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Abstract 

 

Modeling the Geometric Regularity in Proteus 

Mirabilis Colonies 

 

By  

Bin Zhang 

 

 

The colonies of Proteus Mirabilis exhibit a geometric regularity. There are 

three phases involved in the colony expansion, namely the lag phase, the 

swarming phase and the consolidation phase resulting in periodicity properties 

both in space and time domain. As the repetition of swarming and consolidation 

phases goes on, the pattern of the colony is concentric rings with higher and 

lower cell density alternately in space. The measurement of the repetition time of 

swarming and consolidation is periodic. We investigate this spatiotemporal 

regularity using a one-dimensional reaction-diffusion model. We analyze the 

influences of the thresholds in two categories, nutrient and cell density. The 

thresholds are added to the reaction-diffusion model as Heaviside functions. We 

found that the thresholds in these two categories together can provide the period 

of P. mirabilis colony expansion in the simulation. However, they are not sufficient 

to maintain an unchanged period in time as observed in the experiments. 
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Chapter 1 

 

Introduction 

 

 

1.1 Proteus Mirabilis 

 

Proteus mirabilis is a rod-shaped, gram-negative bacillus, which belongs to the 

Enterobacteriaceae family. This kind of bacteria is widely distributed in soil and 

water in nature and prefers moist habitats. P. Mirabilis is a significant pathogen in 

human P. species infections, especially in urinary tract infections [1]. First, proteus 

mirabilis colonized in bladder, and this bacterium can hydrolyze urea to ammonia 

(𝑁𝐻3 ), thus forming an alkaline environment in bladder. Then, the increased 

alkalinity results in cystitis in bladder. Finally, it could cause urinary tract infection 

and stones in kidney.  

The colonization of P. mirabilis is the first step in human urinary tract infection. 

Thus, the study of the mechanism of colonization is essential to both basic 

microbiology understanding and human health for preventing infection. In the first 

stage of the urinary tract infection, the P. mirabilis could swarm by differentiating 

from rod-shaped bacteria of a few micrometers to elongated multinucleate 

swarming cells which express thousands of flagella of characteristic length of 

several tens micrometers. 



2 

 

 

1.2 Regularity of the Growth in Proteus Mirabilis 

 

Proteus mirabilis, which is a kind of rod-shaped bacterium of roughly 2 

micrometers, form growth colonies that have fascinated microbiologists for over a 

century [3]. On solid media, their swarming and consolidation pattern exhibits 

striking geometry regularity [4]. These patterns are characterized by circular 

symmetry and concentric zones or terraces [5]. These terraces of several 

centimeters in space and a few hours’ scale in time indicate periodic event in 

colony growth [5]. A typical colony of P. Mirabilis is shown in Figure 1-1 [4]. A 

video of the colony development can be found online at the following link from the 

James Shapiro’s Lab at University of Chicago. 

(https://www.youtube.com/watch?v=K69Yn8tvGh4&feature=youtu.be) 

 

Figure 1-1 The geometry Regularity of the P. Mirabilis Colony (Two terrace P. mirabilis 

colonies displaying spatially periodic structures. These PRM1 colonies were inoculated at 1-h 
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interval and then incubated for a future 42h at 32 Celsius-degree on standard medium 

containing 2% agar. Note that the colonies displayed the same periodicity but remained out of 

phase with each other throughout development.) [4] 

 

1.3 Phases in the Growth of the Proteus Mirabilis 

 

The growth process is cyclic repetition of the alternating phases: the lag 

phase, the swarming and the consolidation phases [3]. The swarming process is 

active migration [6], which is a dynamic process involving movement over the 

solid substrate by multicellular rafts of specially differentiated swarmer cells [7]. 

The swarmer cells are elongated and hyper flagellated but have the same 

DNA/length ratio as the short oligo flagellated swimmer cells characterized as 

liquid population [4,8]. The consolidation phase is defined as the growth without 

movement of the colony perimeter [4,9]. The periods of the lag phase depend on 

the inoculation density of the cells [4]. These phases are shown in Figure 1-2. 

According to the experimental observation by Shapiro’s group, the different 

controlling parameters in the experiment will result in the duration of different 

phases. The inoculation density has a significant influence in the lag phase [4,10], 

the temperature and the medium enrichment has something to do with the 

regularity of the terrace formed in the growth process [4,11,12]. When the nutrient 

(glucose) is depleted, P. mirabilis change their behaviors and prepare for the 

starvation [4]. 
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Figure 1-2 Phases in the Growth of the P. Mirabilis Colony (First swarming phase of an older 

PRM1 inoculum. (a) Before emergence of first rafts (photographed 4.75h post inoculation); (b) 

initial emergence of rafts at the start of the first swarming phase (photographed 7.75h post 

inoculation); (c and d) expansion of the swarming population (photographed 9.25h and 10.5h 

post inoculation respectively); (e) initiation of cellular multiplication from the edge of the 

inoculation zone as swimmer cell spreading slows down (photographed 11.3h post 

inoculation); (f) continued expansion of cellular multiplication as edge movement cases and 

the first consolidation phase begins (photographed 12.5h post inoculation). The inoculation 

spot measured 5mm in diameter.) [4] 
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1.4 Controllable Parameters in the Experiment  

 

There are several factors important for their colony expansion [4]. The 

temperature of the P. mirabilis colonies growth environment, the nutrient level, the 

concentration of the agar, the inoculation status and so on. This can be divided into 

several categories, and the study of the growth of the colony by Shapiro’s group 

revealed that the temperature and medium enrichment determine the regularity of 

the P. mirabilis colonies [4]. Meanwhile, the inoculation density serves as an initial 

condition of the growth process, and this determines lag phase of the whole 

process [4]. Kim’s experiments on lag time dependence on nutrient level suggested 

that there’s a threshold cell density that drives switch to swarming. 

The nutrient is essential for cell growth. The colonies can change their 

behaviors according to different levels of the nutrients: when the nutrient is 

sufficient, the colonies have the ability to consume the nutrient and increase their 

population; when the nutrient is not sufficient, the population increase in P. mirabilis 

colony is not preferred, the colonies tend to consume less nutrient and reduce their 

metabolism rate for surviving. 

Another important factor in the colony development is the agar concentration 

in the dish. The mean swarming mean speed <V> exhibits a strong dependence 

on agar concentration [13]. A theoretical study by Harry L. Swinney’s group 
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indicated that an increase in agar concentration results in less water being 

extracted from the gel and forming a thinner lubricating layer. Meanwhile, the 

bacteria in that thin layer could produce about the same amount of the extracellular 

materials. Hence this increase in agar concentration results in a higher viscosity, 

which decrease the speed [13]. When the mobility of the cell changes, the 

swarming speed of the cells changes, thus it has some influences of the swarming 

phase. 

On the solid medium, the cell density is another essential parameter in the 

colony growth. Based on the experimental observation [4], the pattern of the colony 

is a series of alternative rings with higher and lower cell density, which is an 

indication that the cell density plays an important role and tunable parameter in the 

development of the colonies. 

Quorum sensing (QS) is employed and ubiquitous by many species of bacteria. 

QS is a system responding to population density in bacterium colony. Many species 

of bacteria use QS to coordinate gene expressing according to the density of their 

local population [14]. These QS molecules have their own dynamic. Thus quorum 

sensing serves as a crucial factor for tuning the development of the bacteria 

colonies. 

 

1.5 Questions and Hypothesis 

 

According to the experiment observation by Shapiro group, the periodicity in 
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time does not change when the concentration of agar changes [4]. The mechanism 

underlying this phenomenon is still elusive. We explore the reason the existence 

of the constant period is a question to be explored. 

The hypothesis of this unchanged periodicity in time mentioned above is that 

when the agar concentration decreases which determines the mobility of P. 

mirabilis, the mobility will be slower thus the swarming phase will be shortened. 

The period in time is determined by the warming and time for consolidation T =

𝑇𝑆 + 𝑇𝐶. Because of the compensation of the consolidation time, the total time will 

stay unchanged.  

To test the hypothesis, we develop a mathematical model considering nutrient 

and cell density factors. The goal of this simulation is trying to understand this 

special phenomenon, i.e., the unchanged period in time when the agar 

concentration changes. Typically, the thresholds could result in the fluctuation 

between two values or even periodic phenomenon. Especially, in this thesis, the 

influences of thresholds in nutrient level and cell density these two categories in 

reaction diffusion model are explored. 
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Table-1 Parameters in the P. Mirabilis Colony Growth Experiment 

 

Controllable Parameters Influences Modeling 

Temperature Regularity NA 

Glucose(Nutrient) Level Biomass Production Standard (Growth) Y 

Agar Concentration Cell mobility Y 

Quorum Sensing Cell Communication NA 

Inoculation Density Duration of Lag Phase NA 

… … NA 
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Chapter 2 

 

Methods, Models and Discussion 

 

 

2.1 General Diffusion and Growth Model 

 

The growth colony pattern in homogeneous lab medium is mostly angular 

symmetric [4], so the dimension can be reduced. Thus one-dimensional description 

is sufficient. So we can start the model, growth dynamic, using the one-dimensional 

model in Cartesian Coordinate system, considering only the radical expansion of 

the colony. Bacterial swarming motility has been commonly modeled as a random 

diffusion process [16].  

2

2
......(1)C

C C
D

t x

 


 
 

2

2
......(2)N

N N
D

t x

 


 
   

Where C(𝑥, 𝑡) is the cell density and N(𝑥, 𝑡) is the nutrients (glucose) and 𝐷𝐶 

and 𝐷𝑁 are the diffusion coefficient of cell and nutrient respectively. Initially, the 

nutrient is homogenously distributed N(𝑥, 0) = 𝑁0. The swarming of the bacteria 

occurs at a much slower timescale than the diffusion of the nutrient. Thus the 

nutrient level can be considered as a steady state compared to the swarming 

speed of the P. mirabilis. 
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 The equations (1,2) describe the cell swarming process and cell could grow 

simultaneously, hence a growth term should be added to the general diffusion 

equations. The bacterial growth as a function of nutrient and cell number can be 

described as G(𝐶, 𝑁). 

1. Linear 

G(𝐶, 𝑁) = 𝑔0𝐶𝑁 

2. Monod 

G(𝐶, 𝑁) = 𝑔0
𝑁

𝐾 + 𝑁
𝐶 

3. Fisher 

G(𝐶, 𝑁) = 𝑔0𝑁𝐶(1 − 𝐶) 

Considering the cell swarming and growth, the growth term can be added to 

the right hand side of the diffusion equations. 

2

2
+ ( , )......(3)C

C C
D G C N

t x

 


 
 

2

2
( , )......(4)N

N N
D pG C N

t x

 
 

 
 

Where 𝑔0 is a constant and K is a parameter in Monod form, and the 

parameter p is the nutrient consumption rate. 

 

2.2 Forward Time and Centered Space Method 

 

The Forward Time Centered Space (FTCS) method is a common technique in 

numerical solution for PDEs [20,21]. 
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 , 1 ,
......(3)

n j n ju uu
O t

t t

 
 


 

 1, 1, 2 ......(4)
2

n j n ju uu
O x

x x

 
 


 

Based on the equations above, the arbitrary order partial derivatives could be 

explained in the form of the finite difference. Taking the diffusion equation for 

example, the second order part in space could be expressed as equation (5). 

 
2

1, 1, 1,

2 2

2
......(5)

n j n j n ju u uu
O x

x x

   
 


 

Combine the factors mentioned above, the diffusion equation (6) could be 

expressed as the finite difference form. 

2

2
......(6)

u u
D

t x

 


 
 

, 1 , 1, , 1,

2

2
......(7)

n j n j n j n j n ju u u u u
D

t x

    
  

 , 1, 1 , 1 1, 11 2 ......(8)n j n j n j n ju u u u            

1,2,..., 1n N     
2

D t

x
   

 This method can be applied to solve this one dimensional diffusion reaction 

equations and get a stable numerical solution when β ≤
1

2
. 

 

2.3 Influences of the Thresholds 

 

 In this thesis, the influence of the thresholds in nutrient and cell density is 

to be explored. The general rules of the different situations with different 

thresholds are shown in Table-2. 
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Table-2 General Rules of Thresholds in Explored Scenarios 

 

Scenario Threshold Number General Rule 

1 1 Threshold in Nutrient 

0 Threshold in Cell Density 

Nutrient Depletion: Cells Stop Growth 

2 1 Threshold in Nutrient 

2 Thresholds in Cell Density 

Nutrient Depletion & C>C2: Cells Stop Growth 

C1: Switch On Cells Diffusion 

3 2 Threshold in Nutrient 

2 Thresholds in Cell Density 

Nutrient Depletion & C>C2: Cells Stop Growth 

C1 & N<N1: Switch On Cells Diffusion 

4 1 Threshold in Nutrient 

2 Thresholds in Cell Density 

(2 thresholds for diffusion control) 

Nutrient Depletion: Cells Stop Growth 

C1: Switch On Cells Diffusion 

C2: Switch Off Cells Diffusion 

 

2.4 Diffusion Reaction Model with One Threshold in Nutrient Cannot 

Generate Periodic Patterns 

 

The parameters g  and p  stand for the growth rate and nutrient consumed 

rate in this process. 

2

2
......(9)C

C C
D gCN

t x

 
 

 
 

2

2
......(10)N

N N
D gpCN

t x

 
 

 
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The nutrient and the cell density are coupled through these diffusion-reaction 

equations [8]. In this model, there is an inherent threshold in nutrient, i.e., when the 

nutrient is depleted locally, the cell can no longer increase their population any 

more. The simulation results were given by the Mogilner group [16]. As shown in 

Fig 2-1 [16], both the cell density (normalized) and nutrient concentration have a 

traveling wave solution. The cell density and nutrient concentration also anti-

correlated: when the concentration of the nutrient is depleted locally, the cell 

density will reach to the maximum value 1. The pattern formed by this model 

determined by these equations (3,4) is an expanding solid round disk (in 2-

dimensional scenario), the radius is associated with the time R = 𝑣𝑝t. 

 

Fig 2-1 Spatially Distributed Cell and Nutrient Density versus time. (Results of numerical 

simulations of the reaction-diffusion equations (3,4) in the polar coordinate system describing 

cell and nutrient dynamics. Both densities and distance are in non-dimensional units. The 

densities are plotted at equation time intervals (at time 𝑡 = .02,30,60,90,120,150 units)) [16] 
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This simulation revealed that with one threshold in nutrient to limit the growth, 

the periodic behaviors both in time and space of the repetition of swarming and 

consolidation as seen in P. mirabilis colony cannot be explained [4]. 

 

2.5 Diffusion Reaction Model with One Threshold in Nutrient and Two 

Thresholds on Cell Density Can Generate Periodic Pattern with Varying 

Period 

 

 The results above are the propagating wave frontiers of the growing 

colonies of P. mirabilis when only one threshold in nutrient is applied to the PDEs 

(9,10). When the thresholds in cell density are added to the equation, the equations 

become a little bit complicated: 

   
2

1 22
......(11)C

C C
D H C C gCNH C C

t x

 
   

 
 

2

2
......(12)N

N N
D gpCN

t x

 
 

 
 

H(𝑥) is the Heaviside step function in equation (11): 

 
1( 0)

......(13)
0( 0)

x
H x

x


 


 

 

 𝐶1  and 𝐶2  (C1>C2) are two thresholds in the cell density. When the cell 

density is below C1, cells keep growing. When the cell density reaches C1, the 

cells switch from growing to swarming, which we model as a diffusion process.  



15 

 

 

For analytical solutions, equation (11), Fourier transform can be used to infer 

the properties of this PDE. The Fourier transform for step function is given by 

equation (14) [17]. 

     2 1
......(14)

2

kix i
F H x H x e dx k

k

 






 
       

 
  

Where,  
 dH x

k
dx

    is the delta function. As i  appears in the equation, it 

indicates that the solutions have periodic property. In Figure 2-2 and 2-3, the 

simulation shows that the thresholds result in the period in time with the cell number.  

 

 

Figure 2-2 The cell number versus time at a certain point (x=1). In the simulation, the 

parameters in equation (11) are: 𝐷𝐶 = 0.000050, 𝐶1 = 100 and 𝐶2 = 50. 
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Figure 2-3 The nutrient level versus time at a certain point (x=1). In the simulation, the 

parameters in equation (12) are: 𝐷𝐶 = 0.000050, 𝐶1 = 100 and 𝐶2 = 50 

 

 

 

Figure 2-4 Fast Fourier Transform of the cell number versus time at a certain point (x=1). 
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In the simulation, the parameters in equation (12), 𝐷𝐶 = 0.000050, 𝐶1 = 100 and 𝐶2 = 50 

 

 Figure 2-2 shows the cell number versus time at a certain point, which seems 

to be periodic. Figure 2-3 shows the nutrient level versus time at the same point. 

To testify the periodicity of this situation, a Fast Fourier Transform (FFT ignoring 

the imaginary part) is conducted on the cell number versus time and a delta-like 

shape appears in Figure 2-4, which is an evidence of periodicity. From the plot, we 

can define a parameter normalized frequency 
~

f  and normalized period 
~

T  . 

Here, n is the number of the peaks in the graph. 

~

~

=n
......(15)

1
=

f

T
n







 

However, when we change the diffusion coefficient in equation (5), which 

measures the mobility of the cell swarming: the larger the coefficient, the faster the 

P. mirabilis motility.  

According to the experiment, the period remains the same when we change 

the diffusion coefficient [4]. However, the period of the P. mirabilis also changes as 

Figure 2-5 shows. 
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Figure 2-5 Relationship between period and diffusion coefficient. Change of the period 

when the diffusion coefficient of the cells changes. (a) 𝐷𝐶 = 0.000040; (b) 𝐷𝐶 = 0.000050; (c) 

𝐷𝐶 = 0.000060. 

 

From Figure 2-5, as the mobility of the P. Mirabilis increases (𝐷𝐶 increases), 

which means the swarming speed will increase, the swarming time will be reduced 

thus result in the decrease of the period. When the parameter 𝐷𝐶  changes, 

associated with changing the concentration of the agar which will change the 

mobility of the P. mirabilis. The time period T changes correspondingly. However, 

according to the experimental observation that the period in time T  stays 

unchanged when the mobility of the bacteria changes, which indicates the 

thresholds in only one category is not sufficient to maintain the time period. 

Therefore, another category of thresholds in nutrient can be added to the modified 

diffusion equation (5).  

 

2.6 Diffusion Reaction Model with Two Thresholds in Nutrient and Two 
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Thresholds on Cell Density Can Generate Periodic Pattern with Varying 

Period 

For complicity in math, two thresholds in nutrients and two in cell density should 

be discussed. 

     
2

1 1 22
......(16)C

C C
D H C C H N N gCNH C C

t x

 
    

 
 

   0

0

, , ......(17)

t
N

N C x t dt p C x t
t

 


  
   

2

1
......(18)

2

D t

x
  

Also considering extremely short establishment time of the steady state in 

nutrient, the equation of nutrient can be written as equation (10), which depends 

on the local cell density which results in inhomogeneous nutrient consumption. 

From the stability of the numerical solution point of view in mathematics, the 

magnitude of diffusion coefficient is crucial. When it is too large, the Von Neumann 

stability criterion [18,19,20] cannot be satisfied, thus the solution is unstable. Under 

this condition and the actual physical situation in the experiment [10], the diffusion 

coefficient for cell density which is related with the slow cell migration speed can 

satisfy the criterion while the nutrient diffusion may not. 

The parameter 𝑁1 is the nutrient threshold, below which the migration of the 

cell can happen. The parameter 𝑁0 and α are the initial nutrient level in the dish 

and the nutrient consumption rate for each cell respectively. 

Meanwhile, since 𝐷𝐶 ≪ 𝐷𝑁, the grid and time intervals can be tuned thus both 

of the diffusion coefficient can satisfy the Von Neumann stability criterion. So the 
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equation can be reduced to the combination of equation (12,15). 

     
2

1 1 22
......(16)C

C C
D H C C H N N gCNH C C

t x

 
    

 
 

2

2
......(12)N

N N
D gpCN

t x

 
 

 
 

 

The results are plotted in Figure 2-6 with the same parameters used in Figure 

2-2. 

 

Figure 2-6 The cell number versus time at a certain point (x=1). In the simulation, the 

parameters in equation (5), 𝐷𝐶 = 0.000050, 𝐶1 = 100 and 𝐶2 = 50. 
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Figure 2-7 Relationship between period and diffusion coefficient. Change of the period 

when the diffusion coefficient of the cells changes. (a) 𝐷𝐶 = 0.000040; (b) 𝐷𝐶 = 0.000050; (c) 

𝐷𝐶 = 0.000060. 

 

2.7 Diffusion Reaction Model with One Thresholds in Nutrient and Two 

Thresholds on Cell Density (for Diffusion Activation and Deactivation) 

Can Generate Periodic Pattern with Varying Period 

  

 In equation (16), the two Heaviside step functions which together serve as 

the activation of the diffusion, are in two different categories namely cell density 

and nutrient. If all the switches controlling the diffusion are in one categories, that 

is to say: if the high cell density (C1) serves as the activation switch for the cell 

diffusion and the lower one (C2) as the criterion deactivation. 

The model becomes equation (19) 
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In equation (19), there are two step functions in cell density to control the 

diffusion. The first term H(𝐶 − 𝐶1) shows when the cell density is larger than C1, 

the colony will diffuse; the second term H(𝐶 − 𝐶2)𝐻 (−
𝜕𝐶

𝜕𝑡𝐶𝑖
) indicates that when 

the cell density is larger than C2 meanwhile it has a diffusion tendency (because 

of the diffusion, the cell density would have a negative slope as the time goes on) 

at a certain point 𝐶𝑖 it will be in diffusion state. In other words, only when the cell 

density reaches C1, the cell will begin to diffuse, and when it diffused to the cell 

density of C2 (C2<C1), the diffuse stops, meanwhile, the growth of the cell will 

last until the nutrient is depleted. The results are shown in Figure 2-8. 

 



23 

 

 

Figure 2-8 Spatiotemporal of the P. mirabilis colony modelling. (The graphs in the first 

row are cell density-time-space plot, cell density-space, cell density-time plot; The second row 

is the cell density-time (at a certain point point) and cell density-space (at a certain time) 

respectively) 

 

It’s a similar result, as Figure 2-6 when the nutrient is not depleted, that the 

periodicity can be established, however, as the cell diffusion coefficient changes, 

the periodicity will also change. 

 

2.8 Analysis of the Time Period 

 

 From the Figure 2-2 and Figure 2-6, we can see the cell number sometimes 
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exceeds the maximum threshold which indicates the growth rate in this situation 

is two large, which is a drawback of this model that the growth rate is not well 

adjusted in the simulation. 

Using the normalized period defined by equation (15) mentioned in chapter 2, 

a period versus diffusion coefficient curve are plotted in Figure 3-1. 

 

 

Figure 2-9 Normalized Period versus Diffusion Coefficient (The 3 and 4 thresholds 

situation share the same trend of the figure.) 

 

According to the Figure 2-8, the normalized period is linear associated with 

the diffusion coefficient of the P. mirabilis. The period of the growth process 

contains two parts, T = 𝑇𝑆 + 𝑇𝐶, the swarming period and consolidation period. 

From the Figure 2-2, 2-5, 2-6, 2-7 and 2-8, the change of the diffusion coefficient 

only makes a difference in altering the swarming period. Shapiro’s group gave an 
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explanation that when the concentration of agar changed, the swarming period 

would change and meanwhile the consolidation period would also change 

accordingly. However, in the simulation above, the consolidation period hasn’t 

changed obviously. 

 

2.9 Modification of Growth Function and Rate 

 

By analyzing the period above, the key factor is to the change the period in 

consolidation and this is determined by the growth rate g in equation which is linked 

with the nutrients. 
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 
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......(12)N

N N
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t x

 
 

 
 

 

There are several forms to modify the growth form in the equations (12,16) 

above. The Monod (equation (20)) [23] and Fisher’s (equation (21)) [24] equation 

can be used. 

0 ......(20)
N

g g
K N




 

0 (1 )......(21)g g N   

 

 The numerical solution for the equation (16) and (12) by applying the growth 
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form (equation (20)). This kind of growth form is dependent on the nutrient level 

and it has a saturation when the nutrient N is approaching infinity. Meanwhile, 

the parameter K is a characteristic parameter of this form, which can be tuned in 

numerical solution. 

 

Figure 2-10 The Growth Rate Changes with Monod Form (equation (19)) 

 

By tuning the parameter K and 𝑔0 in equation (20) and the proper thresholds 

in different categories, the period of both the swarming and consolidation can be 

change simultaneously, thus it may offer a way to simulate this phenomenon and 

achieve the unchanged period even when the concentration of the agar (the 

mobility) changes. 

 

2.10 Conclusion 
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The behaviors P. mirabilis in lab medium exhibit striking geometry regularity 

[4]. The one dimensional simulation of this phenomenon is based on the 

modification reaction diffusion model. Adding thresholds to the equations, which 

can change the behaviors of the equation by switching to either diffusion or 

population increase, the periodic behaviors can be achieved. By simulation in one 

dimension, the only one threshold in nutrient could not provide the periodic 

numerical solution. Moreover, the thresholds in two different categories could 

provide the periodic regularity in this one dimensional simulation and the period in 

time domain is well defined and tested by FFT.  

However, the two thresholds can only change the swarming period and 

meanwhile the consolidation period will almost remain the same. Thus, the total 

period T = 𝑇𝑆 + 𝑇𝐶 will not remain the same as we change the diffusion 

coefficient.  

In conclusion, the thresholds can provide periodic behaviors but they are not 

sufficient to maintain a fixed period in time domain. Thus only by adding two 

categories thresholds to the diffusion reaction equations is not enough to solve 

this problem. 
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Chapter 3 

 

Future Work 

 

 

3.1 Quorum Sensing 

 

Quorum sensing (QS) is employed by many species of bacteria [22]. In 

section 2, methods, models and discussion, the cells change their behaviors 

from consolidation to swarming by cell density. However, the cell density in the 

model is a global property of the colonies. However, quorum sensing is a 

system corresponding to the local population density. Thus it’s a necessary and 

a promising method to separate cell density and quorum sensing molecule. The 

latter one has its own dynamics and its regulation is linked with the nutrient. 

This property of the bacteria can be incorporated into this diffusion reaction 

model. Thus, the nutrient, cell density, quorum sensing, these factors are 

coupled by these reaction diffusion equations. By adding some thresholds in 

the QS, the influence of this property can be explored. 

 

3.2 Modification of Growth Functions and Rates 

 

In section 2.8, when the growth function changes, the consolidation time 
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𝑇𝐶 is significantly changed and based on the conclusion in section 2.9, only 

when the consolidation changes accordingly the total period will remain the 

same. There are several forms of the growth form and many parameters in 

the growth function. Thus further modification could be effective and essential 

for exploring this problem. 
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