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Abstract

A Model for Equilibrium Consumer Search in Markets with Correlated Products

By Mason L. Wang

| consider a duopoly market model in which consumers and firms condition their strategies on
the correlation between the values provided by the two products. | derive the consumer's
optimal search strategy given this correlation. Based on consumer behavior, | provide a
necessary and sufficient condition that determines whether firms charge competitive prices in
equilibrium. I illustrate the unique mixed-strategy equilibria with continuous support in cases of
perfectly correlated, independent, and perfectly negatively correlated values and analyze the
effect of search costs on consumer utility. | also explain how the two types of mixed-strategy
equilibria can be extended to other levels of correlation.
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Abstract

I consider a duopoly market model in which consumers and firms condition their strate-
gies on the correlation between the values provided by the two products. I derive the
consumer’s optimal search strategy given this correlation. Based on consumer behav-
ior, I provide a necessary and sufficient condition that determines whether firms charge
competitive prices in equilibrium. I illustrate the unique equilibria in cases of perfectly
correlated, independent, and perfectly negatively correlated values and analyze the ef-
fects of search costs on consumer utility respectively. I also explain how two types of
mixed-strategy equilibria can be generalized to other levels of correlation.
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1 Introduction

This paper considers a simple duopoly model. Two differentiated competing products which
possess uncertain match values to the consumer are sold. Both the firms and the consumer
observe the fixed correlation between the match values. After observing the posted prices,
the consumer conducts a sequential search on one or both products, and ultimately purchases
one of the products searched. Through each costly search, the consumer observes the value
of the product and may also infer the gain of the subsequent search. The paper characterizes
both the optimal consumer search strategy and some typical equilibrium pricing strategies
of firms.

The foundation of this paper builds on|Wolinsky| (1986]), which uses consumer search
behavior to explain the connection between product differentiation and monopolistic compe-
tition. The paper assumes that products have independent values and consumers’ expecta-
tions about values of unseen products remain constant throughout their sequential searches.
The effect of correlation between product values on market outcomes is not addressed in
that paper and remains understudied today.

This paper differs from|Wolinsky| (1986) by two main assumptions. Firstly, the consumer
can observe the prices posted by the firms before their search. Thus, the price of a product
affects not only the consumer’s decision on whether to purchase after they search, but also
the order and probability of being searched. Secondly, this paper assumes that both the
firms and the consumer can condition their strategies on the correlation between the values
of products. After searching for one product, the consumer updates the expected value of the
subsequent search and then decides whether to continue searching. For example, a consumer
who dislikes one electric vehicle after a test drive might decide not to test drive another
similar electric vehicle but an internal combustion engine vehicle.

Key findings in this paper suggest that product correlation influences both firms’ optimal
pricing strategies and market structure in equilibrium. Negative product correlation and low

search costs can encourage the consumer to conduct an additional search and incentivize



firms to set higher prices with greater variation. Fixing the level of correlation, decreasing
search cost can increase equilibrium prices and decrease the consumer’s expected utility. On
the other hand, increasing search cost can encourage firms to price competitively, which
contrasts with |Wolinsky| (1986) that shows equilibrium prices approach competitive levels
when search costs are sufficiently small.

The remainder of this paper is structured as follows. Section 2 introduces the model.
Section 3 derives the optimal consumer search strategy and the firm’s payoff. Section 4
analyzes firms’ pricing strategies in equilibrium through key properties and special examples.

Section 6 summarizes the paper. All omitted proofs are in the appendix.

2 The Model

There are two firms and one consumer in the market.
The firms are denoted by i € {1,2}. Each firm sells a unique product priced at p; € Ry
to maximize expected revenue. For both firms, the cost of production is normalized to zero.
The consumer determines the order of sequential search and whether to continue searching
or purchase from the searched products after each search. The consumer designs a strategy

to maximize expected ex-post utility. The ex-post utility is given by

U=max{U(i,n) =v; — p; — ns,—o0},

where v; is the match value of product ¢ that is purchased, n is the number of searches
conducted before purchasing, and s is the strictly positive search cost. Note that there is no
outside option, so the consumer must search at least one of the products.

The possible values of v; are h and ¢, where h > ¢. The values of both products follow

an identical probability distribution, given by:

Pr(vj=h)=p and Pr(v;,=0)=1—p.



To avoid degenerate cases in which the consumer knows the value of products before search-
ing, we assume p € (0, 1).

The correlation between the values of the two products is ¢, where

Pr(vy = l,vg = () - Pr(vy = h,vy = h) — Pr(vy = h,ve = {) - Pr(vy = £,v3 = h)
n(l— p) '

(p:

Note that ¢ € [max (—ﬁ, —177“) ,1] When ¢ = 1, the two products have the same
value to the consumer with probability 1. When ¢ = 0, the values of the products are
independent, so the realized value of a searched product does not give any information
regarding the expected value of the unsearched product. Perfect negative correlation (¢ =
—1) can only be achieved when p = 0.5, since Pr(v; = h,ve = £) = Pr(vy = f,v9 = h) =
(1= )1 = p)p.

The game unfolds as follows. Before the game, both firms and the consumer observe
s, o, i, ¢, and h. Nature decides v; based on p and ¢, and the results are not observed by
the firms or the consumer. Then, each firm sets a price p; € [0,00) simultaneously. The
consumer observes the prices and decides which product to search first. After the search, the
value of the product becomes known to the consumer, who decides whether to purchase the

product or continue searching. If the consumer searched both products, they can decide to

purchase either product with costless recall. The game concludes once a purchase is made.



3 Consumer Behavior

3.1 Optimal Search Strategy

Given the prices p; set by the firms, the consumer chooses to search one of the products at
their first decision node. Since all features of both products are identical to the consumer
except for the price, the consumer decides whether to search the lower-priced or higher-priced
product first. Thus, a search strategy defines three decisions when facing any given prices
and value realizations: conducting an initial search of either the lower-priced or higher-priced
product, deciding whether to purchase or continue searching based on the first search’s result,

and selecting a product to purchase if a second search is conducted.

Proposition 1 Let p; denote the price of the lower-priced product, and let ps denote the
price of the higher-priced product. The optimal consumer search strategy in this game is as

follows:

1. Search the lower-priced product.

2. Search the other product if the lower-priced product has a value of ¢ and s < (1 —

©)(h — € — pa + p1). Otherwise, purchase the lower-priced product.

3. Purchase the higher-priced product if it has a value of h. Otherwise, purchase the

lower-priced product.

In step 3, the optimal strategy is to choose the product that maximizes v — p when both
products are searched. In step 2, the consumer can infer the conditional probability of
realizing high or low value for the unsearched product. Then, they compare their first deal
v — p with the expected value of the maximum of two deals v — p minus the search cost.
Fixing the strategies in step 2 and 3, we compare the expected utility of searching the
lower-priced and higher-priced product first. Intuitively, because only the prices of the
products differ at step 1, it is optimal for the consumer to secure a better deal first to reduce

additional search costs. Rigorous proof is provided in the appendix.
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3.2 Shopping Outcomes

Given the optimal search strategy in this game, we derive the expected revenue function of
the firms.

The lower-priced product will be searched first. With probability u, it results in a value of
h and is purchased without a second search. With probability 1 — u, it results in a value of /.
Only when the lower-priced product results in a value of ¢, and s < (1—@)u(h—£—ps+p1),
the consumer searches the higher-priced product. Note that since s > 0, the condition

implies ¢ # 1. This is equivalent to:

S

pr—p1 <h—Ll— —7F,
o (1=

which indicates two scenarios. When the right-hand side is strictly positive, a small price
difference may induce the consumer to search both products when the lower-priced product
has a low value. Otherwise, the consumer searches only the lower-priced product, regardless
of the price of the higher-priced product. Intuitively, a small difference between whether
liking a product would discourage the consumer to conduct a costly additional search, even

when the prices of the products are the same.

Lemma 1 When s > (1 —¢)u(h —{), the revenue of firm i charging p; when the other firm
charges p; s given by:
0 if pi > pj,

Wi(phpj) = Y05p; ifpi= Djs

Di if pi < pj-

\

The condition s > (1 — ¢)u(h — €) is equivalent to h — £ — o < 0. Thus, only
the lower-priced product is searched and receives all demand. Note that perfect correlation
(p = 1) is a special case of this. Because the values of the products are guaranteed to be

the same, the consumer always search the lower-priced product only.



The other case is when s < (1 — ¢)u(h — € — ps + p1), the consumer searches the higher-
priced product if realizing a low value for the lower-priced product. The firm posting the
higher price receives demand when the consumer realizes v; = ¢ and vy = h, which has a

probability of (1 — p)(1 — ¢)p.

Lemma 2 When ¢ # 1 and s < (1 —)u(h — {), the expected revenue of firm i charging p;

when the other firm charges p; is given by:

0 ifpi>pj+h—€—m,
(1= p) (1 = @)up; ifpy <pi <pj+h—0—G"5
(i pj) = 0.5p; if pi = Dy,
1-A-wd=—ulp fp;—h+l+ 575 <pi<pj,
| Pi z’fpi<pj—h+€+(1_ﬁ.

To simplify our notation, when ¢ # 1 and s < (1 — @)u(h — £), we let

9:h—€—mand)\:(1—u)(l—g@)u.

6 is the threshold price difference. If two firms post prices that differ by more than this
threshold, the consumer would not search the higher priced product regardless of the result
of the lower priced product, thus the higher price product would receive demand and profit
of 0. When the prices differ by less than the threshold, with probability A, the consumer
would end up buying the higher priced product. Note that in the model the products are
assumed to be ex-ante identical. Thus, it is natural that A < 0.5 and lower priced product

always get at least the same demand as the higher priced product.
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Figure 1: Graph of the expected revenue when setting a price of p while the other firm sets
a price of p;. Note that the graph is discontinuous at three points.

4 Market Equilibria

In this game, the competing firms set prices simultaneously first, and the consumer searches
subsequently. We have already fully characterized the consumer’s strategy in equilibrium.
We also derived the payoff functions of firms by inferring the consumer’s behavior in the

equilibrium. Now we derive key properties of the firms’ pricing strategies in the equilibrium.
Proposition 2 When s > (1 — @)u(h — £), both firms charge a price of 0 in equilibrium.

Following the payoff function from Lemma 2, when the search cost is significantly big,
the higher-priced product receives no demand. If the opponent chooses a strictly positive
price, the best response is to undercut and become the lower-priced product. Following the
argument in the proof of the pricing equilibrium in Bertrand competition, we can show that

both firms charge a competitive price in the unique equilibrium.
Proposition 3 When s < (1 — p)u(h — {), there exists no pure strategy equilibrium.

The best responses to the opponent’s price p; must be one of p;—0—¢, p;—e, or p;+0—¢,

where ¢ is infinitesimally small and less than #. Thus, it is impossible for two prices to be



mutually best responses. Intuitively, there is still an incentive to slightly undercut the
opponent to become the lower-priced product and win the majority of demand. However,
his case differs with when s > (1 — ¢)u(h —£) as 0 is never a best response. This means that
when the opponent is sacrificing much price for the demand, it becomes profitable to post a
high price for the minority of the demand. The proof is provided in the appendix.

Since there is no pure strategy equilibrium when s < (1 — ¢)u(h — ¢), we restrict our
attention to symmetric mixed-strategy Nash equilibria.

Several properties about the symmetric mixed-strategy Nash equilibria in this game
should be noted. We can show that in equilibrium, no firm would choose a specific price
with a strictly positive probability. If the support of the probability density function of
mixed-strategy is continuous, we can also show that there exist a lower bound and upper
bound for the length of support. However, we should note that we cannot easily rule out the
possibility of a gap in support generally by using the methods used in classical equilibrium

consumer search models.

Observation 1 When s < (1 — @)u(h —{), there is no symmetric equilibrium in which the

firms choose a specific price with a strictly positive probability.

We first consider when ¢ # 0.5. Let p; be the lowest price that is chosen with strictly
positive probability. Then p; — € yields a profit that is higher than equilibrium profit. We
can safely assume that p; > 0, because setting a price of 0 is never a best response. If p; is
chosen with probability r, then we expect to earn an extra profit of 7((1—\)(p; —e) —0.5p;)
as p; —e¢ yields more demand than p; when the opponent chooses p;. If the opponent chooses
p1 + 0, choosing p; — ¢ may also yield more demand than p;. When the opponent chooses
any other price, p; — ¢ yields same demand as p; and the loss in profit converges to 0 as
e — 0. As ¢ — 0, we can see that profit earned by p; — £ converges to a value higher than
expected profit earned by choosing p;.

Then we assume that ¢ = 0.5. Let p; be the lowest prices that is chosen with strictly

positive probability. If p; 4+ 6 is not chosen with strictly positive probability, then choosing



p1+¢ yields same demand as p;. A higher price yields strictly more profit. If p; +6 is chosen
with strictly positive probability, then choosing p; — ¢ yields more demand than p; when the
opponent chooses p; + 6. When the opponent chooses any other price, p; — € yields same

demand as p; and the loss in profit converges to 0. So as € — 0, p; — € earns more than p;.

Observation 2 Assume that s < (1 — p)u(h — €) and the support for mized-strategy prices

18 continuous, then the minimum and maximum price on the support must differ by at least

6.

This follows the intuition that when the support is less than 6, then the highest price
on the support always receive a demand of 1 — X because both products would be searched.
It is then guaranteed to be profitable to increase price until reaching exactly 6 above the
lowest price on the support. Thus, a support length less than € cannot form a symmetric
mixed-strategy equilibrium.

However, when the support length reaches 6, posting a price higher than the maximum
price on the support is not guaranteed to be profitable. If the opponent poses a price that
is lower by more than 6, the higher priced product would not be searched and would receive

a demand of zero.

Observation 3 Assume that s < (1 — p)u(h — £) and the support for mized-strategy prices
s continuous, then the minimum and maximum price on the support must differ by less than

30.

The proof is in the appendix. The intuition we use is to compare the payoff of lower
bound p and upper bound p with interior points p + 6 and p — ¢ respectively. Since p earns
zero profit against prices below p — 6, we know that p must yield higher profit than p — 0
against prices in [p — 0,p]. Yet p earns less demand. Thus, the higher the p, the more profit

it loses compared to p — 6. We thus find the upper bound for p in terms of A and 6.



We can conduct a similar analysis to calculate for the lower bound for p. Taking the
difference, we arrive at the following graph for maximum possible support length if the

support is continuous.

30 | Maximum support length

20 | (vV2-1,2)

16
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In general, we cannot rule out the possibility of gaps in the support of mixed-strategies.
In classical search models, when a gap exists in the opponent’s mixed-strategy, the firm can
increase some prices (for example the maximum price below the gap) without losing any
demand. However, this is not true for the model in this paper. This is due to the three
discontinuities of the payoff function. If the opponent would not set prices slightly above a
specific price, it does not mean that increasing from that price can increase payoff without
decreasing demand. Demand can decrease when the new price is no longer the significantly
low price receives full demand, or becomes the significantly high price that will never be

searched.

4.1 Special Equilibria

In this paper, we focus on symmetric mixed-strategy equilibria with continuous support.
With three special cases, we can derive the unique equilibrium. The uniqueness allows us
to directly compare the effects of search costs and correlation coefficient. Those special

equilibria derived can be applied to construct equilibria in more general cases.
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Proposition 4 Suppose that the values of the products are perfectly correlated (p = 1), both

firms charge the competitive price in the unique symmetric equilibrium.

This is a Bertrand competition, which is a special case of s > (1 —¢)u(h—{¢). Intuitively,
when the products are guaranteed to have the same value, the consumer would only search
the product with the lower price. Thus, the firms compete for the demand by charging a low
price. In equilibrium, both firms charge the competitive price. We can see that search cost
has no effect on the equilibrium, as no matter how low the search cost is, the firm posting
the higher price would have zero demand. While the consumer minimize their search cost by
conducting only one search, increasing search cost would decrease the consumer’s expected

utility.

Proposition 5 Suppose that the values of the products are independent (o =0).

If s > p(h — 0), then both firms charge the competitive price in the unique symmetric
equilibrium.

Otherwise , there exists a unique symmetric mixzed-strategy equilibrium with continuous
support. Suppose h =1, =0, p=1/2, and s < 1/2, the cumulative density function of the

mixed strateqy is

3<2p12571>’ pe [3(1—2s),2(1—25)]
F(p) =

0, otherwise

From Observation 2 and 3, we know that if symmetric mixed-strategy equilibrium with
continuous support exists when s > p(h — ), its support length must be 6. After we obtain
the CDF of the mixed-strategy, we test for whether there exists any profitable deviations.
The values h = 1, £ = 0, u = 1/2 are only used to maintain the simplicity of the results and
make further comparisons clear. The proof is provided in the appendix.

We observe that the search cost have continuous and negative effect on prices. As search
cost increases from 0, the price level and support length both decrease. And as search cost

becomes sufficiently big, the equilibrium price is 0.
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While increasing the search cost directly decreases equilibrium price and revenue for the
firms, it has mixed effects on the consumer’s expected utility. Increasing search cost decreases
the consumer’s expected utility as they spend more on searching, but increases the utility
lowering equilibrium prices. In this case of independent values, the two effects cancel each
other, giving the consumer an equilibrium utility of 0 if h =1, ¢ =0, p=1/2, and s < 1/2.
When s > 1/2, the consumer begins to experience expected negative utility.

We can generalize the approach to find equilibrium in other levels of correlation. Setting
the support length to be 6, we can find the mixed-strategy equilibrium when ¢ > —0.62.
When the correlation is more negative, the share of demand to the firm setting the higher
price is more. It is then relatively more likely for the firms to set a higher price on the
support. This gives the opposing firm incentive to charge a price that is slightly below the
support. While sacrificing price by a small magnitude, the firms wins full rather than partial

demand when the opponent chooses a high price.

Proposition 6 Suppose that the values of the products are perfectly negative correlated (o =
-1).

If s > 2u(h — £), then both firms charge the competitive price in the unique symmetric
equilibrium.

Otherwise , there exists a unique symmetric mized-strateqy equilibrium with continuous
support. Suppose h =1, 0 =0, u=1/2, and s < 1, the cumulative density function of the

mixed strateqy is

D pe VAL - 9. (V2 (1 - )]
F(p) = 2p+(3_‘|'1ﬁ)—i(_;1+5)’ pE |:(\/§ + 1)(1 . S), (\/§+ 2)(1 _ S)}
0, otherwise

Combining observation 2 and 3, we know that if there exist symmetric mixed-strategy

equilibrium with continuous support when ¢ = —1 and s < p(h — £), it must have support

12



length in [f, 3], where 6 = h —1— 2 > 0.

Additionally, we observe that when ¢ = 0.5, the support length cannot be less than 26.
For any price that is less than or equal to # away from any price on the support, it always
yields a demand of 0.5 either being search first or secondly. If there are multiple prices that
satisfies this condition, the higher price would dominate a lower price. Thus, when ¢ = 0.5,
support length must be greater or equal to 26.

We can also prove that the support length cannot be greater than 26. The proof is
provided in the appendix. The intuition is that if the length of the support is between 26
and 36, then the lowest price on the support would earn lower payoff than a slightly higher
price except when the opponent would likely post a price in the middle of the support.
However, if this is the case, the highest price on the support would not earn as much as a
price slightly below that.

Setting the length of support to be 26, we can find the probability of the price to be from
the lower half and the upper half. We find the equilibrium payoff and derive the CDF on
the lower and upper half separately. We then test for whether are profitable deviations from
the equilibrium. The proof is illustrated in the appendix.

The technique to construct the mixed-strategy equilibrium with support length of 26 ap-
plies to all A > 0.414 which is equivalent to > —0.657. This corresponds to our Observation
3.

Again, we can observe a continuous and negative impact of search cost on equilibrium
prices. The higher the search cost, the lower the price level and the shorter the support
length will be. As search cost is sufficiently big, the equilibrium price becomes 0 and the
firms do not earn expected profit.

While it is trivial that when s > p(h —¢) increasing search cost would decrease consumer
utility due to a lack of outside options, it is crucial to note that when s < p(h—¥¢), increasing
search cost increases consumer utility. When s < p(h — £), increasing search cost would

drive down the equilibrium prices. Even though the consumer spend more on searching, the

13



consumer receives more net expected utility as the search cost increases. The consumer’s
expected utility with respect to the search cost can be viewed as a continuous concave

function, with its maximum at s = u(h — /).

1 [ F()
0.8 {
0.6 |
04
0.2 1
0i5 1

Figure 2: Cumulative distribution functions (CDFs) of the unique mixed strategy equilib-
rium for the cases where product values are independent (¢ = 0) and perfectly negatively
correlated (¢ = —1), assuming a small search cost (s = 0.1).

Comparing the cases where product values are perfectly correlated, independent, and
perfectly negatively correlated, we can see that in the price level is the highest and the
support length is the longest is the case of perfect negative correlation. The support level
and support length are both proportional to #, which is increasing in p and h — ¢, decreasing
in s.

Overall, we can see that when the correlation between product values changes from
perfectly negative correlation to perfect correlation, the maximum support length is more and
more restricted. We can also see that if ¢ belongs to a range for which we have characterized
a continuous mixed-strategy equilibrium, increasing ¢ would decrease both the support level

and the support length.
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5 Discussion

This paper identifies the optimal consumer search strategy in a duopoly market with com-
plete information on prices and product correlation. We derive conditions on the search cost
and correlation coefficient that determine whether market competition becomes perfectly
competitive. Through several illustrative examples, we show that low search costs can en-
able firms to charge high prices in equilibrium, thereby reducing consumer utility despite
lower expenditures on search and an increased likelihood of purchasing a preferred prod-
uct. Furthermore, we find that high correlation between products limits firms’ ability to
randomize prices over a wide interval in equilibrium.

These findings contribute to a better understanding of market design. For instance,
online recommendation systems that suggest similar products may induce firms to set more
competitive prices, as the conditions for Bertrand competition may be met when product
correlation is high. Conversely, certain features of online markets that reduce consumer
search costs may inadvertently harm consumer welfare, as firms have an incentive to set
high prices while still attracting consumers.

Nevertheless, this paper has several limitations. A key constraint built into the model is
the absence of outside options. This restricts the analysis of how search costs affect consumer
utility when such costs are significantly high and exceed the product’s value.

Another limitation is that the paper does not characterize the full set of equilibria across
all combinations of search costs and correlation levels. This limitation arises due to the
discontinuities in the payoff function at p + 6.

For example, we cannot rule out the existence of gaps in the equilibrium support by
appealing to standard arguments, that some prices on the support can be increased without
losing demand. In our model, the change in demand depends not only on the e-neighborhood
of p, but also on the e-neighborhood of p & 6.

The analysis also encounters challenges in constructing equilibria whose support lengths

are not integer multiples of 6. For example, in attempting to construct an equilibrium with

15



support length in (6,260), a high probability of price realization near the midpoint of the
support renders a downward deviation profitable, as charging a price just below the support
has a high likelihood of undercutting the opponent by 6.

Future research may consider extending the model by introducing outside options. To
address the discontinuities at p 4+ 6, future work may also introduce uncertainty in consumer
search behavior, particularly when consumers face price differences near their indifference

threshold for conducting additional searches.
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6 Appendix

Proposition 1 Let p; denote the price of the lower-priced product, and let ps denote the
price of the higher-priced product. The optimal consumer search strategy in this game is as

follows:
1. Search the lower-priced product.

2. Search the other product if the lower-priced product has a value of ¢ and s < (1 —

©)u(h — € —ps + p1). Otherwise, purchase the lower-priced product.

3. Purchase the higher-priced product if it has a value of h. Otherwise, purchase the

lower-priced product.

Proof. In step 3, the optimal strategy is to choose the product that maximizes v — p when
both products are searched. In step 2, the consumer searches if and only if the expected net
utility of step 3 is greater than the net utility of purchasing at step 2. Finally, fixing steps
2 and 3, we compare strategies of searching the lower-priced product in step 1 (denoted as
S1) versus searching the higher-priced product in step 1 (denoted as S2).

The expected utility of s is a(h —p; — s) + (1 — a) max{(1 — p)a(h —ps) + [1 — (1 —
p)al(l —p1) — 25,0 —p1 — s}

The expected utility of so is amax{h —ps — s, (1 —p)(1 —a)(h—p2) +[1 — (1 —¢)(1 —
a)](h=p1) =2s,(1=@)(1 —a)(l —p1)) +[1 = (1 = @)1 = a@)](h —p1) = 25} + (1 — @) max{l —
p2— 5, [1 = (L —=p)all+ (1 —p)ah — p; — 2s}

define wuy, us, ug, uy as following

uy = a(h —p; — s)

uy = (1 — o) max{(1 — @)a(h —ps) + [1 — (1 — p)a](l — p1) — 25,1 — py — s}

s = amax{h — ps — 5, (1= ) (1 = a)(h = pa2) + [1 = (1 = 9)(1 — a)](h — p1) — 25, (1
)1 —a)(l =p1) +[1 =1 =) —a)l(h—p1) —2s}

ug=(1—a)max{l —ps —s,[1 — (1 —p)a)l + (1 — p)ah — p; — 2s}
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We want to show that u; + uy > us + ug.

Firstly, note that when uy = (1 — a)(l —p2 — 8), = w1 > u3 and ug > uy

Then, suppose uy = (1 —a)([1 — (1 —p)a]l + (1 — ¢)ah — p; — 25), uy — uy = min{(1 —
a)(l=p)a(p —p1), (1 = )1 —p)a(h —1) = (1 — a)s}

ur — ug = min{a(py —p1),a(1 —@)(1 —a)(p2 = p1) + as,a(l —p)(1 —a)(h — 1) + as}

Note that in u; —us, (1 —¢)(1 —a)(p2 —p1) + s, (1 —¢)(1 —a)(h—1) + s are strictly
greater than (1 — a)(1 — ¢)a(ps — p1), (1 — a)(1 — @)a(h — 1) — (1 — a)s respectively, since
s> 0. Also, a(ps —p1) > (1 — @)(1 — p)a(pa — p1)

Thus, searching the lower-priced product first is the dominating strategy. m

Proposition 3 When ¢ # 1 and s < (1 — @)u(h — ), there exists no pure strategqy equilib-

TLUM.

Proof. Let 0 :=h—{— —— >0, and let € € (0,0).
(1-p)u
Assume that firms ¢ and j choose prices p; and p; in a pure strategy equilibrium. Then

pi is a best response to p; and must equal one of the following:

pj—0—¢, pj—e, or p;j+0-—c¢,

where € is a infinitesimally small value and € < #. Note that at least one of the three values
would be strictly positive.

- If (p; = p; — 0 — ¢, p;) are equilibrium strategies, firm j would receive expected revenue
of 0 and could decrease the price to obtain positive demand.

- If (p; = pj — €,p;) are equilibrium strategies, firm j could increase the price without
losing demand.

- If (p; = pj + 0 — €,p;) are equilibrium strategies, firm j could also increase the price
without losing demand.

Thus, there exists no pair (p;, p;) such that p; and p; are mutual best responses. m
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Observation 3 Assume that s < (1—@)u(h—{) and the support for mized-strateqy prices is
continuous, then the minimum and maximum price on the support must differ by less than
30.
Proof. Let p and p be the lowest and highest price on the support of the equilibrium
mixed-strategy respectively.

First, let’s assume that p —p > 26.

We compare the profit of choosing p and p + 6. If the opponent chooses p > p + 26,
choosing p + 6 yields strictly higher profit. For p and p + ¢ to have equal expected profit,
p should yield more profit than p + ¢ either when opponent chooses between (p,p + 0) or

(p+0,p+20). We thus get the inequalities:

which is equivalent to

1—A
0 —0.
or p > By

P= 19\

We then compare the profit of choosing p and p — 6. When the opponent chooses p < p — 0,
choosing p yields 0. So, p must yield more expected profit than p— 60 when opponent chooses
on (p—0,p). Since p only makes strictly positive profit when opponent chooses on (p—6,p),

we also need to make sure it yields more profit than p — 20. We get the inequalities:

Ap> (1—XN)(p—0)and \p >p — 20,

which is equivalent to

p <

1—A B 2
1_2)\9andp<—1_>\9.

We can graph the function of minimum lower bound as min(2556, 1526) and function of

maximum upper bound as min(%@, ﬁ@)

We can see that only when A > /2 — 1 ~ 0.414, interval length can be greater than 26.
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Interval length can never be greater than 36.

Now, we assume that ¢ <p —p < 20. Using a similar analysis, we get

A 1—A 1—-A
p > min( 6 ) and p <

I—=2\"7 A f

-2\

To conclude, when A < 3’2\/5 ~ 0.38, the only possible interval length is /. When \ €
(0.38,0.414), the maximum interval length is between 6 and 20. When A\ > 0.414, the

maximum interval length is between 20 and 30. m

Proposition 5 Suppose that the values of the products are independent (p =0).

If s > u(h — 0), then both firms charge the competitive price in the unique symmetric
equilibrium.

Otherwise , there exists a unique symmetric mized-strategqy equilibrium with continuous
support. Suppose h=1,0=0, p=1/2, and s < 1/2, the cumulative density function of the

mized strateqy is

2l pe [3(1—2s),3(1 - 25)]
F(p) =

0, otherwise
Proof. We suppose s < pu(h — £). Otherwise, we apply Proposition 2.

Suppose p — p = 6 and the mixed strategy follows a distribution defined by the CDF

F(p). Then, as prices in the interval yield the same expected payoff,

G

A(1-))
1-2X

We can now express p as p = and the equilibrium payoff 7* as 7" = == /\9. Each price

in the interval yields the same expected equilibrium payoff. Thus,

A1 = M\)o

Fp)ap+ 1= FpI1 = Np = ——3

20



We get

A(1=X
(1-Np— 4576

(1=2X\)p

F(p) =

Next, we test if firms have an incentive to deviate from this interval and CDF. When the
competing firm mixes on an interval of length 6, the prices p — 6, p — A (where A € (0,0)),
and p + A dominate other price candidates.

The price p = p — 0 yields
(BA—=1)0
1—2)\ 7

which is greater than the equilibrium payoff when A > /2 — 1.

The price p = p — A yields

2(A) = F (1 ie% —A+9> (1-) (1 EZA —A>+{1 _F (1 f‘g% —A+9)] (1 fGZA —A) |

where 0 < A <\,

Taking the difference with the equilibrium expected revenue, downward deviation by A

gives extra expected revenue of

A(A(L = B5X+TA2 = 2)03) + 0(—1 44X — 5A% 4 3)?))
(=142 (A+0(—1+ \) — 2A))

T(A) =

Taking the derivative of T" with respect to A, we get

OT A1 —2X0)%(1 — 3\ + %) — 20A(1 — 61 + 1202 — OX% 4+ 201) + 62(1 — 5A + 922 — 8% 4 3)\Y)
oA (=14 2\ (A +0(—=1+ X)) — 2AN)2 ‘

At A =0,
OL  07(1 = 5)A + 92 = 8)\ 4 3\
OA (=1 42)0)(0(—1+\))2

When 0 < A < A; = Root(—1+ 4\ — 5A% + 3X3,1) &~ 0.4056, T(A) < 0 for any A < 6.

Thus, downward deviation is not profitable.
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Similarly, we derive the extra expected revenue of p + A as

AXN(AXN (=1 +2X) + 60 (=1 43X —3)%))
(1—2X) (A + 06X —2AN)

T(A) =

Since the numerator is non-positive and the denominator is positive in the defined range
of A, there is no incentive for upward deviation.
Substituting 6 and A with original parameters, we derive the conditions under which this

type of mixed-strategy equilibrium holds. m

Lemma When ¢ = —1 and s < 2u(h—1{), if the symmetric mized-strateqy Nash equilibrium
with continuous support exists, it cannot have a support length between 20 and 36.
Proof. Support that the lowest price on the continuous support is p, we can express the
highest price on the support as p + 20 + ¢, where ¢ < . We aim to show a contradiction.
Let a denote the probability that a price between p and p+6 is chosen in the equilibrium.
Let b denote the probability that a price between p + 6 +t and p + 20 + ¢ is chosen in the
equilibrium. Then the probability that a price is chosen between p + 6 and p + 6 + ¢ is
1 —a —b. Note that no price should can be chosen with strictly positive probability.
First we compare the expected payoff for p and p +¢. Only when the opponent chooses
a price between p + 6 and p + 6 +t, p can yield a greater profit than p +¢. We can set up

and simplify a equation based on the equivalence of expected payoffs to get

0.5(1 —a —b)(p —t) = 0.5at + bt.

Similarly, we compare the expected payoff for p + 20 and p + 20 + {. Both earn zero
payoffs against prices between p and p + 6. p + 20 yields more payoff than p + 26 + ¢ when
the opponent’s price is between p+6 and p+60+t, and less payoff when the opponent’s price

is p+0+1and p+ 20 +t. We can set up and simplify a equation based on the equivalence
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of expected payoffs to get
0.5(1 —a —b)(p + 20) = 0.5bt.

The two equations contradict each other. Thus, the support length cannot be between

20 and 36. =

Proposition 6 Suppose that the values of the products are perfectly negative correlated
(p=—1).

If s > 2u(h — £), then both firms charge the competitive price in the unique symmetric
equilibrium.

Otherwise , there exists a unique symmetric mized-strategqy equilibrium with continuous
support. Suppose h =1, 0 =0, p=1/2, and s < 1, the cumulative density function of the

maxed strateqy 1S

¢

—24v2p+2s pe[V2(1-5),(V2+ 1)1 - s)]

V2(ltp-s)’
F(p) = § 2HEACL - e (V24 1)(1 - 5), (V2 +2)(1 - )]
0, otherwise

\

Proof. Mathematica is used for the derivation of the mixed-strategy equilibrium.

ClearAl1["Global ‘*"]
underlineppayoff = fofunderlinepplustheta (1 - \[Lambda]) underlinep +
(1 - fofunderlinepplustheta) underlinep;

underlineppayoff = Simplify[underlineppayoff]

midpointpayoff = fofunderlinepplustheta \[Lambda] (underlinep + \[Theta]) +

(1 - fofunderlinepplustheta) (1 - \[Lambdal]) (underlinep + \[Thetal]);

midpointpayoff = Simplify[midpointpayoff]
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overlineppayoff

overlineppayoff

Reduce[underline
midpointpayoff

\[Lambda] < 1/

(1 - fofunderlinepplustheta) \[Lambda] (underlinep + 2 \[Thetal);

Simplify[overlineppayoff]

ppayoff == midpointpayoff &&
== overlineppayoff && \[Lambdal > O &&

2 && \[Theta] > O && fofunderlinepplustheta > 0 &&

underlinep > 0, {fofunderlinepplustheta, underlinepl}]

fofunderlinepplustheta = Simplify[

(1 + 2 \[Lambda])/(4 \[Lambdal]) -

1/4 Sqrtl[(-1 +

4 \[Lambda] ~3)

7 \[Lambda]l] - 8 \[Lambda] "2 +

/(\[Lambda] "2 (-1 + 3 \[Lambdal))]1];

underlinep = Simplify[

(\[Thetal] - fo
2 fofunderline

(fofunderlinep

profit = fofunde
(1 - fofunderl

profit = Simplif

funderlinepplustheta \[Theta] - \[Theta] \[Lambda] +
pplustheta \[Theta] \[Lambdal)/

plustheta + \[Lambda] - 3 fofunderlinepplustheta \[Lambdal)];

rlinepplustheta (1 - \[Lambda]) underlinep +
inepplustheta) underlinep;

y[profit];

profitAtLambdaHalf = profit /. \[Lambda] -> 0.5

lowerhalfpayoff

= fofp \[Lambda] p +

(fofpplustheta - fofp) (1 - \[Lambda]) p + (1 - fofpplustheta) p;

lowerhalfpayoff

= Simplify[lowerhalfpayoff]
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upperhalfpayoff = (fofpplustheta - fofp) \[Lambda] (p + \[Thetal]) +
(1 - fofpplustheta) (1 - \[Lambda]) (p + \[Thetal);

upperhalfpayoff = Simplify[upperhalfpayoff]

Solve[lowerhalfpayoff == upperhalfpayoff, fofpplustheta]
fofpplustheta = (-fofp p - \[Thetal + p \[Lambda] +
3 fofp p \[Lambdal] + \[Theta] \[Lambda] + fofp \[Theta] \[Lambda])/
(-p - \[Theta] + 3 p \[Lambda] + 2 \[Theta] \[Lambdal);

fofpplustheta = Simplify[fofpplustheta]

fofpSolution = Solvel
-p (-1 + fofp - 2 fofp \[Lambda] + fofpplustheta \[Lambda]) == profit, fofp];

fofp = Simplify[fofp /. fofpSolution[[1]]];

fofpplustheta = Simplifyl[
(-fofp p - \[Thetal + p \[Lambda] +
3 fofp p \[Lambda] + \[Theta] \[Lambda] +
fofp \[Theta] \[Lambdal)/(-p - \[Thetal + 3 p \[Lambda] + 2 \[Theta] \[Lambda])];

fofpplustheta = Simplify[fofpplusthetal;

fofsmallp = fofp

fofbigp = Simplify[fofpplustheta /. p -> p - \[Thetall]

exp6 = Simplify[fofsmallp /. p -> underlinep - \[CapitalDelta] + \[Thetall
profitDownwardDelta = Simplify[
exp6 (1 - \[Lambda]) (underlinep - \[CapitalDeltal]) +

(1 - exp6) (underlinep - \[CapitalDeltal)]
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exp7 = Simplify[fofbigp /. p -> underlinep + \[CapitalDelta] + \[Thetal]
profitUpwardDelta = Simplify[

(1 - exp7) \[Lambda] (underlinep + 2 \[Theta] + \[CapitalDeltal])]

profitDownwardDelta2 [\ [CurlyPhi]_, s_, \[CapitalDeltal_] = Simplifyl[
profitDownwardDelta /. {\[Lambda] -> (1 - \[CurlyPhi])/4,

\[Thetal -> 1 - 2 s/(1 - \[CurlyPhil)}]

Manipulatel[

Plot [profitDownwardDelta2[\ [CurlyPhi], s, \[CapitalDeltall],
{\[CapitalDelta], 0, 1.1}, PlotRange -> All,

AxesLabel -> {"\[CapitalDeltal]", "Expression"},

PlotLabel -> "Adjustable Plot"],

{{\[CurlyPhi], -1, "\[CurlyPhi] (phi)"}, -1, 1, 0.01},

{{s, 0.4, "s"}, 0, 1, 0.01}]

phiRange = {-1, 0.99};
sRange [\ [CurlyPhi] ] := {0.01, 0.5 (1 - \[CurlyPhi]) - 0.001};

DeltaRange([s_, \[CurlyPhi]_] := {0, 1 - (2 s)/(1 - \[CurlyPhi])};

phiSteps = 50; sSteps = 50; deltaSteps = 50;
phiValues = Subdivide[phiRange[[1]], phiRange[[2]], phiSteps];

results = {};

Do[

If [\ [CurlyPhi] < 1,
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sValues = Subdivide[sRange[\[CurlyPhi]] [[1]],
sRange [\ [CurlyPhi]] [[2]], sSteps];
Do[
deltaValues = Subdivide[DeltaRangel[s, \[CurlyPhi]][[1]],
DeltaRange[s, \[CurlyPhil][[2]], deltaSteps];
deltaCondition = AllTrue[deltaValues,
With[{val = firstDeriv /. {\[CurlyPhi] -> \[CurlyPhi],
s > s,
\[CapitalDeltal] -> #}},
Im[val] == 0 && val < 0] &];
AppendTo[results, {\[CurlyPhi], s, If[deltaCondition, Green, Red]}];,

{s, sValues}]], {\[CurlyPhi], phiValues}]

Graphics [{#3, Disk[{#1, #2}, 0.02]} & @@Q@ results,
Axes -> True, AxesLabel -> {"\[CurlyPhi]", "s"},

PlotLabel -> "Sign of First Order Derivative"]

profitUpwardDelta2[\ [CurlyPhi] _, s_, \[CapitalDelta]_] = Simplifyl[
profitUpwardDelta /. {\[Lambda] -> (1 - \[CurlyPhi])/4,

\[Theta] -> 1 - 2 s/(1 - \[CurlyPhi])}]

Manipulate[
Plot [profitUpwardDelta2[\[CurlyPhi], s, \[CapitalDeltall],
{\[CapitalDeltal, 0, 1.1}, PlotRange -> All,
AxesLabel -> {"\[CapitalDelta]", "Expression"},
PlotLabel -> "Adjustable Plot"],

{{\[CurlyPhi], -1, "\[CurlyPhi] (phi)"}, -1, 1, 0.01},
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{{s, 0.4, "s"}, 0, 1, 0.01}]

firstDeriv = D[profitUpwardDelta2[\[CurlyPhil, s, \[CapitalDeltal]], \[CapitalDeltall;
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