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Abstract

Visualizing Spacetime Curvature in Black Hole Mergers using Tendex and

Vortex Lines

By Andrew Vu

The Weyl curvature tensor (traceless component of the Riemann curvature ten-

sor), which details all the information about the curvature of the local geometry,

can be covariantly split into two parts, which are spatial, symmetric, and trace-

free. The two tensors are the “electric” part which is the tidal field Eij , which

details the stretching and compressing of an observer, and the “magnetic” part

which is the frame-drag field Bij , which details the precession of an observer.

Each Eij and Bij tensor has three orthogonal eigenvector fields that can be vi-

sualized by their integral curves. The integral curves of the Eij field are called

the tendex lines, and for the Bij field are the vortex lines. It follows that each

eigenvector’s eigenvalue is its tendicity or vorticity, respectively. These lines

prove to be a useful tool, as we will show in this paper, for understanding the

nonlinear dynamics around regions of strong-gravity such as a stationary black

hole, a rotating black hole, and binary black hole merger.
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1 Introduction

I was fortunate enough to study general relativity and Maxwell’s theory in the same

semester last spring. Why was I fortunate you might ask? Well, as I was gradually

indulging myself with the words of Carroll and Griffiths, I was comparing these two

theories and realized that they are not that far from being different from one an-

other. Albert Einstein came up with special relativity to fit Maxwell’s equations back

into the Newtonian principles. Formulating his theory of general relativity soon after

special relativity, there is bound to be some similarities between general relativity

and Maxwell’s theory. For one, I noticed that the Coulomb force for an electrostatic

charge is very similar to the gravitational force between two objects in equilibrium.

And we can draw concentric circles representing the gravitational field outside the

Earth in the same way as we do for an electric field outside a charged sphere. Con-

tinuously pondering made me ask, does there then exist a Lorentz force equivalent

for gravity? Then if so, what is the gravitational analog of the magnetic field? And

does there exist the gravitation version of Maxwell’s equations?

With the growth of supercomputing clusters and advanced instrumentation, we have

seen a tremendous advancement in the study of Einstein’s theory of general relativity.

In particular, the two-body problem in general relativity has finally been solved, and

we now are exploring black hole mergers and observing some peculiar phenomena

such as spin-flip, black hole recoil, and orbital hang-up [1][2]. With the construction

of LIGO and eLISA for gravitational wave detection, there now leaves an extensive

task for data analysis. As of now, the best method for finding a gravitational wave

is to match it against a library of waveform templates. These templates are created

using numerical relativity which solves the Einstein field equations using complex
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algorithms on large supercomputer clusters [3]. By matching the gravitational waves

with a library of waveforms, we can then be able to identify the physical phenomena

that generated the gravitational radiation. As of now, the most promising source for

gravitational wave detection is the radiation given off by the collisions and mergers

of binary black holes [4]. Currently, we are in need of new tools that will aid us in

the generation of more accurate waveform templates for the analysis of black hole

mergers. What I will try to do is implement a code in the numerical simulations to

produce lines that are analogous to the electric and magnetic field lines in Maxwell’s

theory [5]. These lines, called the tendex and vortex lines, represent the tidal forces

and frame-dragging effects on an observer in space. By implementing this tool, I

hope to understand the nonlinear dynamics of curved spacetime in regions of strong-

gravity, like those near the horizon of rotating black holes and black hole mergers [6].

In all, the visualization of these lines will give us insight on new ways to generate the

gravitational waveforms emitted by black hole mergers [4].

This paper is organized into four main sections. The first section is a brief intro-

duction to general relativity starting with special relativity and the metric tensor

to the Schwarzschild solution and linearized gravity. The second section deals with

gravitational waves, the detectors, and major sources of gravitational radiation. The

third section introduces the theoretical equations behind the tool that I will be us-

ing to visualize curved spacetime dynamics. And for section four, I will discuss my

procedure for the implementation of this tool and present my results for single black

holes and binary black hole systems.
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1.1 Space, Time and Special Relativity

In Newtonian physics, space and time are separate. Time is absolute, and gravity,

which is considered instantaneous, is described by [7]

~ag = −∇Φ; where Φ(~r) =

∫
− Gρ(~r′)

‖~r − ~r′‖
d3~r′ .

(1.1)

In Galilean relativity, the laws of physics are unchanged for observers in different

inertial frames, or observers moving at constant velocities [8]. With the addition of

Maxwell’s equations describing electromagnetism, the speed of light was calculated

and determined to be constant by the Michelson-Morley experiment. This discrep-

ancy led Albert Einstein to develop the theory of special relativity in order to explain

the inconsistency of Maxwell’s equations with Galilean relativity [7]. In special rela-

tivity, the speed of light is constant in all inertial frames and Maxwell’s equations are

satisfied in all inertial frames. In addition, Einstein postulated that moving observers

see time and space differently in the direction of motion (time dilation and length

contraction) which is described by [9]

t′ = γ(t− βx) and x′ = γ(x− βt) where β =
v

c
.

(1.2)
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In special relativity, all observers agree on not only the speed of light, but also the

proper distance[7] given by,

ds2 = ηµνdx
udxv = −dt2 + dx2 + dy2 + dz2,

(1.3)

where ηµν is the Minkowski metric of flat spacetime. Lorentz transformations on

the proper distance are invariant where ds2 > 0 is spacelike and is casually con-

nected, ds2 < 0 is timelike and is casually connected and ds2 = 0 is timelike and

describes possible photon paths [7]. Soon after the formulation of special relativity,

Albert Einstein comes up with the unified notion of gravity as a geometric property of

space and time in a way to combine special relativity and Newton’s law of universal

gravitation called general relativity [10]. In general relativity, Einstein states that

gravitational mass is equivalent to inertial mass, and that an accelerated system is

indistinguishable to a system in a gravitational field [11].

1.2 The Metric Tensor and Geometry

Where special relativity placed no preference on any one inertial reference frame,

general relativity abolished the need for a preference by showing that there is no pre-

ferred reference frame for the laws of nature at all [7]. Einstein states that all precise

numerical quantities made from measurements depend on which coordinate system
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Figure 1: demonstrates the equivalence principle; the observer cannot distinguish
between being on the surface of the earth and being in a spaceship accelerating in
space at 1g. (Assuming the spaceship is small enough that differential tidal forces are
negligible)

was used by the observer who made the measurements [11]. Thus to represent this

mathematically, Einstein required the use of invariant objects, that are independent

of the coordinate system, which can only be tensors [12]. In general relativity, the

metric tensor is what determines the local geometry of spacetime and is given by [13]

ds2 = gµνdx
µdxν

(1.4)
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where the metric tensor, gµν , has 10 independent components, since the tensor is

symmetric, gµν = gµν [13]. To follow convention, Greek indices go from 0-3 for one

time and three spatial dimensions, and Latin indices go from 1-3 for the three spa-

tial dimensions. In addition, the Einstein summation convention was followed where

repeated upper and lower indices are to be summed together [7]. The metric can

sometimes be considered to be representation of the gravitational potential when in

a weak-field approximation [14].

1.2.1 Vectors

In Riemannian geometry, (tangent basis) vectors are defined via arguments about

tangent spaces [15]:

(~V · ∇)f = V µ ∂

∂xµ
f .

(1.5)

If we change our coordinates to a different set of coordinates, designated by the

prime, then we need to do a vector transformation. Remembering that the value of

the operator has to remain invariant, we arrive at

V ν′ ∂

∂xν′
f = V ν′ ∂x

µ

∂xν′
∂

∂xµ
f .

(1.6)
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Thus we arrive at our definition of a vector [11]

V µ = V ν′ ∂x
µ

∂xν′
.

(1.7)

The transformation property of an object when we change the coordinates is what

defines a vector. This transformation law also applies to displacements as well[16]

dxµ = dxν
′ ∂xµ

∂xν′
.

(1.8)

1.2.2 Covariant Vectors and Tensors

There are a number of objects that operate linearly on vectors. These includes oper-

ators such as gradients [17],

∂µ ≡
∂

∂xµ
=
∂xν

′

∂xµ
∂

∂xν′
=
∂xν

′

∂xµ
∂ν ′.

(1.9)
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If we call

Λν′
µ ≡

∂xν
′

∂xµ
,

(1.10)

then we can say:

∂µ = Λν′
µ∂ν

′

(1.11)

where Λν′
µ is a covariant tensor and can do the same transformations as gradients.

With the use of tensors, we can transform each index individually when we change

the coordinates. For example, the metric tensor, which is a linear operator acting on

two vectors, can transform vectors much like a dot-product [16]

ds2 = gµνdx
µdxν = gµν

(
∂xµ

∂xα′
dxα

′
)(

∂xν

∂xβ′
dxβ

′
)

= gα′β′dx
α′dxβ

′

(1.12)

and we find
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gα′β′ = gµν
∂xµ

∂xα′
∂xν

∂xβ′
↔ gµν = gα′β′

∂xα
′

∂xµ
∂xβ

′

∂xν
.

(1.13)

The equation above shows the process of recalculating the metric when we change

the coordinates.

1.2.3 Covariant Derivatives and Christoffel Symbols

When we take the partial derivatives of tensors, we do not get a tensor, as demon-

strated [11]:

∂

∂xµ′
Tν′ =

∂xµ

∂xµ′
∂

∂xµ

(
∂xν

∂xν′
Tν

)
=
∂xµ

∂xµ′
∂xν

∂xν′

(
∂

∂xµ
Tµ

)
+ Tν

∂xµ

∂xµ′
∂

∂xµ
∂xν

∂xν′

(1.14)

where the first term looks like a tensor, but the second term, which contains the

derivatives of the change in coordinates, is not a tensor. Conveniently, there exists

the differential operator called the covariant derivative, which accounts for the change

in the vector field as well as taking into account the change in coordinates [18]. The

covariant derivative can be defined as follows

∇µ′Tν′ =
∂

∂xµ′
Tν′ − Γα

′

µ′ν′Tα′

(1.15)
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where the Christoffel symbol, Γα
′

µ′ν′ , is a new object constructed from the metric

and its first derivatives that captures the coordinate derivatives like so [11]

Γαβγ = 1
2
gασ (∂βgγσ + ∂γgβσ − ∂σgβγ).

(1.16)

1.2.4 Geodesics and Parallel Transport

To move a vector V µ along the path of xµ(t), while keeping it constant, let us intro-

duce the notion of parallel transport [11]. In curved spacetime, the result of parallel

transporting a vector from one point to another will depend on the path taken be-

tween the points [16]. In addition, parallel transport leaves the length of the vector

invariant. The equation for parallel transport for a vector takes the form [14]:

d

dt
V µ + Γµσρ

dxσ

dt
V ρ = 0.

(1.17)

With the concept of parallel transport on our belts, we can then talk about geodesics,

which is the path of the extremal distance between two points, or a path that parallel
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Figure 2: demonstrates the concept of parallel transport; on a curved surface like a
sphere, the result of vector after being parallel transported depends on the path taken

transports its own tangent vector. Geodesics can also be considered as a curve whose

tangent vector is parallel transported [11].

Given a path xµ with its tangent vector dxµ/dt, then its geodesic equation can be

written as [11]

d2xµ

dt2
+ Γµρσ

dxρ

dt

dxσ

dt
= 0.

(1.18)
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1.3 Riemann Tensor, Ricci Tensor, and the Ricci Scalar

Suppose a vector in Minkowski space is parallel transported around a loop, the vector

will point in the same direction it began after returning to its original position. In

the more general case of curved space, this property does not hold [19]. Conveniently,

there exists a tensor that details how the vector changes when it comes back to its

initial point called the Riemann curvature tensor [11]. The Riemann tensor details

the resulting transformation of this vector based on the total curvature enclosed by

the loop at each point [11]. The Riemann tensor can be constructed through [14]:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

(1.19)

The Riemann tensor measures the extent to which the metric tensor is not locally

flat for every point in space, and the curvature vanishes if and only if the spacetime

is flat [11]. There exists symmetries in the Riemann tensor such as [14]:

being anti-symmetric in its first two indices

Rρσµν = −Rσρµν ,

(1.20)

being anti-symmetric in its last two indices
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Rρσµν = −Rρσνµ,

(1.21)

and being symmetric upon the switching of the first and second pair of indices

Rρσµν = Rµνρσ.

(1.22)

In addition, the sum of the cyclic permutations of the last three indices is zero,

Rρσµν +Rρνµσ +Rρµσν = 0 .

(1.23)

With all the symmetries, when we perform the only possible contraction on the Rie-

mann tensor, we will arrive at the Ricci tensor [17]

Rµν = Rλ
µλν = Rνµ

(1.24)
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which is also symmetric from the symmetries of the Riemann tensor.

By taking another contraction, we can then define the Ricci scalar or the curva-

ture scalar as [20],

R = Rν
ν = gµνRµν .

(1.25)

Having defined the Ricci tensor and scalar, which encapsulates all the information

about the traces of the Riemann tensor, we can then introduce the Weyl tensor [11].

The Weyl tensor contains the trace-free parts of the Riemann Tensor (with all of its

contractions removed) and still keeps all of the symmetries of the Riemann tensor

[14] [21]:

Cµν
ρσ = Rµν

ρσ − 2δ
[µ

[ρR
ν]
σ] +

1

3
δ

[µ
[ρδ

ν]
σ]R

(1.26)

where δµρ is the Kronecker delta, and the square brackets indicate antisymmetriza-

tion.

In vacuum spacetime, the Weyl tensor is equivalent to the Riemann curvature ten-

sor, Cµν
ρσ = Rµν

ρσ, thus the Weyl tensor contains all information about spacetime
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curvature [21].

1.4 Einstein Equations

The Einstein field equations are a set of 10 nonlinear coupled partial differential

equations in Albert Einstein’s general theory of relativity which describe the fun-

damental interaction of gravitation as a result of spacetime being curved by matter

and energy[17]. Energy, momentum, and stress of matter are all represented by the

stress-energy tensor Tab[22]. The Einstein’s field equations relate the geometry of

spacetime to the local matter content in the Universe according to [14]

Gab = 8πTab,

(1.27)

where Gab is the symmetric Einstein tensor defined by the Ricci tensor and scalar

Gab = Rab - 1
2
gabR = 8πTab.

(1.28)

It is this equation that describes how the curvature of the spacetime reacts to the

presence of energy and momentum [20]. As Wheeler saids it, ”matter tells how space-
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time should curve, and spacetime tells matter how to move” [14]. Moreover, gravity

curves the trajectories of objects, towards the gravitating mass-energy, and orbiting

bodies think they are traveling in straight paths [7]. Being nonlinear and coupled, the

Einstein field equations are very difficult to solve analytically, except for the special

cases of the stationary black hole. Solving for the more complex cases such binary

black hole mergers can only be done numerically with the use of supercomputers [22].

1.5 Schwarzschild Metric

The most familiar black hole solution is the stationary Schwarzschild black hole where

there is neither charge nor angular momentum [7]. The Schwarzschild metric is as

follows [14]:

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2

(1.29)

where dΩ2 = dθ2 + sin2θdφ2 and c=1.

Notice how at r=2M, the radial term blows up. This is the Schwarzschild radius or

the event horizon, where light cannot escape. This is however, a coordinate singular-

ity, because it is only an artifact of the coordinates we chose, for example, if we just

let
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R = 1
2
(r −M +

√
r(r − 2M)) ,

(1.30)

then we find that the metric takes the isotropic form [20]:

ds2 = −
(

1−M/2R

1 +M/2R

)2

dt2 +

(
1 +

M

2R

)4

(dR2 + r2dΩ2)

(1.31)

and thus we have successfully removed the r=2M singularity. However, there still

exists the real singularity at r=0, which cannot be removed because our description

of the manifold at this point is ill-defined. [11]

1.6 Linearized Gravity and Gravitational Radiation

In places not near the strong-gravity regions of black holes or neutron stars, curva-

ture is not so extreme. In these cases, we are safe to assume linearized gravity with

rectangular coordinates and metric perturbations [14]:

gµν = ηµν + hµν

(1.32)
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where hµν is a small perturbation to the Minkowski flat spacetime, hµν � 1 In

this proper gauge, we can reduce Einstein’s equations to the form [14]:

2hµν = (−∂2
t +∇2)h = −16πGTµν

(1.33)

where 2 is the flat-space wave operator.

This is the wave equation which predicts the existence of gravitational waves. It

can be shown that they are transverse, like EM waves, but with only two polariza-

tions [22].

2 Gravitational Waves and their detection

Predicted to exist by Albert Einstein on the basic of his theory of general relativity,

gravitational waves theoretically transport energy as gravitational radiation. A theory

that is consistent with special relativity means that changes in the gravitational field

cannot occur everywhere simultaneously; they must propagate at the speed of light

[22]. The sources of gravitational waves are large mass bodies, as opposed to the

atomic level in electromagnetic radiation. By studying the emitting gravitational

radiation from large-bodies, we can gain better insight of the most fascinating physical

phenomena in the Universe - black holes, supernovas, neutrons stars, and galaxy
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collisions [23]. In addition, gravitational waves can pass through any intervening

matter without being scattered significantly [23]. And as a gravitational wave passes

a distant observer, that observer will find spacetime distorted by the effects of strain

[22]. These effects caused by gravitational waves are extremely difficult to measure

as the waves are several orders of magnitude smaller than the hydrogen atom, thus

very precise gravitational interferometers have been constructed in hopes to gain a

better image of our universe through gravitational wave observations [24].

2.1 Sources

Generally, gravitational waves are radiated by objects whose motion involves acceler-

ation, provided that the motion is not perfectly spherically symmetric or cylindrically

symmetric [22]. Significant sources of gravitational waves include black hole mergers,

rotating neutrons stars, and supernovas [22]. As these gravitational fields propagate

away from their sources, however, they will reach an asymptotic region in which they

can be modeled as a linear perturbation of a nearly Minkowski spacetime. These

linearized gravitational waves carry information about the nature of the nonlinear

sources that generated them [22]. It is these linearized waves that will be detected

by our gravitational wave interferometers in the near future [22].

2.2 Numerical Relativity

Because the Einstein field equations are nonlinear coupled equations, we cannot easily

solve them analytically besides the special cases. They must be solved numerically

through the use of sophisticated algorithms on supercomputers [22]. Numerical rel-

ativity has allowed us to recreate cataclysmic cosmic phenomena, from gravitational

collapse to black holes and neutron stars, the inspiral and coalescence of binary black
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holes and neutron stars, and the generation and propagation of gravitational waves

[11]. Numerical Relativity allows us to follow from linearized gravity to the nonlinear

dynamics and relativistic instabilities and simulate the final state of these systems

[11]. One of the current goals of numerical relativity now is the generation of wave-

forms from binary black hole mergers for identification and physical interpretation.

This task is crucial as large libraries of numerical waveform templates are essential

for analyzing the data from ground-based and space-borne laser interferometers [25].

3 Tendex and Vortex Lines

3.1 Newman-Penrose Formalism

In numerical relativity, there exist variables which can easily express the gravitational-

wave content of many dynamical simulations far from the source. These variables are

called the Weyl scalars which are formulated through the Newman-Penrose Formal-

ism [6]. In order to reach the scalars, we first define an orthonormal tetrad ~eα̂ = (~e0̂,

~e1̂, ~e2̂, ~e3̂) with the time basis vector ~e0̂ = ~u orthogonal to the spacelike hypersurfaces,

and with the spatial basis vectors ~e1̂, ~e2̂, ~e3̂ lying in those hypersurfaces [21]. Using

this tetrad, we can build a complex null tetrad for use in the NP formalism:

~l = 1/
√

2(~e0̂ + ~e1̂) ~n = 1/
√

2(~e0̂ − ~e1̂) (3.1)

~m = 1/
√

2(~e2̂ + i~e3̂) ~m∗ = 1/
√

2(~e2̂ − i~e3̂). (3.2)
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Projecting the Weyl tensor onto this null basis, we arrive at the complex Weyl Scalars

[26],

Ψ0 = Cµνρσlµm ν l ρmσ (3.3)

Ψ1 = Cµνρσlµn ν l ρmσ (3.4)

Ψ2 = Cµνρσlµm νm∗ ρnσ (3.5)

Ψ3 = Cµνρσlµn νm∗ ρnσ (3.6)

Ψ4 = Cµνρσnµm∗ νn ρm∗σ (3.7)

Using this null tetrad, which is transverse, the scalars Ψ0 and Ψ4 measure the in-

going and outgoing gravitational radiation, the scalars Ψ1 and Ψ3 vanish, and the

scalar Ψ2 is the longitudinal, or ”Coulombic” part of the gravitational field [22].

3.2 Tendex and Vortex Lines

The Weyl tensor Cµνρσ consists of two symmetric, traceless spatial tensors E and B

[27]. These tensors are the gravitational analogs of the electric and magnetic fields

in Maxwell’s theory. The electric part E , which is the tidal field in the Newtonian

limit, handles the gravitational stretching and compressing that generates tides [28].

The magnetic part B, which is the frame-drag field, describes the differential frame-

dragging precession of spacetime [29]. The E and B tensors each have three orthogonal

eigenvector fields which can be depicted by their integral curves. We call the integral
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curves of E ’s eigenvectors tidal tendex lines, and these lines provide the preferred

directions of strain at a point in spacetime. Following that, the eigenvalues, or the

tendicity of a tendex line, gives the magnitude of the strain along the tendex lines.

The integral curves of B ’s eigenvectors are the vortex lines, and they give the pre-

ferred directions of the differential precession of gyroscopes. The eigenvalues, or the

vorticity of the vortex lines, gives the magnitude of the precession along the vortex

lines [28].

These lines allow us to understand the nonlinear dynamics of curved spacetime. The

tidal field E describes the local tidal forces between nearby points in spacetime, and

the frame-drag field B describes the relative precession of nearby gyroscopes. In a

Lorentz frame of two freely falling observers who are separated by a spatial vector ξj,

the differential acceleration experienced by the observers is [6]

∆ai = −E ijξj.

(3.8)

If the two same observers carry inertial gyroscopes, each will measure the gyroscope

of the other to precess with an angular velocity by B relative to their own by [21],

∆Ωi = −Bijξj.

(3.9)
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If two observers have a small separation along a tendex line, they will experience

an acceleration along that line with a magnitude given by the eigenvalue or tendicity

of that tendex line. In the same way, the two observers separated along a vortex line

will experience differential frame dragging with a magnitude given by the eigenvalue

or vorticity of that vortex line [21].

To find Eij and Bij tensors, we first split the Weyl tensor covariantly into two ir-

reducible parts, which are symmetric, trace-free, and lie in the foliation’s hyperspaces

(orthogonal to uµ) like so [21]

Eij = Ci0̂j0̂,

(3.10)

and

Bij =
1

2
εipqC

pq.

(3.11)

where the indices are components in the reference frame of ”orthogonal observers”

who move orthogonal to the spatial slices, 0̂ is their time component, and εpiq is their

spatial Levi-Civita tensor.

Using the null tetrad built from our orthonormal tetrad, we can write the spatial or-
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thonormal components of the electric and magnetic parts of the Weyl tensor in terms

of Weyl scalars as follows [21]:

Eâb̂ + iBâb̂ =


2Ψ2 −(Ψ1 −Ψ3) i(Ψ1 + Ψ3)

∗ Ψ0+Ψ4

2
−Ψ2 − i

2
(Ψ0 −Ψ4)

∗ ∗ −Ψ0+Ψ4

2
−Ψ2

 (3.12)

where * components are given by the symmetry of the tensor. By using the Weyl

scalars, we are actually using variables that describe gravitational radiation far from

the source in order to study the strong-gravity regions near black holes.

4 Implementation

4.1 Equations

Using the Weyl tensor, the individual elements of the E and B tensors were derived

from Eq. 3.10 and 3.11. We solved each tensor in terms of Weyl scalars like so in

Eq. 3.12. Furthermore, the Weyl scalars were also separated in terms of the real and

imaginary components in each tensor component.

E1̂1̂ = R1̂0̂1̂0̂ = Rijkme
i
1e
j
0e
k
1e
m
0

(4.1)
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Next, we can rewrite each of the orthonormal tetrads in terms of the complex null

tetrads.

~e0 =
k

2
(~l + ~n) ~e2 =

k

2
(~m+ ~m∗) (4.2)

~e1 =
k

2
(~l − ~n) ~e2 =

k

2
(~m− ~m∗) (4.3)

We can rewrite the first component of the electric tensor as

R1̂0̂1̂0̂ =
k4

16
Rijkm(~l − ~n)i(~l + ~n)j(~l − ~n)k(~l + ~n)m.

(4.4)

Expanding the equation above completely yields

E1̂1̂ =
k4

16
Rijkm(~l − ~n)i(~l + ~n)j(~l − ~n)k(~l + ~n)m =

k4

16
[Rllll + Rllln − Rllnl − Rllnn +

Rlnll+Rlnln−Rlnnl−Rlnnn−Rnlll−Rnlln+Rnlnl+Rnlnn−Rnnll+Rnnln+Rnnnl+Rnnnn].
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Using some symmetry properties of the Riemann tensor such as Eq. 1.22, 1.23,

and 1.24 where the Riemann tensor is anti-symmetric in its first two and last two

indices and invariant under the switching of the first and last pair of indices allows us

to simplify the long-expression above. In addition, using the identity from Eq. 1.25

where the Riemann tensor’s sum of cyclic permutations of the last three indices is

zero [11] leaves us with

k4

16
Rlnln.

(4.5)

This still isn’t any of the Weyl scalars, but we can do:

k4

16
Rlnln = gnlRlnln = −Rn

nln = Rn
nnl = −(Rl

nll +Rm
nml +Rm∗

nm∗l)

(4.6)

where we used the fact that the Ricci tensor vanishes in vacuum spacetimes.

Rnl = Rl
nll +Rn

nnl +Rm
nml +Rm∗

nm∗l = 0 .

(4.7)
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We can also prove that Rl
nll = 0 in Eq. 4.9 by first lowering the indices using the

metric,

gαβ = gαβ =



0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0


. (4.8)

and then using Bianchi’s Second identity,

Rl
nll = gnlR

l
nll = Rnnll = −Rnlln −Rnlnl = 0.

(4.9)

So we are now left with,

−Rm
nml−Rm∗

nm∗l = −gm∗mRm
nml− gmm∗Rm∗

nm∗l = −Rm∗nml−Rmnm∗l = Rlmm∗n +Rlm∗mn

(4.10)

Comparing the last expression to our expressions for the Weyl scalars in Eq. 3.3
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to 3.7, we arrive at:

E1̂1̂ = Ψ2 + Ψ∗2,

(4.11)

which is successfully written in terms of the real and imaginary components of the

Weyl scalar, Ψ2. Doing the same for the magnetic tensor gives:

B1̂1̂ =
1

2
εp̂q̂

1̂
Rp̂q̂1̂0̂ =

1

2
(ε2̂3̂

1̂
R2̂3̂1̂0̂ − ε3̂2̂

1̂
R3̂2̂1̂0̂)

(4.12)

where we followed the normalization for the Levi-Civita tensor in a right-handed

orthonormal frame, ε0̂1̂2̂3̂ = +1 and is defined by εîp̂q̂ = ε0̂̂ip̂q̂ with ε 1̂2̂3̂ = 1 in a

right-handed orthonormal basis.

Using some symmetries of the Riemann curvature tensor yields

1

2
(R2̂3̂1̂0̂ −R3̂2̂1̂0̂) =

1

2
(R2̂3̂1̂0̂ +R2̂3̂1̂0̂) = R2̂3̂1̂0̂ .

(4.13)
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Transforming the orthonormal basis to our null basis gives

R2̂3̂1̂0̂ =
k4

16i
R2̂3̂1̂0̂(~m+ ~m∗)2̂(~m− ~m∗)3̂(~l − ~n)1̂(~l + ~n)0̂.

(4.14)

Symmetries once again will yield us

k4

16i
(−Rmm∗ln +Rmm∗nl +Rm∗mln −Rm∗mnl) =

ik4

4
Rlnmm∗ .

(4.15)

Using Bianchi’s second identity again gives:

ik4

4
Rlnmm∗ =

ik4

4
(−Rlmm∗n −Rlm∗nm) =

ik4

4
(−Rlmm∗n +Rlm∗mn) ,

(4.16)

B1̂1̂ =
ik4

4
(−Ψ2 + Ψ∗2),

(4.17)
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which is once again in terms of the real and imaginary components of the scalars. To

check, we can sum the elements of E1̂1̂ and B1̂1̂, and we indeed arrive at the corre-

sponding Weyl Tensor component with the scalar 2Ψ2 in Eq. 3.12.

We used the same approach to derive the rest of the real spatial tensors of E and

B from slicings of the Weyl tensor in terms of Weyl scalars, and the following tensors

were arrived:

Eâb̂ =
k4

4


2ReΨ2 (ReΨ3 −ReΨ1) (−ImΨ1 − ImΨ3)

∗ 1
2
(ReΨ0 − 2ReΨ2 + ReΨ4) 1

2
(ImΨ0 − ImΨ4)

∗ ∗ 1
2
(−ReΨ0 − 2ReΨ2 −ReΨ4)


(4.18)

Bâb̂ =
k4

4


2ImΨ2 (ImΨ3 − ImΨ1) (ReΨ1 + ReΨ3)

∗ 1
2
(ImΨ0 − 2ImΨ2 + ImΨ4) 1

2
(−ReΨ0 + ReΨ4)

∗ ∗ 1
2
(−ImΨ0 − 2ImΨ2 − ImΨ4)


(4.19)

where * components are given by the symmetry of the tensor and k is some real

constant.
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4.2 Numerical Implementation

The real, symmetric matrices, Eâb̂ and Bâb̂ are completely characterized by their or-

thogonal eigenvectors and corresponding eigenvalues [6]. Note that, since each tensor

is traceless, the sum of its three eigenvalues must vanish[6]. Our code for producing

the field lines to visualize spacetime curvature is to find the eigenvector fields by

solving the eigenvalue problem [5],

E ijvj = λvi

(4.20)

And the same eigenvalue problem is applied for the frame-drag field as well. This re-

sults in three eigenvectors fields for each of the two tensors, Eâb̂ and Bâb̂ . These fields

are vector fields on the spatial slice, and behave as usual under transformations of the

spatial coordinates [27]. By integrating along these eigenvector fields, we arrive at a

set of three tendex lines and three vortex lines [6]. At Georgia Tech, I used the Maya

code which consists of the Einstein Toolkit which runs on a Cactus framework and

Carpet mesh refinement. The Einstein toolkit is an open access code for use in nu-

merical relativity and relativistic astrophysics simulations [30]. The Einstein toolkit

simulates spacetime evolution through the BSSN evolution system and relativistic-

hydrodynamics [30]. The toolkit’s infrastructure is based on Cactus, which consists of

the central component called the flesh, and it interacts with the modular components

called thorns [30]. The flesh provides the variables and data types, the parameters,

input/output, and etc. These thorns provide additional functionality [30]. I created a
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thorn called EBWeyl that inputs the Weyl scalars that were calculated from another

thorn called WeylScal4 and assembled the E and B tensors. I then have a loop over

every grid point in the grid function that calculates the eigenvectors and eigenvalues

using the GSL solver for real generalized symmetric-definite eigensystems.

4.3 Visualization

I implemented this thorn in three different scenarios: a stationary black hole of mass

= 1 and radius of 0.5. A rotating black hole with mass = 1, radius of 0.5, and spin

of (0,0,0.6), and a binary black hole system with equal masses of 0.5, and a radius of

0.25. Geometrized units were used where G = c = 1 and normalized to the mass of

the system M, using the metric signature (-,+,+,+). The simulations outputted data

in HDF5, which is a file format for datasets comprised of multidimensional arrays.

The data was then inputted into the visualization software, VisIt, which numerically

integrates along the eigenvectors to produce streamlines. In VisIt, the streamlines

were created with starting points on a sphere of radius 0.5, centered at (0,0,0), with

35 uniformly spaced lines in the latitudinal and radial directions and 1 line along the

longitudinal direction. The Runge-Kutta 4 algorithm was used to integrate along the

vector fields to produce streamlines with a step length of 0.01 and with 1,000 steps.

Below are a few selected frames from the visualization movies of the runs.

4.3.1 Schwarzschild Black Hole

For the stationary black hole case, the frame-drag field vanishes and the tidal field

has degenerate eigenvalues.
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Figure 3: shows the tendex lines for a Schwarzschild black hole of mass 1.0: the blue
(into the plane of the page), green, and orange lines represent the three orthogonal
tendex lines
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4.3.2 Kerr Black Hole

Now the black hole is given a spin of (0,0,0.6), and the degeneracy in the eigenvalues

of the tidal field is broken. In addition, the slow rotation allows for the existence of

the frame-drag field.
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Figure 4: shows the vortex lines for a Kerr black hole of mass = 1.0 and spin of
(0,0,0.6) at different time frames: the blue, green, and orange lines indicate the three
orthogonal vortex lines
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Figure 5: shows the tendex lines for a Kerr black hole of mass = 1.0 and spin of
(0,0,0.6) at different time frames: the blue, green, and orange lines indicate the three
orthogonal tendex lines
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4.3.3 Binary Black Hole Merger

For the binary black hole merger, equal mass black holes with equal masses of 0.5

were placed 2.32 away from each other initially.
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Figure 6: shows the vortex lines for a binary black hole merger with equal masses
of 0.5 at different time frames: the blue, green, and orange lines indicate the three
orthogonal vortex lines
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Figure 7: shows the tendex lines for a binary black hole merger with equal masses
of 0.5 at different time frames: the blue, green, and orange lines indicate the three
orthogonal tendex lines
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5 Conclusion

In this paper, we spent a bit of time introducing the fundamentals of general relativity,

tensor calculus, and differential geometry. We learned that the Riemann curvature

tensor embodies all information about the curvature of spacetime, and from its con-

tractions, we can formulate the Einstein field equations. The Einstein fields equations,

as we have learned, relates the curvature of spacetime with the local stress, energy,

and momentum. We have heard over and over again that these equations are very

difficult to solve analytically, and we must use numerical relativity to solve them.

We then discussed about the existence of gravitational waves and their most promis-

ing source – binary black hole collisions and mergers. We learned that in order to

study gravitation waves, we must compare the receiving waves from the gravitational

wave interferometers with vast waveform templates – which are generated through

countless runs with different parameters. We then introduced the 3+1 slicings of the

vacuum Riemann tensor, the Weyl tensor, into the electric and magnetic tensors Eij

and Bij. We called the electric tensor, the tidal field, which deals with the stretch-

ing and compressing of an observer, and the magnetic field, the frame-dragging field,

which deals with the differential frame-dragging effects on an observer. We learned

that when we take the integral curves of the eigenvectors of each tensor, we arrive at

the tendex and vortex lines. And we learned that in regions of strong-gravity such

the horizon of a black hole, the Weyl tensor, or just plainly curvature, can be fully

characterized by these vortex and tendex lines. We derived the components of the Eij

and Bij tensor analytically, and then used computers to solve the eigenfunctions and

create the integral curves of these, numerically. We were able to visualize the space-

time curvature around a Schwarzschild black hole, a rotating Kerr black hole, and

an equal-mass binary black hole merger using these tendex and vortex lines. From
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these visuals we will be able to understand how gravitational waves can be generated

through the dynamical evolutions of the system. Ultimately, this tool will be prove to

be a useful tool for generating more accurate waveforms used for gravitational wave

analysis.
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