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Abstract 

Controlling Carbenes: Stories of Diruthenium, Dirhodium, and Photoinduced Carbene 
Transformations 

 

By 

Joshua K. Sailer 

 

Carbene intermediates are a valuable synthetic tool in organic chemistry. These highly 
reactive species are capable of a wide variety of transformations, most notably via 
metallo-carbene intermediates. Dirhodium tetracarboxylate catalysts are capable of 
rendering cyclopropanation and C–H insertion reactions in a highly selective manner, 
enabling the synthesis of valuable scaffolds. However, while this is a powerful catalytic 
system, using rhodium offers a sustainability issue due to the high price. Herein, the 
development of an alternative metal for carbene transfer reactions has been developed 
and optimized. Additionally, two novel methodologies for synthesis of strained rings 
have been developed using carbenes, showcasing the powerful capabilities of these 
reactive intermediates. 
 
Chapter 1: This chapter will give an overview of carbenes as reactive intermediates. 
Singlet and triplet carbenes are discussed, along with dirhodium tetracarboxylate 
complexes, with a brief survey of reactions that these complexes catalyzed. Then, some 
drawbacks and limitations of the dirhodium systems will be discussed along with the 
introduction to the solutions developed in later chapters of this dissertation.  
 
Chapter 2: This chapter will discuss the optimization of alternative metals in the 
tetracarboxylate bimetallic core for cyclopropanation using aryldiazoacetate 
compounds. Ruthenium is shown to be the optimal metal, and a large scope of olefin 
cyclopropanation is disclosed. Computational studies help elucidate some of the key 
differences between the two metal centers. 
 
Chapter 3: This section elaborates on the diruthenium catalysts for C–H 
functionalization of a variety of alkanes using aryldiazoacetates as carbene precursors. 
General reactivity trends for the ruthenium complexes are developed by testing 
substrates with differing sites of C–H insertion. A direct comparison is made with the 
dirhodium analogues highlighting the similarities and differences between the two 
catalyst systems. 
 
Chapter 4: The chapter will explore the development of a cyclopropanation reaction of 
exocyclic olefins to afford chiral spiro[2.n]cyclopropanes using dirhodium catalysts. 
Several classes of exocyclic olefins are explored, with high levels of diastereoselectivity 
and enantioselectivity achieved. 



 

 
Chapter 5: The final chapter will discuss a novel synthesis of 2-substituted 
bicyclo[1.1.1]pentanes via triplet carbene addition to the strained C–C bond of 
bicyclo[1.1.0]butane. This methodology affords rapid access to a challenging synthetic 
scaffold to reach, highlighting the power of carbene intermediates to afford privaliged 
motifs. 
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 1 

Chapter 1. An Introduction to Carbenes and Dirhodium 
Tetracarboxylate Catalysis 

1.1 Introduction 

Organic chemists attempt to control reactions, and particularly, reactive 

intermediates (RIs), to enable the desired product to be formed. An intermediate is a 

transient chemical species that exists for some finite length of time in a stepwise reaction 

pathway.1 There are many types of reactive intermediates that can be generated with 

ease using common synthetic methods. Some carbon-based RIs known to organic 

chemists include carbocations and carbanions, arynes, radicals, and carbenes. These 

intermediates have provided chemists with countless methodologies for making new 

molecules. However, a key consideration for these intermediates is how to control them 

– controlling the intermediate dictates the utility it will have. Carbocations have captured 

the minds of organic chemists since the late 1800s, and still do today, with much 

applicability to the general community with carbocation chemistry. Work from the 

Jacobsen, Maulide, and List groups have all harnessed this intermediate for development 

of novel synthetic methodologies (Scheme 1.1A).2-4 Aryne chemistry has recently seen a 

resurgence, with the first reported isolation of indolynes recently reported from the 

Roberts group (Scheme 1.1B).5, 6 Radical chemistry has seen a reemergence in 

popularity over the past 15 years due to photoredox and metallo-photoredox catalysis.7, 8 

Additionally, efforts towards selective trapping of radicals have been shown by the 

MacMillan group, using the ‘radical-sorting’ mechanism to tame these otherwise highly 

reactive intermediates for selective coupling reactions (Scheme 1.1C).9-12  
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Scheme 1.1 Common reactive intermediates. Recent advances in taming a) 
carbocations, b) arynes, and c) radicals. 
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While most often not isolable, organic chemists have developed methods to trap 

otherwise transient radicals for highly useful reactions. As seen with many of these 

examples, a common way chemists think about controlling these reactive intermediates 

is by use of transition metal catalysis. These metals can often stabilize the intermediate, 

making a stable complex with what would otherwise be an uncontrollable species. One 

such intermediate that has captured the interest of the organic chemistry community is 

the carbene. 

1.2 Electronic Structure of Carbenes 

A carbene is a divalent carbon with two non-bonding electrons.13 These electrons 

can exist in two distinct spin states – the singlet state, where both electrons reside in the 

same orbital, and the triplet state, where the electrons occupy two separate orbitals. The 

two paired electrons share an orbital within the molecular plane. This orbital is stabilized 

due to the adoption of the s character from the σ orbital on the carbon. With both electrons 

in the hybridized orbital, singlet carbenes also bear an empty p-orbital. On the other hand, 

triplet carbenes have one electron in each p-orbital (Figure 1.1).  

 

 

Figure 1.1 Possible spin states of carbenes with representative energy diagram 
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The simplest carbene to visualize this phenomenon is methylene. Generated most often 

from diazomethane, this transient species is a model to understanding the principles of 

the carbene. Methylene adopts a bent geometry, with the two hydrogens out of the plane 

from one another. As mentioned above, this induces one of the two degenerate p-orbitals 

to adopt more s-character, becoming stabilized. Intuitively, this would indicate that 

methylene would exist in the singlet (S0) ground state. However, spectroscopic studies 

have shown that methylene exists in the triplet state, highlighting the singlet-triplet energy 

gap.14, 15 For free-carbenes, this gap is often very small, being highly affected by both the 

substituents on the carbene itself as well as the geometry that the intermediate adopts.  

1.3 Generation of Carbenes 

Carbenes are generated through a variety of means, using materials known as 

carbene precursors.16-19 These compounds are primed with a leaving group which, under 

certain conditions, can undergo alpha-elimination, extrusion of the leaving group, or 

rearrangement, revealing a carbene. The most ubiquitous intermediate to generate 

carbenes are diazo compounds.20 These compounds can generate carbenes through the 

extrusion of nitrogen gas, offering an incredible entropic driving force for carbene 

formation. However, while this makes carbene formation a generally facile process, diazo 

compounds are notoriously hazardous to work with due to their high energy of 

decomposition.21 Even with these considerations, diazo compounds have long been used 

as an invaluable tool for the synthetic organic chemist.  

Diazo compounds can be divided into three primary categories which can guide 

the reactivity and selectivity of the resultant carbene (Figure 1.2).22 The first class of are 

known as acceptor-only carbenes. These occur when the carbene is alpha to an electron 



 

 5 

withdrawing group. Common withdrawing groups for acceptor-only carbenes include 

cyano,23 trifluoromethyl,24 and nitro,25 with the most common being the ester group.20 

Ethyl diazo acetate has long been utilized as a readily available carbene precursor for a 

plethora of organic transformations. Acceptor-only carbenes are known to be highly 

reactive, unable to achieve good selectivity in many of the reactions they are known for. 

The second class of diazo compounds are donor carbenes.26 These are classified with 

having an electron-donating group alpha to the carbene. This type of carbene is often 

highly unstable, only found in transient conditions, and prone to carbene dimerization. A 

happy medium was found when donor/acceptor carbenes were discovered.27  

 

 

Figure 1.2 Different classes of diazo compounds 
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p-orbital on the carbene. This allows for higher levels of selectivity to be obtained, while 

also still maintaining the high reactivity profile due to the acceptor-carbene.  

Free carbenes, a carbene not stabilized by any transition metal, can be generated 

by thermal or photochemical means and can undergo a range of carbene insertion 

reactions.28-31 While typically used in their singlet state, free carbenes are also able to 

exist in their triplet state. This most commonly occurs with the sensitization of the diazo 

compound, either through direct sensitization, in which the carbene exists in an 

equilibrium between its triplet and singlet state, or via an energy transfer photocatalyst. 

Triplet carbenes are diradical in nature, with two singly occupied orbitals. This can lead 

to a variety of unique transformations that differ in reactivity from the singlet carbene 

reactivity. Chapter 5 of this dissertation will explore in more depth photogenerated triplet 

carbenes from diazo compounds and the development of a novel synthetic methodology 

using these intermediates.  

1.4 Reactions of Carbenes 

The most common way to decompose diazo compounds is through transition metal 

catalysis to form metallo-carbene intermediates. Metals such as Cu,32 Co,33 Ag,34 Au,35, 

36 Pd,37, 38 Ru,39, 40 and Rh22, 41 have all been reported to decompose diazo compounds 

to generate metallo-carbene intermediates and catalyze a variety of organic 

transformations. Metallo-carbenes are often able to be controlled by the ligand design 

around the metal center, allowing for highly selective reactions to occur.32, 42, 43 This 

paradigm is the key way that chemists think about controlling the reactive carbene 

intermediates. One catalyst system which has enjoyed much success in metallo-carbene 

insertion reactions are dirhodium tetracarboxylate complexes.  
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1.5 Dirhodium metallo-carbene complexes 

The simplest dirhodium tetracarboxylate is dirhodium tetraacetate. This complex 

gives us a representative example of the unique paddlewheel structure in which more 

complex dirhodium complexes are derived. The paddlewheel structure adopts what is 

also known as a lantern structure, with each carboxylate ligand bound to both rhodium 

atoms, with a central rhodium–rhodium bond along the central axis of the complex.44  

 

 

Figure 1.3 The structure of dirhodium tetracarboxylate catalysts 
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with an ⍺, β, ⍺, β geometry, while ⍺, ⍺, β, β orientation leads to C2-symmetry. The ligand 

orientation has a significant impact on the selectivity of the subsequent reaction.  

1.6 Dirhodium tetracarboxylate catalyzed Carbene Transfer Reactions 

The Davies group has relied heavily on this concept for the past 40 years, reporting 

a plethora of carboxylate dirhodium complexes.45-50 These complexes have all been 

shown to generate metallo-carbene intermediates from the corresponding aryl 

diazoacetate compounds, with excellent reactivity towards cyclopropanation and C–H 

insertion carbene transfer reactions.45, 51-53 The general mechanism of a carbene transfer 

reaction follows a concerted asynchronous pathway (Scheme 1.2).54-57 First, approach of 

the diazo compound towards the open coordination site of one of the rhodium atoms 

allows for the extrusion of nitrogen to form the metallo-carbene intermediate. Then, the 

substrate approaches, engaging the carbene in either a [2+1] cycloaddition or C–H 

insertion step for olefin cyclopropanation or C–H functionalization, respectively.  

 

Scheme 1.2 Mechanism of carbene insertion reactions, specifically cyclopropanation 

Rh

Rh O

O
O

O

O

O
O

O

Rh

Rh O

O
O

O

O

O
O

O

R1
R2

N
N

Rh

Rh O

O
O

O

O

O
O

O

R1 R2

Rh

Rh O

O
O

O

O

O
O

O

R1
R2

R3

R1 R2

N2

N2
R3

R3
R1

R2



 

 9 

 
The mechanism is concerted but proceeds in an asynchronous manner.  

The choice of ligand has a profound impact on the result of the reaction, allowing 

for one to select specific catalysts for a specific reaction. To this end a ‘toolbox’ of catalysts 

have been developed, each with their own specific uses for selective cyclopropanation or 

C–H functionalization (Scheme 1.3A). The C–H functionalization of p-cymene showcases 

this feature nicely due to the internal competition between the primary and tertiary C–H 

bonds (Scheme 1.3B).  

 

Scheme 1.3 A) Timeline of dirhodium tetracarboxylate catalysts, B) example of selective 
C–H functionalization using different catalysts. 
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Rh2(S-TPPTTL)4, a catalyst first disclosed in 2018, gives selective insertion into the 

tertiary C–H bond in a 10:1 ratio. However, simply by changing the catalyst to Rh2(S-

pBrTPCP)4, a more sterically demanding ligand, the selectivity is switched entirely to favor 

the primary C–H insertion in >20:1 regioselectivity.  

Taking advantage of the substrate interaction with the catalyst wall has led to a 

variety of novel transformations for dirhodium catalysts.58-60 Rh2(S-TPPTTL)4, derived 

from tert-leucine phthalamido-carboxylic acid, adopts a C4-geometry, with the ligands 

being in the all-⍺ position. This leads to one face of the catalyst being open, with a bowl-

shape being formed by the ligands around the axial site of one of the rhodium atoms. The 

ligand has been designed to block the other face of the catalyst with sterically bulky tert-

butyl groups, forcing the metallo-carbene to be generated inside of the bowl of the 

catalyst. Because of this bowl-shaped structure of the catalyst, the ligand wall can impact 

the selectivity by interacting with the substrate approach to the carbene. This catalyst was 

developed in 2018 for the desymmetrization of cyclohexane derivatives.58 Using 

aryldiazoacetates, the catalyst was able to selectively functionalize the C3 position of tert-

butylcyclohexane in >20:1 regioselectivity, with high d.r. (10:1) and ee (95%). The key 

interaction is contributed to the wall of the catalyst interfering with bulky tert-butyl group 

of the substrate. This forces the substrate to adopt a position within the bowl where the 

C3 C–H bond is preferentially functionalized by the metallo-carbene intermediate. 

Chapter 4 of this dissertation will expound on this bowl-effect in the development of 

selective cyclopropanation of exocyclic olefins for generation of spirocyclopropanes. 
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1.7 Drawbacks and Solutions to Dirhodium Tetracarboxylate Chemistry 

 
While the dirhodium tetracarboxylate complexes have enjoyed a myriad of success  

in carbene transfer reactions, the fact that rhodium is a precious heavy metal can be seen 

as a drawback due to price and sustainability (Figure 1.4). Two solutions can be identified 

to mitigate this problem, namely the exploration of dirhodium catalysts in low-catalyst 

loading for both cyclopropanation and C–H functionalization and the use of alternative 

metals in the tetracarboxylate core. The Davies lab has recently investigated efforts 

toward low catalyst loading for carbene transfer reactions.57, 61 In 2019, our lab reported 

on the cyclopropropanation of activated olefins using low-catalyst loading with Rh2(S-

pPhTPCP)4, achieving a catalyst loading of 0.0025 mol%. This was achieved using 

dimethyl carbonate as solvent enabling the high enantioselectivity to be maintained. 

Additionally, the Davies lab reported on ultra-low catalyst loading for C–H functionalization 

using the bowl-shaped catalyst Rh2(S-TPPTTL)4 along with an additive 

dicyclohexanecarbodiimide (DCC). Serendipitously discovered, it was found that adding 

1.0 mol% of DCC enabled catalyst loadings as low as 0.0005 mol% for the C–H 

functionalization of cyclohexane. These examples show how dirhodium tetracarboxylate 

catalysts can be made practical by changing the reaction conditions or introducing an 

additive to the reaction.  
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Figure 1.4 Potential solutions to the problem of rhodium 

 

The second solution to mitigate the cost of rhodium is to use a different metal entirely. 

Investigations into using alternative metals in the tetracarboxylate complexes for carbene 

transfer reactions will be the topic of Chapter 2 and 3 of this dissertation. 

1.8 Conclusion 

In summary, carbenes are a powerful reactive intermediate used by organic  

chemists for a plethora of synthetic transformations. Both singlet and triplet carbenes 

have synthetic utility, even though the result of the reaction can change drastically based 

on the spin-state of the intermediate. Using transition metal catalysts is a key way in which 

organic chemists think about controlling the reactivity of carbenes, with dirhodium 

tetracarboxylate complexes being the premier catalytic systems for aryl diazoacetate 

carbene precursors. The Davies group has been pioneering this field for the past 40 

years, having generated a catalysts ‘toolbox’ in which we can select specific catalysts for 

specific carbene transfer reactions we want to achieve. Subsequent chapters of this 

dissertation will aim to take on the challenges still unsolved with dirhodium 

tetracarboxylate catalysis, as well as advance the field of controlling carbenes for 

developing synthetic methodology.  
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Chapter 2.  Development of Diruthenium (II,III) Tetracarboxylate 
Catalysts for Cyclopropanation using Aryldiazoacetates as 

Carbene Precursors 
 

2.1 Introduction 
 
 Transition metal catalyzed organic transformations are the bedrock of modern 

synthetic methodology. In particular, asymmetric catalysis provides valuable chiral 

scaffolds important for drug discovery,1-3 allowing for new chemical space to be explored 

to combat disease. Cyclopropanes are a valuable motif in drug development and library 

generation.4-6 This constrained three membered ring offers a conformationally ridged 

scaffold, enabling the direct placement of substituents in particular chemical 

environments. Chiral dirhodium tetracarboxylate complexes have been the premier 

catalytic system for the synthesis of chiral cyclopropanes in the last 30 years.7-10 Using 

donor/acceptor diazo compounds as carbene precursors, these chiral catalysts have 

been shown to generate novel cyclopropane scaffolds in up to >99% ee through a 

carbene transfer reaction.11  

The Davies group has been on the forefront of these investigations since the early 

days of dirhodium catalysis.12 With the development of the dirhodium catalyst toolbox, a 

range of cyclopropanation reactions can be performed depending on the desired outcome 

of the reaction. In 2019, the dirhodium catalyst Rh2(S-p-PhTPCP)4 was shown to catalyze 

the cyclopropanation of styrene derivatives using only 0.001 mol% catalyst loading 

(Scheme 2.1A).13 This type of cyclopropanation was used by Bristol Meyer Squibb in the 

synthesis of Beclabuvir, a Hepatitis C drug.14 Additionally, Rh2(S-TPPTTL)4 was used by 
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Abbvie in the 100g synthesis of a key intermediate for a drug development campaign 

combatting Cystic Fibrosis (Scheme 2.1B).15 However, high market volatility and limited 

supply raise concerns over the practicality of using rhodium-derived catalysts, especially 

on large scale.16   

 

 

Scheme 2.1  Use of dirhodium catalysts for the synthesis of A) Key intermediate for the 
synthesis of Hepatitis C drug Beclabuvir and B) Key intermediate for a Cystic Fibrosis 

drug discovery campaign 

 
Rhodium is not the only metal which has been used in carbene-transfer 

cyclopropanation with the tetracarboxylate scaffold. While the dirhodium complexes have 

had the most success with carbene chemistry, other catalysts with cheaper core metals 

have been developed, with varying degrees of success for catalytic activity. For example, 

in 2019 Berry and coworkers reported the synthesis of achiral molybdenum and chromium 

paddlewheel tetracarboxylate complexes (Scheme 2.2A).17 These complexes, however, 

proved to be inactive as carbene transfer catalysts. Using cobalt in the same ligand 
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system did prove to be an active catalyst for styrene cyclopropanation using 

donor/acceptor diazo compounds however, low catalytic turnover and only moderate yield 

diminished the impact of these results. Several chiral tetracarboxylate catalysts with 

alternative metals have been reported, forming highly symmetrical structures which are 

thought to induce the high selectivity seen for the dirhodium analogues. While a number 

of mono-copper complexes have been reported for the decomposition of donor/acceptor 

diazo compounds18-20, chiral dicopper complexes have not been shown to have catalytic 

activity.21, 22  

 

 

Scheme 2.2 Previously reported alternatives to dirhodium paddlewheel complexes A) 
achiral dicobalt complexes and B) a rhodium-bismuth chiral catalyst for asymmetric 

cyclopropanation. 
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A rhodium/bismuth bimetallic catalyst has been shown to be active in both 

cyclopropanation and C–H insertion reactions using donor/acceptor diazo compounds 

(Scheme 2.2B).23 These catalysts are able to generate the products in high yield and 

selectivity but are roughly 1000 times slower than the dirhodium counterpart. In 2020, 

Miyazawa and coworkers reported a diruthenium paddlewheel complex which was 

capable of undergoing carbene transfer reactions for cyclopropanation of activated olefins 

(Scheme 2.3).24 Instead of using a diazo as the carbene precursor, they utilized iodonium 

ylide 15. They showed this to be a much more reactive carbene precursor than the diazo 

malonate (16) for the ruthenium system. However, being confined to using the iodonium 

ylide as the carbene precursor significantly reduced the scope of their reaction.  

 

 

Scheme 2.3 Diruthenium catalyzed cyclopropanation using iodonium ylides as carbene 
precursor. 
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These reports inspired us to study whether dicopper, dicobalt, or diruthenium 

tetracarboxylate catalysts could act as a replacement for rhodium in the cyclopropanation 

reaction using donor/acceptor diazo compounds. Copper and cobalt are both first-row 

transition metals that are readily available, making them an attractive alternative for 

rhodium.  While ruthenium is a rare-earth metal, the price is roughly 100 times lower than 

that of rhodium (Figure 2.1A), with a significantly lower global warming potential 

associated with its production (Figure 2.1B).16, 25  

 

 

Figure 2.1 A) Graph showing the price of rhodium and ruthenium over the past 7 
years16 and B) chart showing the global warming potential for a variety of precious 

metals.25 

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

2/4/19 6/18/20 10/31/21 3/15/23 7/27/24

Price of Metal Over Past 7 Years

Current Price of Ru – $510

Current Price of Rh – $4,325

2,110
3,880

8,860

12,500

35,100

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Ru Pd Ir Au Rh

kg
 C

O
2 

–e
q/

kg

Global Warming Potential for Transition Metals

A)

B)



 

 23 

The desire to find a cheaper alternative to rhodium has been a long-standing 

challenge for the Davies group. In 2021, Dr. Jack Sharland in the Davies lab conducted 

a thorough investigation into replacing rhodium with copper.26 He successfully 

synthesized Cu2(S-TPPTTL)4 (19) using the standard ligand exchange procedure 

(Scheme 2.4). This catalyst was found to be stable to chromatography, and upon 

recrystallization from acetonitrile afforded the desired dicopper catalyst. Analyzing the X-

ray crystal structure, showed the same C4-symmetric bowl shape structure imparted by 

the self-assembly of four tetracarboxylate ligands observed in the dirhodium analogues. 

Additionally, the two axial sites of the dicopper complex were occupied with acetonitrile 

solvent molecules.  

 

 

Scheme 2.4 Synthesis of Cu2(S-TPPTTL)4•2ACN and the X-ray crystal structure 

  

With the synthesis and characterization of the dicopper complex completed, the catalytic 

activity in the cyclopropanation of styrene using a donor/acceptor diazo compound 12 as 

the carbene precursor was tested (Table 2.1). Dr. Jack Sharland found the catalyst to be 
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inactive at 25 °C, unable to decompose the diazo. Heating the reaction to 40 °C saw 

resurrection of the catalytic activity, providing the product in a 73% yield.  

 

Table 2.1 Cu2(S-TPPTTL)4-catalyzed cyclopropanation 

 

 

However, the isolated product was essentially racemic, suggesting that heating the 

mixture caused decomposition of the chiral dicopper complex itself, resulting in an achiral 

catalytic environment. To mitigate this, the dicopper complex was subjected to high 

vacuum in attempts to remove the coordinating solvent molecules hypothesized to be 

inhibiting the catalytic activity. After several days, a noticeable change in color of the 

complex was observed and this material was subjected to the cyclopropanation reaction. 

This time, the reaction at 25 °C gave the 14 in 93% yield, but the enantioselectivity was 

still <5%, indicating the high symmetry complex was not stable under these reaction 

conditions. Because of these results, Dr. Sharland turned towards computation to help 

explain these phenomena.  
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Dr. Djamaladdin Musaev calculated the transition state of metallo-carbene 

formation. A key finding indicated that when the metallo-carbene intermediate is formed, 

the oxygen-copper bonds on one of the copper centers begin to elongate, significantly 

distorting the tetracarboxylate scaffold (Figure 2.2). The calculated distances for the Cu–

O bond for Cu2(OAc)4 was found to be approximately 1.97 Å. When the metallo-carbene 

intermediate is formed, these same bonds increase to 2.23 Å, showing that the chiral 

scaffold begins to fall off the dicopper core, yielding a competent, yet racemic reaction.  

 

 

Figure 2.2 Computational findings of labile carboxylate ligands upon metallo-carbene 
formation. 
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reaction, our attention turned towards both cobalt and ruthenium. With both the desire for 

a cheaper and more environmentally friendly metal center, as well as the literature 

precedent for these metals to be viable replacements for rhodium in the tetracarboxylate 
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2.2 Results and Discussion 
 

The study began with investigations into replacing rhodium with cobalt. Our lab 

has a longstanding collaboration with the Berry group, who are specialists in inorganic 

synthesis of tetracarboxylate scaffolds, and particularly cobalt complexes. We 

collaborated with them to synthesize Co2(S-TPPTTL)4, which we would subsequently test 

in the cyclopropanation reaction. Dr. Caleb Harris carried out the synthesis of this material 

which resulted in a magenta-colored powder. While this material was characterized via 

HR-MS, giving the Co2(S-TPPTTL)4+ ion, as well as IR spectroscopy, the material was 

unable to be analyzed by NMR due to the paramagnetic nature of the complex. 

Additionally, the material was never successfully crystalized, rendering full structural 

assignment not possible. Nevertheless, the material was pushed forward to test the 

catalytic activity. The material was found to be active at both 25°C and 40 °C yielding 14 

in good yield. However, the enantioselectivity was found to be quite low (Table 2.2).  

Table 2.2 ‘Co2(S-TPPTTL)4’-Catalyzed cyclopropanation 
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Again, turning to computation to help rationalize these results, Dr. Djamaladdin Musaev 

found that the carbene-carbon in the metallo-carbene intermediate contained a radical 

character with a 0.75 |e| unpaired spin (Figure 2.3). This indicates that the carbene is 

acting as a triplet carbene rather than a singlet carbene. 

 

 

Figure 2.3 Computational results showing radical character on the carbene carbon. 

 

Triplet carbenes have a distinct reactivity profile, operating under a stepwise process for 

cyclopropanation. While triplet carbene cobalt catalyst have been previously reported,27 
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this catalytic system, these studies show that copper and cobalt are not viable options.  
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acid ligand (Scheme 2.5). The ligand exchange proceeded smoothly, furnishing 20-Cl in 

83% yield. Due to the success of this ligand exchange, four other novel diruthenium 

Co2

Co1

C1

δ(Co1) = –0.07
δ(Co2) =   1.03

(Carbene)–Co2(OAc)4

δ(C1) =   –0.75



 

 28 

paddlewheel complexes (21-24-Cl) were synthesized, using the same procedure. Due to 

the non-integer spin multiplicity inherent to the diruthenium complexes,28 characterization  

 

 

Scheme 2.5 Synthesis of diruthenium complexes 

 

of these catalysts by NMR is not possible due to the paramagnetic nature. However, 
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the ligand geometry is essentially equivalent to the dirhodium analogues, with the ligands 

self-assembling into C4-symmetric bowl-shaped structures. The second interesting 

feature is the position of the axial chloride coordinating ligand. Because the diruthenium 

complex is a mixed valent Ru2(II,III) species, it bears a cationic charge associated with 

the ruthenium metals, requiring an anionic axial ligand. While the axial chloride ligand is 

there simply because of the ruthenium precursor used in the ligand exchange, we were 

surprised to see coordination to different faces based on the different catalysts. For 

example, the chloride ligand is bound to the face of the catalyst outside of the bowl for 

three of the catalysts, Ru2(S-TPPTTL)4Cl, Ru2(S-PTAD)4, and Ru2(S-NTTL)4Cl, while it is 

bound within the bowl for Ru2(S-PTTL)4Cl and Ru2(S-TCPTAD)4Cl (Figure 2.4A). If the 

chloride ligand remained bound to the axial site within the bowl of the catalyst during the 

catalytic reaction, the reaction yield may be significantly impacted. However, if the 

chloride ligand proved to be labile, it could disassociate from the metal center in solution, 

leaving the axial site free for metallo-carbene formation and the subsequent [2+1] 

cycloaddition to furnish the desired cyclopropane. One way to mitigate this possible 

inhibition is performing an anion exchange with a non-coordinating anion. All of the 

chloride catalysts were subjected to the anion exchange using sodium tetrakis[3,5-

bis(trifluoromethyl)-phenyl]borate (NaBArF). Ru2(S-TPPTTL)4BArF was crystalized and 

the structure was compared to the rhodium analogue. Interestingly, the large BArF anion 

sits nicely on top of the bowl generated from the chiral ligands (Figure 2.4B). However, 

deleting the BArF anion from the structure shows that the anion does not actually alter the 

C4-symmetric structure at all, with both the BArF catalyst and the Cl catalyst looking 

identical.  
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Figure 2.4 A) X-ray crystal structures of the 5 novel diruthenium catalysts and B) X-ray 
crystal structure of Ru2(S-TPPTTL)4BArF 

 

With the five novel diruthenium paddlewheel complexes synthesized and 

characterized, their catalytic competence was tested in the cyclopropanation reaction of 

styrene with diazo compound 12 (Table 2.3). To our delight, all the catalysts were found 

to be catalytically active using 1.0 mol% catalyst loading at room temperature, giving 14 

from 57-85% yield. All the reactions gave only one diastereomer, with low to good levels 

of enantioinduction. The most selective catalyst was Ru2(S-TPPTTL)4BArF, giving 14 in 

70% yield and 82% ee (Table 2.3, entry 6). Interestingly, this was the only catalyst bearing 

the BArF anion that gave better enantioselectivity than the chloride catalyst. Additionally, 

the two catalysts in which the chloride was seen bound to the open face of the catalyst 

gave similar results to the catalysts with the chloride bound to the back face, indicating 

that chloride dissociation is a facile process during the reaction (Table 2.3, entries 2 and 

4).  
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Table 2.3  Diruthenium catalyst screen for cyclopropanation with aryldiazoaceate as 
carbene precursor 

 

 

A scope of the reaction was performed using the optimal catalyst, Ru2(S-
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Table 2.4 Scope of Ru2(S-TPPTTL)4-Catalyzed cyclopropanation reaction.  

 

aReaction run using 2.5 equiv of trap. bReactions run using 10 equiv of trap. 
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giving the cyclopropane in 74% ee. The diastereoselectivity was high for most of the 

substrates except for allyl-trimethylsilane, forming 34 in only 11:1 d.r. A scope of 

aryldiazoacetate compounds was also explored using both styrene and 1-hexene as the 

trap, forming products 36-47 and 48-59, respectively. Switching the ester group from 

trichloroethyl to methyl ester resulted in lower levels of asymmetric inductions for both 36 

(66% ee) and 48 (58% ee). However, using trifluoroethyl ester (37 and 49) gave almost 

analogous results with the trichloroethyl derivatives. In general, the reactions with 1-

hexene gave products with slightly higher enantioselectivity than the reactions with 

styrene as the trap, with the only two diazo compounds not following this trend being the 

para-methoxy and para-phenyl aryldiazoaceate compounds, giving 41 and 42 in 80% and 

82% ee for styrene, respectively, and 53 and 54 in 52% and 80% for 1-hexene, 

respectively. The diazo compound which gave the highest enantioselectivity for both traps 

was 2,2,2-trichlrooethyl-2-diazo-2-(napthalene-2-yl)acetate, which gave products 43 and 

55 in 90% ee and 94% ee, respectively.  

With the scope of both the 1-hexene and styrene traps and the aryldiazoaceate 

explored, we moved to understanding the kinetics of the reaction using a ReactIR. This 

is a common technique for investigating the kinetics of reaction, especially using diazo 

compounds due to the significant IR stretching vibration of the diazo at ~2100 cm-1. 

Previously, diazo decomposition has been shown to be directly correlated with product 

generation, enabling an excellent way to monitor the rate of the reaction. In 2019, a 

thorough kinetics study of dirhodium cyclopropanation of styrene was conducted using 

aryldiazoacetate compounds.13 In this study it was found that styrene has an inhibitory 
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effect on the catalytic cycle due to π-coordination to the axial site of the rhodium complex. 

This concerned us considering the cationic nature of the diruthenium catalyst causes  

 

 

 

 

Figure 2.5 Kinetic profiles of reaction progress kinetic analysis studies with A) styrene 
equivalence dependence, B) Catalyst loading screen, and C) Diazo dependence. 
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it to be more Lewis acidic. However, conducting a varying equivalents screen with styrene 

under React IR monitoring showed that styrene has no effect on the rate of the reaction 

(Figure 2.5A). The reactions were finished in roughly 10 minutes using 1.0 mol% catalyst 

loading. This is a key difference between the rhodium and ruthenium analogues as the 

rhodium catalysts can finish the reaction under the same conditions in just 15 s. Next, the 

catalyst loading was varied to understand the capabilities for low loading with the 

ruthenium complexes (Figure 2.5B). Going down to 0.1 mol% catalyst loading showed a 

significantly decreased rate, with the reaction finishing in roughly 40 minutes. Finally, the 

dependency of aryldiazoaceate was established as first order with respect to diazo 

concentration (Figure 2.5C).  

To understand the rate differences observed between the ruthenium and rhodium 

reactions we again turned to computation. These studies, again performed by Dr. Musaev, 

focused on three representative metal complexes: Ru2(OAc)4Cl, Ru2(OAc)4+, and 

Rh2(OAc)4. These computational studies were caried out at the [B3LYP-D3(BJ)] + PCM(in 

DCM) level of theory. The ground state of Ru2(OAc)4Cl was found to be the quartet state 

with a low-spin Ru(II)-Ru(III) core, in line with both previously reported data28 and the 

experimentally observed paramagnetism. The potential energy surface (PES) of the 

reaction with the three model complexes was then calculated (Figure 2.6). It was found 

that the free energy barrier for formation of the metallo-carbene generation for both 

Ru2(OAc)4+ and Rh2(OAc)4 was nearly identical, with calculated values of 12.0 kcal/mol 

and 11.5 kcal/mol, respectively, relative to the catalyst and diazo compound. The 

calculated values for the chloride complex, however, tell a different story. The activation 

barrier for carbene formation for this complex was found to be 19.3 kcal/mol, roughly 7 
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kcal/mol higher than that of the cationic complex. To fully understand the effect of the 

chloride ion on the energetics of the reaction, the dissociation of the chloride from the 

Ru2(OAc)4+ complex was calculated. This was found to require 19.3 kcal/mol. However, 

since the experimental reactions have an explicit solvent, it is rational to assume the 

Ru2(OAc)4+•Cl- compound form a solvated complex, lowering the activation barrier of 

chloride dissociation.  

 

 

Figure 2.6 Calculated reaction coordinate for Ru2(OAc)4+ (in red), Ru2(OAc)4Cl (in 
black), and Rh2(OAc)4 (in blue). 

 

Thus, in reality, the activation barrier for dissociation of the chloride can be assumed to 

be <19.3 kcal/mol. Additionally, this logic can be applied to the BArF analogues, as this 

large non-coordinating anion will have less of an attraction to the cationic complex. This 

rationalizes why the BArF analogues are qualitatively seen to have a much faster rate of 

reaction than the chloride analogue, but still slower than the rhodium analogues.  
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2.3 Conclusion 
 In summary, Co and Ru have been tested as a replacement for rhodium in 

tetracarboxylate paddlewheel complexes for the cyclopropanation of olefins using 

donor/acceptor diazo compounds. It was shown that while the Co complexes can be 

formed and give appreciable yields of the cyclopropane product, the enantioselectivity is 

lacking, casting doubt on its viability for use as a replacement for rhodium. These 

experimental results were rationalized by using computation to help understand why the 

enantioselectivity was low. However, five novel diruthenium paddlewheel complexes were 

synthesized, characterized, and applied to the cyclopropanation of activated and 

unactivated olefins using aryldiazoacetates as carbene precursor. One catalyst, Ru2(S-

TPPTTL)4BArF, was shown to generate cyclopropanes in good yield and moderate to high 

enantioselectivity for the cyclopropanation, giving up to 94% ee in some cases. 

Unactivated terminal alkenes proved to be the best substrates, with the selectivity 

generally being higher than that of activated olefins. These studies show the potential for 

ruthenium to be a replacement for rhodium in tetracarboxylate-catalyzed carbene 

cyclopropanation using aryldiazoacetates. 

2.4 Distribution of Credit 

Dr. Caleb Harris from the Berry Lab synthesized the Co2(S-TPPTTL)4 material. Dr. 

Djamaladdin Musaev conducted the computational studies.  
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Chapter 3. Comparison of Diruthenium and Dirhodium 
Tetracarboxylate Catalyzed C–H Functionalization with 

Aryldiazoaceate compounds 
3.1 Introduction 
 

While dirhodium tetracarboxylate complexes are exceptional catalysts for 

cyclopropanation of olefins using diazo compounds, their true specialty lies within the 

realm of C–H functionalization chemistry.1 Selective C–H functionalization has seen an 

influx of interest from the organic chemistry community over the past 30 years,2-5 even 

broaching the challenging field of total synthesis.6, 7 These methodologies allow one to 

quickly add complexity to an otherwise inert molecule or moiety. Playing on the subtle 

differences between C–H bonds allow chemists to view organic synthesis through a new 

lens. As previously mentioned, the Davies lab has developed a plethora of chiral 

dirhodium complexes capable of catalyzing the C–H functionalization of a variety of C–H 

bonds.8-12 Depending on the features the C–H bond bears, a particular dirhodium catalyst 

can selectively insert into each bond, enabling reactions with excellent regio- diastereo- 

and enantioselectivity. However, as laid out in Chapter 2, the use of rhodium in the 

bimetallic core of the paddlewheel complex is not attractive due to the high price and 

global warming potential of the metal.13, 14 While using rhodium at ultra-low catalyst 

loadings can potentially mitigate this problem,15 turning towards other metals to replace 

rhodium in the tetracarboxylate complexes offers a viable solution. 

Currently, dirhodium complexes are not the only catalyst that can perform C–H 

functionalization reactions, albeit many other catalysts cannot render the reaction 

selective.16-19 One system that has enjoyed some success for selective C–H 

functionalization is the rhodium-bismuth tetracarboxylate catalyst mentioned in Chapter 
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2.20 While this catalyst matches the reactivity and selectivity of the dirhodium analogue 

nicely, the rate of the reaction is significantly slower, hampering the capabilities for this 

system to garner much attention. In 2022, Fürstner reported on the synthesis and 

application of a rhodium-bismuth catalyst, capable of selectively functionalizing activated 

methyl groups.21 Recently, diruthenium paddlewheel complexes have been reported in 

carbene transfer for cyclopropanation22, 23 (Scheme 3.1a) and C–H amination reactions 

(Scheme 3.1b).24  

 

 

Scheme 3.1 Diruthenium-catalyzed a) selective cyclopropanation using iodonium 
ylides, b) selective C–H amination, c) work presented in previous chapter d) work 

presented in this chapter - selective C–H functionalization 
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However, one notable reaction missing from the diruthenium playbook is the C–H 

functionalization through a carbene insertion reaction. With the success seen in the 

cyclopropanation study using aryldiazoacetates in the previous chapter (Scheme 3.1c), 

we hypothesized that the diruthenium catalysts would be able to catalyze C–H 

functionalization reactions with high yield and selectivity. Thus, a study was performed on 

the comparison of diruthenium and dirhodium catalysts in selective C–H functionalization 

reactions using aryldiazoacetates as carbene precursor (Scheme 3.1d). 

3.2 Results and Discussion 
 
 While the five diruthenium catalysts synthesized for the cyclopropanation study are 

a good representation of the dirhodium toolbox developed, it does not include the bulky 

triarylcyclopropane carboxylate (TPCP) catalysts which enable selective primary C–H 

bond insertion reactions, thus our efforts began with the synthesis of this ruthenium 

complex.  

When subjected to the standard ligand exchange procedure in refluxing 

chlorobenzene, no desired product was obtained due to the degradation of the 

cyclopropyl ligand. After some optimization of the reaction conditions, tert-butylacetate 

was identified to be the optimal solvent, yielding the desired diruthenium complex 3 in 

16% yield after several chromatographic purification and recrystallization from a 3:1 

mixture of hexanes/chloroform (Scheme 3.2).  
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Scheme 3.2 Synthesis of Ru2(S-pBrTPCP)4Cl catalyst 

 

X-ray crystallographic analysis revealed a C2-symmetric structure, nearly analogues to 

the dirhodium analogue.25 With this synthesis in hand, we moved forward with the six 

diruthenium and dirhodium analogues (Figure 3.1) for testing in C–H functionalization 

reactions. 

 

 

Figure 3.1 Structure of six ruthenium and rhodium paddlewheel complexes 
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We first wanted to gain an understanding of how the selectivity of these catalyst 

compare to that of their dirhodium analogues, thus we performed a catalyst screen with 

both sets of catalysts using p-cymene (11) and 4-isopropylethylbenzene (14), two 

substrates that offer interesting internal selectivity competitions.  

Beginning with p-cymene, a substrate that tests the preference between primary 

and tertiary C–H functionalization, in reaction with 2,2,2-trichlrooethyl-

(pBrphenyl)diazoaceate (10), we saw that the ruthenium catalyst 5-Ru–8-Ru had a strong 

preference for primary functionalization, with all of the catalysts giving a >20:1 r.r (Table 

3.1a). 

Table 3.1 Catalyst screen with p-cymene 

 
aReactions run with 5.0 mol% catalyst loading. bCombined yields. cReactions run using 1.0 mol% catalyst 

loading Negative value for the ee indicates that the opposite enantiomer to the drawn structure is preferentially 
formed. 

CO2CH2Cl3

Cl3CH2CO2C (C6H4)pBr

Br

N2

O

O CCl3 +Catalyst (xx mol %)

DCM, 4Å MS, 40 °C
2 h diazo addition0.20 mmol

10 equiv

Entry

1
2

5

3
4

6

r.r.: 12:13 Yield (%)b ee 12 (%)

6:1
>20:1
>20:1
>20:1
>20:1
3.6:1

20
77
73
62
75
8

-34
76
86

-50
-42
60

Entry

1
2

5

3
4

6

r.r.: 12:13 ee 12 (%)

1:5
1.9:1
2:1

1:2.5
1:1.2
>20:1

66
-88
-90
38

-62
94

12

13
10

11

a.

b.

Catalysta

4-Ru
5-Ru
6-Ru
7-Ru
8-Ru
9-Ru

Catalystc

4-Rh
5-Rh
6-Rh
7-Rh
8-Rh
9-Rh

Yield (%)b

74
74
69
76
23
79

Br
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This was in stark contrast with the dirhodium analogues, which did not see a selectivity 

preference using any of these catalysts (Table 3.1b). Interestingly, Rh2(TPPTTL)4 had a 

mild preference for tertiary insertion of roughly 5:1 r.r. (Table 3.1b, entry 1), while the 

ruthenium analogue switched this selectivity preference to favor the primary insertion with 

a ratio of 6:1 (Table 3.1a, entry 1). The newly synthesized ruthenium catalyst, 9-Ru, 

performed poorly, with both the yield and regioselectivity suffering greatly compared to 

that of the rhodium analogue, a catalyst designed specifically for primary functionalization 

(Table 3.1a-b, entries 6). Interestingly, in some cases the diruthenium catalysts 

preferentially generated the opposite enantiomer to the one formed with the dirhodium 

catalysts. 

The next substrate that was tested was 4-isopropylethylbenzene (14) (Table 3.2). 

Like p-cymene, this substrate offers an interesting competition between C–H bonds, 

whereas in this case it is testing the preference for secondary or tertiary insertion. A 

catalyst screen was performed using both systems, again using 5.0 mol% and 1.0 mol% 

for the ruthenium and rhodium catalysts, respectively. The diruthenium systems again 

gave excellent regioselectivity, this time in preference for the secondary over tertiary 

bond, with four of the six catalysts giving >20:1 r.r (Table 3.2a).  The dirhodium catalysts 

matched the preferred site of insertion with the diruthenium results, however, in most 

cases the preference was not as strong (Table 3.2b). Again, the newly synthesized 

diruthenium catalyst Ru2(S-pBrTPCP)4BArF (9-Ru) performed poorly, giving the lowest r.r. 

and yield out of all the ruthenium catalysts, and rendering the product as essentially a 

racemate (Table 3.2a, entry 6). Comparing the diastereoselectivity for the secondary 

insertion product between both metal system showed that the diruthenium catalysts were 
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generally outperformed by the rhodium analogues, a trend seen across nearly all 

substrates tested. However, Ru2(S-TPPTTL)4BArF could give product 15a-b in 94% ee 

for the both diastereomers (Table 3.2a, entry 1), highlighting the ability for the ruthenium 

complexes to be efficient asymmetric catalysts. Some of the diruthenium catalysts again 

gave the opposite enantiomer to that of the dirhodium analogues. 

 

Table 3.2 Catalyst screen with 4-isopropylethyltoluene 

 
aReactions run with 5.0 mol% catalyst loading. bCombined yields. cReactions run using 1.0 mol% catalyst 

loading. Negative value for the ee indicates that the opposite enantiomer to the drawn structure is preferentially 
formed. 
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While the benzylic substrates offered an interesting study into the preference of 

reaction for the diruthenium catalysts, a particular area which the dirhodium catalysts 

shine is in the functionalization of unactivated alkanes. Thus, a final catalyst screen was 

performed, using cyclohexane as the substrate (Table 3.3). In this case, only 1.0 mol% 

catalyst loading was needed for the diruthenium catalysts too perform a competent 

reaction. Ruthenium catalysts 4-8-Ru gave high yields and low to excellent 

enantioselectivity (Table 3.3a, entries 1-5), with 9-Ru unable to generate the product at 

all. The rhodium catalysts matched the ruthenium results closely (Table 3.3b), apart from 

Rh2(S-pBrTPCP)4 (9-Rh) giving a competent reaction. Ru2(S-TPPTTL)4BArF (4-Ru) gave 

the product in 76% yield and 95% ee (Table 3.3a, entry 1). Because of these excellent 

results, this catalyst was chosen to explore a scope of alkane substrates in direct 

comparison with the dirhodium analogue (Table 3.4).  

 

Table 3.3 C–H functionalization of cyclohexane with a) diruthenium catalysts and b) 
dirhodium catalysts. 

 

Negative value for the ee indicates that the opposite enantiomer to the drawn structure is preferentially 
formed. 
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Beginning with a series of cycloalkane derivatives showed the ruthenium catalyst 

could furnish functionalized products 19-22 in high yield and asymmetric induction (90-

96% ee), matching the rhodium analogue nicely. Reaction with adamantane gave the 

tertiary insertion product 22 cleanly in an 81% yield and 92%  

 

Table 3.4 Substrate scope in C–H functionalization reaction. 

 
aReactions run at 25 °C. bReactions run neat under refluxing conditions 
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in high yield, enantioselectivity, and diastereoselectivity.26 We wondered whether the 

diruthenium analogue would match the dirhodium result, thus we subjected the catalyst 

to the reaction conditions. Pleasingly, 4-Ru gave an excellent reaction, with 23 being 

formed in 84% yield, with a >20:1 r.r., and high asymmetric induction. The 

diastereoselectivity of the reaction between the two catalysts differed, with the 

diruthenium and dirhodium catalysts giving 4:1 and 10:1 d.r., respectively. The next 

substrate tested was pentane, a challenging substrate for C–H functionalization reactions. 

Typically, the C2 C–H bond can be functionalized selectively when using a sterically bulky 

dirhodium catalyst,10 thus we were curious to see for which bond the ruthenium and 

rhodium catalysts would have a preference. Gratifyingly, both catalysts performed very 

well, giving 24 in nearly identical results, with high site selectivity of >20:1 for the C2 

carbon and high levels of asymmetric induction (86-90% ee). Next, trans-2-hexene was 

tested under the reaction conditions. Bulky dirhodium catalysts have previously been 

shown to selectively functionalized the primary C–H bond in this primary or secondary 

competition.27 While, the TPPTTL ligand is generally thought to be a more open catalyst,28 

our initial competition studies with 4-Ru have shown a preference for more sterically 

accessible sites, thus we were curious to see what the results of the reaction would be. 

Indeed, when trans-2-hexene was subjected to the two catalysts, a major preference for 

the secondary insertion product was seen. However, while the dirhodium analogue gave 

25 in 23:1 r.r., the diruthenium catalyst gave it in only 10:1, showing a greater preference 

for less sterically accessible sites. Finally, wanting to explore the scope of tolerated 

substrates, we tested two heterocyclic compounds with both catalysts. Generally, the 

dirhodium catalysts have a broad tolerance towards heteroatoms, however there was 
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question whether this feature would apply to the diruthenium analogues due to the higher 

Lewis acidity from the cationic complex. Testing tetrahydrofuran as the substrate under 

the standard reaction conditions with the dirhodium catalyst gave 26 in a 72% yield, with 

high asymmetric induction (96% ee for both diastereomers), but low d.r. (2.7:1). Using the 

diruthenium catalysts under these reaction conditions, however, gave a sluggish reaction, 

unable to complete the decomposition of diazo. This problem was mitigated by heating 

the reaction to 60 °C in trifluorotoluene (TFT), giving 26 in 56% yield, with high asymmetric 

induction (94% ee), and low d.r. (2.4:1). These results show the need for harsher 

conditions for the diruthenium catalyst to functionalize heterocyclic compounds, 

presumably due to the competitive coordinating of Lewis basic sites at the axial position 

of the paddlewheel complex. This effect is even more pronounced in the reaction with N-

tosyl-pyrrolidine, where no product was observed for the diruthenium catalyzed reaction 

and undecomposed diazo compound was recovered, even under the 60 °C conditions. 

The dirhodium catalyst furnished 27 in 64% yield, with >20:1 d.r., and 90% ee. These 

reactions highlight the similarities and differences of the two catalytic systems, with the 

diruthenium complex capable of reaching the high levels of regioselectivity and 

asymmetric induction seen for the dirhodium complexes, but often unable to match the 

diastereoselectivity and even the reactivity achievable with 4-Rh.  

With the substrate scope explored, a scope of aryldiazoacetate compounds were 

tested in the reaction with cyclohexane (Table 3.5). A range of C–H functionalized 

products (28-35) were furnished in good yield (65-88%) and high enantioselectivity (86-

99% ee), except for the reaction with p-methoxy aryldiazoaceate, which gave product 34 

in 50% yield and only 28% ee. The generation of products 32-35, containing electron-
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donating aryl substituents on the diazo compound, needed to be run in refluxing 

cyclohexane for appreciable yields to be observed. Thus, the lower enantioselectivity 

seen for 34 could be rationalized through the possibility of a thermal background reaction, 

rendering the racemic product. 

 

Table 3.5 Scope of Aryldiazoacetate in the C–H functionalization reaction 

 

 aReactions run at 15 °C. bReactions run in refluxing cyclohexane. 
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allylcyclohexane has previously been reported to give exclusive cyclopropanation,29 

owing to the fact that cyclopropanation is known to be orders of magnitude faster than C–

H insertion for dirhodium complexes.30 However, when running this reaction with the 

diruthenium analogue, we found it gave a higher propensity for C–H insertion than that of 

its rhodium counterpart, giving a 71:29 ratio of products 37:38 (Scheme 3.3).  

 

 

Scheme 3.3 Reaction with allylcyclohexane giving unusual selectivity preference for C–
H insertion 

 

Wanting to explore this result further, a series of competition reactions were conducted 

using cyclohexane (10 equiv) and 1-hexene (2 equiv) as the two carbene traps (Table 

3.6). Interestingly, while the dirhodium catalyst gave an unselective mixture of products, 

often slightly favoring the cyclopropane product, the diruthenium analogues were 

selective for the C–H functionalized product in a range from 9-19:1. These results show 

that ruthenium has a greater propensity for C–H functionalization over cyclopropanation. 
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Table 3.6 Competition reactions for C–H insertion vs cyclopropanation reactions 

 

3.3 Conclusion 
 
 In summary, a diruthenium tetracarboxylate catalyzed C–H functionalization 

reaction using aryldiazoaceate as carbene precursors has been discovered. Six 
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complexes, being more prone to C–H insertion over cyclopropanation. This novel 

reactivity, as well as high selectivity seen for the C–H functionalization reactions 

demonstrate the possible utility for the diruthenium catalysts in some C–H insertion 

reactions.  
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Chapter 4. Dirhodium Catalyzed Spiro[2.n]cyclopropanation of 
Exocyclic Olefins 

 

4.1 Introduction 
 

Cyclopropanes are a common structural motif in many natural products, as well as 

many pharmaceutically relevant scaffolds due to their ability to place substituents in a 

defined chemical space.1-6 These three membered rings have a high degree of rigidity, 

allowing for careful design of scaffolds for specific functional group placement, often 

leading to higher potency and better pharmacokinetics for the drug scaffold (Figure 4.1). 

 

 

Figure 4.1 Natural products and pharmaceutically relevant scaffolds containing 
cyclopropanes 
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Most pharmaceutically relevant cyclopropane scaffolds are either mono substituted or 

1,2-disusbstitued motifs. However, due to the increased demand for ‘escaping flatland’, 

more interest has been drawn towards spiro[2.n]cyclopropanes (SCPs).7-10 Several drug 

candidates containing SCP scaffolds have been reported.  

 

 

Scheme 4.1 Spiro[2.1.]cyclopropanes in pharmaceutically relevant compounds. A) Her-
2 inhibitor shown to have anti-tumor properties. B) SAR campaign at Amgen resulted in 

SPC giving higher potency than lead compound. 
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spiro[2.1]cyclopropane (Scheme 4.1A).11 The SCP was constructed by reaction of 

diazomethane and Pd(OAc)2 with an exocyclic olefin, affording the spirocyclic motif. In 

2013, Amgen embarked on a structure-activity relationship campaign for a drug candidate 

for Type II diabetes (Scheme 4.1B).12 They found that rigidifying the ‘head’ of the molecule 

by installing a spiro[2.4]cyclopropane improved the pharmacokinetics and overall 

selectivity of the drug candidate. The initial route to access the desired cyclopropane motif 

relied on the use of the achiral dirhodium catalyst Rh2(OAc)4 with ethyl diazoacetate, 

furnishing a mixture of four diastereomers needing chiral resolution to isolate each one 

individually. Once the desired confirmer was identified, the asymmetric synthesis was 

completed by using a chiral ruthenium catalyst. However, high catalyst loading for this 

step highlights the need for novel asymmetric methodology to furnish chiral SPCs. 

 Chiral cyclopropanes have garnered much attention from the synthetic community, 

leading to many unique methodologies to generate them such as through reactive 

ylides13, radical14-17, biocatalytic,18, 19 and asymmetric transition-metal catalysis20, 21 

approaches. Additionally, methods towards the synthesis of  spiro[2.n]cyclopropanes 

have emerged using transition metal catalysis (Scheme 4.2A),22, 23 Simons-Smith 

conditions,24 reactive ylides (Scheme 4.2B),25  and organocatalysis (Scheme 4.2C).26 

While high selectivity can be achieved in some cases,23, 25, 26  a general methodology to 

furnish asymmetric sprio[2.n]cyclopropanes is lacking.  
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Scheme 4.2 Synthesis of spirocyclopropanes by A) transition-metal catalysis, B) 
reactive ylides, and C) organocatalysis. 
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discussed in Chapter 1.27-29 These catalysts are a prime candidate to furnish SPCs due 

to the success seen by the dirhodium catalyst for cyclopropanation. However, while 

methods to cyclopropanate 1,1-diphenylethylene were reported in 2000 using dirhodium 

catalysts, application of these catalysts to other 1,1-disubstitued olefins has been 

underexplored (Figure 4.2A).30 

 

 

Figure 4.2 Previously reported dirhodium catalyzed cyclopropanation with 1,1-
disubstitued olefins. 

 
 This chapter focuses on the cyclopropanation of 1,1-disubstitued olefins for the 

synthesis of novel spiro[2.n]cyclopropane scaffolds using the Davies lab dirhodium 

toolbox with aryldiazoacetates (Figure 4.2B). Four distinct classes of compounds have 
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been used as substrates in the cyclopropanation reactions: symmetrical 

azacyclomethylidenes, azacyclomethylidenes and cycloalkylidenes which generate 

diastereomers, and racemic cycloalkylidnenes for kinetic resolution. Several of these 

substrates would be considered challenging due to the differentiating functionality being 

distal from the site of reaction at the olefin. Thus, these substrates would challenge how 

the wall of the catalysts can influence the result of the reaction via secondary 

substrate/wall interactions. Using the dirhodium catalyst toolbox, these reactions were 

able to be rendered asymmetric, revealing novel SCP scaffolds which will have impact on 

drug discovery in an underexplored chemical space.  

 

 

Figure 4.3 The focus of this study using four distinct classes of substrates to synthesize 
novel spiro[2.1.]cyclopropane products 

 

4.2 Results and Discussion 
 
 This study began with the cyclopropanation of symmetrical aza-cyclomethylidenes 

to generate novel spirocyclic compounds in high asymmetric induction (Table 4.1). Using 

Rh2(S-p-PhTPCP)4, the previously optimized catalyst for cyclopropanation,27 the 

reactions proceeded smoothly, with high levels of enantioselectivity seen for all 
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substrates. Reaction with 3-methylenazetidine gave product 2 in 80% yield with 94% ee, 

while increasing the ring size to 4-methylenepipereidine gave 3 in slightly higher ee of 

96%. Two interesting products were furnished when the cyclopropanation of spirocyclic 

compounds azaspiro[3.3]heptane and azaspiro[3.5]nonane was carried out, furnishing 

products 4 and 5 in good yield and high asymmetric induction.  

 

Table 4.1 Scope of symmetrical azacyclomethylidenes 

 

 

With these initial studies conducted, this methodology was applied to systems that 
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optimal catalyst for the symmetrical azasirocyclopropanation, the diastereomeric ratio 

was quite good from the outset, generating product 8 in 11:1 d.r., with high levels of 

enantioinduction (Table 4.2, Entry 1). Screening other dirhodium catalysts showed that 

this catalyst indeed gave the best result, with three other catalysts giving low levels of 

diastereoselectivity. Not satisfied with only 11:1 d.r., the Boc group was replaced with a 

tosyl group, hypothesizing that the bulkier protecting group would have a larger steric 

clash with the wall of the catalyst, inducing a higher level of selectivity. Using Rh2(S-

TPPTTL)4 gave 9 in slightly higher d.r. than with N-Boc protection, albeit still quite low. 

Gratifyingly, using Rh2(S-pPhTPCP)4 in the cyclopropanation reaction of 7 gave 9 in 80% 

yield, >20:1 d.r., and 99% ee.  

 

Table 4.2 Catalyst screen for unsymmetrical azacyclomethylidene substrates 
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With these optimized conditions in hand, a range of aryldiazoaceate compounds 

were tested in the cyclopropanation reaction with 7 (Table 4.3). First, several para 

substituents were tested to understand the effect of substitution of the phenyl ring. 

Electron-withdrawing groups on the aryl ring were found to be compatible, with para-

trifluoromethyl, -methylcarboxylate, and -nitro giving products 10-12 in high yield, d.r., and 

ee. Electron donating groups phenyl and methoxy gave products 13 and 14 with high 

selectivity as well, with both products being furnished in >20:1 diastereomeric ratio. 

Product 15 showed it to be unnecessary to have any substituent on the phenyl ring, with 

the unsubstituted aryldiazoaceate giving 91% yield, 20:1 d.r., and 98% ee. Walking the 

substituent around the ring, meta-substituted aryldiazoacetates worked nicely, albeit with 

a slight decrease in diastereoselectivity, with meta-methyl and meta-bromo substituents 

giving 16 and 17 in 17:1 and 13:1 d.r., respectively, but with high enantioselectivity. 3,5-

dibromo substitution continued the downward trend for selectivity, with 18 only being 

formed in a 6:1 ratio. Continuing with the scope of the reaction, a styryldiazoacetate 

derivative gave product 19 in 60% yield, 15:1 d.r., and 78% ee. This reaction gives an 

interesting product for further diversification due to the oxidizable styryl group. Moving 

into heteroaryldiazoacetate compounds, products 20 and 21 containing a benzodioxole 

and dihydrobenzofuran group, respectively, gave good yields and 99% ee for both 

reactions, with a 19:1 and 12:1 d.r., respectively. Nitrogen-containing heterocyclic 

products were furnished, with a 3-methylisoxazole (22) and 2-chloropyridine (23) 

heteroaryl groups giving high ee and good to excellent d.r. These examples demonstrate 

the capability for dirhodium catalysts to generate heterocyclic scaffolds which are 

commonly used in drug discovery. Swapping the tosyl group for a p-nosyl protecting group 
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gave 24 in 79% yield, >20:1 d.r., and 98% ee, at a 1.0 mmol scale. The product was nicely 

crystallizable from slow evaporation of solvent, allowing for the absolute configuration to 

be assigned. Finally, using the 5-membered N-tosyl-3-methylenepyrrolidine in the 

reaction gave product 25 in 85% yield and 98% ee, with a 7:1 diastereomeric ratio, 

highlighting the expanded generality of this methodology to include substrates beyond 

the piperidine scaffold. 

 

Table 4.3 Scope of aryldiazoaceate compound in the spirocyclopropanation reaction. 

 

aReaction run at 1.0 mmol scale. 
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 With the azacyclomethylidenes heavily explored, our attention turned towards 

cycloalkylidenes. Beginning again with a catalyst screen, (4-methylencyclohexyl)benzene 

(26) was used as the standard substrate to achieve selective spirocyclopropanation in 

reaction with aryldiazoaceate 1 (Table 4.4).  For this substrate, Rh2(S-TPPTTL)4 was 

found to give 27 in the highest diastereomeric ratio of 19:1, with Rh2(S-p-PhTPCP)4 giving 

only 13:1. Of note is the reaction with the achiral rhodium catalyst Rh2(esp)2 (Table 4, 

entry 5). This is a sterically open catalyst with an achiral ligand however, it still gives the 

product in a 11:1 d.r., demonstrating the inherent substrate preference for 

cyclopropanation of one face over the other.  

 

Table 4.4 Catalyst screen for cycloalkylidenes substrates 
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With the catalyst screen complete, we turned towards other substrates with 

challenging facial selectivity (Table 4.5). Continuing with the cyclohexyl scaffold, 4-tert-

butylcyclohexylmethylene was subjected to the reaction conditions, giving 28 in 71% yield 

and 92% ee, with a >20:1 d.r. However, the racemic catalyst again gave high d.r.  (>20:1), 

indicating the inherent substrate preference for substituted cyclohexane derivatives. 

Moving to 1,3-disubstuted cyclobutane substrates told a different story. Using 3-arylated 

methylene cyclobutane under the standard reaction conditions gave product 29 in a much 

lower d.r. of only 2.9:1 with the optimal catalyst. Due to the high planarity of the substrate, 

it is challenging for the catalyst to differentiate between to two faces of the substrate, 

leading to a low ratio of diastereomers.  

 

Table 4.5 Substrates with facial selectivity 
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However, when adding a methyl substituent to generate a 1,1-disusbtitued 

methylenecyclobutane derivative, 30 was delivered in 11:1 d.r., with 79% yield and 95% 

ee for the major diastereomer. Both Rh2(S-p-PhTPCP)4 and the achiral Rh2(Oct)4 gave a 

5:1 d.r., highlighting the ability for Rh2(S-TPPTTL)4 to have catalyst control of the reaction. 

The methyl substituent offers a more sterically demanding environment, forcing the 

carbene cyclopropanation to occur on the trans face of the olefin (Figure 4.4). In the case 

of 29, the substrate does not have this steric demand, with only a hydrogen occupying 

one of the faces. Thus, the carbene cyclopropanation is not heavily favored for one side 

over the other, resulting in a low d.r.  

 

 

Figure 4.4 Rationale for diastereoselectivity using geometry optimized structures 

 

Finally, racemic cycloalkylidenes were tested for the possibility of kinetic resolution. 

We began with racemic (3-methylencyclohexyl)benzene in reaction with 1 and Rh2(S-

TPPTTL)4 (Table 4.6) . The reaction gave 31 in an 81% yield, however, four diastereomers 

were seen in the crude NMR analysis showing poor kinetic resolution and proving to be 

an intractable mixture. Wondering whether adding more steric bulk to the phenyl ring 
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would increase the substate/catalyst interactions improving the selectivity of the reaction, 

p-chloro and a 3,5-di-tert-butylphenyl substrates were subjected to the reaction.  

 

Table 4.6 Kinetic resolution of racemic cyclohexylalkylidenes. 

 
                   aee not determined because signals could not be resolved 
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resolution for this substrate. Increasing the steric bulk of the substrate is thought to 

increase the substrate/wall interaction, favoring one substrate approach, contributing to 

the selectivity of the catalyst. The smaller substrates may not have the strong 

substrate/wall interactions, causing the selectivity of the reactions to suffer, as seen by 

the poor d.r. for 32 and 33. 

4.3 Conclusion 
 
 In summary, a dirhodium cyclopropanation study of exocyclicmethylene substrates 

has been completed to generate a variety of spiro[2.n]cyclopropane products. Both 

symmetrical and unsymmetrical substrates have been shown to be compatible with this 

methodology, giving high asymmetric induction. Additionally, unsymmetrical substrates 

capable of producing diastereomers have been shown to be highly diastereoselective 

using Rh2(S-p-PhTPCP)4 as catalyst, with a large scope of aryldiazoacetate compounds 

shown in reaction with a 3-methylenepipereidine substrate, leading to novel chiral 

scaffolds. Additionally, using Rh2(S-TPPTTL)4 as catalyst enabled facial selectivity for 

cycloalkylidene substrates, achieving catalyst control via substrate/wall interactions. 

Finally, this methodology was applied to the kinetic resolution of racemic 3-

phenylmethylenecyclohexane derivatives, showing that KR could be achieved when 

using substrates with sterically bulky phenyl groups. This methodology has generated 

novel chiral spirocyclic scaffolds, difficult to obtain through other means, important for 

novel drug discovery and development.  
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4.4 Distribution of Credit 

This work was conceived by both myself and Duc Ly. Initial screening with N-boc-3-

methylepiperidine and 4-phenylmetheylencyclohexane were conducted by Duc Ly. The 

diazo compound scope was conduct by myself, Duc Ly, and Andrew Wang. Starting 

material synthesis was conducted by both myself and Duc Ly. 
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Chapter 5. Synthesis of 2-Substituted Bicyclo[1.1.1]pentanes via Triplet 
Carbene insertion into Bicyclo[1.1.0]butanes 

 

5.1 Introduction  
 

Bicyclo[1.1.1]pentanes (BCPs) have become a highly sought after scaffold in recent 

years due to their bio-isosteric properties as replacements for substituted benzene rings. 

In an effort to ‘escape from flatland’,1 para-substituted benzene rings have been replaced 

with 1,3-disubstituted BCPs in some common drug scaffolds in order to increase the 

pharmacological properties of these drugs.2 In particular, increasing more C(sp3) 

character often improves pharmacological properties of these target molecules, thus, 

developing facile methods to make BCP building blocks is an important area of research. 

Additionally, replacing the arene moieties with saturated isosteres lends the molecule to 

be more stable towards CYP450 metabolism. In 2012, Pfizer reported the substitution of 

a fluroaryl group with a BCP isostere in Avagacestat, a lead compound for treating 

Alzheimer Disease (Figure 5.1A).3 This change increased cell permeability and solubility 

with little to no change in the efficacy compared to the original compound.  

1,3-disubstitued BCPs are the most common substitution pattern, with many available 

synthetic routes to access these moieties. Most synthetic routes begin with 

[1.1.1]propellane. A variety of both polar and radical methods have been developed to 

synthesize the 1,3-disubstitued BCPs starting from the highly strained propellane 

compound.4-6 However, a much more challenging scaffold to construct is the 1,2-

disubstituted or 1,2,3-trisubstituted BCPs. This substitution pattern has been shown to be 

a possible bioisostere for ortho- or meta-substituted benzene rings, extending this 
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valuable motif into an important chemical space (Figure 5.1B). While methods exist for 

this synthesis, they are often hampered by long synthetic sequences, use of harsh 

reagents, or limited scope.7-11  

 

 

Figure 5.1 A) Example of para-substituted benzene bioisostere in pharmaceutically 
relevant scaffolds, B) Similarity of distance and geometry of substituents of BCPs and 

benzene ring. 

 
Recently, Baran developed a route to access 1,2-disusbtitued BCPs (Scheme 5.1). 

However, the route is lengthy, low yielding, and requires the use of harsh reagents, 

showcasing the need for simpler methods to be developed.12 The MacMillan lab turned 

towards a radical approach, accessing 2-bromo substituents on the BCP core.13 This 

enabled a metallophotoredox cross-coupling method to install aromatic and 
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heteoaromatic substituents at the 2-position of the BCP. In 2025, the Tan group reported 

the enantioselective synthesis of 2-substitued BCPs, employing a nitrogen deletion 

strategy.14 Lewis acid catalyzed imine addition across a bicyclo[1.1.0.]butane (BCB) 

afforded enantioenriched aza-bicycloheptanes, followed by deprotection and nitrogen 

deletion furnished the 2-substituted BCPs with high enantioretention.  

 

 

Scheme 5.1 Previous synthetic methods to access 2-substituted BCPs. 
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cyclization of diazo compounds (Scheme 5.2A).15 This offered quick access to a valuable 

building block, capable of undergoing a range of transformations. Many bicyclic products 

can be generated through use of 1, 2, or 3-carbon synthons to form 

bicyclo[1.1.1]pentanes, -[2.1.1]hexanes, and -[3.1.1]heptanes, respectively.16-22 However, 

by far the most challenging is the synthesis of BCPs. A general strategy to achieve this 

goal is employing a carbene to undergo a [2+1] cycloaddition, inserting into the strained 

C–C bond. However, this strategy is often limited to the highly electrophlic 

dihalocarbenes, installing useful, albeit limited functionality into the BCB. Recently, the 

Ma, Mykhailiuk, and Davies labs have elaborated this strategy to generate 2,2-difluoro-

functionalized BCP products (Scheme 5.2B).15, 23-25  

 

 

Scheme 5.2 Bicyclo[1.1.1]butanes, A) Facile synthesis of BCBs from dirhodium 
catalyzed cyclization, B) Reactions of BCBs generating a variety of bicyclic scaffolds. 
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While both Mykhailiuk and Davies use TMS-CF3 with NaI to generate difluorocarbene, 

Ma used trimethylsilyl 2-fluorosulfonyl-2,2-difluoroacetate as the carbene precursor. A 

shift towards radical functionalization has become prominent upon reports from Glorius, 

Brown, and Li (Scheme 5.2B).16, 18, 21, 26 Through either triplet energy transfer to the BCB, 

photoredox methods, or boryl radical-mediated cascade reactions, the resulting radicals 

can be trapped by a plethora of radical acceptors including activated olefins, 

cyclobutanones, and phenols to generate a variety of bicyclic scaffolds.  However, to date 

the only conditions capable of generating the BCP scaffolds are with dihalocarbenes, 

highlighting the need for further development in this area.  

As our lab has a long-standing interest in dirhodium carbenes, these intermediates 

would be the obvious choice to insert more complex functionality into BCBs to generate 

2-substituted BCPs. However, reports are not promising, as only highly electron-deficient 

carbenes can insert into the C–C bond.27 Inspired by the recent advent of photoinduced 

triplet carbene reactivity, we wondered whether switching the mode of carbene reactivity 

from singlet carbene to triplet carbene would enable radical addition into the BCB, 

furnishing 2-substituted BCPs.  

Photoinduced carbene reactions have become a prominent means for synthetic 

transformations. In 2018, the Davies group disclosed the blue-light induced photolysis of 

aryldiazoacetates, generating the free singlet carbene which subsequently undergoes 

cyclopropanation or X–H insertion (Figure 5.2A).28 Later in the same year, the He and 

Zhou groups reported the blue-light promoted coupling of aryldiazoacetates with 

diazoesters to afford E-alkenes (Figure 5.2B).29 The following year the Koenigs group 
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reported blue-light photolysis of aryldiazoacetates for cyclopropenation of alkynes and 

Doyle-Kirmse rearrangement of sulfides (Figure 5.2C).30  

 

 

Figure 5.2 : Recent literature examples of direct blue light excitation of diazo 
compounds for reactions with A) olefins and X–H insertion, B) ethyldiazoacetate, and C) 

alkynes and sulfides. 

 
These examples use direct sensitization of the diazo compound to induce carbene 

formation. Since these initial reports, blue-light photolysis of diazo compounds has seen 

an increase in popularity within the scientific community.31, 32 While most reports focused 

on reactions of free singlet carbenes, photosensitized triplet carbenes have drawn interest 

as well. Photosensitization, also known as triplet energy transfer (TEnT), is the process 

of excitation of a substrate from a catalyst in its triplet excited state (Figure 5.3A). A 

photocatalyst will absorb a photon and be promoted to its singlet excited state. Then, 

relaxation by intersystem crossing will occur to generate the triplet excited state, which is 

long-lived for most photocatalysts, enabling bimolecular reactions to occur. Finally, the 

photocatalyst will undergo energy transfer to a substrate with a triplet energy lower than 
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that of the excited photocatalyst, promoting the substrate into its triplet excited state while 

relaxing back down to its singlet ground state. 

Triplet carbenes are relatively underexplored as compared to singlet carbenes. 

Typically generated through TEnT catalysis from the corresponding diazo precursor, 

triplet carbenes have a distinct reactivity profile compared to their singlet counterparts 

due to the inherent radical character of these intermediates, allowing for one-electron type 

reactions to occur (Figure 5.3B). 

 

 

Figure 5.3 A) mechanism for TEnT of diazo compound to form triplet carbene, B) General 
mechanism of photosensitization TEnT. 
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carbene adds into a gem-disubstituted olefin, showing a range of diazo compounds can 

be photosensitized to the triplet state (Scheme 5.3B).34 This diradical carbene can then 

add into an olefin, which upon two subsequent electron transfer events leads to the 

desired product. Koenigs followed this work up with two more examples of 

photosensitization of diazo compounds to afford triplet carbenes.  

 

 

Scheme 5.3 Reactions with triplet sensitized carbene intermediates A) porphyrin 
catalyzed TEnT of EDA to generate alpha-substutued aldehydes, B) examples of 
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organic transformations using TEnT of diazo compounds, C) divergent reactivity for 
triplet carbenes based on solvent effects. 

 
They show the stereoconvergent synthesis of trisubstituted cyclopropanes as well as the 

facile synthesis of furan derivatives.35, 36 Most recently, the Gryko and Koenigs groups 

showed that triplet carbene generation is highly dependent on solvent choice, with 

divergent reactivity being seen in either protic or aprotic solvents (Scheme 5.3C).37 

Inspired by these recent reports photosensitization of diazo compounds, and our 

longstanding interest in developing novel approaches to synthetically challenging motifs, 

we envisioned the inherent radical character of triplet carbenes would enable the addition 

into the strained C–C bond of a BCB (Scheme 5.4). The resulting intermediate would then 

undergo intersystem crossing and radical recombination to reveal a 2-substituted BCP. 

This methodology would stand as a facile method to afford a valuable yet underexplored 

scaffold, opening new possibilities for drug discovery.  

 

 

Scheme 5.4 Reaction design 

 

5.2 Results and discussion 
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irradiation. An initial hit at room temperature gave us 13% yield of the desired BCP product 

28 by NMR (Table 5.1, Entry 1). Upon cooling to 0 and – 40 °C we saw an improvement 

to 21% for both reactions, while the desired product was generated in 50% yield at -65°C 

(Entries 2-3).  

 

Table 5.1 Optimization of reaction conditions. 

 

 

However, the yield was slightly lower when cooling all the way to -78 °C (Entry 5). Varying 
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10). Performing the reaction in dichloromethane was seen to be the choice solvent, with 

only trace product being formed when the reaction was run in chloroform and no product 

when run in THF, diethyl ether, or hexanes (Entries 11-12).  

Varying the equivalents of 15 and increasing the concentration showed no improvement 

from the standard conditions (Entries 13-14). Finally, no product was seen in the absence 

of 440 nm light, or photocatalyst.  

With the optimized conditions in hand, the scope of this transformation was 

elaborated. A variety of diazo compounds were amenable to this methodology (Table 5.2).  

 

Table 5.2 Scope of reaction. 
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aReaction run using method B. b5.0 equiv of diazo compound 

 
Alkyl diazoester compounds were found to work nicely, with both methyl-2-

diazopropionate and -butanoate yielding products 29 and 30, respectively. These results 

were somewhat surprising due to the fact that alkyl diazoesters are highly prone to 

undergo a 1,2-shift from the corresponding singlet carbene resulting in the acrylate 

(Scheme 5.5).38  

 

 

Scheme 5.5 1,2-hydride shift for alkyldiazoacetates. 
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for the methine carbene derivative to be the most susceptible to this side reaction.39 
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Products 31 and 32 were formed in 48% and 55% yield, respectively, giving access 

to orthogonal ester protecting groups for further product derivatization. When using 2,2,2-

trichloroethyl 2-diazoacetate as the carbene precursor under the standard conditions, 

only trace product was observed. We hypothesized that using a photocatalyst with a 

N2
O

O

R

R

O

O

R

R
H O

O

R

R

–N2

1,2-shift
H



 

 88 

higher triplet energy would enable higher product formation. Gratifyingly, using 

thioxanthone (TX) as the photocatalyst under 390 nm irradiation gave product 33 in 39% 

yield, giving another orthogonal protecting group. It was found that three other diazo 

compounds needed the TX photocatalyst to give appreciable yields. Products 34 and 35 

were formed in moderate yields, 24% and 52% respectively. These compounds provide 

interesting scaffolds for further drug discovery, gaining access to synthetically challenging 

substituents on the BCP core. Finally, the cyclic beta-lactone diazo gave the spiro-BCP 

36 in 41% yield. Importantly, the control reaction with no catalysts under these new 

conditions gave no product, indicating the photosensitization pathway was still 

operational. Moving to the scope of bicylco[1.1.0]butanes, yields were generally higher 

when we used methyl 2-diazopropionate as the carbene precursor rather than EDA. 

Using the sterically bulky naphthyl group on the BCB gave product 37 in 52% yield. The 

methodology was compatible with several para substituents, with para-bromo, methyl, 

and trifluoromethyl substituents giving 67%, 77%, and 39%, respectively (38-40). Finally, 

a 3,4-dichloro substitution pattern was shown to be amenable, with product 41 being 

formed in 58% yield. 

Next, the practicality of this methodology was tested by showcasing a one-pot 

sequential reaction procedure (Scheme 5.6). The dirhodium catalyzed cyclization to 

generate the BCB is a fast and quantitative reaction, with a high tolerance towards 

additives and impurities needing only 0.01 mol% catalyst loading. We hypothesized that 

the BCB cyclization would be tolerant of the iridium photocatalyst, allowing for both 

catalysts to be added at the beginning of the reaction sequence. Then, following 

completion of the BCB cyclization, EDA could be added to the solution followed by blue 
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light irradiation at -65 °C to afford the desired BCP product. Gratifyingly, when testing this 

dual reaction sequence, the 28 was formed in 38% yield by NMR.  

 

 

Scheme 5.6 1-pot sequential reaction. 
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complex through competitive binding. With these new reaction conditions, the desired 

product was formed in 47% yield by NMR, close to the previously optimized conditions. 

This showcases the power of diazo carbene chemistry, with a sequential singlet and triplet 

carbene reaction generating a highly challenging synthetic scaffold. 

5.3 Conclusion 
 

In summary, a facile synthesis of 2-substitued bicyclo[1.1.1.]pentanes has been 

disclosed using a photosensitized carbene addition into a bicyclo[1.1.0]butane. This 
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novel BCP scaffolds that will generate interest for drug development. Additionally, it was 

shown that switching the mode of carbene reactivity from singlet to triplet opened up new 

avenues of reactivity, which we believe will help drive the field of photosensitized carbene 

methodology forward. Finally, a one-pot sequential reaction setup was shown to be 

operational, starting from the dirhodium catalyzed BCB cyclization followed by 

photocatalyzed BCP formation. This methodology will not only inspire further work in the 

area of diazo photosensitization but enable novel scaffolds to be explored for new drug 

discovery. 
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Appendix A. Chapter 2 Supporting Information
 
 

CAUTION: Diazo compounds are high energy compounds and need to be treated with 

respect. Even though we experienced no energetic decomposition in this work, care 

should be taken in handling large quantities of diazo compounds. Large scale reactions 

should be conducted behind a blast shield. For a more complete analysis of the risks 

associated with diazo compounds see the recent review by Bull et. al.1 

 

General Considerations 
 
All experiments were carried out in flame-dried glassware under argon atmosphere 

unless otherwise stated. Flash column chromatography was performed on silica gel. 

Unless otherwise noted, all other reagents were obtained from commercial sources 

(Sigma Aldrich, Fisher, TCI Chemicals, AK Scientific, Combi Blocks, Oakwood 

Chemicals, Ambeed) and used as received without purification. 1H, 13C, and 19F NMR 

spectra were recorded at either 400 MHz (13C at 100 MHz) on Bruker 400 spectrometer 

or 600 MHz (13C at 151 MHz) on INOVA 600 or Bruker 600 spectrometer. NMR spectra 

were run in solutions of deuterated chloroform (CDCl3) with residual chloroform taken as 

an internal standard (7.26 ppm for 1H, and 77.16 ppm for 13C), and were reported in 

parts per million (ppm). The abbreviations for multiplicity are as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublet, etc. 

Coupling constants (J values) are obtained from the spectra. Thin layer chromatography 

was performed on aluminum-back silica gel plates with UV light and cerium aluminum 

molybdate (CAM) stain to visualize. Mass spectra were taken on a Thermo Finnigan 

LTQ-FTMS spectrometer with APCI or ESI. Melting points (mp) were measured in open 

capillary tubes with a Mel-Temp Electrothermal melting points apparatus and are 

uncorrected. IR spectra were collected on a Nicolet iS10 FT-IR spectrometer from 

Thermo Scientific and reported in unit of cm-1. Enantiomeric excess (% ee) data were 
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obtained on an Agilent 1100 HPLC or an Agilent 1290 Infinity UHPLC, eluting the 

purified products using a mixed solution of HPLC-grade 2-propanol (i-PrOH) and n-

hexane. 

 

Preparation of Known Compounds 
 

 
  

Diazo compound 10, S3, S4, S5, S10 were prepared according to the established 

literature and matched the reported spectra.2 

Diazo compound S2, S6, S8, and S9 were prepared according to the established 

literature and matched the reported spectra.3 

 

Diazo compound S1 was prepared according to the established literature and matched 

the reported spectra.4 

 

Diazo compound S7 was prepared according to the established literature and matched 

the reported spectra.5 

 

Preparation of carboxylic acid ligands: 
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Ligand S12, S13, S14, S15, S16, and S17 were prepared according to the established 

literature and matched the reported spectra.6-10 

 

 

Preparation of known catalysts: 

 

 
  

Catalyst S18 and S19 were prepared according to the established literature and 

matched the reported spectra.10 
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Preparation of Diazo Compounds 
 

2,2,2-Trichloroethyl 2-diazo-2-(3-iodophenyl)acetate (S11) 
 

To a solution of 2-nitrobenzensulfonyl azide (2.6 g, 11 mmol, 

1.5 equiv), and 2,2,2-trichloroethyl 2-(3-iodophenyl)acetate (3.0 

g, 7.5 mmol, 1.0 equiv) dissolved in 50 mL of acetonitrile at 0 

°C was added 2,3,4,5,6,7,8,9,10-octahydropyrido[1,2-

a][1,3]diazepine (2.5 mL, 17 mmol, 2.2 equiv) slowly. Once addition was complete, the 

solution was allowed to stir for 1 h. Then, saturated NH4Cl solution (50 mL) was added 

to the flask. The resulting solution was poured into a 250 mL separatory funnel and 

diluted with ether, washed with water (3x 20 mL) and brine (3x 15 mL) then dried over 

MgSO4 and concentrated to afford a crude yellow solid. The crude material was purified 

through column chromatography (0% hexanes/diethyl ether, 0-2% hexanes/diethyl 

ether) to afford a yellow solid (2.26 g, 72%).  

1H NMR (600 MHz, CDCl3): δ 7.91 (t, J=1.7 Hz, 1H), 7.57 (ddd, J = 7.9, 1.7, 1.0 Hz, 

1H), 7.46 (m, H), 7.15 (t, J = 7.9 Hz, 1H), 4.94 (s, 2H); 
13C NMR (151 MHz, CDCl3): δ 162.8, 135.2, 132.5, 130.5, 127.0, 123.0, 94.9, 73.9. 

HMRS (+p APCI): calcd for C₁₀H₇O₂³⁵Cl₃¹²⁷I [-N2] 390.8551, found 390.8548. 

IR (neat): 2094, 1710, 1585, 1554, 1475, 1373, 1343, 1273, 1238, 1140, 1087, 1043, 

990, 934, 826, 777, 717, 702, 678, 577 (cm-1). 
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Cyclopropanation Reactions 
 

 

General Procedure 1 
To a flame dried vial equipped with a stir bar and 4Å MS (100 weight%) under inert 

atmosphere was added catalyst (1 mol %) and substrate (0.50 mmol, 2.5 equiv) which 

was subsequently dissolved in 2 mL of DCM. Then, the diazo compound (0.20 mmol, 

1.0 equiv) was dissolved in 2 mL of DCM and added to the reaction vial over a period of 

2 h using a syringe pump. The reaction was left to stir at room temperature for 18 h. 

Once completed the reaction solution was passed through a small silica plug to remove 

ruthenium catalyst, concentrated in vacuo, and purified through flash chromatography 

(0-18% hexanes/diethyl ether) to afford the desired product. 

 

General Procedure 2 
To a flame dried vial equipped with a stir bar and 4Å MS (100 weight%) under inert 

atmosphere was added catalyst (1 mol %) and substrate (2.0 mmol, 10 equiv) which 

was subsequently dissolved in 2 mL of DCM. Then, the diazo compound (0.20 mmol, 

1.0 equiv) was dissolved in 2 mL of DCM and added to the reaction vial over a period of 

2 h using a syringe pump. The reaction was run at room temperature for 18 h. Once 

completed the reaction solution was passed through a small silica plug to remove 

ruthenium catalyst, concentrated in vacuo, and purified through flash chromatography 

(0-18% hexanes/diethyl ether) to afford the desired product. 
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2,2,2-Trichloroethyl (1S,2R)-1-(4-bromophenyl)-2-phenylcyclopropane-1-
carboxylate (12) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

(4-bromophenyl)-2-diazoacetate (0.2 mmol, 74.5 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an amorphous 

solid (63 mg, 70%). Spectra matched literature precedent.3 
1H NMR (400 MHz, CDCl3) δ 7.31 (d, J = 8.5 Hz, 2H), δ 7.15 (dd, J = 5.0, 1.9 Hz, 3H), δ 

6.98 (d, J = 8.5 Hz, 2H), δ 6.85 (m, 2H), 4.88 (d, J = 11.9 Hz, 1H), δ 4.69 (d, J = 11.9 

Hz, 1H), δ 3.27 (dd, J = 9.4, 7.5 Hz, 1H), δ 2.33 (dd, J = 9.4, 5.2 Hz, 1H), δ 2.02 (dd, J = 

7.5, 5.2 Hz, 1H).  

Chiral HPLC: The enantiopurity was determined to be 92:8 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.7 min, Minor: 

8.5 min). 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-bromophenyl)-2-(4-(tert-
butyl)phenyl)cyclopropane-1-carboxylate (20) 
 

General procedure 1 was employed for the cyclopropanation 

of 1-(tert-butyl)-4-vinylbenzene (91.6 µL, 0.5 mmol, 2.5 equiv) 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate 

(0.2 mmol, 74.5 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF 

(6.6 mg, 1 mol %) as catalyst. Purification by column 

chromatography afforded an oil (66 mg, 65%) 
1H NMR (600 MHz, CDCl3): δ 7.27 (d, J = 8.5 Hz, 2H), δ 7.13 (d, J = 8.5 Hz, 2H), δ 6.96 

(d, J = 8.5 Hz, 2H), δ 6.73 (d, J = 8.5 Hz, 2H), δ 4.84 (d, J = 11.9 Hz, 1H), δ 4.64 (d, J = 

11.9 Hz, 1H), δ 3.18 (dd, J = 9.4, 7.5, 1H), δ 2.28 (dd, J = 9.4, 5.1 Hz, 1H), δ 1.93 (dd, J 

= 7.5, 5.1 Hz, 1H), δ 1.24 (s, 1H); 

O

O

CCl3

Br

O

O

CCl3

Br
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13C NMR (151 MHz, CDCl3): δ 171.7, 149.9, 133.8, 133.1, 132.2, 130.9, 127.8, 124.9, 

121.5, 95.0, 74.4, 65.9, 36.5, 34.4, 33.8, 31.3, 20.5, 15.3.  

HRMS (+p APCI): calcd for C22H23BrCl3O2 (M+H)+ 502.9942 found 502.9945. 

Chiral HPLC: The enantiopurity was determined to be 90:10 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 7.2 min, Minor: 

4.7 min). 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-bromophenyl)-2-(4-fluorophenyl)cyclopropane-1-
carboxylate (21) 
 

General procedure 1 was employed for the cyclopropanation of  

1-fluoro-4-vinylbenzene (91.6 µL, 0.5 mmol, 2.5 equiv) with 

2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (0.2 

mmol, 74.48 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 

mg, 1 mol %) as catalyst. Purification by column 

chromatography afforded an amorphous solid (64 mg, 68%). 

Spectrum matched literature precedent.3  
1H NMR(400 MHz, CDCl3) δ 7.28 (d, J = 8.4 Hz, 2H), δ 6.93 (d, J = 8.4 Hz, 2H), δ 6.78 

(m, 4H), δ 4.83 (d, J = 11.9 Hz, 1H), δ 4.64 (d, J = 11.9 Hz, 1H), δ 3.20 (dd, J = 9.4, 7.4 

Hz, 1H), δ 2.28 (dd, J = 9.4, 5.3 Hz, 1H), δ 1.92 (dd, J = 7.4, 5.3 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 89:11 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.9 min, Minor: 

9.2 min). 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-bromophenyl)-2-(naphthalen-2-yl)cyclopropane-
1-carboxylate (22) 
 

O

O

CCl3

BrF
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This structure was synthesized through general procedure 1. 

2-Vinylnaphthalene (77.1 mg, 0.5 mmol, 2.5 equiv), 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (0.2 mmol, 

74.5 mg, 1.0 equiv), and Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol 

%) were added to the reaction. The reaction was run 

overnight in 4 mL of DCM. Purification by column 

chromatography afforded an amorphous solid (66 mg, 66%). Spectra matched literature 

precedent.11  
1H NMR (400 MHz, CDCl3) δ 7.75 (m, 1H), δ  7.68 (m, 1H), δ 7.60 (d, J = 8.5 Hz, 1H), δ 

7.44 (m, 2H), δ 7.40 (m, 1H), δ 7.25 (d, J = 8.5 Hz, 2H), δ 7.02 (d, J = 8.5 Hz, 2H), δ 

6.88 (dd, J = 8.5, 1.8 Hz, 1H), δ 4.89 (d, J = 11.9 Hz, 1H), δ 4.71 (d, J = 11.9 Hz, 1H), δ 

3.43 (dd, J = 9.4, 7.4 Hz, 1H), δ 2.40 (dd, J = 9.4, 5.2, 1H), δ 2.14 (dd, J = 7.5, 5.2 Hz, 

1H). 

Chiral HPLC: The enantiopurity was determined to be 88:12 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 13.0 min, Minor: 

11.9 min). 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-bromophenyl)-2-(p-tolyl)cyclopropane-1-
carboxylate (23) 
 
 

This structure was synthesized through general procedure 1. 1-

Methyl-4-vinylbenzene (65.9 µL, 0.5 mmol, 2.5 equiv), 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (0.2 mmol, 74.5 

mg, 1.0 equiv), and Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) 

were added to the reaction. The reaction was run overnight in 4 

mL of DCM. Purification by column chromatography afforded a crystalline solid (69 mg, 

75%):  

MP: 95-98 °C 
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1H NMR (600 MHz, CDCl3) δ 7.30 (d, J = 8.5 Hz, 2H), δ 6.97 (d, J = 8.5 Hz, 2H), δ 6.94 

(d, J = 8.2 Hz, 2H), δ 6.71 (d, J = 8.2 Hz, 2H), δ 4.85 (d, J = 11.9 Hz, 1H), δ 4.66 (d, J = 

11.9 Hz, 1H), δ 3.21 (dd, J = 9.4, 7.45Hz, 1H), δ 2.29 (dd, J = 9.4, 5.1 Hz, 1H), δ 2.26 

(s, 3H), δ 1.96 (dd, J = 7.5, 5.1 Hz, 1H). 
13C NMR (151 MHz, CDCl3) δ 171.7, 136.5, 133.7. 133.1. 132.2, 130.9, 128.8, 121.5, 

95.0, 74.4, 36.5, 33.9, 21.0, 20.3. 

HRMS (+p APCI) calcd for C19H17BrCl3O2 (M+H) 460.9472 found 460.9471. 

Chiral HPLC: Enantiopurity was determined to be 96:4 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.9 min, Minor: 

5.9 min) 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-bromophenyl)-2-(4-chlorophenyl)cyclopropane-1-
carboxylate (24) 
 

General procedure 1 was employed for the cyclopropanation 

of 1-methyl-4-vinylbenzene (60.0 µL, 0.5 mmol, 2.5 equiv) 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate 

(0.2 mmol, 74.5 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF 

(6.6 mg, 1 mol %) as catalyst. Purification by column 

chromatography afforded an amorphous solid (73.6 mg, 76%). 

Spectra matched literature precedent.3  
1H NMR (400 MHz, CDCl3) δ 7.29 (d, J = 8.5 Hz, 2H), δ 7.08 (d, J = 8.5 Hz, 2H), δ 6.93 

(d, J = 8.5 Hz, 2H), δ 6.73 (d, J = 8.5 Hz, 2H), 4.82 (d, J = 11.9 Hz, 1H), δ 4.64 (d, J = 

11.9 Hz, 1H), δ 3.18 (dd, J = 9.4, 7.4 Hz, 1H), δ 2.29 (dd, J = 9.4, 5.3 Hz, 1H), δ 1.92 

(dd, J = 7.4, 5.3 Hz, 1H).  

Chiral HPLC:  Enantiopurity was determined to be 91:9 by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 10.1 min, Minor: 

7.5 min) 

 

2,2,2-Trichloroethyl (1S,2R)-2-([1,1'-biphenyl]-4-yl)-1-(4-
bromophenyl)cyclopropane-1-carboxylate (25) 
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General procedure 1 was employed for the cyclopropanation 

of 4-vinyl-1,1'-biphenyl (0.5 mmol, 90.1 mg, 2.5 equiv) with 

2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (0.2 

mmol, 74.5 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 

mg, 1 mol %) as catalyst. Purification by column 

chromatography afforded a crystalline solid (49.3 mg, 47%):  

MP: 145-147 °C 
1H NMR (600 MHz, CDCl3) δ 7.53 (d, J = 8.3 Hz, 2H), δ 7.41 (dd, J = 8.5, 7.0 Hz, 2H), δ 

7.37 (d, J = 8.3 Hz, 2H), δ 7.33 (m, 1H), δ 7.29 (d, J = 8.5, 2H), δ 6.99 (d, J = 8.5 Hz, 

2H), δ 6.87 (d, J = 8.3 Hz, 2H) δ 4.85 (d, J = 11.9, 1H), δ 4.67 (d, J = 11.9 Hz, 1H), δ 

3.26 (dd, J = 9.4, 7.5 Hz, 1H), δ 2.33 (dd, J = 9.4, 5.2 Hz, 1H), δ 2.00 (dd, 7.5, 5.2 Hz, 

1H). 
13C NMR (151 MHz, CDCl3) δ 171.6, 140.4, 139.6, 134.4, 133.7, 132.9, 131.1, 128.8, 

127.3, 126.9, 126.7, 121.7, 94.9, 74.4, 36.8, 33.7, 20.6.  

HRMS (+p APCI) calcd for C24H19BrCl3O2 (M+H) 522.9628 found 522.9631.  

Chiral HPLC: Enantiopurity was determined to be 90:10 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=254 nm, RT: Major: 8.5 min, Minor: 

12.7 min). 

 

2,2,2-Trichloroethyl (1S,2R)-2-(4-acetoxyphenyl)-1-(4-bromophenyl)cyclopropane-
1-carboxylate (26) 
 

General procedure 1 was used for the cyclopropanation 

of 4-vinylphenyl acetate (77.5 µL, 0.5 mmol, 2.5 equiv), 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-

diazoacetate (0.2 mmol, 74.5 mg, 1.0 equiv) using 

Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %). The reaction 

was run overnight in 4 mL of DCM. Purification by 

column chromatography afforded a crystalline solid (55.7 mg, 55%). Spectra matched 

literature precedent.3  
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1H NMR (400 MHz, CDCl3) δ 7.07 (m, 3H), δ 6.98 (d, J = 8.1 Hz, 2H), δ 6.89 (d, J = 8.3 

Hz, 2H), δ 6.83 (d, J = 8.3 Hz, 2H), δ 4.86 (d, J = 11.9 Hz, 1H), δ 4.67 (d, J = 11.9 Hz, 

1H), δ 3.24 (dd, J = 9.4, 7.4 Hz, 1H), δ 1.95 (s, 3H), δ 1.95 (dd, J = 7.43, 5.29 Hz, 1H). 

Other cyclopropane proton signal falls under the methyl singlet at δ 1.95. 
Chiral HPLC: Enantiopurity was determined to be 91:9 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 15.4 min, Minor: 

29.9 min). 

 

2,2,2-Trichloroethyl (1S,2S)-1-(4-bromophenyl)-2-butylcyclopropane-1-carboxylate 
(27) 
 

General procedure 2 was employed for the cyclopropanation 

of hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (0.2 mmol, 

74.5 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 

mol %) as catalyst. Purification by column chromatography 

afforded an oil (68.4 mg, 80%). Spectra matched literature 

precedent.12 
1H NMR (400 MHz, CDCl3): δ 7.48 (d, 8.4 Hz, 2H), δ 7.21 (d, 8.4 Hz, 2H), δ 4.81 (d, J = 

12.0 Hz, 1H), δ 4.56 (d, J = 12.0 Hz, 1H), δ 1.95 (m, 1H), δ 1.88 (dd, J = 9.2, 4.2 Hz, 

1H), δ 1.39 (m, 3H), δ 1.28 (m, 2H), δ 1.20 (dd, J = 6.9, 4.3 Hz, 1H), δ 0.85 (t, J = 7.3 

Hz, 3H), δ 0.60 (ddd, J = 11.9, 9.7, 7.1 Hz, 1H).  

Chiral HPLC: Enantiopurity was determined to be 96:3 er by chiral HPLC analysis 

(R,R-Whelk, 0.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: xx min, Minor: xx 

min). 

 

 
2,2,2-Trichloroethyl (1S,2S)-1-(4-bromophenyl)-2-isobutylcyclopropane-1-
carboxylate (28) 
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General procedure 2 was employed for the cyclopropanation of 

4-methylpent-1-ene (257 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (0.2 mmol, 

74.5 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol 

%) as catalyst. Purification by column chromatography afforded 

an oil (67.8 mg, 79%). Spectra matched literature precedent.12 
1H NMR (400 MHz, CDCl3): δ 7.48 (d, J = 8.5 Hz, 2H), δ 7.20 (d, J = 8.5 Hz, 2H), δ 4.81 

(d, J = 11.9 Hz, 1H), δ 4.6 (d, J = 11.9 Hz, 1H), δ 1.99 (m, 1H), δ 1.92 (dd, J = 9.2, 4.2 

Hz, 1H), δ 1.70 (dq, J = 13.4, 6.7 Hz, 1H), δ 1.40 (ddd, 13.8, 6.5, 4.3 Hz, 1H), δ 1.22 

(dd, 6.9, 4.2 Hz, 1H), δ 0.90 (dd, J = 6.7, 2.7 Hz, 6H), δ 0.36 (ddd, J = 13.8, 9.7, 7.2 Hz, 

1H). 

HPLC Chiral: Enantiopurity was determined to be 97:3 er by chiral HPLC analysis 

(R,R-Whelk, 0.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 14.4 min, Minor: 

27.4 min). 

 

2,2,2-Trichloroethyl (1S,2S)-1-(4-bromophenyl)-2-
((triMethylsilyl)Methyl)cyclopropane-1-carboxylate (29) 
 
 

General procedure 2 was employed for the cyclopropanation of 

allyltrimethylsilane (320 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (0.2 mmol, 

74.5 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol 

%) as catalyst. Purification by column chromatography afforded 

an oil (71.6 mg, 88%). Spectra matched literature precedent.12 
1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8.4 Hz, 2H), δ 7.19 (d, J = 8.4 Hz, 2H), δ 4.80 

(d, J = 11.9 Hz, 1H), δ 4.58 (d, J = 11.9 Hz, 1H), δ 1.97 (m, 2H), δ 1.12 (q, 3.3 Hz, 1H), 

δ 0.86 (ddd, J = 14.4, 2.7, 1.3 Hz, 1H), δ 0.04 (s, 9H), δ -0.44 (m, 1H). 

Chiral HPLC: Enantiopurity was determined to be 96:4 er by chiral HPLC analysis 

(R,R-Whelk, 0.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 14.0 min, Minor: 

27.7 min). 
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2,2,2-Trichloroethyl (1S,2S)-1-(4-bromophenyl)-2-phenethylcyclopropane-1-
carboxylate (30) 
 

General procedure 2 was employed for the 

cyclopropanation of but-3-en-1-ylbenzene (300 µL, 2.0 

mmol, 10 equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-

2-diazoacetate (0.2 mmol, 74.5 mg, 1.0 equiv) using Ru2(S-

TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. Purification by 

column chromatography afforded an oil (51.6 mg, 60%). 

Spectra matched literature precedent.12 
1H NMR (400 MHz, CDCl3): δ 7.48 (d, J = 8.5 Hz, 2H), δ 7.28 (m, 2H), δ 7.21 (d, J = 8.5 

Hz, 3H), δ 7.11 (m, 2H), δ 4.81 (d, J = 11.9 Hz, 1H), δ 4.59 (d, J = 11.9 Hz, 1H), δ 2.71 

(m, 2H), δ 2.03 (tdd, J = 9.0, 7.0, 5.2 Hz, 1H), δ 1.89 (ddd, J = 9.0, 4.5, 0.70 Hz, 1H), δ 

1.70 (m, 1H), δ 1.21 (dd, J = 7.0, 4.5 Hz, 1H), δ 0.97 (dtd, J = 13.9, 9.0, 6.4 Hz, 1H).  

Chiral HPLC The enantiopurity was determined to be 88:12 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.6 min, Minor: 

7.6 min). 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-bromophenyl)-2-(2-(tert-butoxy)-2-
oxoethyl)cyclopropane-1-carboxylate (31) 
 

General procedure 2 was employed for the 

cyclopropanation of tert-butyl but-3-enoate (324 µL, 2.0 

mmol, 10 equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-

2-diazoacetate (0.2 mmol, 74.5 mg, 1.0 equiv) using Ru2(S-

TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. Purification by 

column chromatography afforded an oil (20.5 mg, 21%):  
1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 4.80 (d, 

J = 11.9 Hz, 1H), 4.57 (d, J = 11.9 Hz, 1H), 2.31 (dq, J = 9.0, 7.0 Hz, 1H), 2.05-1.86 (m, 

3H), 1.42 (s, 9H), 1.28 (dd, J = 7.0, 4.9 Hz, 1H).  
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13C NMR (101 MHz, CDCl3) δ 171.9, 170.9, 133.7, 133.1, 131.4, 121.9, 94.9, 80.9, 

74.4, 36.1, 32.7, 28.1, 24.6, 20.6.  
HRMS (+p APCI): calcd for C18H21BrCl3O4 [M+H] 484.9600 found 484.9497. 

Chiral HPLC The enantiopurity was determined to be 96:4 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 9.0 min, Minor: 

9.6 min).  

 

 

Methyl (1S,2R)-1-(4-bromophenyl)-2-phenylcyclopropane-1-carboxylate (32) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with methyl 2-(4-

bromophenyl)-2-diazoacetate (0.2 mmol, 51.0 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an amorphous 

solid (39.6 mg, 60%). Spectra matched literature precedent.4  
1H NMR (400 MHz, CDCl3) δ 7.29 (m, 2H), δ 7.12 (m, 3H), δ 6.92 (d, J = 8.0 Hz, 2H), δ 

6.81 (dd, J = 6.5, 3.0 Hz, 2H), δ 3.69 (s, 3H), δ 3.15 (dd, J = 9.4, 7.3 Hz, 1H), δ 2.17 

(dd, J = 9.4, 5.0 Hz, 1H), 1.87 (dd, J = 7.3, 5.0 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 83:17 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 0.5 mL/min, λ=230 nm, RT: Major: 15.7 min, Minor: 

18.7 min). 

 

 

2,2,2-Trifluoroethyl (1S,2R)-1-(4-bromophenyl)-2-phenylcyclopropane-1-
carboxylate (33) 
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General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trifluoroethyl 2-

(4-bromophenyl)-2-diazoacetate (0.2 mmol, 64.6 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an amorphous 

solid (51.8 mg, 65%). Spectra matched literature precedent.3  
1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.5 Hz, 2H), δ 7.14 (d, J = 8.5 Hz, 2H), δ 4.50 

(dq,  J = 12.7, 8.4 Hz, 1H), δ 4.32 (dq, J = 12.7, 8.4 Hz, 1H), δ 1.89 (tdd, J = 9.0, 6.8, 

4.3 Hz, 1H), δ 1.80 (dd, J = 9.0, 4.3 Hz, 1H), δ 1.36 (m, 3H), δ 1.24 (m, 2H), δ 1.17 (dd, 

J = 6.8, 4.3 Hz, 1H), δ 0.83 (t, J = 7.2 Hz, 3H), δ 0.53 (m, 1H). 

Chiral HPLC: The enantiopurity was determined to be 90:10 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 5.8 min, Minor: 

6.6 min). 

 

2,2,2-Trichloroethyl (1S,2R)-2-phenyl-1-(4-(trifluoroMethyl)phenyl)cyclopropane-1-
carboxylate (34) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 

2-diazo-2-(4-(trifluoromethyl)phenyl)acetate (0.2 mmol, 72.3 

mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as 

catalyst. Purification by column chromatography afforded an 

amorphous solid (74.6 mg, 85%):  
1H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.15-

7.11 (m, 3H), 6.83 (dd, J = 6.4, 3.1 Hz, 2H), 4.87 (d, J = 11.8 Hz, 1H), 4.69 (d, J = 11.8 

Hz, 1H), 3.31 (dd, J = 9.4, 7.5 Hz, 1H), 2.37 (dd, J = 9.4, 5.2 Hz, 1H), 2.07 (dd, J = 7.5, 

5.2 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 171.4, 138.0 (d, J = 1.2 Hz), 135.0, 132.4, 128.1, 128.0, 

127.02, 124.7 (q, J = 3.7 Hz), 121.4 (q, J = 272.2 Hz), 94.9, 74.4, 36.9, 34.1, 20.1. 
19F NMR (376 MHz, CDCl3) δ -62.54. 
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HRMS (+p APCI) calcd for C19H15O2Cl3F3 (M+H) 437.0084 found 437.0084. 
Chiral HPLC: The enantiopurity was determined to be 88:12 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 5.5 min, Minor: 

7.2 min). 

 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-(tert-butyl)phenyl)-2-phenylcyclopropane-1-
carboxylate (35) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 

2-(4-(tert-butyl)phenyl)-2-diazoacetate (0.2 mmol, 69.9 mg, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as 

catalyst. Purification by column chromatography afforded an 

amorphous solid (41.3 mg, 49%). Spectra matched literature 

precedent.3  
1H NMR (400 MHz, CDC3) δ 7.17 (d, J = 8.4 Hz, 2H), δ 7.09 (m, 3H), δ 7.01 (d, J = 8.4 

Hz, 2H), δ 6.81 (m, 2H), δ 4.86 (d, J = 11.9 Hz, 1H), δ 4.68 (d, J = 11.9 Hz, 1H), δ 3.22 

(dd, J = 9.4, 7.4 Hz, 1H), δ 2.31 (dd, J = 7.4, 5.1 Hz, 1H), δ 2.00 (dd, J = 9.4, 5.1 Hz, 

1H). 

Chiral HPLC: The enantiopurity was determined to be 84:16 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 0.5 mL/min, λ=230 nm, RT: Major: 8.5 min, Minor: 

9.9 min). 

 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-fluorophenyl)-2-phenylcyclopropane-1-
carboxylate (36) 
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General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

diazo-2-(4-fluorophenyl)acetate (0.2 mmol, 62.3 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an amorphous 

solid (35 mg, 45%). Spectra matched literature precedent.3  
1H NMR (400 MHz, CDCl3) δ 7.13 (m, 3H), δ 7.06 (dd, J = 8.8, 5.3 2H), δ 6.83 (m, 4H), 

δ 4.83 (d, J = 11.9 Hz, 1H), δ 4.68 (d, J = 11.9 Hz, 1H), δ 3.24 (dd, J = 9.4, 7.4 Hz, 1H), 

δ 2.31 (dd, J = 9.4, 5.2 Hz, 1H), δ 2.00 (dd, J = 7.4, 5.2 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 91:9 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.0 min, Minor: 

6.5 min). 

 

2,2,2-Trichloroethyl (1S,2R)-1-(4-methoxyphenyl)-2-phenylcyclopropane-1-
carboxylate (37) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

diazo-2-(4-methoxyphenyl)acetate (0.2 mmol, 64.7 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an oil (48.4 mg, 

61%). Spectra matched literature precedent.3  
1H NMR (400 MHz, CDCl3) δ 7.10 (dd, J = 5.2, 1.9 Hz, 3H), δ 6.99 (d, J = 8.2 Hz, 2H), δ 

6.82 (m, 2H), δ 6.67 (d, J = 8.2 Hz, 2H), δ 4.85 (d, J = 11.9 Hz, 1H), δ 4.66 (d, J = 11.9 

Hz, 1H), δ 3.72 (s, 3H), δ 3.20 (dd, J = 9.5, 7.4 Hz, 1H), δ  2.28 (dd, J = 9.5, 5.1 Hz, 

1H), δ 1.97 (dd, J = 7.4, 5.1 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 90:10 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=254 nm, RT: Major: 8.3 min, Minor: 

9.3 min).  
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2,2,2-Trichloroethyl (1S,2R)-1-([1,1'-biphenyl]-4-yl)-2-phenylcyclopropane-1-
carboxylate (38) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

([1,1'-biphenyl]-4-yl)-2-diazoacetate (0.2 mmol, 73.9 mg, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an amorphous 

solid (79.2 mg, 89%) 
1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 7.0 Hz, 2H), 7.40 (m, 4H), 7.32 (m, 1H), 7.15 

(d, J = 8.3 Hz, 2H), 7.09 (dd, J = 5.2, 1.9, 2H), 6.85 (m, 2H), 4.87 (d, J = 11.9, 1H), 4.68 

(d, J = 11.9, 1H), 3.26 (dd, J = 9.4, 7.4, 1H), 2.33 (dd, J = 9.4, 5.1, 1H), 2.05 (dd, J = 

7.4, 5.1, 1H).  
13C NMR (101 MHz, CDCl3): δ 172.1, 140.7, 139.9, 135.7, 132.8, 132.4, 128.7, 128.2, 

127.9, 127.3, 127.0, 126.7, 126.4 95.1, 74.4, 36.9, 34.0, 20.3. 

HRMS (+p APCI) calcd for C24H20O2Cl3 (M+H) 445.0523 found 445.0518. 

Chiral HPLC: The enantiopurity was determined to be 89:11 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 7.9 min, Minor: 

8.8 min). 
 

 

2,2,2-Trichloroethyl (1S,2R)-1-(naphthalen-2-yl)-2-phenylcyclopropane-1-
carboxylate (39) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

diazo-2-(naphthalen-2-yl)acetate (0.2 mmol, 68.7 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded a crystalline 

solid (43.1 mg, 51%). Spectra matched literature precedent.3  
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1H NMR (400 MHz, 400 CDCl3) δ 7.75 (dt, J = 7.0, 3.9 Hz, 2H), δ 7.69 (s, 1H), δ 7.59 

(d, J = 8.5 Hz, 1H), δ 7.46 (m, 2H), δ 7.15 (d, J = 8.5 Hz, 1H), δ 7.06 (m, 3H), δ 6.88 (m, 

2H), δ 4.92 (d,  J = 11.9 Hz, 1H), δ 4.67 (d, J = 11.9 Hz, 1H), δ 3.34 (dd, J = 9.5, 7.4 Hz, 

1H), δ 2.41 (dd, J = 9.5, 5.1 Hz, 1H), δ 2.20 (dd, J = 7.4, 5.1 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 94:6 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 7.7 min, Minor: 

8.9 min).  

 

2,2,2-Trichloroethyl (1S,2R)-1-(3-iodophenyl)-2-phenylcyclopropane-1-carboxylate 
(40) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

diazo-2-(3-iodophenyl)acetate (0.2 mmol, 83.9 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an oil (79.1 mg, 

80%):  
1H NMR (400 MHz, CDCl3) δ 7.46 (m, 2H), 7.12 (dd, J = 5.2, 2.0 Hz, 3H), 6.98 (dt, J = 

5.2, 2.0 Hz, 1H), 6.83 (m, 3H), 4.85 (d, J = 11.9 Hz, 1H), 4.63 (d, J = 11.9 Hz, 1H), 3.22 

(dd, J = 9.4, 7.5 Hz, 1H), 2.27 (dd, J = 9.4, 5.2 Hz, 1H), 2.00 (dd, J = 7.5, 5.2 Hz, 1H).  
13C NMR (101 MHz, CDCl3): δ 171.5, 140.9, 136.4, 136.2, 135.1, 131.4, 129.9, 129.3, 

128.1, 128.0, 94.9, 93.3, 74.5, 36.6, 34.0, 20.1. 
HRMS (+p APCI) calcd for C18H15O2Cl3I (M+H) 494.9177 found 494.9176. 

Chiral HPLC: The enantiopurity was determined to be 72:27 er by chiral HPLC analysis 

(Chiracel OD-H, 0.5% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 14.9 min, Minor: 

13.7 min) 

 

 

 

2,2,2-Trichloroethyl (1R,2R)-2-phenyl-1-((E)-styryl)cyclopropane-1-carboxylate (41) 
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General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl (E)-

2-diazo-4-phenylbut-3-enoate (0.2 mmol, 63.9 mg, 1.0 equiv) using 

Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. Purification by 

column chromatography afforded an amorphous solid (47.5 mg, 

50%). Spectra matched literature precedent.3  
1H NMR (400 MHz, CDCl3) δ 7.29 (m, 2H), δ 7.25 (m, 2H), δ 7.22 (m, 1H), δ 7.20 (td, J 

= 6.7, 3.4 Hz, 4H), δ 4.91 (d, J = 11.9 Hz, 1H), δ 4.85 (d, J = 11.9 Hz, 1H), δ 3.21 (dd, J 

= 9.3, 7.4 Hz, 1H), δ 2.23 (dd, J = 9.3, 5.3 Hz, 1H), δ 1.97 (dd, J = 7.4, 5.3 Hz, 1H).  
Chiral HPLC: The enantiopurity was determined to be 72:28 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.8 min, Minor: 

7.6 min).  

 

2,2,2-Trichloroethyl (1S,2R)-1-(2-chloropyridin-4-yl)-2-phenylcyclopropane-1-
carboxylate (42) 
 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

(6-chloropyridin-3-yl)-2-diazoacetate (0.2 mmol, 65.8 mg, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an amorphous 

solid (31.3 mg, 39%). Spectra matched literature precedent.3  
1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 2.5 Hz, 1H), δ 7.29 (m, 1H), δ 7.16 (dq, J = 

4.7, 2.2 Hz, 3H), δ 7.08 (d, J = 8.0 Hz, 1H), 6.86 (dd, J = 7.4, 2.2 Hz, 2H), δ 4.86 (d, J = 

11.9 Hz, 1H), δ 4.68 (d, J = 11.9 Hz, 1H), δ 3.30 (dd, J = 9.4, 7.5 Hz, 1H), δ 2.37 (dd, J 

= 9.4, 5.4 Hz, 1H), δ 2.07 (dd, J = 7.5, 5.4 Hz, 1H). 
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Chiral HPLC: The enantiopurity was determined to be 82:18 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 14.8 min, Minor: 

19.2 min).  

 

 

2,2,2-Trichloroethyl (1S,2R)-1-(3-methoxyphenyl)-2-phenylcyclopropane-1-
carboxylate (43) 
 

General procedure 1 was employed for the cyclopropanation of 

styrene (57.5 µL, 0.5 mmol, 2.5 equiv) with 2,2,2-trichloroethyl 2-

diazo-2-(3-methoxyphenyl)acetate (0.2 mmol, 64.7 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an oil (61.3 mg, 

77%). Spectra matched literature precedent.13  
1H NMR (400 MHz, CDCl3) δ 7.10 (dd, J = 5.1, 1.9 Hz, 3H), δ 7.05 (t, J = 7.9 Hz, 1H), δ 

6.83 (m, 2H), δ 6.69 (t, 6.3 Hz, 2H), δ 6.56 (m, 1H), δ 4.87 (d, J = 11.8 Hz, 1H), δ 4.65 

(d, J = 11.8 Hz, 1H), δ 3.59 (s, 3H), δ 3.21 (dd, J = 9.4, 7.5 Hz, 1H), δ 2.27 (d, J = 9.4, 

5.2 Hz, 1H), δ 2.00 (dd, J = 7.5, 5.1 Hz, 1H). 
Chiral HPLC: The enantiopurity was determined to be 79:21 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 8.0 min, Minor: 

7.1 min).  

 

Methyl (1S,2S)-1-(4-bromophenyl)-2-butylcyclopropane-1-carboxylate (44) 
 
General procedure 2 was employed for the cyclopropanation of 

hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with methyl 2-(4-

bromophenyl)-2-diazoacetate (0.2 mmol, 74.5 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded a clear 

colorless oil (51.0 mg, 41%). 
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1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 3.63 (s, 

3H), 1.84 (tdd, J = 9.0, 6.7, 4.3 Hz, 1H), 1.73 (dd, J = 9.0, 4.1 Hz, 1H), 1.42-1.32 (m, 

3H), 1.31-1.19 (m, 2H), 1.07 (dd, J = 6.7, 4.1 Hz, 1H), 0.84 (t, J = 7.2 Hz, 3H), 0.51 

(ddd, J = 11.9, 9.7, 7.8 Hz, 1H).  
13C NMR (101 MHz, CDCl3): δ 174.7, 135.5, 133.1, 132.1, 131.2, 121.1, 52.4, 33.1, 

31.3, 30.0, 28.8, 22.4, 21.8, 14.0. 

HRMS (+p APCI) calcd for C15H20O2Br (M+H) 311.0641 found 311.0638. 

Chiral HPLC: The enantiopurity was determined to be 79:21 er by chiral HPLC analysis 

(S,S, Whelk, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 24.2 min, Minor: 

14.7 min).  

 

 

2,2,2-Trifluoroethyl (1S,2S)-1-(4-bromophenyl)-2-butylcyclopropane-1-carboxylate 
(45) 

 

General procedure 2 was employed for the cyclopropanation of 

hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-trifluoroethyl 

2-(4-bromophenyl)-2-diazoacetate (0.2 mmol, 64.6 mg, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as 

catalyst. Purification by column chromatography afforded an oil 

(53.8 mg, 71%). 
1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.5 Hz, 2H), 4.50 (dq, 

J = 12.7, 8.4 Hz, 1H), 4.32 (dq, J = 12.7, 8.4 Hz, 1H), 1.89 (tdd, J = 9.0, 6.8, 4.3 Hz, 

1H), 1.80 (dd, J = 9.0, 4.3 Hz, 1H), 1.42-1.31 (m, 3H), 1.29-1.20 (m, 2H), 1.17 (dd, J = 

6.8, 4.3 Hz, 1H), 0.83 (t, J = 7.2 Hz, 3H), 0.53 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 172.6, 134.3, 133.0, 131.3, 122.7 (q, J = 277.4 Hz), 

121.5, 60.7 (q, J = 36.6 Hz), 32.8, 31.2, 30.0, 29.7, 22.4, 22.1, 14.0. 
19F NMR (376 MHz, CDCl3) δ -73.93. 
HRMS (+p APCI) calcd for C16H19O2BrF3 (M+H) 379.0515 found 379.0511. 
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Chiral HPLC: The enantiopurity was determined to be 95:5 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 5.4 min, Minor: 

4.3 min).  

 

2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(4-(trifluoroMethyl)phenyl)cyclopropane-1-
carboxylate (46) 
 
 

General procedure 2 was employed for the cyclopropanation 

of hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate (0.2 

mmol, 72.3 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.648 

mg, 1 mol %) as catalyst. Purification by column 

chromatography afforded a clear colorless oil (59.9 mg, 74%).  
1H NMR (400 MHz, CDCl3): δ 7.62 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 4.82 (d, 

J = 11.9 Hz, 1H), 4.59 (d, J = 11.9 Hz, 1H), 2.00 (ddd, J = 9.0, 6.5, 4.2 Hz, 1H), 1.94 

(dd, J = 9.0, 4.2 Hz, 1H), 1.47-1.35 (m, 3H), 1.27 (dt, J = 10.0, 6.2 Hz, 3H), 0.85 (t, J = 

7.3 Hz, 3H), 0.56 (dt, J = 11.5, 7.3 Hz, 1H). 

13C NMR (101 MHz, CDCl3): δ 172.3, 139.4 (d, J = 1.1 Hz), 131.8, 125.0 (q, J = 3.9 Hz), 

124.0 (q, J = 270.5 Hz), 94.9, 74.3, 33.4, 31.2, 30.0, 29.7, 22.4, 22.0, 14.0. 
19F NMR (376 MHz, CDCl3) δ -62.49. 
HRMS (+p APCI) calcd for C17H19O2Cl3F3 (M+H) 417.0397 found 417.0392. 

Chiral HPLC: The enantiopurity was determined to be 90:10 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=210 nm, RT: Major: 3.8 min, Minor: 

4.3 min).  

 

 

2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(4-(tert-butyl)phenyl)cyclopropane-1-
carboxylate (47) 
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General procedure 2 was employed for the cyclopropanation 

of hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-(4-(tert-butyl)phenyl)-2-diazoacetate (0.2 

mmol, 69.9 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 

mg, 1 mol %) as catalyst. Purification by column 

chromatography afforded a clear colorless oil (63.3 mg, 87%). 
1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 4.79 (d, 

J = 12.0 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 1.93 (tdd, J = 8.9, 6.7, 4.5 Hz, 1H), 1.85 (dd, 

J = 9.1, 4.1 Hz, 1H), 1.47-1.35 (m, 3H), 1.32 (s, 9H), 1.21 (dd, J = 6.7, 4.1 Hz, 1H), 0.83 

(J = 7.2 Hz, 3H), 0.71-0.59 (m, 1H).  
13C NMR (101 MHZ, CDCl3) δ 173.2, 150.1, 132.1, 131.0, 124.9, 95.2, 74.2, 34.5, 33.1, 

31.3, 29.9, 29.5, 22.4, 21.7, 14.0. 
HRMS (+p ACPI) calcd for C20H28O2Cl3 (M+H) 405.1149 found 405.1151. 

Chiral HPLC: The enantiopurity was determined to be 88:12 er by chiral HPLC analysis 

(Chiracel AD-H, 0.5% IPA/Hexanes, 1.0 mL/min, λ=210 nm, RT: Major: 7.1 min, Minor: 

7.6 min). 

 

2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(4-fluorophenyl)cyclopropane-1-carboxylate 
(48) 

 

General procedure 2 was employed for the cyclopropanation 

of hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-diazo-2-(4-fluorophenyl)acetate (0.2 mmol, 

62.3 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 

mol %) as catalyst. Purification by column chromatography 

afforded an oil (40.9 mg, 56%). 
1H NMR (400 MHz, CDCl3) δ 7.35-7.25 (m, 2H), 7.04 (t, J = 8.7 Hz, 2H), 4.80 (d, J = 

11.9 H, 1H), 4.58 (d, J = 11.9 Hz, 1H), 1.95 (tdd, J = 11.0, 4.8, 3.2 Hz, 1H), 1.88 (dd, J = 

9.0, 4.0 Hz, 1H), 1.48-1.33 (m, 3H), 1.33-1.23 (m, 2H), 1.21 (dd, J = 6.7, 4.0 Hz, 1H), 

0.85 (t, J = 7.2 Hz, 3H), 0.67-0.56 (m, 1H). 
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13C NMR (101 MHz, CDCl3) δ 172.9, 161.0 (d, J = 249.8 Hz) 133.0 (d, J = 8.2 Hz), 

131.1 (d, J = 3.3 Hz), 114.9 (d, J = 21.5 Hz), 95.1, 74.3, 32.8, 31.2, 30.0, 29.6, 22.4, 

22.1, 14.0. 
19F NMR (376 MHz, CDCl3) δ -115.05. 
HRMS (+p APCI): calcd for C16H19O2Cl3F (M+H) 367.0429 found 367.0430. 

Chiral HPLC: The enantiopurity was determined to be 96:4 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=210 nm, RT: Major: 4.1 min, Minor: 

4.5 min). 

 

2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(4-methoxyphenyl)cyclopropane-1-
carboxylate (49) 
 

General procedure 2 was employed for the cyclopropanation 

of hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-diazo-2-(3-methoxyphenyl)acetate (0.2 mmol, 

64.7 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 

mol %) as catalyst. Purification by column chromatography 

afforded an oil (43.5 mg, 57%) 
1H NMR (400 MHz, CDCl3) δ 7.22 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.79 (d, 

J = 12.0 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H) 3.81 (s, 3H), 1.95-1.86 (m, 1H), 1.83 (dd, J = 

9.1, 3.9 Hz, 1H), 1.44-1.32 (m, 3H), 1.25 (pd, J = 7.8, 3.2 Hz, 2H), 1.17 (dd, J = 6.7, 4.0 

Hz, 1H), 0.83 (t, J = 7.3 Hz, 3H), 0.67-0.56 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 173.4, 158.7, 132.5, 127.4, 113.4, 95.2, 74.2, 55.2, 32.8, 

31.3, 29.9, 29.6, 22.4, 22.0, 14.0. 

HRMS (+p APCI) calcdd for C17H21Cl3O3 (M+H) 379.0629 found 379.0629. 

Chiral HPLC The enantiopurity was determined to be 76:24 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=280 nm, RT: Major: 5.3 min, Minor: 

5.9 min). 

 

2,2,2-Trichloroethyl (1S,2S)-1-([1,1'-biphenyl]-4-yl)-2-butylcyclopropane-1-
carboxylate (50) 
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General procedure 2 was employed for the cyclopropanation 

of hex-1-ene (250 µL, 2.000 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-diazo-2-(4-fluorophenyl)acetate (0.2 mmol, 

73.9 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol 

%) as catalyst. Purification by column chromatography 

afforded a clear colorless oil (42.6 mg, 50%). 
1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H) 7.48 (d, J 

= 7.6 Hz, 2H), 7.43-7.33 (m, 3H), 4.85 (d, J = 12.0 Hz, 1H), 4.61 (d, J = 12.0 Hz, 1H), 

2.00 (m, 1H), 1.92 (dd, J = 9.1, 4.1 Hz, 1H), 1.51-1.37 (m, 3H), 1.29 (pd, J = 8.5, 5.8 Hz, 

3H), 0.86 (t, J = 7.2 Hz, 3H), 0.74-0.64 (m, 1H).  
13C NMR (101, CDCl3) δ 173.1, 140.8, 140.1, 134.4, 131.8, 128.8, 127.3, 127.1, 126.7, 

95.2, 74.2, 33.3, 31.3, 30.0, 29.7, 22.4, 21.9, 14.0. 
HRMS (+p APCI) calcdd for C22H24Cl3O2 (M+H) 425.0836 found 425.0830. 

Chiral HPLC: The enantiopurity was determined to be 90:10 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.6 min, Minor: 

5.3 min). 

 

 
2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(naphthalen-2-yl)cyclopropane-1-
carboxylate (51) 
 

 
General procedure 2 was employed for the cyclopropanation 

of hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-diazo-2-(naphthalen-2-yl)acetate (0.2 mmol, 

68.7 mg, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol 

%) as catalyst. Purification by column chromatography 

afforded an oil (46.3 mg, 58%). Spectra matched literature 

precedent.13 
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1H NMR (400 MHz, CDCl3) δ 7.83 (m, 3H), δ 7.75 (d, J = 1.7 Hz, 1H), δ 7.48 (m, 3H), δ 

4.86 (d, J = 11.9 Hz, 1H), δ 4.55 (d, J = 11.9 Hz, 1H), δ 2.03 (tdd, J = 9.0, 6.4, 4.3 Hz, 

1H), δ 1.95 (dd, J = 9.0, 4.3 Hz, 1H), δ 1.40 (ddt, J = 14.7, 9.0, 6.4 Hz, 4H), δ 1.22 (tdd, 

J = 14.7, 7.3, 1.3 Hz, 2H), δ 0.81 (t, J = 7.3, 3H), δ 0.62 (m, 1H).  

Chiral HPLC: The enantiopurity was determined to be 97:3 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=280 nm, RT: Major: 4.9 min, Minor: 

5.4 min). 

 

 

2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(3-iodophenyl)cyclopropane-1-carboxylate 
(52) 
 

General procedure 2 was employed for the cyclopropanation of 

hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-trichloroethyl 

2-diazo-2-(3-iodophenyl)acetate (0.2 mmol, 83.9 mg, 1.0 equiv) 

using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as catalyst. 

Purification by column chromatography afforded an oil (62.8 mg, 

63%). 
1H NMR (400 MHz, CDCl3) δ 7.70 (t, J = 1.7 Hz, 1H), 7.64 (ddd, J = 7.8, 1.7, 1.0 Hz, 

1H), 7.35-7.27 (m, 1H), 7.09 (t, J = 7.8 Hz, 1H), 4.84 (d, J = 11.9 Hz, 1H), 4.55 (d, J = 

11.90 Hz, 1H), 1.94 (ddt, J = 8.9, 6.7, 4.6 Hz, 1H), 1.87 (dd, J = 9.0, 4.2 Hz, 1H), 1.40 

(ttd, J = 8.9, 4.4, 1.9 Hz, 3H), 1.33-1.25 (m, 2H), 1.22 (dd, J = 6.8, 4.2 Hz, 1H), 0.86 (t, J 

= 7.3 Hz, 3H), 0.68-0.56 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 172.4, 140.5, 137.7, 136.4, 130.8, 129.6, 95.0, 93.7, 

74.3, 33.2, 31.2, 29.9, 29.8, 22.4, 21.9, 14.0. 

HRMS (+p APCI) calcdd for C16H19Cl3IO2 (M+H) 474.9490 found 474.9486. 

Chiral HPLC: The enantiopurity was determined to be 89:11 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 0.25 mL/min, λ=230 nm, RT: Major: 19.0 min, 

Minor: 17.0 min). 
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2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-((E)-styryl)cyclopropane-1-carboxylate (53) 
 

General procedure 2 was employed for the cyclopropanation of 

hex-1-ene (250 µL, 2.0 mmol, 10 equiv) with 2,2,2-trichloroethyl 

(E)-2-diazo-4-phenylbut-3-enoate (0.2 mmol, 63.9 mg, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as 

catalyst. Purification by column chromatography afforded an oil 

(50.2 mg, 67%).  
1H NMR (400 MHz, CDCl3) δ 7.40 (dd, J = 8.32, 1.40 Hz, 2H), 7.36-7.30 (m, 2H), 7.26-

7.21 (m, 2H), 6.67 (d, J = 16.0 Hz, 1H), 6.40 (d, J = 16.0 Hz, 1H), 4.80 (d, J = 11.9 Hz, 

1H), 4.71 (d, J = 11.9 Hz, 1H), 1.84-1.72 (m, 2H), 1.38-1.27 (m, 6H), 1.27-1.19 (m, 2H), 

0.86 (t, J = 7.1 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 172.1, 137.0, 132.4, 128.6, 127.5, 126.3, 123.6, 95.2, 

74.2, 32.6, 31.5, 30.4, 27.8, 22.3, 19.9, 14.0. 

HRMS (+p ACPI) clac for C18H22O2Cl3 (M+H) 375.0680 found 375.0678. 

Chiral HPLC: The enantiopurity was determined to be 92:8 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 15.6 min, Minor: 

7.0 min).  

 

 

 

 

2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(2-chloropyridin-4-yl)cyclopropane-1-
carboxylate (54) 
 

A modified General procedure 2 was employed with the 

temperature set to 40 °C for the cyclopropanation of Hex-1-ene 

(250 µL, 2.0 mmol, 10 equiv) with 2,2,2-trichloroethyl 2-(6-

chloropyridin-3-yl)-2-diazoacetate (0.2 mmol, 65.8 mg, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as 
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catalyst. Purification by column chromatography afforded a clear colorless oil (54.4 mg, 

67%). Spectra matched literature precedent.13 
1H NMR (400 MHz, CDCl3): δ 8.35 (m, 1H), δ 7.64 (dd, J = 8.2, 2.5 Hz, 1H), δ 7.33 (dd, 

J = 8.2, 0.7 Hz, 1H), δ 4.80 (d, J = 11.9 Hz, 1H), δ 4.59 (d, J = 11.9 Hz, 1H), δ 1.97 (m, 

2H), δ 1.40 (m, 3H), δ 1.26 (m, 3H), δ 0.85 (t, J = 7.31 Hz, 3H), δ 0.60 (m, 1H). 

Chiral HPLC The enantiopurity was determined to be 89:11 er by chiral HPLC analysis 

(Chiracel OD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=254 nm, RT: Major: 6.5 min, Minor: 

4.0 min).  

 

 

2,2,2-Trichloroethyl (1S,2S)-2-butyl-1-(3-methoxyphenyl)cyclopropane-1-
carboxylate (55) 
 

General procedure 2 was employed for the cyclopropanation of 

hex-1-ene (250 µL, 2.0 mmol, 10 equiv) 2,2,2-trichloroethyl 2-

diazo-2-(4-methoxyphenyl)acetate (0.2 mmol, 64.7 mg, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1 mol %) as 

catalyst. Purification by column chromatography afforded a 

clear colorless oil (48.8 mg, 54%):  
1H NMR (400 MHz, CDCl3) δ 7.29 (d, J = 8.8 Hz, 1H), δ 6.94 (m, 1H), δ 6.89 (m, 1H), δ 

6.87 (m, 1H), δ 4.86 (d, J = 11.9 Hz, 1H), δ 4.59 (d, J = 11.9 Hz, 1H), δ 3.85 (s, 3H), δ 

1.97 (tdd, J = 9.1, 6.8, 4.3 Hz, 1H), δ 1.87 (dd, J = 9.1, 4.3 Hz, 1H), δ 1.43 (m, 3H), δ 

1.30 (m, 2H), δ 1.25 (m, 1H), δ 0.87 (t, J = 7.3 Hz, 3H), 0.67 (m, 1H).  
13C NMR (101 MHz, CDCl3) δ 173.0, 159.2, 136.8, 128.9, 123.9, 117.2, 112.9, 95.2, 

74.2, 55.2, 33.6, 31.3, 29.9, 29.6, 22.0, 22.4, 14.0.  

HRMS (+p APCI) calcd for C17H21Cl3O3 (M+H) 378.0551 found 378.0549. 

Chiral HPLC The enantiopurity was determined to be 88:12 er by chiral HPLC analysis 

(R,R, Whelk 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: Major: 6.5 min, Minor: 9.6 

min). 
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Catalyst Synthesis 
 
 
Synthesis of Co2(S-TPPTTL)4 
 

In a nitrogen-filled glovebox, a solution of KHMDS (200 mg, 

1.00 mmol) in THF (6 mL) was added dropwise to a 

solution of S-TPPTTL (566 mg, 1.00 mmol) in THF (6 mL) 

and stirred for 5 mins. To this mixture, a partially dissolved 

suspension of CoCl2 (64.9 mg, 0.50 mmol) in THF (10 mL) 

was transferred dropwise over 5 mins, resulting in a deep 

purple colored mixture that was stirred for 16h at r.t. At this 

time, all volatiles were removed in vacuo and resulting powder was reconstituted in 

DCM (25 mL), then filtered. All volatiles were removed from the filtrate in vacuo, 

affording a magenta-colored power (532 mg).   

HRMS (+p ESI): Calcd for C₁₅₂H₁₂₁O₁₆N₄59Co₂ 2375.7436, found 2375.7428. 

 

 

Ru2(S-TPPTTL)4Cl (17-Cl) 
 

Into a 25 mL round bottom flask equipped with a stir bar was 

added TPPTTL ligand (0.955 g, 1.74 mmol, 8 equiv) and 

Ru2(OAc)4Cl (0.100 g, 0.218 mmol, 1 equiv). Then 20 mL of 

chlorobenzene was added. The flask was fitted to a Soxhlet 

extractor, and the thimble was charged with glass wool, 

K2CO3, and a small layer of sand. The reaction was heated to 

168 °C and a rigorous reflux was observed. The reaction was 

left for 24 h. The reaction was monitored by TLC. Once a brown moving spot was seen 

on TLC, the reaction was stopped, the solvent removed, and the product was dry 

loaded onto silica gel and subjected to flash chromatography (0-13% EtOAc/Hex). The 
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product eluted as a brown band to afford a brown solid upon concentration (0.391 mg, 

83% yield). Crystals suitable for X-ray crystallography were grown from the slow 

evaporation of layered hexane over toluene. No NMR data are available for this 

compound due to its paramagnetic character.  The key data for the structural 

characterization were obtained by HRMS and X-ray crystallography. 

HRMS (+p ESI): Calcd for C152H120O16N496Ru2 (M-Cl) 2448.6846 found 2448.6907 

 
 

Ru2(S-TPPTTL)4BArF (17-BArF) 
 

To a 20 mL vial was equipped with a stir bar 

was added Ru2(S-TPPTTL)4Cl (250 mg, 

0.10 mmol, 1.0 equiv) which was 

subsequently dissolved in 1.00 mL of DCM. 

Then, NaBArF (88.8 mg, 0.10 mmol, 1.0 

equiv) was added in one portion. The 

reaction was left to stir for 24 h, at which 

point the resulting solution was passed through a short silica plug (1:1 DCM/EtOAc 

eluent), the solution was concentrated and dried to afford a brown/orange solid (308 

mg, 93% yield).  

HRMS (+p ESI): Calcd for C152H120N4O16Ru2+ (M+) 2448.6846 found 2448.6870 

HRMS (-p ESI): Calcd for C32H12BF24- (M-) 862.0691 found 863.0716. 

 

Ru2(S-PTTL)4Cl (18-Cl) 

N
O

O

O

O Ru

Ru

4

B

CF3F3C

F3C

F3C

F3C CF3

CF3

CF3

Ph

Ph
Ph

Ph



 

 125 

 
Into a 25 mL round bottom flask equipped with a stir bar was 

added PTTL ligand (0.441 g, 1.69 mmol, 8 equiv) and 

Ru2(OAc)4Cl (0.100 g, 0.211 mmol, 1 equiv). Then 16 mL of 

chlorobenzene was added. The flask was fitted to a Soxhlet 

extractor, and the thimble was charged with glass wool, K2CO3, 

and a small layer of sand. The reaction was heated to 168 °C 

and a rigorous reflux was observed. The reaction was left for 24 

hrs. The reaction was monitored by TLC. Once a brown moving spot was seen on TLC, 

the reaction was stopped, the solvent removed, and the product was dry loaded onto 

silica gel and subjected to flash chromatography (0-3% Methanol/DCM). The product 

eluted as a brown band and afforded a brown solid upon concentration (71.4 mg, Yield 

27%). Crystals suitable for X-ray crystallography were grown from the vapor diffusion of 

acetonitrile into a solution of toluene. 

HR-MS: Calcd for C56H56O16N496Ru2 (M-Cl) 1232.1838 found 1232.1866. 

 

 
Ru2(S-PTTL)4BArF (18-BArF) 

 
To a 20 mL vial was equipped with a stir bar 

was added Ru2(S-PTTL)4Cl (165.5 mg, 

0.129 mmol, 1.0 equiv) which was 

subsequently dissolved in 0.50 mL of DCM. 

Then, NaBArF (120.4 mg, 0.1359 mmol, 1 

equiv) was added in one portion. The 

reaction was left to stir for 24 h, at which 

point the resulting solution was passed through a short silica plug (1:1 DCM/EtOAc 

eluent), the solution was concentrated and dried to afford a brown/orange solid (265 

mg, 97% yield) 
HRMS (+p ESI): Calcd for C56H56O16N496Ru2 (M+) 1232.1838  found 1232.1859 

HRMS (-p ESI): Calcd for C32H12BF24- (M-) 862.0691 found 862.0707. 
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Ru2(S-PTAD)4Cl (19-Cl) 
 

Into a 25 mL round bottom flask equipped with a stir bar was 

added PTAD ligand (0.344 g, 1.01 mmol, 8 equiv) and 

Ru2(OAc)4Cl (60.0 mg, 0.126 mmol, 1 equiv). Then 16 mL of 

chlorobenzene was added. The flask was fitted to a Soxhlet 

extractor, and the thimble was charged with glass wool, 

K2CO3, and a small layer of sand. The reaction was heated to 

168 °C and a rigorous reflux was observed. The reaction was 

left for 24 hrs. The reaction was monitored by TLC. Once a brown moving spot was 

seen on TLC, the reaction was stopped, the solvent removed, and the product was dry 

loaded onto silica gel and subjected to flash chromatography (0-3% DCM/Methanol). 

The product eluted as a brown band and afforded a brown solid upon concentration 

(90.0 mg, Yield 45%). Crystals suitable for X-ray crystallography were grown from the 

vapor diffusion of acetonitrile into a solution of toluene. 

HRMS (+p ESI): Calcd for C80H80O16N496Ru2 (M-Cl) 1544.3716 found 1544.3709.  

 
 
Ru2(S-PTAD)4BArF (19-BArF) 

 

To a 20 mL vial was equipped with a 

stir bar was added Ru2(S-PTAD)4Cl 

(66.3 mg, 0.041 mmol, 1.0 equiv) 

which was subsequently dissolved in 

0.50 mL of DCM. Then, NaBArF (38.8 

mg, 0.0438 mmol, 1.05 equiv) was 

added in one portion. The reaction was 

left to stir for 24 h, at which point the resulting solution was passed through a short silica 

plug (1:1 DCM/EtOAc eluent), the solution was concentrated and dried to afford a 

brown/orange solid (76 mg, 75% Yield) 
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HRMS (+p ESI): Calcd for C80H80O16N496Ru2 (M+) 1544.3716 found 1544.3717.  

HRMS (-p ESI): Calcd for C32H12BF24- (M-) 862.0691 found 862.0709 

 
Ru2(S-TCPTAD)4Cl (20-Cl) 
 

Into a 25 mL round bottom flask equipped with a stir bar 

was added TCPTAD ligand (0.379 g, 0.794 mmol, 8 

equiv) and Ru2(OAc)4Cl (47.0 mg, 0.099 mmol, 1 equiv). 

Then 16 mL of chlorobenzene was added. The flask was 

fitted to a Soxhlet extractor, and the thimble was charged 

with glass wool, K2CO3, and a small layer of sand. The 

reaction was heated to 168 °C and a rigorous reflux was 

observed. The reaction was left for 24 hrs. The reaction was monitored by TLC. Once a 

brown moving spot was seen on TLC, the reaction was stopped, the solvent removed, 

and the product was dry loaded onto silica gel and subjected to flash chromatography 

(0-14% Hexanes/Ethyl Acetate). The product eluted as a brown band and afforded a 

brown solid upon concentration (115.0 mg, Yield 54%). Crystals suitable for X-ray 

crystallography were grown from the vapor diffusion of acetonitrile into a solution of 

toluene. 

HRMS (+p ESI): Calcd for C100H80Cl20N5O20Ru2 (M-Cl+TCPTAD Ligand) 2561.7310 

found 2561.7453 

 
 
Ru2(S-TCPTAD)4BArF (20-BArF) 
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To a 20 mL vial was equipped with a stir bar 

was added Ru2(S-TCPTAD)4Cl (227 mg, 

0.106 mmol, 1.0 equiv) which was 

subsequently dissolved in 1.00 mL of DCM. 

Then, NaBArF (98.6 mg, 0.111 mmol, 1.05 

equiv) was added in one portion. The 

reaction was left to stir for 24 h, at which 

point the resulting solution was passed through a short silica plug (1:1 DCM/EtOAc 

eluent), the solution was concentrated and dried to afford a brown/orange solid (237 

mg, 87% Yield) 

HRMS (+p ESI): Calcd for C80H64Cl16N4O1696Ru2 (M+) 2087.7480 found 2087.7690 

HRMS (-p ESI): Calcd for C32H12BF24- (M-) 862.0691 found 862.0689  

 

 
 
Ru2(S-NTTL)4Cl (21-Cl) 
 

Into a 25 mL round bottom flask equipped with a stir bar 

was added NTTL ligand (1.04 g, 3.35 mmol, 8 equiv) and 

Ru2(OAc)4Cl (200.0 mg, 0.419 mmol, 1 equiv). Then 16 

mL of chlorobenzene was added. The flask was fitted to 

a Soxhlet extractor, and the thimble was charged with 

glass wool, K2CO3, and a small layer of sand. The 

reaction was heated to 168 °C and a rigorous reflux was 

observed. The reaction was left for 24 hrs. The reaction 

was monitored by TLC. Once a brown moving spot was seen on TLC, the reaction was 

stopped, the solvent removed, and the product was dry loaded onto silica gel and 

subjected to flash chromatography (0-4% DCM/Methanol). The product eluted as a 

brown band and afforded a brown solid upon concentration (268.3 mg, Yield 43%). 

Crystals suitable for X-ray crystallography were grown from slow evaporation of HFIP. 

HRMS (+p ESI): Calcd for C72H64O16N496Ru2 (M-Cl) 1432.2464 found 1432.2525. 
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Ru2(S-NTTL)4BArF (21-BArF) 
 

To a 20 mL vial was equipped with a stir 

bar was added Ru2(S-NTTL)4Cl (100 mg, 

0.067 mmol, 1.0 equiv) to which 0.50 mL of 

DCM was added. This resulted in a cloudy 

brown/red solution. Then, NaBArF (65.8 

mg, 0.074 mmol, 1.1 equiv) was added in 

one portion, and an immediately the 

soltuoin went to a clear, dark orange color. The reaction was left to stir for 24 h, at which 

point the resulting solution was passed through a short silica plug (1:1 DCM/EtOAc 

eluent), the solution was concentrated and dried to afford a brown/orange solid  (153.6 

mg, 99% Yield) 

HRMS (+p ESI): Calcd for C72H64O16N496Ru2 (M+) 1432.2460 found 1432.2488. 

HRMS (-p ESI): Calcd for C32H12BF24- (M-) 862.0691 found 862.0704. 
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All reported HR-MS values fall below the 5 ppm delta threshold except for 

Ru2(TCPTAD)4Cl (∆ = 5.45 ppm) and Ru2(TCPTAD)4BArF (∆ = 9.99 ppm). Reported 

masses were taken from the lowest isotopic peak which could be the cause for the error 

observed in these two complexes. When taking the average isotopic peak, the calculated 

∆ value is significantly lowered to below the 5 ppm threshold. 

 
 
Co2(S-TPPTTL)4 (Top, observed. Bottom, simulated) 
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Ru2(S-TPPTTL)4Cl (17-Cl) (Top, observed. Bottom, simulated) 
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Ru2(S-TPPTTL)4BArF (17-BArF) (Top, observed. Bottom, simulated)
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BArF Counter Ion (Top, observed. Bottom, simulated) 
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Ru2(S-PTTL)4Cl (18-Cl) (Top, observed. Bottom, simulated) 
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Ru2(S-PTTL)4BArF (18-BArF) (Top, observed. Bottom, simulated)
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BArF Counterion (Top, observed. Bottom, simulated) 
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Ru2(S-PTAD)4Cl (19-Cl) (Top, observed. Bottom, simulated) 
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Ru2(S-PTAD)4BArF (19-BArF) (Top, observed. Bottom, simulated) 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 139 

 
 
 
 
BArF Counterion (Top, observed. Bottom, simulated) 
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Ru2(S-TCPTAD)4Cl (20-Cl) (Top, observed. Bottom, simulated) 
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Ru2(S-TCPTAD)4BArF (20-BArF) (Top, observed. Bottom, simulated) 
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BArF Counterion (Top, observed. Bottom, simulated) 
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Ru2(S-NTTL)4Cl (21-Cl) (Top, observed. Bottom, simulated) 
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Ru2(S-NTTL)4BArF (21-BArF) (Top, observed. Bottom, simulated) 
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BArF Counterion (Top, observed. Bottom, simulated) 
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General Procedure for cobalt-catalyzed cyclopropanation: 
 
To a flame dried vial equipped with a stir bar and 4Å MS under inert atmosphere was 

added catalyst (10mol %) and substrate (0.5 mmol, 2.5 equiv) which was subsequently 

dissolved in 2 mL of DCM. Then, the diazo compound (0.20 mmol, 1.0 equiv) was 

dissolved in 2 mL of DCM and added to the reaction vial over a period of 2 h using a 

syringe pump. The reaction was run at room temperature or 40 °C for 18 h. Once 

completed the reaction solution was passed through a small silica plug to remove cobalt 

catalyst, concentrated in vacuo, and purified through flash chromatography (0-18% 

Hexanes/diethyl ether) to afford the desired product. 

 

React IR Experiments 
 
General Procedure for react IR Experiments: 
An oven dried three-neck round bottom flask equipped with a stir bar and 4Å MS was 

fitted to the React IR 45m probe and backfilled with nitrogen 3 times. Then, DCM (11 

mL) was added to the flask and was equilibrated for 15 minutes. Styrene (xx equiv) and 

aryldiazoacetate (0.600 mmol) were added to the flask sequentially and the flask was 

left to equilibrate for 15 min. The React IR was set to monitor the diazo stretching 

vibration at 2300 cm-1. After the equilibration, the catalysts (xxmol %) was dissolved in 1 

mL of DCM and added to the reaction flask in one portion. After completion of reaction 

(monitored by the disappearance of the peak at 2300 cm-1), the reaction was 

concentrated and purified through flash chromatography (0% hexanes/diethyl ether, 0-

18% hexanes/diethyl ether) to afford a crystalline solid. 
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HPLC Chromatographs 
 

HPLC chromatographs for cobalt-catalyzed cyclopropanation 

 

  
Compound 12 
Cobalt-catalyzed reaction at 25 °C 
 

 

 

 
 
Cobalt-catalyzed reaction at 40 °C 
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Chromatographs for catalyst screen of cyclopropanation of styrene 
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Reaction with 17-Cl

 

 
Reaction with 17-BArF 

 

 
 
Reaction with 18-Cl 
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Reaction with 18-BArF 

 

 
 
Reaction with 19-Cl 

 

 
Reaction with 19-BArF 
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Reaction with 20-Cl 
 

 

 
 
Reaction with 20-BArF 
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Reaction with 21-Cl 

 

 
 
Reaction with 21-BArF 
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Reaction with S18 

 
 

 
 
Reaction with S19 
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HPLC Chromatographs for substrate scope 
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Compound 23 
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Compound 24 
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Compound 25 
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Compound 26 
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Compound 27 
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Compound 28 
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Compound 29 
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Compound 30
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Compound 31 
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Compound 33 
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Compound 34 
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Compound 35 
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Compound 36 
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Compound 37 
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Compound 38 
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Compound 39 
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Compound 40 
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Compound 41
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Compound 42
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Compound 43 
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Compound 44 
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Compound 45 
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Compound 46 

 
 

 
 

 

 
 
 
 
 
 

O

O

Br

Racemate 

Chiral Catalyst 



 

 179 

 
Compound 47 
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Compound 48
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Compound 49 
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Compound 50
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Compound 51 
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Compound 52
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Compound 53
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Compound 54
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Compound 55
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Compound 56
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Compound 57
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HPLC Chromatographs for React IR Experiments 
 
React IR experiments varying the equivalents of styrene: 
 
5.0 equivalents of styrene, 1.0mol % catalyst loading. 

 

 
 
3.0 equivalents of styrene, 1.0mol % catalyst loading. 

 

 
 
1.5 equivalents of styrene, 1.0mol % catalyst loading. 
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React IR experiments varying the catalyst loading 
 
3.0 equivalents of styrene, 0.5mol % catalyst loading. 

 

 
 
3.0 equivalents of styrene, 0.1 mol % catalyst loading. 
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NMR Spectra for Novel Compounds 
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Computational Details 
 All calculations were carried out by utilizing the Gaussian-16 quantum chemistry 
software package.14 Geometries, frequencies, and thermodynamic parameters of these 
species were calculated at the B3LYP density functional,15-17  in conjunction with 
Grimme’s empirical dispersion-correction (D3)18,  and Becke and Becke-Johnson (BJ) 
damping-corrections,19-21  In these calculations we utilized the 6-31G(d,p) basis sets for 
all atoms, except of transition metals (Cu, Co, Rh and Ru) and bromine. For later atoms 
we use LANL2DZ basis sets and associated effective core potentials (ECP).22, 23 Bulk 
solvent effects were incorporated into all calculations (including geometry optimizations 
and frequency calculations) using the self-consistent reaction field polarizable continuum 
model (IEF-PCM).24, 25 We chose dichloromethane as solvent. Below, we labeled this 
approximation as a [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] approximation. The 
reported thermodynamic data were computed at a temperature of 298.15K and at 1atm 
of pressure. Unless otherwise stated, energies are given as ΔH/ΔG in kcal/mol.  
 To validate the [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] calculated 
energetics of the reported structures we have also re-calculated their energetics at the 
[wB97xd26 + PCM]/[6-311+G(d,p)] + SDD27 (for Cu, Co, Rh, Ru, and Br)  level of theory 
by utilizing their [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] optimized geometries. The 
calculated energetics of these structures at the [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + 
Lanl2dz] and [wB97xd + PCM]/[6-311+G(d,p)] + SDD levels of theory are given in Table 
1S. As seen from this Table, both the [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] and 
[B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] and [wB97xd + PCM]/[6-311+G(d,p)] + 
SDD calculated energies lead to the same conclusions, while  the calculated values of 
each structure at these two levels of theory differ by a few kcal/mol.  Since, we have 
complete sets of the [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] calculated energies 
and geometries, for sake of simplicity, in this paper we discuss only the [B3LYP-
D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] calculated data. 
 
Table 1S. The Gibbs free energies (in kcal/mol) of various reported 
reactions calculated at the [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz] 
and [wB97xd + PCM]/[6-311+G(d,p)] + SDD levels of theory. The [wB97xd 
+ PCM]/[6-311+G(d,p)] + SDD reported energies include the Gibbs free 
corrections from the [B3LYP-D3(BJ)]+PCM/[6-31G(d,p) + Lanl2dz} level 
calculations. 
 
 Reaction B3LYP-D3(BJ)wB97XD 
 
        Diazo + Co2(OAc)4    ®  (Carbene)–Co2(OAc)4 
+ N2 
 (Diazo)–Co2(OAc)4  -4.8 -0.7 
 TS(N2-ext.)  19.1 20.9 
 (Carbene)–Co2(OAc)4 + N2  4.5 7.3 
 
        Diazo + [Ru2(OAc)4]+  ®  (Carbene)–
[Ru2(OAc)4]+ + N2 
 (Diazo)–[Ru2(OAc)4]+  3.0 3.0 
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 TS(N2-ext)  12.0 10.1  
 (Carbene)–[Ru2(OAc)4]+ + N2-15.3-21.5 
 
        Diazo + Cl[Ru2(OAc)4]  ®  (Carbene)–
Cl[Ru2(OAc)4] + N2 
 (Diazo)–Ru2(OAc)4Cl  -5.1 -13.8 
 TS(N2-ext.)  19.4 7.9 
 (Carbene)–[Ru2(OAc)4Cl] + N2-5.9-9.6 
 
         Cl[Ru2(OAc)4]  ®   Cl–  +  [Ru2(OAc)4]+  
   -19.3 -20.3 
  
          Diazo + [Rh2(OAc)4]  ®  (Carbene)–
[Rh2(OAc)4] + N2 
 (Diazo)–Rh2(OAc)4 -4.3  0.8 
 TS(N2-ext)  7.2 11.4 
 (Carbene)–Rh2(OAc)4 + N2  -15.3 -13.1 
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Appendix B. Chapter 3 Supporting Information 
 
 
CAUTION: Diazo compounds are high energy compounds and need to be treated with 

respect. Even though we experienced no energetic decomposition in this work, care 

should be taken in handling large quantities of diazo compounds. Large scale reactions 

should be conducted behind a blast shield. For a more complete analysis of the risks 

associated with diazo compounds see the recent review by Bull et. al.1 

 

General Considerations 
 
All experiments were carried out in flame-dried glassware under argon atmosphere 

unless otherwise stated. Flash column chromatography was performed on silica gel. 

Unless otherwise noted, all other reagents were obtained from commercial sources 

(Sigma Aldrich, Fisher, TCI Chemicals, AK Scientific, Combi Blocks, Oakwood 

Chemicals, Ambeed) and used as received without purification. 1H, 13C, and 19F NMR 

spectra were recorded at either 400 MHz (13C at 100 MHz) on Bruker 400 spectrometer 

or 600 MHz (13C at 151 MHz) on INOVA 600 or Bruker 600 spectrometer. NMR spectra 

were run in solutions of deuterated chloroform (CDCl3) with residual chloroform taken as 

an internal standard (7.26 ppm for 1H, and 77.16 ppm for 13C), and were reported in 

parts per million (ppm). The abbreviations for multiplicity are as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublet, etc. 

Coupling constants (J values) are obtained from the spectra. Thin layer chromatography 

was performed on aluminum-back silica gel plates with UV light and cerium aluminum 

molybdate (CAM) stain to visualize. Mass spectra were taken on a Thermo Finnigan 

LTQ-FTMS spectrometer with APCI or ESI. Enantiomeric excess (% ee) data were 

obtained on an Agilent 1100 HPLC or an Agilent 1290 Infinity UHPLC, eluting the 

purified products using a mixed solution of HPLC-grade 2-propanol (i-PrOH) and n-

hexane. Waters SFC eluting with supercritical CO2 and a 1:1 mixtures of HPLC grade 

methanol:isopropanol with 0.2% formic acid. 
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Preparation of Known Compounds 
 

 
Figure S1: Known compounds synthesized. 

 

Diazo Compounds 7 and  S1-S8 were prepared according to the established literature 

and matched the reported spectra.2 

1-Ru-5-Ru were prepared according to the established literature and matched the 

reported spectra.3 
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Catalyst Synthesis 
 

Ru2(S-pBr-TPCP)4Cl (3)  
To a 25 mL RBF equipped with a stir bar was added 1-(4-

bromophenyl)-2,2-diphenylcyclopropane-1-carboxylic acid 

(205 mg, 8 equiv, 521 μmol) and Ru2(OAc)4Cl (50.0 mg, 1 

equiv, 65.2 μmol). The solids were subsequently dissolved in 

tert-butylacetate (12.5 mL) and the RBF was fitted to a 

Soxlhet extractor fitted with K2CO3 and a small layer of sand. 

The reaction was heated to a vigorous reflux (~122 °C) and left for 18 h. After this time 

the reaction was cooled, and the crude material was concentrated and loaded onto 

silica. The material was purified using column chromatography (1% MeOH/DCM). The 

brown fractions were collected and recrystallized from chloroform and hexanes (1:3 

ratio) to afford brown needle-like crystals which were collected to afford the title 

compound (30.1 mg, 16%).  

NMR data are available for this compound due to its paramagnetic character.  The key 

data for the structural characterization were obtained by HRMS and X-ray 

crystallography. 

HRMS (+p ESI): Calcd for C₈₈H₆₄O₈⁷⁹Br₂⁸¹Br₂¹⁰¹Ru¹⁰²Ru [M–Cl] 1770.9388 found 

1770.9466 

 

 
Ru2(S-pBr-TPCP)4Cl (9-Ru)  

To a 4 mL vial equipped with a stir 

bar was added 7-Ru (10 mg, 5.6 

µmol, 1 equiv) which was 

subsequently dissolved in 1 mL of 

DCM. Then, NaBArF (5.3 mg, 5.9 

μmol, 1.05 equiv) was added in one 

portion and the reaction was left to 

stir overnight. After 16 h, the solution 
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was passed over a small pad of silica and concentrated down to afford an orange/brown 

powder (14.3 mg, 96%).  

NMR data are available for this compound due to its paramagnetic character.  The key 

data for the structural characterization were obtained by HRMS. 

HRMS (+p ESI): Calcd for C₈₈H₆₄O₈⁷⁹Br₂⁸¹Br₂¹⁰¹Ru¹⁰²Ru [M–Cl] 1770.9388 found 

1770.9408. 

HRMS (-p ESI): Calcd for C₃₂H₁₂¹⁰B-F₂₄ [M-] 862.0691, found 862.0693. 
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Regioselectivity Determination 
Regioselectivity determination for reactions with p-Cymene 
 
Regioselectivity was determined through the integration of the TCE peaks comparing the 
1° and 3° insertion. One of the 3° insertion TCE peak is located at 4.47 ppm and one of 
the 1° insertion TCE peaks is located at 4.71 ppm. 
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Regioselectivity and diastereoselectivity determination for reactions with 4-
isopropylethylbenzene 
 
Regioselectivity was determined through the integration of the benzylic alpha-carbonyl 
hydrogen comparing the 2° and 3° insertion. The 3° insertion peak is located at 3.98 
ppm and one of the 2° insertion peak is located at 3.81 ppm. The diastereoselectivity is 
determined through comparing the methyl peak on the ethyl group. The minor 
diastereomer is cis with the bromo-substituted phenyl ring, shielding farther up-field. 
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20230913-JKS-33-11-NTTL.3.fid

8
.0
0

3
1
.5
4

1
1
.3
8

1
.0
0

3.753.803.853.903.954.004.05
f1	(ppm)

1
1
.3
8

1
.0
0

1.01.11.21.31.41.51.6
f1	(ppm)

8
.0
0

3
1
.5
4
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O

O CCl3

Br
Br

O

O

CCl3

Br

N2

O

O CCl3

+
+

DCM, 4Å MS, 40 °C

0.10 mmol 10 equiv

(5.0 mol%)
9-Ru

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20230712-JKS-34-21-BTPCP.1.fid

6
.8
1

3
2
.6
1

1
0
.3
6

1
.0
0

7.
26
	C
D
C
l3

3.803.853.903.954.004.05
f1	(ppm)

1
0
.3
6

1
.0
0

1.001.051.101.151.201.251.301.351.401.45
f1	(ppm)

6
.8
1

3
2
.6
1
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O

O CCl3

Br
Br

O

O

CCl3

Br

N2

O

O CCl3

+
+

DCM, 4Å MS, 40 °C

0.10 mmol 10 equiv

(1.0 mol%)
9-Rh

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20230913-JKS-33-11-BTPCP.1.fid

4
8
.6
9

1
3
6
.4
7

5
4
.8
1

1
.0
0

3.753.803.853.903.954.004.054.10
f1	(ppm)

5
4
.8
1

1
.0
0

1.01.11.21.31.41.51.6
f1	(ppm)

4
8
.6
9

1
3
6
.4
7
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Regioselectivity and diastereoselectivity determination for reactions 
with tert-butylcyclohexane 
Regioselectivity and diastereoselectivity were determined through previously reported 
analysis.4  
 

 

 
 
 
 

 
 
 
 
 

Br

N2

O

O CCl3

+ DCM, 4Å MS, 25°C

0.20 mmol 5 equiv

(1.0 mol%)
4-Ru

O
O

Cl3C
Br

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20230724-JKS-34-28-4.2.fid

1
.0
0

4
.1
0

3.203.253.303.353.403.45
f1	(ppm)

1
.0
0

4
.1
0
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Br

N2

O

O CCl3

+ DCM, 4Å MS, 25°C

0.20 mmol 5 equiv

(1.0 mol%)
4-Rh

O
O

Cl3C
Br

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

DL-04-04-QC-B-Crude.10.fid

1
.0

0
0

1
0

.6
2

0
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Regioselectivity and diastereoselectivity determination for reactions with 
pentane. 
Regioselectivity and diastereoselectivity were determined through previously reported 
analysis.5 
 
 

 

 
 
 
 

 
 
 
 
 
 

Br

N2

O

O CCl3

+ 4Å MS, 37°C

0.20 mmol solvent

(1.0 mol%)
4-Ru

O

OCl3C

Br
O

OCl3C

Br

+

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1	(ppm)

20221020-JKS-2-124-1.10.fid

1
6
.0
6

5
6
.5
7

2
2
.9
6

1
.0
0

3.303.353.403.453.503.553.60
f1	(ppm)

2
2
.9
6

1
.0
0

0.650.700.750.800.850.900.951.001.051.101.15
f1	(ppm)

1
6
.0
6

5
6
.5
7
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Br

N2

O

O CCl3

+ 4Å MS, 37°C

0.20 mmol solvent

(1.0 mol%)
4-Rh

O

OCl3C

Br
O

OCl3C

Br

+

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1	(ppm)

20221027-JKS-2-125-25.10.fid

1
9
.4
1

6
9
.8
8

2
8
.8
2

1
.0
0

3.303.353.403.453.503.553.603.65
f1	(ppm)

2
8
.8
2

1
.0
0

0.70.80.91.01.1
f1	(ppm)

1
9
.4
1

6
9
.8
8
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Regioselectivity and diastereoselectivity determination for reactions with 2-
hexene. 
The regioselectivity was determined through integration between dd at 3.72 ppm 
(primary insertion) and two doublets at 3.54 ppm (secondary insertion with 
diastereomer). Diastereomers of secondary insertion product was determined through 
integration of triplet at 0.77 ppm and triplet at 0.91 ppm. 
 

 

 
 
 
 
 
 
 
 

 

Br

N2

O

O CCl3

+ 4Å MS, 40°C

0.20 mmol 10 equiv

(1.0 mol%)
4-Ru

O

OCl3C

Br
O

OCl3C

Br

+

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240528-JKS-27-17-e2.1.fid

7
.0
5

2
6
.1
5

9
.9
9

1
.0
0

3.453.503.553.603.653.703.753.80
f1	(ppm)

9
.9
9

1
.0
0

0.650.700.750.800.850.900.95
f1	(ppm)

7
.0
5

2
6
.1
5
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Br

N2

O

O CCl3

+ 4Å MS, 40°C

0.20 mmol 10 equiv

(1.0 mol%)
4-Rh

O

OCl3C

Br
O

OCl3C

Br

+

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240528-JKS-27-17-e1.1.fid

2
3
.5
4

5
8
.3
3

2
3
.1
9

1
.0
0

3.453.503.553.603.653.703.753.80
f1	(ppm)

2
3
.1
9

1
.0
0

0.650.700.750.800.850.900.951.00
f1	(ppm)

2
3
.5
4

5
8
.3
3
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Regioselectivity and diastereoselectivity determination for reactions with 
tetrahydrofuran. 
The regioselectivity was determined through comparing integration of the multiplets at 
4.75 ppm and 4.52 ppm. 
 

 

 
 
 
 
 
 
 
 
 

 

Br

N2

O

O CCl3

+ 4Å MS, TFT, 60°C

0.20 mmol 10 equiv

(1.0 mol%)
4-Ru

O

OCl3C

Br

O

O

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1	(ppm)

20240607-JKS-27-18-1-THF.10.fid

2
.3
9

1
.0
0

4.404.454.504.554.604.65
f1	(ppm)

2
.3
9

1
.0
0
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Br

N2

O

O CCl3

+ 4Å MS, TFT, 60°C

0.20 mmol 10 equiv

(1.0 mol%)
4-Rh

O

OCl3C

Br

O

O

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240605-JKS-27-18-3.1.fid

2
.9
5

1
.0
0

4.404.454.504.554.604.65
f1	(ppm)

2
.9
5

1
.0
0



 

 255 

Regioselectivity Determination for Competition Reactions: 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

4-Ru (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

Br
Br

Br

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240524-JKS-27-15-1.1.fid

1
.0
0

1
4
.4
6

4.504.554.604.654.704.754.804.85
f1	(ppm)

1
.0
0

1
4
.4
6
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4-Rh (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

Br
Br

Br

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240524-JKS-27-15-2.1.fid

1
.2
7

1
.0
0

4.454.504.554.604.654.70
f1	(ppm)

1
.2
7

1
.0
0
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4-Ru (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

TfO
OTf

TfO

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240531-JKS-27-17-d1-r.1.fid

1
.0
0

1
6
.2
6

4.504.554.604.654.70
f1	(ppm)

1
.0
0

1
6
.2
6
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4-Rh (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

Br
Br

Br

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240529-JKS-27-17-d4.10.fid

2
.4
7

1
.0
0

4.454.504.554.604.654.70
f1	(ppm)

2
.4
7

1
.0
0
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4-Ru (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

F3C
OTf

F3C

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240530-JKS-27-17-d7-r.1.fid

1
.0
0

9
.1
9

4.44.54.64.74.84.9
f1	(ppm)

1
.0
0

9
.1
9
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4-Rh (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

Br
Br

Br

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240530-JKS-27-17-d8.1.fid

1
.2
5

1
.0
0

4.504.554.604.654.704.754.804.85
f1	(ppm)

1
.2
5

1
.0
0
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4-Ru (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

NCl
N

Cl

NCl

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240530-JKS-27-17-d3-40.1.fid

1
.0
0

1
9
.0
3

4.554.604.654.704.754.80
f1	(ppm)

1
.0
0

1
9
.0
3
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4-Rh (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol
O

O CCl3
HH

n-pentyl

O

O CCl3

2 equiv

++

Br
Br

Br

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240530-JKS-27-17-d6-40-r.1.fid

1
.4
9

1
.0
0

4.454.504.554.604.654.704.754.804.854.90
f1	(ppm)

1
.4
9

1
.0
0
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4-Ru (1.0 mol%)

10 equiv
DCM (0.05 M), 4Å MS, 

Temp, 2 h addition.

N2
O

O

CCl3

0.20 mmol

+
Br

O

O CCl3
HH

Br

+
O

O
CCl3

Br

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240625-JKS-27-19-1.1.fid

2
.5
9

1
.0
0

4.504.554.604.654.704.754.804.85
f1	(ppm)

2
.5
9

1
.0
0
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4-Rh (1.0 mol%)

DCM (0.05 M), 4Å MS, 
Temp, 2 h addition.10 equiv

N2
O

O

CCl3

0.20 mmol

+
Br

O

O CCl3
HH

Br

+
O

O
CCl3

Br

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0
f1	(ppm)

20240625-JKS-27-19-2.1.fid

4.454.504.554.604.654.704.754.804.854.90
f1	(ppm)
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C–H Insertion Reactions 
 
General Procedure 1 
To a flame-dried 16 mL vial equipped with a stir bar and 4 Å MS (1.0 g for 100 mg of 

diazo) was added catalyst (xx mol %, xx µmol) and substrate (10 equiv, 2.0 mmol). 

DCM (2 mL) was added to dissolve the sample, and the solution was heated to 40 °C. 

Then, diazo (1 equiv, 0.200 mmol) was dissolved in DCM (2 mL) and added via syringe 

pump over the course of 2 h. The solution was left to stir overnight at which point it was 

stopped, passed over a small plug of celite to remove the mol sieve dust, and 

concentrated in vacuo for crude NMR analysis. 

 

General Procedure 2 
To a flame-dried 16 mL vial equipped with a stir bar and 4 Å MS (1.0 g for 100 mg of 

diazo) was added catalyst (1.0 mol %, 2.0 µmol) and substrate (5 equiv, 2.0 mmol). 

DCM (2 mL) was added to dissolve the sample, and the solution was set to stir at 25 °C. 

Then, diazo (1 equiv, 0.200 mmol) was dissolved in DCM (2 mL) and added via syringe 

pump over the course of 2 h. The solution was left to stir overnight at which point it was 

stopped, passed over a small plug of celite to remove the mol sieve dust, and 

concentrated in vacuo for crude NMR analysis. 

 

General Procedure 3 
To a flame-dried 16 mL vial equipped with a stir bar and 4 Å MS (1.0 g for 100 mg of 

diazo) was added catalyst (1.0 mol%, 2.00 µmol) and substrate (solvent equiv, 2.0 mL).  

The solution was heated to reflux. Then, diazo (1 equiv, 0.200 mmol) was dissolved in 

the substrate (2 mL) and added via syringe pump over the course of 2 h. The solution 

was left to stir overnight at which point it was stopped, passed over a small plug of celite 

to remove the mol sieve dust, and concentrated in vacuo for crude NMR analysis. 

 

General Procedure 4 
To a flame-dried 16 mL vial equipped with a stir bar and 4 Å MS (1.0 g for 100 mg of 

diazo) was added catalyst (1.0 mol%, 2.00 µmol) and substrate (10  equiv, 2.0 mmol) 
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Trifluorotoluene (TFT) (2 mL) was added to dissolve the sample, and the solution was 

set to stir at 60 °C. Then, diazo (1 equiv, 0.200 mmol) was dissolved in TFT (2 mL) and 

added via syringe pump over the course of 2 h. The solution was left to stir overnight at 

which point it was stopped, passed over a small plug of celite to remove the mol sieve 

dust, and concentrated in vacuo for crude NMR analysis. 

 

 

trichloro-ë6-methyl (S)-2-(4-bromophenyl)-3-(4-isopropylphenyl)propanoate (12) 
 

General procedure 1 was employed for the C–H insertion 

into p-cymene (313 µL, 10 equiv, 2.0 mmol), with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 

mg, 0.20 mmol, 1.0 equiv) using Ru2(S-PTAD)4BArF 

(24.2 mg, 5.0 mol%) as catalyst. The crude material was 

purified via column chromatography (2% diethyl ether/hexanes) to afford the title 

compound at white amorphous solid (70.1 mg, 73%). Spectra matched literature 

precedent.6 
1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.09 (q, 

J = 8.3 Hz, 4H), 4.69 (d, J = 12.0 Hz, 1H), 4.60 (d, J = 12.0 Hz, 1H), 3.96 (dd, J = 9.1, 

6.5 Hz, 1H), 3.40 (dd, J = 13.9, 9.1 Hz, 1H), 3.04 (dd, J = 13.9, 6.6 Hz, 1H), 2.85 (p, J = 

6.8 Hz, 1H), 1.21 (d, J = 6.9 Hz, 6H). 

Chiral HPLC: The enantiopurity was determined to be 93:7 er by chiral HPLC analysis. 

(Chiracel AD-H, 1.0% IPA/Hexane, 1.0 mL/min, λ=230 nm, RT: Major: 6.0 min, Minor: 

6.6 min.). 

 

trichloro-ë6-methyl (2S,3S)-2-(4-bromophenyl)-3-(4-isopropylphenyl)butanoate 
(15a, 15b) 
 

CO2CH2Cl3

Br
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General procedure 1 was employed in the C–H insertion 

into 1-ethyl-4-isopropylbenzene (148.3 mg, 1.0 mmol, 10 

equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-

diazoacetate (37.2 mg, 0.10 mmol, 1.0 equiv) using Ru2(S-

TPPTTL)4BArF (16.6 mg, 5.0 mol%) as catalyst. The crude 

material was purified via prep-TLC (2.5% diethyl ether in hexanes) to afford the title 

compound as a clear oil (25.5 mg, 52%).  

Reported as a 4:1 mixture of diastereomers. Major diastereomer: 
1H NMR (400 MHz, CDCl3): δ 7.27 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 7.00 (d, 

J = 8.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 4.83 (d, J = 12.0 Hz, 1H), 4.68 (d, J = 11.9 Hz, 

1H), 3.81 (d, J = 11.0 Hz, 1H), 3.54 – 3.39 (m, 1H), 2.78 (p, J = 6.9 Hz, 1H), 1.42 (d, J = 

6.8 Hz, 3H), 1.17 (dd, J = 6.9, 1.1 Hz, 6H). 

Minor diastereomer: 
1H NMR (400 MHz, CDCl3): δ 7.51 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.23 (d, 

J = 8.2 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.54 (d, J = 11.9 Hz, 1H), 4.29 (d, J = 12.0 Hz, 

1H), 3.81 (d, J = 11.0 Hz, 1H), 3.54 – 3.36 (m, 1H), 2.86 (p, J = 7.1 Hz, 1H), 1.22 (d, J = 

7.1 Hz, 6H), 1.04 (d, J = 7.0 Hz, 3H). 
13C NMR (101 MHz, CDCl3): δ 171.6, 171.1, 147.5, 141.1, 139.9, 135.9, 131.9, 131.3, 

130.4, 127.3, 126.7, 126.4, 121.9, 121.3, 94.7, 74.3, 74.0, 58.9, 43.1, 33.7, 33.5, 30.3, 

23.9, 21.1, 20.0. 

HMRS (-n APCI): calcd for C₂₁H₂₁O₂⁷⁹Br³⁵Cl₃ (M–H) 488.9796, found 488.9797. 
Chiral HPLC: The enantiopurity for the major diastereomer was determined to be 97:3 

er and for the minor diastereomer determined to be 97:3 er by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexane, 0.50 mL/min. , λ=230 nm, Major diastereomer: RT: 

12.3 min. Major, 11.4 min. Minor. Minor diastereomer: RT: 14.0 min, Major. 13.3 min, 

Minor.). 

 

2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-cyclohexylacetate (18) 
 

CO2CH2Cl3

Br
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General procedure 2 was used in the C–H insertion into 

cyclohexane (110 µL, 5 equiv, 1.0 mmol) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (78.5 mg, 

1.0 equiv, 0.20 mmol) using Ru2(S-TPPTTL)4BArF (6.6 mg, 

1.0 mol %) as catalyst. The crude material was then 

subjected to column chromatography using a 0-2% diethyl ether/hexanes solvent 

system to afford the title compound as a clear colorless oil. Characterization matched 

literature reported value.4  
1H NMR (600 MHz, CDCl3): δ 7.45 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 4.76 (d, 

J = 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 3.35 (d, J = 10.6 Hz, 1H), 2.05 (qt, J = 11.1, 

3.4 Hz, 1H), 1.92 – 1.82 (m, 1H), 1.75 (ddt, J = 11.6, 3.6, 1.8 Hz, 1H), 1.64 (dddd, J = 

9.2, 7.6, 3.5, 2.1 Hz, 2H), 1.38 – 1.34 (m, 1H), 1.34 – 1.26 (m, 1H), 1.19 – 1.06 (m, 3H), 

0.83 – 0.73 (m, 1H). 

Chiral HPLC: The enantiopurity was determined to be 97.5:2.5 er by chiral HPLC 

analysis (Chiracel AD-H, 0.1% IPA/Hexane, 1.0 mL/min.,  λ=230 nm, RT: Major: 15.6 

min., Minor: 8.9 min.) 
 
2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-cyclopentylacetate (19) 
 

General procedure 2 was used for the C–H insertion into 

cyclopentane (90 µL, 1.0 mmol, 5.0 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 

mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (2% diethyl ether/hexanes) afforded an oil (58 mg, 70%). Spectrum 

matched literature precedent.4 
1H NMR (400 MHz, CDCl3):  δ 7.47 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 4.79 (d, 

J = 11.9 Hz, 1H), 4.67 (d, J = 12.0 Hz, 1H), 3.41 (d, J = 11.2 Hz, 1H), 2.62 (q, J = 8.7 

Hz, 1H), 1.98 (tt, J = 12.9, 5.4 Hz, 1H), 1.75 – 1.57 (m, 3H), 1.51 (dq, J = 12.3, 6.4 Hz, 

2H), 1.40 – 1.23 (m, 1H), 1.10 – 0.94 (m, 1H). 
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Chiral HPLC: The enantiopurity was determined to be 96% ee by chiral HPLC analysis 

(Chiracel AD-H, 0.5% IPA/Hexane, 1.0 mL/min.,  λ=230 nm, RT: Major: 7.5 min., Minor: 

6.7) 

 

2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-cycloheptylacetate (20) 
 

General procedure 2 was used for the C–H insertion into 

cycloheptane (120 µL, 1.0 mmol, 5.0 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 

1.0 mol%) as catalyst. Purification by column 

chromatography (2% diethyl ether/hexanes) afforded an oil (66 mg, 75%).  Spectrum 

matched literature precedent.4  
1H NMR (400 MHz, CDCl3): δ 7.47 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 4.76 (d, 

J = 12.0 Hz, 1H), 4.66 (d, J = 12.0 Hz, 1H), 3.45 (d, J = 11.0 Hz, 1H), 2.32 (dtt, J = 11.0, 

9.4, 3.8 Hz, 1H), 1.91 – 1.79 (m, 1H), 1.72 (ddt, J = 13.1, 9.4, 4.9 Hz, 1H), 1.67 – 1.46 

(m, 6H), 1.46 – 1.27 (m, 3H), 1.03 (dtd, J = 13.6, 9.5, 2.6 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 92% ee by HPLC analysis (S,S-

Whelk 0.5% IPA/Hexane, 0.50 mL/min, λ=230 nm, RT: Major: 19.9 min., Minor: 23.0 

min.). 

 

2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-cyclooctylacetate (21) 
 

 

General procedure 2 was used for the C–H insertion into 

cyclooctane (135 µL, 1.0 mmol, 5.0 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 

mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (2% diethyl ether/hexanes) afforded the product as an amorphous solid 

(66 mg, 75%). 
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1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 4.75 (d, 

J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 3.41 (d, J = 11.1 Hz, 1H), 2.37 (tdd, J = 11.6, 

6.8, 2.5 Hz, 1H), 1.73 (d, J = 10.8 Hz, 2H), 1.67 – 1.38 (m, 9H), 1.36 – 1.21 (m, 2H), 

1.09 (dtd, J = 15.7, 9.4, 3.6 Hz, 1H).  
13C NMR (101 MHz, CDCl3): δ 172.0, 136.5, 131.7, 130.6, 121.6, 94.8, 74.2, 58.5, 40.1, 

31.1, 29.1, 26.9, 26.9, 26.4, 25.4, 25.1. 
HRMS (+p APCI): calcd for C₁₈H₂₃O₂BrCl₃ (M+H) 454.9941, found 454.9940.  
Chiral HPLC: The enantiopurity was determined to be 90% ee by HPLC analysis 

(Chiracel AD-H 1.0 IPA/Hexane, 1.0 mL/min, λ=230 nm, RT: Major: 19.9 min., Minor: 

23.0 min.). 

 
 

 

2,2,2-trichloroethyl (R)-2-((3R,5R,7R)-adamantan-1-yl)-2-(4-bromophenyl)acetate 
(22) 
 

General procedure 2 was used for the C–H insertion into 

adamantane (136 mg, 1.0 mmol, 5.0 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 

1.0 mol%) as catalyst. Purification by column 

chromatography (2% diethyl ether/hexanes) afforded a clear colorless oil (64 mg, 

66%).Spectrum matched literature precedent.4  
1H NMR (400 MHz, CDCl3): δ 7.46 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 4.83 (d, 

J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 3.41 (s, 1H), 1.99 (t, J = 3.2 Hz, 3H), 1.77 – 

1.64 (m, 6H), 1.62 – 1.53 (m, 6H). 

Chiral HPLC: The enantiopurity was determined to be 92% ee by HPLC analysis (S,S-

Whelk, 1.0% IPA/Hexane, 1.0 mL/min, λ=230 nm, RT: Major: 6.4 min., Minor: 7.1 min.).  
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2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-((1R,3S)-3-(tert-
butyl)cyclohexyl)acetate (23) 
 

General procedure 2 was used for the C–H insertion of t-

butylcyclohexane (169 µL, 1.0 mmol, 5 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 

mg, 1.0 mol%) as catalyst. Purification by column chromatography (2% diethyl 

ether/hexanes) afforded an oil (87 mg, 90%). Spectra matched literature precedent.4  
1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 4.76 (d, 

J = 11.9 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 3.36 (d, J = 10.3 Hz, 1H), 2.12 – 1.99 (m, 

1H), 1.94 – 1.79 (m, 2H), 1.79 – 1.68 (m, 1H), 1.46 (dt, J = 12.6, 2.7 Hz, 1H), 1.28 (tdd, 

J = 12.7, 9.2, 3.5 Hz, 1H), 1.06 – 0.90 (m, 2H), 0.90 – 0.78 (m, 1H), 0.72 (s, 9H), 0.50 

(q, J = 12.0 Hz, 1H). 

Chiral HPLC: The enantiopurity for the major diastereomer was determined to be  94% 

ee by HPLC analysis (Chiracel AD-H, 2.0% IPA/Hexane, 1.0 mL/min, λ=230 nm, RT 

Major Diastereomer: Major: 16.5 min, Minor: 14.5 min. Minor Diastereomer: Major: 18.8 

min. Minor: 21.1 min. 

 

2,2,2-trichloroethyl (2R,3S)-2-(4-bromophenyl)-3-methylhexanoate (24) 
 

General procedure 3 was used for the C–H 

functionalization of pentane (2.0 mL) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 

1.0 mol%) as catalyst. Purification by column chromatography (2% diethyl 

ether/hexanes) afforded the title compound as a mixture of diastereomers (73 mg, 

88%). Spectra matched literature precedent.5  
1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 4.77 (d, 

J = 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 3.37 (d, J = 10.6 Hz, 1H), 2.24 (dddd, J = 
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17.2, 13.1, 6.4, 3.0 Hz, 1H), 1.51 – 1.45 (m, 1H), 1.41 – 1.27 (m, 1H), 1.25 – 1.07 (m, 

1H), 1.05 (d, J = 6.5 Hz, 3H), 0.96 – 0.82 (m, 1H), 0.77 (t, J = 7.2 Hz, 3H). 

 
Chiral HPLC: The enantiopurity of the major diastereomer was determined to be 95:5 

er, and the minor diastereomer to be 90% er by chiral HPLC analysis. (S,S-Whelk, 1.0% 

IPA/Hexane, 1.0 mL/min, λ=230 nm, Major diastereomer: Major: 69.5 min., Minor: 40.1 

min. Minor diastereomer: Major: 75.4 min., Minor: 44.6 min.). 

 

2,2,2-trichloroethyl (2R,3R,E)-2-(4-bromophenyl)-3-methylhex-4-enoate (25) 
 

General procedure 1 was used for the C–H 

functionalization of (E)-hex-2-ene (0.25 mL, 2.0 mmol, 10 

equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-

diazoacetate (74.5 mg, 0.20 mmol, 1.0 equiv) using Ru2(S-

TPPTTL)4BArF (6.6 mg, 1.0 mol%). Purification using 0-3% 

diethyl ether/hexanes column afforded the title compound as a mixture of diastereomers 

as a clear, colorless oil (71 mg, 83%).  

Reported as a mixture of diastereomers. 
1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.5 Hz, 0.75H), 7.43 – 7.38 (m, 2H), 7.28 (d, 

J = 8.5 Hz, 0.62H), 7.17 (d, J = 8.5 Hz, 2H), 5.59 (dq, J = 15.3, 6.4 Hz, 0.3H), 5.35 – 

5.14 (m, 1.4H), 4.88 (ddd, J = 15.2, 9.3, 1.7 Hz, 1H), 4.75 (d, J = 12.0 Hz, 1H), 4.71 (d, 

J = 11.9 Hz, 0.4H), 4.65 (d, J = 12.0 Hz, 1H), 4.53 (d, J = 12.0 Hz, 0.3H), 3.54 (d, J = 

10.3 Hz, 1H), 3.50 (d, J = 11.0 Hz, 0.4H), 2.63 (tdd, J = 15.8, 10.0, 3.2 Hz, 1.4H), 1.66 

(dd, J = 6.4, 1.7 Hz, 1H), 1.63 – 1.50 (m, 1.8H), 1.48 (dd, J = 6.4, 1.7 Hz, 3H), 1.39 – 

1.12 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H), 0.75 (t, J = 7.3 Hz, 1H). 
13C NMR (101 MHz, CDCl3): δ 171.6, 171.2, 135.9, 135.7, 131.7, 131.4, 131.3, 130.8, 

130.6, 130.3, 128.7, 128.6, 121.7, 121.4, 94.7, 74.3, 74.2, 56.8, 47.9, 26.5, 24.8, 18.1, 

17.9, 11.6, 11.3. 

HRMS (-n APCI): calcd for C₁₆H₁₇O₂⁷⁹Br³⁵Cl₃ [M–H] 424.9483, found 424.9479. 
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Chiral HPLC: The enantiopurity of the major diastereomer was determined to be 46% 

ee by chiral HPLC analysis.. (Chiracel AD-H, 0.5% IPA/Hexane, 1.0 mL/min, λ=230 nm, 

Major diastereomer: Major: 5.6 min., Minor: 4.8 min. Minor diastereomer: Major: 6.5 

min., Minor: 5.2 min.). 

 
 
2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-((R)-tetrahydrofuran-2-yl)acetate (26) 
 

General procedure 4 was used for the C–H functionalization 

of tetrhydrofuran (0.16 mL, 2.0 mmol, 10 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 

1.0 mol%). Purification using 0-10% diethyl ether/hexanes 

afforded the title compound as a mixture of diastereomers as a clear colorless oil (47 

mg, 56%).   

Reported as a mixture of diastereomers: 
1H NMR (400 MHz, CDCl3): δ 7.49 (dd, J = 8.5, 3.6 Hz, 2.8H), 7.36 – 7.26 (m, 3.1H), 

4.83 – 4.77 (m, 1.8H), 4.72 (d, J = 12.0 Hz, 1.3H), 4.54 (ddt, J = 15.5, 8.5, 6.9 Hz, 

1.5H), 3.95 (dt, J = 8.4, 6.8 Hz, 0.5H), 3.91 – 3.79 (m, 1.5H), 3.79 – 3.70 (m, 2H), 3.66 

(d, J = 9.9 Hz, 0.5H), 2.25 – 2.13 (m, 1H), 1.92 (dddd, J = 12.8, 8.2, 6.4, 4.6 Hz, 2.8H), 

1.84 – 1.75 (m, 0.6H), 1.64 – 1.58 (m, 1H), 1.56 – 1.41 (m, 0.5H). 
13C NMR (101 MHz, CDCl3): δ 170.4, 170.0, 134.6, 134.0, 132.0, 131.7, 131.5, 130.9, 

130.6, 130.3, 122.2, 122.0, 94.7, 94.7, 80.1, 79.4, 74.2, 74.1, 68.6, 68.5, 56.9, 56.3, 

30.3, 29.5, 25.7, 25.4. 
HRMS (+p APCI): calcd for C₁₄H₁₃O₃⁷⁹Br³⁵Cl₃ [M–H] 412.9119, found 412.9117. 

Chiral HPLC: The enantiopurity of the major diastereomer was determined to be 94% 

ee, and the minor diastereomer to be 94% ee by chiral HPLC analysis. (Chiracel AD-H, 

0.5% IPA/Hexane, 1.0 mL/min, λ=230 nm, Major diastereomer: Major: 16.9 min., Minor: 

15.1 min. Minor diastereomer: Major: 26.7 min., Minor: 21.6 min.). 
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2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-((R)-1-tosylpyrrolidin-2-yl)acetate (27) 
 

General procedure 2 was used for the C–H functionalization 

of N-tosyl-pyrrolidine (67 mg, 0.3 mmol, 1.5 equiv) with 2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 mg, 

0.20 mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 (4.9 mg, 1.0 

mol%) as catalyst. The crude material was purified using 

20% diethyl ether/hexanes column to afford a white powder (72.5 mg, 64%) 
1H NMR (400 MHz, CDCl3): δ 7.62 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.28 

(dd, J = 8.6, 6.8 Hz, 4H), 4.84 (d, J = 12.0 Hz, 1H), 4.75 (d, J = 12.0 Hz, 1H), 4.34 – 

4.24 (m, 1H), 4.16 (d, J = 6.0 Hz, 1H), 3.40 (ddd, J = 12.2, 7.5, 5.1 Hz, 1H), 3.27 – 3.14 

(m, 1H), 2.42 (s, 3H), 2.10 – 1.93 (m, 1H), 1.71 – 1.55 (m, 2H), 1.33 (dt, J = 12.3, 7.4 

Hz, 1H). 
13C NMR (101 MHz, CDCl3): δ 169.9, 143.7, 134.8, 133.6, 131.7, 131.1, 129.8, 127.6, 

122.2, 94.7, 74.4, 62.7, 55.0, 49.3, 29.3, 24.2, 21.6. 

HRMS (+p APCI): calcd for C₂₁H₂₂O₄N⁷⁹Br³⁵Cl₃³²S [M+H] 567.9513, found 567.9507. 
Chiral SFC: The enantiopurity was determined to be 90% ee by chiral SFC analysis. 

(OJ-3, 5% MeOH/IPA + 0.2% Formic Acid. 5 min, 2.5 mL/min. λ=230 nm, RT: Major: 

3.55 min. Minor: 3.83 min.) 
 
 
 

2,2,2-trichloroethyl (R)-2-cyclohexyl-2-(4-
(((trifluoromethyl)sulfonyl)oxy)phenyl)acetate (28) 
 

General procedure 2 was used in the C–H 

functionalization of cyclohexane (0.11 mL, 1.0 mmol, 5.0 

equiv) with 2,2,2-trichloroethyl 2-diazo-2-(4-

(((trifluoromethyl)sulfonyl)oxy)phenyl)acetate (88.3 mg, 

0.20 mmol, 1.0 equiv) with Ru2(S-TPPTTL)4BArF (6.6 mg, 
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1.0 mol%) as catalyst. The product was purified via column chromatography (5% diethyl 

ether/hexanes) to afford an amorphous solid (81.5 mg, 82%). Spectra matched 

literature precedent.2 
1H NMR (400 MHz, CDCl3): δ 7.46 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 4.77 (d, 

J = 11.9 Hz, 1H), 4.65 (d, J = 12.0 Hz, 1H), 3.43 (d, J = 10.6 Hz, 1H), 2.07 (qt, J = 11.0, 

3.4 Hz, 1H), 1.87 (dt, J = 12.5, 3.3 Hz, 1H), 1.81 – 1.71 (m, 1H), 1.71 – 1.62 (m, 2H), 

1.37 – 1.25 (m, 2H), 1.21 – 1.05 (m, 3H), 0.85 – 0.70 (m, 1H). 

Chiral HPLC: The enantiopurity was determined to be 86% ee by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexanes, 1.0 mL/min, λ=230 nm, RT: 6.5 Major, 5.6 Minor). 

 

2,2,2-trichloroethyl (R)-2-cyclohexyl-2-(4-fluorophenyl)acetate (29) 
 
 

General procedure 2 was used for the C–H 

functionalization of cyclohexane (0.11 mL, 1.0 mmol, 5.0 

equiv) with 2,2,2-trichloroethyl 2-(4-chlorophenyl)-2-

diazoacetate (65.8 mg, 0.20 mmol, 1.0 equiv) using Ru2(S-

TPPTTL)4BArF (6.6 mg, 1.0 mol%) as catalyst. Purification 

by column chromatography (2% diethyl ether/hexanes) afforded an oil (61 mg, 79%). 

Spectra matched literature precedent.2 
1H NMR (400 MHz, CDCl3): δ 7.32 (s, 4H), 4.78 (d, J = 12.0 Hz, 1H), 4.65 (d, J = 12.0 

Hz, 1H), 3.38 (d, J = 10.7 Hz, 1H), 2.07 (qt, J = 11.0, 3.4 Hz, 1H), 1.88 (dt, J = 12.6, 3.5 

Hz, 1H), 1.84 – 1.74 (m, 1H), 1.74 – 1.59 (m, 2H), 1.47 – 1.25 (m, 2H), 1.25 – 1.03 (m, 

3H), 0.79 (qd, J = 12.1, 3.5 Hz, 1H).  
 
Chiral HPLC: The enantiopurity was determined to be 96% ee by chiral HPLC analysis 

(Chiracel AD-H, 0.5% IPA/Hexane, 0.5 mL/min, , λ=230 nm, RT: Major: 16.7 min, Minor: 

11.7 min) 

 

2,2,2-trichloroethyl (R)-2-cyclohexyl-2-(4-(trifluoromethyl)phenyl)acetate (30) 
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General procedure 2 was used for the C–H 

functionalization of cyclohexane (0.11 mL, 1.0 mmol, 5.0 

equiv) with 2,2,2-trichloroethyl 2-diazo-2-(4-

(trifluoromethyl)phenyl)acetate (72.3 mg, 0.20 mmol, 1.0 

equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 1.0 mol%) as 

catalyst. Purification by column chromatography (2% diethyl ether/hexanes) afforded an 

oil (59 mg, 70%). Spectra matched literature precedent.2  
1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 4.80 (d, 

J = 12.0 Hz, 1H), 4.66 (d, J = 12.0 Hz, 1H), 3.49 (d, J = 10.7 Hz, 1H), 2.14 (qt, J = 11.0, 

3.4 Hz, 1H), 1.95 – 1.87 (m, 1H), 1.83 – 1.74 (m, 1H), 1.71 – 1.60 (m, 2H), 1.39 – 1.27 

(m, 2H), 1.25 – 1.08 (m, 3H), 0.81 (qd, J = 12.1, 3.5 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 90% ee by chiral HPLC analysis 

(Chiracel AD-H, 0.1% IPA/Hexanes, 1.0 mL/min, λ=210 nm, RT: Major: 11.5 min, Minor: 

6.8 min) 

 

2,2,2-trichloroethyl (R)-2-(6-chloropyridin-3-yl)-2-cyclohexylacetate  (31) 
 

General procedure 3 was used for the C–H 

functionalization of cycloehxane (0.11 mL, 1.0 mmol, 5.0 

equiv) with 2,2,2-trichloroethyl 2-(6-chloropyridin-3-yl)-2-

diazoacetate (66 mg, 0.20 mmol, 1.0 equiv) using Ru2(S-

TPPTTL)4BArF (6.6 mg, 1.0 mol%) as catalyst. Purification 

by column chromatography (10% diethyl ether/hexanes) afforded an oil (43.7 mg, 58%). 

Spectra matched literature precedent.7 
 

1H NMR (400 MHz, CDCl3): δ 8.32 (d, J = 2.5 Hz, 1H), 7.74 (dd, J = 8.3, 2.5 Hz, 1H), 

7.31 (d, J = 8.3 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.66 (d, J = 12.0 Hz, 1H), 3.42 (d, J = 

10.4 Hz, 1H), 2.14 – 1.94 (m, 1H), 1.92 – 1.72 (m, 1H), 1.71 – 1.57 (m, 2H), 1.39 – 1.22 

(m, 2H), 1.14 (ddt, J = 15.0, 11.3, 4.7 Hz, 2H), 0.81 (dt, J = 12.8, 5.0 Hz, 1H). 
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Chiral HPLC: The enantiopurity was determined to be 96% ee by chiral HPLC analysis 

(R,R-Whelk, 1% IPA/Hexanes, 0.5 mL/min, λ=230 nm, RT: Major: 21.9 min, Minor: 19.7 

min) 

 

 

 

2,2,2-trichloroethyl (R)-2-([1,1'-biphenyl]-4-yl)-2-cyclohexylacetate (32) 
 

General procedure 3 was used for the C–H 

functionalization of cyclohexane (4.0 mL) with 2,2,2-

trichloroethyl 2-diazo-2-(4-fluorophenyl)acetate (62.3 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 

1.0 mol%) as catalyst. Purification by column 

chromatography (2% diethyl ether/hexanes) afforded a 

white solid (63 mg, 74%). Spectra matched literature precedent.2 
1H NMR (400 MHz, CDCl3) δ 7.63 – 7.53 (m, 2H), 7.50 – 7.41 (m, 2H), 7.40 – 7.31 (m, 

1H), 4.82 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 3.45 (d, J = 10.7 Hz, 1H), 2.16 

(qt, J = 11.1, 3.4 Hz, 1H), 1.93 (dt, J = 12.5, 3.2 Hz, 1H), 1.82 – 1.73 (m, 1H), 1.71 – 

1.62 (m, 2H), 1.47 (dt, J = 11.5, 2.7 Hz, 1H), 1.40 – 1.30 (m, 1H), 1.23 – 1.13 (m, 3H), 

0.85 (pd, J = 10.7, 3.9 Hz, 1H). 

Chiral HPLC: The enantiopurity was determined to be 92% ee by chiral HPLC analysis 

(S,S-Whelk, 1.0% IPA/Hexanes, 1.0 mL/min, Major: 13.0 min. Minor: 14.5 min.).  

 

 

2,2,2-trichloroethyl (R)-2-(4-(tert-butyl)phenyl)-2-cyclohexylacetate (33) 
 

General procedure 3 was used for the C–H 

functionalization of cyclohexane (4.0 mL) with 2,2,2-

trichloroethyl 2-diazo-2-(4-fluorophenyl)acetate (62.3 mg, 

0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF (6.6 mg, 

1.0 mol%) as catalyst. Purification by column 
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chromatography (2% diethyl ether/hexanes) afforded an oil (53 mg, 73%). Spectra 

matched literature precedent.7  
1H NMR (400 MHz, CDCl3) δ 7.37 – 7.33 (m, 2H), 7.30 (d, J = 9.2 Hz, 2H), 4.81 (d, J = 

12.0 Hz, 1H), 4.60 (d, J = 12.0 Hz, 1H), 3.38 (d, J = 10.8 Hz, 1H), 2.10 (qt, J = 11.0, 3.4 

Hz, 1H), 1.90 (d, J = 12.7 Hz, 1H), 1.81 – 1.72 (m, 1H), 1.66 (dd, J = 9.7, 5.0 Hz, 2H), 

1.45 (m, 2H), 1.33 (s, 9H), 1.24 – 1.08 (m, 3H), 0.85 – 0.74 (m, 1H). 

Chiral HPLC: The enantiopurity was determined to be 90% ee by chiral HPLC analysis 

(S,S-Whelk, 0.1% IPA/ Hexane, 0.5 mL/min. Major: 21.7 min., Minor: 18.5 min.).  

 

2,2,2-trichloroethyl (R)-2-cyclohexyl-2-(4-methoxyphenyl)acetate (34) 
 

General procedure 3 was used for the C–H 

functionalization of cyclohexane (4.0 mL) with 2,2,2-

trichloroethyl 2-diazo-2-(4-methoxyphenyl)acetate (64.7 

mg, 0.200 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF 

(6.6 mg, 1.0 mol%) as catalyst. Purification by column chromatography (2% diethyl 

ether/hexanes) afforded a white solid (38.1 mg, 51%). Spectra matched literature 

precedent.7  
1H NMR (400 MHz, CDCl3): δ 7.26 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 4.76 (d, 

J = 12.0 Hz, 1H), 4.61 (d, J = 12.0 Hz, 1H), 3.79 (s, 3H), 3.32 (d, J = 10.7 Hz, 1H), 2.04 

(dddd, J = 14.4, 11.1, 7.3, 3.4 Hz, 1H), 1.86 (d, J = 12.7 Hz, 1H), 1.75 (d, J = 13.5 Hz, 

1H), 1.67 – 1.57 (m, 2H), 1.39 (d, J = 15.0 Hz, 1H), 1.34 – 1.24 (m, 1H), 1.21 – 1.02 (m, 

3H), 0.82 – 0.69 (m, 1H). 

 
Chiral HPLC: The enantiopurity was determined to be 28% ee by chiral HPLC analysis 

(Chiracel AD-H, 1.0% IPA/Hexane, 1.0 mL/min., λ=230 nm, RT:  Major: 13.2 min., Minor: 

14.4 min.). 

 

2,2,2-trichloroethyl (R)-2-cyclohexyl-2-(naphthalen-2-yl)acetate (35) 
 

O
O

O CCl3
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General procedure 3 was used for the reaction of 

cyclohexene (200 µL, 5 equiv, 2.0 mmol) with, 2,2,2-

trichloroethyl (R)-2-cyclohexyl-2-(naphthalen-2-yl)acetate 

(69 mg, 0.20 mmol, 1.0 equiv) using Ru2(S-TPPTTL)4BArF 

(6.6 mg, 1.0 mol%) as catalyst. Purification by column 

chormatogarphy (2% diethyl ether/hexanes) afforded a clear colorless oil (60.2 mg). 

Spectra matched literature precedent.2 
1H NMR (400 MHz, CDCl3)  δ 7.84 – 7.79 (m, 4H), 7.53 (dd, J = 8.7, 1.7 Hz, 1H), 7.50 – 

7.43 (m, 2H), 4.81 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 3.56 (d, J = 10.7 Hz, 

1H), 2.31 – 2.15 (m, 1H), 1.95 (ddd, J = 12.7, 4.5, 2.2 Hz, 1H), 1.82 – 1.74 (m, 1H), 1.71 

– 1.57 (m, 2H), 1.41 – 1.30 (m, 2H), 1.24 – 1.09 (m, 3H), 0.94 – 0.74 (m, 1H).  
Chiral SFC: The enantiopurity was determined to be 99% ee by chiral SFC analysis. 

(OJ-3, 3% MeOH/IPA + 0.2% Formic Acid. 5 min, 2.5 mL/min. λ=230 nm, RT: Major: 

1.81 min. Minor: 2.01 min. 
 

2,2,2-trichloroethyl (1S,2S)-1-(4-bromophenyl)-2-(cyclohexylmethyl)cyclopropane-
1-carboxylate (37) 
 

1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 8.4 Hz, 2H), 

7.17 (d, J = 8.4 Hz, 2H), 4.79 (d, J = 11.9 Hz, 1H), 4.55 

(d, J = 11.9 Hz, 1H), 1.97 (tdd, J = 10.1, 6.6, 3.6 Hz, 

1H), 1.89 (dd, J = 9.0, 4.1 Hz, 1H), 1.76 – 1.59 (m, 5H), 

1.42 – 1.28 (m, 2H), 1.27 – 1.06 (m, 4H), 0.92 – 0.76 

(m, 2H), 0.38 – 0.27 (m, 1H). 

 
13C NMR (101 MHz, CDCl3): δ 172.7, 134.4, 133.2, 131.2, 121.4, 95.0, 74.3, 38.0, 37.9, 

33.3, 33.3, 32.4, 27.9, 26.5, 26.31, 26.29, 22.7. 
HRMS (+p APCI): calcd for C₁₉H₂₃O₂⁷⁹Br³⁵Cl₃ [M+H] 466.9942 found 466.9944. 

 
 

2,2,2-trichloroethyl (S)-2-((1R,3R)-3-allylcyclohexyl)-2-(4-bromophenyl)acetate (38) 

O

O CCl3

O

O

Br

CCl3
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Reported as a 2:1 mixture of diastereomers: 

 
1H NMR (400 MHz, CDCl3): δ 7.45 (dd, J = 8.5, 2.7 Hz, 

2H), 7.23 (d, J = 8.4 Hz, 3H), 5.81 – 5.72 (m, 0.2H), 

5.73 – 5.59 (m, 1H), 5.01 – 4.93 (m, 0.5H), 4.92 (s, 

1H), 4.88 (q, J = 1.9 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 3.32 

(d, J = 10.4 Hz, 1H), 2.13 – 1.99 (m, 1H), 1.93 (dt, J = 13.8, 6.5 Hz, 1H), 1.86 (dd, J = 

12.6, 6.2 Hz, 2H) 1.83 – 1.61 (m, 3H), 1.37 (d, J = 12.7 Hz, 1H), 1.34 – 1.17 (m, 3H), 

1.00 (qd, J = 12.6, 3.6 Hz, 1H), 0.88 – 0.70 (m, 1.5H), 0.48 (q, J = 12.1 Hz, 1H). 
13C NMR (101 MHz, CDCl3): δ 135.7, 131.7, 130.4, 121.6, 115.7, 94.8, 74.1, 58.3, 41.7, 

40.8, 37.3, 36.8, 32.2, 31.7, 25.7. 
HRMS (+p APCI): calcd for C₁₉H₂₃O₂⁷⁹Br³⁵Cl₃ [M+H] 466.9942 found 466.9941. 

  

Br

O

O

CCl3
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HPLC Traces 
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Compound 12 

 

 

 

 

Racemic 

4-Ru 

4-Rh 



 

 287 

 

 

 

 

 

 

5-Ru 

6-Ru 

5-Rh 



 

 288 

 

 
 

 

 
 

7-Ru 

6-Rh 

7-Rh 



 

 289 

 

 

 

 
 

8-Ru 

8-Rh 

9-Ru 



 

 290 

 

 
 

 
 
 
 
 
 
 
 
Compound 15a, 15b 
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Compound 21 
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Compound 27 
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OJ3_3%MeOH_IPA_0_2% Formic Acid_2.5mL/min_5min
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NMR Spectra for Novel Compounds 
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Appendix C. Chapter 4 Supporting Information 
 
General Considerations 
 
All experiments were carried out in flame-dried glassware under argon atmosphere 

unless otherwise stated. Flash column chromatography was performed on silica gel. 

Unless otherwise noted, all other reagents were obtained from commercial sources 

(Sigma Aldrich, Fisher, TCI Chemicals, AK Scientific, Combi Blocks, Oakwood 

Chemicals, Ambeed) and used as received without purification. 1H, 13C, and 19F NMR 

spectra were recorded at either 400 MHz (13C at 100 MHz) on Bruker 400 spectrometer 

or 600 MHz (13C at 151 MHz) on INOVA 600 or Bruker 600 spectrometer. NMR spectra 

were run in solutions of deuterated chloroform (CDCl3) with residual chloroform taken as 

an internal standard (7.26 ppm for 1H, and 77.16 ppm for 13C), and were reported in 

parts per million (ppm). The abbreviations for multiplicity are as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublet, etc. 

Coupling constants (J values) are obtained from the spectra. Thin layer chromatography 

was performed on aluminum-back silica gel plates with UV light and cerium aluminum 

molybdate (CAM) stain to visualize. Mass spectra were taken on a Thermo Finnigan 

LTQ-FTMS spectrometer with APCI or ESI. Enantiomeric excess (% ee) data were 

obtained on an Agilent 1100 HPLC eluting the purified products using a mixed solution 

of HPLC-grade 2-propanol (i-PrOH) and n-hexane or a Waters SFC eluting with 

supercritical CO2 and a 1:1 mixtures of HPLC grade methanol:isopropanol with 0.2% 

formic acid. 
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Known Compounds 
 

 
Compound xx,1 S1 and S2,2 S3,3 S4,4 S5,5 S6,6 S7,7 S8,8 and S99 were synthesized 
according to known methods and spectra matched literature procedure. 

 

Substrate Synthesis 
3-methylene-1-tosylpiperidine (S10) 

 
1-Boc-3-methylenepiperidine (5.0 g, 25.3 mmol) and diethyl ether (10 mL) were added 

into a single-necked flask. Then, hydrogen chloride in dioxane solution (15.8 ml, 63.4 

mmol, 4.0 M, 2.5 equiv) was added dropwise, and the reaction was stired at room 

temperature for 0.5 h. At this time, the solution was suction filtered, and the filter cake 

was rinsed with 20 mL of diethyl ether to obtain 3-methylenepiperidine hydrochloride as 

a white solid, which was directly used in the next reaction without further purification. 

To a mixture of 3-methylenepiperidine hydrochloride (802 mg, 6.0 mmol) and Et3N (1.76 

mL, 12.6 mmol, 2.1 equiv) in DCM (20 mL) was added tosyl chloride (1.20 g, 6.3 mmol, 

1.05 equiv) at 0 °C. This solution was stirred for 4 h at room temperature. Then, HCl (5 

N
Boc N

N
Boc N

Boc

N
Boc

Ph

Cl

Ph

Boc

Ph

xx S1 S2 S3 S4

S5 S6

S7

S9S8

N
Boc

HCl in dioxane
(2.5 equiv)

N
H2 Cl

TsCl (1.05 equiv)
Et3N (2.1 equiv)

DCM, 0 °C
N
Ts
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ml, 1 M) and H2O (10 ml) were added and the organic layer was separated, washed 

with brine (10 ml), dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash column chromatography (SiO2, 0-30% Et2O 

in hexane) to afford 3-methylene-1-tosylpiperidine as a white solid (1.30 g, 86% yield) 

1H NMR (400 MHz, CDCl3) δ 7.66 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.90 (s, 
1H), 4.82 (s, 1H), 3.50 (s, 2H), 3.08 – 3.04 (m, 2H), 2.43 (s, 2H), 2.10 (t, J = 6.3 Hz, 
2H), 1.75 – 1.63 (m, 2H). 
13C NMR (101 MHz, CDCl3) δ 143.5, 140.6, 133.2, 129.6, 127.9, 111.8, 52.5, 46.4, 32.0, 

25.7, 21.6. 

HRMS (+p APCI) calcd for C₁₃H₁₈O₂N³²S (M+H) 252.1053, found 252.1054 

 

3-methylene-1-((4-nitrophenyl)sulfonyl)piperidine (S11) 

 
First step analogous to above. 

To a mixture of 3-methylenepiperidine hydrochloride (267 mg, 2.0 mmol) and Et3N (0.73 

mL, 5.2 mmol, 2.6 equiv) in DCM (6.7 mL) was added nosyl chloride (465 mg, 2.1 

mmol, 1.05 equiv) at 0 °C. This solution was stirred for 4 h at room temperature. Then, 

HCl (5 ml, 1 M) and H2O (10 ml) were added and the organic layer was separated, 

washed with brine (10 ml), dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash column chromatography (SiO2, 0-13% ethyl 

acetate in hexane) to afford the title compound as an off-white solid (462 mg, 92% yield) 

1H NMR (400 MHz, CDCl3) δ 8.37 (d, J = 8.9 Hz, 2H), 7.97 (d, J = 8.8 Hz, 2H), 4.91 (d, J 

= 1.7 Hz, 1H), 4.84 (d, J = 1.5 Hz, 1H), 3.62 (s, 2H), 3.25 – 3.11 (m, 2H), 2.14 (t, J = 6.3 

Hz, 2H), 1.77 – 1.62 (m, 2H). 
13C NMR (101 MHz, CDCl3) δ  150.1, 143.0, 139.8, 128.9, 124.3, 112.4, 52.3, 46.3, 31.8, 

25.7. 

HRMS (+p APCI) calcd for C₁₂H₁₅O₄N₂³²S (M+H) 283.0747, found 283.0745 
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2-methylene-1-tosylpyrrolidine (S12) 

 
 

Tert-butyl 3-methylenepyrrolidine-1-carboxylate (2.5 g, 13.6 mmol) and diethyl ether (7.0 

mL) were added into a single-necked. Then, hydrogen chloride in dioxane solution (8.53 

ml, 34.1 mmol, 4.0 M, 2.5 equiv) was added dropwise, and the solution was stirred at 

room temperature.  After 2.0 hour, the reaction mixture was cooled to 0 °C with an ice 

bath. Then, 20 ml of DCM and Et3N (5.89 mL, 42.3 mmol, 2.1 equiv) were added. Finally, 

tosyl chloride (2.73 g, 14.3 mmol, 1.05 equiv) was added and the mixture was stirred for 

4 h at room temperature. HCl (5 ml, 1 M) and H2O (10 ml) were added and the organic 

layer was separated, washed with brine (10 ml), dried over Na2SO4, filtered and 

concentrated under reduced pressure. The residue was purified by flash column 

chromatography (SiO2, 0-30% Et2O in hexane) to afford 3-methylene-1-tosylpyrrolidine 

as a white solid (2.50 g, 77% yield) 

 
1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.91 (dt, 

J = 7.4, 2.2 Hz, 2H), 3.79 – 3.74 (m, 2H), 3.28 (t, J = 7.1 Hz, 2H), 2.51 – 2.44 (m, 2H), 

2.43 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 144.1, 143.7, 132.7, 129.7, 127.9, 107.4, 51.9, 48.1, 31.8, 

21.6. 

HRMS (+p APCI) calcd for C₁₂H₁₆O₂N³²S (M+H) 238.0896, found 238.0898 

 

1-chloro-4-(3-methylenecyclohexyl)benzene (S13) 
To a flame dried round bottom flask equipped with a stir bar was 

added methyltriphenylphosphonium bromide (7.27 g, 20.3 mmol, 

1.5 equiv) which was dissolved in 20 mL of THF. Then potassium 

tert-butoxide (2.28 g, 20.3 mmol, 1.5 equiv) was added portion 

wise at 0 °C and the resulting yellow solution was let to stir for 1 h. 

Then, the 3-(4-chlorophenyl)cyclohexan-1-one (2.83 g, 13.6 mmol, 1.0 equiv) was 
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added to the flask and the solution was heated to 50 °C overnight in an aluminum 

pieblock. In the morning, the reaction was cooled, diluted with water, and extracted with 

diethyl ether and washed with brine. The crude reaction was purified using column 

chromatography with hexanes as eluent, affording the title compound as a clear, 

colorless oil (1.5 g, 53%) 

1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 4.71 (dd, 

J = 10.6, 2.0 Hz, 2H), 2.59 (tt, J = 12.0, 3.5 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.37 (dq, J = 

13.1, 2.2 Hz, 1H), 2.16 (td, J = 12.5, 1.5 Hz, 1H), 2.11 – 1.99 (m, 1H), 1.99 – 1.87 (m, 

2H), 1.61 – 1.37 (m, 2H). 
13C NMR (101 MHz, CDCl3) δ 148.6, 145.3, 131.7, 128.5, 128.2, 108.0, 45.2, 42.8, 34.6, 

33.9, 27.6. 

HRMS (+p APCI) calcd for C₁₃H₁₆³⁵Cl (M+H) 207.0935, found 207.0939. 

 

1,3-di-tert-butyl-5-(3-methylenecyclohexyl)benzene (S14) 
To a flame dried round bottom flask equipped with a stir bar was 

added methyltriphenylphosphonium bromide (4.75 g, 13.3 mmol, 

1.5 equiv) which was dissolved in 20 mL of THF. Then potassium 

tert-butoxide (1.49 g, 20.3 mmol, 1.5 equiv) was added portion 

wise at 0 °C and the resulting yellow solution was let to stir for 1 h. 

Then, the 3-(3,5-di-tert-butylphenyl)cyclohexan-1-one (2.54 g, 8.7 

mmol, 1.0 equiv) was added to the flask and the solution was heated to 50 °C overnight 

in an aluminum pieblock. In the morning, the reaction was cooled, diluted with water, 

and extracted with diethyl ether and washed with brine. The crude reaction was purified 

using column chromatography with hexanes as eluent, affording the title compound as a 

clear, colorless oil (1.4 g, 56%) 

 
1H NMR (400 MHz, CDCl3) δ 7.28 (t, J = 1.8 Hz, 1H), 7.08 (d, J = 1.9 Hz, 2H), 4.69 (dt, J 

= 7.2, 2.0 Hz, 2H), 2.61 (tt, J = 12.1, 3.5 Hz, 1H), 2.56 – 2.45 (m, 1H), 2.40 – 2.31 (m, 

1H), 2.29 – 2.17 (m, 1H), 2.13 – 2.02 (m, 1H), 
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13C NMR (101 MHz, CDCl3) δ 150.5, 149.5, 145.9, 121.0, 120.2, 107.4, 46.4, 43.0, 34.9, 

34.7, 34.1, 31.6, 27.8. 

HRMS (+p APCI) calcd for C₂₁H₃₃ (M+H) 285.2577, found 285.2578. 
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Product Characterization 
 
General Procedure 1: To a flame dried vial equipped with a stir bar and 4Å MS (1000 

w%) was added catalyst (1.0 mol% or 0.5 mol%). The reaction was then purged and 

backfilled three times with nitrogen and capped with an argon balloon. Then, the substrate 

and 2 mL of DCM was added to the vial and it was set to stir (200 RPM) at 25 °C. At this 

time, the aryldiazoacetate compound (1.0 equiv) was dissolved in 2 mL of DCM and 

added to the reaction vial over a period of 1 h via syringe pump. The reaction was left 

either for an additional 2 h or overnight. At this time, the reaction was stopped, 

concentrated to dryness, and taken for crude NMR analysis. Following this, the reaction 

was purified via column chromatography to afford the desired product. 

 

 

5-(tert-butyl) 1-(2,2,2-trichloroethyl) (S)-1-(4-bromophenyl)-5-azaspiro[2.3]hexane-
1,5-dicarboxylate (2) 

 General procedure 1 was used for the cyclopropanation of  tert-butyl 3-

methyleneazetidine-1-carboxylate (34 µL, 0.20 mmol, 2 equiv) with 

2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (37.1 mg, 0.10 

mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 (2.54 mg, 1.0 mol%) as 

catalyst. Purification by column chromatography (0-40% diethyl 

ether/hexanes) afforded the product as a white solid (39.5 mg, 77%). 
 

1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.4 Hz, 2H), 7.24 – 7.18 (m, 2H), 4.89 (d, J = 

11.9 Hz, 1H), 4.50 (d, J = 11.9 Hz, 1H), 4.23 – 4.13 (m, 2H), 3.73 (d, J = 9.2 Hz, 1H), 3.62 

(d, J = 9.2 Hz, 1H), 2.05 (d, J = 5.6 Hz, 1H), 1.67 (d, J = 5.6 Hz, 1H), 1.43 (s, 9H). 
13C NMR (101 MHz, CDCl3) δ 169.8, 156.0, 133.0, 132.4, 131.7, 128.3, 122.2, 94.5, 80.0, 

74.5, 35.1, 31.0, 28.4, 24.3. 

HRMS (+p APCI) calcd for C₁₉H₂₁O₄N⁷⁹Br³⁵Cl₃ (M+) 510.9714, found 510.9725. 

Chiral SFC: The enantiopurity was determined to be 97:3 er by SFC analysis (SS-Whelk, 

10% MeOH/IPA 0.2% Formic Acid, 2.5 mL/min, λ=230 nm, RT: Major: 3.53 min., Minor: 

2.29 min.)  
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6-(tert-butyl) 1-(2,2,2-trichloroethyl) (S)-1-(4-bromophenyl)-6-azaspiro[2.5]octane-
1,6-dicarboxylate (3) 

 General procedure 1 was used for the cyclopropanation of  tert-butyl 

4-methylenepiperidine-1-carboxylate (40 µL, 0.20 mmol, 2.0 equiv) 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (37.2 mg, 

0.10 mmol, 1.0 equiv) using Rh2(S-pPhTPCP)4 (1.76 mg, 1.0 mol%) 

as catalyst. Purification by column chromatography (0-40% diethyl 

ether/hexanes) afforded the product as a a white solid (41.9 mg, 

77%). 
1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.5 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 4.84 (d, J 

= 12.0 Hz, 1H), 4.50 (d, J = 11.9 Hz, 1H), 3.98 (s, 1H), 3.86 (s, 1H), 3.03 (t, J = 12.0 Hz, 

1H), 2.86 (t, J = 11.9 Hz, 1H), 1.89 – 1.77 (m, 1H), 1.81 – 1.74 (m, 1H), 1.65 (d, J = 13.6 

Hz, 1H), 1.45 (s, 9H), 1.29 (d, J = 5.1 Hz, 1H), 0.64 (d, J = 13.5 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.4 154.7, 134.7, 133.2, 131.2, 121.7, 94.7, 79.7, 74.6, 

38.9, 33.2, 30.2, 28.5, 23.9, 14.2. 

HRMS (+p APCI) calcd for C₂₁H₂₅O₄N⁷⁹Br³⁵Cl₃ (M+) 539.0027, found 539.0029. 

Chiral SFC: The enantiopurity was determined to be 98:2 er by SFC analysis (SS-Whelk, 

10% MeOH/IPA 0.2% Formic Acid, 2.5 mL/min, λ=230 nm, RT: Major: 2.88  min., Minor: 

2.49 min.)  

 
7-(tert-butyl) 1-(2,2,2-trichloroethyl) (S)-1-(4-bromophenyl)-7-
azadispiro[2.1.35.13]nonane-1,7-dicarboxylate (4) 
 

General procedure xx was used for the cyclopropanation of  tert-butyl 

6-methylene-2-azaspiro[3.3]heptane-2-carboxylate (52.3 mg, 0.25 

mmol, 2 equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-

diazoacetate (37.2 mg, 0.10 mmol, 1.0 equiv) using Rh2(S-TPPTTL) 

(2.5 mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (0-40% diethyl ether/hexanes) afforded the product 

as a white solid (44 mg, 79%). 
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1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 4.88 (d, J 

= 12.0 Hz, 1H), 4.49 (d, J = 12.0 Hz, 1H), 4.03 (d, J = 8.7 Hz, 1H), 3.98 – 3.87 (m, 3H), 

2.65 – 2.43 (m, 2H), 2.18 (d, J = 12.8 Hz, 1H), 1.96 (d, J = 5.1 Hz, 1H), 1.81 (d, J = 13.3 

Hz, 1H), 1.53 (d, J = 5.1 Hz, 1H), 1.42 (s, 9H). 
13C NMR (101 MHz, CDCl3) δ 170.1, 156.2, 134.3, 132.5, 131.5, 121.6, 94.8, 79.5, 74.3, 

40.6, 39.3, 35.8, 32.4, 32.1, 28.4, 26.4. 

HRMS (+p APCI) calcd for C₂₂H₂₅O₄N⁷⁹Br³⁵Cl₃  (M+) 551.0027, found. 551.0032. 

Chiral HPLC: The enantiopurity was determined to be 99:1 er by HPLC analysis (AD-H, 

1 mL/min, 2% IPA/Hexane, λ=230 nm, RT: Major: 29.7  min., Minor: 26.4 min.)  

 
8-(tert-butyl) 1-(2,2,2-trichloroethyl) (S)-1-phenyl-8-azadispiro[2.1.55.13]undecane-
1,8-dicarboxylate (5) 
 

General procedure 1 was used for the cyclopropanation of tert-butyl 

2-methylene-7-azaspiro[3.5]nonane-7-carboxylate (71.2 mg, 0.30 

mmol, 1.5 equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-

diazoacetate (74.5 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 

(5.0 mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (0-40% diethyl ether/hexanes) afforded the product 

as a clear oil (82.9 mg, 71% yield).  
1H NMR (400 MHz, CDCl3) δ 7.47 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.5 

Hz, 2H), 4.93 (d, J = 11.9 Hz, 1H), 4.47 (d, J = 12.0 Hz, 1H), 3.43 – 3.16 (m, 4H), 2.25 – 

2.08 (m, 2H), 1.98 (d, J = 4.9 Hz, 1H), 1.77 (d, J = 12.3 Hz, 1H), 1.68 – 1.52 (m, 5H), 1.44 

(s, 9H). 
13C NMR (101 MHz, CDCl3) δ 170.4, 155.0, 134.8, 132.8, 131.5, 121.6, 95.0, 79.5, 74.4, 

39.8, 38.6, 35.9, 33.1, 32.5, 28.6, 27.7. 

HRMS (+p APCI) calcd for C₂₄H₂₉O₄N⁷⁹Br³⁵Cl₃ (M+) 579.0340, found 579.0356.  

Chiral SFC: The enantiopurity was determined to be 90% ee by SFC analysis (SSWhelk, 

2.5 mL/min, 10% (50% methanol in isopropanol with 0.2% Formic Acid) in CO2, 1.0 

mg/ml), λ=230 nm, RT: Major: 4.48 min., Minor: 3.52 min.) 
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5-(tert-butyl) 1-(2,2,2-trichloroethyl) (1S,3S)-1-(4-bromophenyl)-5-
azaspiro[2.5]octane-1,5-dicarboxylate (8) 

General procedure 1 was used for the cyclopropanation of 

tert-butyl 3-methylenepiperidine-1-carboxylate (29.6 mg, 

0.15 mmol, 1.5 equiv) with 2,2,2-trichloroethyl 2-(4-

bromophenyl)-2-diazoacetate (37.2 mg, 0.10 mmol, 1.0 

equiv) using Rh2(S-pPhTPCP)4 (1.7 mg, 1.0 mol%) as 

catalyst. Purification by column chromatography (0-40% diethyl ether/hexanes) afforded 

the product as an amorphous white solid 36.7 mg, 86% yield).  
1H NMR (400 MHz, CDCl3) δ  7.43 (d, J = 8.5 Hz, 2H), 7.28 (s, 2H), 4.79 (bs, 1H), 4.66 – 

4.44 (m, 1H), 3.88 (s, 1H), 3.49 (s, 2H), 2.94 (s, 1H), 1.95 (d, J = 5.0 Hz, 1H), 1.65 – 1.55 

(m, 1H), 1.48 (s, 9H), 1.21 (d, J = 5.0 Hz, 1H), 1.09 – 0.75 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ  169.4, 169.1, 154.8, 134.6, 133.1, 131.8, 131.1, 128.3, 

121.6, 94.8, 79.7, 74.7, 49.8, 48.2, 43.9, 38.9, 33.3, 28.5, 24.6. 

HRMS (+p APCI) calcd for C₂₁H₂₅O₄N⁷⁹Br³⁵Cl₃ (M+) 539.0027, found 539.0028.  

Chiral SFC: The enantiopurity was determined to be 99% ee by SFC analysis (OJ3, 2.5 

mL/min, 3% (50% methanol in isopropanol with 0.2% Formic Acid) in CO2, 1.0 mg/ml), 

λ=230 nm, RT: Major: 2.51 min., Minor: 4.19 min.) 

  

 

 
2,2,2-trichloroethyl (1S,3S)-1-(4-bromophenyl)-5-tosyl-5-azaspiro[2.5]octane-1-
carboxylate (9) 
 

General procedure 1 was used for the cyclopropanation of tert-butyl 

3-methylenepiperidine-1-carboxylate (50.3 mg, 0.20 mmol, 2 equiv) 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (37.2 

mg, 0.10 mmol, 1.0 equiv) using Rh2(S-pPhTPCP)4 (3.4 mg, 1.0 

mol%) as catalyst. Purification by column chromatography (0-25% 
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diethyl ether/hexanes) afforded the product as a white solid (48 mg, 80%).  
1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.31 (dd, 

J = 8.1, 5.4 Hz, 4H), 4.90 (d, J = 12.0 Hz, 1H), 4.65 (d, J = 12.0 Hz, 1H), 3.13 (s, 2H), 

3.11 – 2.98 (m, 2H), 2.44 (s, 3zH), 1.95 (d, J = 5.4 Hz, 1H), 1.75 (ddd, J = 14.4, 6.9, 3.3 

Hz, 1H), 1.60 (tt, J = 9.4, 5.1 Hz, 1H), 1.30 (d, J = 5.4 Hz, 1H), 1.11 (ddd, J = 12.6, 7.9, 

4.2 Hz, 1H), 1.05 – 0.94 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.1, 143.6, 134.1, 133.3, 133.0, 131.1, 129.7, 127.7, 

121.8, 94.8, 74.9, 50.1, 46.6, 39.1, 32.4, 30.6, 23.8, 23.4, 21.6. 

HRMS (+p APCI) calcd for (M+) C₂₃H₂₄O₄N⁷⁹Br³⁵Cl₃³²S 593.9670, found 593.9674. 

Chiral HPLC: The enantiopurity was determined to be 98% ee by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 29.1  min., Minor: 24.4 min.) 
 

 

2,2,2-trichloroethyl (1S,3S)-5-tosyl-1-(4-(trifluoromethyl)phenyl)-5-
azaspiro[2.5]octane-1-carboxylate (10) 
 

General procedure 1 was used for the cyclopropanation of tert-

butyl 3-methylenepiperidine-1-carboxylate (75.4 mg, 0.30 mmol, 

1.5 equiv) with 2,2,2-trichloroethyl 2-diazo-2-(4-

(trifluoromethyl)phenyl)acetate (73.2 mg, 0.20 mmol, 1.0 equiv) 

using Rh2(S-pPhTPCP)4 (3.4 mg, 1.0 mol%) as catalyst. 

Purification by column chromatography (0-40%% diethyl 

ether/hexanes) afforded the product as a white solid (93 mg, 83%).  
1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 6.50 (s, 

1H), 4.95 (d, J = 12.0 Hz, 1H), 4.87 (d, J = 12.1 Hz, 1H), 3.53 – 3.39 (m, 2H), 2.78 (d, J 

= 12.5 Hz, 1H), 2.60 – 2.51 (m, 1H), 2.43 (s, 3H), 2.29 (s, 3H), 2.02 (d, J = 5.8 Hz, 1H), 

1.86 (d, J = 5.8 Hz, 1H), 1.78 – 1.64 (m, 1H), 1.57 (dt, J = 13.7, 4.2 Hz, 1H), 1.43 – 1.34 

(m, 1H), 1.13 (dt, J = 14.4, 4.6 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 168.83, 143.63, 139.10 (d, J = 1.2 Hz), 133.29, 131.75, 

129.71, 127.65, 124.91 (q, J = 3.8 Hz), 124.0 (q, J = 271.5 Hz), 94.68, 74.87, 49.98, 

46.56, 39.33, 32.64, 30.74, 23.76, 23.57, 21.58. 
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19F NMR (376 MHz, CDCl3) δ -62.5. 

HRMS (+p APCI) calcd for (M+H) C₂₄H₂₄O₄N³⁵Cl₃F₃³²S 584.0438, found 584.0429  

Chiral HPLC: The enantiopurity was determined to be 99.5:0.5 er by HPLC analysis (AD-

H, 1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 19.5  min., Minor: 25.7 min.) 
 

2,2,2-trichloroethyl (1S,3S)-1-(4-(methoxycarbonyl)phenyl)-5-tosyl-5-
azaspiro[2.5]octane-1-carboxylate (11) 
 

General procedure xx was used for the cyclopropanation of 

tert-butyl 3-methylenepiperidine-1-carboxylate (100.5 mg, 

0.30 mmol, 2 equiv)  with methyl 4-(1-diazo-2-oxo-2-(2,2,2-

trichloroethoxy)ethyl)benzoate (70.3 mg, 0.20 mmol, 1.0 

equiv) using Rh2(S-pPhTPCP)4 (3.4 mg, 1.0 mol%) as 

catalyst. Purification by column chromatography (0-30% 

diethyl ether/hexanes) afforded the product as a white solid (91 mg, 81%).  
 

1H NMR (400 MHz, CDCl3)   δ 8.00 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.53 (d, 

J = 8.1 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.91 (d, J = 11.9 Hz, 1H), 4.68 (d, J = 12.0 Hz, 

1H), 3.93 (s, 3H), 3.19 (s, 2H), 3.11 (td, J = 7.3, 3.4 Hz, 1H), 3.08 – 2.99 (m, 1H), 2.46 (s, 

3H), 2.01 (d, J = 5.4 Hz, 1H), 1.84 – 1.73 (m, 1H), 1.60 (dtt, J = 15.7, 7.7, 4.2 Hz, 1H), 

1.40 (d, J = 5.5 Hz, 1H), 1.12 (ddd, J = 12.5, 7.8, 4.2 Hz, 1H), 0.98 (ddd, J = 13.3, 7.9, 

4.2 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 168.9, 166.8, 143.6, 140.2, 133.3, 131.4, 129.7, 129.5, 

129.2, 127.7, 94.7, 74.9, 52.2, 50.0, 46.6, 39.5, 32.7, 30.7, 23.8, 23.6, 21.6. 
HRMS (+p APCI) calcd for (M+H) C₂₅H₂₇O₆N³⁵Cl₃³²S 574.0619, found 574.0609. 

Chiral HPLC: The enantiopurity was determined to be 99:1 er by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 41.4  min., Minor: 35.7 min.)  
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2,2,2-trichloroethyl (1S,3S)-1-(4-nitrophenyl)-5-tosyl-5-azaspiro[2.5]octane-1-
carboxylate (12)  

General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-diazo-2-(4-nitrophenyl)acetate (67.7 

mg, 0.20 mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (3.4 mg, 1.0 

mol%) as catalyst. Purification by column chromatography (0-

40% diethyl ether/hexanes) afforded the product as a white solid 

(81 mg, 72% yield).  
1H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 8.8 Hz, 2H), 7.63 (dd, J = 8.6, 2.1 Hz, 4H), 7.33 

(d, J = 8.1 Hz, 2H), 4.89 (d, J = 12.0 Hz, 1H), 4.69 (d, J = 12.0 Hz, 1H), 3.24 (d, J = 12.4 

Hz, 1H), 3.15 (d, J = 12.3 Hz, 1H), 3.12 – 3.00 (m, 2H), 2.44 (s, 3H), 2.07 (d, J = 5.5 Hz, 

1H), 1.75 (ddt, J = 12.2, 8.0, 4.9 Hz, 1H), 1.66 – 1.58 (m, 1H), 1.41 (d, J = 5.6 Hz, 1H), 

1.05 (dt, J = 7.8, 4.9 Hz, 2H). 
13C NMR (101 MHz, CDCl3) δ 168.3, 147.3, 143.7, 142.5, 133.3, 132.4, 129.7, 127.6, 

123.1, 94.6, 75.0, 49.7, 46.5, 39.3, 33.2, 30.8, 23.8, 23.7, 21.6. 

HRMS (+p APCI) calcd for C₂₃H₂₄O₆N₂³⁵Cl₃³²S (M+H) 561.0415, found 561.0407.  

Chiral HPLC: The enantiopurity was determined to be 99% ee by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 26.8 min., Minor: 37.5 min.) 

 

2,2,2-trichloroethyl (1S,3S)-1-([1,1'-biphenyl]-4-yl)-5-tosyl-5-azaspiro[2.5]octane-1-
carboxylate (13) 
 

General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-([1,1'-biphenyl]-4-yl)-2-diazoacetate 

(73.9 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (3.4 

mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (0-40% diethyl ether/hexanes) afforded the 

product as a white solid (102.8 mg, 87% yield).  
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1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 7.0 Hz, 2H), 7.53 (s, 

2H), 7.49 (d, J = 8.4 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.38 – 7.30 (m, 3H), 4.93 (d, J = 12.0 

Hz, 1H), 4.66 (d, J = 11.9 Hz, 1H), 3.26 – 3.11 (m, 3H), 2.98 (ddd, J = 11.6, 8.2, 3.6 Hz, 

1H), 2.45 (s, 3H), 1.97 (d, J = 5.4 Hz, 1H), 1.89 – 1.74 (m, 1H), 1.69 – 1.58 (m, 1H), 1.38 

(d, J = 5.4 Hz, 1H), 1.22 (ddd, J = 13.0, 8.6, 4.4 Hz, 1H), 1.00 (ddd, J = 13.8, 7.5, 4.1 Hz, 

1H). 
13C NMR (101 MHz, CDCl3) δ 169.7, 143.6, 140.6, 140.5, 134.1, 133.5, 131.8, 129.8, 

128.9, 127.8, 127.6, 127.2, 126.7, 95.0, 74.9, 50.5, 46.8, 39.5, 32.3, 30.8, 24.0, 23.5, 

21.7. 

HRMS (+p APCI) calcd for C₂₉H₂₉O₄N³⁵Cl₃³²S (M+H) 592.0877, found 592.0871.  

Chiral HPLC: The enantiopurity was determined to be 99% ee by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 26.8 min., Minor: 37.5 min.) 

 
 
2,2,2-trichloroethyl (1S,3S)-1-(4-methoxyphenyl)-5-tosyl-5-azaspiro[2.5]octane-1-
carboxylate (14) 

General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) with 

2,2,2-trichloroethyl 2-diazo-2-(4-methoxyphenyl)acetate (64.7 

mg, 0.20 mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (3.4 mg, 1.0 

mol%) as catalyst. Purification by column chromatography (0-

40% diethyl ether/hexanes) afforded the product as a white solid 

(97.8 mg, 89% yield).  
1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.3 Hz, 2H), 7.38 – 7.28 (m, 4H), 6.83 (d, J = 

8.8 Hz, 2H), 4.89 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 3.79 (s, 3H), 3.19 – 3.06 

(m, 3H), 3.01 – 2.91 (m, 1H), 2.44 (s, 3H), 1.89 (d, J = 5.3 Hz, 1H), 1.81 – 1.69 (m, 1H), 

1.64 – 1.52 (m, 1H), 1.28 (d, J = 5.3 Hz, 1H), 1.16 (ddd, J = 13.0, 8.3, 4.1 Hz, 1H), 0.96 

(ddd, J = 13.7, 7.6, 4.2 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.9, 159.1, 143.6, 133.5, 132.4, 129.8, 127.8, 127.1, 

113.4, 95.0, 74.9, 55.4, 50.5, 46.8, 39.0, 32.1, 30.7, 24.0, 23.5, 21.7. 

HRMS (+p APCI) calcd for C₂₄H₂₇O₅N³⁵Cl₃³²S (M+H+) 546.0670, found 546.0665.  
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Chiral SFC: The enantiopurity was determined to be 99% ee by SFC analysis (OJ3, 2.5 

mL/min, 10% (50% methanol in isopropanol with 0.2% Formic Acid) in CO2, 1.0 mg/ml), 

λ=230 nm, RT: Major: 4.08 min., Minor: 5.21 min.) 

 
2,2,2-trichloroethyl (1S,3S)-1-phenyl-5-tosyl-5-azaspiro[2.5]octane-1-carboxylate 
(15) 

 
General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-diazo-2-phenylacetate (58.7 mg, 0.20 

mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (3.4 mg, 1.0 mol%) 

as catalyst. Purification by column chromatography (0-40% 

diethyl ether/hexanes) afforded the product as a white solid 

(97.8 mg, 89% yield).  
1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.2 Hz, 2H), 7.44 – 7.39 (m, 2H), 7.35 – 7.27 

(m, 5H), 4.89 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 3.25 – 3.06 (m, 3H), 2.94 

(ddd, J = 11.6, 8.1, 3.5 Hz, 1H), 2.44 (s, 3H), 1.93 (d, J = 5.3 Hz, 1H), 1.77 (dtt, J = 14.8, 

7.5, 3.9 Hz, 1H), 1.67 – 1.52 (m, 1H), 1.33 (d, J = 5.3 Hz, 1H), 1.15 (dd, J = 8.7, 4.4 Hz, 

1H), 0.93 (ddd, J = 13.8, 7.4, 4.1 Hz, 1H). 
13C NMR (101 MHz, CDCl3 ) δ 169.6, 143.5, 135.0, 133.4, 131.3, 129.7, 128.0, 127.7, 

127.6, 94.9, 74.8, 65.9, 50.4, 46.6, 39.6, 32.1, 30.7, 23.9, 23.4, 21.6, 15.3. 

HRMS (+p APCI) calcd for C₂₃H₂₅O₄N³⁵Cl₃³²S (M+H) 516.0564, found 516.0555. 

Chiral HPLC: The enantiopurity was determined to be 99% ee by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 27.4 min., Minor: 20.1 min.) 

 
 
2,2,2-trichloroethyl (1S,3S)-1-(m-tolyl)-5-tosyl-5-azaspiro[2.5]octane-1-carboxylate 
(16) 
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General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-diazo-2-(m-tolyl)acetate (61.5 mg, 

0.20 mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (1.7 mg, 1.0 

mol%) as catalyst. Purification by column chromatography (0-

20% diethyl ether/hexanes) afforded the product as a white solid 

(95.6 mg, 90% yield).  
1H NMR (400 MHz, CDCl3) δ 7.62 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.26 (s, 

1H), 7.19 (d, J = 1.4 Hz, 2H), 7.12 – 7.04 (m, 1H), 4.91 (d, J = 11.9 Hz, 1H), 4.62 (d, J = 

11.9 Hz, 1H), 3.25 – 3.02 (m, 3H), 3.00 – 2.85 (m, 1H), 2.44 (s, 3H), 2.32 (s, 3H), 1.91 (d, 

J = 5.3 Hz, 1H), 1.76 (ddt, J = 14.4, 7.6, 3.7 Hz, 1H), 1.60 (ddt, J = 13.4, 8.8, 4.4 Hz, 1H), 

1.33 (d, J = 5.3 Hz, 1H), 1.17 (ddd, J = 13.3, 8.6, 4.1 Hz, 1H), 0.92 (ddd, J = 13.9, 7.4, 

4.2 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.7, 143.6, 137.6, 134.9, 133.4, 132.3, 129.8, 128.5, 

128.3, 127.9, 127.8, 95.0, 74.8, 50.5, 46.8, 39.7, 32.0, 30.8, 24.0, 23.4, 21.7, 21.5. 

HRMS (+p APCI) calcd for C₂₄H₂₇O₄N³⁵Cl₃³²S (M+H) 530.0721, found 530.0707.  

Chiral HPLC: The enantiopurity was determined to be 98% ee by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 28.98 min., Minor: 13.86 min.) 

 
2,2,2-trichloroethyl (1S,3S)-1-(3-bromophenyl)-5-tosyl-5-azaspiro[2.5]octane-1-
carboxylate (17) 

General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-(3-bromophenyl)-2-diazoacetate 

(74.5 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (1.7 

mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (0-30% diethyl ether/hexanes) afforded the 

product as a white solid (108.9 mg, 91% yield).  
1H NMR (400 MHz, CDCl3) δ 7.66 – 7.56 (m, 3H), 7.41 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 

8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 7.9 Hz, 1H), 4.89 (d, J = 11.9 Hz, 1H), 

4.65 (d, J = 11.9 Hz, 1H), 3.22 – 3.06 (m, 3H), 2.99 (ddd, J = 11.4, 7.9, 3.6 Hz, 1H), 2.44 

N
Ts

O
O

Cl3C

N
Ts

O
O

Cl3C

Br



 

 347 

(s, 3H), 1.95 (d, J = 5.4 Hz, 1H), 1.83 – 1.70 (m, 1H), 1.66 – 1.56 (m, 1H), 1.33 (d, J = 5.5 

Hz, 1H), 1.16 (ddd, J = 12.9, 8.2, 4.2 Hz, 1H), 0.98 (ddd, J = 13.8, 7.7, 4.2 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.0, 143.7, 137.4, 134.6, 133.5, 131.0, 130.0, 129.8, 

129.6, 127.8, 122.0, 94.9, 75.0, 50.2, 46.7, 39.4, 32.6, 30.8, 23.9, 23.6, 21.7. 

HRMS (+p APCI) calcd for C₂₃H₂₄O₄N⁷⁹Br³⁵Cl₃³²S (M+H+) 593.9670, found 593.9661.  

Chiral HPLC: The enantiopurity was determined to be 96% ee by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 31.7 min., Minor: 19.8 min.) 

 

2,2,2-trichloroethyl (1S,3S)-1-(3,5-dibromophenyl)-5-tosyl-5-azaspiro[2.5]octane-1-
carboxylate (18) 

General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-diazo-2-(3,5-dibromophenyl)acetate 

(90.3 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (1.7 

mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (0-20% diethyl ether/hexanes) afforded the 

product as a white solid (94.4 mg, 73% yield, 7:1 dr).  
1H NMR (400 MHz, CDCl3) δ 7.66 – 7.57 (m, 3H), 7.52 (d, J = 1.8 Hz, 2H), 7.32 (d, J = 

8.1 Hz, 2H), 4.90 (d, J = 11.9 Hz, 1H), 4.66 (d, J = 11.9 Hz, 1H), 3.20 – 3.06 (m, 3H), 3.06 

– 2.94 (m, 1H), 2.44 (s, 3H), 1.96 (d, J = 5.6 Hz, 1H), 1.79 – 1.70 (m, 1H), 1.69 – 1.59 (m, 

1H), 1.33 (d, J = 5.6 Hz, 1H), 1.16 (ddd, J = 12.6, 7.9, 4.3 Hz, 1H), 1.02 (ddd, J = 13.4, 

7.7, 4.2 Hz, 1H). For clarity, only the major diastereomer is reported.  
13C NMR (101 MHz, CDCl3) δ 168.4, 143.8, 139.0, 133.6, 133.4, 133.3, 129.8, 127.8, 

122.5, 94.8, 75.1, 49.9, 46.7, 39.1, 33.0, 30.9, 23.9, 23.6, 21.7. For clarity, only the major 

diastereomer is reported. 

HRMS (+p APCI) calcd for C₂₃H₂₃O₄N⁷⁹Br₂³⁵Cl₃³²S (M+H) 671.8775, found 671.8776.  

Chiral SFC: The enantiopurity was determined to be 97% ee by SFC analysis (SSWhelk, 

2.5 mL/min, 10% (50% methanol in isopropanol with 0.2% Formic Acid) in CO2, 1.0 

mg/ml), λ=230 nm, RT: Major: 9.98 min., Minor: 10.82 min.) 
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2,2,2-trichloroethyl (1S,3S)-1-((E)-styryl)-5-tosyl-5-azaspiro[2.5]octane-1-
carboxylate (19) 
 

General procedure 1 was used for the cyclopropanation of  3-

methylene-1-tosylpiperidine (75.4 mg, 0.30 mmol, 1.5 equiv) with 

2,2,2-trichloroethyl (E)-2-diazo-4-phenylbut-3-enoate (63.9 mg, 0.20 

mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 (5.0 mg, 1.0 mol%) as 

catalyst. Purification by column chromatography (0-40% diethyl 

ether/hexanes) afforded the product as a white solid (65.3 mg, 60% 

yield).  
1H NMR (400 MHz, CDCl3) δ  7.52 (d, J = 8.3 Hz, 2H), 7.34 – 7.27 (m, 2H), 7.23 (d, J = 

7.8 Hz, 3H), 7.20 – 7.15 (m, 2H), 6.71 (d, J = 16.0 Hz, 1H), 6.35 (d, J = 15.9 Hz, 1H), 4.91 

(d, J = 12.0 Hz, 1H), 4.74 (d, J = 12.0 Hz, 1H), 3.49 – 3.38 (m, 1H), 3.31 (d, J = 12.3 Hz, 

1H), 2.66 (d, J = 12.3 Hz, 1H), 2.51 (ddd, J = 11.3, 8.4, 4.8 Hz, 1H), 2.35 (s, 3H), 1.68 (d, 

J = 5.6 Hz, 1H), 1.64 – 1.55 (m, 2H), 1.43 – 1.33 (m, 2H), 1.22 (d, J = 5.7 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.6, 143.5, 136.5, 133.5, 133.3, 129.7, 128.7, 127.9, 

127.6, 126.4, 123.6, 95.1, 74.9, 49.9, 46.7, 36.4, 33.6, 28.7, 24.6, 21.5, 21.1. 

HRMS (+p APCI) calcd for C₂₅H₂₇O₄N³⁵Cl₃³²S (M+H) 542.0721, 542.0717 found.  

Chiral HPLC: The enantiopurity was determined to be 78% ee by HPLC analysis (R,R-

Whelk, 1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 30.3  min., Minor: 25.8 min.) 
 

 

2,2,2-trichloroethyl (1S,3S)-1-(benzo[d][1,3]dioxol-5-yl)-5-tosyl-5-
azaspiro[2.5]octane-1-carboxylate (20) 
 

General procedure 1 was used for the cyclopropanation of tert-

butyl 3-methylenepiperidine-1-carboxylate (75.4 mg, 0.30 mmol, 

1.5 equiv) with 2,2,2-trichloroethyl 2-(benzo[d][1,3]dioxol-5-yl)-2-

diazoacetate (67.5 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-

pPhTPCP)4 (1.76 mg, 0.5 mol%) as catalyst. Purification by 
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column chromatography (0-30% diethyl ether/hexanes) afforded the product as a white 

solid (82.1 mg, 73%).  
 

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.3 Hz,2H), 7.31 (d, J = 8.0 Hz, 2H), 6.93 (d, J 

= 1.8 Hz, 1H), 6.84 (dd, J = 8.1, 1.8 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 5.94 (s, 2H), 4.89 

(d, J = 11.9 Hz, 1H), 4.65 (d, J = 11.9 Hz, 1H), 3.16 (dd, J = 13.5, 7.2 Hz, 2H), 3.06 (d, J 

= 12.1 Hz, 1H), 2.92 (ddd, J = 11.7, 8.1, 3.4 Hz, 1H), 2.44 (s, 3H), 1.89 (d, J = 5.3 Hz, 

1H), 1.77 (ddq, J = 14.5, 7.4, 3.6 Hz, 1H), 1.68 – 1.54 (m, 2H), 1.26 (d, J = 5.4 Hz, 1H), 

1.21 (tt, J = 8.5, 4.2 Hz, 1H), 1.03 – 0.94 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.6, 147.2, 147.1, 143.5, 133.3, 129.7, 128.6, 127.7, 

124.5, 111.9, 107.7, 101.2, 94.9, 74.8, 50.4, 46.6, 39.4, 32.1, 30.6, 23.9, 23.7, 21.6. 

HRMS (+p APCI) calcd for  C₂₄H₂₅O₆N³⁵Cl₃³²S  (M+) 560.0463, found 560.0456. 

Chiral HPLC: The enantiopurity was determined to be 99.5:0.5 er by HPLC analysis (AD-

H, 1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 49.6  min., Minor: 28.4 min.)  

 
 

2,2,2-trichloroethyl (1S,3S)-1-(2,3-dihydrobenzofuran-5-yl)-5-tosyl-5-
azaspiro[2.5]octane-1-carboxylate (21) 
 

General procedure 1 was used for the cyclopropanation of tert-

butyl 3-methylenepiperidine-1-carboxylate (75.4 mg, 0.30 mmol, 

1.5 equiv) with 2 2,2,2-trichloroethyl 2-diazo-2-(2,3-

dihydrobenzofuran-6-yl)acetate (67.1 mg, 0.20 mmol, 1.0 equiv) 

using Rh2(S-pPhTPCP)4 (1.75 mg, 0.50 mol%) as catalyst. 

Purification by column chromatography (0-30% diethyl 

ether/hexanes) afforded the product as a white solid (77 mg, 69%).  
 

1H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 7.28 (d, J 

= 1.9 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 1H), 6.69 (d, J = 8.3 Hz, 1H), 4.90 (d, J = 12.0 

Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.56 (t, J = 8.7 Hz, 2H), 3.25 – 3.03 (m, 5H), 2.95 (ddd, 

J = 11.5, 8.2, 3.5 Hz, 1H), 2.44 (s, 3H), 1.88 (d, J = 5.3 Hz, 1H), 1.76 (ddq, J = 14.5, 7.4, 
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3.6 Hz, 1H), 1.67 – 1.53 (m, 1H), 1.26 (d, J = 5.3 Hz, 1H), 1.24 – 1.13 (m, 1H), 0.98 (ddd, 

J = 14.0, 7.6, 4.0 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.9, 159.6, 143.5, 133.3, 130.9, 129.7, 128.0, 127.7, 

126.8, 126.7, 108.6, 95.0, 74.8, 71.4, 50.5, 46.7, 39.2, 31.9, 30.6, 29.6, 23.9, 23.4, 21.6. 

HRMS (+p APCI) calcd for C₂₅H₂₇O₅N³⁵Cl₃³²S  (M+) 558.0670, found 558.0659.  

Chiral HPLC: The enantiopurity was determined to be 99.5:0.5 er by HPLC analysis (AD-

H, 1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 50.3  min., Minor: 21.3 min.)  

 
 
 
2,2,2-trichloroethyl (1R,3S)-1-(3-methylisoxazol-5-yl)-5-tosyl-5-
azaspiro[2.5]octane-1-carboxylate (22) 

 

General procedure 1 was used for the cyclopropanation of tert-

butyl 3-methylenepiperidine-1-carboxylate (75.4 mg, 0.30 mmol, 

1.5 equiv) with 2,2,2-trichloroethyl 2-diazo-2-(3-methylisoxazol-5-

yl)acetate (60 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-pPhTPCP)4 

(1.8 mg, 0.50 mol%) as catalyst. Purification by column 

chromatography (0-35% diethyl ether/hexanes) afforded the product as a white solid (81.4 

mg, 78%).  
1H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 6.50 (s, 

1H), 4.95 (d, J = 12.0 Hz, 1H), 4.87 (d, J = 12.1 Hz, 1H), 3.53 – 3.39 (m, 2H), 2.78 (d, J 

= 12.5 Hz, 1H), 2.60 – 2.51 (m, 1H), 2.43 (s, 3H), 2.29 (s, 3H), 2.02 (d, J = 5.8 Hz, 1H), 

1.86 (d, J = 5.8 Hz, 1H), 1.78 – 1.64 (m, 1H), 1.57 (dt, J = 13.7, 4.2 Hz, 1H), 1.43 – 1.34 

(m, 1H), 1.13 (dt, J = 14.4, 4.6 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 166.7, 165.9, 160.5, 143.7, 133.1, 129.8, 127.6, 106.9, 

94.6, 75.4, 49.4, 46.6, 36.0, 32.0, 29.3, 23.6, 23.1, 21.6, 11.6. 

HRMS (+p APCI) calcd for C₂₁H₂₄O₅N₂³⁵Cl₃³²S (M+) 521.0466, 521.0460 found.  

Chiral HPLC: The enantiopurity was determined to be 97:3 er by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 39.7  min., Minor: 22.1 min.)  
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2,2,2-trichloroethyl (1R,3S)-1-(6-chloropyridin-3-yl)-5-tosyl-5-azaspiro[2.5]octane-
1-carboxylate (23) 
 

General procedure 1 was used for the cyclopropanation of tert-

butyl 3-methylenepiperidine-1-carboxylate (75.4 mg, 0.30 mmol, 

1.5 equiv) with 2,2,2-trichloroethyl 2-(6-chloropyridin-3-yl)-2-

diazoacetate (65.8 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-

pPhTPCP)4 (1.8 mg, 0.50 mol%) as catalyst. Purification by 

column chromatography (0-35% diethyl ether/hexanes) afforded 

the product as a white solid (57.8 mg, 50%).  
1H NMR (400 MHz, CDCl3) δ 8.39 (d, J = 2.5 Hz, 1H), 7.82 (dd, J = 8.3, 2.6 Hz, 1H), 7.62 

(d, J = 8.2 Hz, 2H), 7.31 (dd, J = 8.3, 6.4 Hz, 3H), 4.89 (d, J = 11.9 Hz, 1H), 4.70 (d, J = 

11.9 Hz, 1H), 3.23 (d, J = 12.4 Hz, 1H), 3.17 – 3.07 (m, 2H), 3.01 (td, J = 8.0, 4.1 Hz, 1H), 

2.04 (d, J = 5.6 Hz, 1H), 1.72 (tt, J = 6.7, 3.6 Hz, 1H), 1.66 – 1.55 (m, 2H), 1.37 (d, J = 

5.6 Hz, 1H), 1.08 (t, J = 6.1 Hz, 2H). 
13C NMR (101 MHz, CDCl3) δ 168.3, 151.8, 150.8, 143.7, 142.0, 133.3, 130.1, 129.8, 

127.6, 123.6, 94.6, 75.0, 49.6, 46.5, 36.5, 32.8, 30.6, 23.7, 23.2, 21.6. 

HRMS (+p APCI) calcd for C₂₂H₂₃O₄N₂³⁵Cl₄³²S (M+H) 551.0127, found 551.0120. 

Chiral HPLC: The enantiopurity was determined to be 98% ee by HPLC analysis (AD-H, 

1 mL/min, 10% IPA/Hexane, λ=230 nm, RT: Major: 38.2  min., Minor: 33.3 min.)  

 
 
 
2,2,2-trichloroethyl (1S,3S)-1-(4-bromophenyl)-5-((4-nitrophenyl)sulfonyl)-5-
azaspiro[2.5]octane-1-carboxylate--ethyne (24) 
 

General procedure 1 with some slight modifcations used for the 

cyclopropanation of tert-butyl 3-methylenepiperidine-1-

carboxylate (339 mg, 1.20 mmol, 1.2 equiv) with 2,2,2-

trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (372 mg, 1.0 

mmol, 1.0 equiv) using Rh2(S-pPhTPCP)4 (17.6 mg, 1.0 mol%) as 
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catalyst. Purification by column chromatography (0-35% diethyl ether/hexanes) afforded 

the product as a white solid (461 mg, 78%).  
1H NMR (400 MHz, CDCl3) δ 8.05 – 7.96 (m, 1H), 7.76 – 7.66 (m, 2H), 7.66 – 7.59 (m, 

1H), 7.45 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 4.79 (d, J = 11.9 Hz, 1H), 4.66 (d, 

J = 11.9 Hz, 1H), 3.55 – 3.45 (m, 2H), 3.48 – 3.39 (m, 1H), 3.26 (ddd, J = 12.3, 8.1, 3.6 

Hz, 1H), 1.95 (d, J = 5.4 Hz, 1H), 1.76 (dtd, J = 14.3, 7.3, 3.7 Hz, 1H), 1.63 (dtt, J = 12.7, 

8.4, 4.0 Hz, 1H), 1.32 (d, J = 5.5 Hz, 1H), 1.30 – 1.24 (m, 1H), 1.07 (ddd, J = 13.1, 7.4, 

4.1 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.1, 148.2, 134.1, 133.6, 133.0, 132.0, 131.6, 131.2, 

131.1, 124.1, 121.9, 94.7, 74.9, 49.4, 46.4, 39.2, 32.6, 31.0, 24.3, 23.8. 
HRMS (+p APCI) calcd for C₂₂H₂₁O₆N₂⁷⁹Br³⁵Cl₃³²S (M+H) 624.9364, found 624.9362. 

Chiral SFC: The enantiopurity was determined to be 99% ee by chiral SFC analysis 

(CEL-1, 2.5 mL/min, 10% methanol in isopropanol with 0.2% Formic Acid in CO2, 1.0 

mg/ml, λ=230 nm, RT: Major: 6.13 min., Minor: 6.72 min.) 

 

 

 
2,2,2-trichloroethyl (1S,3S)-1-(4-bromophenyl)-5-tosyl-5-azaspiro[2.4]heptane-1-
carboxylate (25) 

General procedure 1 was used for the cyclopropanation of 3-

methylene-1-tosylpyrrolidine (71.2 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 

mg, 0.20 mmol, 1.0 equiv) using Rh2(S-p-PhTPCP)4 (1.7 mg, 1.0 

mol%) as catalyst. Purification by column chromatography (0-

40% diethyl ether/hexanes) afforded the product as a white solid 

(98.4 mg, 85% yield, 9:1 dr) – a mixture of 4:1 of two 

diastereomers which are inseparable by flash chromatography.    
1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.35 (d, J 

= 7.9 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 4.82 (d, J = 11.9 Hz, 1H), 4.51 (d, J = 11.9 Hz, 

1H), 3.53 (d, J = 11.2 Hz, 1H), 3.45 (d, J = 11.2 Hz, 1H), 3.42 – 3.35 (m, 1H), 3.31 – 3.20 

(m, 1H), 2.46 (s, 3H), 1.85 (d, J = 5.2 Hz, 1H), 1.70 (dt, J = 13.1, 8.0 Hz, 1H), 1.43 (d, J 
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= 5.2 Hz, 1H), 1.14 (ddd, J = 13.1, 7.0, 4.4 Hz, 1H). For clarity, only the major diastereomer 

is reported. 
13C NMR (101 MHz, CDCl3) δ 169.8, 143.8, 134.2, 133.3, 132.4, 131.5, 129.8, 127.8, 

122.0, 94.5, 74.6, 52.3, 47.5, 37.0, 36.6, 32.7, 26.5, 21.6. For clarity, only the major 

diastereomer is reported. 

HRMS (+p APCI) calcd for C₂₂H₂₂O₄N⁷⁹Br³⁵Cl₃³²S (M+H) 579.9513, found 579.9511.  

Chiral SFC: The enantiopurity was determined to be 98% ee by SFC analysis (OJ3, 2.5 

mL/min, 10% (50% methanol in isopropanol with 0.2% Formic Acid) in CO2, 1.0 mg/ml), 

λ=230 nm, RT: Major: 3.06 min., Minor: 3.62 min.) 

 
2,2,2-trichloroethyl (1S,3r,6S)-1-(4-bromophenyl)-6-phenylspiro[2.5]octane-1-
carboxylate (27) 
 

General procedure 1 was used for the cyclopropanation of 

(4-methylenecyclohexyl)benzene (25.6 mg, 0.15 mmol, 1.5 

equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-

diazoacetate (37.2 mg, 0.10 mmol, 1.0 equiv) using Rh2(S-

TPPTTL)4 (2.5 mg, 1.0 mol%) as catalyst. Purification by 

column chromatography (0-10% diethyl ether/hexanes) afforded the product as a white 

solid (35.6 mg, 67% yield).  
1H NMR (400 MHz, CDCl3) δ  7.46 (d, J = 8.6 Hz, 2H), 7.31 (dd, J = 8.0, 6.2 Hz, 4H), 7.24 

– 7.15 (m, 3H), 4.86 (d, J = 12.0 Hz, 1H), 4.53 (d, J = 12.0 Hz, 1H), 2.59 (tt, J = 12.2, 3.5 

Hz, 1H), 2.00 (dt, J = 12.7, 2.8 Hz, 1H), 1.93 – 1.79 (m, 3H), 1.81 – 1.62 (m, 3H), 1.59 – 

1.46 (m, 1H), 1.27 (dd, J = 4.8, 1.3 Hz, 1H), 0.69 – 0.57 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.7, 146.7, 135.6, 133.2, 131.2, 128.4, 126.8, 126.2, 

121.4, 94.9, 74.6, 44.1, 39.3, 34.6, 34.2, 33.3, 33.2, 30.9, 24.8. 

HRMS (+p APCI) calcd for C₂₃H₂₃O₂⁷⁹Br³⁵Cl₃ (M+H) 514.9942, found 514.9953.  

Chiral SFC: The enantiopurity was determined to be 92% ee by SFC analysis (SSWhelk, 

2.5 mL/min, 10% (50% methanol in isopropanol with 0.2% Formic Acid) in CO2, 1.0 

mg/ml), λ=230 nm, RT: Major: 2.50 min., Minor: 2.09 min.) 
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2,2,2-trichloroethyl (1R,3r,6R)-1-(4-bromophenyl)-6-(tert-butyl)spiro[2.5]octane-1-
carboxylate (28) 

General procedure 1 was used for the cyclopropanation of 1-(tert-

butyl)-4-methylenecyclohexane (45.7 mg, 0.30 mmol, 1.5 equiv) 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (74.5 

mg, 0.20 mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 (5.0 mg, 1.0 

mol%) as catalyst. Purification by column chromatography (0-10% 

diethyl ether/hexanes) afforded the product as a white solid (72.6 

mg, 73% yield).  
1H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 4.75 (d, J 

= 11.9 Hz, 1H), 4.43 (d, J = 11.9 Hz, 1H), 1.77 (dt, J = 13.2, 2.8 Hz, 1H), 1.67 (dd, J = 4.8, 

1.6 Hz, 1H), 1.66 – 1.60 (m, 1H), 1.58 (dd, J = 9.0, 3.3 Hz, 2H), 1.45 – 1.37 (m, 1H), 1.18 

– 1.02 (m, 2H), 1.02 – 0.87 (m, 2H), 0.77 (s, 9H), 0.44 (d, J = 12.5 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.8, 135.8, 133.2, 130.9, 121.2, 94.9, 74.5, 47.9, 39.2, 

34.9, 32.4, 31.0, 27.6, 26.6, 26.5, 24.8. 

HRMS (+p APCI) calcd for C₂₁H₂₇O₂⁷⁹Br³⁵Cl₃ (M+H) 495.0255, found 495.0253. 

Chiral HPLC: The enantiopurity was determined to be 97% ee by HPLC analysis (AD-H, 

1 mL/min, 0.5% IPA/Hexane, λ=230 nm, RT: Major: 5.2 min., Minor: 5.8 min.)  

 
 
2,2,2-trichloroethyl (1R,3s,5R)-1-(4-bromophenyl)-5-(4-
chlorophenyl)spiro[2.3]hexane-1-carboxylate (29) 
 

General procedure 1 was used for the cyclopropanation of 1-

chloro-4-(3-methylenecyclobutyl)benzene (35.7 mg, 0.20 mmol, 2 

equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate 

(37.2 mg, 0.20 mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 (5.0 mg, 

1.0 mol%) as catalyst. Purification by column chromatography (0-

10% diethyl ether/hexanes) afforded the product as a colorless oil 

(38 mg, 72% yield).  

Reported as a mixture of diastereomers 
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1H NMR (400 MHz, CDCl3) δ  7.49 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2.6H), 7.29 – 

7.22 (m, 6H), 7.19 (dd, J = 8.5, 3.5 Hz, 3.5H), 7.11 (d, J = 8.3 Hz, 1H), 4.93 (d, J = 12.0 

Hz, 1H), 4.88 (d, J = 11.9 Hz, 1H), 4.50 (dd, J = 11.9, 1.8 Hz, 1H), 3.64 (p, J = 8.6 Hz, 

1H), 3.59 – 3.49 (m, 1H), 2.89 – 2.71 (m, 2H), 2.58 (dd, J = 12.2, 8.9 Hz, 1H), 2.49 (dd, J 

= 12.9, 7.0 Hz, 1H), 2.31 (ddt, J = 10.7, 9.3, 1.7 Hz, 1H), 2.26 – 2.14 (m, 1H), 2.09 (d, J 

= 4.9 Hz, 1H), 1.99 (d, J = 5.2 Hz, 2H), 1.97 – 1.85 (m, 1H), 1.67 (d, J = 4.9 Hz, 1H), 1.53 

(d, J = 5.2 Hz, 2H). 
13C NMR (101 MHz, CDCl3) δ  170.4, 170.2, 143.7, 143.4, 134.6, 132.8, 132.5, 131.8, 

131.8, 131.4, 131.4, 128.6, 128.5, 127.9, 127.7, 121.6, 121.5, 94.9, 74.4, 74.3, 37.2, 36.9, 

36.2, 36.0, 35.8, 35.1, 34.4, 34.1, 33.6, 33.2, 31.9, 29.1, 27.4, 26.3, 22.7, 14.2. 

HRMS (+p APCI) calcd for (M+H) C₂₁H₁₈O₂⁷⁹Br³⁵Cl₄ 520.9239, found 520.9256.  

Chiral SFC: The enantiopurity was determined to be 94% ee by Chiral SFC analysis (OJ-

3, 2.5 mL/min, 50% methanol in isopropanol with 0.2% Formic Acid in CO2, 1.0 mg/ml, 

λ=230 nm, RT: Major: 1.14 min., Minor: 4.65 min.) 

 
 
2,2,2-trichloroethyl (1R,3s,5R)-1-(4-bromophenyl)-5-(4-
chlorophenyl)spiro[2.3]hexane-1-carboxylate (30) 
 

General procedure 1 was used for the cyclopropanation of (1-methyl-

3-methylenecyclobutyl)benzene (39.6 mg, 0.25 mmol, 2.5 equiv) with 

2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (37.2 mg, 0.10 

mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 (2.5 mg, 1.0 mol%) as 

catalyst. Purification by column chromatography (0-10% diethyl 

ether/hexanes) afforded the product as a white solid (39.6 mg, 79% 

yield).  
1H NMR (400 MHz, CDCl3) δ 7.43 (d, J = 8.4 Hz, 1H), 7.36 – 7.28 (m, 

1H), 7.23 – 7.16 (m, 1H), 7.16 – 7.09 (m, 2H), 4.85 (d, J = 11.9 Hz, 1H), 4.50 (d, J = 12.0 

Hz, 1H), 2.85 (d, J = 11.8 Hz, 1H), 2.44 (d, J = 11.7 Hz, 1H), 
13C NMR (101 MHz, CDCl3) δ 170.6, 151.0, 134.8, 132.6, 131.3, 128.4, 125.7, 125.0, 

121.4, 94.8, 74.3, 42.3, 41.4, 38.1, 34.6, 32.9, 31.5, 28.2. 

HRMS (+p APCI) calcd for C₂₂H₂₁O₂⁷⁹Br³⁵Cl₃ (M+H)  500.9785, found 500.97886  
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Chiral HPLC: The enantiopurity was determined to be 96% ee by HPLC analysis (AD-H, 

1.0 mL/min, 1% IPA/Hexane), λ=230 nm, RT: Major: 6.3 min., Minor: 5.8 min.) 

 
2,2,2-trichloroethyl 1-(4-bromophenyl)-5-phenylspiro[2.5]octane-1-carboxylate 
(31) 

General procedure 1 was used for the cyclopropanation of (3-

methylenecyclohexyl)benzene (52 mg, 0.30 mmol, 3 equiv) 

with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate 

(37.2 mg, 0.10 mmol, 1.0 equiv) using Rh2(S-TPPTTL)4 (2.5 

mg, 1.0 mol%) as catalyst. Purification by column 

chromatography (0-5% diethyl ether/hexanes) afforded the 

product as a white solid (42 mg, 81% yield) 

Reported as a mixture of diastereomers. 
1H NMR (400 MHz, CDCl3) δ 7.52 – 7.45 (m, 3H), 7.44 – 7.37 (m, 0.5H), 7.36 – 7.26 

(m, 5H), 7.26 – 7.15 (m, 4H), 7.15 – 7.08 (m, 0.5H), 4.86 (d, J = 11.9 Hz, 0.2H), 4.81 (d, 

J = 12.0 Hz, 0.2H), 4.73 (d, J = 12.0 Hz, 1H), 4.61 (d, J = 11.9 Hz, 0.2H), 4.54 (d, J = 

11.9 Hz, 1H), 2.75 (ddd, J = 11.8, 8.0, 3.6 Hz, 1H), 2.62 (t, J = 12.1 Hz, 0.2H), 1.96 (td, J 

= 13.6, 6.3 Hz, 2H), 1.90 – 1.69 (m, 5H), 1.69 – 1.44 (m, 5H), 1.37 (d, J = 5.2 Hz, 0.3H), 

1.35 – 1.21 (m, 1.5H), 0.99 (d, J = 6.6 Hz, 0.2H), 0.92 – 0.78 (m, 0.2H), 0.68 (d, J = 

13.1 Hz, 0.2H), 0.61 – 0.52 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 170.0, 169.6, 169.5, 146.4, 146.4, 135.5, 135.2, 135.0, 

133.3, 133.2, 131.1, 130.9, 128.5, 126.9, 126.7, 126.2, 121.5, 121.4, 94.8, 74.9, 74.6, 

44.0, 43.8, 43.0, 41.7, 40.3, 39.5, 39.4, 38.5, 38.1, 35.0, 34.6, 34.5, 34.0, 33.7, 33.5, 

31.4, 30.4, 25.7, 25.6, 24.7, 24.0, 23.9. 

HRMS (+p APCI) calcd for C₂₃H₂₃O₂⁷⁹Br³⁵Cl₃ (M+H) 514.9942, found 514.9954. 

 
2,2,2-trichloroethyl 1-(4-bromophenyl)-5-(4-chlorophenyl)spiro[2.5]octane-1-
carboxylate (32) 
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General procedure 1 was used for the cyclopropanation of 

1-chloro-4-(3-methylenecyclohexyl)benzene (62 mg, 0.30 

mmol, 3 equiv) with 2,2,2-trichloroethyl 2-(4-bromophenyl)-

2-diazoacetate (37.2 mg, 0.10 mmol, 1.0 equiv) using Rh-

2(S-TPPTTL)4 (2.5 mg, 1.0 mol%) as catalyst. Purification 

by column chromatography (0-5% diethyl ether/hexanes) 

afforded the product as a white solid (45 mg, 82% yield) 
1H NMR (400 MHz, CDCl3) δ 7.52 – 7.44 (m, 3H), 7.41 (d, J = 8.5 Hz, 0.5H), 7.36 – 

7.25 (m, 5H), 7.21 (d, J = 8.4 Hz, 0.5H), 7.18 – 7.09 (m, 2H), 7.07 – 7.00 (m, 0.5H), 4.86 

(d, J = 12.0 Hz, 0.2H), 4.81 (d, J = 12.0 Hz, 0.3H), 4.75 (d, J = 12.0 Hz, 1H), 4.59 (d, J = 

11.9 Hz, 0.2H), 4.54 (d, J = 11.9 Hz, 1H), 2.73 (ddd, J = 11.8, 8.0, 3.8 Hz, 1H), 2.65 – 

2.51 (m, 0.2H), 2.02 – 1.88 (m, 2H), 1.88 (m, 5H), 1.73 – 1.50 (m, 3H), 1.51 – 1.40 (m, 

2H), 1.38 (d, J = 5.2 Hz, 0.5H), 1.34 – 1.25 (m, 2H), 0.95 – 0.77 (m, 0.5H), 0.68 – 0.60 

(m, 0.2H), 0.61 – 0.48 (m, 1H). 
13C NMR (101 MHz, CDCl3) δ 170.0, 169.5, 169.5, 144.8, 144.8, 144.8, 135.4, 135.1, 

134.9, 133.2, 133.2, 133.1, 131.8, 131.2, 131.1, 131.0, 128.5, 128.2, 128.15, 128.0, 

121.5, 121.47, 94.8, 74.8, 74.6, 43.3, 43.2, 42.3, 41.7, 40.2, 39.5, 39.3, 38.4, 37.9, 34.9, 

34.5, 34.4, 33.9, 33.7, 33.5, 31.3, 30.3, 25.5, 25.4, 24.7, 24.6, 23.9. 
HRMS (+p APCI) calcd for C₂₃H₂₂O₂⁷⁹Br³⁵Cl₄ (M+H) 548.9552, found 548.9566. 

 
2,2,2-trichloroethyl-1-(4-bromophenyl)-5-(3,5-di-tert butylphenyl)spiro[2.5]octane-
1-carboxylate (33) 

General procedure 1 was used for the cyclopropanation 

of 1,3-di-tert-butyl-5-(3-methylenecyclohexyl)benzene 

(86 mg, 0.30 mmol, 3 equiv) with 2,2,2-trichloroethyl 2-(4-

bromophenyl)-2-diazoacetate (37.2 mg, 0.10 mmol, 1.0 

equiv) using Rh2(S-TPPTTL)4 (2.5 mg, 1.0 mol%) as 

catalyst. Purification by column chromatography (0-10% 

diethyl ether/hexanes) afforded the product as a white 

solid (39 mg, 62% yield).  
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1H NMR (400 MHz, CDCl3) δ  7.47 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.29 (t, J 

= 1.8 Hz, 1H), 7.05 (d, J = 1.8 Hz, 2H), 4.78 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 12.0 Hz, 

1H), 2.74 (tt, J = 11.9, 3.5 Hz, 1H), 1.96 (dd, J = 12.1, 7.6 Hz, 2H), 1.92 – 1.85 (m, 1H), 

1.85 (s, 1H), 1.79 – 1.70 (m, 1H), 1.69 – 1.55 (m, 1H), 1.57 – 1.43 (m, 2H), 1.34 (s, 18H), 

1.28 (d, J = 5.1 Hz, 1H), 0.55 (d, J = 12.8 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.5, 150.6, 145.6, 135.6, 133.3, 131.1, 121.4, 121.1, 

120.4, 94.9, 74.5, 44.5, 39.4, 38.5, 34.9, 34.6, 34.3, 34.0, 31.6, 25.6, 24.5. 

HRMS (+p APCI) calcd for C₃₁H₃₈O₂⁷⁹Br³⁵Cl₃ (M+) 626.1115, found 626.1114. 

Chiral HPLC: The enantiopurity was determined to be 92% ee by HPLC analysis (AD-H, 

1.0 mL/min, 1% IPA/Hexane), λ=230 nm, RT: Major: 11.9 min., Minor: 10.8 min.)Crude  
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NMR for Diastereomer Determination 
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OJ3_10%MeOH_IPA_0_2% Formic Acid_2.5mL/min_5min_100IPA
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 JKS40_20_07_B_P7B1a Sm (Mn, 2x3)  Diode Array 
 Range: 2.939e+1

 Area, Height
 Area%
 19.65
 20.60
 31.66
 28.09

 Area
 98206.34

 102977.87
 158264.25
 140413.78

 Height
 1101101
 1032338
 1482865
 1129317

 Time
 2.30
 2.70
 2.83
 3.40

2.83
158264.3
1482865
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1129317
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 Range: 1.957e+2

 Area, Height
 Area%
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 Area
 1143038.00

 35015392.00

 Height
 7890630

 195468432

 Time
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 2.71
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1143038.0
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CEL1_10%MeOH_IPA_0_2% Formic Acid_2.5mL/min_10min_100IPA
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 JKS40_28_1_P4B1 Sm (Mn, 2x3)  Diode Array 
 Range: 2.481e+1

 Area, Height
 Area%
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 Area
 5652621.00

 Height
 24684316

 Time
 6.10
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5652621.0
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NMR of Novel Compounds 
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Structural Assignment for Compound 30 
We begin by assigning the alkyl protons in the 1H-NMR. We see 7 distinct peaks.  
 

- a3 : s at 1.59 ppm integrating to 3, corresponding to the methyl group.  
- b : dd at 1.66 ppm (J = 11.37, 3.64 Hz), integrating to 1 
- c: d at 1.75 ppm (J = 4.84 Hz), integrating to 1 
- d: d at 2.15 ppm (J = 4.83 Hz), integrating to 1  
- e: An overlapping d and dd at 2.46 ppm (J = 11.67, 3.74 Hz), integrating to 2. 
- f: d at 2.87 ppm (J = 11.78) 

 

 
 

We can determine the cyclopropane peaks are signals C and D by looking at the COSY 
correlations: 
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The cyclopropyl peaks should only have geminal coupling. In the COSY NMR we find 
that peaks C and D are the only peaks which couple only to each other. Thus, these 
peaks can be confidently assigned to the cyclopropyl protons.  
We can then conclude that peaks B, E, and F make up the four protons on the 
cyclobutane ring. 
We see that peak B is a dd, but there is no obvious dd which it is coupling to. Referring 
to the COSY, we find that there is a correlation with peak E. However, the height of the 
peaks looks strange. Looking at it as two separate signals, a d and a dd can 
deconvolute the system. Thus, two peaks are overlapping at E. The two dd peaks (B 
and part of E) are the equatorial protons on the cyclobutane ring, with geminal coupling 
to the axial proton, and w-coupling with one another (second geminal coupling not 
explicitly drawn in figure for clarity). 
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Three of the protons are distinctly shielded by the p-Br phenyl ring and are expected to 
be shifted upfield as a result of this. This can be seen with the distinct chemical shifts of 
B, C, and the left-half of E, which are all shifted upfield relative to their counter parts D, 
the right-half of E, and F. Because of this, we can conclude that B, C, and E are cis to 
the 4-substituted phenyl ring. This shows that the phenyl and carboxyl on the carbene 
carbon is down.  
 
To determine whether the cyclopropane methylene is cis or trans to the methyl we look 
to the NOESY NMR. Here, we can see several through-space correlations that support 
our structural assignment. 
First, if the methyl group is trans to the axial cyclobutane protons, we would not expect 
to see NOESY correlation between these two protons. We would expect to see NOESY 
correlation between the methyl and equatorial signals. We can observe the correlation 
with the methyl and the ‘right-half’ of the dd, along with the absence of a correlation 
between the methyl and peak F, one of the axial cyclobutane protons. This suggests 
that the methyl is trans to the axial protons and is cis to the equatorial protons. 
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Finally, there is a weak correlation between the methyl group and the cyclopropyl peaks 
seen in the NOESY, indicating that these groups are cis to one another. 

 
 
Final assigment: 
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Appendix D. Chapter 5 Supporting Information 
 

General Considerations 
 
All experiments were carried out in flame-dried glassware under argon atmosphere 

unless otherwise stated. Flash column chromatography was performed on silica gel. 

Unless otherwise noted, all other reagents were obtained from commercial sources 

(Sigma Aldrich, Fisher, TCI Chemicals, AK Scientific, Combi Blocks, Oakwood 

Chemicals, Ambeed) and used as received without purification. 1H, 13C, and 19F NMR 

spectra were recorded at either 400 MHz (13C at 100 MHz) on Bruker 400 spectrometer 

or 600 MHz (13C at 151 MHz) on INOVA 600 or Bruker 600 spectrometer. NMR spectra 

were run in solutions of deuterated chloroform (CDCl3) with residual chloroform taken as 

an internal standard (7.26 ppm for 1H, and 77.16 ppm for 13C), and were reported in 

parts per million (ppm). The abbreviations for multiplicity are as follows: s = singlet, d = 

doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublet, etc. 

Coupling constants (J values) are obtained from the spectra. Thin layer chromatography 

was performed on aluminum-back silica gel plates with UV light and cerium aluminum 

molybdate (CAM) stain to visualize. Mass spectra were taken on a Thermo Finnigan 

LTQ-FTMS spectrometer with APCI or ESI. 

 

Low temperature irradiation setup  
 
The screw-cap photoreaction vials were placed in a cystalization dish in an acetone 

bath, completely submerging the vial in acetone up to the solvent line. The acetone bath 

was cooled using Thermo/Neslab CB80 Cryocool. The reactions were irradiated using a 

440 nm Kessel lamp at 100% intensity. The light source was ~15 cm away from the 

vials. The temperature of the acetone bath was verified using a low temperature alcohol 

thermometer. 
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Known Compounds:  

 
Compound 8, S1-S5 were synthesized according to known methods and specta matched 

the literature reported spectra.1 
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Compounds S6 and S7 were synthesized according to known methods and spectra 

matched the literature reported spectra.2 

Compounds S8,3 S9,4 S10,5 S11,6 S12,7 and S138 were synthesized according to known 

methods and spectra matched the literature reported spectra.  

 

 

Product Characterization 
 

General Procedure A 
To an oven dried photoreaction tube under inert atmosphere was added Ir(ppy)3 (1.0 

mol%, 1.31 mg) and the bicyclo[1.0]butane (0.20 mmol, 1.0 equiv). This was purged and 

backfilled three times with nitrogen. Then, 2 mL of DCM (degassed for 20 minutes using 

an argon balloon) as added to the reaction vessel. The diazo was weighed out into a 

separate vial and was purged with nitrogen, followed by the addition of 2 mL of DCM. 

Then, the diazo solution was added to the reaction vessel, the septum was sealed with 

parafilm, and the vessel was placed in a -65 °C acetone bath using the constant chiller. 

The reaction was irradiated with 440 nm Kessel lamp at 100% intensity for 22 h. At this 

time the reaction solution was concentrated and analyzed for crude NMR before column 

chromatography to afford the desired product. 

 

General Procedure B 
To an oven dried photoreaction tube under inert atmosphere was added thioxanthone (5.0 

mol%, 2.12 mg) and the bicyclo[1.0]butane (0.20 mmol, 1.0 equiv). This was purged and 

backfilled three times with nitrogen. Then, 2 mL of DCM (degassed for 20 minutes using 

an argon balloon) as added to the reaction vessel. The diazo (0.5-1.0 mmol, 2.5-5.0 equiv) 

was weighed out into a separate vial and was purged with nitrogen, followed by the 

addition of 2 mL of DCM. Then, the diazo solution was added to the reaction vessel, the 

septum was sealed with parafilm, and the vessel was placed in a -65 °C acetone bath 

using the constant chiller. The reaction was irradiated with 390 nm Kessel lamp at 100% 

intensity for 22 h. At this time the reaction solution was concentrated and analyzed for 

crude NMR before column chromatography to afford the desired product. 
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2-ethyl 1-methyl 3-phenylbicyclo[1.1.1]pentane-1,2-dicarboxylate (28) 

General procedure A was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 

1 equiv) with ethyl 2-diazoacetate (0.50 mmol, 55.6 µL 83% wt in 

toluene, 2.5 equiv) using Ir(ppy)3 (1.0 mol%, 1.31 mg) as catalyst. 

The reaction was purified using column chromatography (0-12% diethyl ether/hexanes 

gradient) affording a clear, colorless oil (28.8 mg, 55%).  
1H NMR (400 MHz, CDCl3) δ 7.39 – 7.24 (m, 5H), 4.17 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 

3.37 (d, J = 7.0 Hz, 1H), 3.08 (dd, J = 9.8, 2.8 Hz, 1H), 2.37 (dd, J = 7.0, 2.8 Hz, 1H), 2.31 

(dd, J = 9.8, 1.9 Hz, 1H), 2.25 (d, J = 1.8 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 169.4, 169.1, 137.1, 128.3, 127.5, 126.6, 64.2, 60.5, 52.7, 

52.0, 48.8, 46.3, 40.3, 14.2. 
HRMS (+pAPCI): Calcd for C₁₆H₁₉O₄ [M+H] 275.1278, found 275.1280. 

 

 

dimethyl 2-methyl-3-phenylbicyclo[1.1.1]pentane-1,2-dicarboxylate (29) 
General procedure A was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 1 

equiv) with methyl 2-diazopropanoate (0.50 mmol, 57.1 mg, 2.5 

equiv) using Ir(ppy)3 (1.0 mol%, 1.31 mg) as catalyst. The reaction 

was purified using column chromatography (0-12% diethyl 

ether/hexanes gradient) affording a clear, colorless oil (32.1 mg, 59%). 
1H NMR (400 MHz, CDCl3) δ 7.40 – 7.24 (m, 5H), 3.75 (s, 3H), 3.68 (s, 3H), 2.84 (dd, J 

= 10.3, 3.0 Hz, 1H), 2.46 (dd, J = 10.3, 3.5 Hz, 1H), 2.24 (d, J = 3.5 Hz, 1H), 2.05 (d, J = 

3.0 Hz, 1H), 1.58 (s, 3H). 
13C NMR (101 MHz, CDCl3 ) δ 174.5, 169.1, 136.2, 128.2, 127.4, 127.2, 69.9, 51.8, 51.7, 

49.1, 48.7, 47.2, 42.9, 13.1. 
HRMS (+pAPCI): Calcd for C₁₆H₁₉O₄ [M+H] 275.1278, found 275.1275. 
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dimethyl 2-ethyl-3-phenylbicyclo[1.1.1]pentane-1,2-dicarboxylate (30) 
General procedure A was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 1 

equiv) with methyl 2-diazobutanoate (0.50 mmol, 64.1 mg, 2.5 

equiv) using Ir(ppy)3 (1.0 mol%, 1.31 mg) as catalyst. The reaction 

was purified using column chromatography (0-12% diethyl ether/hexanes gradient) 

affording a clear, colorless oil (21.8 mg, 40%). 
1H NMR (400 MHz, CDCl3) δ 7.36 – 7.26 (m, 4H), 3.75 (s, 3H), 3.70 (s, 3H), 2.91 (dd, J 

= 10.3, 3.1 Hz, 1H), 2.48 (dd, J = 10.3, 3.5 Hz, 1H), 2.21 – 2.09 (m, 2H), 2.09 – 1.94 (m, 

2H), 0.86 (t, J = 7.6 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 173.6, 169.2, 136.6, 128.1, 127.4, 127.3, 75.7, 51.8, 51.4, 

49.3, 48.6, 46.4, 43.0, 20.6, 10.3. 
HRMS (+pAPCI): Calcd for C₁₇H₂₁O₄ [M+H] 289.1434, found 289.1432. 

 

2-benzyl 1-methyl 3-phenylbicyclo[1.1.1]pentane-1,2-dicarboxylate (31) 
General procedure A was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 

1 equiv) with benzyl 2-diazoacetate (0.50 mmol, 88.1 mg, 2.5 

equiv) using Ir(ppy)3 (1.0 mol%, 1.31 mg) as catalyst. The 

reaction was purified using column chromatography (0-12% diethyl ether/hexanes 

gradient) affording a clear, colorless oil (32.1 mg, 48%). 
1H NMR (400 MHz, CDCl3) δ 7.39 – 7.36 (m, 1H), 7.35 – 7.31 (m, 5H), 7.30 – 7.26 (m, 

2H), 7.26 – 7.21 (m, 2H), 5.19 (d, J = 12.5 Hz, 1H), 5.12 (d, J = 12.5 Hz, 1H), 3.72 (s, 

3H), 3.45 (d, J = 7.0 Hz, 1H), 3.08 (dd, J = 9.8, 2.9 Hz, 1H), 2.38 (dd, J = 7.1, 2.9 Hz, 1H), 

2.33 (dd, J = 9.7, 1.9 Hz, 1H), 2.26 (d, J = 1.9 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 169.2, 169.0, 137.0, 135.8, 128.5 , 128.3, 128.1, 128.0, 

127.5, 126.7, 66.2, 64.1, 52.8, 52.0, 48.7, 40.3. 
HRMS (+pAPCI): Calcd for C₂₁H₂₁O₄ [M+H] 337.1434, found 337.1434. 
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2-benzyl 1-methyl 2-methyl-3-phenylbicyclo[1.1.1]pentane-1,2-dicarboxylate (32) 
General procedure A was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 

mg, 1 equiv) with benzyl 2-diazopropanoate (0.50 mmol, 95.1 

mg, 2.5 equiv) using Ir(ppy)3 (1.0 mol%, 1.31 mg) as catalyst. 

The reaction was purified using column chromatography (0-12% diethyl ether/hexanes 

gradient) affording a clear, colorless oil (38.6 mg, 55%). 
1H NMR (400 MHz, CDCl3) δ 7.36 – 7.32 (m, 4H), 7.32 – 7.29 (m, 2H), 7.29 – 7.23 (m, 

4H), 5.20 (d, J = 12.5 Hz, 1H), 5.12 (d, J = 12.5 Hz, 1H), 3.69 (s, 3H), 2.88 (dd, J = 10.3, 

3.0 Hz, 1H), 2.50 (dd, J = 10.2, 3.5 Hz, 1H), 2.26 (d, J = 3.5 Hz, 1H), 2.08 (d, J = 3.0 Hz, 

1H), 1.64 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 173.8, 169.1, 136.2, 135.8, 128.5, 128.2, 128.1, 128.0, 

127.4, 127.3, 69.9, 66.1, 51.7, 49.0, 48.8, 47.2, 42.9, 13.1. 

HRMS (+pAPCI): Calcd for C₂₂H₂₃O₄ [M+H] 351.1591, found 351.1589. 
 
1-methyl 2-(2,2,2-trichloroethyl) 3-phenylbicyclo[1.1.1]pentane-1,2-dicarboxylate 
(33) 

General procedure B was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 

1 equiv) with 2,2,2-trichloroethyl 2-diazoacetate (0.50 mmol, 

109 mg, 2.5 equiv) using TX (5.0 mol%, 2.12 mg) as catalyst. 

The reaction was purified using column chromatography (0-

12% diethyl ether/hexanes gradient) affording a clear, colorless oil (29.6 mg, 39%). 
1H NMR (400 MHz, CDCl3) δ 7.36 – 7.26 (m, 5H), 4.73 (d, J = 2.9 Hz, 2H), 3.75 (s, 3H), 

3.52 (d, J = 7.0 Hz, 1H), 3.07 (dd, J = 9.8, 3.1 Hz, 1H), 2.42 (dd, J = 7.0, 3.1 Hz, 1H), 2.34 

(dd, J = 9.8, 2.0 Hz, 1H), 2.27 (d, J = 2.0 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 168.7, 167.8, 136.5, 128.4, 127.7, 126.7, 94.6, 74.0, 63.4, 

53.3, 52.1, 48.7, 46.7, 40.4. 
HRMS (+pAPCI): Calcd for C₁₆H₁₆O₄³⁵Cl₃ [M+H] 377.0109, found 377.0109. 

 
methyl 2-(dimethoxyphosphoryl)-3-phenylbicyclo[1.1.1]pentane-1-carboxylate (34) 
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General procedure B was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 1 

equiv) with dimethyl (diazomethyl)phosphonate (0.50 mmol, 75.0 

mg, 2.5 equiv) using TX (5.0 mol%, 2.12 mg) as catalyst. The 

reaction was purified using column chromatography (50-75% ethyl 

aceate/hexanes gradient) affording a clear, colorless oil (14.8 mg, 24%) 
1H NMR (400 MHz, CDCl3) δ 7.40 – 7.26 (m, 5H), 3.75 (s, 3H), 3.68 (d, J = 10.9 Hz, 3H), 

3.56 (dd, J = 9.9, 2.8 Hz, 1H), 3.45 (d, J = 10.9 Hz, 3H), 2.94 (t, J = 7.1 Hz, 1H), 2.39 (dd, 

J = 9.9, 1.7 Hz, 1H), 2.35 (dd, J = 7.5, 2.7 Hz, 1H), 2.27 (dd, J = 30.1, 2.7 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 168.9, 137.2, 128.3, 127.6, 126.6, 60.6, 59.1, 56.5, 56.2, 

52.5 (d, J = 6.5 Hz), 52.1, 52.0, 49.2 (d, J = 6.9 Hz), 46.1 (d, J = 3.4 Hz), 40.4 (d, J = 3.6 

Hz). 
31P NMR (162 MHz, CDCl3) δ 24.73 (dddd, J = 28.8, 21.9, 18.0, 11.0 Hz). 

HRMS (+pAPCI): Calcd for C₁₅H₂₀O₅P [M+H] 311.1043, found 311.1038. 

 
methyl 3-phenyl-2-(trifluoromethyl)bicyclo[1.1.1]pentane-1-carboxylate (35) 

General procedure B was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 1 

equiv) with 2-diazo-1,1,1-trifluoroethane (1.0 mmol, 1.37 mL of 

0.73 M solution, 5 equiv) using TX (5.0 mol%, 2.12 mg) as 

catalyst. The reaction was purified using column chromatography (0-12% 

diethylether/hexanes gradient) affording a clear, colorless oil (28.1 mg, 52%). 
1H NMR (400 MHz, CDCl3) δ 7.40 – 7.27 (m, 3H), 7.26 – 7.19 (m, 2H), 3.76 (s, 3H), 3.24 

(qd, J = 9.1, 6.6 Hz, 1H), 3.16 (ddd, J = 10.1, 3.5, 1.6 Hz, 1H), 2.38 (ddd, J = 7.1, 3.5, 1.8 

Hz, 1H), 2.26 (dd, J = 10.0, 2.0 Hz, 1H), 2.21 (d, J = 1.9 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 168.3, 136.1, 128.5, 127.8, 126.4, 63.2 (q, J = 29.8 Hz), 

53.8, 52.2, 47.5 (q, J = 2.1 Hz), 45.7 (q, J = 2.7 Hz), 40.0 (q, J = 3.1 Hz), 35.8. 
19F NMR (376 MHz, CDCl3) δ -59.37 (d, J = 9.3 Hz). 
HRMS (+pAPCI): Calcd for C₁₄H₁₄O₂F₃ [M+H] 271.0940, found 271.0941. 
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methyl-2'-oxo-3-phenyldihydro-2'H-spiro[bicyclo[1.1.1]pentane-2,3'-furan]-1-
carboxylate (36) 

General procedure B was used for the reaction of methyl 3-

phenylbicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 37.6 mg, 1 

equiv) with 3-diazodihydrofuran-2(3H)-one (0.50 mmol, 56.0 mg,, 

2.5 equiv) using TX (5.0 mol%, 2.12 mg) as catalyst. The reaction 

was purified using column chromatography (0-12% diethylether/hexanes gradient) 

affording a clear, colorless oil (22.1 mg, 41%). 
1H NMR (400 MHz, CDCl3) δ 7.26 – 7.18 (m, 3H), 7.18 – 7.13 (m, 2H), 4.25 – 4.10 (m, 

2H), 3.93 (td, J = 8.5, 5.4 Hz, 1H), 3.65 (s, 3H), 2.64 – 2.54 (m, 2H), 2.32 (ddd, J = 13.4, 

8.4, 7.1 Hz, 1H), 2.19 (d, J = 2.5 Hz, 1H), 2.16 (d, J = 2.7 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 174.4, 168.5, 135.5, 128.7, 128.1, 126.7, 66.0, 64.4, 52.1, 

50.8, 50.1 48.1, 45.4, 25.5. 
HRMS (+pAPCI): Calcd for C₁₆H₁₇O₄ [M+H] 273.1121, found 273.1120. 

 
dimethyl 2-methyl-3-(naphthalen-2-yl)bicyclo[1.1.1]pentane-1,2-dicarboxylate (37) 

General procedure A was used for the reaction of methyl 3-

(naphthalen-2-yl)bicyclo[1.1.0]butane-1-carboxylate (0.20 

mmol, 47.7 mg, 1 equiv) with methyl 2-diazopropanoate 

(0.50 mmol, 57.1 mg, 2.5 equiv) using Ir(ppy)3 (1.0 mol%, 

1.31 mg) as catalyst. The reaction was purified using column chromatography (0-12% 

diethylether/hexanes gradient) affording a clear, colorless oil (33.8 mg, 52%). 
1H NMR (400 MHz, CDCl3) δ 7.87 – 7.76 (m, 3H), 7.69 (d, J = 1.9 Hz, 1H), 7.50 – 7.44 

(m, 2H), 7.41 (dd, J = 8.5, 1.7 Hz, 1H), 3.78 (s, 3H), 3.69 (s, 3H), 2.94 (dd, J = 10.3, 2.9 

Hz, 1H), 2.56 (dd, J = 10.3, 3.4 Hz, 1H), 2.33 (d, J = 3.4 Hz, 1H), 2.13 (d, J = 2.9 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 174.6, 169.1, 133.8, 133.1, 132.7, 127.9, 127.8, 127.7, 

126.2, 125.9, 125.2, 70.1, 51.8, 51.7, 49.2, 48.9, 47.3, 43.0, 13.2. 

HRMS (+pAPCI): Calcd for C₂₀H₂₁O₄ [M+H] 325.1434, found 325.1435 
 
dimethyl 3-(4-bromophenyl)-2-methylbicyclo[1.1.1]pentane-1,2-dicarboxylate (38) 
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General procedure A was used for the reaction of methyl 3-

(4-bromophenyl)bicyclo[1.1.0]butane-1-carboxylate (0.20 

mmol, 53.4 mg, 1 equiv) with methyl 2-diazopropanoate 

(0.50 mmol, 57.1 mg, 2.5 equiv) using Ir(ppy)3 (1.0 mol%, 

1.31 mg) as catalyst. The reaction was purified using column chromatography (0-12% 

diethylether/hexanes gradient) affording a clear, colorless oil (47.5 mg, 67%). 
1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 3.75 (s, 

3H), 3.67 (s, 3H), 2.80 (dd, J = 10.3, 3.0 Hz, 1H), 2.43 (dd, J = 10.3, 3.5 Hz, 1H), 2.22 (d, 

J = 3.5 Hz, 1H), 2.03 (d, J = 3.0 Hz, 1H), 1.55 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 174.4, 168.8, 135.2, 131.3, 129.0, 121.6, 69.9, 51.8, 51.7, 

49.1, 48.2, 47.1, 42.9, 13.1. 
HRMS (+pAPCI): Calcd for C₁₆H₁₈O₄⁷⁹Br [M+H] 353.0383, found 353.0383. 

 
dimethyl 2-methyl-3-(p-tolyl)bicyclo[1.1.1]pentane-1,2-dicarboxylate (39) 

General procedure A was used for the reaction of methyl 3-(p-

tolyl)bicyclo[1.1.0]butane-1-carboxylate (0.20 mmol, 40.5 mg, 

1 equiv) with methyl 2-diazopropanoate (0.50 mmol, 57.1 mg, 

2.5 equiv) using Ir(ppy)3 (1.0 mol%, 1.31 mg) as catalyst. The 

reaction was purified using column chromatography (0-12% diethylether/hexanes 

gradient) affording a clear, colorless oil (44.4 mg, 77%). 
1H NMR (400 MHz, CDCl3) δ 7.21 – 7.10 (m, 4H), 3.75 (s, 3H), 3.68 (s, 3H), 2.82 (dd, J 

= 10.2, 2.9 Hz,1H), 2.45 (dd, J = 10.3, 3.4 Hz, 1H), 2.34 (s, 3H), 2.22 (d, J = 3.5 Hz, 1H), 

2.02 (d, J = 2.9 Hz, 1H), 1.57 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 174.6, 169.2, 137.1, 133.2, 128.9, 127.1, 69.8, 51.8, 51.6, 

49.1, 48.5, 47.1, 42.9, 21.2, 13.1. 
HRMS (+pAPCI): Calcd for C₁₇H₂₁O₄ [M+H] 289.1434, found 289.1433 

 
dimethyl 2-methyl-3-(4-(trifluoromethyl)phenyl)bicyclo[1.1.1]pentane-1,2-
dicarboxylate (40) 
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General procedure A was used for the reaction of methyl 3-

(4-(trifluoromethyl)phenyl)bicyclo[1.1.0]butane-1-carboxylate 

(0.20 mmol, 51.2 mg, 1 equiv) with methyl 2-

diazopropanoate (0.50 mmol, 57.1 mg, 2.5 equiv) using 

Ir(ppy)3 (1.0 mol%, 1.31 mg) as catalyst. The reaction was purified using column 

chromatography (0-12% diethylether/hexanes gradient) affording a clear, colorless oil 

(26.6 mg, 39%). 
1H NMR (400 MHz, CDCl3) δ 7.58 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 7.4 Hz, 2H), 3.76 (s, 

3H), 3.69 (s, 3H), 2.86 (dd, J = 10.3, 3.0 Hz, 1H), 2.48 (dd, J = 10.3, 3.5 Hz, 1H), 2.26 (s, 

1H), 2.08 (d, J = 3.0 Hz, 1H), 1.59 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 174.2, 168.6, 140.1 (d, J = 1.1 Hz), 129.6 (q, J = 32.5 Hz), 

127.6, 125.1 (q, J = 3.8 Hz), 124.2 (q, J = 271.7 Hz), 70.1, 51.8, 51.8, 49.2, 48.2, 47.2, 

43.0, 13.1. 
19F NMR (376 MHz, CDCl3) δ -62.54. 
HRMS (+pAPCI): Calcd for C₁₇H₁₈O₄F₃ [M+H] 343.1152, found 343.1150. 

 
dimethyl 3-(3,4-dichlorophenyl)-2-methylbicyclo[1.1.1]pentane-1,2-dicarboxylate 
(41) 

General procedure A was used for the reaction of methyl 3-

(3,4-dichlorophenyl)bicyclo[1.1.0]butane-1-carboxylate (0.20 

mmol, 51.4 mg, 1 equiv) with methyl 2-diazopropanoate 

(0.50 mmol, 57.1 mg, 2.5 equiv) using Ir(ppy)3 (1.0 mol%, 

1.31 mg) as catalyst. The reaction was purified using column chromatography (0-12% 

diethylether/hexanes gradient) affording a clear, colorless oil (39.8 mg, 58%). 
1H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.11 (dd, 

J = 8.2, 2.0 Hz, 1H), 3.75 (s, 3H), 3.69 (s, 3H), 2.80 (dd, J = 10.2, 3.0 Hz, 1H), 2.43 (dd, 

J = 10.3, 3.5 Hz, 1H), 2.23 (d, J = 3.5 Hz, 1H), 2.05 (d, J = 3.0 Hz, 1H), 1.56 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 174.2, 168.5, 136.5, 132.3, 131.6, 130.2, 129.3, 126.8, 

70.0, 51.83, 51.80, 49.3, 47.7, 47.1, 42.9, 13.0. 
HRMS (+pAPCI): Calcd for C₁₆H₁₇O₄³⁵Cl₂ [M+H] 343.0498, found 343.0498. 
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