced with entity types with small numbers of labeled samples, we use the knowledge
encoded in the UMLS to expand the training data and add synthetic examples into
the training set so that the original few-shot training set is expanded to a larger one.
Specifically, we incorporate knowledge in multiple layers.

The first layer consists of lexical expressions with the same UMLS concept IDs
(typically referred to as concept unique identifiers or CUIs), which are added to cre-
ate synthetic examples. Thus, this layer of knowledge augmentation adds potential
synonyms of the original named entities in the training data. The second layer of ex-

pansion consists of augmenting the training data from the first layer with additional
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closely related CUIs that are under the same UMLS semantic type (a broad category
of concepts, such as pharmacological substances). This layer, thus, adds additional
examples that are likely to be conceptually closely related to the entities in the train-
ing data and, thus, are likely to occur in similar contexts in biomedical free texts. The
third layer of augmentation considers the hierarchical associations in biomedical con-
cepts. Specifically, we utilize the parent-child relationships between concepts and ex-
tract parents, children, and siblings of given concepts based on the SNOMEDCT _US
dictionary (Systematized Nomenclature of Medicine—Clinical Terms), which is a com-

prehensive clinical terminology that is widely used in the healthcare industry [8].

6.2.3 GPT-Based Data Generation

Our approach to utilizing GPT for generating new examples involves providing the
model with complete sentences. As illustrated in Figure 6.1, we begin with an input
sentence and use a two-step prompt to generate varied, semantically similar sentences
that use different expressions for the same entities and convert the sentences into IOB
format for subsequent fine-tuning. This strategy enables GPT to leverage contextual
information to enhance its comprehension of the given concepts, thereby facilitating
the generation of semantically coherent examples. Furthermore, we control the num-
ber of generated examples to match the quantity extracted from the UMLS, ensuring
that the results are not biased by discrepancies in the amount of training data. In the
use of prompts, we adopt a fundamental prompt strategy, which involves providing
the sentence itself, indicating its task and the expected output format, while man-
dating that it generates based on the knowledge from the UMLS. The prompts used
to extract hierarchical information and convert generated sentences into IOB format

for GPT-based generation in the HILGEN model are listed in Figure 6.4.
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Listing (a): Prompt for extracting related concepts

Please give me 10 sentences that keep the meaning of the original input sentence
basically unchanged and use related concepts of [entities] in the original text
based on hierarchical information of UMLS.

Listing (b): Prompt for extracting parents and children

Based on your knowledge of hierarchical information of UMLS, please
find the parents and children of [entities] in the input sentence by using
SNOMEDCT_US dictionary. Then, please give me 10 sentences that keep
the meaning of the original input sentence basically unchanged and use parents
and children of [entities] in the original text.

Listing (c): Prompt for extracting siblings

Based on your knowledge of hierarchical information of UMLS, please find the
siblings of [entities] in the input sentence by using SNOMEDCT_US dictionary.
Then, please give me 10 sentences that keep the meaning of the original input
sentence basically unchanged and use siblings of [entities] in the original text.

Listing (d): Prompt for converting sentences to [OB format

Please mark the 10 generated sentences into [OB format, and mark the words or
phrases with similar meanings to entities in the original text as its corresponding
entity types according to [OB format.

Figure 6.4: Prompts used in HILGEN model generation process.

6.2.4 Fine-Tuning with Transformer-Based and Few-Shot Learn-

ing Models

We fine-tuned a transformer-based model, BERT, and our previously proposed few-
shot learning model, DANN, on the expanded synthetic training data across four
biomedical text datasets. BERT is a pre-trained transformer model widely adopted
in NLP and serves as a baseline for comparison. The DANN model incorporates

a semantic augmentation module with a nearest neighbor classifier, which enriches
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the diversity and representativeness of the training data by selecting examples most
similar to the target concepts. This approach provides additional context, improving

the model’s ability to generalize to unseen examples.

6.2.5 Ensemble Method

To further improve the robustness and accuracy of our biomedical NER models,
we employ several ensemble approaches, including weighted voting and intersection.
These ensembles combine models trained on synthetic data generated from both
UMLS and GPT-3.5. The ensemble methods involve aggregating the predictions
from multiple models to produce a final prediction. By leveraging the strengths of
both data sources, the ensemble model enhances the overall performance, reducing

the impact of any single model’s weaknesses.

6.2.6 Comparison with ZEROGEN

We further evaluated the impact of synthetic text generation by the HILGEN ap-
proach against the ZEROGEN [181] system, a zero-shot learning framework that
leverages large pre-trained language models (PLMs) to generate synthetic datasets
for training smaller task-specific models. We specifically used GPT-3.5 for generating
synthetic data to ensure a fair comparison and consistency in data generation at both

the sentence and entity levels.

6.3 Datasets and Experiment Setup

We utilized four biomedical text datasets (MIMIC III, BC5CDR, NCBI-Disease, and
Med-Mentions) as benchmarks to evaluate the performance of our approaches. These
datasets provide a diverse range of clinical narratives and biomedical information,

allowing for a comprehensive assessment of our methods. We conducted experiments
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in the few-shot settings with 5 examples available for each label and used the metrics

precision (P), recall (R), and F;-score (F;) for evaluation.

6.4 Results

In this section, we present the results of our experiments on four biomedical datasets
using the HILGEN and other approaches. All approaches were trained and evaluated

on the same data.

6.4.1 Experimental Results

The results in Table 6.1 demonstrate the effectiveness of HILGEN in generating syn-
thetic data by incorporating prior knowledge through hierarchical information from
UMLS and GPT-3.5. Leveraging both UMLS and GPT-3.5 for data generation, we
observed significant improvements across all datasets. Incorporating knowledge from
related concepts, as well as parent and child relationships from UMLS, often resulted
in higher precision and F;-scores, indicating that hierarchical and semantic relation-
ships provide valuable context closely matching the target entities. The performance
when using sibling relationships was somewhat mixed, with improvements in cer-
tain datasets but not consistently outperforming the other methods. Improvements
were particularly noticeable in difficult cases where baseline models struggled to make
accurate predictions.

When comparing GPT-3.5 to the incorporation of UMLS, both approaches showed
improvements over baseline models. GPT-3.5 generally performed better across most
datasets, suggesting its strength in generating diverse, contextually rich examples
and understanding complex clinical text. UMLS incorporation shows more consistent
improvements across all datasets, as it provides a solid foundation for identifying

and categorizing entities based on established biomedical vocabularies, and the hi-
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Table 6.1: Performance comparison of various synthetic data generation strategies
for Biomedical NER Tasks. The table shows precision (P), recall (R), and F;-score
(F1) for models trained on synthetic data generated by HILGEN using hierarchical
information from UMLS and GPT-3.5. For each dataset, we compare the performance
of the original 5-shot model, models using synthetic data generated with related
concepts, parent-child relationships, and sibling relationships, and the best ensemble

model.
Dataset MIMIC III ‘ BC5CDR ‘ NCBI-Disease ‘ Med-Mentions
p R F, ‘ p R F ‘ p R F, ‘ p R F
BERT-Large
Original 5-shot N/A 0.74 0.08 0.14 514 037  0.69 ‘ 6.57 0.76  1.36 ‘ 9.34  26.88 13.86
with related concepts 37.33 59.65 45.92 ‘ 49.69 66.42 56.85 ‘ 34.86 34.56 34.71 ‘ 27.62 60.13 37.85
HILGEN: Generated by
hierarchical information with parents and children 40.41 57.05 47.30 ‘ 46.01 59.93 52.05 ‘ 36.39 28.14 31.74 ‘ 27.83 60.56 38.14
from UMLS with siblings 36.11 56.78 44.14 ‘ 48.81 55.08 51.76 ‘ 37.52 29.19 32.83 ‘ 26.81 59.38 36.94
with related concepts 38.95 60.54 47.41 |51.10 52.83 51.95 |30.32 32.34 31.30 ‘ 2794 60.29 38.18
HILGEN: Generated by ity parents and children  41.95 62.08 50.06 | 46.29 62.87 53.32 ‘ 28.81 30.14 29.46 ‘ 98.02 62.12 38.62
GPT-3.5
with siblings 3444 63.06 44.54 ‘ 49.26 68.12 57.18 ‘ 30.99 33.64 32.26 ‘ 27.32 60.34 37.61
HILGEN: Best-Ensemble N/A 43.72 60.16 50.63 | 53.17 63.97 58.06 37.79 34.51 36.07 ‘ 29.36 64.97 40.44
DANN Model
Original 5-shot N/A 19.22 21.40 19.68 ‘ 27.66 50.52 35.75 | 18.67 27.93 22.38 ‘ 48.05 57.62 52.40
with related concepts 52.16 58.11 54.97 ‘ 52.41 73.76 61.27 ‘ 33.65 46.04 38.88 | 60.79 67.86 64.13
HILGEN: Generated by
hierarchical information with parents and children 51.09 56.34 53.59 ‘ 51.98 72.33 60.49 ‘ 35.78 35.78 35.78 ‘ 60.03 67.57 63.58
from UMLS with siblings 53.95 60.26 56.93 ‘ 50.63 65.83 57.23 ‘ 34.87 40.68 37.55 | 60.13 68.12 63.88
with related concepts 46.87 62.34 53.51 | 53.72 69.53 60.61 ‘ 35.21 40.86 37.82 ‘ 61.08 68.92 64.76
HILGEN: Generated by ity parents and children 4622 5891 51.80 ‘ 47.08 6257 53.73 ‘ 3431 39.72 36.82 ‘ 60.44 68.76 64.33
GPT-3.5
with siblings 41.54 56.64 47.94 | 53.11 69.30 60.13 ‘ 35.24 41.01 3791 ‘ 60.28 67.81 63.83
HILGEN: Best-Ensemble N/A 52.79 64.60 58.68 ‘ 60.52 73.85 65.09 37.10 42.99 39.83 ‘ 63.49 70.28 66.72

erarchical information from UMLS contributed to more accurate and contextually

relevant synthetic data, highlighting its usefulness in providing structured biomedical

knowledge.

6.4.2 Comparison with ZEROGEN

Table 6.2 provides a detailed comparison of the performance metrics (precision, recall,

and Fy-score) between the ZEROGEN and HILGEN approaches, which clearly illus-

trates the superior performance of HILGEN compared to ZEROGEN in all evaluated
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Table 6.2: Comparison of ZEROGEN and HILGEN approaches using BERT-Large
and DANN Models on biomedical datasets, demonstrating HILGEN’s superior per-
formance across all metrics and datasets.

MIMIC III ‘ BC5CDR ‘ NCBI-Disease ‘ Med-Mentions

P R Fy ‘ P R Fy ‘ P R Fq ‘ P R Fy

ZeroGen 10.17 3.34  4.62 ‘35.74 21.64 26.96 ‘21.22 425 7.82 ‘14.70 20.30 17.06

BERT-Large
HILGEN 43.72 60.16 50.63‘53.17 63.97 58.06‘37.79 34.51 36.07‘29.36 64.97 40.44

ZeroGen 17.32 7.80 10.75 | 47.95 34.05 39.82 ‘17.13 10.78 13.24 ‘45,42 18.46 26.25

DANN Model
HILGEN 52.79 64.60 58.68‘60.52 73.85 65.09‘37.10 42.99 39.83‘63.49 70.28 66.72

scenarios.

HILGEN achieved up to a 28.19% higher F;-score on the BC5CDR dataset on av-
erage. In contrast, ZEROGEN’s zero-shot approach, though efficient, often generated
more generic and less domain-specific data, resulting in lower precision, particularly
in datasets like MIMIC IIT and Med-Mentions. HILGEN’s incorporation of UMLS
also led to more consistent improvements across datasets, demonstrating its abil-
ity to more accurately reflect the complexity and specificity of biomedical language

compared to ZEROGEN.

6.4.3 Ensemble Approach

Table 6.3: Enhanced performance of ensemble with predictions from GPT-3.5 on
biomedical datasets. Despite HILGEN’s competitive results, the ensemble method,
which combines HILGEN and GPT-3.5 outputs, improves the overall performance.

MIMIC III BC5CDR NCBI-Disease Med-Mentions

P R Fq P R Fq P R Fq P R Fq
GPT-3.5 6299 64.10 63.54 | 56.81 83.61 67.66 | 27.79 45.10 34.39 | 25.66 37.81 30.57
HILGEN 52.79 64.60 58.68 | 60.52 73.85 65.09 | 37.10 4299 39.83 |63.49 70.28 66.72
Ensemble 59.82 70.22 64.60 | 72.03 71.65 71.84 | 38.85 43.39 40.99 | 53.16 65.66 58.75

The results in Table 6.3 present the performances of the ensemble approaches

in improving performance, depicting notable improvements in precision, recall, and
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Fy-scores. For the MIMIC III dataset and BC5CDR dataset, the ensemble method
outperforms both the results from GPT-3.5 inference and the use of HILGEN for
generating synthetic training data. This improvement demonstrates the robustness
of the ensemble strategy in handling diverse biomedical texts and achieving higher
accuracy in entity extraction.

HILGEN outperforms GPT-3.5 on the NCBI-Disease and Med-Mentions datasets,
achieving an F;-score of 66.72% on Med-Mentions, compared to GPT-3.5’s 30.57%.
The ensemble method further improves performance by combining the strengths of
both models, resulting in a more robust and accurate NER system, as reflected by

higher Fy-scores.

6.5 Discussion

Our findings underscore the value of incorporating structured domain knowledge,
such as that found in UMLS, into synthetic data generation. By leveraging hierar-
chical relationships, HILGEN consistently produced semantically coherent examples,
enhancing the performance of NER tasks, particularly in FSL scenarios. The im-
provements in precision and Fi-scores suggest that the hierarchical and semantic
relationships embedded in UMLS provide valuable context for identifying and cate-

gorizing biomedical entities.

6.5.1 Challenges of Zero-Shot Data Generation Approaches

Zero-shot approaches such as ZEROGEN, while eliminating the need for extensive
manual annotation, face certain limitations. Firstly, ZEROGEN uses generic prompts
with minimal domain-specific constraints, often generating synthetic data that lacks
the specific context found in biomedical texts, leading to overly generic or irrelevant

content for NER tasks. Secondly, the generated data may exhibit inconsistencies in
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style and structure relative to the original datasets, failing to capture the language
patterns present in actual biomedical texts. Even when the required entity types
are provided, ZEROGEN’s synthetic datasets often have repetitive sentence struc-
tures, failing to capture the linguistic diversity of biomedical texts, which reduces
the effectiveness of NER models. Thirdly, generating sentences with multiple entities
that resemble original clinical or biomedical dataset structures is challenging. This is
compounded by the fact that, although the entity type distribution may match, the
generated text often fails to capture the nuanced context and relationships between
entities, leading to a significant drop in model performance.

By incorporating UMLS, HILGEN benefits from a comprehensive and structured
biomedical knowledge base, ensuring that the generated synthetic examples are se-
mantically coherent and closely aligned with the domain-specific context of biomed-
ical texts. This meticulous approach to maintaining sentence-level and entity-level
consistency is crucial, as it allows the synthetic data to accurately reflect the intri-
cate structures and relationships present in the original datasets, thereby improving

HILGEN’s ability to mimic them and significantly enhancing model performance.

6.5.2 Impact of Ensemble Learning on Model Generalization

The ensemble approach, combining models trained on synthetic data generated from
both UMLS and GPT-3.5, consistently achieved the highest performance metrics
across all datasets. This approach leverages the complementary strengths of UMLS’s
hierarchical domain-specific knowledge and GPT-3.5’s diverse, contextually rich ex-
amples. By integrating the outputs of models trained on different synthetic data
sources, the ensemble approach achieved balanced improvements in both precision
and recall. Also, it largely mitigates the issue of data sparsity in FSL scenarios by
effectively utilizing the diverse examples generated from UMLS and GPT-3.5. This

results in more comprehensive training data, enabling the model to generalize more
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effectively to unseen instances while maintaining accuracy. Our results highlight the
complementary benefits of combining domain-specific knowledge from UMLS with

the generative capabilities of LLMs.

6.6 Limitations

While HILGEN presents a robust approach for generating high-quality synthetic data
based on few-shot scenarios for biomedical NER tasks, several limitations must be
acknowledged. First, the scope of our current data generation and expansion is some-
what limited. Specifically, we identified and used only the top 10 related concepts
for each entity, and our expansion and generation process relied on a 5-shot setting.
It is plausible that utilizing a higher number of annotated examples, such as 10 or
20, and incorporating a wider array of related concepts could potentially yield su-
perior results. Our primary objective in this study was to establish the feasibility
and effectiveness of the HILGEN approach. We hypothesize that further expanding
the synthetic dataset would result in improved model performance. Nonetheless, this
expansion would also entail additional computational and resource costs.

Another limitation is our focus on methodology over prompt engineering. The
prompts we used were relatively basic. Based on the evolving space of LLMs and
their increasing capabilities, we believe that more sophisticated prompt engineering
may lead to better results. In the next chapter, we describe our pursuit of this

promising avenue and subsequent findings.

6.7 Conclusion

Our experiments showed that the HILGEN model, which combines synthetic data
from UMLS and LLMs, performs significantly better than other baseline approaches

in few-shot settings. Our motivation for using UMLS and GPT-3.5 for biomedical
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data generation was twofold. First, UMLS, with its domain-specific knowledge, com-
plements FSL by providing critical information that is not present in the training
data, countering the belief that LLMs alone can replace expert-curated knowledge.
This proves essential for improving predictions on unseen data. Second, GPT models
offer a context-aware understanding of entities, enriching entity recognition and ex-
panding training data without the need for additional manual annotations, especially
for rare or complex cases. Overall, using information from the hierarchical structure
of UMLS and LLMs as external knowledge bases can generate high-quality synthetic
datasets to address key challenges in FSL with biomedical text datasets, including
limited training data and the need for domain-specific knowledge. This approach can
enhance FSL models across various biomedical applications, showcasing a valuable use

case for long-established knowledge sources supporting biomedical NLP research.
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Chapter 7

From Static to Dynamic: RAG-based
Dynamic Prompting for Few-shot

Learning

The research, development and evaluation of the HILGEN approach suggested that
one possible course for further improving biomedical FSL. NER performance is to
improve the prompting and in-context learning strategies. The emergence of LLMs
has transformed NLP capabilities, including for biomedical NER in few-shot settings.
Methods for effectively leveraging LLMs, particularly in few-shot, restricted-domain
settings are largely underexplored, although some past studies have suggested possi-
ble pathways. For example, the potential of inference from LLMs and prompt-based
strategies in overcoming the challenges posed by few-shot settings has been demon-
strated with techniques like LM-BFF [104], which utilizes prompts to fine-tune models
on limited data. Additionally, approaches like PPT [55] enhance prompt effective-
ness by pre-training prompt token representations with unsupervised data. Building
on past works, in this chapter, we systematically explore prompting strategies for

improving performance, and we introduce a novel in-context learning strategy that
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employs RAG to dynamically update the prompt based on the input text.

7.1 Background

The most common and straightforward method currently is to use pre-defined, static
prompts. Static, in this context, refers to the use of the same, consistent prompt
for every instance in a dataset. This means that regardless of the input content,
the model applies the same fixed prompt and in-context examples for processing.
However, static prompts lack flexibility and cannot adjust to specific input data,
leading to sub-optimal performance when dealing with diverse and complex datasets.
Their fixed format restricts performance potential, as they do not adjust based on
context, even when more suitable annotated examples are present in the training data.
Consequently, systems employing static prompts exhibit high variance depending on

the relevance of the in-context examples to the input unlabeled texts.

7.1.1 Retrieval-Augmented Generation

Inspired by the RT framework [101], which combines Retrieval-Augmented Genera-
tion (RAG) and Chain-of-Thought (CoT) prompting to enhance few-shot biomedical
NER performance. RAG is an advanced technique that enhances the capabilities
of LLMs by combining retrieval with generative text modeling [98]. Unlike tradi-
tional generation methods that rely solely on the model’s pre-existing knowledge,
RAG introduces an additional step: retrieving relevant information from a corpus or
database. This retrieval process is typically guided by similarity measures [107], such
as cosine similarity between embeddings, which helps the model access contextually
relevant examples or documents tailored to the input query. Once these relevant texts
are retrieved, they are integrated into the prompt or used as additional context for

the model’s response generation, creating a more informed output.
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The motivation behind RAG is to address the limitations of LLMs in handling
tasks that require specialized or up-to-date information [46]. Even with extensive
training data, LLMs may struggle with domain-specific concepts or recent develop-
ments due to knowledge cutoffs and lack of domain specificity in training corpora [77].
By introducing contextually relevant information at inference time, RAG can signifi-
cantly improve performance in specialized applications [176], such as biomedical text
analysis, where precision and relevance are critical.

In biomedical NER tasks, RAG may improve a model’s adaptability by retrieving
examples or contexts that closely resemble the input text, thereby enabling a more
accurate identification of entities [176]. In FSL settings, RAG architectures have
the potential to reduce reliance on large annotated datasets by dynamically selecting
relevant data 73|, making it particularly useful for domains where annotated data is
limited. Additionally, RAG complements prompting techniques, like CoT prompting,
by enabling stepwise reasoning based on retrieved information [142], which may lead
to better precision and recall for complex, sparse entities.

In an attempt to address the inherent limitations of static prompts in FSL set-
tings, we explore dynamic prompt updating techniques, which involve automatically
retrieving training examples and adjusting prompts based on contextual similarity.
Following the optimization of prompts, we evaluate the effectiveness of two types of
prompting—static and dynamic—using multiple LLMs including GPT-3.5, GPT-4,

and LLaMA 3 (open source), on multiple datasets.

7.2 Proposed Approach

7.2.1 Static Prompt Engineering

Figure 7.1 presents the components of the static prompts used for LLMs. We sys-

tematically designed task-specific static prompts for use with LLMs, which comprise
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Figure 7.1: An overview of the NER strategy based on static prompting on three
LLMs. Static prompts containing different information are provided to the LLMs,
which, in turn, generate predictions for evaluation.

the following components:

1. Baseline prompt with task description, entity types with definitions, and
format specification: The baseline component provides the LLM with essential
information regarding the basic aims of the task, which is extracting and classifying
entities. The categories of labels present in the dataset, along with their definitions.
Entity definitions provide detailed and unequivocal explanations of an entity in the
context of a specific task, crucially guiding the LLM toward accurately pinpointing
entities within texts. Also, we provided the input, and instructions regarding the
output format, which is a crucial step in ensuring the successful completion of the
task. For generative LLMs, NER presents greater challenges, relative to classification,
as it is essentially a sequence-to-sequence problem, where each token is assigned a
corresponding label. However, when a prompt includes a sentence as is, we found

that it can be difficult for LLMs to directly and accurately assign labels to each
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token, resulting in mismatches in the number of input and output tokens. This issue
is exacerbated by the fact that LLMs have their own tokenization mechanisms, which
may differ from the tokenization in the annotated data. If the input and labels are
provided in the BIO format instead, it often results in degraded performance due to
the LLM’s inability to fully understand the text.

One input approach is to provide a text and indicate the entities within it [175].
For example, in the sentence I was a codeine addict,” the phrase 'codeine addict’ is
identified as an entity and is annotated as ‘Clinical Impacts’. However, this format
can become ambiguous when faced with long sentences that contain the same word
or phrase multiple times, each with different contextual meanings, not all of which
may be labeled as the relevant entity. Another input method involves providing spans
corresponding to the entities [70], but this also causes mismatches between spans and
entities frequently when generative LLMs are used.

To address these challenges, we adopt a new format for constructing the input
and output for the LLMs. We provide LLMs with a list of tokens that have already
been tokenized. For the output, we instruct the model to return each token concate-
nated with its corresponding label. This method allows us to easily extract labels for
evaluation, and it ensures a one-to-one correspondence between the predicted labels
and tokens, with the number of labels always consistent with the number of tokens
in the input sentence.

For example:

740 0

Input: [T, 'was’, 'a’, ’codeine’, ’addict.’]
Output: ['I-O’, 'was-O’, 'a-O’, ’codeine-B-Clinical Impacts’, 'addict.I-

Clinical Impacts’]

To minimize the potential loss of sentence context caused using only tokens, we

also explored the effectiveness of using the untokenized sentences as input, and tagged
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tokens as output:

Input: ['I was a codeine addict.’|
Output: ['I-O’, 'was-O’, 'a-O’, ’codeine-B-Clinical Impacts’, 'addict.I-

Clinical Impacts’]

2. Description of datasets: By describing a dataset’s origin, content, and themes,
we aim to provide LLMs with a basic understanding of the dataset. For example, for
the REDDIT-IMPACTS dataset, we described that it focuses on individuals who use

opioids, and we are interested in the impact of opioid use on their health and lives.

3. High-frequency instances: Some entities do not have clear definitions, and
the determination is more ambiguous. Therefore, we provide the most frequently
occurring words or phrases in each entity type within the training dataset to assist
LLMs in understanding the potential distribution of entities and the theme of the
text for this task. This is akin to providing a LLM with a lexicon of the concepts of

interest.

4. Incorporation of background knowledge from the UMLS: We provide
LLMs with comprehensive and structured information we obtained from the UMLS.
Our intuition, based on the findings reported in the previous chapter, was that this
knowledge could enhance the understanding and interpretation of biomedical con-

cepts, relationships, and terminologies.

5. Error analysis and feedback: To improve the model’s accuracy and address
prediction errors, we provide an error analysis and feedback mechanism. After an
initial set of predictions was made by LLMs on unseen training set instances, we

manually reviewed the errors by comparing the model’s predictions with the gold
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standard annotations. For each incorrect prediction, we analyze the type and cause
of the error, such as misclassification, missed entities, or spurious entities. Based on
this analysis, we provide a summarization of feedback to the model. This feedback
includes only general descriptions of errors without any examples. While this element
of the prompt requires preliminary explorations of the dataset, common possible errors
can be identified easily using a small set of training examples (e.g., 5-shot), and this

enables a mechanism of incorporating expert feedback into the process.

6. Annotated samples: We provide k£ annotated instances within the prompt for
in-context learning. Samples are randomly selected and formatted according to the
task description and entity markup guide.

We compared the effectiveness of different components of static prompting by
incrementally incorporating descriptions of datasets, high-frequency instances, back-
ground knowledge from the UMLS, error analysis and feedback, and varying k-shot
annotated samples. Detailed prompts used for each dataset are provided in Appendix

B.

7.2.2 Dynamic Prompt Engineering

In prompt-based strategies using LLMs for in-context learning, the common approach
has been to provide the model with a static prompt to guide its predictions. These
prompts often include example instances, and CoT prompting. However, a significant
limitation of this approach is that the provided examples may differ substantially
from the texts from which the model is expected to extract named entities. Note that
even in the presence of additional annotated samples, the LLMs context window size
may limit the number of instances that can be embedded in a prompt for in-context
learning. A static prompt, thus, does not generalize well, leading to high variance in

performance.
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To address this issue, we attempted to improve upon static prompting, and
adopted a dynamic approach involving RAG. In our proposed approach, a retrieval
engine is first indexed with the annotated examples from the training set. Upon
receiving an input sentence, the system first retrieves the top n annotated exam-
ples using the retrieval engine. The retrieved examples are then embedded into the
prompt, which is then passed to the LLM along with the input text. Figure 7.2

presents an overview of the system architecture.

Dynamic Prompt

Basic prompt:

( You are a medical Al ...
]

N

. relevant annotated sentence 1 %'—‘0 embedded example 1

contextual . relevant annotated sentence 2 ————=<  embedded example 2
similarity

| relevant annotated sentence 3 ————©  embedded example 3

Retrieval
Engine

Input
Sentence

relevant annotated sentence k ————<  embedded example k

Figure 7.2: Overview of Retrieval-based Dynamic Prompting model. First the train-
ing data are provided to the retrieval engine for indexing. During inference, the
system first ranks all training examples based on contextual similarity with the input
text. Finally, the top n retrieved instances are embedded in the prompt, which is
passed to the LLM (e.g., GPT-4, LLaMA 3).

Retrieval Engines

Selecting an effective retrieval engine is crucial since the examples embedded in the
prompt influence the model’s performance. We considered several retrieval methods,
each chosen for its unique strengths in handling diverse biomedical texts, and appli-
cability in FSL settings. The engines we selected are: TF-IDF [156], Sentence-BERT
(SBERT) [138], ColBERT [84], and Dense Passage Retrieval (DPR) [83]. These search

mechanisms offer a range of capabilities, from efficient keyword matching to advanced



81

deep-learning-based retrieval. We provide further details below.

1. TF-IDF: Term Frequency-Inverse Document Frequency (TF-IDF) scores the
relevance of documents based on the frequency of terms. We included TF-IDF due
to its efficiency and simplicity, which allows for rapid retrieval of relevant examples
based on keyword overlap. While it lacks semantic understanding, it serves as a strong

baseline, particularly when the input contains well-defined biomedical terminologies.

2. Sentence-BERT (SBERT): SBERT leverages a pre-trained BERT model fine-
tuned for semantic similarity tasks. By encoding input sentences into dense embed-
dings, SBERT can capture the semantic relationships between sentences, making it
well-suited for identifying contextually similar examples even when the input phras-
ing differs from the training data. This capability is particularly advantageous in the

biomedical domain, where synonymous terms and varied expressions are common.

3. ColBERT: ColBERT (Contextualized Late Interaction over BERT) enhances
retrieval performance by focusing on contextualized token representations. It uses
a late-interaction mechanism that allows for more nuanced matching of query and
document tokens. We selected ColBERT for its ability to capture fine-grained se-
mantic details, which is essential for handling complex biomedical texts with diverse

and context-dependent entity mentions.

4. Dense Passage Retrieval (DPR): DPR employs a dual-encoder architecture,
where separate encoders are used for queries and documents. It uses deep neural
networks to learn dense embeddings, optimizing for maximum similarity between rel-
evant query-document pairs. DPR’s strength lies in its ability to handle open-domain
retrieval tasks effectively, making it a powerful choice for dynamically selecting an-

notated examples that are highly relevant to the input text, thus improving the
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contextual adaptability of our dynamic prompts.
In our experiments, we evaluated the performance of each retrieval method, as-

sessing their impact on few-shot NER across multiple biomedical datasets.

7.3 Experimental Setup

Below, we report our experimental setup for the two prompting strategies—Static

Prompting and Dynamic Prompting.

1. Static Prompting: For static prompting, we evaluated three language models:
GPT-3.5, GPT-4, and LLaMA 3. We used prompts containing five examples per
label to provide context and guide the models’ predictions. For GPT-3.5, we used
the OpenAl API version "2023-07-01-preview", and for GPT-4, we used the version
"2024-02-15-preview". Both models were configured with the following settings: tem-
perature = 0.2, top_p = 0.1, frequency penalty = 0, presence penalty = 0, and no
stop tokens specified.

For LLaMA 3, we used the Meta-Llama-3-70B-Instruct model, with a temperature
of 0.5 and top_ p of 0.95. Preliminary experiments (reported later in this chapter)
revealed that GPT-3.5 consistently performed significantly worse compared to GPT-
4. Hence, we excluded GPT-3.5 from further experiments in the dynamic prompting
phase to limit API usage costs. To ensure robustness in the static prompting phase,
the few-shot examples were randomly selected four times, and the reported results

are the average of these four random selections.

2. Dynamic Prompting: In the dynamic prompting phase, we focused on evalu-
ating GPT-4 and LLaMA 3 on multiple datasets. We conducted experiments using
three different in-context settings: 5-shot, 10-shot, and 20-shot, to assess the im-

pact of increasing the number of examples on the model’s performance. The baseline
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prompts in this phase also used randomly selected examples, with the results averaged
over four random runs.

The evaluations were conducted on five biomedical datasets: MIMIC-III (clini-
cal notes dataset), BC5CDR (disease and chemical entity recognition), NCBI-Disease
(disease annotations from PubMed abstracts), Med-Mentions (large-scale UMLS con-
cepts dataset), and our REDDIT-IMPACTS dataset (annotated for clinical and social
impacts entity extraction). Further details about these datasets are provided in Chap-
ter 3. We used precision (P), recall (R), and Fy-score (Fy) as evaluation metrics to
comprehensively asses the models’ performance across different datasets. In addition,
to account for the variability in performance across different experimental runs, we
include 95% confidence intervals (Cls) [124] for each metric, providing a measure of
the statistical robustness of the results. The confidence intervals were computed via

bootstrap resampling [38] with 1000 samples with replacement.

7.4 Results

7.4.1 Task-specific Static Prompting

The results, as presented in Table 7.1, demonstrate consistent performance improve-
ments across the five biomedical datasets when all components of the static prompting
strategy are combined for all three LLMs. Compared to the basic prompt (baseline),
the integration of additional task-specific components, such as dataset descriptions,
high-frequency instances, error analysis, and few-shot learning, led to significant im-
provements in performance metrics across all datasets and evaluation criteria. GPT-4
showed the largest improvements when the full structured prompt is used. For GPT-
4, the average Fi-score increased by 0.09 across datasets, ranging from 0.08 (Med-
Mentions) to 0.12 (BC5CDR). GPT-3.5 obtained an average Fj-score increase of

0.07, with gains ranging from 0.05 (NCBI) to 0.11 (BC5CDR). LLaMA 3-70B, which
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Table 7.1: Performance comparison of various prompting strategies across different
datasets in terms of Fi-score (Fy), Precision (P), and Recall (R). The row "BP + All
components" represents the combination of all strategies, with the best performance
across datasets highlighted in bold. The red bold font indicates the best F; score
achieved by an individual component, while black bold font highlights the highest
Precision, and underlined text denotes the best Recall for a single component. Ad-
ditionally, green bold font is used to mark F; scores that are lower than the baseline

performance (BP).

Reddit_ Impacts BC5CDR MIMIC IIT NCBI Med-Mentions

P R Fy P R F, P R F, P R F, P R F,
GPT-3.5
Basic Prompt (BP) 10.37 4326 16.73 | 55.64 76.88 64.56  55.31 54.11 54.70 | 18.28 51.33 26.96 8.55 10.12  9.27
BP + Description of datasets 13.25  52.38 21.15 | 59.25 8147 68.61 | 59.54 54.18 56.73 | 26.24 50.25 34.48 | 16.52 10.33 12.71
BP + High-frequency instances 1340 50.13 21.15 | 59.08 8296 69.01 | 59.93 55.66 57.72 | 26.54 55.68 35.95 | 20.16 15.03 17.22
BP + UMLS knowledge 10.17  42.86 16.44 | 54.24 80.57 64.83 | 47.16 54.50 50.57 | 23.93 43.02 30.75 | 10.26 11.58 10.88
BP + Error analysis 12.02 4821 19.24 57.36 8249 67.67 64.63  55.16 59.52 2523 4831 33.15 18.74 13.24 1552
BP -+ 5-shot learning with sentences 12.33 44.42 19.30 | 59.30 82.04 68.84 | 53.09 53.37 57.03 | 37.09 43.78 40.16 | 17.28 25.54 20.61
BP + 5-shot learning with tokens 13.63 53.11 21.69 | 62.27 82.02 70.79 | 67.50 5597 61.21 | 40.15 46.32 43.01 | 20.54 30.57 24.57
BP + All above 15.36 53.92 23.91 | 63.64 84.86 72.73 67.77 57.10 61.99 | 42.73 48.07 45.24 | 22.15 55.32 31.63
GPT-4
Basic Prompt (BP) 12.75 4815 20.16 | 59.56 83.22 69.43  57.57 55.72 56.63 | 25.13 50.48 33.56 | 18.27 11.12 13.83
BP + Description of datasets 1512 52.94 23.52 | 60.66 84.58 70.65 | 63.35 56.42 59.68 | 26.43 5522 3575 | 21.23 1196 15.30
BP + High-frequency instances 15.98 53.75 24.64 | 63.89 84.06 7260 |64.61 56.14 60.08 | 35.02 4144 37.96 | 21.72 17.69 19.50
BP -+ UMLS knowledge 12.85 50.14 20.46 59.48 84.63 69.86 55.37 5490 55.13 | 22.80 47.92 30.90 | 18.72 11.83 14.50
BP -+ Error analysis 14.87 52.04 2313 | 67.92 82.75 74.61 | 63.93 56.72 60.11 | 34.86 41.38 37.84 | 20.28 16.59 18.25
BP + 5-shot learning with sentences 14.71 51.48 22.88 | 65.04 83.18 73.00 | 58.49 55.03 5825 | 36.96 45.67 40.86 | 27.42 30.33 28.80
BP + 5-shot learning with tokens 17.23 5257 25.95 | 68.10 87.66 76.65 | 63.40 6249 62.94 | 40.72 48.42 44.24 | 27.71 4141 33.20
BP + All above 18.87 52.01 27.60 | 68.62 90.32 78.03 63.06 64.12 63.58 | 45.02 49.02 46.93 | 27.26 60.06 37.49
Llama3-70B
Basic Prompt (BP) 9.93 36.42 15.61 | 5252 76.04 62.13 46.57 55.64 50.70 | 15.63 24.37 19.15 | 19.59 23.17 21.23
BP + Description of datasets 13.27 3526 19.28 | 5853 80.22 67.68 | 56.64 55.81 56.22 | 17.30 36.43 21.44 | 23.59 19.87 21.57
BP + High-frequency instances 14.52 34.53 20.44| 60.85 78.05 68.39 | 55.60 56.47 56.06 | 21.11 4297 26.62 | 23.99 31.20 27.12
BP + UMLS knowledge 7.87 3588 12.91 | 57.11 74.63 64.71 46.78 51.63 48.92 | 14.95 34.72 20.91 22.09 2551 23.68
BP —+ Error analysis 1246 38.86 18.87 | 5896 80.52 68.07 | 63.18 5520 5892 | 16.84 44.65 24.46 | 22.64 29.92 2578
BP -+ 5-shot learning with sentences 11.35 39.71 17.65 | 65.16 77.28 70.70 | 62.90 51.61 56.85 | 21.97 49.94 30.52 | 23.87 64.66 34.87
BP + 5-shot learning with tokens 13.33  40.32 20.04 | 66.03 7857 71.76 | 63.89 60.19 61.98 | 34.49 3241 33.42 | 23.72 6845 35.23
BP + All above 13.16 57.86 21.43 | 68.97 7836 73.32 59.30 67.27 62.94 | 35.81 34.71 34.80 | 25.89 67.05 37.26
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started with the lowest baseline performance, showed an average Fi-score increase of
0.08, with its largest improvement observed in the REDDIT-IMPACTS dataset, with
an increase of 37%.

Table 7.1 also shows that GPT-4 consistently outperformed GPT-3.5 and LLaMA
3-70B in all configurations, benefiting more from the integration of task-specific
components, particularly in datasets such as BC5CDR and Med-Mentions, where
it achieved the highest Fi-score. GPT-3.5, while achieving slightly lower overall per-
formance still exhibited performance improvements relative to the baseline. This
is evident in datasets such as REDDIT-IMPACTS, where its Fi-score exhibited signifi-
cant growth with the integration of additional components. LLaMA 3-70B, despite its
initially lower baseline performance, achieved competitive results when task-specific
components were applied.

As illustrated in the Table 7.1, high-frequency instances, and dataset descriptions
had the most notable impact on recall. For example, in the Med-Mentions dataset,
adding high-frequency instances improved recall for GPT-4 by 0.05 (from 0.41 to
0.46). FSL at the token level provided the most significant increase in precision
across models. For instance, precision in the NCBI dataset increased by 0.06 for
GPT-3.5 (from 0.40 to 0.46) and by 0.08 for GPT-4 (from 0.36 to 0.44).

The box plot in Figure 7.3 further highlights the performance variability of differ-
ent prompting strategies across datasets. The figure illustrates that the integration
of UMLS knowledge yielded mixed outcomes across the datasets. While it improved
recall in certain datasets such as BC5CDR, it underperformed compared to the ba-
sic prompt in datasets like REDDIT-IMPACTS and NCBI. This component aimed to
provide foundational biomedical knowledge by introducing descriptions and context
derived from UMLS. However, this approach may have introduced noise, particularly
in datasets that are not strongly aligned with UMLS’s predefined biomedical con-

cepts. For example, in the REDDIT-IMPACTS dataset, GPT-3.5’s F-score decreased
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Performance Distribution of Prompting Strategies Across Datasets (F1 Score)
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Figure 7.3: Performance distribution of prompting strategies across datasets (Fi-
score). The box plots depict the performance of various prompting strategies applied
to five biomedical datasets, highlighting the range, median, and distribution of F;-
scores for each strategy.

slightly from 16.73 to 16.44, suggesting that the background information from UMLS
diluted the model’s ability to capture task-specific cues.
Furthermore, 95% confidence intervals (CIs) for each metric are provided in Table

D.1 in Appendix D.

7.4.2 Dynamic Prompting with RAG

The results in Table 7.2 demonstrate the effectiveness of dynamic prompting in differ-
ent FSL settings (5-shot, 10-shot, and 20-shot) for GPT-4 and LLaMA 3 across five
biomedical datasets. As mentioned in the Experimental Setup subjection, the base-
line prompts used randomly selected examples, and the results were averaged over
four random runs to ensure reliability. Detailed results for each random run, along
with the averaged results, are presented in Appendix C. 95% confidence intervals
(CIs) for each metric are provided in Table D.2 in Appendix D.

For GPT-4, somewhat surprisingly, TF-IDF retrieval consistently outperforms
other methods in most cases. For example, on the BC5CDR dataset, TF-IDF achieves

the highest Fi-score of 85.88% in the 5-shot setting, 86.64% in the 10-shot setting,
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Table 7.2: Evaluation of dynamic prompting strategies (5-shot, 10-shot, and 20-shot)
using GPT-4 and Llama 3 across five biomedical datasets. The table presents F;-
score, precision, and recall for each retrieval method: Base Prompt, TF-IDF, SBERT,
ColBERT, and DPR. The row "Base" represents using static prompts we proposed
in the former section.

Reddit_ Impacts BC5CDR MIMIC IIT NCBI Med-Mentions
P R F, P R F, P R Fy P R F, P R F,
GPT-4
Base 18.87 52.01 27.60 | 68.62 90.32 78.03 63.06 64.12 63.58 | 45.02 49.02 46.93 27.26 60.06 37.49
TF-IDF 19.71 51.25 2847 | 82.31 89.76 85.88 | 74.43 78.14 76.24 | 56.86 63.68 60.08 | 27.22 62.68 37.96
5-shot SBERT 24.31 55.00 33.72| 76.63 91.41 83.37 | 72.63 7427 73.44 | 55.05 60.30 57.56 | 28.05 64.65 39.12
ColBERT 22.66 56.79 32.39 | 78.64 81.03 79.82 | 74.14 77.02 7556 | 50.43 54.48 ©52.38 |28.14 68.69 39.93
DPR 22.60 58.79 32.64 | 79.39 88.24 83.58 | 69.77 70.00 69.89 | 46.67 52.39 49.37 | 27.90 6549 39.13
Base 22.25 56.66 31.92 | 75.33 88.31 81.27 66.38 74.24 70.09 | 53.23 52.13 52.67  26.67 59.20 36.74
TF-IDF 21.53 56.25 31.14 | 83.81 89.67 86.64 | 73.85 77.29 7553 |58.81 65.66 62.05 | 28.14 71.42 40.37
10-shot  SBERT 25.41 5875 35.47 | 83.94 87.99 8592 | 72.73 75.08 73.89 | 58.79 63.02 60.83 |28.32 70.26 40.37
ColBERT 2386 58.02 33.81 | 83.49 88.05 85.71 |74.69 78.06 76.34 | 55.12 59.56 57.25 | 28.15 71.99 40.48
DPR 2296 56.25 32.61 | 85.16 84.42 84.79 | 71.84 7242 7213 | 56.82 60.72 58.70 | 28.25 70.04 40.25
Base 27.74 5875 37.67 | 74.57 89.18 81.15  70.65 T71.32 70.98 | 51.68 52.29 51.98  28.10 60.78 38.39
TF-IDF 27.72 6220 38.35 | 85.41 88.98 87.16 |75.81 79.61 77.66 | 61.80 67.13 64.36 | 28.20 77.30 41.32
20-shot ~ SBERT 28.44 59.50 38.22 | 85.37 89.57 87.42 | 73.79 76.54 75.14 | 60.89 63.59 6221 | 26.81 74.09 39.37
ColBERT 31.19 66.67 42.49 | 82.09 83.94 83.00 | 75.27 7819 76.70 | 56.13 59.35 57.69 | 27.70 75.47 40.53
DPR 2855 60.75 38.84 | 85.81 85.40 85.60 | 71.82 72.74 7228 | 59.00 61.74 60.34 | 27.16 69.37 39.23
Llama3-70B
Base 13.16 57.86 21.43 | 6897 7836 73.32 59.30 67.27 62.94 | 35.81 34.71 34.80 25.89 67.05 37.26
TF-IDF 18.89 58.62 28.57 | 78.49 81.78 80.11 | 66.48 74.84 70.41 | 4893 50.70 49.80 | 26.46 72.06 38.68
5-shot SBERT 23.20 66.67 34.42 | 77.26 83.79 80.39 | 64.04 7221 67.88 |50.66 49.59 50.12 | 26.15 68.92 37.91
ColBERT 22.05 65.12 3294 | 71.21 7233 71.76 |68.37 7532 71.68 | 44.93 46.08 45.50 | 26.68 72.38 38.99
DPR 19.20 59.26 29.00 | 74.47 76.91 75.67 | 65.74 72.54 68.97 | 41.06 48.66 44.54 | 26.51 71.38 38.66
Base 2237 59.94 3250 | 7256 7791 7515  59.13 71.63 63.77 | 39.67 31.49 35.60 2557 64.33 36.50
TF-IDF 23.53 62.65 34.21 | 80.82 80.32 80.57 | 55.79 55.34 55.56 | 49.59 49.41 49.50 | 24.03 68.00 35.51
10-shot SBERT 22.27 59.76 3245 | 77.72 84.94 81.17 | 67.67 76.09 71.63 |52.84 49.94 51.35|27.61 66.88 39.08
ColBERT 2258 60.50 32.89 | 78.40 82.37 80.34 |69.65 76.37 72.85 | 38.72 3881 3877 | 2649 67.58 38.06
DPR 24.37 57.83 34.29 | 85.16 84.42 84.79 | 65.85 73.68 69.54 | 47.60 45.04 46.28 | 25.80 70.97 37.85
Base 24.52 53.81 33.67 | 75.42 7558 7550  62.01 62.12 62.05 | 40.71 42.58 41.62  26.57 64.79 37.67
TF-IDF 27.62 66.95 39.11 | 74.64 82.47 78.36 | 55.95 5851 57.66 | 45.39 49.83 47.50 | 27.80 64.39 38.83
20-shot  SBERT 29.93 68.06 41.43 | 75.04 80.75 76.85 | 65.90 64.77 65.35 | 42.09 46.40 44.14 | 2548 61.36 36.01
ColBERT 23.57 6548 34.66 | 73.74 70.70 72.19 | 5825 ©57.03 57.63 | 47.08 49.88 48.44 | 2541 66.98 36.85
DPR 26.15 65.04 37.30 | 72.58 77.15 74.80 | 62.72 69.19 65.80 | 37.18 44.13 40.36 | 26.10 62.88 36.89
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and 87.16% in the 20-shot setting. Similarly, for the MIMIC III dataset, TF-IDF
achieves the top Fi-score of 76.24% in the 5-shot setting and 77.66% in the 20-shot
setting. In contrast, SBERT exhibits strong performance on the REDDIT-IMPACTS
dataset, where it achieves the highest Fi-scores of 33.72% (5-shot) and 35.47% (10-
shot). Moreover, SBERT achieves an Fi-score of 41.43% on REDDIT-IMPACTS in the
20-shot setting, outperforming TF-IDF by a margin of 3.08%. For LLaMA 3, DPR
retrieval achieves competitive results, particularly on BC5CDR, where it achieves the
highest Fj-scores of 84.79% (10-shot) and 74.80% (20-shot). SBERT also performs
strongly on the REDDIT-IMPACTS dataset, achieving Fi-scores of 34.42% (5-shot) and
41.43% (20-shot).

Both models benefit significantly from retrieval-augmented methods, as evident
in the figures. TF-IDF and ColBERT frequently produce the highest F;-scores for
both models, demonstrating their effectiveness. SBERT also demonstrates consistent
improvement over the base method, especially for GPT-4.

Figure 7.4 presents the Fi-scores of retrieval methods for different shot settings:
5-shot, 10-shot, and 20-shot. The results are averaged across evaluations conducted
using GPT-4 and LLaMA 3 models. Across all settings, retrieval methods consistently

improve performance compared to the Base prompt.

1. 5-shot Analysis: In the 5-shot setting, the SBERT retrieval engine achieves
the highest average F;-score for the REDDIT-IMPACTS dataset (34.1%), while TF-IDF
performs best on BC5CDR (83.0%) and NCBI (54.9%). For MIMIC III, ColBERT
leads with an Fi-score of 73.6%, and on Med-Mentions, ColBERT also stands out
with a top score of 39.5%. These results highlight the dataset-specific strengths of
different retrieval methods, with TF-IDF showing strong performance on entity-rich

datasets like BC5CDR and NCBI.



89

5-shot F1-Scores for Retrieval Methods

81.9
80
70
60
8 50
8
D 40
o
o
30
20
10
0
SBERT ColBERT
Retrieval Engines
Datasets
mmm Reddit_Impacts o MIMIC Ill Med-Mentions
= BCSCDR = NCBI
(a) 5-shot Fy-scores for Retrieval Methods.
10-shot F1-Scores for Retrieval Methods
83.6 83.5 83.0 848
80
70
60
3 50
8
% a0
o
- T Ol Rl N
IS | B e | o
of A B B O O
0
SBERT ColBERT
Retrieval Engines
Datasets
=== Reddit_Impacts MIMIC 11I Med-Mentions
mm BCSCDR = NCBI
(b) 10-shot Fi-scores for Retrieval Methods.
20-shot F1-Scores for Retrieval Methods
82.1
80
70
60
250
8
D 40
jnd
30
20
10
0
SBERT ColBERT

Retrieval Engines
Datasets
MIMIC Ill
= NCBI

s Reddit_Impacts Med-Mentions

0 BC5CDR

(c) 20-shot Fi-scores for Retrieval Methods.

Figure 7.4: Comparison of average Fi-scores across different retrieval methods, for
GPT-4 and LLaMA 3 models under varying shot settings.
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2. 10-shot Analysis: In the 10-shot setting, SBERT stands out as the best-
performing retrieval method overall, achieving the highest F-scores on three datasets:
REDDIT-IMPACTS (34.0%), Med-Mentions (39.7%), and NCBI (56.1%). DPR achieves
the top score on BC5CDR (84.8%), while ColBERT performs best on MIMIC III with
an Fi-score of 74.6%. These results highlight a departure from the 5-shot setting,
where TF-IDF dominated, indicating that SBERT is better suited for slightly larger

data scenarios.

3. 20-shot Analysis: In the 20-shot setting, TF-IDF once again demonstrates
strong performance, achieving the highest Fi-scores on three datasets: BC5CDR
(82.8%), NCBI (55.9%), and Med-Mentions (40.1%). SBERT leads on REDDIT-
IMPACTS with a top score of 39.8%, while it also performs best on MIMIC III with
an Fi-score of 70.2%. These results highlight TF-IDF’s and SBERT’s consistent

robustness across multiple datasets as the top-performing retrieval method.
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Figure 7.5: Fi-score Distribution Across Retrieval Methods.

Figure 7.5 shows the distribution of F-scores across different retrieval methods,
providing an overview of their variability and effectiveness. All retrieval-based meth-

ods show significant improvements, demonstrating the benefit of incorporating re-



91

trieval methods into the prompting strategy. TF-IDF achieves the highest median
F1-score of 62.05%, indicating consistent performance across datasets, followed closely
by SBERT with a median F;-score of 60.83%. The variability is smallest for TF-IDF,
as indicated by the narrow interquartile range, while methods like Base and DPR
display higher variability, suggesting greater sensitivity to dataset characteristics.

Overall, GPT-4 consistently achieves higher Fj-scores compared to LLaMA 3
across most datasets and retrieval methods, particularly in 5-shot setting and 10-
shot setting. This benefit becomes even more significant in datasets with sparse or
noisy data, where retrieval-augmented methods play a critical role. LLaMA 3 shows
comparable performance in 20-shot setting, but struggles to close the gap with GPT-
4 in scenarios with fewer examples or more noisy data. This highlights GPT-4’s
robustness in leveraging limited training data.

Across all datasets and shot settings on GPT 4, larger training sizes (20-shot)
tend to yield higher F-scores, precision, and recall. This suggests that larger train-
ing datasets, perhaps including synthetically generated data, can lead to further im-
provements. However, on LLaMA 3, this increase is less consistent, with the best
performance often observed at the 10-shot setting across multiple datasets. The com-
bination of effective retrieval methods and larger shot sizes contributes significantly to
the overall improvements observed in model performance across all datasets. Based
on the experimental results described in the previous chapter, combining RAG-based
dynamic prompting with synthetic data generation methods may lead to further per-

formance improvements.
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7.5 Discussion

7.5.1 Analysis of Different LLMs

GPT-4 consistently outperforms GPT-3.5 and LLaMA 3-70B across datasets and
configurations, demonstrating its robustness in understanding nuanced biomedical
information. There might be several reasons. First, GPT-4 has significantly more
parameters compared to GPT-3.5 and LLaMA 3-70B, enabling it to capture finer-
grained contextual nuances, especially in complex and domain-specific tasks. The
increased capacity allows GPT-4 to better model relationships between terms and
concepts, particularly in structured datasets such as BC5CDR and NCBI. Second,
GPT-4 is trained on a broader and more diverse corpus, which likely includes a
richer representation of biomedical and scientific texts. This extensive exposure per-
haps enhances its understanding of specialized terminologies and complex sentence
structures, making it particularly effective in tasks like entity recognition and rela-
tionship extraction. Third, in datasets with sparse or ambiguous annotations, such
as REDDIT-IMPACTS or Med-Mentions, GPT-4 achieves higher recall, indicating its

ability to identify relevant entities and relationships more comprehensively.

7.5.2 Performance Improvements via RAG-based Prompting

Retrieval engines improve performance by providing task-relevant context that en-
hances the model’s understanding of the input, effectively bridging the gap between
the model’s general pretraining knowledge and the specific requirements of the task.
By retrieving contextually relevant examples or background information, these en-
gines reduce ambiguity and help the model focus on critical patterns, which is partic-
ularly beneficial for specialized domains like biomedicine. Our results broadly show
that TF-IDF based retrieval works well for datasets that have low noise and lim-

ited out-of-vocabulary expressions. In contrast, engines like SBERT perform better
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on linguistically diverse datasets by leveraging semantic embeddings, which capture
nuanced relationships between words and phrases.

More advanced retrieval methods like ColBERT and DPR often underperform
compared to TF-IDF and SBERT in biomedical tasks. This may be due to several
reasons. ColBERT and DPR rely on dense representations, which, while powerful for
general-purpose semantic matching, may fail to capture the precise, domain-specific
distinctions critical in biomedical datasets. Furthermore, their reliance on dense
embeddings can sometimes be overfit to irrelevant semantic similarities, retrieving

documents that are semantically related but not contextually relevant to the query.

7.5.3 Variability in the Impact of Shot Size

The effect of shot size on performance is not uniform, as observed in the results
across datasets. While increasing the shot size from 5 to 20 generally improves F-
scores, the extent of improvement is dataset-dependent. Datasets with formal texts,
like BC5CDR, which already benefit from retrieval engines aligning with predefined
terms, exhibit marginal gains with additional examples. In contrast, noisy datasets
like REDDIT-IMPACTS are more sensitive to shot size, as more examples help the
model adapt to diverse linguistic patterns and reduce misclassifications.

20-shot does not always yield the best results. One reason is diminishing returns:
as the number of examples increases, redundancy or noise may be introduced, espe-
cially in datasets where retrieval engines already provide strong task-specific context.
Another potential reason arises from the inherent constraints of LLMs, such as input
token limits. As the shot size grows, the available space for processing task-specific
context diminishes, potentially diluting the effectiveness of the prompt or truncating

important information.
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7.6 Limitations

This study demonstrates the effectiveness of retrieval-augmented prompting strategies
in improving the performance of LLMs across diverse biomedical datasets. Despite

the promising results achieved in this study, several limitations warrant discussion:

1. Lack of Biomedical-Specific Retrieval Methods While the study evaluates
general-purpose retrieval engines, it does not incorporate biomedical-specific retrieval
methods tailored to the biomedical domain, such as MedCPT [76]. Retrieval methods
fine-tuned on biomedical corpora could potentially provide a better alignment with

the linguistic and structural complexities of biomedical texts.

2. Dependence on Retrieved Results Our results rely on the quality and quan-
tity of the retrieved examples. If the retrieval engine fails to retrieve sufficient or

relevant results, such as ColBERT, model performance may be negatively impacted.

3. Indexing Only Sentences with Entities To ensure the retrieved examples
satisfy the k-shot requirement (providing sufficient examples for each entity type),
this study indexed only sentences containing entities. While this approach ensured
prompt quality, it limited the scope of the retrieval process and may have excluded
other relevant examples that could improve task generalization.

By addressing these limitations in future research, the study’s findings can be fur-
ther extended to explore the full potential of retrieval-augmented prompting strate-

gies, particularly for specialized tasks in the biomedical domain.

7.7 Conclusion

In this work, we demonstrated the effectiveness of transitioning from static to dynamic

prompting strategies, using RAG, for few-shot biomedical NER. Static prompts en-
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riched with task-specific components improved performance, with GPT-4 showing
the best results. Dynamic prompting further enhanced adaptability by retrieving
contextually relevant examples, with methods like TF-IDF and SBERT outperform-
ing others in most cases. While increasing shot size generally improved performance,
diminishing returns were observed in some cases.

Dynamic prompting proved to be a robust approach for tackling data-sparsity
challenges, but limitations such as computational overhead and dependency on re-
trieval quality remain. Future work should explore domain-specific retrieval methods

and optimize prompting strategies to maximize efficiency and scalability in biomedical

NLP.
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Chapter 8

Conclusion

FSL approaches have substantial promise for NLP in the biomedical domain as many
biomedical datasets naturally have low numbers of annotated instances. In this pro-
posed thesis, we addressed the challenge of sparse data in NER task for biomedical
texts through the application of few-shot learning algorithms and data augmentation
techniques. Our research demonstrated that integrating domain-specific knowledge
from the UMLS and leveraging the generative capabilities of LLMs can significantly
improve NER performance in biomedical texts. We developed a novel method that
combines data augmentation with nearest neighbor classifiers, which showed promis-
ing results in benchmark experiments. Additionally, the creation of the REDDIT-
IMPACTS dataset provided a valuable resource for analyzing clinical and social im-
pacts from social media data. Our findings underscore the potential of few-shot
learning and synthetic data generation in enhancing biomedical NLP tasks, paving
the way for more effective and scalable solutions in the field. Future work will focus
on refining the methods of prompt engineering and exploring applications of LLMs
in broader biomedical contexts.

This thesis provides significant advancements in sparse concept detection and

recognition in biomedical texts using few-shot learning techniques. The study sys-
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tematically benchmarked existing FSL models and highlighted their limitations in
low-resource biomedical NER tasks. To address these challenges, three novel contri-
butions were introduced: semantic data augmentation via nearest neighbor classifiers,
synthetic training data generation leveraging the UMLS and LLMs, and dynamic
prompting within a retrieval-augmented generation framework. The results demon-
strated substantial performance improvements across multiple biomedical datasets,
showcasing the potential of combining enriched data representation, domain knowl-
edge, and adaptive prompting techniques to mitigate data sparsity issues.

The contributions of this thesis extend beyond performance gains; we provide a
roadmap for integrating domain-specific knowledge with cutting-edge NLP method-
ologies, enhancing the practical applicability of FSL systems in biomedical contexts.
These findings bridge gaps in existing research and lay a foundation for scalable,
robust solutions to address the complexities of biomedical NER in real-world low-

resource settings.

8.1 Future Work

Few-shot learning with LLMs presents significant opportunities for advancing biomed-
ical NER. To address challenges related to data scarcity, domain specificity, and real-
world applicability, future research directions should focus on technical innovations,

practical applications, and overcoming current limitations.

8.1.1 Advancing Biomedical NER with Technical Innovations

Our future work will focus on enhancing the performance of LLMs in sparse concept
detection and biomedical NER tasks by leveraging advanced fine-tuning methods tai-
lored for low-resource settings. Biomedical-specific LLMs based on transformer archi-

tectures, such as BioGPT [115] and BioMedLM [10], a domain-tuned GPT variant. To
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efficiently adapt these models to domain-specific tasks, we plan to explore lightweight
fine-tuning techniques, like Quantized Low-Rank Adaptation (QLoRA) [34]. This
approach allows efficient adaptation of base LLMs to domain-specific tasks, address-
ing challenges posed by limited annotated data and high computational costs. By
utilizing QLoRA’s innovative double quantization technique, we aim to achieve sig-
nificant reductions in memory usage while maintaining or improving model perfor-
mance. Specifically, we will explore how QLoRA can align LLMs with target outputs
in scenarios with sparse data, evaluating its effectiveness across various biomedical
NER tasks. In addition, we plan to investigate the trade-offs between memory effi-
ciency, computational cost, and task accuracy, providing insights into its scalability
and practicality for low-resource settings.

To further improve the reasoning capabilities of LLMs in biomedical NER tasks,
our future work will also explore the application of Chain-of-Thought prompting.
This technique facilitates step-by-step reasoning, enabling models to handle complex
challenges such as nested or discontinuous entities more effectively. By explicitly
structuring the reasoning process, CoT not only enhances accuracy in entity boundary
detection but also improves the interpretability of model predictions, making it highly

applicable to intricate biomedical contexts.

8.1.2 Applications of LLMs in Few-shot BioNER

Our current work does not deeply explore how entity types vary across datasets or in-
vestigate the implications of these variations for real-world applications, particularly
in the context of few-shot NER in biomedical domain. For example, understanding
the overlap or divergence in entity types across datasets could inform tasks such as
identifying novel therapeutic applications for existing drugs, disease-specific infor-
mation extraction, or the development of specialized clinical decision support tools.

Furthermore, we have not yet conducted targeted experiments on individual entity
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types, such as diseases, medications, or procedures, which could reveal their unique
challenges and better support their use in specific biomedical contexts. In the future,
we aim to analyze the distribution and characteristics of entity types across datasets
and conduct targeted experiments to align the performance of LLMs with practical
applications in the biomedical domain, particularly by leveraging few-shot learning
techniques to address the scarcity of annotated biomedical data in BioNER tasks.

Looking ahead, we envision applying advancements in integrating LLMs with
domain-specific knowledgebases like UMLS in real-world biomedical and research set-
tings, where sparse data and complex biomedical terminology often limit the ap-
plicability of traditional models. Given these challenges, we believe synthetic data
generation remains a valuable approach to augment limited datasets and improve
model performance in such contexts. To this end, we considered two approaches to
enhancing synthetic sentence generation using UMLS: encoding API access methods
directly into the prompt to dynamically query UMLS [77] or feeding the results re-
trieved from UMLS back into the prompt to guide the generation process. These
strategies leverage UMLS’s hierarchical structure and semantic relationships, align-
ing with a chain-of-thought prompting approach to improve contextual relevance and
accuracy in generated outputs. While such strategies require substantial research and
development, these methods hold promise for improving tasks like decision-making,
personalized treatment planning, and biomedical knowledge discovery.

However, synthetic data generation also presents challenges that require further
investigation. One significant issue is hallucination, where LLMs may produce incor-
rect or non-existent entities, potentially compromising the quality and reliability of
the synthetic data. Furthermore, evaluating the generated text poses another critical
challenge, particularly in ensuring it aligns with domain-specific requirements and
accurately reflects real-world biomedical contexts. Developing robust evaluation met-

rics and methods to measure the accuracy of generated text will also be one of the a
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key focuses of future work. Addressing these issues will be essential for maximizing
the impact of synthetic data generation in biomedical applications and ensuring its

effectiveness for tasks such as few-shot NER.



101

Appendix A

Tables for Literature Review
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Study Research aim Primary approach(es) Evaluation
methodology
Propose and evaluate a neural architecture
suitable for handling few- and zero-shot
Rios et al labels in the multi-label setting where the R@5 and RQ10 (Recall),

[140] Multi-label

Text Classification

output label space satisfies two constraints: P@10 (Precision),
(1). the labels are connected forming a Macro-F; scores
DAG and (2). each label has a brief

tlanguagedescriptor.

Rios et al. Multi-label

[141] Text Classification

Propose a novel semi-parametric neural Precision, Recall,
matching network for diagnosis/procedure Fi-scores, AUC (PR),
code predictionfrom EMR narratives. AUC (ROC), Pak, R@k

Hofer et al.

[66] NER

Five improvements on NER tasks when
only 10 annotated examples are available:
1.Layer-wise initialization with pre-
trained weights (single pre-training);
2.Hyperparameter tuning;

3.Combining pre-training data;

4.Custom word embeddings;

5. Optimizing out-of-vocabulary words.

F{-score

Pham et
al. [132]

Neural Machine
Translation (NMT)

Present a generic approach to use phrase-

based models to simulate Experts to BLEU score, SUGGES-
complement neural machine translation TION (SUG) and
models show that the model can be trained SUGGESTION

to copy the annotations into the output ACCURACY (SAC)
consistently.

Text
Yan et al. [178] Classification

Propose a short text classification framework

based on Siamese CNNs and FSL, which will

learn the discriminative text encoding so

as to help classifiers distinguish those

obscure or informal sentence. The different Accuracy
sentence structures and different descript-

ions of a topic will be learned by FSL

strategy to improve the classifier’s

generalization.

Manousogiannis Concept
et al. [11§] Extraction

Propose a simple Few-Shot learning
approach, based on pre-trained word
embeddings and data from the UMLS,
combined with the provided training data.

Relaxed and strict
Precision/Recall
/F4-scores

Relation

Gao et al. [45] Classification

Propose FewRel 2.0, a new task containing
two real-world issues that FewRel ignores:
(1) few-shot domain adaptation, and

(2) few-shot none-of-the-above detection.

Accuracy

Lara-Clares

et al. [93] NER

This work is based in the Few-shot Learning

Model to learn high level features. propose

a hybrid Bi-LSTM CNN model adding a
Part-of-Speech (POS) tagging layer, that is, Fi-score
information about multi-word entities.

And use wikipedia2vec to automatically

extract and classify keywords.
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Study

Research aim

Primary approach(es)

Evaluation

methodology

Ferré et al. [40]

Entity
Normalization

Propose C-Norm, a new neural approach
which synergistically combines standard,
weak supervision, ontological knowledge
integration and distributional semantics.

The offcial evaluation
tool of the BB-norm task:
a similarity score and a
strict exact match score.

Hou et al. [68]

Slot Tagging

Proposed Collapsed Dependency Transfer
and Label-enhanced Task-adaptive
Projection Network 1.A collapsed depend-
ency transfer mechanism into CRF to
transfer abstract label dependency patterns
as transition scores 2.The emission score

1.Cross-validate the
models on different
domains. One target
domain for testing,

one domain for develop-
ment, and rest domains as

(NER) of CRF: word’s similarity to the represent- source domains for training.
ation of each label. 3. A Label-enhanced 2. Evaluate Fi-scores
Task-Adaptive Projection Network (L- within each few-shot
TapNet) based on TapNet, by leveraging episode, and average 100
label name semantics in representing F1-scores from all 100
labels. episodes as the final result
Frame the adaptation of NMT systems as
Sharaf ot Neural Machine a meta-learning problem, Whe.re can learn  Use BLEU., measure
al. [150) Translation (NMT) to aflapt to new unseen dOHlE'lII.lS based ' case—sens'ltlve de-tokenized
on simulated offline meta-training domain BLEU with SacreBLEU.
adaptation tasks.
Present a simple multi-graph aggregation
model that fuses kpowlgdge from multl.ple RecalloK and nDCGAK.
Multislabel label graphs encoding different semantic K was set to 10
Lu et al. [113] label relationships in order to study how

Text Classification

the aggregated knowledge can benefit
multi-label zero/few-shot document
classification.

for MiMIC-I1 /111
and 5 for URLEX57K.

Jia et al. [74]

NER

The method creates distinct feature
distributions for each entity type across
domains, which can give better transfer
learning power compared to representation
networks that do not explicitly differentiate
entity types.

F-score

Chalkidis
et al. [19]

Multi-label
Text Classification

1. Hierarchical methods based on
Probabilistic Label Trees (PLTS);

2. Combines BERT with LWAN;

3. Investigate the use of structural
information from the label hierarchy in
LWAN. Leverage the label hierarchy to

improve few and zero-shot learning.

R-Precision@K (RPQK),
a top-K version of
R-Precision of each
document, and nDCG@QK

Lwowski et al.
[116]

Text Classification

Propose a self-supervised learning algorithm
to monitor COVID-19 Twitter using an
autoencoder to learn the latent represent-
ations and then transfer the knowledge to
COVID-19 Infection classifier by fine-
tuning the Multi-Layer Perceptron (MLP)
using few-shot learning.

Accuracy, Precision, Recall
and F{-score
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Study Research aim

Primary approach(es) Evaluation

methodology

Dialogue Language
Understanding;:
includes two
sub-tasks:

Intent Detection
(classification)

and Slot Tagging
(sequence labeling)

Hou et al. [69]

Present FewJoint, a novel FSL benchmark
for NLP. This benchmark introduces
few-shot joint dialogue language
understanding, which additionally covers
the structure prediction and multi-task
reliance problems.

F1-score,

Intent Accuracy, Slot

Sentence Accuracy

Natural Language

Chen et al. [23] Generation (NLG)

The design of the model architecture is

based on two aspects: content selection BLEU-4, ROUGE-4 (F-

from input data and language modeling measure) follow the same

to compose coherent sentences, which can  trend with BLEU-4

be acquired from prior knowledge.

Concept

Vaci et al. [166] Extraction

Used a combination of methods to
extract salient information from electronic
health records. First, clinical experts define

the information of interest and subsequently Precision, Recall and

build the training and testing corpora for  Fi-score
statistical models. Second, built and fine-

tuned the statistical models using active

learning procedures.

Huang et

al. [71] NER

Present the first systematic study for few-
shot NER, a problem that is previously little
explored in the literature. Three distinctive
schemes and their combinations are invest-
igated; perform comprehensive comparisons
of these schemes on 10 public NER datasets
from different domains; Compared with exist-
ing methods on few-shot and training-free
NER settings, the proposed schemes achieve
SoTA performance despite their simplicity.

F-score

Chen et al. [20] Classificaition

Propose a classification and diagnosis method
for Alzheimer’s patients based on multi-modal
feature fusion and small sample learning.

And then the compressed interactive network
is used to explicitly fuse the extracted
features at the vector level. Finally, the
KNN attention pooling layer and the score
convolutional network are used to constract

a small sample learning network to classify

the patient diagnosis data.

Accuracy and

Fy-

Sequence

Yin et al- [182] 1o oing (NER)

Mainly adopt the prototypical network, and
use the relation module as the distance
measurement function to model the task of
biomedical event trigger identification. In
addition, in order to make full use of the
external knowledge base to learn the
complex biological context, we introduced a
self-attention mechanism.

Fq-score




111

Table A.2 continued from previous page

Study

Research aim

Primary approach(es) Evaluation

methodology

Abstractive
Summarization

Goodwin et
al. [53]

Compare the summarization quality ROUGE-1, ROUGE-2, and
produced by three SOTA transformer-based ROUGE-L F;-scores,
models: BART, T5, and PEGASUS. BLEU-4 and Repetition Rate

Yang et al.[179] NER

Propose STRUCTSHOT. 1.Use contextual
representation to represent each token,
uses a nearest neighbor (NN) classifier
and a Viterbi decoder for prediction.

2. Test systems on both identifying new
types of entities in the source domain as
well as identifying new types of entities

in various target domains in one-shot

and five-shot settings.

F'-score

Hartmann
et al. [63]

Concept
Extraction

Present a universal approach to multi-

lingual negation scope resolution, and study Two widely used evaluation
an approach for zero-shot cross-lingual metrics for negation scope
transfer for negation scope resolution in prediction: Percentage of
clinical text, exploiting data from disparate correct spans (PCS) and
sources by data concatenation, or in F1-score over scope tokens
an MTL setup.

. Name
Fivez et al. [43] Normalization

Take a next step towards truly robust
representations, which capture more
domain-specific semantics while remaining
universally applicable across different
biomedical corpora and domains. Use
conceptual grounding constraints which
more effectively align encoded names to
pretrained embeddings of their concept
identifiers.

For synonym retrieval: Mean
average precision (mAP) over
all synonyms. For concept
mapping, Accuracy (Acc) and
Mean reciprocal rank (MRR)
of the highest ranked correct
synonym.

Rumor

Lu et al. [180] Detection

Collect and contribute a publicly available
rumor dataset that is suitable for few-shot
learning from Sina Weibo. And introduce a
FSL-based multi-modality fusion model
named COMFUSE for COVID-19 rumor
detection, including text embeddings
modules with pre-trained BERT model,
feature extraction module with multilayer
Bi-GRUs, multi-modality feature fusion
module with a fusion layer, and meta-learning
based few-shot learning paradigm for rumor
detection.

Accuracy
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Study Research aim

Primary approach(es)

Evaluation

methodology

Drug-response

Ma et al. [117] Predictions

Applied the few-shot learning paradigm to
three context-transfer challenges:

(1) transfer of a predictive model learned
in one tissue type to the distinct contexts
of other tissues;

(2) transfer of a predictive model learned
in tumor cell lines to patient-derived tumor
cell (PDTC) cultures in vitro; and

(3) transfer of a predictive model learned
in tumor cell lines to the context of
patient-derived tumor xenografts (PDXs) in
mice in vivo.

Accuracy, Pearson’s
correlation, AUC

Kormilitzin

et al. [86] NER

First, the underlying deep neural network
language model was pre-trained in a self-
supervised manner using the cloze-style
approach. Second, using the weak-
supervision method, developed synthetic
training data with noisy labels. Lastly,
incorporated all ingredients into an active
learning approach.

Accuracy, Precision,
Recall and Fq-score

Extract Entity

Guo et al. [56] Relations

Proposes BioGraphSAGE model, a Siamese
graph neural network with structured
databases as domain knowledge to extract
biological entity relations from literatures.

Precision (P-value),
Recall (R-value) and
F-score

Fact-Checking
Lee et al. [95] (close to Text

Propose a novel way of leveraging the
perplexity score from LMs for the few-shot
fact-checking task and demonstrate the

Accuracy and
the Macro-F;-score

Classification) effectiveness of the perplexity-based
approach in the few-shot setting.
Explore a scalable few-shot learning Spearr.nan s rank correlation
. . coeflicient between human
approach for robust biomedical name cudements and similarit
Name representations which is orthogonal to this Juce Y

Fivez et al. [42] Normalization

paradigm. And use more general higher-
level concepts which span a large range of
fine-grained concepts.

scores of name embeddings,
reported on semantic
similarity (sim) and
relatedness (rel) benchmarks.

Table A.2: A summary table showing primary few-shot approaches and evaluation

methodologies



113

Appendix B

Detailed Task-specific Static Prompts



114

Prompt Strategies Reddit-Impacts

AI trained to identify and classify tokens into three categories: Clinical Tmpacts, Social Tmpacts, and Outside ('0").

[Task Description]: You are a medi

Your task is to extract and classify the clinical and social impacts from this dataset, considering your knowledge of the lifestyle of this population and the

potential clinical and social impacts they might experience.

|[Entity Types with Definitions]: Clinical Impacts’ refer to tokens describing the effects, consequences, or impacts of substance use on individual health or

be the societal, interpersonal, or community-level effects, also based on UMLS definitions. Any token

well-being, as defined in UMLS. "Social Impacts’ de:

not falling into these categories should be labeled as

Basic Prompt [Format Specification]: For example, the sentence 'T was a codeine addict.” is tokenized and labeled as follows: ['T’, "was’, "a’, codeine’, "addict’, *.’]
with labels 'O, ’0’, ’0’, "Clinical Impacts’, *Clinical Impacts’, *0’]. Your task is to predict and return the label for each provided token, ensuring the number of
output labels matches the number of input tokens exactly. The output format should be tokens with their labels: [1-O’, 'was-O’, ’a-O’, "codeine-Clinical Impacts’,
"addict-Clinical Impacts’, *.-O’].

The data you are working with has been collected from 14 forums on Reddit (subreddits) that focused on prescription and illicit opioids, and medications

Description of datasets . . o . ) X L L. e L .
for opioid use disorder. This dataset represents a social media context, coming from individuals who may use prescription and illicit opioids and stimulants.

. . In this dataset, high-frequency clinical impacts include 'withdrawal’, 'rehab’, "addicted’, 'detox’, "overdosed’, and 'rehabs’. High-frequency social impacts include
High-frequency instances

"lost’, "homeless’, "charged’, ’streets’, "jail’, and '

rderly’.

The Unified Medical Language System (UMLS) is developed by the U.S. National Library of Medicine (NLM) to integrate and standardize diverse medical
UMLS knowledge terminologies and coding systems. It consists of three main components: the Metathesaurus, Semantic Network, and SPECIALIST Lexicon, supporting medical

information retrieval and semantic analysis. You understand medical terminology and concepts from UMLS.

Possible analysis of prediction errors: If a sentence describes the background information of an event, facility, or project, then even if it mentions keywords

. related to social impact like at jail’, it still cannot be determined as describing a patient being in jail. It is essential to clearly determine whether the sentence is
Error analysis

describing the patient’s condition. Second, if the sentence is about the usage, operation, or introduction of a drug or medicine, it does not belong to the patient’s

clinical impacts, even if it mentions some symptoms. Pay attention to whether the sentence contains words like 'if” that indicate conditions.

Table B.1: Specific static prompts for each component we used for the REDDIT-
IMPACTS dataset.

Prompt Strategies BC5CDR
[Task Description]: You are a medical AT trained to identify and classify tokens into three categorie

"Disease’, 'Chemical’ and Outside ('O’). Your task is to extract
and classify the Disease and Chemical related concepts from this dataset.
[Entity Types with Definitions]: 'Di

not immediately due to any external injw

ase’ is a particular abnormal condition that adversely affects the structure or function of all or part of an organism and is

v. Diseases are often known to be medical conditions that are associated with specific signs and symptoms. A disease

may be caused by external factors such as pathogens or by internal dysfunctions. For example, internal dysfunctions of the immune system can produce a variety

of different diseases, including various forms of immunodeficiency, hypersensitivity, allergies, and autoimmune disorders. 'Chemical’ in this context refers to

substances or compounds with specific chemical properties and structures. These can include drugs, neurotransmitters, clements or ions, vitamins, and other

medically relevant chemicals. Any token not falling into Disease categories should be labeled as 'O’

[Format Specification|: For example, the sentence "The hypotensive effect of 100 mg / kg alpha-methyldopa was also partially reversed by naloxone .’ is
Basic Prompt tokenized and labeled as follows: ["The’, "hypotensive’, ‘effect’, of’, "100”, 'mg’, °/’, ’kg’, "alpha-methyldopa’, "was’, "also’, "partially’, reversed’, "by’, 'naloxone’, .’ with
labels 'O, "Discase’, '0’,’0’, '07, 0", '0’, "0’, "Chemical’, ’0’, '0”, ’0’, ’0’, "0’, "Chemical’, ‘O’]. Your task is to predict and return the label for each provided token,

the number of input tokens exactly. The output format should include tokens with their labels: ["The-O’, "hypotens

ensuring the number of output labels matcl e-
Disease’, "effect-O’, "of-0’, "100-O’,
The data you are working with is BC5CDR dataset, a benchmark dataset for biomedical natural language processing, created from PubMed abstracts. It includes
hemical

’, 'was-0’, "also-O’, "partially-O’, "reversed-O’, 'by-O’, 'naloxone-Chemical’, .-O’].

‘mg-07, '/-0’, kg-O’, "alpha-methyldopa-Chemi

induced dise

Description of datasets annotations for two entity types—chemicals and diseases—and their relationships, specifically ions. The dataset is widely used

for tasks such as named entity recognition and relation extraction, supporting research in biomedical text mining and information extraction.

. . In this dataset, high frequency of "Disease’ include "pain’, toxicity’, 'renal’, "failure’, 'disease’, "hypotension’; high frequency of "Chemical” include ’cocaine’, "acid’,
High-frequency instances L ) 5 o
dopamine’, "nicotine’, "'morphine’, "lithium’.

The Unified Medical Language System (UMLS) is developed by the U.S. National Libra

UMLS knowledge terminologies and coding systems. It consists of three main components: the Metathesaurus, Semantic Network, and SPECIALIST Lexicon, supporting medical

of Medicine (NLM) to integrate and standardize diverse medical

v

information retrieval and semantic analysis. You understand medical terminology and concepts from UMLS.

Possible analysis of prediction errors: The prediction errors mainly stem from challenges in distinguishing between entity boundaries and contextual usage. For

instance, multi-token entities were partially labeled, causing boundary mismatches. Additionally, certain terms such as "receptor” or "antagonist" were incorrectly
Error analysis labeled as 'O, despite being part of chemical-related entities. Misclassification also occurred in sentences with conditional phrases or background information,

where the relation between entities was not accurately captured. Furthermore, entities mentioned in descriptive or abstract contexts, were sometimes overlooked.

These errors highlight difficulties in handling complex sentence structures, context-specific classification, and multi-token entity recognition.

Table B.2: Specific static prompts for each component we used for the BC5CDR
dataset.
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Prompt Strategies MIMIC IIT
[Task Description]: You are a medical Al trained to identify and classify tokens into 13 categories: "CONDITION/SYMPTOM’, 'DRUG’, 'AMOUNT’, "TIME’,
'MEASUREMENT’, 'LOCATION’, EVENT’, 'FREQUENCY’, 'ORGANIZATION’, 'DATE’, "AGE’, 'GENDER’ and Outside ('0"). Your task is to extract and

'y the concepts from this dataset.

class

[Entity Types with Definitions]: 'ORGANIZATION’ refers to entities or groups associated with healthcare or emergency medical services. These could be specific
departments, teams, or services within a medical or emergency response organization. 'DATE" in this context refers to specific calendar dates. These dates are
typically used to mark particular events, appointments, or deadlines. ’AGE” in this context refers to the length of time that a person has lived or the number of years
since their birth. It can be expressed in various formats, including numerical values, abbreviated forms, or written out in words. 'GENDER’ in this context refers to
the socially constructed roles, behaviors, acti

ies, and attributes that a given society considers appropriate for men and women. It encompasses the identities of
‘male’ and “female,” which are often associated with biological sex but are also shaped by cultural and social factors. 'FREQUENCY” in this context refers to the rate

or regularity at which an event or phenomenon occurs. It can describe how often something happens, ranging from sporadic or irregular occurrences to more regular

or constant patterns. 'EVENT” in this context refers to specific occurrences or actions that take place, particularly in a medical or clinical setting. These can include

context refe

procedures, assessments, or other significant incidents. "LOCATION” in thi s to specific places or areas, particularly within a healthcare or medical
setting. These can include types of facilities, specific locations within a facility, or other relevant places. "MEASUREMENT in this context refers to quantitative

assessments or values used to evaluate specific physiological or medical parameters. These can include vital signs, laboratory test results, numerical values, or

other metrics related to patient health. "TIME’ in this context refers to specific points or periods in the temporal continuum, particularly as they relate to healthcare or
medical events. These can include general time references, specific durations, or events tied to time. "AMOUNT” in this context refers to specific quantities or

dosages, particularly in a medical or pharmaceutical setting. These can include measurements of medication, frequency or number of administrations, and methods of

delivery. "DRUG” in this context refers to specific medications or pharmaceutical substances used in the treatment, prevention, or diagnos

include brand names, generic names, or forms of administration. "CONDITION/SYMPTOM in this context refers to physical or subjective signs that indicate a medical
condition or disease. These can include sensations of discomfort, specific types of pain or discomfort, respiratory issues, or gastrointestinal symptoms. Any token not

falling into categories above should be labeled as 'O’.

[Format Specification]: For example, the sentence "The patient was readmitted to the hospital on 2195-6-6 due to fevers to 103 at the rehabilitation facility despite
being on intravenous antibiotics HISTORY OF PRESENT ILLNESS 55 year-old female presents with 2/5 week history of non-bloody diarrhea’ is tokenized and
labeled as follows: ['The’, 'patient’, 'was’, 'readmitted’, to’, 'the’, Thospital’, "on’, '2195-6-6", "due’, 'to’, ‘fevers’, to’, '103’, "at’, "the’, 'rehabilitation’, "facility’, *despite’,
"being’, "on’, "intravenous’, "antibiotics’, "HISTORY", "OF’, 'PRESENT’, "ILLNESS’, 55",
“diarrhea’] with labels [0, °0’, 'O”, 'TEVENT", '0’, 'LOCATION’, 'LOCATION’, "0, ’0’, ’0’, '0’, 'MEASUREMENT’, 'MEASUREMENT’, '"MEASUREMENT", "0,
"LOCATION’, 'LOCATION’, 'TLOCATION’, ’0’, '0’, ’0’, 'DRUG’, 'DRUG’, '0’, 0, ’0’, 'O, "AGE’, 0’, "GENDER’, 0", ’0", 'AMOUNT’, "AMOUNT", '0’, '0’,
’CONDITION/SYMPTOM’, "CONDITION/SYMPTOM’|. Your task is to predict and return the label for each provided token, ensuring the number of output labels
matches the number of input tokens exactly. The output format should include tokens with their labels: ['The-O’, "patient-O’, *was-O’, readmitted-EVENT’, "to-O’,
’the-LOCATION’, "hospital-LOCATION’, "on-0’, "2195-6-6-O", "due-0’, "t0-O’, "feverss MEASUREMENT", "to-MEASUREMENT”, ’103-MEASUREMENT", at-O’,
’the-LOCATION’, "rehabilitation-LOCATION’, “facility-LOCATION’, *despite-O’, being-O’, "on-O’, "intravenous-DRUG’, "antibiotics-DRUG’, "HISTORY-0’, 'OF-O’,
"PRESENT-O’, "ILLNESS-O’, ’55-AGE’, "year-old-O’, "female-GENDER’, "presents-O’, "with-0’, '2/5-AMOUNT’, "week-AMOUNT”, "history-O’, of-O’, "non-bloody-
CONDITION/SYMPTOM’, “diarrhea-CONDITION/SYMPTOM’|.

The data you are working with is MIMIC-IIT (Medical Information Mart for Intensive Care) dataset, a large, publicly available database containing de-identified
health data from critical care patients at the Beth Israel Deaconess Medical Center. It includes structured data, such as demographics, lab results, and vital signs, as

year-old’, "female’, "presents’, "with’, '2/5’, 'week’, "history’, "of’, 'non-bloody’,

Basic Prompt

Description of datasets L N A A ) ) ) .
well as unstructured data, such as clinical notes and discharge summaries. The dataset is widely used for research in machine learning, natural language processing,

and clinical decision support to improve healtheare outcomes.

Tn this dataset, high frequency of 'CONDITION/SYMPTOM include "pair’, “chest’, ‘cougl’, "breath’, ‘nausea’, ‘abdominal’; high frequency of 'DRUG’ include 'iv’,

lasix’, “ceftriaxone’, ‘oxygen’, 'ns’, ‘coumadin’; high frequency of "AMOUNT” include 'iv’, "2, '1", ‘mg’, 'days’, "one’; high frequency of "TIME’ include 'day’, *admi

“prior’, "last’, "ago’, 'morning’; high frequency of 'MEASUREMENT” include "bp’, *hr’, *pressure’, ‘blood’, '1r’, 'rate’, *heart’; high frequency of LOCATION include

High-frequency instances hospital’, right’, "home’, "floor’, "emergency’, "micu’; high frequency of 'EVENT” include “ct’, "placed’, “exr’, "intubated’, "exam’, "review’; high frequency of 'FREQUENCY”

include ’chronic’, "intermitter

, 'daily’, "occasionally’, "frequent’, "intermittently’; high frequency of 'ORGANIZATION’ include "ems’, "service’, 'surgery’, 'pep’,

‘emergency’, neuro’, ‘medicine’; high frequency of "TDATE’ include 2171114, 21491117; high frequency of "AGE’ include '60’, "80yo’, 78", ’61’, "seventyeightyearold’,

'69’; high frequency of 'GENDER' include 'man’, 'woman’, 'f’, 'male’, "female’, 'm’

The Unified Medical Language System (UMLS) is developed by the U.S. National Library of Medicine (NLM) to integrate and standardize diverse medical
UMLS knowledge terminologies and coding systems. It consists of three main components: the Metathesaurus, Semantic Network, and SPECIALIST Lexicon, supporting medical
information retrieval and semantic analysis. You understand medical terminology and concepts from UMLS.

The prediction errors stem from several factors. Entity boundary recognition issues were common, particularly with multi-token entities like "shortness of breath"

or "paroxysmal nocturnal dyspnea," where some tokens were missed or incorrectly labeled as *O.” Additionally, the model struggled with entity type confusion,

Error analysis such as distinguishing "pain" as a symptom versus its contextual use related to location. Context-dependent misinterpretations also contributed to errors, especially
in handling negations like "denies chest pain" or temporal references such as "last few months." Overlapping entities posed further challenges, where closely related
terms (e.g., "MI" and "CABG") interfered with accurate classification. Finally, rare or unseen entities in the training data led to occasional misclassifications,

highlighting gaps in the model’s ability to generalize.

Table B.3: Specific static prompts for each component we used for the MIMIC III
dataset.
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Prompt Strategies NCBI

[Task Description]: You are a medical Al trained to identify and classify tokens into five categories: DiseaseClass, SpecificDisease, Modifier, CompositeMention

and Outside ("0’). Your task is to extract and classify the DiseaseClass, SpecificDisease, Modifier and CompositeMention from this dataset.

[Entity Types with Definitions]: DiscaseClass’ refers to a classification system or category used to group various medical conditions or discases based on certain

characteristics, such as their natur ses that are identified and

affected biological

ems, or underlying causes. "SpecificDisease’ appears to describe particular d

classified based on their specific clinical features, genetic origins, or biochemical abnormalities. "Modifier’ refers to specific attributes or variations or conditions that

can modify or influence the presentation, progression, or characteristics of a disease, alter the manifestation or course of a disease, potentially affecting its diagnosis,
treatment, and prognosis. 'CompositeMention” describes medical conditions or characteristics that are composed of several elements or features, often involving

multiple tissues, organs, or systems. Any token not falling into these categories should be labeled as 'O’.

[Format Specification]: For example, the sentence Histidinemia. Classical and atypical form in siblings.’ is tokenized and labeled as follows: ['Histidinemia.,

Basic Prompt . . . . ) Oy e . .
"Classical’, "and’, "atypical’, "form’, "in’, ’siblings.’] with labels ['SpecificDisease’, JO’, ’0’, "0, "0’, "0, ’O’]. Your task is to predict and return the label for each provided

token, ensuring the number of output labels matches the number of input tokens exactly. The output format should include tokens with their labels: [Histidinemia.-

SpecificDisease’, "Classical-O’, "and-O’, "atypical-O’, “form-O’, "in-O’, 'siblings.-O’].

The data you are working with is NCBI disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research
resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and

Description of datasets their corresponding concepts in Medical Subject Headings (MeSH) or Online Mendelian Inheritance in Man (OMIM). The public release of the NCBI disease corpus

contains 6892 disease mentions, which are mapped to 790 unique disease concepts. Of these, 83 percent link to a MeSH identifier, while the rest contain an OMIM
identifier. We were able to link 91 percent of the mentions to a single disease concept, while the rest are described as a combination of concepts.

In this dataset, high-frequency 'DiseaseClass’ include “disorder’, "abnormalities’, "tumors’, 'mental’, "disorders’, "retardation’. High-frequency ’SpecificDisease’ include
High-frequency instances 'deficiency’

, 'syndrome’, "dystrophy’, “familial’, 'myotonic’, "colorectal’. High-frequency "Modifier’ include "tumor’, "tumour’, "APC’, "choroideremia’, 'DM’, 'DMD’.

High-frequency 'CompositeMention’ include "breast’, ovarian’, 'cancer’, 'muscular’, "andor’, "becker’.

The Unified Medical Language System (UMLS) is developed by the U.S. National Library of Medici
UMLS knowledge terminologies and coding systems. It consists of three main components: the Metathesaurus, Semantic Network, and SPECIALIST Lexicon, supporting medical

¢ (NLM) to integrate and standardize diverse medical

information retrieval and semantic anal You understand medical terminology and concepts from UMLS.

The prediction errors in the NCBI dataset primarily stem from challenges in distinguishing composite mentions and modifiers within complex biomedical contexts
For instance, entities like "BRCA1 gene" were incorrectly segmented, with "BRCA1" labeled as a modifier instead of being part of the composite mention.

Error analysis Additionally, multi-token composite mentions such as "breast and ovarian cancer" were not consistently labeled, with individual tokens occasionally missed or
misclassified. Contextual ambiguity, such as distinguishing between mentions of general biological terms (e.g., "tumor") and their specific functional roles (e.g.,

"tumor suppressor"), also contributed to errors.

Table B.4: Specific static prompts for each component we used for the NCBI dataset.

Prompt Strategies Med-Mentions

[Task Description]: You are a medical Al trained to identify and classify tokens into two categories: Disease and Outside ('O’). Your task is to extract and classify
the Disease related concepts from this dataset.

[Entity Types with Definitions]: "Disease’ is a particular abnormal condition that adversely affects the structure or function of all or part of an organism and is not
immediately due to any external injury. Diseases are often known to be medical conditions that are associated with specific signs and symptoms. A disease may be
caused by external factors such as pathogens or by internal dysfunctions. For example, internal dysfunctions of the immune system can produce a variety of

different diseases, including various forms of immunodeficiency, hypersensitivity, allergies, and autoimmune disorders. Any token not falling into Disease categories

should be labeled as 'O’.

[Format Specification]: For example, the sentence 'A total of 200 children and adolescents with type 1 diabetes, ages 9-18 years, completed the DEPS-R Turkish

version.” is tokenized and labeled as follows: ['A’, "total’, "of’, "200", "children’, and’, "adolescents’, "with’, "type’, ', "diabetes,’, "ages’, '9-18’, "years,’, ‘completed’, "the’,
"'DEPS-R’, "Turkish’, *version.’| with labels [0, "0”, 0, "0”, "Disease’, '0’, 'Disease’, 'O’, Disease’, 'Disease’, 'Disease’, 'Disease’, ’0’, ‘Disease’, 'O, '0’, Disease’,

"Diseas ['A-O’, "total-O, "of-0’, 200-O, "children-Disease’, ’and-O’, "adolescents-Dis
'with-O’, "type-Diseast , "years -Disease’, "completed-O’, 'the-O’, 'DEPS-R-Disease’, "Turkish-Disease’,

Basic Prompt

The output format should include tokens with their label

’1-Disease’, 'diabetes,-Disease’, "ages-Disease’, '9-18-O
"version.-Disease’|.

The data you are working with is Med-Mentions, a new manually annotated resource for the recognition of biomedical concepts. What distinguishes Med-Mentions
Description of datasets from other annotated biomedical corpora is its size (over 4,000 abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over 3
million concepts from UMLS 2017) and its broad coverage of biomedical disciplines.

High-frequency instances In this dataset, high frequency 'Discase’ related entities include "patients’, "cells’, "treatment’, "cancer’, "analysis’, 'disease’, "clinical’

The Unified Medical Language System (UMLS) is developed by the U.S. National Library of Medicine (NLM) to integrate and standardize diverse medical
UMLS knowledge terminologies and coding systems. Tt consists of three main components: the Metathesaurus, Semantic Network, and SPECIALIST Lexicon, supporting medical

information retrieval and semantic analysis. You understand medical terminology and concepts from UMLS.

The prediction errors in the Med-Mentions dataset are primarily due to challenges in identifying complex and overlapping discase mentions, as well as distinguishing

between general biomedical terms and specific disease entities. Multi-token entities such as "renal pedicle occlusion" or "intention-to-treat analyses" were often

ate cancer" and its

E lysi partially labeled, with some tokens being misclassified or excluded. Additionally, the presence of nested or overlapping mentions, such as "pros
rror analysis
Y relationship to broader contexts like "treatment disparities," led to inconsistent labeling. The model also struggled with domain-specific terminology, misclassifying
general terms like "maternal genotype" or "outcome" as disease mentions. These errors highlight limitations in handling nuanced biomedical language, especially

when entities span multiple tokens or overlap with related terms.

Table B.5: Specific static prompts for each component we used for the Med-Mentions
dataset.
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Appendix C

Averaged Performance of the Baseline

Dynamic Prompt Model
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Precision Recall F-score

Precision Recall F-score

GPT 4

16.40 50.00 24.70
5-shot 17.67 50.62 26.20
17.48 53.09 26.30
23.91 54.32 33.20
AVG 18.865 52.0075 27.60
25.41 58.75 35.47
21.67 54.32 30.99
10-shot
21.43 59.26 31.48/Llama3
20.47 54.32 29.73
AVG 22.245 56.6625 31.9175
28.74 58.63 38.57
20-shot 27.03 57.54 36.78
26.52 59.79 36.74
28.65 59.02 38.57
AVG 27.735 58.745  37.665

12.56 56.32 20.55
5-shot 13.68 55.81 21.97
12.14  59.52 20.16
14.25  59.79 23.02
AVG 13.1575 57.86  21.425
24.51 59.52 34.72
10-shot 19.63 62.35 29.86
23.96 57.44 33.81
21.38 60.43 31.59
AVG 22.37 59.935 32.495
27.22  57.65 36.98
20-shot 23.24 52.44 32.21
2212 52.08 31.06
25.49 53.06 34.44
AVG 24.517553.8075 33.6725

Table C.1: Averaged performance of the baseline dynamic prompt model on the
REDDIT-IMPACTS dataset across different shot settings.

Precision Recall F;-score

Precision Recall F-score

GPT 4

69.97 91.43 79.27

68.32 88.3 77.29
5-shot

64.58 90.15 75.25

71.59 91.39 80.29
AVG 68.61590.3175  78.025

75.11 90.84 82.23

74.41  90.32 81.60
10-shot

74.13 85.71 79.50|Llama3

77.65 86.35 81.73
AVG 75.325 88.305 81.265

75.36 88.33 81.33

73.13 91.74 81.38
20-shot

71.84 91.1 80.33

77.94 85.54 81.57
AVG 74.567589.1775 81.1525

68.09 84.35 75.35
5-shot 69.70 76.67 73.02
71.00 79.15 74.86
67.10 73.25 70.04
AVG 68.9725 78.355 73.3175
72.38 79.18 75.63
10-shot 73.31 74.24 73.77
71.15 77.05 73.98
73.40 81.17 7.2
AVG 72.56 7791  75.145
75.12 74.84 74.98
20-shot 72.03 71.88 71.96
76.88 77.20 77.04
77.64 78.40 78.02
AVG 75.4175 75.58 75.5

Table C.2: Averaged performance of the baseline dynamic prompt model on the
BC5CDR dataset across different shot settings.
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Precision Recall F-score

Precision Recall F-score

62.38 63.78 63.07

5-shot 61.88 62.19 62.03
65.26 68.14 66.67

62.71 62.36 62.54

AVG 63.057564.1175 63.5775
66.38 74.24 70.09

10-shot 68.37 74.86 71.47
GPT 4 66.72 75.33 70.77
66.46 73.34 69.73

AVG 66.9825 74.4425  70.515
70.41 69.84 70.12

20-shot 70.11 71.24 70.67
71.45 73.39 72.41

70.64 70.80 70.72

AVG 70.6525 71.3175 70.98

Llama3

97.69  68.39 62.58
5-shot 61.83 61.33 61.58
598.24 68.06 62.77
99.44 71.29 64.82
AVG 99.367.2675 62.9375
59.13 71.63 64.78
10-shot 62.68  63.8 63.23
61.71 67.58 64.51
62.24 62.84 62.54
AVG 61.4466.4625  63.765
63.89 62.04 62.95
20-shot 63.96 62.83 63.39
99.22  61.71 60.44
60.96 61.88 61.42
AVG 62.0075 62.115 62.05

Table C.3: Averaged performance of the baseline dynamic prompt model on the
MIMIC III dataset across different shot settings.

Precision Recall F;-score

Precision Recall F;-score

46.17  50.52 48.25

5-shot 45.69 49.07 47.32
40.24 43.65 41.88

4796 52.83 50.28

AVG 45.01549.0175 46.9325
52.98 52.67 52.82

10-shot 53.71 53.36 53.54
GPT 4 52.99 50.35 51.64
53.85  52.3 53.06

AVG 53.3825 52.17  52.765
04.57 54.73 54.65

20-shot 44.86 45.43 45.14
51.6 51.75 51.68

55.7 57.24 56.46

AVG 51.6825 52.2875 51.9825

Llama3

33.88  40.67 36.97
5-shot 32.26  39.14 35.37
36.38 28.49 31.95
40.73  30.53 34.9
AVG 35.8125 34.7075 34.7975
42,79  31.08 35.66
10-shot 40.18 28.73 36.27
35.75  32.05 33.76
39.95 34.11 36.71
AVG 39.6675 31.4925 35.6
40.59 42.07 41.32
20-shot 40.87  42.8 41.81
41.48 43.02 42.24
39.88 4241 41.1
AVG 40.705 42.575 41.6175

Table C.4: Averaged performance of the baseline dynamic prompt model on the NCBI
dataset across different shot settings.
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Precision Recall F-score

Precision Recall F{-score

27.24  62.73 37.99

5-shot 26.71 58.58 36.69
29.23  60.47 39.41

25.86 58.41 35.85

AVG 27.2660.0475  37.485
26.92  58.26 36.82

10-shot 26.1 59.15 36.22
GPT 4 24.41 58.56 34.46
29.19 60.82 39.45

AVG 26.65559.1975 36.7375
27.86 59.12 37.87

20-shot 25.02 60.64 35.42
29.33 61.71 39.76

30.18 61.66 40.52

AVG 28.097560.7825 38.3925

Llama3

24.94 73.03 37.18
5-shot 25.95 61.96 36.58
26.11 73.57 38.54
26.55 59.62 36.74
AVG 25.8875 67.045 37.26
25.67 70.61 37.65
10-shot 25.1 59.19 35.15
25.76 70.06 37.67
25.73 57.46 35.54
AVG 25.565 64.33 36.5025
26.18 63.59 37.09
20-shot 26.63 61.14 37.1
25.93 63.57 36.84
27.54 70.85 39.66
AVG 26.5764.7875 37.6725

Table C.5: Averaged performance of the baseline dynamic prompt model on the Med-
Mentions dataset across different shot settings.
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Appendix D

Results of 95% ClIs for Each Metric
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GPT-3.5

Reddit_ Impacts BC5CDR MIMIC III NCBI Med-Mentions

Basic Prompt (BP)

16.73 [11.53, 22.83]  64.56 [61.55, 67.73]  54.70 [49.60, 58.73]  26.96 [24.43, 30.98]  9.27 [7.81, 12.22]

BP + Description of datasets

21.15 [14.88, 26.64]  68.61 [66.74, 70.72] ~ 56.73 [52.58, 61.22] ~ 34.48 [31.08, 39.25]  12.71 [10.93, 15.65|

BP + High-frequency instances

21.15 [15.75, 27.40]  69.01 [66.24, 70.98]  57.72 [52.75, 62.26]  35.95 17.22 [14.47, 19.80]

BP + UMLS knowledge

16.44 [8.43, 23.07)  64.83 [61.83, 66.41]  50.57 [46.17, 55.04]  30.75 [27.73, 33.: 10.88 [8.81, 12.29]

BP + Error analysis

19.24 [12.91, 26.17]  67.67 [65.53, 70.32]  59.52 [54.96, 64.47] ~ 33.15 [31.2 15.52 [13.14, 17.20]

BP -+ 5-shot learning with sentences 19.30 [12.26, 25.78]  68.84 [67.25, 70.49]  57.03 [53.06, 62.85]  40.16 [38.78, 46.45] ~ 20.61 [17.58, 22.29]

BP + 5-shot learning with tokens

21.69 [15.92, 28.89] 70.79 [68.87, 73.15] 61.21 [56.81, 66.05]43.01 [41.43, 48.21] 24.57 [22.88, 26.64]

BP + All above

23.91 [15.87, 30.97| 72.73 [70.32, 74.86] 61.99 [57.24, 66.38] 45.24 [42.64, 50.58] 31.63 [29.36, 34.74]

GPT-4

Basic Prompt (BP)

20.16 [13.29, 26.54]  69.43 [66.28, 72.44]  56.63 [51.27, 60.83]  33.56 [31.59, 37.25]  13.83 [11.85, 15.00]

BP + Description of datasets

23.52 [16.46, 30.84]  70.65 [67.47, 72.72]  59.68 [55.18, 64.09]  35.75 [33.54, 40.58]  15.30 [13.61, 17.15]

BP + High-frequency instances

24.64 [17.72, 31.11]  72.60 [71.17, 74.28]  60.08 [56.33, 65.37]  37.96 [36.95, 41.73]  19.50 [17.11, 22.97]

BP + UMLS knowledge

20.46 [13.84, 27.07)  69.86 [66.05, 72.62]  55.13 [50.20, 60.29]  30.90 [28.68, 34.30]  14.50 [12.57, 16.46|

BP + Error analysis

23.13 [16.65, 30.69]  74.61 [71.44, 77.20]  60.11 [55.44, 64.72] 37.84 [34.13, 42.71]  18.25 [15.06, 20.43|

BP -+ 5-shot learning with sentences 22.88 [16.23, 30.59]  73.00 [71.26, 76.22]  58.25 [53.28, 63.95]  40.86 [39.37, 45.36] ~ 28.80 [26.71, 30.20]

BP + 5-shot learning with tokens

25.95 [18.50, 32.07] 76.65 [74.15, 77.92]62.94 [57.56, 66.87]44.24 [42.93, 48.28] 33.20 [31.64, 35.70]

BP + All above

27.60 [19.43, 33.80] 78.03 [75.51, 80.02] 63.58 [58.73, 67.18] 46.93 [44.85, 51.58] 37.95 [35.88, 39.90]

Llama3

Basic Prompt (BP)

15.61 [8.20, 22.12] 62.13 [59.24, 63.58]  50.70 [45.93, 54.19]  19.15 [15.21, 21.38]  21.23 [19.24, 23.42|

BP + Description of datasets

19.28 [11.71, 25.96]  67.68 [64.86, 69.10]  56.22 [52.77, 60.25]  21.44 [20.80, 24.65]  21.57 [19.30, 24.76|

BP + High-frequency instances

20.44 [13.79, 27.51] 68.39 [66.48, 70.35]  56.06 [52.62, 61.42]  26.62 [22.16, 28.31]  27.12 [26.37, 29.35|

BP + UMLS knowledge

12.91 [7.40, 18.71]  64.71 [61.44, 67.01]  48.92 [44.75, 53.37]  20.91 [17.07, 22.61]  23.68 [20.59, 25.17|

BP + Error analysis

18.87 [13.34, 25.13]  68.07 [65.41, 70.58]  58.92 [53.90, 63.84]  24.46 [20.97, 25.20]  25.78 [23.48, 27.56]

BP + 5-shot learning with sentences 17.65 [13.62, 24.69]  70.70 [69.36, 72.83]  56.85 [52.32, 61.33]  30.52 [26.50, 33.96]  34.87 [32.18, 37.25]

BP + 5-shot learning with tokens

20.04 [14.81, 27.29]  71.76 [69.58, 73.51] 61.98 [56.59, 65.18] 33.42 [28.72, 35.12] 35.23 [33.17, 37.08]

BP + All above

21.43 [14.24, 28.80] 73.32 [72.27, 74.26] 62.94 [57.07, 65.79] 34.80 [28.57, 35.44] 37.26 [35.45, 39.08]

Table D.1: Evaluation of static prompting strategies using GPT-3.5, GPT-4 and
Llama 3 across five biomedical datasets. The table presents Fi-score with 95% con-
fidence intervals reported for each metric to indicate the statistical reliability of the

results.
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Reddit Impacts BC5CDR MIMIC IIT

NCBI Med-Mentions

GPT-4

Base 27.60 [19.43, 33.80]  78.03 [75.51, 80.02]  63.58 [58.73, 67.18]

46.93 [44.85, 51.58]  37.95 [35.88, 39.90]

TF-IDF 28.47 [21.78, 35.47]  85.88 [84.53, 86.42] 76.24 [72.98, 79.63] 60.08 [56.70, 63.32] 37.96 [35.90, 39.84]

5-shot SBERT 33.72 [26.28, 42.20] 83.37 [82.51, 84.22]  73.44 [69.91, 76.81]  57.56 [54.05, 60.73]  39.12 [36.84, 41.34]
ColBERT 32.39 [25.10, 39.85]  79.82 [78.24, 80.98]  75.56 [72.06, 78.94]  52.38 [49.06, 55.55]  39.93 [37.93, 41.73]|
DPR 32.64 [25.42, 40.17]  83.58 [82.30, 84.88]  69.89 [65.75, 73.63]  49.37 [45.37, 52.94]  39.13 [34.44, 41.35]
Base 31.92 [23.77, 38.44]  81.27 [80.81, 82.37]  70.52 [66.10, 73.81]  52.67 [49.36, 56.76]  36.74 [32.29, 38.83]
TF-IDF 31.14 [24.33, 38.13]  86.64 [85.15, 88.09] 75.53 [72.18, 79.10]  62.05 [58.79, 65.11] 40.37 [38.23, 42.43]
10-shot SBERT 35.47 [27.17, 43.21]85.92 [83.09, 87.27]  73.89 [70.22, 77.80]  60.83 [57.47, 64.03]  40.37 38.23, 42.39]
ColBERT 33.81 [26.24, 41.55]  85.71 [84.42, 86.07]  76.34 [73.01, 79.68]57.25 [53.75, 60.72]  40.48 [38.13, 42.54]
DPR 32.61 [24.50, 40.33]  84.79 [82.96, 86.78]  72.13 [68.06, 75.85]  58.70 [54.99, 61.91]  40.25 [30.83, 50.75|
Base 37.67 [30.04, 43.44]  81.15 [80.40, 82.24]  70.98 [65.77, 73.82]  51.98 [50.33, 58.84]  38.39 [35.26, 40.29|
TF-IDF 38.35 [30.77, 46.28]  87.16 [85.77, 88.62]  77.66 [71.91, 78.88]64.36 [61.18, 67.87]41.32 [39.21, 43.26]
20-shot SBERT 38.22 [28.57, 44.90] 87.42 [85.26, 89.12]75.14 [71.77, 78.75] ~ 62.21 [59.01, 65.18]  39.37 [35.05, 40.39)
ColBERT 42.49 [32.52, 48.33]83.00 [81.39, 84.40]  76.70 [73.11, 79.89]  57.69 [54.22, 61.18]  40.53 [37.61, 43.26]
DPR 38.84 [29.01, 44.44]  85.60 [84.28, 86.93]  72.28 [68.56, 75.95]  60.34 [56.54, 63.72]  39.23 [34.22, 41.56]
Llama3
Base 21.43 [14.24, 28.80]  73.32 [72.27, 74.26]  62.94 [57.07, 65.79]  34.80 [28.57, 35.44]  37.26 [35.45, 39.08|
TF-IDF 28.57 [21.74, 36.06]  80.11 [79.25, 81.00]  70.41 [66.87, 73.76] ~ 49.80 [46.38, 53.03]  38.68 [35.67, 40.81]
5-shot SBERT 34.42 [26.28, 41.52] 80.39 [79.50, 81.33]67.88 [64.09, 71.69]  50.12 [46.89, 53.66] 37.91 [36.02, 39.81]

ColBERT 32.94 [25.00, 39.84]  71.76 [70.75, 72.69]  71.68 [68.08, 75.21]45.50 [41.95, 49.49]  38.99 [36.15, 41.34]

DPR 29.00 [22.86, 36.36]  75.67 [74.67, 76.70]  68.97 [65.05, 72.70]

44.54 [41.24, 48.25]  38.66 [36.78, 40.50]

Base 32.50 [26.94, 42.26]  75.15 [74.65, 76.67]  63.77 [58.59, 67.75]

35.60 [32.17, 39.12]  36.50 [35.73, 39.57]

TF-IDF  34.21 [27.24, 42.03]  80.57 [79.65, 81.47] 55.56 [53.11, 60.44]

49.50 [46.05, 52.92]  35.51 [34.75, 37.45]

10-shot SBERT 3245 [25.33, 39.63] 81.17 [80.26, 82.03]  71.63 [67.75, 75.15]
ColBERT 32.89 [20.35, 35.05]  80.34 [79.53, 81.24]  72.85 [69.46, 76.49] 38.77 [34.91, 42.29]  38.06 [35.52, 40.71]

20-shot

51.35 [47.49, 55.16] 39.08 [36.39, 41.38]

DPR  34.29 [26.11, 41.98]| 74.72 [73.77, 75.73]  69.54 [65.61, 73.17|
Base 33.67 [24.09, 40.88]  75.50 [73.57, 76.36]  62.05 [58.23, 67.15]

46.28 [42.77, 49.65]  37.85 [36.06, 39.69)]
41.62 [38.83, 45.71]  37.67 [35.22, 40.57]

TF-IDF 39.11 [31.34, 47.70]  78.36 [77.42, 79.30] 57.66 [51.19, 59.80]

47.50 [43.87, 50.84]  38.83 [37.54, 39.11]

SBERT 41.43 [31.58, 48.98] 76.85 [74.86, 78.96]  65.35 [60.44, 70.40]

44.14 [40.57, 47.86]  36.01 [34.16, 37.75]

ColBERT 34.66 [24.07, 36.31]  72.19 [71.17, 73.20]  57.63 [53.19, 61.93]

48.44 [45.07, 51.78] 36.85 [34.10, 39.29]

DPR  37.30 [27.13, 44.76]  74.80 [72.49, 76.36] 65.80 [61.82, 69.69] 40.36 [36.96, 43.96]  36.89 [34.46, 33.84]

Table D.2: Evaluation of dynamic prompting strategies (5-shot, 10-shot, and 20-shot)
using GPT-4 and Llama 3 across five biomedical datasets. The table presents F;-score
for each retrieval method: Base Prompt, TF-IDF, SBERT, ColBERT, and DPR, with
95% confidence intervals reported for each metric to indicate the statistical reliability
of the results.
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