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Abstract

Improving User and Item Representation
for Recommender Systems with Textual Data

By Sergey Volokhin

Conversational Recommender Systems (CRS) aim to provide personalized and
contextualized recommendations through natural language conversations with users.
This dissertation capitalizes on the recent developments in conversational interfaces
to advance the field of Recommender Systems in several directions. Specifically, I
address the user and item representation and recommendation explainability problems
in recommender systems.

First, I investigate several approaches for improving user representation. One
approach is to map conversational users to reviewers with more data, using semantic
similarity between the conversation and the texts of reviews. Another approach is to
extract the items the user has mentioned, the sentiment the user has expressed towards
them, and what specifically the user said about them, and use that information to
represent the user.

Second, I investigate improving user and item representations by leveraging textual
information. I develop methods to incorporate textual features such as item descriptions
into the user-item interaction graph, which introduce additional semantic and behavioral
information unavailable from the purely topological structure of the interaction graph.
I also investigate whether the knowledge learned by LLMs during pretraining can be
leveraged to improve the user and item representations by generating new textual
features about the users and items.

Third, I investigate ways to improve explainability. One approach to enhance the
explainability and transparency of CRS is to generate justifications. However, existing
methods, such as rule-based and template-based methods, have limitations. In this
work, I develop an extractive method using a corpus of reviews to identify relevant
information for generating concise and coherent justifications.

The research questions I am tackling are:

1. How to infer and represent user preferences during a conversation with the system?
2. How to better represent users and items using structured and unstructured knowl-

edge for improving the quality of recommendations?
3. How to improve the explainability of conversational recommendations?

This thesis improves the effectiveness of conversational recommender systems and
advances the state-of-the-art in the field by introducing novel approaches for user and
item representation for improving conversational recommendation systems.
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Abstract

Conversational Recommender Systems (CRS) aim to provide personalized and
contextualized recommendations through natural language conversations with users.
This dissertation capitalizes on the recent developments in conversational interfaces
to advance the field of Recommender Systems in several directions. Specifically, I
address the user and item representation and recommendation explainability problems
in recommender systems.

First, I investigate several approaches for improving user representation. One
approach is to map conversational users to reviewers with more data, using semantic
similarity between the conversation and the texts of reviews. Another approach is to
extract the items the user has mentioned, the sentiment the user has expressed towards
them, and what specifically the user said about them, and use that information to
represent the user.

Second, I investigate improving user and item representations by leveraging textual
information. I develop methods to incorporate textual features such as item descriptions
into the user-item interaction graph, which introduce additional semantic and behavioral
information unavailable from the purely topological structure of the interaction graph.
I also investigate whether the knowledge learned by LLMs during pretraining can be
leveraged to improve the user and item representations by generating new textual
features about the users and items.

Third, I investigate ways to improve explainability. One approach to enhance the
explainability and transparency of CRS is to generate justifications. However, existing
methods, such as rule-based and template-based methods, have limitations. In this
work, I develop an extractive method using a corpus of reviews to identify relevant
information for generating concise and coherent justifications.

The research questions I am tackling are:

1. How to infer and represent user preferences during a conversation with the system?
2. How to better represent users and items using structured and unstructured knowl-

edge for improving the quality of recommendations?
3. How to improve the explainability of conversational recommendations?

This thesis improves the effectiveness of conversational recommender systems and
advances the state-of-the-art in the field by introducing novel approaches for user and
item representation for improving conversational recommendation systems.
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1. Introduction

The widespread use of recommender systems is a common feature of daily life, and the
growing interest in conversational agents presents fresh research opportunities.

A massive shift in the search paradigm is underway: Microsoft has integrated an LLM
into their search, and Google has followed suit. More people are using free-form textual
generation tools, which are more intuitive and easier to use than traditional approaches
that return a ranked list of pages and let the users find the answer themselves.

Recommendation systems are very similar to search engines, and it is reasonable to
assume that the same technologies will gain comparable popularity and usage. Therefore,
conversational recommendations are more relevant and important now than ever.

Figure 1.1 shows an example conversation between a user and a conversational
recommender system. The system tries to determine user preferences and come up
with a recommendation. The user can then accept the recommendation or ask for
another one. The system can also ask for more information from the user to improve
the recommendation. They exchange utterances until the system comes up with a final
recommendation.

Figure 1.1: Example of a dialog flow for a conversational recommender system. The
user utterances are fed into the system, generating initial recommendations or clarifi-
cation questions. The user can answer the questions and iteratively give feedback on
the recommendation, and the system will generate a new recommendation based on
the feedback
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1.1 Research Questions
In this work, I address some existing open research questions in conversational rec-
ommender systems (CRS), like how to represent the user and items, estimate the
user preference with utterances, and improve general satisfaction with the system by
introducing conversation-based explanations for recommended items.

More formally, the research questions are:

1. How to represent user preferences using conversation?
More specifically: Can we represent user preference towards items mentioned and
not mentioned in the conversation?

2. How to better represent users and items using structured and unstructured knowl-
edge to improve the quality of recommendations? The specific sub-questions
are:

(a) How should the knowledge be injected into the Knowledge Graph?
(b) Which information about the users and items is most useful for recommenda-

tions?
(c) Can LLMs be used to improve user and item representations?

3. How can we improve the explainability of conversational recommendations?
More specifically: Which particular aspects of explanations can be improved with
user-generated textual data (e.g., reviews)?

The architecture of CRS is illustrated in Figure 1.2. The system takes the conversa-
tional context as input and any other information about the target user, such as their
previous reviews or profiles. Those inputs are fed into a user representation module,
which returns the user representation as an embedding vector (top green box). At the
same time, the system also feeds all available information about the items into the item
representation module, which returns the item representation as an embedding vector
(bottom green box). The user and item representations are then fed into the recommen-
dation module, which returns the recommendation item (blue box). The item and the
user and item representations are then fed into the explanation module, which returns
the explanation for the recommendation (blue box). Finally, the recommendation and
the explanation are returned to the user as a complete conversational recommendation
(final blue box).

1.2 Contributions
My contributions are as follows:

• Create a knowledge-aware CRS that combines conversational context with external
knowledge, such as movie reviews, to predict users’ ratings for unseen movies (§3);
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Figure 1.2: How proposed research questions connect to form the complete recommen-
dation pipeline. Orange squares are inputs. Yellow squares are all the recommender
system modules. Blue squares are the outputs.

• Develop a way to augment interaction-based Graph Recommender Systems with
textual information for improved node representation and introduce a simple and
general approach for integrating both graph and textual representations of users
and items (§4);

• Design a technique to further augment the textual information with LLM-generated
features to improve the user and item representations for recommendations (§5);

• Introduce a method for using a conversation in place of the current user profile to
generate explanations for recommendations (§6);
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2. Related Work

This chapter describes the related work to place my contributions into context.

2.1 Recommender Systems Overview
This section briefly describes the traditional recommender systems methods I build
upon.

2.1.1 Content-Based Filtering
A content-based filtering recommender system is a type of recommendation system that
generates suggestions based on user profiles and the content of items. Users’ preferences
are typically embedded using a profile built from the aggregation of information on
the content of items the user has interacted with, for instance, the genres of movies
a user has watched or the topics of articles they have read. These user profiles can
then be represented in a multidimensional space where each dimension corresponds to a
unique characteristic or feature of the items. The similarity between users or items is
generally computed using measures like cosine similarity or Pearson correlation in the
multidimensional feature space. For example, two users are considered similar if their
profiles have high cosine similarity, indicating they have interacted with similar items.
Likewise, two items are seen as similar if they share many features, suggesting they could
appeal to the same type of users. The system then recommends items similar to the
ones the user has already liked or interacted with, providing a personalized experience
[57, 71, 82].

2.1.2 Collaborative Filtering
The main difference between Collaborative Filtering (CF) [36] and Content-based filtering
is that CF does not need the features of the items to be given. A feature vector or
embedding describes every user and item. The algorithms for collaborative filtering can
be divided into two main categories: model-based and memory-based.

Memory-based algorithms

Memory-based algorithms use the entire user-item interaction matrix to calculate the
similarity between users or items. There is no dimensionality reduction or model fitting.
Some potential drawbacks of memory-based CF include scalability and sensitivity to
data sparseness [62].

Memory-based algorithms can be divided into two main types.
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• User-based: recommends items by finding users with past behavior similar to the
target user and suggesting items these similar users liked.

• Item-based: recommends items by identifying similar items (often rated similarly
by users) to those the target user has liked in the past.

One popular approach is neighborhood-based CF or clustering. Clustering algorithms
group users or items into clusters based on their similarities. The system then recom-
mends items to users based on the users’ preferences in the same cluster by calculating
a weighted sum of the neighbors’ scores. Examples of clustering algorithms include
K-means [40], DBSCAN [31], and Hierarchical clustering [52].

Model-based algorithms

Model-based algorithms use machine learning techniques to learn how a specific user or
an item behaves. The large interaction matrix is compressed using dimensional reduction
or clustering algorithms.

The most common model-based approach is matrix factorization (MF) [56]. MF
is a model class that decomposes the user-item interaction matrix into the product
of two lower-dimensional matrices. The first matrix represents the users, and the
second represents the items. The elements of the resulting matrices are latent factors
that represent the user’s and item’s characteristics. The dot product of the two
matrices approximates the user-item interaction matrix. The resulting matrix can
predict a user’s rating for an item they have not rated yet. The predicted ratings can
be used to recommend items to users. Examples of MF algorithms include Singular
Value Decomposition (SVD) [56], Non-negative Matrix Factorization (NMF) [61], and
Probabilistic Matrix Factorization (PMF) [94].

2.1.3 Hybrid Methods
Hybrid recommendation systems [14] can produce outputs that outperform single-
component systems by combining multiple techniques of different types, such as mixing
content-based and collaborative filtering methods [105].

The most popular techniques for hybrid recommendation systems include the follow-
ing:

• Weighted: The scores of different recommendation techniques are combined using
a weighted average.

• Switching: The system switches between different recommendation techniques
based on user profiles.

• Cascade: selects a candidate entirely with the main recommendation and uses
the other recommendation to refine product or item scores.

• Mixed: The scores of different recommendation techniques are combined using a
linear or non-linear function.

• Feature Combination: The features of different recommendation techniques are
combined using a linear or non-linear function.
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• Feature Augmentation: The features of one recommendation technique augment
the features of another.

Hybrid methods combine the benefits of the constituent approaches while mitigating
their flaws. For instance, CF methods suffer from new-item problems, i.e., they cannot
recommend items with no ratings. This allows content-based approaches to be more
consistent since the prediction for new items is based on their description (features) that
are typically readily available [57]. Hence, hybrid methods that include both of them
can overcome this problem.

2.1.4 Neural Methods
Traditional collaborative filtering methods, such as matrix factorization, are effective but
have certain limitations. They can struggle with sparse data or complex, non-linear user-
item interactions. Neural Collaborative Filtering [45] aims to address these limitations.
It represents user-item interactions as low-dimensional dense vectors, which are then
passed through a neural network to model the complex, non-linear relationships between
users and items.

Another popular Neural Recommender System example is the Deep Learning Rec-
ommendation Model (DLRM) [80], which builds upon existing work on factorization
machines [91] and deep neural networks [45]. DLRM uses embeddings to represent the
categorical features of the users and items and passes continuous features through a
multilayer perceptron (MLP), which will yield a dense representation of the same length
as the embedding vectors. The embeddings are then passed through a series of fully
connected layers to learn the latent representations of the users and items.

2.1.5 Graph-based Methods
While falling under the broader category of neural approaches, graph-based techniques
warrant separate consideration due to their significant scope and impact. It is a
recommender system class that uses graph neural networks (GNN) [96] to model the
user-item interaction graph. The user-item interaction graph is a bipartite graph where
the nodes are users and items, and the edges represent the interactions between users
and items. The graph can be constructed from explicit user-item interactions, such as
ratings, or implicit interactions, such as clicks or purchases. The graph can also be
augmented with additional information about the users and items, such as user profiles
and reviews or item descriptions and attributes. The GNN can then be used to learn the
latent representations of the users and items. The learned representations can predict
the likelihood of a user interacting with a given item, which can be used to recommend
items to the user.

The most well-known graph-based recommender systems, including GCN [55], Graph-
SAGE [38], and GAT [107], were introduced in the pre-transformer era. These methods
are based on the Graph Convolutional Network (GCN) [55] architecture. The GCN
architecture is a type of GNN that uses a convolution to learn the latent representations
of the nodes in the graph. The convolutional filter is applied to each node and its
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neighbors. The resulting feature vectors are concatenated to form the output feature
vector for the node. The output feature vector is then passed through a non-linear
activation function to produce the final output feature vector for the node.

More recently, self-attention mechanism [63] and contrastive learning [63, 97, 102, 120]
have been incorporated directly into graph models to identify the most important
interactions and facilitate self-supervised learning.

I build upon existing work on graph-based recommender systems, such as LightGCN,
in the proposed algorithm addressing RQ2, discussed in Section 4.

2.1.6 LLM-based Methods
Ranking and scoring methods are slowly but surely giving way to generative recommen-
dations, where the recommendation is generated without the need to calculate each
candidate’s ranking score one by one [65]. However, LLMs have interesting applications
in scoring and ranking to improve recommender systems as well, not just as end-to-end
generative recommender systems.

Li et al in [68] evaluate ChatGPT’s abilities on 5 different recsys-related tasks:
• rating prediction
• direct recommendation
• sequential recommendation
• review summary
• explanation generation

They try both zero- and few-shot settings, and their results suggest that “ChatGPT
performs well in rating prediction but poorly in sequential and direct recommendation
tasks”.

In Context Learning

There have been many attempts at zero- and many-shot learning for LLMs in the
recommendation domain.

Dai et al. in [25] propose a re-ranking method for LLMs, with 3 distinct capabilities:
point-wise, pair-wise, and list-wise ranking.

He et al. in [46] decided to evaluate LLM’s performance in the conversational setting.
They report several interesting findings:

• LLMs outperform fine-tuned CRS models in a zero-shot setting
• GPT-based LLMs possess better content/context knowledge than existing CRS
• LLMs generally possess weaker collaborative knowledge than existing CRS
• LLM recommendations suffer from popularity bias in CRS

In all, they conclude that LLMs are a promising direction for conversational recommen-
dations.

Sanner et al. in [95] investigated LLM performance in the near cold-start context.
They have discovered that zero- and few-shot strategies in LLMs provide competitive
performance for pure language-based preferences (no item preferences) in the near
cold-start case in comparison to item-based collaborative filtering methods.
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Fine-Tuning

Bao et al. in [6] developed a framework to fine-tune LLMs for recommendation task. It
consists of 2 parts: alpaca tuning and recommendation tuning, where the former is used to
enhance the model’s generalization ability and the latter to improve the recommendation
performance. Proposed rec-tuning objective is a binary classification task, where the
model is asked whether the user would like a proposed item or not. They have shown that
fine-tuning LLMs can significantly improve the recommendation performance compared
to untuned models, and exhibit strong cross-domain generalization abilities.

Liu et al in [69] propose to combine open- and closed-source LLMs for content-based
recommendations. One of the steps in the framework is fine-tuning an open-source LLM
to act as a content-encoder. This step alone shows the most significant improvements.
Next, the closed-source LLM is used as data augmenter using a variety of prompts:
for content summarization, user profiling, and content generator. Using this data
during training further improves the recommendation performance. In all, the proposed
approach shows substantial improvements.

Cao et al in [15] propose using several new pretraining objectives to align the LLMs
with the recommendation task. The objectives include Masked Item Modeling, Masked
Language Modeling (different from the original MLM [27]), and Bayesian Personalized
Ranking. Furthermore, the data samples that the model is trained on are designed to
be more informative than in existing studies. Results show that the proposed method
effectively introduces recommendation knowledge, and outperforms both conventional
and LLM-based basdelines in retrieval.

2.2 Conversational Recommender Systems
Conversational Recommender Systems (CRS) are a particular type of Recommender
Systems that acquire the user’s profile in an interactive manner through natural language,
versus the traditional systems that are usually based on analysis of past user behavior
[33, 73]. CRSs were developed to address the limitations of traditional recommender
systems, such as the cold-start problem, the sparsity problem, and the lack of user
feedback. They are more natural and intuitive for users to interact with, as they mimic
how humans interact. However, that introduces new challenges, such as the need to
understand natural language, extract the user’s intent, maintain the context and state of
the conversation, etc. It also requires the system to be able to generate natural language
responses that are relevant to the user’s request. Modern LLMs are well-suited for these
tasks since they work with natural language and can generate human-like responses by
design.

2.2.1 Types of Conversational Recommender Systems
CRSs can be broadly split into 3 categories: system-driven, user-driven, and mixed-
initiative [50]. In system-driven methods, the users are typically asked about their
preferences and then presented with an initial recommendation. Users can then use a set
of pre-defined or dynamically determined critiques to refine their preferences further. In
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user-driven systems, the system takes no proactive role. The resulting dialogue, therefore,
consists of “user-asks, system-responds” pairs [135]. Such conversation patterns are
typical for one-shot query-answering, search, and recommendation systems. The most
popular approach, however, is the mixed-initiative approach, where the system takes a
proactive role in the conversation. The user can also take the initiative and ask questions
[50].

Figure 1.2 shows some components of a Conversational Recommender System in the
context of this work.

2.2.2 Conversational User Representation for Recommenda-
tions

Establishing the new user’s preferences through a conversation to make an effective
recommendation remains an open question. Most efforts in the conversational rec-
ommendations field focus on preference elicitation by asking user questions [131, 58].
However, most work establishes user preference through individual item attributes/-
facets [100, 135].

Kostric et al. in [58] propose asking implicit questions based on item usage to
establish user preferences. The questions are generated using a neural model based on
the reviews about the item. The authors have shown that proposed method is effective
at eliciting user preferences, but they have stopped short of actually using the user
answers in a recommendation algorithm, and proposed that as future work.

In [89], a model called “Navigation-by-Preference” (n-by-p) is introduced, which is
a recommendation made in a content-based way using unstructured item descriptions
such as sets of keywords or tags. While the authors use items rather than attributes to
establish user preferences, the proposed approach uses user-to-user filtering and user
reviews instead of item-to-item filtering and item descriptions as the basis for the CF.

I explore a new approach to conversational recommendations by incorporating
preferences of other external users with established preferences via shared discussed
entities and the user’s sentiment towards them. It also addresses the resulting “cold start”
problem. In this setting, users do not ask for recommendations directly but instead
have a more natural conversation with a Wizard and receive recommendations based
on this discussion. Previous approaches, such as the “hierarchy of recommendation
goals” [54] and “narrative-driven recommendations” [9, 29], are not applicable under
these conditions.

2.3 Explainable Recommendations
Explainable recommendation refers to personalized recommendation algorithms that
address the problem of why – they not only provide users or system designers with
recommendation results but also explanations to clarify why such items are recommended
[136]. Providing justification or explanation for a recommendation has been shown
to improve users’ experience with recommender systems, particularly by increasing
confidence in the recommendations [35, 47, 98, 130].
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I will now describe the specific types of explainable recsys relevant to my work

2.3.1 Review-based Methods
There has been a considerable recent effort to use user-generated review text to provide
explanations or justifications for recommender systems, including Matrix [137] and
Tensor [18] Factorization, Aspect Extraction [78, 81], Topic Modeling, Word Clouds [75,
125], and Graph-based methods [42].

These methods often require pre-existing history of product interactions, reviews, or
even, specifically, justifications, like [23, 42, 60, 81, 122], limiting their applicability to
new users.

2.3.2 Deep Learning Methods
Wu et al. in [122] propose a Deep Conversational Critiquing Framework that provides
explanations based on contextualized descriptive key phrases and the recommended item.
The key phrases consist of uni- and bi-grams, extracted beforehand from reviews using
a custom algorithm. While they achieve high performance of up to 88% of relevant key
phrases returned, they are not formed into a coherent sentence that can be used in a
conversational setting, for example, returned by a voice assistant or chatbot. Here, I
generate explanations that can be used naturally in conversation.

BERT probing was tried for Conversational Recommendations [84], and while the
authors show their improvement for recommendations, they also show that the accuracy
of probing is relatively low, with correct genres appearing in top-5 predictions for only
30-50% of cases.

Some systems use deep neural network models to generate text or fill in positive-
sentiment templates (e.g., [23, 81, 85]), which may lead to inaccuracies.

2.3.3 Context-Aware and Conversational Methods
Balog et al. in [4] propose modeling user preferences based on sets of related items.
The sets allow to generate meaningful sentences that can be used as explanations after
reranking according to user preferences. User preferences are modeled as a likelihood
estimation over items’ tags. As a result, the proposed method is more transparent and
scrutable than the previous methods.

Penha et al. in [85] propose a pairwise review-based explanation for voice search
recommendations. This is a unique setup with its own challenges, such as lack of visual
cues, user memory limitations and user fatigue. The proposed template-based method
is applied to a pointwise setting (only one item is presented) and a pairwise setting (two
items are presented). The results show that the pairwise setting is significantly more
effective at Effectiveness and Transparency metrics.
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2.3.4 LLM-Based Methods
It has been previously shown that LLMs can produce highly relevant and persuasive
explanations for recommendations [113] due to their natural ability to generate texts
and strong capabilities in logical and causal reasoning [115]. However, the evaluation
was performed using the LLM that produced the explanations as a scorer instead of real
humans. The prompt used for evaluation did not employ the best-known techniques of
prompt tuning like CoT [119], Self-Consistency [114], or few-shot learning.

Since then, more rigorous work has been produced, based on extracted item aspects
[88], continuous prompt learning [64], knowledge base alignment and personalized
reasoning graph construction [115]. The latter is based on chained graph reasoning
technique and has a self-verification step, which together solve the hallucination problem
plaguing the LLMs. The knowledge base allows to inject any information, for example
item metadata or user profiles.

2.3.5 Evaluation and Impact
Balog et al. in [3] measure how different explanation goals interact with each other, and
propose a method of robustly measuring if explanation meets the goals. The authors
find that all the goals are moderately correlated, while several pairs of goals are strongly
correlated, and that the wording of the goals is critical for human quality assessment.

Furthermore, Balog et al. in [5] study how bias in the explanations can impact users’
choices. They intentionally bias produced explanations towards or against certain aspects
and measure the influence on user decisions. The explanations are either produced in an
itemized format, comprising a list of extracted aspects, or in a fluent natural language
format, by querying PaLM [20].

Lajewska et al. in [59] also ask the question of how the quality of explanations
affects user-percieved usefulness. They have shown that users are insensitive to the
completeness, factuality or fairness of the explanations, which signals that users are not
able to identify the problems within the response without expert knowledge.

2.4 Knowledge Injection for Recommender Systems
Although new methods like Retrieval-Augmented Generation and Many-Shot prompting
might not require a database of information about item, most legacy methods do, and
the new methods could arguably also benefit from it. Such a database can contain item
ratings, metadata that can be presented to the user (e.g., the genre of a movie or the
director), community-provided tags, or extracted key phrases. These item attributes
can serve as a basis for other computational tasks, e.g., to compute personalized
recommendations, generate explanations, or determine which questions the user can be
asked [50].

When using the additional information about items or users, the question arises:
How can this information best be incorporated into the recommendation process?

Many systems that use additional information about entities or users augment the
user-item graph with additional nodes. For instance, TGCN [16] includes a third class
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of nodes called tags, which encode additional structured metadata. KGAT [112] includes
categorical entities in the graph connected to items (for example, actor or director
entities are connected to movie items).

Mei et al. in [76] connect additional entity nodes directly to users instead of
constructing an interaction graph with user-entity and user-item edges. KCAN [106]
also attempts to encode knowledge graphs alongside the user-item interaction graph.
However, it uses more complex methods to incorporate that information into user and
item representations; it achieves mostly minor improvements over KGAT.

More recent models are able to directly introduce multimodal information, including
text, audio, and image, about the items and users into the models by performing graph
fusion over different modality graphs to discern latent structures [133] or by training
separate copies of the graph network for each modality and combining the representations
[102, 120].

Zhu et al. in [141] propose a generative recommender system called CLLM4REC.
It extends the vocabulary of a pretrained LLM with user and item ID tokens, which
is then fine-tuned using a recommendation-oriented strategy on the interaction and
knowledge graphs and converted into sentences in a natural language.

2.5 Data Augmentation Using Foundational Lan-
guage Models

This section briefly describes most the popular ways to use Foundational Language Mod-
els for data augmentation and discusses the scarcity of Conversational Recommendations
datasets.

2.5.1 Conversational Recommender Systems
Despite the rise in popularity, the CRSs still lack the large datasets that traditional rec-
ommender systems have had for years, like MovieLens [39] (up to 20M samples) or Netflix
Prize [8] (100M samples). The biggest dataset of Conversational Recommendations
generated by real humans I know of is OpenDialKG [77], with 12k conversations in the
recommendation domain. Others are even smaller: ReDIAL [67] and TG ReDial [140]
have 10k conversations each, GoRecDial [53] has 9k conversations, DuRecDial2.0 [70]
has 8.2k (in English), and INSPIRED [41] has 1k. The Reddit-Movie dataset [46] has
643k conversations. However, it is built from the user comments on Reddit, which means
most of the “conversations” are very short, with 61% having only one turn and 96%
having less than 3 turns. There are many reasons for such scarcity: a single sample from
the CRS dataset is an entire conversation with multiple turns and items mentioned,
while a sample for MovieLens is just one number.

Data augmentation is a promising approach that became viable only recently with
the development of Generative AI. The recent explosion in interest towards Foundational
Language Models caused a chain reaction of open source creating better datasets, which
help create better models, which help create even better datasets, and so on. Some
examples include Vicuna [19], fine-tuned on real people’s conversations with ChatGPT
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collected via ShareGPT; Alpaca [103], fine-tuned on a self-instruct-style [116] dataset
generated by text-davinci-003 model; and GPT4All [1], fine-tuned on a curated set of
prompt-response pairs, generated using GPT-turbo-3.5 model. These models fine-tuned
existing models using data created by another SOTA model.

Vicuna and GPT4All datasets were generated semi-automatically, so a human is
still needed to provide the questions/prompts/other side of the conversation, which is
much better than using 2 humans but can still be costly in terms of time and money.
The dataset for Alpaca was collected completely automatically, where LLM generates
both the instructions (prompts) and the responses (answers), using a handful of human-
written samples as few-shot examples. However, it consists of only one type of interaction
- the instruction data - and does not translate into conversation-style interactions.

Another synthetic dataset of conversations is LLM-REDIAL [2], which has not been
officially released as of writing this thesis. It consists of 46.9k conversations, generated
using templates by filling them with real users’ information extracted from reviews by
ChatGPT-3.5-turbo. The templates are split by goals, and the dialog structure is varied
to ensure diversity.

Automatic high-quality conversation generation can provide researchers with data
across any domain faster and more cost-effectively than human input. Moreover, this
method can address inherent issues in real conversation datasets, such as class or length
imbalance, by offering fine control over the attributes of the dialogue and preferences
expressed in it. Finally, LLMs can cover a broad range of topics, providing an advantage
over humans, who might lack expertise in specific domains and base recommendations
on personal experiences only.

2.5.2 Traditional Recommender Systems
LLMs are also extensively used for generating synthetic training data [69, 79], user [34,
69, 121, 132] and item [69, 132] representations, and more.

More specifically, Liu et al. in [69] proposed to use LLMs as User Profiler by inferring
the geographical region the user is in and topics the user is interested in. They then
fuse the topics and regions of interest into one vector and use it as an “interest-aware
user vector representation”.

Wei et al. in [121] also use LLMs to generate “augmented side information”, or
more plainly, user and item attributes, which are then used to augment the user and
item representations. They query the LLM to produce user profiles with their inferred
demographic information: age, gender, country, and language, as well as preferences
like genres and directors they like and dislike. Similarly, they infer item attributes like
director, country and language.

Lui et al. in [69] also use LLMs to do free-form summarization for items, providing
the title, abstract, and category as input to the LLM.

Zhang et al. in [132] split user profile into 2 components: social traits and unique
tastes, they further break down social traits into 3 categories: activity, conformity, and
diversity, and provide formulas for each. Users’ preferences are encoded by taking 25
random items from their viewing history and splitting them into “liked” and “disliked”,
and then using an LLM to generate a summary of tastes.
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Wu et al. in [123] propose a data distillation technique using LLM to generate a
small dataset of high-quality samples, with the goal of achieving comparable quality to
the original dataset with a fraction of the data. One benefit of the proposed approach is
that it generates discrete text, which is easier to interpret and analyze than continuous
representations. Another distinction from related methods is that the proposed method
is training-free, and utilizes the extensive pre-training of the LLM. The authors report
they have achieved 97% of the original dataset’s performance with only 5% of the
samples.

Mysore et al. in [79] tackle the narrative-driven recommendations, where user’s
preferences are presented with verbose descriptions and their context. The method
utilizes LLM to augment training data with synthetic queries generated from historical
user interactions.

Chen et al. in [17] propose a framework for generating data to improve fairness in
recommendation systems. It is based on assumption that augmented data should be
balanced between user groups, so that the system could learn preferences of all the
groups. The authors generate both fake positive and negative data to equalize the
data distribution. The results show that the proposed method improves both fairness
and accuracy metrics on a variety of datasets and compared against several recent
fairness-aware baselines.

2.6 Summary
Although extensive research methods exist in the established field of Recommender
Systems, its emerging sub-discipline, Conversational Recommender Systems, still has
many open research questions and challenges. At the same time, emerging tools like
Foundational Language Models can enhance existing methods and create new ones.

The questions I will address in this work are: How to represent conversational
user preferences in §3, how to represent the users and items using textual data in §4,
how to improve user and item representations using LLMs in §5, and how to generate
explanations for recommendations in §6.
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3. User Preference Representation in Con-
versational Recommendations

In this chapter, I describe my work to address RQ1: “How to represent user preferences
using conversation?”. More specifically, Can we represent user preference towards items
mentioned and not mentioned in the conversation? The content of this chapter is
based on the paper “You Sound Like Someone Who Watches Drama Movies: Towards
Predicting Movie Preferences from Conversational Interactions” [110]1, published at
NAACL’21.

Establishing the new user’s preferences through a conversation in order to make an
effective recommendation remains an open question. This work explores one promising
direction for conversational recommendation: mapping a conversational user, for whom
there is limited or no data available, to most similar external reviewers, whose preferences
are known, by representing the conversation as a user’s interest vector and adapting
collaborative filtering techniques to estimate the current user’s preferences for new
movies.

The proposed method, called ConvExtr (Conversational Collaborative Filtering using
External Data), 1) infers a user’s sentiment towards an entity from the conversation
context, and 2) transforms the ratings of ”similar” external reviewers to predict the
current user’s preferences. These steps are implemented by adapting contextual sentiment
prediction techniques and domain adaptation, respectively. To evaluate this method, a
finely annotated dataset of movie recommendation conversations, called MovieSent, is
developed and made available. It is based on a previously released in [87] dataset of
conversational preference elicitation. The results demonstrate that ConvExtr can improve
the accuracy of predicting users’ ratings for new movies by exploiting conversation content
and external data.

The formal statement of the problem is: given a prefix of k turns of conversation
and mentions of m movies, we aim to predict the rating for the next movie m + 1 to be
mentioned in the conversation.

In the experiments described here, the value of m is set to 2, which approximates
the average number of movies mentioned in a conversation with a voice assistant, but
that could be extended. In that setting, the user’s preferences are estimated based on
the first two movies mentioned in the conversation and predicted their rating for a third
(unseen) movie.

1The code for the model is available at https://www.github.com/sergey-volokhin/conversa
tional-movies
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3.1 Method Overview
This section provides an overview of the proposed method and how the features were
calculated. The complete model pipeline can be seen in Figure 3.1. Given a conversation
about movies, first, user sentiment towards the mentioned movies is estimated and then
used as input to a CF model to predict the rating for an unseen movie. The CF model
uses a large set of external critics’ ratings and reviews, which should include critics
similar to the current user. The final model, a Gradient Boosted Decision Tree, uses
3 main inputs: (1) CF predictions for the unseen movie; (2) similarity between the
conversation user and critics; (3) similarity between the conversation and the movies’
metadata, to predict a score that the user would give each movie.

Specifically, we first construct the conversation representation and use pre-trained
BERT to embed it using the sequence-encoder functionality of the model[128], which
gives us one vector per conversation. Then we infer the fine-grained user sentiment for
the movies discussed in the conversation using a Random Forest model, trained on the
labeled dataset MovieSent (described in 3.2). Since this is not the focus of our work, we
evaluated the prediction performance on a development set against manually annotated
sentiment labels, resulting in an RMSE of 0.88 (mean over 10 tries, with std 0.06), which
was sufficient for the current work.

The next step expands on a CF model (described in Section 3.1.1), constructed
from an external reviews corpus, and predicts the score for the unseen movie. To
make this prediction, we identify reviewers similar to the current conversation user
via the similarity of their reviews to the current conversation text. We then calculate
BERT-based sentence embeddings for all reviews of those critics and represent each
critic as a centroid of their review vectors. Finally, we use the similarity between the
conversation- and critics’ representations to transform the critics’ scores to predict the
conversational users’ ratings.

3.1.1 Collaborative Filtering
The conversational user’s ratings are required to apply collaborative filtering (CF)
algorithms. Since only the user’s conversational text is available, A sentiment analysis
model is trained to infer the user’s sentiment toward the movie mentioned in the
conversation. Then, these sentiment scores were converted to ratings and were used
in traditional Collaborative Filtering (CF) algorithms to estimate the user’s sentiment
toward a new movie. The basis for the CF was extensive external data of movie reviews
and ratings, which were scraped from a popular website, RottenTomatoes (RT)2.

3.1.2 Domain Adaptation
I argue that the Conversational Users are sufficiently different from the Professional
Critics whose reviews were used to build the CF matrix. To correctly predict the score
for the users, additional features are introduced, with the expectation that they would

2http://rottentomatoes.com
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Figure 3.1: Overview of the ConvExtr system for conversational elicitation and pre-
diction of movie preferences.

adapt the predicted baseline CF score from the critics’ space to the users’ space. The
features are described below.

Affinity to Critics

One of the features is the affinity between the user and critics most similar to them. For
each movie, the critics are ranked based on their reviews for that movie using BM25
and normalize the returned scores. Each critic is then represented as an average of all
their embedded reviews. The movie representation is a weighted average of the top most
similar to user critics, where weights are the normalized BM25 scores. Finally, the cosine
similarity and earth movers distance between the user representation (conversation) and
movie representation (weighted average of reviews) are calculated. This results in 2
features.

Affinity to Items

Another set of features is the affinity between the user and the movie, calculated as the
semantic similarity (cosine similarity) between the user’s conversation and the movie’s
metadata, all in embeddings form. This results in 10 additional features.

3.1.3 Model
Finally, all features are passed into a Gradient Boosted Decision Tree to produce the
predicted score for the user-item pair.

The results can be seen in Table 3.2. Simple point averages were used as baselines.
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Figure 3.2: Example of utterances labeled with sentiment scores

3.2 Data
In this section, I describe the datasets used. The statistics are reported in Table 3.1

3.2.1 MovieSent: Sentiment Elicitation Dataset
The conversational Movie Sentiment Elicitation Dataset (MovieSent) is an extension to
the dataset released in [87], which consists of Preference Elicitation conversations between
“coached” crowd workers playing the roles of Wizards and Apprentices. However, the
movies mentioned in the dataset were not linked to a unique identifier, which required
additional manual annotation to benefit from external knowledge. Hence, all movies
were manually labeled in the dataset with their RottenTomatoes IDs (RtID). Then,
human annotators were asked to label each user response with a sentiment score on a
[-3; +3] scale and a “None” score. The labeling was done by 8 independent judges with
a 20% overlap (at most 2 people labeled the same sample). Inter-rater reliability for
judges’ agreement on the labels was calculated using Cohen’s kappa [21] for binary labels,
which is standard for this task, and it was 0.90 on 238 samples, indicating substantial
inter-rater agreement. Reliability for the numerical sentiment was measured using a
weighted Kappa [22], which was 0.77 on 163 samples. An example can be found in
Figure 3.2.

3.2.2 Reviews dataset
Most of the movie rating datasets that existed at the time of writing the paper were
not suitable for this task. Therefore, a new dataset had to be created. The basis of the
CF system was critics’ ratings from an external source, specifically, a popular website,
RottenTomatoes. To construct the corpus, for each movie in MovieSent, unique RtIDs
were retrieved for critics who left reviews on that movie’s page. All the reviews that
those critics have ever left for any movie were retrieved and their numerical ratings were
normalized to a discrete scale from 1 to 5.

3.3 Metrics
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are used to
evaluate the performance of proposed model.
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Table 3.1: Statistics of the datasets used

(a) Reviews dataset

reviews 715,766
critics 3,664
median reviews per critic 34
unique movies 42,423

(b) MovieSent dataset

conversations 489
sentiment labels 2,488
unique entities 712

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 MAE = 1
n

n∑
i=1

|yi − ŷi|

Where yi is the true rating, yi is the true rating for sample i, ŷi is the predicted rating,
and n is the number of samples.

3.4 Experiments
In this section, I first describe the baselines used for comparison and then which
experiments were performed to validate the proposed method.

3.4.1 Baselines
First, let’s establish the natural baselines:

• AverageCritics: Critics’ score from RT, which is a popularity proxy in a cold start
problem

• AverageAudience: Audience score from RT, another popularity proxy, which
potentially is closer to Conversational Users than Professional Critics

These scores are readily available and require no additional implementation or
training. As a widely understood metric, average rating provides a common ground for
comparing the performance of more sophisticated algorithms. It is particularly helpful
in the context of Cold Start when the user has no historical ratings or reviews, which is
exactly the case.

3.4.2 ConvExtr
I now describe the experiments to validate the proposed method for inferring user
preference for unseen movies from conversations to address RQ1.

The first experiments performed involved collaborative filtering algorithms used to
predict the user’s rating for the unseen movie. The performances of KNN, SVD, and
SVD++ were compared. The metrics for different CF models are listed in Table 3.2.

BM25 is employed to retrieve the most similar critics. It is a basic but very powerful
technique. The similarity between the user and those critics is calculated by using
the cosine similarity between the user representation (conversation embeddings) and
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critics representations (embeddings of their reviews). I have experimented with different
options for representing the user; the final version included using both user and system
utterances and embedding keywords extracted from those utterances.

3.4.3 Evaluation Procedure
To conduct an informative evaluation of proposed methods, conversations in MovieSent
are restricted to include only those with at least 3 movies with IDs mentioned in
separate utterances, each with reviews in the corpus described above. The resulting
conversational dataset contained 238 conversations out of the initial 489. All experiments
were conducted using 5-fold cross-validation, with 48 conversations on average in each
split.

3.5 Results
The results are shown in Table 3.2.

AverageCritics baseline performed much worse than AverageAudience, which supports
the initial hypothesis that professional paid critics differ from regular users.

The best pure CF score was achieved using SVD++ with an RMSE of 1.14 and MAE
of 0.92. When adding new features (the affinities), the result improves significantly,
which also supports the initial hypothesis. The best score for proposed method was
achieved using GBRT with an RMSE of 1.09 and MAE of 0.84.

The best sentiment model estimates user sentiment towards the movies mentioned
in a conversation with an RMSE of 0.88 on a 7-score Likert scale.

The “best possible” score was calculated (also shown in Table 3.2), which is the
score that would be achieved if an oracle reported the real user preferences towards the
mentioned movies instead of training a sentiment estimation model. It is evident, there
is much room for improvement.

Possible improvements for the future work could include using more advanced models
for sentiment estimation, such as LLMs, since the ”Best possible” or the oracle sentiment
model has such better performance. Another improvement could be to use more advanced
models for CF, such as Neural Collaborative Filtering, which could potentially improve
the performance of the CF model beyond the SVD++ baseline.

3.6 Summary
In this chapter, a novel method for estimating user preferences from conversations was
proposed. The results demonstrated that incorporating conversation content to select a
more similar group of users for Collaborative Filtering improves the recommendation
performance, compared to using the inferred ratings alone.
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Table 3.2: Main results for ConvExtr (best in bold), significance from AvgAudience
baseline marked with “*”

Model RMSE MAE
Baseline methods:

AverageCritics 1.34 0.99
AverageAudience 1.24 0.95

ConvExtr (my method):
KNN (raw CF) 1.20 0.94
SVD (raw CF) 1.18* 0.95
SVD++ (raw CF) 1.14* 0.92
GBRT (final version) 1.09* 0.84

Best possible: 0.84 0.64

3.7 Limitations
The quality of the training and evaluation was compromised due to the data shortage.
Since the method relies on metadata and reviews, every movie mentioned should be
linked to an external ID. Existing datasets of conversational recommendations, such
as ReDIAL [67] or INSPIRE [41], use item IDs for knowledge bases like DBpedia or
IMDB. However, these databases do not contain reviews, which are the backbone of the
approach. Therefore, I had to switch to a different knowledge base, RottenTomatoes, and
manually scrape the reviews together with the movies’ metadata. The dataset utilized,
CCPE [87], was manually annotated with RottenTomatoes movie IDs (RtIDs), which
restricted the number of conversations available in the resulting dataset. A larger dataset
of conversations annotated with IDs linked to a review database should be constructed
for more robust training and accurate evaluation. The dataset annotation was manual
since some movies share the same names, and the context like year or director had to be
looked up in the conversation manually to resolve the correct entity. Nowadays, LLMs
can potentially be used to automate this process, which would significantly reduce the
time and effort required to create such a dataset, and also increase the size of the dataset
drastically.
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4. Knowledge Injection for Better Recom-
mendations

In this chapter, I describe my work to address RQ2: “How to better represent users
and items using structured and unstructured knowledge to improve the quality of rec-
ommendations?”. More specifically, “How should the knowledge be injected into the
Knowledge Graph?” and “Which information about the users and items is most useful
for recommendations?”. The content of this chapter is based on the paper “Augment-
ing Graph Convolutional Networks with Textual Data for Recommendations” [109]1,
published at ECIR’23. In this paper, a novel method of integrating textual information
into a Graph Convolutional Network (GCN) called TextGCN is proposed, based on a
popular framework, LightGCN [43].

Graph neural network (GNN) approaches to recommendation models have grown in
popularity in recent years [124], which is natural since so much of the information in
these systems is easily mapped to a graph structure. While there is still some controversy
over whether graph-embedding methods outperform more conventional recommendation
systems [26], the appeal of GNN systems is strong. It has long been clear that side
information and additional knowledge, typically social connections between users or
structured knowledge about items, enhance any recommendation system [111]. However,
the use of unstructured information about items or users has lagged despite the availability
of vast quantities of unstructured text in the form of user reviews and item descriptions.
I am aware of only a couple of examples where such unstructured information has been
used in GNN recommender systems [99].

The intuition is that unstructured review text and item descriptions capture a great
deal of semantic and behavioral information unavailable from the purely topological
structure of a user-item interaction graph. It is posited that this unstructured text may
also contain information that cannot be found in conventional knowledge graphs either.
For instance, particular users may express what they like about items differently. We
not only want to find similar users in terms of what items they like or what actors or
characters, or attributes they seem to gravitate towards. We want to find similar users
in terms of how they describe those items zand attributes.

At the same time, many GNN recommender systems are increasingly complex, while
in at least some cases, it has been shown that the sophisticated mixing and attention
mechanisms used might even hinder recommendation accuracy [44]. Therefore, we seek
to take the simplest possible approach to incorporate unstructured review and item
description data into a GNN framework. The experiments show that a simple means of
incorporating unstructured text into a GNN recommender improves the performance of a
popular baseline system, LightGCN [44], by a similar amount as much more sophisticated

1The code for the model is available at https://www.github.com/sergey-volokhin/textgcn
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approaches. In summary, the contributions are:

1. ways to augment interaction-based Graph Recommender Systems with textual
information for improved node representation are explored and a simple and
general approach for integrating both graphical and textual representations of
users and items is introduced.

2. the effectiveness of the combined model for recommendation performance is
experimentally demonstrated, with 6-21% improvements across the evaluation
metrics.

I also release the code2 to the scientific community for transparency and reproducibility.

4.1 Method Overview
This section describes the proposed approach and the features used. The architecture of
the model can be seen in Figure 4.1.

The blue blob represents the frozen backbone model, which is pre-trained on the
user-item interaction graph.

The yellow blobs represent the textual similarity features. Each feature consists
of user and item representations (green blobs, with the top ones standing for user
representation and the bottom for item representation). The dot product is applied
to those two representations to get a single number, which is used as a feature for the
regression layer (orange blob), which produces the final score for that user-item pair,
signifying the strength of the link between them.

More specifically:

• the user review representation is obtained by taking the average of the embeddings
of all their reviews.

• the user description representation is obtained by taking the average of the
embeddings of all the descriptions of the items that the user has reviewed.

• the item review representation is obtained by taking the average of the embeddings
of all the reviews of that item.

• the item description representation is the embedding of the description of that
item.

4.1.1 Training LightGCN
LightGCN is a popular model with existing code available, and it is also very fast to
train. It is trained on the user-item interaction graph and use it as a starting point
to measure how much the structural information achieves when used alone. Next, the
resulting embeddings are frozen so they will not be trained when introducing the textual
features. We also experimented with back-propagating the error signal through the
LightGCN model (unfreezing the model), but better results were achieved with the

2https://github.com/sergey-volokhin/TextGCN
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Figure 4.1: The architecture of TextGCN. Five features are used, 4 of which involve
textual information (reviews and item descriptions), shown in yellow blobs. The
LightGCN model is pre-trained on a user-item interaction graph and frozen, so the
first feature does not change when training the regression layer, shown in the blue
blob. ⊗ represents the dot product.

frozen embeddings. Therefore, only experiments with frozen embeddings are described
below.

The score predicted by LightGCN is used as one of the features in the model. It is
shown in the blue blob in Figure 4.1.

4.1.2 User and Item Representation
The textual information consists of user-generated reviews for items and item descriptions.
Therefore, the users and items can be represented in 2 different ways:

• represent items by using either the average of their descriptions or the reviews
written about them.

• represent users by using the average of the reviews they have written or the average
of the descriptions of the items they have reviewed.

Those representations are used to create features for the model. Each feature is
constructed by applying dot product on different user and item representations and is
then fed into a regression layer that estimates the score for that user-item pair.

The four resulting text-based features are shown in yellow blobs in Figure 4.1.

4.2 Data
The evaluation was done on 4 large-scale datasets of Amazon reviews [81] in the following
diverse domains: Books, Electronics, Movies, and Toys. The datasets, are subsampled,
taking the core-10 subset, which ensures that all items and users have at least 10
interactions. The statistics for the datasets are in Table 4.1.
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Table 4.1: Data statistics (centralities are multiplied by 104)

Domain users items samples sparsity degree centr. eigenvector centr.
mean median mean median

Books 92k 58k 2.7M 99.949% 1.79 1.06 7.98 1.43
Movies 268k 78k 3.1M 99.961% 1.09 0.50 9.80 4.55
Toys 64k 32k 0.75M 99.963% 1.32 0.83 12.36 5.40
Electronics 139k 40k 2.1M 99.984% 0.43 0.23 4.45 1.62

4.3 Metrics
The metrics used to evaluate the proposed model’s performance are Recall, Precision,
Hit Rate, and nDCG. All metrics are calculated at k = 20.

Recall@k(u) = |Rk(u) ∩ T (u)|
|T (u)|

Precision@k(u) = |Rk(u) ∩ T (u)|
k

HitRate@k(u) = I(|Rk(u) ∩ T (u)| > 0)

nDCG@k(u) = DCG@k(u)
IDCG@k(u) =

∑
i∈Rk(u)

2reli − 1
log2(i + 1)/

∑
i∈Rk(u)

2relideal
i − 1

log2(i + 1)

Where Rk(u) is the set of top-k of items recommended to user u, T (u) is the set of
items the user interacted with, reli is the relevancy of i-th item in the returned ranking,
and relideal

i is the relevancy of i-th item in the ideal ranking (where all the relevant
items come first).

I ensure that all the items that appear in the training set get a score −∞ in the test
set, so they are not recommended to the user.

4.4 Experiments
Extensive experiments were conducted to support the claims.

In this section, I first describe the baselines used for comparison and then which
experiments were performed, adding unstructured text representations to those baselines.

4.4.1 Baselines

Collaborative Filtering Baseline

The first baseline does not use graphs and works as a sanity check to ensure that a
basic Collaborative Filtering model does not outperform the proposed, more complex
approach. The “implicit” [32] Python library is used to build several CF systems from
the user-item interaction matrix.
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Alternating Least Squares [49, 101], Bayesian Personalized Ranking [92], and Logistic
Matrix Factorization [51] algorithms were tried, all of which are based on Matrix
Factorization paradigm. The BPR has shown the best results in all cases. The results
of it are shown in Table 4.2, marked as “CF (BPR)”.

Graph-Based Baselines

We experiment with LightGCN [43] and several of its derivatives as baselines. LightGCN
simplifies its predecessor, NGCF, by removing several unnecessary transformations and
streamlining the training. Details are shown in Formula 4.1. It uses 3 graph propagation
layers with a mean aggregation over neighbor nodes, normalized symmetrically by the
degree of each node (

√
|Nu||Ni|). The final node representation is a simple average over

the three layers’ outputs.

e(k+1)
u =

∑
i∈Nu

e
(k)
i√

|Nu||Ni|

efinal
u = e(0)

u + e(1)
u + e(2)

u

3

(4.1)

It was chosen for its simplicity and robust results, it has shown state-of-the-art
performance on several datasets, and it is also very fast to train. It has also shown
better results than other graph-based models we experimented with, namely GCN [55],
GATv1 [107], and GATv2 [12], and GraphSAGE [38]. All of them performed worse than
LightGCN, so we decided to stick with LightGCN. The results for all the Graph Models
are shown in Table 4.2.

Single Layer

In the original LightGCN paper, the best model for the Books’14 data uses only the
outputs from the final (i.e., third) layer instead of the aggregation of all. The authors
called this the “Single” variation.

4.4.2 TextGCN
Regarding the proposed model, the following experiments were conducted:

• Compared a wide variety of graph-based models and pure CF before settling on
using LightGCN as a basis for the proposed model.

• Experimented with alternate aggregators and varied the number of layers within
LightGCN. The default configuration was most optimal.

• Tried several ways of combining textual features with LightGCN vectors and scores,
like concatenating the user LightGCN vector with user textual representation.
None of those attempts yielded any improvements.
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• Experimented with back-propagating the error signal through the LightGCN
model (unfreezing the model) but achieved better results with frozen graph and
text embeddings.

• Introduced several non-text-related improvements that boosted the performance
of both the baseline model and ours:

– changed activation function to SELU
– introduced Dynamic Negative Sampling (DNS)

Dynamic Negative Sampling

The authors of the LightGCN paper have noted [43] that more advanced negative
sampling techniques could improve LightGCN, and we decided to try one such sampling
method to evaluate whether the improvements obtained using additional unstructured
text would still appear when using improved sampling methods. Following [134], 1000
random items are ranked for each user, 40 highest ranked items are picked, 5 random
positives are picked, and the training is performed on the Cartesian product of those 2
sets (200 samples per user). The intuition behind this method is that all unobserved
items should have a lower score than any observed item during training since those
unobserved items are either negative or, even if they are positive, they should have a
lower score than the observed ones.

4.5 Results
The scores for different models tested can be seen in Table 4.2.

A good sanity check that the experiments make sense is that the result of GATv2 is
better than that of GATv1, albeit by a small margin.

The “Single” version of the model did not perform as well as the version that takes
the average of all layers, and, in fact, it performed worse than most of the other graph
models.

Surprisingly, the Collaborative Filtering baseline, which did not use any graph
convolutions, has shown better results than all of the graph-based models save LightGCN.
This is an interesting result, that the newer, more complicated models do not necessarily
transform into better results.

LightGCN beats other graph-based models by a significant margin, and variations
of the proposed model TextGCN show further improvements over LightGCN.

The main results over all datasets are in Table 4.3. Each model with text outperforms
its corresponding baseline without text on every metric on all the datasets. Adding
Dynamic Negative Sampling further boosts the performance of both the LightGCN and
TextGCN. This supports the hypothesis that the text of user reviews and descriptions
contains useful information beyond what is available in the user-item graph.

Table 4.4 shows which features the models use and the average weights in the
prediction layer for each feature for all the TextGCN models trained. Those weights
can act as proxies for feature importance. Notice that the highest weights are for the
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Table 4.2: Results for all the Baseline and Experimental models compared to the
proposed model; runs over the Amazon Books dataset. Names of TextGCN models
reflect different variations tested. Metrics are calculated @20 and averaged over 5
runs.

Model Recall Precision Hit rate nDCG
CF (BPR) 0.1422 0.0391 0.4662 0.1029
Graph Baselines:

SAGE 0.0963 0.0263 0.3479 0.0674
GAT 0.1366 0.0359 0.4452 0.0984
GATv2 0.1384 0.0364 0.4503 0.0993
GCN 0.1419 0.0374 0.4584 0.1029
“Single” 0.1162 0.0318 0.4081 0.0833
LightGCN 0.1690 0.0455 0.5210 0.1244
LightGCN w DNS 0.1813 0.0490 0.5467 0.1353

TextGCN:
XGBoost 0.1539 0.0372 0.4736 0.1075
GBDT 0.1749 0.0453 0.5308 0.1304
Linear 0.1833 0.0460 0.5308 0.1350
Linear w DNS 0.1923 0.0485 0.5481 0.1428

Table 4.3: Main results for all 4 tested datasets. All metrics @20. All results are
statistically significant (p ≪ 0.001).

Books Toys
Model recall precis hit nDCG recall precis hit nDCG

LightGCN 0.1700 0.0429 0.5044 0.1222 0.0988 0.0107 0.1787 0.0571
TextGCN 0.1833 0.0460 0.5308 0.1350 0.1160 0.0125 0.2064 0.0693
LightGCN w DNS 0.1822 0.0463 0.5290 0.1330 0.1114 0.0122 0.2035 0.0662
TextGCN w DNS 0.1923 0.0485 0.5481 0.1428 0.1268 0.0136 0.2258 0.0762

Movies Electronics
Model recall precis hit nDCG recall precis hit nDCG

LightGCN 0.1575 0.0195 0.3074 0.0939 0.0543 0.0058 0.1087 0.0299
TextGCN 0.1723 0.0212 0.3321 0.1107 0.0640 0.0067 0.1261 0.0392
LightGCN w DNS 0.1789 0.0227 0.3475 0.1123 0.0703 0.0078 0.1432 0.0474
TextGCN w DNS 0.1895 0.0239 0.3644 0.1241 0.0750 0.0082 0.1513 0.0514
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Table 4.4: All features used in the TextGCN model and the average weights of the
corresponding neurons in the regression layers across all datasets.

feature weight
LightGCN 1.47±0.08

Urev · Irev 8.66±4.45

Udesc · Idesc 24.44±2.27

Urev · Idesc −12.80±2.79

Udesc · Irev −7.23±4.66

“description” feature, which calculates the similarity between the user’s average item
description vector and the candidate item vector. We speculate that this is because
users are attracted to similar aspects across products. Such aspects (say “lightweight”)
might be implicit in a user-item interaction graph if enough users interacted with the
same products that shared that feature. However, using text descriptions to represent
users and items appears more effective and direct. Two other textual features, using
different textual representations from each user and item (rev-desc and desc-rev), have
negative importance, which suggests that there is no direct useful link between the
description given to the product by the seller and the reviews written by the users.

4.6 Summary
In this chapter, a new way to incorporate the textual features into a GCN-based
recommender system was introduced.

It was shown that the text of user reviews or descriptions contains useful information
beyond what is available in the user-item interaction graph. It was also shown that
lightweight graph embeddings can be efficiently augmented with user-generated texts
like reviews and substantially improve recommendation performance without complex
models to combine the graph and textual representations.

4.7 Limitations
The model is trained on the user-item interaction graph, so it needs to be retrained
every time new users or items are added, which is not feasible with the large number of
users and items. This is a problem with many graph-based models.

Since the proposed method freezes the underlying backbone, it does not matter
which particular model it is. This agnosticism means that this limitation will be solved
if a backbone model that does not have that limitation is used. One possible solution is
to use incremental training, which is a technique that updates the model with new data
without retraining the entire model (e.g., [24, 126, 127]).
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5. Enhancing Recommender Systems with
LLM-Driven User and Item Insights

The content of this chapter is based on the work done in the last year, will be submitted
as a long paper to ACL Rolling Reviews August 2024 cycle. In it I address RQ2c: “Can
LLMs be used to improve user and item representations?”.

A general method for data augmentation using LLMs is introduced for recommen-
dations, which can be easily applied to any recommendation algorithm and requires a
minimal amount of new parameters, similar to the TextGCN model described in §4.

To resolve ambiguity in names, I will call the:

• TextGCN+ – a general method which uses textual features with a recommenda-
tion model.

• TextLightGCN – LightGCN [43] model augmented with textual features de-
scribed in §4.

• TextMMSSL – MMSSL [120] model augmented with textual features and de-
scribed in this chapter.

Textual data can often be noisy, incomplete, or biased. For example, user reviews
can be short, poorly written, or contain irrelevant information. That makes it harder
for the recommendation model to learn useful signals from the data. I hypothesize that
LLMs can generate more accurate, informative, and detailed textual data, improving
the user and item representations and providing a stronger signal. More specifically, I
propose to generate 3 textual features to better represent the items and 1 textual feature
to better represent the users, all shown in Table 5.1. The intuition for generating each
particular feature is as follows:

• Item descriptions provided by the sellers are often biased, focusing on positive
aspects and potentially omitting negative features. I hypothesize that descriptions
generated with LLMs might be more objective, detailed, fluent, and accurate,
hopefully resulting in improved recommendations.

• Expert opinions are often more analytical and critical. They can provide a different
perspective on the item, which is not captured by the regular user’s reviews or the
seller-provided description.

• User archetypes can provide a more detailed understanding of the user from the
item perspective, joining the item information into a meta-summary of reviews.

• User profiles can provide a more detailed understanding of the user from the user
perspective, joining the user information into a meta-summary of reviews.

This approach differs from the recent related work in several ways. First, I do not
restrict the user profile to any specific topics or features and use the raw text generated
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Table 5.1: Proposed textual features generated using LLMs

Feature Description Example
Item Features

Item Description General overview of the item’s
features

This 27-inch 4K OLED screen has a
144Hz refresh rate

User Archetypes Who would most benefit from
the item

This laptop is ideal for graphic design-
ers due to its high-performance GPU

Expert Opinion What an expert in the field
might say about the item

The new iPad Pro is the best tablet on
the market

User Features

User Profile Which facets and aspects the
user cares about most

The user prefers educational, high-
quality, and interactive products

by the LLM as the user profile, unlike [69, 121, 118], which ask the LLM to infer specific
user attributes like demographics, location, tags or movie styles, or fuse different user
representation vectors into one.

On the other hand, we condition the generated item features to be of specific
categories, namely description, use cases, and expert opinion. The hypothesis is that
they would be more informative and useful for the recommendation task than the general
product summaries like in [69]. Furthermore, to extract more information, user reviews
about the item are supplied to the LLM instead of the pure item features, like in [69].
Finally, I show that this approach works even when most people have only one review
to represent them, which is a common scenario in real life, versus other approaches,
which usually require a longer history of interactions (e.g., 5 reviews for [141] and at 25
interactions for [132]).

The contributions of this work are as follows:

• Generalize the TextGCN model to be applicable to any recommendation algorithm
and textual features

• Propose and validate a general method for data augmentation using LLMs for
recommendations

• Show that the generated texts can be used to improve the performance of the
recommender system, and that this approach is generalizable to different backbone
recommendation models

Model Notation
The features in the top TextGCN+ layer represent the models and are used as names.
Each feature consists of two terms: how the user and the item are represented. Table 5.2
shows the feature notations. We generate the name for a particular model by concate-
nating together the beginning letters of each representation with a ‘-’ delimiter, and
concatenating the features with a space delimiter. For example, the original TextGCN
model that had 2 symmetric and 2 asymmetric features involving reviews and seller
description is represented as: “r-r r-s s-r s-s”, and if the model only had one feature,
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Table 5.2: Feature Notations. Each term in the models’ names specifies how the user
or item is represented.

Category Features

Original Features r user/item reviews
s seller provided original item description

Generated Item Features
d item description generated by LLM
e expert opinion generated by LLM
u user archetypes generated by LLM

Generated User Features p user profile generated by LLM

where both users and items were represented by their reviews, the name would be “r-r”.
Similarly, I will represent TextMMSSL models as combination of features. It will

consist of 2 parts: first one represents features the model was pretrained on, joined
with a “+”. The second part is the features that were added in the TextGCN+ layer.
The parts are concatenated with a separator (“|”). For example, the model that was
pretrained on reviews and profiles and then fine-tuned on the same features that original
TextGCN was, would be represented as “r+p|r-r r-s s-r s-s”.

5.1 Methodology
This section describes the methods used, implementation details, and provides links to
the code and the generated texts for reproducibility and transparency.

First, I created prompts for the LLM to generate the texts. Each feature has its own
prompt. Each prompt has a place for the required information to be inserted, such as
the item’s description or user reviews. Context length restrictions affected the number
of reviews I could use; however, since most users had only one review, it wasn’t a big
problem.

I used the same framework to train the TextGCN+ model as in §4, shown in a more
generalized version in Figure 5.1, without a predetermined number of features or their
types. The leftmost blob corresponds to the score of the pretrained backbone model,
which used to be LightGCN. The textual features remain the same as in the original
TextGCN model, and consist of 2 parts each, one for the user representation vector, and
the other for the item representation vector. The feature values is calculated by taking
the dot product of the user and item representation vectors, shown with the ⊗ symbol.
Similar to TextGCN, the backbone score is concatenated together with all the textual
features, and a linear layer is trained on top of that to produce the final score for the
user-item pair.

The procedure is the same as for the TextLightGCN and TextMMSSL models: I
train the backbone model and then add a linear layer, combining the score produced by
the model and the textual features.
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Figure 5.1: TextGCN+ generalized framework. Example of a model “i-j...n-m”

5.1.1 Model Training
I have tried 3 different regimes for training the TextGCN+ versions of the models:

• pretrain the backbone model, freeze it, and only train the linear layer
• pretrain the backbone model and continue to jointly train the linear layer and the

backbone model
• jointly training the backbone and layer from scratch
The second regime performed best for TextLightGCN, even though the first was the

best for the original TextGCN model described in §4.
For TextMMSSL, the first regime was the best, with a much smaller number of

epochs required to train the model than TextLightGCN since only the linear layer was
trained.

I have also experimented with using a different number of reviews to represent the
users and items for TextLightGCN model. The 2 setups tried were using the median
number of reviews (which was 1 for both datasets) or min(x, 5), where x is the number
of reviews for that particular user/item.

5.1.2 Implementation Details

Texts Generation

To generate the texts I supply an LLM with the prompt and required information. For
the users it is their reviews, and for the items it is their reviews together with their title
and description.

When generating user profiles, I have restricted reviews to 200 tokens each to fit into
the prompt, and the number of reviews used was as many as would fit into the prompt,
but no more than 30.
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When generating item features, I have restricted item descriptions to 1024 tokens,
reviews to 512 tokens, and number of reviews was not restricted, so I have used as many
as would fit into the prompt.

The texts were generated by feeding the prompts into an LLM. I started with the
Llama-2 7B chat model; however, the next iteration of the Llama model was released,
and I started using Llama 3 8B Instruct 1. The increased context window and semantic
understanding of the model significantly improved the quality of the generation. The
model was loaded in bfloat16 and used FlashAttention 2 for inference, the temperature
was set to 0.4, repetition penalty to 1.2, and max new tokens to 512. Generation was
run on a single H100 GPU.

Model Training

Experiments on TextLightGCN were run on 5 different seeds for both data partition
and model initialization, and the results were averaged.

The code for training the TextMMSSL model was adapted from the original code
for MMSSL model 2. The adapted code is available on GitHub3. The embedding size
was increased to 64 to be comparable with TextLightGCN results, and a learning rate
of 0.001 was found with a hyperparameter search over the original dataset of Amazon
Baby reviews. I used an Adam optimizer (attempting to use more advanced AdamW
yielded worse performance). I used a ReduceLROnPlateau torch scheduler with patience
2, factor 0.1, and evaluated on validation recall@20 every epoch. The model was trained
until the early stopping occurred, with a patience of 7 epochs. Batch size was 512,
and the model was trained on a single H100 GPU. Due to the computational cost,
experiments on MMSSL were run on one seed.

5.1.3 Alternative Backbones
I have also experimented with using other backbones for the TextGCN+ models, such
as FIRE [126], GFormer [63], RGCL [97], and UniSRec [48], however, due to various
reasons, results were not produced.

The authors of FIRE have provided a repository with their code, however, instead
of bring incremental in nature, it uses SparseSVD model, which is neither fast nor
graph-based.

While the authors of GFormers provided the code for the model, it would return
NaN values at arbitrary times during training with our data. I was unable to resolve
the issue.

RGCL is a scoring model, not ranking, so it only trains and predicts the items with
which the user has interacted. This significantly reduces the relevant data pool, and
the model is not able to learn from the data. Additionally, LightGCN was not designed
for this task, so I could not use it as a backbone or compare the results. Adapting the
TextGCN+ framework to the scoring task might be an interesting future work.

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
2https://github.com/HKUDS/MMSSL
3https://github.com/sergey-volokhin/TextMMSSL
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Table 5.3: Statistics of the datasets used

Number of Toys Movies
train interactions 263k 313k
test interactions 81k 106k
items 96k 98k
users 98k 50k
median tokens per review 26 29
reviews w < 200 tokens 97% 90%

UniSRec, a sequential recommender, has a pre-trained model released by the authors.
However, it was trained in the context of descriptions and only encoded with BERT. To
adapt it to our context of using reviews instead of only item descriptions and encoding
text with more advanced sentiment models, I would need to either retrain the model
from scratch on several domains, which was not feasible due to time constraints, or use
the non-pretrained model, which has shown unsatisfactory performance.

5.2 Data

5.2.1 Source
The training and evaluation were performed on a well-established benchmark dataset,
the Amazon Reviews dataset [81], with metadata associated with the items. I have
chosen the Toys and Movies domains for the experiments. The metadata used consisted
of the item title and description.

Instead of a commonly used approach of using a core-n sample of the data, I have
decided to preserve the distribution of users with different numbers of interactions to
be closer to a real-life scenario. Usually, the data has a very long tail, meaning most
users only have a handful of interactions with the system. Hence, it is important to
provide recommendations even for users with only one or two interactions, which is the
majority of the users, and not only concentrate on the users with many interactions,
who probably already enjoy the recommendations.

To do that, all users are split into 3 bins by the number of interactions: [2 − 3], [4 −
5], [6+] (users with only one interaction can not be used since at least one interaction in
the training set, and at least one in the test set are required). The final statistics of
the datasets are shown in Table 5.3, and the proportions of users in each bucket split
are in Figure 5.2. I release the scripts to generate the specific splits I have used for
reproducibility on GitHub4.

5.2.2 Preprocessing
The data was processed by decoding Unicode characters, unescaping and removing all
HTML tags, normalizing the text using NFKD, removing all non-printable characters,

4https://github.com/sergey-volokhin/amazon-reviews-generated-texts
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Figure 5.2: Distribution of users per bucket

and replacing multiple whitespaces with one space. After that, I removed all reviews
shorter than 5 characters and those users with less than 2 reviews. Then, I calculated
the proportions of users in each bucket mentioned earlier and downsampled the dataset
to approx. 100k users while preserving those proportions. The final dataset was split
into 75% training and 25% testing sets, split horizontally, ensuring at the same time
that at least one review from each user would end up both in the training and the
testing sets. Experiments for TextLightGCN were performed for 5 different train-test
splits. The different data splits were generated by using shuffle split: randomly sampling
interactions for each user for each seed.

5.3 Experiments
This section describes the experiments performed to generate the texts using LLMs and
train the models.

5.3.1 Feature Generation
I have experimented with different prompts to generate the texts, including manually
created prompts and prompts generated with GPT-4. Using the best industry practices,
I have used system and user prompts and gave the model a role it is supposed to fulfill:
a product recommendation assistant, with a more detailed description of the role
depending on the task. The full prompts are provided in Appendix A. The list of the
generated texts is shown in Table 5.1, and corresponding notations in Table 5.2.

Since the interactions in the training set differ between the train-test splits, each
user in each split required a separate generation, with only those reviews in the prompt
that appear in that split’s training set. However, I reduced the number of generations
by caching the prompts used to generate texts for previous splits. Since most users
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Table 5.4: Results of the experiments with features on TextLightGCN. All metrics @20.
Best in bold, second best underlined.

Toys Movies
recall prec ndcg hit recall prec ndcg hit

LightGCN 0.0536 0.0029 0.0364 0.0572 0.2002 0.0111 0.1469 0.2157
r-r r-s s-r s-sa 0.0593 0.0032 0.0398 0.0635 0.2034 0.0113 0.1497 0.2193
r-r 0.0592 0.0032 0.0400 0.0632 0.2025 0.0113 0.1516 0.2183
Item features
r-r r-d d-r d-d 0.0589 0.0032 0.0396 0.0630 0.2046 0.0114 0.1502 0.2207
r-r r-e e-r e-e 0.0589 0.0032 0.0396 0.0631 0.2045 0.0114 0.1503 0.2206
r-r r-u u-r u-u 0.0588 0.0032 0.0396 0.0629 0.2045 0.0114 0.1501 0.2206
r-r d-d u-u e-e 0.0563 0.0031 0.0376 0.0604 0.1991 0.0110 0.1444 0.2147
all combinationsb 0.0590 0.0032 0.0393 0.0631 0.1956 0.0108 0.1431 0.2108
User features
p-p 0.0597 0.0032 0.0402 0.0638 0.2044 0.0114 0.1528 0.2204
r-r p-p 0.0621 0.0034 0.0415 0.0664 0.2053 0.0114 0.1535 0.2214
r-r r-p p-r p-p 0.0628 0.0034 0.0421 0.0671 0.2079 0.0116 0.1545 0.2243
Combination of user and item features
p-p p-u u-p u-u 0.0578 0.0031 0.0392 0.0618 0.2032 0.0113 0.1526 0.2192
r-r p-u 0.0581 0.0032 0.0393 0.0621 0.2031 0.0113 0.1516 0.2190
r-r r-p p-r p-p p-u 0.0611 0.0033 0.0409 0.0652 0.2062 0.0115 0.1557 0.2224
r-r r-p p-r p-p u-u d-d e-e 0.0617 0.0033 0.0416 0.0660 0.2067 0.0115 0.1555 0.2230
a original TextGCN model
b all pairwise combinations of item features and reviews: [d, e, r, u] × [d, e, r, u]

had only two interactions, there is a 50% chance to keep the same prompt from split to
split. I have saved ∼ 66% of compute that way, compared to generating everything from
scratch for every split. Texts were generated for all items and users in all the training
sets. I release the generated texts and the code used to generate them for reproducibility,
transparency, and the scientific community’s benefit.

5.4 Results and Analysis
I have used the original LightGCN and MMSSL as baselines and compared versions of
them augmented with the proposed textual features (TextLightGCN and TextMMSSL,
respectively). The results for the baselines and the best models are shown in Table 5.6.
I have also used the original TextGCN as a baseline.

Tables 5.4 and 5.5 show the results for all different features of TextLightGCN and
TextMMSSL models, respectively.
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Table 5.5: Results of the experiments with features on MMSSL. All metrics @20. Best in
bold, second best underlined.

MMSSL TextGCN+ Toys Movies
features features recall prec ndcg hit recall prec ndcg hit
LightGCN 0.0536 0.0029 0.0364 0.0572 0.2002 0.0111 0.1469 0.2157
a- r-r r-s s-r s-s 0.0593 0.0032 0.0398 0.0635 0.2034 0.0113 0.1497 0.2193
b- r-r r-p p-r p-p 0.0628 0.0034 0.0421 0.0671 0.2079 0.0116 0.1545 0.2243
r - 0.0695 0.0038 0.0404 0.0744 0.2016 0.0112 0.1441 0.2168
r r-r 0.0698 0.0038 0.0402 0.0748 0.2024 0.0112 0.1448 0.2177
Item features
MMSSL
r+s - 0.0602 0.0033 0.0352 0.0648 0.1929 0.0107 0.1425 0.2075
r+d - 0.0600 0.0033 0.0345 0.0645 0.1915 0.0106 0.1387 0.2060
r+e - 0.0616 0.0034 0.0372 0.0661 0.1902 0.0105 0.1378 0.2045
r+u - 0.0619 0.0034 0.0379 0.0663 0.1910 0.0105 0.1399 0.2056
r+d+e+u - 0.0369 0.0020 0.0224 0.0400 0.1706 0.0093 0.1268 0.1828
TextMMSSL
r+s r-r r-s s-r s-s 0.0557 0.0031 0.0335 0.0602 0.1925 0.0107 0.1422 0.2073
r+d r-r r-d d-r d-d 0.0570 0.0031 0.0334 0.0614 0.1918 0.0106 0.1384 0.2063
r+e r-r r-e e-r e-e 0.0575 0.0031 0.0344 0.0618 0.1899 0.0105 0.1379 0.2041
r+u r-r r-u u-r u-u 0.0615 0.0033 0.0377 0.0659 0.1898 0.0105 0.1387 0.2041
User features
MMSSL
p - 0.0698 0.0038 0.0402 0.0748 0.1958 0.0108 0.1412 0.2107
r+p - 0.0720 0.0039 0.0387 0.0775 0.1960 0.0109 0.1374 0.2107
TextMMSSL
r p-p 0.0703 0.0038 0.0412 0.0753 0.2027 0.0112 0.1449 0.2180
p p-p 0.0708 0.0038 0.0406 0.0758 0.1966 0.0109 0.1418 0.2115
p r-r 0.0716 0.0039 0.0410 0.0767 0.1964 0.0109 0.1417 0.2113
r r-r r-p p-r p-p 0.0706 0.0038 0.0413 0.0757 0.2035 0.0113 0.1460 0.2190
r+p r-r p-p 0.0730 0.0040 0.0392 0.0786 0.1970 0.0109 0.1386 0.2119
r+p r-r r-p p-r p-p 0.0741 0.0040 0.0400 0.0797 0.1973 0.0109 0.1387 0.2122
Combination of user and item features
r+p r-r r-p p-r p-p p-u 0.0745 0.0041 0.0402 0.0802 0.1972 0.0109 0.1385 0.2120
r+p+u - 0.0628 0.0034 0.0354 0.0673 0.1840 0.0101 0.1350 0.1975
r+p+u r-r r-p p-r p-p 0.0649 0.0035 0.0365 0.0694 0.1861 0.0103 0.1369 0.1998
r+p+u r-r r-p p-r p-p p-u 0.0659 0.0036 0.0370 0.0705 0.1851 0.0102 0.1361 0.1987
a original TextGCN model
b best model from Table 5.4
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Table 5.6: Main Results for Best Models. All metrics @20.

Toys Movies
Metric recall prec ndcg hit recall prec ndcg hit
LightGCN 0.0536 0.0029 0.0364 0.0572 0.2002 0.0111 0.1469 0.2157
TextLightGCN 0.0628 0.0034 0.0421 0.0671 0.2079 0.0116 0.1545 0.2243
MMSSL 0.0720 0.0039 0.0387 0.0775 0.1960 0.0109 0.1374 0.2107
TextMMSSL 0.0745 0.0041 0.0402 0.0802 0.2035 0.0113 0.1460 0.2190

5.4.1 User Features
This reminder to the reader that the notation used for the models is shown in Table 5.2
and explained in subsection Model Notation §5.

The best models for all backbones and datasets have used the user profile feature,
which undoubtedly shows its usefulness.

TextLightGCN

The single generated user feature helped, and the model improved significantly. Similar
to the original TextGCN, the symmetric features (r-r and p-p) had the highest impact.
However, the asymmetric features (r-p and p-r) have also helped, as evidenced by
comparing the results of the models with and without the asymmetric features (r-r
r-p p-r p-p and r-r p-p).

Even though most users have only had one interaction in the training set (according
to Figure 5.2), the generated user profile feature was nonetheless beneficial. The best
model had features r-r r-p p-r p-p.

The improvement on all metrics compared to the TextGCN baseline was, on average,
5.73% for the Toys dataset and 2.51% for the Movies dataset for the best model.

MMSSL

For the Movies dataset, training MMSSL on reviews is more beneficial than on profiles,
as evidenced by comparing the results of the MMSSL models r|- vs p|-, as well as
the TextMMSSL models r|p-p vs p|p-p, and r|r-r vs p|r-r.

For the Toys dataset, training on both profiles and reviews was best, which means
that the user profiles do introduce some new useful information into the model. This is
evidenced by comparing the results of the MMSSL models r|- vs p|- vs r+p|-, and
the TextMMSSL models r|r-r r-p p-r p-p vs r+p|r-r r-p p-r p-p.

5.4.2 Item Features
For the Movies dataset, all the generated features separately (e.g., r-r r-d d-r d-d)
helped to improve the performance over the original TextGCN model without the
generated feature (r-r r-s s-r s-s). However, the quality decreased when I combined
them but removed the asymmetric features (resulting in a model r-r d-d u-u e-e).
This further supports the hypothesis that the asymmetric features are beneficial.
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For the Toys dataset, surprisingly, when running the model with reviews and any
single generated item feature (e.g., r-r r-d d-r d-d), performances were remarkably
close or lower than the original TextGCN model. Moreover, using only the “reviews-
reviews” feature achieved a similar albeit slightly worse performance than the original
TextGCN. Similarly to the Movies dataset, performance on the model with all symmetric
features (r-r d-d u-u e-e) was even worse.

Finally, I tried using all combinations of the generated item features and reviews,
which resulted in 16 features. I hoped the model would learn the best combination of
features. However, the performance was still lower than that of the original TextGCN
model.

The “all combinations” row for TextLightGCN represents a cartesian product of the
set of generated item features and reviews with itself ([d, e, r, u]×[d, e, r, u]), which
resulted in 16 features. I couldn’t run “all combinations” on MMSSL due to prohibitive
computational and time costs.

5.4.3 LightGCN vs MMSSL
Surprisingly, a more advanced method, MMSSL, did not outperform a much simpler
LightGCN on the Movies dataset. Consequently, TextLightGCN has outperformed
TextMMSSL on the Movies dataset too.

MMSSL performed much better on the Toys dataset, and using only reviews with
MMSSL is better than the best TextLightGCN, which uses reviews and profiles.

It could have been due to running MMSSL only on one seed. However, the Text-
LightGCN result for the same seed is even better than the average of its 5 seeds.

Another potential explanation is that hyperparameters were tuned insufficiently
for MMSSL due to its computational cost. I have used the same hyperparameters for
Movies and Toys, which are the same as in the original MMSSL paper for Amazon
Reviews in the Baby domain.

Regardless of the underlying backbone model, adding textual features improved the
model’s performance, which is a promising result.

5.4.4 Feature Interactions
Then, I wanted to investigate the interaction between all features, not just those
generated for the items. To do that, I have run the model with different combinations of
all the features available for the user and item representations. For example, it makes
logical sense to use the user profile feature for the users with the user archetypes feature
for the items (“p-u”). However, I discovered none of the combinations improved the
model performance; only the symmetric features did.

The result for TextLightGCN experiment p-p p-u u-p u-u shows that user archetypes
generated for items do not create a synergy with user profiles generated for users. That
is further evidenced by comparing TexLighttGCN experiments r-r r-p p-r p-p and
r-r r-p p-r p-p p-u.
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Table 5.7: Average Feature Importances in the Best Models.

Domain Model Base score r-r r-p p-r p-p p-u

Toys TextLightGCNa 1.08 3.87 2.30 3.22 3.94 -
TextMMSSLb 1.55 2.21 1.17 0.22 2.25 -0.11

Movies TextLightGCNa 1.04 2.88 2.08 2.28 2.88 -
TextMMSSLc 1.40 3.22 1.17 0.57 3.27 -

a r-r r-p p-r p-p
b r+p | r-r r-p p-r p-p p-u
c r+p | r-r r-p p-r p-p

5.4.5 Feature Importances
Similar to §4, I have used the weights from the top linear layer as proxies for the feature
importances for the models. The results are shown in Table 5.7. Once again, since the
base score’s amplitude is much higher than all the other features, the lower average
weight for the base score is not indicative of its importance. It would be the most
important feature if scaled to the same range as the others. I have run the experiments to
support this hypothesis. The results were several orders of magnitude worse than when
using the score, which makes sense since most of the information is in the pretrained
Graph network. Text only adds some semantic information on top of that. A similar
conclusion can be drawn for MMSSL.

TextLightGCN

The numbers confirm the result from §4.4 that the symmetric features (where user
and item representations were the same) have the highest importance. However, the
relatively high importance of the asymmetric features supports the hypothesis that
using those representations is still useful.

TextMMSSL

The best model for Movies is the same for TextLightGCN and TextMMSSL, so no
separate line is needed for TextMMSSL in the results table.

Despite the model r+p| r-r r-p p-r p-p p-u achieving slightly better performance
on the Toys dataset, I believe that it is only due to noise and that the real best
model would be r+p| r-r r-p p-r p-p if evaluated on several seeds, since the feature
importance for the ‘p-u’ feature is very close to 0 and also negative. Other results also
support this, which show no significant change or even performance degradation when
adding the user archetypes feature.

5.5 Summary
This section introduces a lightweight method for augmenting user and item representa-
tions with LLM-generated textual features. While not all proposed features are helpful,
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the user profiles do benefit the recommendation task. I have also shown that even if
the data is very sparse, and more than 50% of users only have one interaction in the
training set, enough information can be extracted from the textual data to improve the
recommendation quality.

5.6 Limitations
I have used Llama 3 to generate the texts, which has a very limited context window
of 8k tokens. This can be a significant limitation since only partial information about
the user/item can be considered during the generation of the texts. However, during
writing this text, Llama 3.1 was released with a much improved 128k context, and LLM
advances allow for even 1M+ token context window [28, 90]; hence, this limitation will
be soon resolved without any specific interventions.

Another potential limitation is that this approach will work only for the domains and
items the LLM is familiar with, so fine-tuning is required for more specialized domains.

Lastly, I have used Llama 3 to generate the texts, which is pretrained on a large
portion of the internet. It is not known whether the corpus of reviews I am using to
train and evaluate the model was in the pretraining data. To evaluate the performance
completely fairly, I would need to have a model that has not seen the reviews, which is
not currently possible. Another possible solution would be to only use newer reviews for
training and evaluation, those written after the model’s training has been completed.
Finally, there are ongoing efforts to make the models forgot or ”unlearn” [30, 129] data,
which could be used to make the model forget the reviews it has seen during pretraining.
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6. Using Textual Data for Explanation Con-
struction

This chapter presents my work to address RQ3: How can we improve the explainability
of conversational recommendations? More specifically, Which particular aspects of expla-
nations can be improved with user-generated textual data (e.g., reviews)? The content
of this chapter is based on the paper “Generating and Validating Contextually Relevant
Justifications for Conversational Recommendation” [108], published at SIGIR’22.

In addition to improving the quality of recommendations, which was the focus of
RQ1 and RQ2, it is also important to provide reasonable justifications. This chapter
addresses this complementary aspect of recommender systems.

Recommender systems’ users benefit from understanding why or how a system
came up with its recommendations [35, 47, 98, 130]. User-generated content, such as
product or movie reviews, or social media posts, helps users to express their experiences
and interests. Recommender systems have successfully used that content to infer
preferences and improve recommendations. Such user-generated content could also help
recommender systems generate finer-grained and more reliable explanations, in turn
helping users make easier, more informed decisions [136].

The CRS setting poses unique challenges for generating justifications. To be effective
in a conversational setting, the justifications must be appropriate for the conversation so
far. Previous approaches rely on a user history of reviews and ratings of related items
to personalize the recommendation. However, this information is not generally available
when conversing with a new user, and as such, a cold-start problem imposes a challenge
in generating suitable justifications.

The CRS setting thus requires a justification generation method that,

• First, generates contextually-relevant justifications that can be used in conversa-
tions.

• Second, does not depend on user history or reviews to generate justifications.
Many customers have no history of reviews or other content from which to infer
preferences or to find similar users’ reviews from which justifications could be
generated.

To that end, a new method, CONJURE (CONversational JUstificatons for REcommen-
dations) to generate contextually relevant justifications for conversational recommenda-
tions is proposed and validated. Specifically, we investigate whether the conversation
itself can be used effectively to model the user, identify relevant review content from
other users, and generate a justification that boosts the user’s confidence in and un-
derstanding of the recommendation. To implement CONJURE, we test several novel
extensions to prior algorithms, by exploiting an auxiliary corpus of movie reviews to
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construct the justifications from extracted pieces of those reviews. In particular, we
explore different conversation representations and ranking approaches. To evaluate
CONJURE, we developed a pairwise crowd task to compare justifications. The experiment
results show improvements in Efficiency and Transparency metrics over the previous
non-contextualized template-based methods. We also release the code and an augmented
conversation corpus on Github.

6.1 Method Overview
A natural way to create justifications is by extracting user opinions from a rich set of
written reviews [66, 136, 137]. To do that, portions of reviews containing opinions about
the product or its features are extracted. Elementary Discourse Units (EDUs) [74] are
used as building blocks for justifications. This approach produces complete, coherent
sentences, that are easier to understand than a set of keywords or phrases produced by
other methods [122].
Proposed method consists of 4 basic steps:

1. Extract and preprocess EDUs
• Extract and encode EDUs from historical reviews associated with the recom-

mended item
• Classify whether each EDU contains an opinion and is suitable to be used

for justification generation
2. Calculate user representation using the conversation
3. Rank the positively classified EDUs from Step 1 against the user representation

from Step 2
4. Construct candidate justifications and select the most natural-sounding.

Steps 1 and 4 can be solved using off-the-shelf tools; describe how exactly below.
The experiments are concentrated on steps 2 and 3, i.e., how to represent the user given
the conversation and rank EDUs against that representation.

6.1.1 Elementary Discourse Units (step 1)
A natural way to create justifications is by extracting user opinions from a rich set of
written reviews [66, 136, 137]. To do that, portions of reviews containing opinions about
the product or its features are extracted.

EDU Extraction

In [81], the authors used existing tools [117] to break the text into EDUs. As an example,
consider this review (EDUs are denoted with braces, and bold text marks EDUs suitable
for use in justifications):

“{this is a timeless movie}, {it really does age}. {kubrick was the perfect
director}{to capture stephen king’s vision}”

We have used the same model, which worked well off the shelf.
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EDU Classification

For classifying EDUs, the model from [81] was fine-tuned to adapt it to the current
setting. In addition to ∼1600 manually labeled samples from the original paper, 330
samples from movie-domain reviews were added. The resulting classifier achieved 0.95
accuracy and 0.91 F1 using 5-fold cross-validation.

6.1.2 Generate and Select Candidates (step 4)
Step 3 returns 1 or 2 top-ranked EDUs, which are then used to generate the final
justification. Several templates were generated, filled with those EDUs, and sorted them
according to their perplexity as a proxy for fluency and coherency. The sentence with
the lowest perplexity is the final answer.

For consistency, all the answers are prepended with the sentence “How about the
movie %X%?” containing the recommendation item. The rest consists of generated
justifications.

Some examples of generated templates are:

• “Here is what reviewers said about it: %EDU1% and also %EDU2.”
• “This movie is %EDU1% and %EDU2%.”
• “It is a %EDU1%, with %EDU2%.”

Despite all efforts, the resulting sentences are not always as fluent as hoped. We
hypothesize that this step can be further improved by prompting an LLM to come up
with a natural-sounding justification that includes the mentioned EDUs.

6.2 Data
In this section, I describe the datasets used. The statistics are reported in Table 3.1

6.2.1 Conversation Corpus
Conversations from OpenDialKG [77] were used, filtered to include only those about
movies and with at least one recommended item. I manually extracted movie names
from the conversations and crawled amazon.com for matching movie titles in their Prime
Video department. Unique ASINs for 450 conversations were identified.

6.2.2 Reviews Corpus
The reviews were downloaded from amazon.com for all movies mentioned in the conver-
sations left after preprocessing. The resulting set contained 54600 unique reviews.
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6.3 Metrics
A comprehensive set of metrics for justifications has been described previously [104] and
[3] further explored how to measure whether a given explanation or justification meets a
particular goal. Out of the seven metrics described in those works, the two most fitting
the goals were chosen: Efficiency and Transparency. Efficiency is defined in [104] as
“Help users make good decisions” and measures whether a justification helps a user to
decide more quickly. Transparency is defined as “Explain how the system works” and
measures how well the user understands how the recommendation was generated. Other
metrics either do not fit the conversational movie recommendations setting or correlate
with one of these two.

The metrics do not have a mathematical formula, hence are completely subjective,
and are calculated using a Likert scale by the judges/annotators.

6.4 Evaluation
In this section, evaluation procedure is described and the baselines used for comparison
are introduced.

6.4.1 Procedure
All justification configurations were evaluated using a pairwise crowd-sourced task.
Previous attempts to distinguish between the different CONJURE options using point-
wise ratings hinted at trends but failed to reveal anything statistically significant.
Pairwise experiments force annotators to choose and, therefore, can reveal preferences
in the presence of significant overall variation. The task includes screening questions
to ensure that annotators are engaged in the task and are not bots. Since annotating
all pairs of conversations would be prohibitively costly, we followed [37] to design
the experiment and choose pairs for annotators to compare to minimize cost, and
we estimated model parameter variance. The design optimizes the chosen pairs of
conditions and their order. After filtering the results, we ended up with 347 unique pairs
of setups covering 194 conversations and 528 justifications annotated by 67 judges. The
average directional (i.e., preferring one over the other, regardless of preference strength)
inter-rater reliability calculated using Cohen’s Kappa was 0.71 for Efficiency and 0.64
for Transparency.

6.4.2 Baselines
Three baselines were used in addition to all the different configurations of the model.

• No Justification: In this approach, only the recommendation was provided without
explaining why the specific recommendation was made.

• Static Templates: Templates populated with movie metadata were developed in
this method. The selection of which metadata to include was based on probabilities
derived from a study focused on social aspects [83].
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• Contextual Templates: This approach used the same templates as in the second
method. However, instead of random selection, these templates were populated
based on the degree of similarity between the ongoing conversation and each piece
of metadata. The most similar metadata points were deemed to be the most likely
choices.

The answers from the baseline methods are also prepended by the sentence “How
about the movie %X%?”. Here are some examples of the templates used:

• “It has an average score %SCORE% out of 5 on Amazon Prime. Starring %AC-
TOR%.”

• “This movie’s main cast includes %ACTOR1%, %ACTOR2%, and %ACTOR3%.
Here is the plot: %PLOT%.

• “It is directed by %DIRECTOR%. I think you will enjoy it if you like %GENRE%
movies.”

6.5 Experiments
This section describes the experiments performed and lists the variations of the approach
compared.

Several ways to represent users were tried, as well as 2 different ways to rank EDUs
(26 variations in total, including 3 baselines).

For step 2 (calculate user representation), 3 ways of using the user utterances
were compared: extracting keywords in an attempt to focus the EDU ranking on the
most salient information with the Python Keyphrase Extraction package (PKE) [11],
extracting keywords using phrase-level sentiment analysis (Sentires) [137, 138], and not
extracting anything and using the whole utterance (no extraction). Additionally, we
tested whether to include only user utterances or both user and agent utterances; this
had no measurable effect.

For step 3 (rank EDUs), given a set of utterances/keywords/aspects (we call them
elements) that represent the conversation, we test whether it is better to find EDUs that
best match each element individually and aggregate in the end or if is it better to find
EDUs that best match all elements at once. If they are treated individually (Separate),
EDUs are ranked for each element separately, the top EDU are chosen for each element,
and return the EDUs with the highest overall similarity score. This approach can
address different points and possibly return more diverse EDUs. If they are treated
as one (Concat), all elements are concatenated into a single text and the similarity
of EDUs to that text is computed. This approach benefits when not all aspects have
corresponding EDUs and can potentially return more results.

We tested two metrics to measure the similarity between EDUs and elements. First,
BM25 [93] is used with the Bag-of-Words approach. Second, Euclidean distance is
computed between USE vectors for the conversation and the templates or EDUs. BM25
has the advantage of returning 0 similarity between texts that have no words in common,
while USE always returns a non-zero score. Moreover, USE has the advantage of
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Table 6.1: Statistically significant regression coefficients for feature-based analysis
(higher is better)

Feature Avg Coef StdErr
Efficiency

Intercept (δ) -0.314 0.089
USE 0.297 0.088
keywords 0.304 0.093
no aspects 0.207 0.096
fallback templates: 1 0.176 0.105

Transparency
Intercept (δ) -0.377 0.090
USE 0.246 0.093
fallback templates: 1 0.305 0.103

returning an embedding vector to compare synonyms correctly and not relying on a
string match and common words.

If only one EDU has a positive score, there is a “fallback” option, where one template
with metadata is randomly picked and appended to the single EDU with the positive
score. If no EDUs have a positive score, fallback to the “contextual templates” baseline.

6.6 Results
The static-template baseline universally performed worst for both Efficiency and Trans-
parency. Unexpectedly, Contextual Templates were second worst, despite the earlier
point-wise tests (not shown) suggesting better performance than some EDU-based
systems. Eight EDU-based systems significantly outperformed baselines for Efficiency
and three for Transparency. In both cases, the best systems use USE encoding for EDU
ranking.

The feature-based results are shown in Table 6.1
Crowd-sourcing-based evaluation has shown that even in the absence of any user

profile, justifications can be made in a conversational setting, which significantly improve
upon template-based or generic baselines, by finding review fragments (EDUs) that
better address stated user interests.

6.7 Summary
In this chapter, a method for generating justifications for conversational recommendations
using a corpus of reviews is proposed. It was shown that justifications can be successfully
generated using a conversation instead of more traditionally used historic reviews or
numeric scores. An in-depth study on creating movie recommendation explanations by
utilizing external film reviews was also conducted. In addition, the circumstances that
contribute to the perception of higher-quality justifications were examined.
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6.8 Limitations
Despite EDUs being extracted from reviews, the approach is also fundamentally template-
based, which limits how the explanations can be formulated and often leads to unnatural
or even completely broken responses, negatively affecting the perceived quality of the
justification and recommendation.

Since EDUs are granular by nature, it is impossible to extract the more complicated
reasons and arguments that might not fit into a single EDU. Additionally, the user can
express preferences implicitly or in a unique way, which does not appear in the review
corpus, which further limits the produced explanations.

The EDUs are picked verbatim from the reviews, we do not attempt to edit them or
confirm their factual accuracy. We merely claim that at least one reviewer has expressed
that opinion. This can lead to the inclusion of false information in the justifications if it
was stated as a fact in the original review.
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7. Summary and Discussion

This chapter lists the results and the insights gained from corresponding projects and
papers, discusses the potential ethical implications of this work, and concludes with a
summary of the thesis.

7.1 RQ1
This section addresses the first research question: “How to infer and represent user
preferences during a conversation with the system?”

The main challenge is how to establish conversational user preferences solely from
the conversation content in lieu of historical user-item interactions and how to use this
information to improve the quality of recommendations.

I have proposed a method called ConvExtr that combines conversational context
with external knowledge, such as movie reviews, to map conversational users to a set of
similar reviewers and predict users’ ratings of unseen movies.

The results demonstrated that incorporating conversation content to select a more
similar group of users for Collaborative Filtering improves the recommendation perfor-
mance, compared to using the inferred ratings alone, which means that the textual data
can provide additional information about the user’s preferences.

7.2 RQ2
This section addresses the second research question: “How to better represent users
and items using structured and unstructured knowledge to improve the quality of
recommendations?”

7.2.1 RQ2(a,b)
The main challenge is how to incorporate textual features into Graph-based Recom-
mender Systems to improve the quality of recommendations since the graph network
can only support discrete nodes and not free-form text.

To address that, I have proposed a simple approach called TextGCN for using Graph
Convolutional Networks together with textual features to improve the performance of
the Graph Recommender Systems.

This method has shown promising results, with significant improvements over the
baseline model that did not use text. This supports the hypothesis that the text of
user reviews or descriptions contains useful information beyond what is available in the
user-item interaction graph.
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Furthermore, I have shown that lightweight graph embeddings can be efficiently
augmented with user-generated texts like reviews and substantially improve recom-
mendation performance without complex models to combine the graph and textual
representations.

I have used the LightGCN as a backbone, but the approach can potentially be used
with any graph-based recommender system.

7.2.2 RQ2(c)
The main challenge is to determine whether Large Language Models generate textual
features that can improve the performance of Graph-based Recommender Systems,
without supplying new information that was not previously available.

I have proposed a simple method to generate textual features using Large Language
Models to improve user and item representations in Graph-based Recommender Systems.
The method relies on textual data like user reviews or item descriptions. It aims to
distill the most relevant information from the text and generate a more compact textual
representation that improves the recommender system’s performance.

I have also extended the TextGCN method (now called TextGCN+) to use any
backbone model, not just LightGCN, and take any textual features as input.

The results have shown that the generated textual features consistently improve
the performance over the baselines that did not use LLM-generated text, even when
the data used to generate the texts was also used in the original model (e.g., using
reviews together with profiles generated from those reviews improved the quality over
the model that only uses reviews). This supports the hypothesis that the LLMs can
extract useful information from the text and provide a stronger signal to the model. The
model was also evaluated on 2 different graph-based models, TextGCN and MMSSL.
The TextGCN+ framework consistently improved the performance of both, which shows
that the method is generalizable and can be used with any graph-based recommender
system.

One possible expansion of this work is to use latent vectors to represent the users
and items instead of generating the explicit text, similar to p-tuning. That might give
the LLM more flexibility in generating a more faithful and relevant representation for
the nodes.

7.3 RQ3
This section addresses the third research question: “How can we improve the explain-
ability of conversational recommendations?”

I have introduced a novel method for generating explanations for recommendations
based on conversational data.

The experiments have demonstrated that justifications can be made in a conver-
sational setting, even without any user profile or historical interactions. By finding
review fragments (EDUs) that better address stated user interests, we can improve upon
template-based or generic baselines.
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This can lead to more Effective and Transparent justifications for recommendations,
improving the user experience and trust in the system.

Most of these findings have resulted in a publication. However, there are many points
where the work can be improved or limitations addressed.

7.4 Ethical Considerations
Recommender systems pose several ethical challenges. Issues ranging from data privacy
and security, inherent system biases, lack of transparency, digital divide, and consumer
autonomy need careful examination. This section explains why the proposed work does
not exacerbate existing ethical problems and refrains from introducing new ones.

7.4.1 Bias and Fairness

ConvExtr

The proposed method generates recommendations based on the similarity between the
user and the reviewers, so the models’ biases are limited to those in the reviews. The
model does not introduce any new biases but can amplify the biases in the reviews.

TextGCN+

Since Foundational Models are trained on the data from the internet, they are subject to
the same internal biases that humans exhibit [7, 10, 13]. Currently, attempts to mitigate
those biases are ongoing. However, any work that uses those models has the potential to
introduce those biases unless safeguards against that are set in place. TextGCN+ uses
such a generative Foundational Model to generate the textual features about users and
items. If the model is biased, it can introduce those biases into the recommendations.
However, none of the generated features are directly accessible to the user, limiting the
potential harm.

CONJURE

The proposed method generates justifications for recommendations based on conversa-
tional data. While I am unaware of the original algorithm’s internal biases, since the
justifications are generated based on the reviews, the biases present in the reviews can
be amplified.

7.4.2 Privacy
Traditional recommender systems, which make suggestions based on users’ past behavior,
inherently involve collecting and analyzing user data, leading to potential privacy issues
if the data is incorrectly handled. The number of data breaches and privacy scandals is
increasing every year [72, 86].
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However, the proposed system does not require any historical user data to be collected.
The only user information used to create the recommendations and explanations is the
conversation. Those conversations are then discarded, and no user data is stored.

Another potential issue is the reviewers. On the one hand, the approaches rely on
reviews that real users have written about items, and who might not have expected
their reviews to be used for training machine learning models. Moreover, the datasets
used are snapshots, meaning that even if the user had tried to delete their review from
the Amazon website, it would still be present in the dataset. On the other hand, the
datasets are publicly available and are popular in the research community, with many
models trained on them throughout the years. Thus, not new privacy concerns are
introduced beyong those introduced by previous models.

7.4.3 Transparency
Transparency is a crucial aspect of any recommender system. Users should be able to
understand why a particular recommendation was made. However, many recommender
systems are opaque, and the users are left in the dark about the reasoning behind the
recommendations.

ConvExtr

While not directly addressing transparency, the ConvExtr model does present a potential
avenue for explaining how the recommendations were made. By mapping the user to
a set of similar reviewers, the system can explain that the recommendation was made
based on the reviews of similar users and potentially provide examples of those reviews.
This is similar to how collaborative filtering models justify their recommendations.

TextGCN and TextGCN+

Similarly, TextGCN does not directly address transparency, but the model can provide
a more transparent way to explain the recommendations. The method is based on
similarity calculation, so a natural way to explain a recommendation would be to provide
the texts that have led to a high similarity score between the user and the recommended
item, be it a description, user profile, review, or other user and item textual features,
including generated.

CONJURE

While the model generates explanations for recommendations and measures Transparency
as one of the metrics, the justifications are generated post-hoc, regardless of how and why
the recommendation was actually chosen by the system. So the generated justifications
do not directly address this issue and might be interpreted as a bad faith attempt to
provide transparency. However, justifications can be useful outside of fairness auditing
[139], so while we cannot claim that the justifications are transparent, they can still be
useful for the user.
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7.4.4 Factuality in CONJURE
The justifications are generated using 2 different types of text, and it is important to
separate them. One is opinionated text, extracted EDUs from the reviews, and the
other is factual text, templates filled with item metadata. While the opinionated parts
of the provided explanation might not be factually correct or reflect the community
consensus about the item, they are nonetheless extracted from the reviews, which means
that at least one real person has expressed that opinion. Hence, we do not claim that
the information in the opinions used to generate the justifications is factual, merely that
someone has expressed that opinion in the reviews.

7.5 Conclusions
In this work, I have advanced the field of Recommender Systems from different angles.
I have proposed methods to improve the quality of recommendations by incorporating
conversational data, external knowledge, and textual features. I have also proposed a
method to generate justifications for recommendations based on conversational data. The
results have shown that these methods can improve the performance of the recommender
systems, including conversational ones, and provide more efficient and transparent
recommendations.

To aid with the reproducibility of the results, I have released the code for all the
models and experiments1. All datasets used are well-established in the field and are
publicly available.

There are many promising directions to pursue based on this work. I have listed
some of the limitations of all proposed models and potential ways to address them. The
models can be further improved by incorporating more external knowledge, using more
sophisticated language models, or combining the proposed methods into an end-to-end
system. ConvExtr system can be adapted to use more advanced semantic similarity than
BM25 and a better sentiment analysis classifier. TextGCN can be improved by using a
more sophisticated graph neural network or, in fact, any ranking system. The CONJURE
model can be improved by using more advanced language models to reformulate the
justifications and by utilizing the vast powers of the LLMs to extract the most relevant
information from the reviews.

While this work has obvious applications in e-commerce, it was evaluated on other
domains as well, such as movies and books. The models were designed to be domain-
agnostic, so they can be applied to any domain where user-generated or item-related
texts are available, such as social media, scientific articles, or news.

1all available at https://github.com/sergey-volokhin/
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A. Prompts for Feature Generation

The following prompts, written as chat completions in JSON format, were used to
generate the textual features from §5. The words surrounded by curly braces ({})
indicate which information should be inserted.

• User Profile:
[{"role": " system ",

" content ": "You are a product recommendation assistant .
Your primary task is to identify user interests based on

user ’s interaction history . It should be done in a way
that would help the ranking system recommend more
relevant items to users ."},

{"role": "user",
" content ": "You are asked to summarize user interest based

on the items reviewed by them. Each item is in a new
line and contains item ’s title , description , user review
, and user rating for that item .\n# Input\n### History
of items rated by user\n{ history }\n\n# Task Requirement \
nNow , please provide a concise and accurate summary of
the user ’s product preferences and the types of products

they are interested in in three sentences . Summary
should not mention any specific item names ."}]

• Item description:
[{"role": " system ",

" content ": "You are a product recommendation assistant .
Your primary task is to generate product

description based on the seller given description ,
item ’s title , and any internal knowledge you have
about that item. It should be done in a way that
would help the ranking system recommend more
relevant items to users ."},

{"role": "user",
" content ": "You are asked to summarize provided item

description and its title .\n# Item Information \n<
Title >: \"{}\"; <Description >: {}\n\n# Task
Requirement \nNow , please , provide a concise and
accurate description of the item , highlighting the
key features and benefits , focusing on the product ’s

specifications , functionality , and user experiences
. Aim to identify and emphasize unique selling
points (USPs) and differentiators that can assist in

accurately categorizing and matching the product
within the recommender system . Ensure the
description is clear , informative , and directly
relevant to an internal audience , encapsulating the
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essence of the product . Limit the description to 200
words. Refrain from including the product title

directly and avoid any direct communication or task
acknowledgment in your presentation ."}]

• Item usecases:
[{"role": " system ",

" content ": "You are a product recommendation assistant .
Your primary task is to generate potential usecases
for the product based on its description , title ,

and any internal knowledge you have about that item.
It should be done in a way that would help the

ranking system recommend more relevant items to
users ."},

{"role": "user",
" content ": "You are asked to come up with potential use

cases for the provided item based on its title and
description .\n# Item Information \n<Title >: \"{}\"; <
Description >: {}\n\n# Task Requirement \nNow , please
craft a comprehensive overview that highlights item ’
s key features and practical applications in real -
world scenarios . Illustrate its use with creative
examples and hypothetical situations where the
product can provide significant value or solve
common problems . Emphasize any unique benefits and
address potential user concerns identified from the
reviews . Be concise , limit the description to 200
words , presenting it in a standalone format . Refrain

from including the product title directly and avoid
any direct communication or task acknowledgment in

your presentation ."}]

• Expert opinion:
[{"role": " system ",

" content ": "You are a product recommendation assistant .
Your primary task is to generate expert opinions

for the product based on its description , title , and
any internal knowledge you have about that item. It
should be done in a way that would help the ranking
system recommend more relevant items to users ."},

{"role": "user",
" content ": "You are asked to provide an expert opinion

on the product based on the given description and
title .\n# Item Information \n<Title >: \"{}\"; <
Description >: {}\n\n# Task Requirement \nNow , please
generate an expert opinion on this product . Consider

the features , quality , market position , and any
other pertinent aspects . Your response should
reflect a professional assessment , highlighting
potential strengths , weaknesses , and the overall
value proposition of the product from an expert ’s
perspectivem . Refrain from including the product
title directly and avoid any direct communication or

task acknowledgment in your presentation ."}]
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The user history for the user profile generation prompt was formatted using the following
template, in which each item is on a separate line, and each line starts with the items number
in the history:

n. <Item Title>: "{}"; <Item Description>: "{}"; <User Review> "{}"; <User Score>: {}
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