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Abstract 

 

Investigation of Shear Induced Relaxation in Soft Materials 

By Dandan Chen 

 
The study of how soft materials response to shear is important for food 

industry and drug delivery. However, the basic questions are still 

unsolved, due to the difficulty of seeing inside samples as they are 

sheared. Here we study plastic changes of soft materials by using 

advanced microscopes and particle-tracking techniques. From the 

simple systems like colloids (solid particles in a liquid) and emulsions 

(oil droplets in water), we try to understand the two primary 

phenomena of shear-induced “plasticity” in soft materials: micro-

dynamics and stress fluctuations. 

In my colloidal experiment, I focus on the micro-dynamics of colloidal 

particles under large shear strain. By using fast confocal microscopy, 

we can observe and track colloids in a 3D movie. From their 

trajectories we quantify the plastic rearrangements of the particles in 

several ways. Each of these measures of plasticity reveals spatially 

heterogeneous dynamics, with localized regions where many particles 

are strongly rearranging by these measures. We examine the shapes of 

these regions and find them to be essentially isotropic, with no 

alignment in any particular direction. Furthermore, individual particles 

are equally likely to move in any direction, other than the overall bias 

imposed by the strain. 

In my emulsion experiment, I go further to study the connection 

between macroscopic stresses and microscopic dynamics. We use the 

2D emulsion disks to study the plastic changes of dense materials 

passing through a hopper channel. We find that under different flux 

rates, the flow profiles in the hopper are very similar. To quantify the 

plastic rearrangements, we focus on specific neighbor rearrangements 

called “T1 events”. In addition, from the deformed shapes of droplets, 

we quantify the interactions between droplets. We find large temporal 

fluctuation of stresses in a large scale. From the micro-dynamics, we 

find the temporal changes of stresses are directly related to the T1 

rearrangements. Our analysis of this emulsion system shows a direct 

and local relationship between rearrangements and stress fluctuations. 
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Chapter 1

Introduction

1.1 Soft material

Soft materials, or soft condensed matter, is a general term for the materials which

are neither simply liquid nor crystalline solid [1]. Such materials are common in daily

life, including colloids, emulsions, foams, gels, and grains. Colloids are microscopic

solid particles in a liquid, such as toothpaste, paint, and ink. Due to the small

size, Brownian motion or thermal fluctuation is one of the characteristics of colloidal

suspension. Emulsions are liquid droplets dispersed in another immiscible liquid, such

as milk and mayonnaise. Foams are air bubbles in a liquid, such as shaving cream.

Gels, such as gelatin, are solid-like materials but with low concentration of particles.

Due to the strong attraction, particles are able to bond with each other and build up

a macroscopic network. Grains, or granular materials, are solid particles in air with

size larger than millimeter. Due to the large size, thermal fluctuation is neglected.

Plus, friction is another important character for granular systems.
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1.2 Jamming

One common feature to all soft materials is they have liquid-like disordered micro

structure but can maintain their shapes acting like solids. And the transition from

a random liquid state to a random solid jammed state is called jamming transition.

For example, when a hot liquid glass is cooled, it becomes more and more viscous

and finally become a strong solid, maintaining the disordered micro structure. This

jamming process is also named as glass transition. The idea that a common jamming

transition may happen in different soft materials leads to a deeper understanding,

even if many details remain quite different [2]. For example, in granular materials

it is believed that friction is critically important for jamming. But in recent experi-

ments, it is found that jamming could also happen in smooth grains with little friction

[3]. Besides, jamming also exists in densely packed soft droplets without static fric-

tion (emulsion) [4]. Therefore, many experiments are designed to investigate those

common properties of jamming by comparing different soft materials.

Fig. 1.1 shows an phase diagram of jammimg, covering different soft materials like

glass, bubbles, droplets, and grains. By controlling the parameters like temperature,

concentration, and stress, we can control the state of those materials from solid-like

jamming to liquid-like unjamming, or other way around. For example, hot silicon

glass in forge is like a liquid without a fixed shape. By cooling down it would be more

and more viscous and finally become a solid with a fixed shape. The temperature

here can be used as a more general concept “kinetic energy”, rather than just thermal

energy. For granular materials, the kinetic energy could be induced by vibration [5],

although thermal fluctuation is trivial. And people are trying to generate the effective

“temperature” from this driven system [6], and unify the jamming concept. Besides

temperature, increasing concentration or pressure can also lower kinetic energy of

particles by increasing the chance of collision between neighbors. In colloidal suspen-

sion (Section 2.1), concentration is an important control parameter which determines
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the material’s states (Section 2.1.2).

In addition, stress is also an important factor. This relates to an important

characteristic of soft materials, called viscoplastic. The material behaves as a rigid

(jammed) solid under small stress or strain, but start to flow as a viscous (unjammed)

liquid under large stress or strain. A common example is toothpaste, which is a kind

of colloid. When we squeeze the tube, large shear strain and stress is applied, and

toothpaste is forced to flow out. But once out the tube, the toothpaste is no longer

under shear, and then keeps a solid plug shape. The micro mechanic reason for this

viscoplastic property is that particles are densely packed in the jammed material,

and their motions are confined by close neighbors around. This packing structure

could resist small strain or stress, and the small deformation is reversible if strain

is reversed. But under large stress or strain, particles are forced to move over long

distances. And they have to collide with their neighbors, which leads to plastic

rearrangement [7, 8, 9]. This deformation is irreversible even if the strain is applied

backward, and this is called plastic deformation in the yield flow. People found in

macro scale, the yield flow has nonlinear mechanic behavior. Due to the limit of

microscopic technique, one is not sure how the plastic deformation happening in the

micro scale. So we use simple geometries to study the microscopic structure changes

under shear, which is what my projects focus on.

The meaning of this phase diagram is suggesting a way to investigate jamming.

For different systems, control parameters of jamming are usually different. For ex-

ample, temperature is neglect-able to large-size grains, but important for small size

colloids with Brownian motion. Sometime, without changing temperature, people

could increase the concentration of dense liquid to prohibit the thermal fluctuation,

by increasing the collision chance between neighbors. And in this way, one could

mimic the low temperature behavior of glassy liquid with slower Brownian motion at

room temperature. Therefore, by comparing different jammed systems or different
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control parameters, people could a deeper understanding of jamming. For instance,

what is the similarity or difference between the thermal origin jamming (silicon glass),

entropic origin jamming (colloids), and kinetic origin jamming (athermal systems like

grain, emulsion, and foam) ? Or how does the temperature of glass transition changes

under different stresses? Or how does the vibration affect the yield stress in jammed

granular materials ? Or how important friction is in jamming by comparing frictional

granular systems with frictionless ones (foam or emulsion) ? Although some of the

questions still require further investigation, the benefit of this diagram suggests future

experiments for better understanding of jammed materials [10].

1.3 Spatially heterogeneous dynamics

Spatially heterogeneous dynamics is an important feature of materials during jamming

transition [10]. During the transition, the micro structure of soft materials remains

liquid-like disorder, but particle dynamics inside decrease dramatically, leading to

a rapid increase of viscosity. To understand this phenomena, many theories try to

give a picture of microscopic mechanics. And Adam and Gibbs [11] are among the

first theorists who propose the concept of “cooperative dynamics”. It suggests that in

dense liquid particles have limit free space to move around, caged by neighbors in most

of the time. To diffuse in a longer distance, a particle has to wait for neighbors moving

first and sparing more space around. In this way, neighboring particles would like

to move together or cooperatively. And the relaxation time depends on the “waiting

time” for this cooperation. For denser suspension with less free space, more particles

are needed for the cooperation, and longer “waiting time” would be. Therefore,

viscosity of dense liquid is quite sensitive even to a slight change in the concentration.

The cooperative dynamics are first seen in computer simulations [12], and later

found in colloidal experiments [13, 14]. In Fig. 1.2, some particles are moving very
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Figure 1.1: (Color online) Jamming phase diagram from [2]. The three axes are tem-
perature, density, and load. It shows that the jamming could be reached by lowering
temperature (slowing down Brownian motion), increasing density, and decreasing
forces. For example, by decreasing temperature, silicon glass would be more and
more viscous and finally become a jammed solid. And by increasing concentration of
colloidal suspensions, particles’ Brownian motion would be prohibited by their neigh-
bors crowding around, then are caged or jammed in local regions. The boundary of
the phase diagram indicates the transition from jam to unjam states, or other way
around. For instance, by applying stress over a yielding point, the original structure
could no longer maintain the shape, and the material starts to flow.
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fast (drawn in a larger size), while others are only moving in a short distance dur-

ing the same time (drawn smaller). And these mobile ones are close to each other

forming rearranging clusters or regions (colored in blue and red in the graph). As

the graph shows, the micro dynamics are not uniformly distributed, but concentrate

in some small regions. This dynamic distribution is an typical example for spatially

heterogeneous dynamics in jammed materials. Besides colloidal system, there are a

large amount of recent evidences for spatially heterogeneous motions in molecular

materials near the glass transition [15].

In my colloid experiment, I also observed the cooperative rearrangements during

the shear driven relaxation (Chapter 4). Additionally, cooperative rearrangements

are also found in other jammed materials, although the dynamic details might appear

different. In sheared foam and emulsion, a typical form of rearrangements is called T1

event [16, 17] , which involves four particles exchanging positions: two move apart,

two move together [18]. In my emulsion experiment (Chapter 7), I study how those

micro T1 rearrangements lead to the stress relaxation of dense flow in a macro scale.

1.4 Force chains in jammed systems

Since the jammed material can support small stress or shear, it is believed that the

stress on a surface could propagate through the bulk to another side of the material.

The propagation of force is investigated in granular materials. One can see stress

distribution by using 2 dimensional photoelastic disks [19], as shown in Fig. 1.3(a).

The photoelastic disk can change polarization under stress, and polarized light pass-

ing through would be rotated. Thus stresses can be visualized by placing the disks

between two crossed circular polarizers. From the stress pattern of bright and dark

bands on each disk, Behringer lab developed a technique measuring both normal con-

tact forces and tangential friction [19]. The brightness in the graph shows anisotropy
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Figure 1.2: (Color online) Fast moving particles cluster together in a dense colloidal
suspension from [13]. In this graph, all particles have same physical sizes (1.18 µm
in radius). But for clarity, only those fast moving particles are drawn with the
real size, and the others are drawn smaller. The volume fraction of the colloidal
suspension is φ=0.56 (see Section 2.1.2). And the particles’ moving distances are
measured over ∆t=1000s. The blue and the red colors label two large mobile clusters,
containing 50 and 69 mobile particles. These large clusters of dynamic particles [13]
confirm Adam&Gibbs theory, which predicts cooperative motions in dense liquid near
jamming.
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in the large stress distribution. Only small proportion of disks carry large forces, and

they tend to align up in chains. This suggests the strong spatial correlation between

these large forces in the direction of force chains. And the probability distribution

of the normal forces and tangential friction is plotted in Fig. 1.3(b). The normal

force has a peak around the mean, and has a exponential decay for more than the

mean. And the tangential friction force also has a exponential decay. It is believed

that those exponential tails for large forces are directly related to the force chains

in Fig. 1.3(a). Therefore, the probability of force distribution is a simple but useful

statistics for force networks in jammed materials.

Figure 1.3: (a) Force chains of 2 dimensional photoelastic disks under shear from
[19]. The photoelastic disk can change its polarization under stress. Due to the
birefringence, forces can be observed by placing disks between two perpendicular
polarizers. Therefore the bright area in the image is where the birefringence changes
most, which corresponds to the large stress. The force distribution is heterogeneous,
with small amount of grains carrying most of the large stresses. Besides, the large
forces (brightness) tend to align up in chains. This suggests a spatial correlation
between large stresses in this random structure. The particle used in the experiment
are either 0.8 cm or 0.9 cm in diameter and 0.6 cm in height, with a friction coefficient
of 0.8. To prevent any crystallines in the dense packing, the number ratio of same
to large disks is 4 1. (b) Probability distributions of the normal contacts Fn and
tangential friction Ft in (a) from [19]. Both forces are normalized by the mean normal
force. The normal force has a peak around the mean, and has a exponential decay
for more than the mean. It is believed that this exponential tail for large forces is
directly related to the chain-like stress distribution in (a).

This exponential tail of force distribution is not only found in 2 dimensional gran-
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ular disks but also in 3 dimensional grains. Because it is hard to see force distribution

in a 3D bulk, people measure the stresses on surfaces as shown in Fig. 1.4. By plot-

ting the probability distribution of forces, the exponential decay are also found in 3D

grains, like that in 2D disks. The similar shape of force distribution suggests that

in the 3D bulk force chains may also exist in grains [20]. Therefore, 2D system is a

useful tool for investigating the properties of 3D materials.

Figure 1.4: (a) The sketch of the apparatus used for experiments with “floating walls”
from [21]. Grains are soda lime glass beads with diameter 3.5±0.2 mm. Beads are
confined in an acrylic cylinder of 140 mm inner diameter. This is the cylinder wall
that supports the beads by friction. A load is applied to the upper piston, and beads
press the carbon paper into white paper. The view of the carbon paper is 76 mm
across. The forces are determined based on the area and darkness of the dots. (b)
The distribution P (f) of normalized forces f against the top piston (open circles),
the bottom piston (diamonds), and the walls (solid circles). The fitting curve is
P (f) = a(1 − b exp(−f 2)) exp(−βf).

Since only small fraction of total grains carry most of large stresses, this force chain

structure is fragile if under larger strain. It is found that under slow deformation,

changes of stress chains cause strong temporal fluctuations on the wall [22]. As shown

in Fig. 1.5, under slow shearing of jammed material with packing fraction > 0.777,
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big fluctuations are detected in the company of force chain breakdown and buildup.

During the big fluctuations, usually called “avalanche” events, big stress or energy

is released. One common example for this “avalanche” is earthquakes, where huge

energy is released during a short time scale. The force fluctuation is also found in

dense granular flow of other geometries. For example, stress fluctuation on the side

wall is detected, when densely packed grains flow through a hopper [23], as shown in

Fig. 1.6. Due to the friction between grains and wall, the flux rate in this experiment

is constant, independent of the height. Therefore, the stress fluctuation on the wall

should come from the change of force chains inside the granular flow.

Simulation found that in absence of tangential friction, the spatial correlation

between large stresses would persist to a longer length scale, and the heterogeneity

of stress distribution would be stronger [24]. Due to the development of microscope

technique, two groups recently [25, 4] calculate the interaction forces from the images

of deformed droplets. They found long force chains in frictionless emulsion, confirming

previous simulations. Besides, in the probability distribution of forces, Fig. 1.7, the

exponential tails of large stresses are found in both polydisperse and monodisperse

droplets. Besides, under large compression, the tail shape does not change too much.

Therefore, frictionless emulsion is an important model for understanding the force

correlation or force chains in jammed materials.

Limited by the imaging speed of microscope technique in 3D emulsion, one of

the unsolved questions is how droplets rearrangements in the driven flow during

“avalanche” events. And this is the issue my emulsion experiment addresses on (Chap-

ter 7). Similar to the idea of 2D photoelastic disks, I use 2D emulsion disks to probe

the jamming properties in 3D frictionless materials (see Chapter 7). One advantage is

the image taking is easy and fast, comparing to the 3D microscope technique [25, 4].

Therefore, I can study both the droplet dynamics and their interactions at the same

experiment. In this way, I can investigate the relation between rearrangements in mi-
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Figure 1.5: (a) Force chains of 2D photoelastic disks in a Couette shear experiment
from [22]. Inner wheel (A) (radius 10.34 cm) rotates creating shearing on disks (D).
Outer ring (B) (inner radius 19.14 cm) is confined by planetary gear (C). To avoid
crystallines, binary disks are used (∼ 400d = 0.9cm and ∼ 2500d = 0.74cm) with 6
mm thickness. To enhance shearing, the inner surfaces of the Couette shear cell is
coated by plastic “teeth” spaced 0.7 cm apart and 0.2 cm deep. (b) Representative
time series for stress fluctuation integrated over ∼1/10 of the disks. The stresses
are calculated from the bright bands on photoelastic disks under shear [19], where
G2 = |∇I|2. The lower tracer is just above critical packing fraction 0.777, and the
upper trace has the packing fraction 0.803.
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Figure 1.6: (a) Sketch of the experimental setup from [23]. Densely packed steel balls
flow through a hopper under gravity. The ball has a size of 3.125 mm in diameter.
A force detector is on the side wall of the hopper, and the voltage signal from the
detector is recorded. (b) A section of the voltage (force) trace as a function of time
during a drain. The horizontal dashed line shows an time averaged voltage (force).

cro scale and the “avalanche” events in macro scale. Besides, it is always interesting

to compare 2D frictionless disks with the 2D granular ones, since friction may affect

the force chains in jammed materials [24].
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Figure 1.7: Probability distribution of contact forces in 3D dense emulsion without
static friction from [4]. The force on each droplet is normalized by the mean force
on the droplet 〈f〉drop. The mean droplet size is ∼ 30µm. Three symbols represent
three droplet samples: diamond for polydisperse, squares for polydisperse too but
under extra compression, and circle for monodisperse. The inset is the distribution
of 〈f〉drop, normalized by the sample mean, 〈〈f〉drop〉. The dashed curve is a Gaussian
fit to the polydisperse sample.



Chapter 2

Experimental techniques on

colloids

2.1 Colloid

2.1.1 What is a colloid

Colloids are microscopic solid particles in a liquid, such as toothpaste, paint, and ink.

The sizes of colloidal particles typically range from 1 µm to 1 mm, and Brownian

motion from thermal fluctuation is important. This is in contrast with large grains

or emulsion droplets, for which thermal motion is neglectable. The colloids I use for

shearing experiment (Chapter 4) are poly-methylmethacrylate (PMMA), which are

the same polymer known as PlexiglasTM on a large scale. To prevent aggregation,

the PMMA spheres are coated with sterically stabilizing agent poly-12-hydroxystearic

acid (PHSA) [26]. For visualization, colloids are dyed with rhodamine 6G, either

after swelling them or when the colloids are synthesized [27, 28, 29]. The solvent is

a mixture of 85% cyclohexybromide and 15% decalin by weight. As mentioned in

Section 2.2, for 3D confocal imaging, this solvent matches both the density and the

index of refraction of PMMA colloids. The interaction between the colloids is steric



15

repulsion within a very short distance comparing to colloidal size. Therefore, colloids

are nearly ideal hard spheres [30], and become a good model to test the theories and

simulations on dense liquid. The PMMA colloids in Weeks’ lab are from Andrew

Schofield in University of Edinburgh, and a 3D image of them is shown in Fig. 2.2(b).

2.1.2 Phase transition of hard-sphere system

One of the control parameters for the hard-sphere system is volume fraction φ, which

is the ratio of total volume taken by particles to the that of the whole suspension. For

monodisperse colloidal suspension, the spherical volume fraction is φ = (4π/3)a3n,

where a is the radius and n is the number density. Fig. 2.1 is the phase diagram

for monodisperse hard-sphere colloidal system controlled by volume fraction φ [31].

In a dilute suspension, 0 < φ < 0.494, particles are far from each other and diffuse

freely like in a simple liquid. Those spheres remain in a disordered state until φ >

0.494, when crystallines start to appear. And when φ > 0.545, the whole suspension

has a ordered crystal structure. And according to the mathematical geometry, this

ordered structure has a most dense packing φ = π

3
√

2
= 0.74, with hexagonal close

packed (HCP) layers. In addition to these equilibrium phases, colloids can also have

non-equilibrium behavior. For example, at φ = 0.55, if particles quickly sediment

down by centrifuging, they would pack randomly without enough time to explore

the entropy favored crystallization state under Brownian motion. And in such dense

packing, particles are kinetically trapped, and this random structure could remain

for a long time. In experiment (Chapter 4), we use centrifuging to get dense colloidal

suspension in disordered structures. When φ > φg ≈ 0.58, the system acts like

a glass. The transition is the point where particles no longer diffuse through the

sample. For φ < φg spheres, the supercooled liquid region, particles do diffuse at

long times, although the asymptotic diffusion coefficient D∞ decreases sharply as the

concentration increases [32, 33, 34]. Therefore, the difference between the supercooled
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liquid and the glass is the previous could reach equilibrium crystallization state after a

long time; while the glass never reach crystallization, or the diffusion time is infinite

long. It should be noticed that the glass transition at φg occurs even though the

spheres are not completely packed together; in fact, the density must be increased to

φRCP ≈ 0.63 for “random-close-packed” (RCP) spheres (proved in math) [24, 35, 36,

37, 38] before the spheres are motionless.
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Figure 2.1: Phase diagram of hard sphere system by the control parameter volume
fraction φ from [31]. The states above (pink labeled) are equilibrium states, and the
one below (green labeled) are non-equilibrium. The bottom are colloids images for
four different states: liquid, liquid-crystal coexistence, densest random packing, and
densest crystallization.

2.2 Confocal microscope

Although the bright-field microscope is simple and fast (30 frames per second), there

are some limits especially for 3D imaging. In my colloidal shearing experiment (Chap-

ter 4), to investigate the 3D structure changes during shearing, we use a fast confocal

microscope. Similar to an ordinary fluorescent microscope, a confocal microscope uses
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laser light exciting the fluorescent dye in a sample, and then collects the emitting light.

But the special designs of confocal microscopy are point to point illumination of the

sample, and rejection of out of focus light [31, 39]. Fig. 2.2(a) shows the working

principle of a confocal microscope. Laser light (blue line) is directed by the dichroic

mirror towards rotating mirrors, scanning the sample in xy plane point by point. The

fluoresced light (green line) from the sample then returns back in the same path as the

laser light before the dichroic mirror. Because the fluoresced light has lower frequency

(lower energy) than the laser light, the dichroic mirror lets it passing through toward

the detector rather than reflecting to the laser source. Before the detector, there is

a screen with a pinhole, placed in the “conjugated focal plane” of the sample, which

is the origin of the “confocal” term. This pinhole design rejects all out-of-focus light,

and only allows the focus point reaching to the detector. As shown in Fig. 2.2(b), a

3D image is a stack of 2D slices in xy focal plane at different depths along z direction

(optical axis). Our confocal has a piezo-actuator, moving objective lens along z axis

in very small increments up to 0.2 µm limit. Therefore, the imaging speed of a confo-

cal microscope depends on the rotating mirrors and the piezo-actuator. The confocal

microscope in my colloid experiment (Chapter 4) is “VT-Eye” from VisitechTM . The

imaging speed for 2D graphs goes up to 300 frames per second. Given that one 3D

graph is a stack of 2D image slices, the 3D speed I could get in experiment is 0.3

frames per second, by using 100 slices in the z direction.

For my dynamic experiment (see Chapter 4), it is important to consider the time

lag from the top slice of a 3D stack to the end slice, making sure they are not moving

significantly to each other. Therefore, I need to balance the dynamic speed with

acquisition time for one stack. Another consideration for the 3D imaging is that

the resolution is better in xy focal plane than the z optical axis. Besides, confocal

microscopy has specific requirements on the sample for a clear 3D image. For example,

in my colloidal experiment (Chapter 4), I use poly-methylmethacrylate (PMMA)
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Figure 2.2: (a) Working principle of confocal microscopy from [31]. It is almost same
as a normal fluorescent microscope: the laser provide excitation light, and excite the
emission photons from the fluorescent sample with a lower frequency. The excitation
and emission light share the same path before meeting the dichroic mirror. This
mirror reflects the high frequency excitation light but let the low frequency emission
light passing through to the detector. This special design for the “confocal” is the
pinhole in front of the detector. It collects the light in focus and filters out other
light from the background. Therefore, a confocal microscope actually images only
one point at a instant time. The rotating scanning mirrors allow the microscope
reading the sample in the focus plane. In this way, a confocal microscope give a clear
2D image by trading off the speed. (b) One 3D image of a confocal microscope is a
stack of 2D ones. Typically, the resolution in x and y directions are 0.2 µm, and in
z direction is 0.5 µm. Therefore, z direction determines the resolution of the whole
3D image. On the right it is the reconstructed 3D image of PMMA colloids with the
diameter of 2.3 µm.
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colloids in a mixed solution (85% cyclohexybromide and 15% decalin by weight). In

this sample, the index of refraction of the colloids and the solution match. Otherwise,

laser light could not pass deep into the dense suspension before refraction. In addition,

to avoid gravity effect, the density of the colloids also matches with the suspension.

And those sample details about colloids are explained in Section 2.1.



Chapter 3

Computer programming on colloids

In Weeks’ lab, we have a suite of particle tracking programs, analyzing microscopic

structures of soft materials. The software we use is Interactive Data Language (IDL)

by ITT Visual Information Systems. Similar to Matlab, its algorithm is a matrix

based scientific programming language, with packages of mathematical function, data

analysis tools, scientific visualization, and animation tools.

3.1 Colloid identification algorithm

From the 3D movie taken by a confocal microscope, we need to identify particle loca-

tions. The algorithm is originally from John Crocker and David Grier [40]. Although

the program is designed for images of bright spheres on dark background, we found

it works as well for non-spherical objects [41].

The steps for colloid identification is as following: The first step is to filter out

noise with very low or very high spatial frequency, by using a spatial bandpass filter.

This step smooths out neighbor pixel variation and eliminates image noise. Short

wavelength noise comes from the image detecting. For example, the readout noise is

caused by camera operation and electronic circuits. The dark current noise is from

the thermal noise of silicon chips. The shot noise is caused by light intensity, bigger
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fluctuation for lower intensity. Long spatial wavelength noise may come from the

slight misalignment of the optics. As shown in Fig. 3.1(a) and (b), the image looks

clearer after filtering out low and high frequencies.

The second step is to identify the centers of spherical colloids. In an ideal case, the

spherical center should also be the weight center of brightness in the range of particle

radius r0. But in the real image, the brightest voxel could be off center due to the

noise. Therefore, the idea of the center identifying program is to find particle centers

which are also near to the weight centers of the brightness. At the beginning, the

program chooses the center as the point brighter than its neighbors and also among

30% brightest voxels of the whole image. Then given the particle radius r0 as a

parameter, the program calculates the weight center of brightness around the particle

position. If the weight center is more than half a voxel away from the particle center,

it is then identified as the new center for the spherical particle. And this center swap

keeps repeating until the center difference is less than 0.5 voxel. This refinement

procedure could obtain the particle centers with the resolution less than 1/10 of the

pixel size. The accuracy of center identification is also dependent on how many pixels

across a particle. Given that the actual pixel resolution of our confocal microscope

is ∼0.2 µm, the size of colloids I used is 2 µm in diameter, which covers ∼10 pixels

in x,y and z directions. As shown in Fig. 3.1(c), the possible positions of particles

are labeled by the red dots. However, some of them are mislabeled with no particles

there due to the noise.

The third step is then to remove any false particles. When looping refinement

procedure for candidate particle locations, other quantities of each sphere image’s

brightness distribution are calculated. And basing on that, we could distinguish

spherical colloids from noise. For example, in Fig. 3.1(d), we plot the sphere’s radius

vs. its brightness for all possible colloids. Usually the brightest ones are real colloids,

and we can see two distinct points at the upper right corner with large brightness
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and proper radius sizes. And the particle centers of the two dots in the image is in

Fig. 3.1(e). In the similar way, we could also distinguish real particles from noise by

checking other brightness quantities. For instance, colloids should be identified as

spheres in images. So if particle candidates look like rods with large eccentricity, that

could be fake ones, or at least need to be pick up for further checking.

3.2 Tracking algorithm

Particle tracking is important for understanding microscopic structure changes in

soft materials. The tracking algorithm for non-interacting colloids is devised by John

Crocker and David Grier [40]. The cost function of the algorithm is the mean squared

frame to frame displacement of particles (MSFD) [42]. Within the tracking range of

the old positions, the algorithm chooses the new positions in the following frame by

minimizing the MSFD. There are some limits in this tracking algorithm. Given that

the tracking procedure basically compares particles’ positions in consecutive frames,

if a particle does not move too much, the program could follow it near the old position

in the next frame. However, if a particle moves too fast, over the average inter-particle

distance, the program could not distinguish it from its neighbors between consecutive

frames. Therefore, for very dense liquid with short inter-particle distance, imaging

speed has to be fast enough to match up the short inter-particle distance. Besides,

the classic Crocker&Grier’s algorithm was designed for self-diffusion system, where

particles move randomly due to Brownian motion. If there is any large driven motion

in colloidal flow, the particles’ moving distance would be larger than inter-particle

space.

In my colloid shearing experiment (Chapter 4), because of the tracking limit of

the classic Crocker&Grier (CG) mentioned above, we use a algorithm similar to the

iterated CG tracking algorithm [42]. The idea is to first find out overall average
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Figure 3.1: (Color online) Steps for spherical colloid identification. The image is from
http://www.physics.emory.edu/∼weeks/idl/tracking.html. The particles are 2 µm di-
ameter colloids. For a raw image (a), we first filter out the noise with too high or too
low frequency (b). Then we find particle centers (c) from the looping refinement pro-
cedure [40]. To distinguish real spheres from noise, the spheres’ radius vs. brightness
is plotted (d). And the two brightest spheres from (d) are identified as real particles,
which are plotted in (e).
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shear-induced motion of the colloidal suspension, then remove the motion from all of

the particles’ trajectories and re-track particles in the “co-shearing” reference frame,

and finally add back in the shear-induced motion that previous removed.

In Besseling’s iterated CG tracking algorithm, the removed coherent motion is

obtained from the initial tracking by using the classic CG algorithm. It works well for

the movie under slow shearing but not for the fast shearing. The classic CG algorithm

is originally designed for particles with random small motion, so it has a speed limit

on tracking. Therefore, to obtain the coherent motion under fast shearing, we use the

method “correlated imaging tracking” or “particle image velocimetry” (PIV). The

idea of the PIV method is to find the best overlapping by moving around between

consecutive images at the same z depth. And the distance shifts with the maximum

image correlations, are the average motions of all particles in the sample, as shown

in Fig. 3.2. The standard PIV image correlation is [42]: Given two consecutive 2D

images at time i and i − 1 at a region of n×m pixel size, Ii(x, y) and Ii−1(x, y) are

the intensities at position (x, y) at time i and i − 1. The covariance is defined as

cov[Ii−1(x, y), Ii(x, y)] =
1

[(n × m) − 1]

n
∑

p=1

m
∑

q=1

[Ipq
i−1 − 〈Ii−1〉][I

pq
i − 〈Ii〉], (3.1)

where Ipq
i (xp, yq) is the intensity at (xp, yq). The average intensity for the entire image

〈I〉 is 1
[n×m]

∑n

p=1

∑m

q=1 Ipq. And the variance of a single image is

var[I(x, y)] =
1

[(n × m) − 1]

n
∑

i=1

m
∑

j=1

[I ij − 〈I〉]2. (3.2)

Then the correlation c[Ii−1(x, y), Ii(x, y)] of the two images is

c[Ii−1(x, y), Ii(x, y)] =
cov[Ii−1(x, y)Ii(x, y)]

√

var[Ii−1(x, y)]var[Ii(x, y)]
. (3.3)

By a shift (∆X ′, ∆Y ′) between the two images, the correlation is c[Ii−1(x, y)Ii(x −
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∆X ′, y − ∆Y ′). And the maximum correlation in a desired range corresponds the

optimum shift (∆X, ∆Y ). From a series of xy plane shifts (∆X(z), ∆Y (z)) at different

depth z, we could obtain the shear motion. One advantage of the second way, PIV

method, is no requirement for the identification of individual particles as in the first

one. So the PIV method could be used for obtaining larger average motion. By

combining the tracking algorithms of iterated CG and imaging correlation, we could

track particles under fast shearing.

Figure 3.2: (Color online) Illustration of the shifting and correlation procedure from
[42]. Particles moves over displacement (∆x, ∆y) between frame 1 and frame 2. The
entire image is shifted over a range of (∆X ′, ∆Y ′), and the maximum correlation
corresponds to the optimum shift (∆X, ∆Y ).



Chapter 4

Microscopic structural relaxation

in a sheared supercooled colloidal

liquid

The rheology of dense amorphous materials under large shear strain is not fully under-

stood, partly due to the difficulty of directly viewing the microscopic details of such

materials. We use a colloidal suspension to simulate amorphous materials, and study

the shear-induced structural relaxation with fast confocal microscopy. We quantify

the plastic rearrangements of the particles in several ways. Each of these measures

of plasticity reveals spatially heterogeneous dynamics, with localized regions where

many particles are strongly rearranging by these measures. We examine the shapes

of these regions and find them to be essentially isotropic, with no alignment in any

particular direction. Furthermore, individual particles are equally likely to move in

any direction, other than the overall bias imposed by the strain. This work has been

published in [43].
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4.1 Motivation

Many common materials have an amorphous structure, such as shaving cream, ketchup,

toothpaste, gels, and window glass [44, 45, 46, 47]. In some situations these are vis-

cous liquids, for example when window glass is heated above the glass transition

temperature, or a shaving cream foam that has been diluted by water to become a

liquid with bubbles in it. In other situations these are viscoelastic or elastic solids,

such as gels and solid window glass [2]. For solid-like behavior, when a small stress

is applied, the materials maintain their own shapes; at larger stresses above the yield

stress, they will start to flow [48, 49, 50]. Understanding how these materials yield

and flow is important for the processing of these materials, and understanding their

strength in the solid state [51, 52, 53].

A particularly interesting system to study is a colloidal suspension. These consist

of micron or submicron sized solid particles in a liquid. At high particle concentration,

macroscopically these are pastes and thus of practical relevance [48]. Additionally,

for particles with simple hard-sphere like interactions, colloidal suspensions also serve

as useful model systems of liquids, crystals, and glasses [30, 54, 55, 9]. Such colloidal

model systems have the advantage that they can be directly observed with microscopy

[56, 31, 57]. Our particular interest in this chapter is using colloidal suspensions

to model supercooled and glassy materials. The control parameter for hard sphere

systems is the concentration, expressed as the volume fraction φ, and the system acts

like a glass for φ > φg ≈ 0.58. The transition is the point where particles no longer

diffuse through the sample; for φ < φg spheres do diffuse at long times, although the

asymptotic diffusion coefficient D∞ decreases sharply as the concentration increases

[32, 33, 34]. The transition at φg occurs even though the spheres are not completely

packed together; in fact, the density must be increased to φRCP ≈ 0.64 for “random-

close-packed” spheres [24, 35, 36, 37, 38] before the spheres are motionless. Prior work

has shown remarkable similarities between colloidal suspensions and conventional
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molecular glasses [30, 32, 58, 59, 60, 61, 62, 63, 64].

One important unsolved problem related to amorphous materials is to understand

the origin of their unique rheological behavior under shear flow. Early in the 70’s,

theory predicted the existence of “flow defects” beyond yielding [51], later termed

shear transformation zones (STZ) [8]. These microscopic motions result in plastic de-

formation of the sheared samples [65, 66]. Simulations later found STZs by examining

the microscopic local particle motions [53, 67, 68]. Recently fast confocal microscopy

has been used to examine the shear of colloidal suspensions [69], and STZ’s have been

directly observed [9]. This provided direct evidence to support theoretical work on

STZ’s [51, 70, 8, 71].

However, questions still remain. First, most of the prior work has focused on the

densest possible samples, at concentrations which are glassy (φ > φG) [69, 9]. Given

that the macroscopic viscosity of colloidal suspensions change dramatically near and

above φG [72], it is of interest to study slightly less dense suspensions under shear, for

which rearrangements might be easier [13]. In this chapter, we present such results.

Second, prior investigations of sheared amorphous materials have used a variety of

different ways to quantify plastic deformation [73, 74, 69, 9]. In this chapter, we will

compare and contrast plastic deformations defined in several different ways. While

they do capture different aspects of plastic deformation, we find that some results are

universal. In particular, in a sheared suspension, there are three distinct directions:

the strain velocity, the velocity gradient, and the direction mutually perpendicular

to the first two (the “vorticity” direction). We find that plastic deformations are

isotropic with respect to these three directions, apart from the trivial anisotropy due

to the velocity gradient. The deformations are both isotropic in the sense of individual

particle motions, and in the sense of the shape of regions of rearranging particles.
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4.2 Experimental details

The experimental setup of our shear cell is shown in Fig. 4.1 and is similar to that

described in Refs. [75, 69]. The glass plates are 15 mm in diameter, and to the top

plate is glued a small piece of glass with dimensions 5 mm×1 mm, with the long

dimension oriented in the direction of motion x. The purpose of this piece of glass

is to decrease the effective gap size. Between the plates are three ball bearings, used

to control the gap size; for all of our data, we maintain a gap size of H = 130 µm.

Over the 5 mm length of the small pieces of glass, the gap varies by no more than

15 µm; over the narrower dimension of the small pieces of glass, the gap varies by no

more than 10 µm. Thus, overall the sample is between two plates which are parallel

to within 1% and in the direction of shear, they are parallel to within 0.3%.

x

γ (t)

Hz

confocal
microscope
objective

piezo

Figure 4.1: (Color online) Sketch of the shear cell. A fluorescent sample (gray, green
online) is put between two parallel glass plates (dark gray, blue online) with gap
H set by three ball bearings, two of which are shown. The top plate is movable,
controlled by a piezo motor driven by a triangular wave. The bottom plate is fixed,
and the confocal microscope takes images from underneath. Note the definition of
the coordinate system, where x is in the velocity direction and z is in the velocity
gradient direction.

A droplet of the sample (volume ∼200 µl) is placed between the two pieces of glass.

The top plate is free to move in the x direction, and the bottom plate is motionless.

The shear rate is controlled by a piezo-electric actuator (Piezomechanik GmbH Co.)

driven by a triangular wave signal with a period ranging from T = 150 to 450 s and

an amplitude of A = 175 µm. Thus we achieve strains of γ0 = A/H = 1.4. Prior to
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taking data, we allow the shear cell to go through at least one complete period, but

usually not more than three complete periods.

Our samples are hard-sphere colloids (Fig. 4.2), as introduced in Section 2.1. And

the volume fraction φ is in the range of “supercooled liquid”.

x
y

z

Figure 4.2: A 20×20×20 µm3 image of a supercooled colloidal liquid taken 15 µm
away from the fixed bottom plate by our confocal microscope in less than 1 s. The
scale bar represents 10 µm.

To characterize the relative importance of Brownian motion and the imposed

strain field, we can compute the modified Peclet number, Pe⋆ = γ̇a2/2D∞, where

D∞ is the long time diffusion coefficient of the quiescent sample. We measure D∞

from mean square displacement data taken from the quiescent sample with the same

volume fraction. The large ∆t data for the mean square displacement can be fit using

〈∆x2〉 = 2D∞∆t. Roughly, a2/2D∞ reflects the average duration a particle is caged

by its neighbors in the dense suspension.

γ̇ is the imposed strain rate 2A/(HT ), and a is the particle size. The extra factor

of 2 in γ̇ is because we use a triangle wave, and thus the half period sets the strain

rate. For our samples, we find D∞ ≈ 5 × 10−4 µm2/s, and we have γ̇ ranging from
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0.0060 to 0.0180 s−1; thus Pe⋆ ≈ 7 − 20. Given that Pe⋆ > 1, the implication is

that the motions we will observe are primarily caused by the strain, rather than

due to Brownian motion. We use the modified Peclet number based on D∞ rather

than the bare Peclet number based on the dilute-limit diffusivity D0, as we will focus

our attention on the dynamics at long time scales, which we will show are indeed

shear-induced.

Shear-induced crystallization has been found in previous work [76, 77]. As we wish

to focus on the case of sheared amorphous materials, we check our data to look for

crystalline regions using standard methods which detect ordering [78, 79, 80, 81, 82].

Using these methods, we find that particles in apparently crystalline regions com-

prise less than 3% of the particles in each of our experiments, and are not clustered,

suggesting that the apparently crystalline regions are tiny. This confirms that our

samples maintain amorphous structure over the time scale of our experiments, al-

though perhaps if we continued the shearing over many more cycles we would find

shear-induced crystallization.

We use a confocal microscope to image our sample (the “VT-Eye”, Visitech),

using a 100× oil lens (numerical aperture = 1.40) [83, 39, 31]. A 3D image with

a volume 50×50×20 µm3 is acquired in less than 2 s; these images contain about

6000 particles. The 3D image is 256× 256× 100 pixels, so approximately 0.2 µm per

pixel in each direction. Figure 4.2 shows a representative image from a somewhat

smaller volume. The 2 s acquisition time is several orders of magnitude faster than

the diffusion for particles in our high volume fraction sample. To avoid any boundary

effects [84], we scan a volume at least 20 µm away from the bottom plate. Particle

positions are determined with an accuracy of 0.05 µm in x and y, and 0.1 µm in z.

This is done by first spatially filtering the 3D image with a bandpass filter designed to

remove noise at high and low spatial frequencies, and then looking for local maxima

in the image intensity [40]. Our algorithms for colloid identification and tracking are
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in Sections 3.1 and 3.2.

Due to the strain, particles that start near one face of the imaging volume are

carried outside the field of view, while on the opposite face new particles are brought

inside. Thus, for larger strains, the total number of particles viewed for the entire

duration diminishes. For the data discussed in this work, we consider both instanta-

neous quantities and quantities averaged over the entire half-cycle of strain. For the

former, we view ∼ 5500 particles, while for the latter, we typically can follow ∼ 3000

particles, which limits our statistics slightly.

4.3 Results

4.3.1 Locally observed strain

Our goal is to understand if the local shear-induced motion is isotropic in character.

However, first we seek to understand and quantify the more global response of our

sheared samples.

When shearing disordered materials or complex fluids, one often finds shear local-

ization or shear banding, due to the nonlinear yielding and relaxation in local regions

[49, 48, 85, 86]. To check for this in our data, we start by taking 3D images under the

applied shear rate γ̇macro = 0.016 s−1 over a very large range in z, from 0 to 70 µm

away from the bottom plate, almost half of the gap between two shearing plates. To

allow us to visualize more clearly over such a large depth, we dilute the dye concen-

tration by mixing dyed and undyed colloids at a number ratio of around 1:80 and

keeping the desired volume fraction φ ≈ 0.50. Our sample does indeed form a shear

band, as shown in Fig. 4.3 on the following page, which shows the particle velocity

vx in the direction of the shear as a function of the depth z. The velocity changes

rapidly with z in the range 0 < z < 20 µm, and then more slowly for z > 20 µm;

thus much of the shear occurs adjacent to the stationary plate at z = 0 µm, similar
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to prior work which found shear adjacent to one of the walls [87, 49, 48, 85, 86]. Fur-

thermore, the velocity profile is relatively stable during the course of the half-period,

as seen by the agreement between the velocity profiles taken at different times during

this half period (different lines in Fig. 4.3. Thus, the shear band develops quickly

inside the supercooled colloidal liquid, and remains fairly steady under the constant

applied strain rate. The location and size of the shear band varies from experiment

to experiment.
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Figure 4.3: (Color online) Shear profile vx(z) within a 50×50×70 µm3 volume, mea-
sured at different times during one half period T/2 = 84 s. The total macroscopic
strain applied in 84 s is 1.35. The sample has a volume fraction φ ≈ 0.50, and the
global applied shear rate is γ̇macro = 0.016 s−1 controlled by the piezo motor. If there
was not a shear band, one would expect to observe a linear velocity profile as indicated
by the lower thick diagonal line. The four curves represent different times during the
half period as indicated. Note that these data are obtained using a coarse-grained
image velocimetry method [42], rather than particle tracking. Here we take rapid
images over the full volume with a spacing of z = 1 µm in the vertical direction. For
each value of z, we cross-correlate subsequent images to obtain a mean instantaneous
velocity vx with a resolution of 0.05 µm/s, set by the pixel size and the time between
images. See Ref. [42] for further details.

Given the existence of a shear band, the applied strain is not always the local

strain. In this work we wish to focus on the motion induced by a local strain, rather

than the global formation of shear bands. Thus, for all data sets presented below, we
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always calculate the local instantaneous strain rate γ̇meso(t) = vx(z+∆z,t)−vx(z,t)
∆z

. Here

∆z = 20 µm is the height of the imaged volume. Related to γ̇meso, we can calculate

the total local applied strain by integrating γ̇meso(t):

γmeso(t) =

∫ t

0

γ̇meso(t
′)dt′. (4.1)

Furthermore, we verify that for each data set considered below, vx(z) varies linearly

with z within the experimental uncertainty, and thus γ̇meso is well-defined, even if

globally it varies (Fig. 4.3 on the preceding page).

While the shape of the shear band is essentially constant (Fig. 4.3 on the previous

page), in many cases the local strain rate varies slightly with time. As our forcing is

a triangle wave, over any given half cycle the global applied strain rate is a constant.

We can measure the local strain rate for each data set; a typical example is shown in

Fig. 4.4 on the following page. This figure shows the local instantaneous measured

strain rate within the region 20 µm < z < 40 µm, over one full period. After the

shearing starts, γ̇meso quickly rises up to 0.015 s−1, implying that the shear band has

formed. Subsequently, the local strain rate continues to increase up to 0.030 s−1 over

the rest of the half period. The small fluctuations of γ̇meso are due to the microscopic

rearrangements of particles, which can be somewhat intermittent. Given that the

local instantaneous strain rate is not constant (despite the constant applied strain

rate), we will characterize our data sets by the time averaged local strain rate defined

as

¯̇γmeso =
γmeso(t)

t
(4.2)

typically using t = T/2, the half period of the strain. That is, we consider ¯̇γmeso as

one key parameter characterizing each data set, although we will show that we see

little dependence on this parameter. In the rest of the chapter, the choice t = T/2

will be assumed, except where noted when we wish to characterize the mesoscopic



35

strain for time scales shorter than T/2.
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Figure 4.4: A typical example of a measured local instantaneous shear rate over one
period of shearing in a gap of 20−40 µm away from the fixed bottom plate. The
sample has volume fraction φ = 0.51, the applied strain rate is γ̇macro = 0.013 s−1,
and the period is T = 200 s.

At this point, we have defined the key control parameters, which are measured

from each experimental data set: the strain rate ¯̇γmeso and the strain amplitude γmeso.

We next consider how these variables relate to the magnitude of the shear-induced

particle motion.

4.3.2 Individual particle motions

Because of our large local strains (measured to be γmeso > 0.3 for all cases), we observe

significant particle motion, as shown Fig. 4.5 on page 37(a,b). In the laboratory refer-

ence frame, the microscopic velocity gradient is obvious either in the raw trajectories

[Fig. 4.5 on page 37(a)] or in the large displacements [Fig. 4.5 on page 37(b)] mea-

sured between the beginning and end of the half period. However, in a sense, much

of this motion is “trivial”; we wish to observe what nontrivial local rearrangements

are caused by the strain. To do this, we consider the non-affine motion by remov-
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ing averaged particle displacements at the same depth z from the real trajectories of

particles [69, 73, 88, 68, 89],

x̃i(t) = xi(t) −

∫ t

0

γ̇meso(t
′)zi(t

′)dt′ (4.3)

where the removed integral represents the shearing history of the particle i. To be

clear, the shearing history is based on the average motion within the entire imaged

region, and the remaining motion of particle i is caused by interactions with neigh-

boring particles due to the shear. This motion is shown in Fig. 4.5 on the following

page(c), showing the x̃z plane rather than the xz plane; the particles move shorter

distances. Their overall displacements in this “de-sheared” reference frame are shown

in Fig. 4.5 on the next page(d). A few trajectories are up to 2 µm long, comparable

to the particle diameter. These non-affine displacements shown in Fig. 4.5 on the fol-

lowing page(d) are much smaller than the raw displacements of Fig. 4.5 on the next

page(b), but much larger than thermally activated Brownian motion, which takes

more than 1000 s to diffuse over a 1 µm distance in our dense samples (comparable

to the particle radius a). These non-affine motions x̃ reflect shear-induced plastic

changes inside the structure.

To quantify the amount of this non-affine motion x̃, one could calculate the mean

squared displacements (MSD) often defined as

〈∆x̃2〉(∆t) = 〈(x̃i(t + ∆t) − x̃i(t))
2〉i,t (4.4)

where the angle brackets indicate an average over time t, as well as particles i. Thus

this identity assumes that environmental conditions remain the same for all the time,

since it does not depend on t. However, as shown by Fig. 4.4 on the preceding

page, the shear rate γ̇local(t) depends on the time. Therefore, we use an alternate
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Figure 4.5: Trajectories of colloids in an xz slice (5 µm thick in the y direction),
see Fig. 4.1 on page 29 for the coordinate axes. The sample has φ = 0.51, and
the data shown correspond to a locally measured accumulated strain γmeso = 0.43
over 45 s of data, so the effective strain rate is ¯̇γmeso = γmeso/∆t = 0.0096 s−1. (a)
Trajectories in a reference frame co-moving with the average velocity vx(z = 20 µm).
(b) Displacements corresponding to data from panel (a), where the start point of
each particle is marked with a circle and the end point is marked with an arrowhead.
(c) The same data, but with the affine motion removed; this is the x̃z plane. (d)
Displacements corresponding to panel (c).
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formulation

〈∆x̃2〉(t) = 〈(x̃i(t) − x̃i(t = 0))2〉i (4.5)

where the angle brackets only indicate an average over particles, and t is the time since

the start of a half period of shear. Figure 4.6(a) shows mean squared displacement

(MSD) of the non-affine motion ∆r̃2 = ∆x̃2 + ∆y2 + ∆z2 as a function of t for five

different experiments with different strain rates ¯̇γmeso, from 0.02 to 0.006 s−1. In

each case the curves nearly reach a slope of 1 on the log-log plot, indicating that

shear quickly facilitates particles’ rearrangements. The magnitude of the motion is

∆r̃2 ≈ 1 µm2, indicating that the original structure is mostly lost [90].
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Figure 4.6: (Color online) (a) The mean square displacement of the non-affine motion
∆r̃ as a function of the time t since the start of shear. (b) The same data plotted as a
function of the accumulated strain γmeso =

∫ t

0
γ̇meso(t

′)dt′. The five curves represents
five data sets with the same volume fraction φ = 0.51 but three different shear rates
¯̇γmeso as indicated in the figure. The total accumulated strain is the final point reached
by each curve in panel (b).
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Figure 4.6 on the preceding page(a) also shows that ∆r̃2 is larger for faster strain

rates at the same t. We find that this motion is determined by the accumulated strain,

as shown in Fig. 4.6 on the previous page(b) by replotting the MSD as a function of

γmeso (Eqn. 4.1 on page 34). In this graph, the curves are grouped closer together

and there is no obvious dependence on ¯̇γmeso.

It suggests that the accumulated strain is an important parameter in the struc-

tural relaxation, which was also found in previous work on shear transformation zones

[91, 89], and is similar behavior to that seen for athermal sheared systems [92]. Addi-

tionally, Fig. 4.6 on the previous page(b) shows that the slopes of the curves are close

to 1 when γmeso > 0.1, confirming that the accumulated strain in our experiments is

large enough to rearrange the original structure in a supercooled colloidal liquid. We

stress that the rough agreement between the curves seen in Fig. 4.6 on the preceding

page(b) is based on the locally measured applied strain, and not the macroscopically

applied strain.

An earlier study of steady shear applied to colloidal glasses by Besseling et al. [69]

found that the diffusion time scale τ scaled as γ̇−0.8, and simulations also found power

law scaling [67, 68]. The collapse of our MSD curves [Fig. 4.6 on the previous page(b)]

seems to imply τ ∼ γ̇−1.0. It is possible that the disagreement between these results

is too slight to be clear over our limited range in γ̇ (less than one decade). Also, we

study supercooled fluids whereas Ref. [69] examines colloidal glasses. Furthermore,

our maximum local strain is γmeso = 1.6, while Ref. [69] considers steady strain up to

a total accumulated strain of 10. Another recent study of sheared colloidal glasses [93]

implies a result similar to ours, τ ∼ γ̇−1.0, but did not discuss the apparent difference

with Ref. [69].

To better understand the mean square displacement curves (Fig. 4.6 on the pre-

ceding page), we wish to examine the data being averaged to make these curves. We

do so by plotting the distributions of displacements ∆r̃ in Fig. 4.7 on page 41. To
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better compare the shapes of these distributions, we normalize these displacements

by the strain and thus plot P (∆s) where ∆s ≡ ∆r̃/(γ0.5
meso); this normalization is

motivated by the observation that at large γmeso, we have 〈∆r̃2〉 ∼ γmeso (Fig. 4.6 on

page 38) [89]. Furthermore, we normalize P (∆s) so that the integral over all vectors

∆~s is equal to 1, similar to Ref. [89]. Figure 4.7 on the next page shows that the dis-

tributions corresponding to small strains are much broader than those corresponding

to large strains. For the smallest strain, the distribution has a large exponential tail

over 3 orders of magnitude. For larger strains (γmeso > 0.1), the curves are no longer

exponential and the tails are shorter, indicating fewer extreme events. These curves

appear more like Gaussian distributions. At the larger strain values (γmeso > 0.1), the

distributions collapse; this is the same strain regime for which the mean square dis-

placement becomes linear with γmeso [Fig. 4.6 on page 38(b)]. As the Ref. [89] suggests,

the exponential tail for small strains is similar to what has been seen for individual

plastic events [94, 88], while the distributions for larger strains are consistent with

successive temporally uncorrelated plastic events drawn from the exponential distri-

bution. However, it is possible that these events are spatially correlated, which will

be seen below.

The mean square displacement data we have shown (Fig. 4.6 on page 38) treats all

three directions equivalently, with the exception that the x displacements have had

their nonaffine motions removed. However, the three directions are not equivalent

physically: the x direction corresponds to the shear-induced velocity, the y direction is

the vorticity direction, and z is the velocity gradient direction. To look for differences

in motion between these three directions, we plot the probability distribution of the

displacements [∆x̃, ∆y, ∆z], in Fig. 4.8 on page 42. The three distributions agree

with each other, and in fact are symmetric around the origin. This suggests that the

shear-induced motions are isotropic. Furthermore, they are well-fit by a Gaussian,

suggesting that the shear-induced motion liquefies the sample (at least at the large
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Figure 4.7: (Color online) Probability distribution function of ∆s = ∆r̃/γ0.5
meso, the

nonaffine displacement ∆r̃ scaled by the local strain γ0.5
meso. The data shown are from

one experimental run, using portions of the data corresponding to strain increments
γmeso = 0.01, 0.02, 0.10, and 0.43. These correspond to time intervals ∆t = 1.5, 4.5,
16.5, and 45 s. P (∆s) is normalized so that the integral over all vectors ∆~s is equal to
1, similar to Ref. [89]. For small strains, the curves have large exponential tails, and
for larger strain, the tails become smaller and appear more Gaussian. The dashed
line is Gaussian fit for γmeso = 0.43. For this sample, the data and parameters are
the same as Fig. 4.5 on page 37.
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γmeso considered for Fig. 4.8). This seems natural in the context of jamming, where

adding more strain moves the sample farther from the jammed state [2]. Of course, in

our raw data the ∆x data show a significant bias in the direction of the shear-induced

velocity; but it is striking that the non-affine displacements ∆x̃ show no difference

from the displacements in y and z, as also found in sheared colloidal glass [69, 68].
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Figure 4.8: (Color online) Probability distribution functions for non-affine motions
in each direction, ∆x̃ (filled cycle), ∆y (hollow circle) and ∆z (hollow triangle). The
mean of ∆x̃, ∆y and ∆z are 0 µm, and the standard deviations are 0.67, 0.53, and
0.62 µm. The red curve is a Gaussian fit to the ∆x̃ data. For this sample, the
parameters are the same as Fig. 4.5 on page 37 (φ = 0.51, γmeso = 0.43, ¯̇γmeso =
0.0096 s−1, ∆t = 45 s).

Thus far, we have established that shear-induced particle displacements are closely

tied to the total applied strain γmeso [Fig. 4.6 on page 38(b)]. We then introduced

the nonaffine motion ∆r̃ which we find to be isotropic, on the particle scale: individ-

ual particles are equally likely to have shear-induced displacements in any direction

(Fig. 4.8). While the distributions of displacements are isotropic, this does not imply

that displacements are uncorrelated spatially. To check for this, we calculate two
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displacement correlation functions as defined in Ref. [95, 96, 97] :

S~r(R, ∆t) =
〈∆~̃ri · ∆~̃rj〉

〈∆r̃2〉
, (4.6)

Sδr(R, ∆t) =
〈δr̃iδr̃j〉

〈(δr̃)2〉
, (4.7)

where the angle brackets indicate an average over all particles; see Refs. [95, 97]

for more details. The mobility is defined as δr̃ = |∆r̃| − 〈|∆r̃|〉, in other words,

the deviation of the magnitude of the displacement from the average magnitude of

all particle displacements. The correlation functions are computed for the nonaffine

displacements, using ∆t = 45 s to maximize the “signal” (nonaffine displacements)

compared to the “noise” (Brownian motion within cages, on a shorter time scale).

The two correlation functions are shown in Fig. 4.9 on the following page for a

representative data set. These functions are large at short separations R and decay

for larger R, suggesting that neighboring particles are correlated in their motion. In

particular, the vector-based correlation S~r has a large magnitude at small R, showing

neighboring particles have strongly correlated directions of motion, even given that

we are only considering the nonaffine displacements. The two correlation functions

decay somewhat exponentially, as indicated by the straight line fits shown in Fig. 4.9

on the next page, with decay constants ξ~r = 6.4 µm= 6.1a and ξδr = 2.5 µm= 2.4a

(in terms of the particle radius a). The larger the slope, the more localized the

correlation is. ξ~r is similar to that found previously for supercooled colloidal liquids,

and ξδr is slightly shorter than the prior results [95]. Overall, these results confirm

that the shear-induced particle motion is spatially heterogeneous, quite similar to

what has been seen in unsheared dense liquids [98, 12, 13, 95, 14, 15, 97] and granular

materials [99, 100]. The length scale may be equivalent to the correlation length

scale for fluidity discussed in Refs. [65, 66]. For example, an experimental study of

sheared polydisperse emulsions found a fluidity length scale comparable to 1-2 droplet
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diameters near the glass transition [65].
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Figure 4.9: (Color online) Spatial correlation functions S~r and Sδr characterizing
particle motion. The data are the same as Fig. 4.5 on page 37 (φ = 0.51, γmeso = 0.43
over 45 s of data, and ¯̇γmeso = γmeso/∆t = 0.0096 s−1). The solid and dashed lines
correspond to S~r and Sδr averaged over all the particles in the sample. The dotted lines
(red) correspond to exponential fits with length scales ξ~r = 6.4 µm and ξδr = 2.5 µm.

Considering all of our data sets, we do not find a strong dependence on either the

strain rate γ̇ or the total strain γ for the ranges we consider (¯̇γmeso = 0.006−0.02 s−1,

γmeso = 0.3−1.6). We do not have a large amount of data with which to calculate the

correlation functions; unlike prior work, we cannot do a time average [95]. If we use

an exponential function to fit our different data (different strains, strain rates, and

volume fractions), the mobility correlation Sδr yields a length scale ξδr ≈ 1.8−3.9 µm

and the vector correlation S~r yields a length scale ξ~r ≈ 3.2 − 7.5 µm. To check this,

we also calculate

ξ′ =
〈R · S(R)〉

〈S(R)〉
(4.8)

where the angle brackets indicate averages over R; for a perfect exponential, we

would have ξ′ = ξ. Using this method, we find more consistent length scales of

ξ′δr ≈ (3.0 − 4.0)a and ξ′~r ≈ (3.5 − 4.3)a. Our data do not suggest any dependence
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of these length scales on the control parameters over the range we investigate. Of

course, as γ̇ → 0, we would expect to recover the original unstrained sample behavior

[67]. Similar samples in this volume fraction range were previously found to have

length scales with similar values, ξδr ≈ 4a − 8a and ξ~r ≈ 6a [95]. However, the time

scales for this motion are much longer than that for our sheared samples.

4.3.3 Defining local plastic deformation

We wish to look for spatially heterogeneous dynamics, that is, how the shear-induced

motion takes place locally and how particles cooperate in their motion. Several prior

groups have examined local rearrangements in simulations and experiments [8, 74,

9, 65], but have used differing ways to quantify the motion. We will discuss those

quantities together, and compare them using our data. We have two goals: first, to

understand how different measures of local rearrangements reveal different aspects

of the motion; and second, to see if the spatial structure of rearranging groups of

particles exhibits any particular orientation with respect to the shear direction.

For all of these definitions of rearranging groups of particles, it is useful to define a

particle’s nearest neighbors. Our definition of a particle’s nearest neighbors are those

particles within the cutoff distance r0, set by the first minimum of the pair correlation

function g(r).

We start by quantifying the local strain seen by an individual particle, which is

based on the average motion of its neighbors. For a particle i with center at ~ri(t),

the relative positions of its neighbors j are ~dij(t) = ~rj(t) − ~ri(t). These neighboring

particles move, and their motions over the next interval ∆t are given by ∆~dij(t) =

~dij(t + ∆t) − ~dij(t), as shown in Fig. 4.10 on the following page.

The strain tensor Ei for this region around particle i is then determined by mini-

mizing the mean squared difference between the actual relative motions ∆~dij(t) and
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Figure 4.10: (Color online) Sketch illustrating the definition of the motion of the

relative position vector ∆~dij of two neighboring particles, red and blue (dark and

light gray). ~ri(t) represents the position of particle i at time t, ~dij(t) is the relative

position between particles i and j at time t, and ∆~dij(t) is how the vector ~dij changes
over the time interval (t, t + ∆t).

that predicted by Ei, in other words, choosing Ei to minimize

D2
i,min = min

[

Σj

[

∆~dij(t) − Ei
~dij(t)

]2
]

. (4.9)

The error, D2
i,min, quantifies the plastic deformation of the neighborhood around par-

ticle i, after removing the averaged linear response Ei
~dij(t) [8]. Thus, D2

i,min is one

way to quantify the local nonaffine rearrangement, “local” in the sense of an indi-

vidual particle i and its neighbors. We term D2
i,min the “plastic deformation.” Note

that the sum is computed over the ten nearest particles j to particle i, otherwise

the value of D2
i,min would depend on the number of neighbors. In practice, most of

these neighboring particles are within 3.0 µm of particle i, which is comparable to

the first minimum of the pair correlation function g(r), which motivates our choice

of ten neighbors.

Of course, quite often Ei is different from the overall strain over the imaged volume,

which in turn is different from the macroscopically applied strain. In practice, given

that the shear is applied in x direction with the velocity gradient along z, we only
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treat the xz components of Eqn. 4.9 on the previous page; that is, ~dij and Eij can be

written as :

~dij =







xij

zij






, Ei =







ǫxx
i ǫxz

i

ǫzx
i ǫzz

i






. (4.10)

To better understand this local strain tensor Ei, we follow the method of Ref. [9, 8].

If the particle-scale local strain was identical to the imposed strain, we would expect

ǫxz
i = γmeso and the other matrix elements to be zero. We find that these expectations

are true on average (for example 〈ǫxz
i 〉 = γmeso) but that for individual particles their

local environment can be quite different. For each experiment, the distributions of

all four matrix elements have similar standard deviations, and examining different

experiments the standard deviations are between 24% - 39% of γmeso.

To quantify the measured particle-scale strain, we define the “local strain”

γi,micro = ǫxz
i + ǫzx

i (4.11)

(using the definition of the strain tensor which is related to E [101]). That is, this

quantity is a local approximation to the strain (∂ux

∂z
+ ∂uz

∂x
). The local strain γi,micro

is now a second way to quantify the local rearrangement of the neighborhood around

particle i, in addition to D2
i,min. The diagonal elements, ǫxx

i and ǫzz
i , relate to the

dilation of the local environment. In particular, the local environment stretches by

a factor of (1 + ǫxx
i ) in the x direction and likewise (1 + ǫzz

i ) in the z direction. If

these matrix elements are zero, then the local environment remains the same; positive

matrix elements correspond to expansion and negative matrix elements correspond

to contraction. We define the overall dilation as δei = (1 + ǫxx
i )(1 + ǫzz

i )− 1, which is

a third way to quantify the local rearrangement around particle i.

A fourth way to consider local particle motion is the previously defined nonaffine

displacement, ∆r̃2. The key difference is that D2
min, γmicro, and δe all are derived
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from the actual particle motion ∆r, whereas ∆r̃2 removes the motion caused by γmeso

(through Eqn. 7.10 on page 84).

To demonstrate how neighboring particles rearrange and result in larger values

of these various parameters, Fig. 4.11 on page 50 shows an example using real tra-

jectories. The original positions of the particles are shown, along with displacement

vectors indicating where they move after the sample is strained with γmeso = 0.58.

The overall strain is seen in that particles near the top move farther than those at

the bottom; however, the red (dark) particle in the middle has an unusual motion,

moving downward in the −z direction. Figure 4.11 on page 50(b) shows the motion

of the surrounding particles, as seen in the reference frame attached to the red (dark)

particle. It is these displacements that are used in the calculation Eqn. 4.10 on the

previous page. Figure 4.11 on page 50(c) shows the predicted final positions of the

particles (drawn large) based on Ei, as compared to the actual final positions (drawn

small); the red (dark) particle is considered “particle i”. This local region experiences

both shear and a strong dilation in the z direction, both captured by Ei. The dif-

ferences between the predicted and actual final positions result in a moderately large

value of D2
min = 56 µm2. In particular, note that D2

min is defined based on vectors

pointing from the red (dark) reference particle to the other particles, and because the

red particle moves downward, the vectors are all greatly stretched and this increases

D2
min. Finally, Fig. 4.11 on page 50(d) shows the positions of the same particles af-

ter the strain has been applied, where now the box represents the mesoscopic strain

γmeso = 0.58. The large spheres represent the expected positions if the motion was

affine, and the small spheres show the actual positions. Differences between the ex-

pected and actual positions result in large values of the nonaffine displacement ∆r̃.

For the red (dark) particle, ∆r̃ = 2.97 µm. Overall, the anomalous motion of the

central particle i is because under the large local strain, this particle makes a large

jump out of its original cage. It is these sorts of unusual motions that result in large
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plastic deformations within the sample.

4.3.4 Collective particle motions

To investigate the relationships between these quantities, a 3 µm-thin y slice of a

sample with volume fraction φ = 0.51 is shown in several ways in Fig. 4.12 on page 51.

In panel (a), the x displacement is shown, making the strain apparent. Panel (b)

shows the original Voronoi volumes for each particle at t = 0. The Voronoi cell

for each particle is defined as the volume closer to the center of that particle than

to any other particle. In subsequent panels, the darker colors indicate larger local

rearrangements, as measured by the non-affine displacement ∆r̃2 [panel (c)], plastic

deformation D2
min [panel (d)], local strain γmicro [panel (e)], and dilation δe [panel

(f)]. It can be seen that the darker colored particles cluster together, indicating

that for each of these measures of local rearrangement, the motions are spatially

heterogeneous [9]. This is a real-space picture showing conceptually what is indicated

by the correlation functions in Fig. 4.9 on page 44, that neighboring particles have

similar motions. These pictures are qualitatively similar to those seen for thermally-

induced cage rearrangements in supercooled liquids [14, 13, 12, 102, 103] and glasses

[104, 105, 106, 100, 107]. Furthermore, by comparing these images, it is apparent that

particles often have large values of several quantities simultaneously; in particular

compare panels (c) and (d), and panels (e) and (f). While the correspondence is

not exact, it suggests that all four of these ideas are capturing similar features of

rearranging regions. However, it is also clear that there are differences between (c)

and (d) as compared to (e) and (f). In the latter two panels, the region of high activity

is spread out over a larger area; more of the particles are deforming by these measures

at the same time. Nonetheless, in all four cases, the particles around x ≈ 2 − 4 µm

are experiencing the most extreme deformations.

The Voronoi volume [Fig. 4.12 on page 51(b)] has previously been found to be
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Figure 4.11: (Color online.) These four sketches show different portrayals of a particle
with unusual motion. (a) Particle motion as seen in the laboratory reference frame.
The arrows indicate displacement vectors. (b) Similar to (a) except the motion are in
the reference frame where the central red (darker) particle is motionless. (c) The large
spheres correspond to the expected positions of the particles, and the smaller spheres
correspond to the actual positions of the particles. The distortion of the box and the
expected positions of the particles are calculated based on the measured local strain
tensor Ei, where the red (darker) particle is particle i. For this local neighborhood, we
have γmicro = 0.73 and a dilation primarily in the z direction (ǫxx = −0.1, ǫzz = 0.5,
and δe = 0.35). (d) The positions of the same particles after the strain has been
applied, where now the box represents the mesoscopic strain γmeso = 0.58. The
large spheres represent the expected positions if the motion was affine, and the small
spheres show the actual positions. For all panels, to show the displacements in three
dimensions better, the radii of the large spheres are 0.5 of the real scale. The data
correspond to a sample with φ = 0.51, γmeso = 0.58, ¯̇γmeso = 0.014 s−1, and ∆t = 40 s.
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Figure 4.12: A 3 µm thin cut through the sample, showing the xz shear plane; the
axes are as labeled in (a). The particles are drawn in their location at t = 0, the start
of this strain half-cycle. (a) Darker particles have larger values of ∆x, thus indicating
the applied strain. The top particles (large z) are moving left (dark colors) and the
bottom particles are moving right (light colors). (b) Darker particles have larger
Voronoi volumes at t = 0. (c) Darker particles have larger values of the non-affine
motion ∆r̃2. (d) Darker particles have larger values of the plastic deformation D2

min.
(e) Darker particles have larger values of the local strain γmicro. (f) Darker particles
have larger values of the dilation δe. The sample is the same as the data shown in
Fig. 4.5 on page 37; see that figure caption for details.
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slightly correlated with particle motion in unsheared colloidal supercooled liquids

[90, 108]; that is, particles with large Voronoi volumes have more space to move and

thus are likely to have larger displacements than average. Here it appears that there

is no correlation between the Voronoi volume and the particle motion, suggesting that

for these strained samples the local volume is not a crucial influence on the motion

[68]. This is probably because in the end, all cages must rearrange for the strain to

occur.

To demonstrate the relationships between the measures of plastic deformation

more quantitatively, we compute 2D histograms comparing pairs of the variables,

shown in Fig. 4.13 on page 54. The darker color indicates larger joint probability,

and the dotted line represents the mean value of the quantity on the vertical axis

corresponding to the quantity on the horizontal axis. Figure 4.13 on page 54(a) shows

that on average, particles with a large plastic deformation D2
min are also much likelier

to have a large nonaffine displacement ∆r̃2. This is suggested by the specific example

shown in Fig. 4.11 on page 50(c,d). Similarly, Fig. 4.13 on page 54(b) shows that a

particle’s microscopic strain γmicro is well correlated with the dilation δe. For these

data, the mesoscopic strain is γmeso = 0.43; particles with γmicro < γmeso are more

often in local environments that contract (δe < 0), and vice-versa. As a contrast,

Fig. 4.13 on page 54(c) shows a somewhat weaker correlation between D2
min and γmicro.

The Pearson correlation coefficients between these quantities are C(D2
min, ∆r̃2) =

0.43 ± 0.11, C(γmicro, δe) = 0.42 ± 0.09, and C(γmicro, D
2
min) = 0.17 ± 0.05. The

uncertainties are from the standard deviations of the correlation coefficients from the

nine different experiments we conducted.

Overall, Fig. 4.13 on page 54 suggests that D2
min and ∆r̃2 both capture the idea

of plastic deformation [88]. The correspondence between these two variables is non-

trivial, given that ∆r̃2 is based on trajectories with the overall strain removed (the

strain computed from all observed particles), whereas D2
min only accounts for the very
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localized strain of the neighboring particles. In contrast, γmicro and δe are well-suited

to examine particles moving in atypical ways; typical particles have γmicro ≈ γmeso

and δe = 0. These two separate ideas (plastic deformation and atypicality) are only

weakly correlated. Other than the three specific comparisons shown in Fig. 4.13 on

the next page, all other comparisons are even less correlated (|C| < 0.1). We also

examined the quantities |γmicro − γmeso| and |δe| as ways to measure the deviations

from typical behavior; these quantities are also only weakly correlated to the other

measures of deformation.

We now return to the question of the isotropy of the motion. Figure 4.8 on page 42

indicates that the distribution of all particle motions is isotropic, but it is possible

that the spatially heterogeneous groups of highly mobile particles shown in Fig. 4.12

on page 51 are themselves oriented along a preferred direction. To investigate the

3D structures of these relaxation regions, we quantify the sizes of these active regions

in the x, y and z directions. To start, we define connected neighboring particles

as those with separations less than r0, the distance where pair correlation function

g(r) reaches its first minimum. (Note that this is slightly different from the neighbor

definition used for Eqn. 4.9 on page 46; see the discussion following that equation.)

For a given quantity, we consider active particles as those in the top 20% of that

quantity, similar to prior work [12, 13, 104, 67]. We then define the active region as

a cluster of connected active particles. For example, Fig. 4.14 on page 55 shows a

cluster of particles with large non-affine displacements [panel (a)] and a cluster with

large plastic deformations [panel (b)]. Each cluster is drawn from the same data set,

and the particles drawn in red (darker) are common to both clusters. (Note that

clusters drawn based on γmicro and δe are smaller. In Fig. 4.12 on page 51(e,f), more

regions have large values of these parameters, but the top 20% most active are not

clustered to the extent they are in Fig. 4.12 on page 51(c,d).)

We wish to understand if the shapes of such clusters show a bias along any par-
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Figure 4.13: (Color online) 2D histograms of (a) D2
min and ∆r̃2, (b) γmicro vs. dilation

δe and (c) γmicro and D2
min. The sample has the same parameters as Fig. 4.5 on

page 37; see that caption for details. In these histograms, darker colors stand for the
larger probability. The dotted lines are the average values of the y axis corresponding
to each value on the x axis. The correlation coefficients between each pair of variables
are (a) C = 0.43 ± 0.11, (b) C = 0.42 ± 0.09, and (c) C = 0.17 ± 0.05; see text for
details.
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Figure 4.14: (Color online.) A cluster of neighboring particles with large values of (a)
non-affine motion ∆r̃2 and (b) plastic deformation D2

min. To avoid biasing the cluster
shape, the particles are drawn from within a 15×15×15 µm3 cube (solid lines). The
dashed lines indicate the spatial extent of the two cluster shapes in each direction.
The cluster in (a) is 14 × 12 × 11 µm3 and the cluster in (b) is 8 × 14 × 10 µm3.
The red particles are common between the two clusters, and the black bonds indicate
neighboring particles; particle sizes are drawn 0.8 times the actual scale, to make the
connections more visible. In each case, the particles shown are the top 20% for the
parameter chosen. The data corresponds to the same parameters as in Fig. 4.5 on
page 37; see that caption for details.
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ticular direction. It is important that the experimental observation volume not bias

the result, so from within the observed 3D volume we consider only particles that

start within an isotropic cube of dimensions 15×15×15 µm3. The size of this cube is

chosen to be the largest cube for which all the particles are within the optical field of

view for the full half-cycle of shear for all experiments. (See the related discussion at

the end of Sec. 4.2 on page 29.) Within this isotropic volume, we consider the largest

cluster from each experiment and for each considered variable. We then define the

extent of that cluster in each direction from the positions of each particle within the

cluster as xextent = max(xi) − min(xi) and similarly for y and z.

Anisotropic cluster shapes would be manifested by systematic differences in the

relative magnitudes of xextent, yextent, and zextent. We compare these in Fig. 4.15 on

the next page for clusters of particles with large non-affine motion ∆r̃2 [panel (a)]

and large plastic deformation D2
min [panel (b)]. The comparison is made by using

the ratios yextent/xextent and zextent/xextent, thus normalizing the extent in the y and z

directions by that of the shear velocity direction x. Thus, if a cluster has the same

extent in x and y, yextent/xextent should be equal to 1, along the vertical dashed line.

Similarly, for the same extent in x and z, points should be along the horizontal dashed

line with zextent/xextent = 1. If the extent is the same for y and z, the points should

be along the diagonal line with yextent/xextent = zextent/xextent. For an isotropic cluster

with same size in all dimensions, the point should be in the center (1,1).

As shown in Fig. 4.15 on the following page, for all of our data, we find no sys-

tematic anisotropy; the cluster extent ratios are mostly clustered around the isotropic

point (1,1). Due to random fluctuations, no cluster is perfectly isotropic, yet the

points seem fairly evenly distributed around the three dashed lines. Thus, while the

shear-induced rearrangements take place in localized regions (Fig. 4.12 on page 51),

the data indicate that these regions on average have no directional bias. This seems

true for both the nonaffine displacements ∆r̃2 in Fig. 4.15 on the following page(a)
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Figure 4.15: Comparison between the cluster extent in x, y and z, based on different
variables. (a) Particles with the largest non-affine motion ∆r̃. (b) Particles with the
largest plastic deformation D2

min. The symbols represent different volume fractions:
φ = 0.51 (circles), 0.56 (triangles) and 0.57 (squares). Colors (or grays from light
to dark) represent different accumulative strains γmeso = 0.3 − 0.9. The clusters are
comprised of the top 20% of the particles with the given characteristic.
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and the plastic deformation D2
min in Fig. 4.15 on the previous page(b).

4.4 Discussion

We examined the microscopic plastic deformations occurring in several sheared dense

colloidal suspensions. Our first main observation is that on average, individual par-

ticles have no bias in their direction of motion, other than that trivially imposed by

the strain. When this imposed motion is removed from the particle trajectories, the

remaining shear-induced motion is isotropic: particles are equally likely to move in

any direction. Our second main observation is on the shape of groups of particles un-

dergoing plastic rearrangements. There are several ways to determine which particles

are rearranging, and we have shown that all of these are useful for highlighting local

regions of deformation. Furthermore, the shapes of these regions are also isotropic.

However, we cannot rule out that with more data and subtler analysis, we might find

anisotropies in particle motion [109]. In this 2D simulation [109], the shear time is

10 times longer than the relaxation time. While in my 3D colloidal experiment, the

shear time is around the relaxation time. Therefore, if shear strain is much larger,

we might see anisotropic shape in rearranging regions.

In our results, we find little dependence on the overall volume fraction φ, total

strain, or strain rate. For the volume fraction, all of our samples are dense liquids with

φ < φG. At significantly lower volume fractions, presumably particles would not be

caged and the shear-induced rearrangements might be quite different [92]. At higher

volume fractions φ > φG, prior work has seen similar results [69, 9] although not

examined the shapes of the rearranging regions in detail. It is possible that results

in glassy samples might be different, given that near φG slight changes in volume

fraction have large consequences [72], but we have not seen clear evidence of that in

our data. For the total strain, we have not examined a wide range of parameters.
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In all cases, we are studying sufficiently large enough strains to induce irreversible,

plastic rearrangements.For the strain rates, all of our strain rates are fast enough such

that the modified Peclet number Pe⋆ is at least 7, so that thermally induced diffusive

motion is less relevant. It is likely that at slower strain rates (lower Peclet numbers),

different behavior would be seen [67].

Previous work [110, 111, 112, 76] found that oscillatory shear can induce crystal-

lization of concentrated colloidal suspensions. The ‘induction time’ of this crystalliza-

tion is strain dependent: a larger strain amplitude results in shorter induction time.

In our experiments, we studied only a limited number of oscillations, and our strain

amplitude ∼1. We did not observe crystallization in any of our experiments. It is

likely that were we to continue our observations for much longer times, we could see

the onset of shear-induced crystallization, and so we note that our experiments are

probably studying a non-equilibrium state. Additionally, Fig. 4.4 on page 35 shows

that our strain rate takes a while to stabilize after flow reversal, which again suggests

that our results are not in steady-state. Thus, it is possible that our primary ob-

servation, that the shear-induced particle rearrangements are isotropic in character,

is limited only to the transient regime we observe. It is still intriguing that in this

regime, particle motion is so isotropic. For example, Fig. 4.4 on page 35 shows that

the sample takes a while to requilibrate after shear reversal, yet there is no obvious

signature of this in the particle motion or the configurations of the particles. Likewise,

presumably the long-term crystallization will be caused by anisotropic motion (and

result in further anisotropic motion), but no signs of this are present in the early-

time amorphous samples we study. It would be interesting to conduct longer-term

experiments to relate the particle rearrangements to those resulting in crystalliza-

tion. Alternatively, it would be also interesting to use a cone-and-plate geometry

shear cell capable of indefinitely large strains [42], to reach the steady-state constant

shear regime.
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By studying the plastic deformation in colloidal systems, we can have a better

understanding on the mechanics of amorphous alloys [52, 53], which has unique sci-

entific and potential practical interests. And the mechanic model on deformation is

about the “shear transformation zone” (STZ) [53, 51, 8]. Different from the structural

defect as in lattice dislocation, the STZ is an event that happens in locals [53, 51, 8] .

Given that the experimental observation on alloys is hard, direct search for the local

events are not available yet [53]. Therefore amorphous colloids are good experimental

tools to test the mechanic in amorphous materials, or even predict new properties of

the metals [51, 9] . Based on our results, we could propose that when amorphous

alloys are under shear, the plastic deformation inside would extend in any directions,

other than along the shear direction. And this could lead to a unique change on the

electric bands, which would introduce an interesting electromagnet property into the

alloy.



Chapter 5

Experimental techniques for

studying emulsions

Besides colloids, I also use emulsion to study plastic changes under shear. Compar-

ing to hard-sphere colloids, soft droplets allows us study their inter-forces from the

deformed shapes. For this experiment, we need to make emulsion droplets with con-

trolled size, and make sample chambers with desired geometries. So in this chapter I

will talk about the experimental techniques on this emulsion experiment.

5.1 Producing emulsion samples

We make emulsion droplets using the microfluidic technique called “co-flow” geometry

[113], by collaborating with Dr. Alberto Fernandez-Nieves at Georgia Tech. The idea

is analogy to water dripping in a faucet. If we let water flow at a very low rate,

water will drip out one droplet at a time. This droplet size is dependent on the

surface tension (water to air), the faucet size, and the flow rate. If those factors

are constant, the droplet size will be very stable. If the flow rate keeps increasing,

a water stream or jet, rather than droplets, will be formed. Even if the jet could

break down into droplets in the end, the size distribution will be in a large range.
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Figure 5.1: The sketch of co-flowing geometry for droplet making. The oil flow is
in the inner tube, and the water with surfactant is flowing in the outer tube. The
shear on the interface between the water and oil break the oil flow into droplets. This
method could make oil droplets with narrow size distribution.

In the co-flowing geometry, instead of water in air, we make oil droplets in water

(surfactant is added to stabilize droplets). The faucet we use is a pipette with a

fine orifice of 40 µm size, pulled by a pipette puller and smoothed by a micro forge

(Fig.5.3). As shown in Fig. 5.1, this circular capillary is carefully slid into another

capillary of bigger size (∼200 µm). We align up the two capillaries under microscope,

trying to make their centers along one straight line. Therefore the small capillary

is for oil flow and the larger one is for water flow. The oil we used is silicon oil

from FisherTM (poly-dimethylsiloxane, density=0.963 kg/m3, viscosity=100 mPas).

And the surfactant in water is FairyTM soap (a polymer surfactant), which is strong

enough to prevent droplets from coarsening. The capillary tubes are connected with

the syringes. By using the syringe pump, we could control the flow rate precisely, and

droplet size are quite monodisperse with less than 1% polydispersity. The flow rates I

used in experiment is ∼0.1 ml/h for oil and ∼0.1 ml/min for water. And the droplet

size under these flow speeds is around 300 µm in diameter. However, in Fig. 5.6,

the polydispersity of the sample is much larger as shown in Fig. 5.2. To prevent

crystallization, we use binary sample with radius r = 240 and 290 µm. But the

polydispersity here is around 15%, much larger than what made from the coflowing

geometry. It is due to the fact that droplet rupture when they are squeezed into

the 2D chamber. The droplet breakup is significantly influenced by the surfactant,
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Figure 5.2: The radius distribution of droplet in Fig. 5.6. The sample is binary of
droplet radius=240 and 290 µm, but with the polydispersity around 15%.

wetting characteristics of the chamber material, and the shearing. This has not been

well understood yet, although people apply this to break up droplets in microfluidic

technique [114, 115].

5.2 Microfluidic chip

Since in emulsion experiment (Chapter 7) the 2D chamber’s wetting characteristics

is significantly important for the droplets stability, we introduce two ways of making

the microchannels with different materials, one is silicon glass, and another is PDMS

(polydimethylsiloxane).

The glass chamber (Fig.5.4(a)) is basically made from two parallel glass slides

separating by a thin film of ScotchTM tape with ∼200 µm thickness (McMaster-Carr

No.75975A658). By cutting out the hopper shape from the tape, we could make the

channel between the glass slides. Since the double-sided ScotchTM tape could be cut

into any shape, we could make different channel easily. However, there is a limit to

the precision for this hand making device. As seen in Fig. 5.6, the angles of the two

sides of the hopper are not identical with 2◦ of uncertainty.
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Figure 5.3: (a) The pipette puller in our lab to pull out a fine orifice for a capillary
tube (Model P-97 from Sutter Instrument Co., USA). (b) The microforge in our lab
to cutting pipette tips to particular sizes (MF-830 from NarishigeTM , Japan). The
manipulation is precisely controlled under the observation of the microscope lens on
the right.

film

glass

glass

side view top view

Figure 5.4: The sketch of micro channel made from glass slides. The double-sided
ScotchTM tape is sandwiched between two parallel glass plates (side view), determin-
ing the height of the micro channel. By cutting the tape into the channel shape (top
view), the micro device could be made.
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The gap of the chamber made from the double-side ScotchTM tape is fixed, and

so the choices for droplets sizes in experiment is limited. So if we want to study much

smaller droplets, say 100 µm or even less, we need to either find a thinner tape or

make the chamber in a quite different way. And the soft lithography is a technique

for constructing micro devices [116, 117]. By collaborating with Dr. Hang Lu and

her student Jan Krajniak at Georgia Tech, we make micro channels from PDMS

(polydimethylsiloxane). The procedure shown in Fig. 5.5 is as following: First, the

micro channel design is drawn by computer aided design tool (CAD), and a photo

mask is printed by a high-resolution printer according to the design. Second, a silicon

wafer is spin-coated with a thin film of photosensitive SU-8 epoxy. The film thickness

determines the height of the micro channel (200 µm in my experiment). The coated

wafer is then exposed under UV through the photo mask, and the microchannel

pattern is created on the wafer. Third, PDMS liquid is casted on to the mold, and

placed in a oven for solidation. Fourth, the solid PDMS channel is placed on a glass

slide, after the inlets and the outlets are drilled out.

5.3 Bright-field microscope

A microscope is a common tool to investigate the structure of soft materials, due

to the fact that the size of material components is usually 10nm -1mm. Bright-field

microscopy is the simplest among kinds of optical microscopes, and it is used in my

emulsion experiment (Chapter 7). The working principle of bright-field microscopy is:

light source is focused by a condenser lens, projected to the sample placed on the stage,

and then collected by the objective lens. The microscope I used is LeicaTM DM-IRB

inverted microscope. To obtain a large field of view, we use low magnification: 1.6×

objective lens and 0.33×C-mount. So the image size is 11.2×8.5 mm2. A CCD camera

(HitachiTM KP-M2U) transmits the optical image into a computer, and images are
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Figure 5.5: The procedure of the soft lithography [117]. (a) Photo mask of microchan-
nel design is printed by a high-resolution printer. (b) Through the photo mask, the
silicon wafer coated with photosensitive SU-8 film is exposed under UV light. And
the design is created on the mold. (c) PDMS (liquid) is casted on the mold, and
baked in a oven for a solidation. (d) After punched out the inlets and outlets, the
solid PDMS channel is placed on a glass slide.

recorded by the software “OpenBox1.7” at the speed up to 30 frames per second.

A image of bright field microscopy is dependent on the contrast between the indices

of refraction of sample components. Take the oil-in-water droplet image from my

emulsion experiment (Fig. 5.6) for example. Both oil and water are transparent, and

light could pass through without changing the direction. Therefore, the image pixels

are uniformly bright either outside of the droplets (water phase) or inside (oil phase).

But on the droplet boundary refractive indices of the two media have large contrast

(water 1.3 and silicon oil 1.5), which reflects the light and leaves the dark regions in

the image. Basing on those dark round edges, we could identify individual droplets.

The thickness of the dark boundary is dependent on the refraction difference, larger

contrast thicker boundary. If there is any air bubble mixing inside, the boundary

would appear thicker than oil droplets, given their refractive indices are 1.0 for air,

1.3 for water, and 1.5 for silicon oil.
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Figure 5.6: A image of the oil-in-water emulsion droplets from the experiment in
Chapter 7. It is taken by a 1.6× objective lens and a 0.33× C-mount. The droplets
are silicon oil in water with the surfactant FairyTM soap (a polymer surfactant). To
prevent crystallization effect, binary droplets (0.29 mm and 0.24 mm in diameter) are
used, with polydispersity 15%. Its dark boundary comes from the contrast between
the refractive indices of the silicon oil (1.5) and water (1.3), where the light is reflected
and less amount is collected by objective lens. The angle of the channel is 25◦±2◦.
The whole field of view is 11.2 mm×8.5 mm, and the scale bar is 1 mm. The gap of
the chamber between the two parallel glass slides are around 0.2 mm.



Chapter 6

Computational techniques for

studying emulsions

In emulsion experiment, we want to identify droplet shapes for force calculation, as

well as center position for dynamic motions. Besides, the images of emulsion and

colloids are quite different. Therefore, we need specific algorithms for the emulsion

experiment, and some of them are different from colloids algorithm discussed in Chap-

ter 3.

6.1 Emulsion droplet identification algorithm

As indicated in Fig.5.6, the emulsion droplet could be identified from its black bound-

ary where the light is reflected at the interface between oil and water. The original

idea of the program is from Ken Desmond, which is as following. First, we choose

a brightness threshold, less bright pixel set to be 0 and the rest be 255 (Fig. 6.1(a)-

(b)). By this way, the original image is simplified into a binary one, where black (0)

is boundary and bright (255) is oil or water. Second, we use the blob coloring method

(IDL code “label region”) to distinguish individual droplet areas, and take the middle

positions for droplet centers (Fig. 6.1(c)-(d)). Third, from those centers we search
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for the nearest black point at an angle, and identify it as a point on the boundary.

As shown in Fig. 6.2(a), We use 200 boundary points to represent one droplet from

angles equally around the center in 360 degrees. And from the 200 point convex

shape we calculate the droplet radius, deformation, and other quantities. The radius

r is the mean of the distances ri from the center to the boundary points. Fig. 6.2(b)

shows the radius r as a function of time. The noise is partly due to the fact that the

droplet shape changes during the time, as well as the image resolution. However, the

uncertainty of the radius is within 10%.

r = 〈rn〉 =
(

Σ200
n=1 rn

)

/200, (6.1)

and the deformation D is the standard deviation of ri

D =

√

〈r2
n〉 − 〈rn〉2

〈rn〉
, (6.2)

where 〈r2
n〉 =

(

Σ200
n=1 r2

n

)

/200.

The tracking algorithm for droplets is similar to for colloids in Chapter 3. Given

the sample is not monodisperse, we make sure the moving distance between consec-

utive frames are less than the smallest droplets.

6.2 Neighbor identification algorithm

An amorphous solid, unlike crystalline, has no long-range order. So in the disordered

structure, particles motions are directly influenced by their neighbors. Therefore, it

is important to identify “neighbors” when studying microscopic structures. Gener-

ally, there are two ways to define neighbors. One is the particle distance is shorter

than a certain threshold. This definition is used in the data analysis of my colloidal

experiment (Chapter 4), where colloids have a fixed spherical shape. Another way



70

(a) (b)

(d)(c)

Figure 6.1: (Color online) Steps for emulsion droplet identification. We first set the
threshold value (100 here) for pixel brightness of the original image (a), and simplify
it into a binary picture (b), 0 for less bright and 255 for more. Then we use the blob
coloring method (IDL code “label region”) to identify individual droplets, and the
centers of those regions are set to be the droplet positions (labeled by red points in
(c)). Finally, we eliminate the droplets either with too small radius or with incomplete
shape on the boundaries, as shown in (d).
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r

Figure 6.2: (a) The perimeter of a droplet from 200 points on its boundary. The
radius r is from the center to the boundary points. (b) The radius r as a function of
time.
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is using Voronoi diagram or Dirichlet tessellation [118, 119, 120]. As Fig.6.3 shows,

Delaunay triangulation (blue line in (a) ) is applied on the particles positions, where

the network cuts the space into small triangles. And then the Voronoi polygons (red

in (b) ) are generated basing on the Delaunay triangulation. Those polygons are

considered as the local free space for individual particles. And particles who share

the boundaries are considered as nearest neighbors. There are different definitions to

draw Voronoi polygons or cells, and one common way is requiring boundary points

have equal distances to the neighboring particles, di = dj in Fig.6.3(c). Given the

polydispersity of the sample, we use the definition of Laguerre (radical) tessellation

[118, 119, 120]. In this geometry, the Euclidean distance di and dj are weighted by

the radius of particle i and j (ri and rj). Therefore, the relation di = dj in Voronoi

tessellation changes into d2
i − r2

i = d2
j − r2

j in Laguerre (radical) tessellation. By this

weighted geometry, bigger droplets tend to have larger cells or free spaces. In the

data analysis of my emulsion experiment (Chapter 7), I use this Laguerre (radical)

tessellation to identify “neighbors” for deformed droplets. The program is original

from Ken Desmond.

6.3 Neighbor switch algorithm

A typical plastic rearrangement I want to observe is called “T1 events”. It describes

four neighboring droplets slipping through each other with topological rearrange-

ments. As shown in Fig. 6.4, two neighboring particles are separated apart, and other

two squeeze in between and become new neighbors. As discussed above, “neighbors”

is based on the Laguerre (radical) Voronoi. This definition is actually very sensitive to

the noise from droplet identification. Besides, for two droplets on the edge of “neigh-

boring”, if they are just rattling a little bit in local space with no much difference to

eye, it could be identified as a dramatic event by the program as “neighboring apart”
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(a) (c)(b)

d
d

i

j
di

dj

i

j

Figure 6.3: (Color online) Voronoi diagram. The image is from
http://mathworld.wolfram.com/VoronoiDiagram.html. (a) Delaunay triangula-
tion create a network of particle positions (blue points), cutting the space into the
triangle cells. (b) Voronoi polygons (red) is generated from the triangulation, and
the red dots are the vertices of voronoi. (c) One of the common Voronoi tessellation
is requiring boundary points have equal distances to neighboring nuclei points
di = dj. In Laguerre (radical) tessellation, the Euclidean distance is weighted, and
the relation is d2

i − r2
i = d2

j − r2
j , where r2

i and r2
j are the weights for nuclei points

i and j. And we use droplet radius as the weight ri for each droplet, which gives
larger droplets larger voronoi cells.

or “neighboring rejoin”. So to eliminate the noise affect on the Voronoi definition, I

add extra criteria for “neighboring apart”: the centers of particles should move away

at least 10% of their distance. And in the similar way, for “becoming neighbors”,

I require two droplets move closer no less than 10% distance, as well as being new

neighbors from Voronoi tessellation. And to find T1 event, the program searches

“new neighbors” at one time step, and “old neighbors” at another time step. And

then we draw a line between each pair of droplet centers as “neighbor bonds”. If the

old bonds and new bonds are crossing, we take it as one T1 event, where one neighbor

bond break and another bond forms at the same time.



74

(a) (b) (c)

Figure 6.4: (a)-(c) The three images show a typical T1 rearrangement between the
four particles labeled by circles. The field of view is around 1×1 mm2, and the time
interval of this rearrangement is around 1 s.



Chapter 7

Stress flucatuations in a 2D

frictionless flow through a hopper

7.1 Introduction

As discussed in Section 1.4, force network has been found in jammed materials in

both frictional [4, 25] and frictionless systems [2, 21, 19]. In this network, small

portion of particles support large stresses, and there are strong spatial correlations

between them, forming “force chains” [19, 20]. This chain structure determines the

rigid nature of dense materials under static state [19, 20]. Because the force chain is

contributed by small amount of particles, it changes or fluctuates under shear [22].

The yield flow of jammed material under shear has been studied in many previous

work, where particles’ deformation in force chains [22, 121, 122, 123, 124] and local

rearrangements [125, 126, 127, 86, 128, 73, 129, 74] are examined. It is found that the

distribution of force impulses or fluctuations are related to the force network inside

the material [130, 22]. Recent simulations founds that without static friction, the

force distribution would be more heterogeneous, and force chains could extend to a

longer length scale [24]. Therefore, we hypothesize that comparing to frictional grains,

frictionless systems could have more fragile force chains, and the stress fluctuations
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could be more obvious under shear.

Comparing to the force study in the static case [21, 19, 4, 25], the experiments

and simulations on dynamic flow are still limited. And many geometries focus on the

Couette shear [22, 130, 131, 128, 132, 125], as discussed in Fig. 1.5. In other geometry,

for example flow through a hopper, people also found large stress fluctuations [23, 133].

In the granular hopper experiments [23, 133], the flux rate is almost constant over

time without intermittent and shocks (see in Section 1.4). Therefore, this suggests to

us that the stress fluctuations on the wall comes not from the unsteady flow rate, but

maybe the changes of force chains inside the dense flow. Given that force fluctuations

are found in frictionless bubbles under Couette shear [128, 86, 125], we conjecture

that stress fluctuations could also be found when emulsion flows through a hopper.

In addition, it is interesting to us to understand plastic changes in sheared flow by

comparing systems with and without static friction.

In addition to macroscopic stress fluctuations during yielding under shear, people

are also trying to understand the plasticity through micro rearrangements [134, 16,

17, 123, 73, 74, 69, 9]. As discussed in my colloidal experiment (Chapter 4), the idea

of shear transformation zones (“STZ”) is proposed by Spaepen in late 70s [51] and

later developed by Falk and Langer [8]. This theory describes plasticity as irreversible

local rearrangement between particles during shear. And in frictionless system, the

so-called “T1” event is studied as an elementary plastic rearrangement [134, 16, 17],

as shown in Fig. 6.4. The “T1” event describes four neighboring droplets slipping

through each other with topological rearrangements. Although this micro rearrange-

ments has been studied in previous work [134, 16, 17, 123, 74, 69, 9], its relation to

the stress fluctuation is still not clear yet. Although simulation [135] and experiments

[134, 123, 74] found some evidences, more experimental proof are still in need.

Therefore, we use frictionless emulsion to study the stress fluctuations in the dense

flow through a hopper. Similar to the idea of using 2D photoelastic disks studying 3D
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jamming of granular materials [21, 19, 22], we use 2D emulsion by squeezing droplets

into a thin chamber forming disk shapes. By tracking individual particles, we are

able to study their microscopic rearrangements and plastic changes during the flow.

At the same time, we are able to quantify the stress on droplets from the deformed

droplets in 2D images. Therefore in our 2D emulsion experiment, we are investigating

the relation between the macro stress and micro dynamics.

7.2 Results

Fig. 7.1 is a list of six emulsion data flowing through the 2D hopper. They have

almost the same shape of hoppers and the same area fraction of samples. But the

flux rates range from 0.33 to 2.93 mm2/s. To study the situations with different flux

rates, we compare the data 1, 5 and 6 in the following.

The typical data we discuss below is the data 1, which has the largest flux rate.

Data 

Flux 
Rate 

(mm2/s) 

Mean 
Droplet 
Radius 
(mm) 

Area 
Fraction 

Hopper 
Angle 

(degree) 

Orifice 
Size 

(mm) 
      
1 2.93 0.266 0.90 25.0 +/- 1.9 1.1 
2 0.83 0.251 0.92 27.4 +/- 1.9 0.7 
3 0.75 0.136 0.93 27.4 +/- 0.4 0.4 
4 0.33 0.136 0.94 27.4 +/- 0.4 0.4 
5 1.33 0.168 0.90 25.5 +/- 0.2 0.8 
6 0.61 0.150 0.91 25.7 +/- 0.6 0.6 

 

Figure 7.1: The table list of six emulsion data with different flux rates. To study the
situations with different flux rates, we compare the data 1, 5 and 6 in the following.

7.2.1 Flow profile

To understand the velocity field and the shearing condition in our emulsion flow, we

first investigate the velocity profiles at two locations with different widths, as shown
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in Fig. 7.2. It is found that at both locations, the velocity profiles could be fitted

well by parabolic curves. In contrast to the results described in Chapter 4, where the

colloidal suspension exhibited a shear band (Fig. 4.3), for our flowing emulsion we

do not find a shear band. Given that channel width is less than 20 droplet size, this

smooth distribution of flow profiles may be from the confinement effect on hopper

boundary [65]. And this similar tendency is also found in much smaller flow rate,

as found in Fig. 7.2(c)-(d). Given the velocity profiles in Fig. 7.2, we use parabolic

Figure 7.2: (a) Data 1: Vx(x, y) (circle) distribution in the left side of channel with
the width of around 20 droplet diameters. The dash line is the parabolic fitting curve
as in Eqn. 7.1. (b) Data 1: Vx(x, y) distribution at the right side the channel with the
width of around 7 droplet diameters. (c) and (d) are for the data 6 with the similar
analysis to (a) and (b).

fitting for all x locations along the hopper, which is

Vx(x, y′) = β(x) × y′2 + α(x). (7.1)
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The y′ = y − ycent is the relative position along y axis to the channel center. The

fitting parameters α is the flow velocity along the center of the hopper. And β is the

curvature of the parabolic velocity profiles. The distributions of α and β along the

channel (x axis) are shown in the Fig. 7.4(b)-(c).

Given that the flux rate is an important control parameter in my experiment, we

can calculate it from the droplet tracking in the movie. Since our tracking is based

droplet centers, as shown in Fig. 7.3, the space that droplets can go actually is one

radius away from the real hopper boundaries. And w(x) is defined as the channel

width that droplet centers can reach, which is between the dashed lines. So the real

flux rate A(x) includes two parts. One is the integration of the continuous flow across

the width of w(x) along y axis, which is
∫

w(x)
2

−w(x)
2

Vx(x, y′)×dy′. And another is half-size

droplets sliding along the real boundaries, which is Vx(y
′ = w

2
)×〈d〉, where 〈d〉 is the

mean droplet diameter. Therefore the flux rate of the 2D flow can be written as

A(x) =

∫
w(x)

2

−w(x)
2

Vx(x, y′) × dy′ + Vx(y
′ =

w

2
) × 〈d〉. (7.2)

And by using the parabolic fitting in Eqn. 7.1, the area flux can be expressed as

A(x) = 2

∫
w(x)

2

0

Vx(x, y′) × dy′ + (β × (
w

2
)2 + α) × 〈d〉

=
1

12
β(x) ×

(

w3(x) + 3〈d〉w2(x)
)

+ α(x) ×
(

w(x) + 〈d〉
)

. (7.3)

Given the flux is controlled by syringe pump, A(x) should be steady along the channel

and independent of x, which is confirmed in Fig. 7.4(d).

In Fig. 7.4(a), the channel width is decreasing linearly along x. This is determined

by the geometry of the hopper, with the boundary angle of θ ≈ 25◦. And this

distribution can be fitted by

w(x) = 2 × tan(θ)(x0 − x), (7.4)
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x

y

w

Figure 7.3: A sketch of the hopper with the thick boundaries. The dashed lines are
the limit where droplet centers can reach in the channel. W is defined as the width
that droplet centers could go. x axis is in the direction of flow, and y axis is the
direction perpendicular to flow.

where x0 is the position where the dashed lines meet in Fig. 7.3. Given that A(x) in

Eqn. 7.3 should be independent of x, we assume that both β ×
(

w3(x) + 3〈d〉w2(x)
)

and α(x) ×
(

w(x) + 〈d〉
)

are constants. Therefore, we fit the α by using

α(x) =
kα

(

w(x) + 〈d〉
) , (7.5)

which works well in Fig. 7.4(b). we can fit the β by using

β(x) =
−kβ

(

w3(x) + 3〈d〉w2(x)
) , (7.6)

which works well in Fig. 7.4(c). And so the flux rate A(x) can be obtained as

A(x) = kα − kβ/12. (7.7)

Given α is the flow velocity along the center of the hopper, Eqn. 7.5 shows that it is

almost inversely proportional to the width of the channel. It is easy to understand

since the flux rate along the channel is constant and flow speed should be larger at
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narrower regions. The parameter β, induced by the wall effect [65], relates to the

local strain rate, which is obvious in Eqn. 7.9. In other words, more α means droplets

move faster, but more β means more local strains which is what we think is most

important for local rearrangements (“T1 events”). So Eqn. 7.6 shows how confined

boundary effect the velocities inside the dense flow. And giving the consideration of

both “constant flux rate” and “wall confinement”, we finally can obtain the flux rate

A by Eqn. 7.7.

To check if the area flux rate is steady along the channel, we plot A(x) in

Fig. 7.4(d), by using Eqn. 7.2 and the parabolic fitting in Eqn. 7.1. And the dash

line A(x) = kα − kβ/12 = 2.93 mm2/s is from the math fitting in (a)-(c). From the

graph, we can see the flux rate A(x) is almost steady in the channel along the x axis,

within the standard deviation less than 5%. It also confirms the gap of our chamber

is almost uniform along the channel. And similar results are found in other data, as

shown in Fig. 7.4(e)-(h).

The fitting above is an typical example for getting the velocity profiles from the

flow through a hopper. And we use the similar fitting for all six data listed in Fig. 7.1,

and the result is shown in Fig. 7.5. We find that those fitting parameters kα and kβ

are linearly dependent on flux rate A. In other words, those flow profiles can be

scaled by the flux rate A(x), which confirms our fittings discussed above. In addition,

kβ ≈ 2 × kα. It suggests that the “wall confinement” has stronger influence on the

faster flow than “constant flux rate”, which leads to larger strain rates distributing

in the narrow regions.

So basing on the fitting in Fig. 7.4, the velocity distribution in the channel could

be written as

Vx(x, y′) = β(x) × y′2 + α(x)

=
−kβ

(

w3(x) + 3〈d〉w2(x)
) × y′2 +

kα
(

w(x) + 〈d〉
) , (7.8)
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Figure 7.4: (a) Data 1: width of channel w(x) as a function of x position. The
dashed line is from Eqn. 7.4 with θ = 25◦ and x0 = 11.86 mm. (b) Data 1: The
parameter α(x) as a function of x position. The dashed line is from Eqn. 7.5 with
kα = 3.6 mm2/s and 〈d〉 = 0.24 mm. (c) Data 1: The parameter β(x) as a function
of x position. The dashed line is from Eqn. 7.6 with kβ = 8.0 mm2/s. (d) Data 1:
Area flux A(x) as a function of x position. The hollow circles are based on Eqn. 7.3,
with the parameters α(x), β(x) and w(x) from the parabolic fitting in Eqn. 7.1. The
dashed line is A(x) = kα − kβ/12 = 2.93 mm2/s. (e)-(h) are for the data 6 with the
similar analysis above. (e) Data 6: Eqn. 7.4 with θ = 25.7◦ and x0 = 7.1 mm. (f)
Data 6: Eqn. 7.5 with kα = 0.735 mm2/s and 〈d〉 = 0.14 mm. (g) Data 6: Eqn. 7.6
with kβ = 1.5 mm2/s. (h) Data 6: flux rate A(x) = 0.61 mm2/s from Eqn. 7.7 with
kα = 0.735 mm2/s and kβ = 1.5 mm2/s.
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Figure 7.5: The fitting parameter kα and kβ as a function of flux rates from the listed
data in Fig. 7.1. The slope of the straight line for kα is 1.24, and the slope of straight
line for kβ is 2.87.

which is shown in Fig. 7.6(a). The darker color corresponds to the larger magnitude,

and white curves are contour lines. Due to the hopper geometry, the velocity is larger

(darker) when close to the narrow end. And because of the shearing and confinement

effect from the boundary, the velocity contour lines are smooth. In addition, the

distribution of the strain rate γ̇ could be derived from Eqn. 7.1, which is

γ̇(x, y′) = δVx(x, y′)/δy′ = 2β(x) × |y′|. (7.9)

As shown in Fig. 7.6(b), the large strain rates concentrate on the boundary sides near

the narrow end of hopper.

7.2.2 Rearrangements

Due to the strain rates from the velocity field, there are rearrangements between

droplets. The rearrangements lead to deviation from the mean velocity field, which we

call nonaffine motions in Chapter 4. The nonaffine rearrangement could be calculated
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(a) Vx (b) g

Figure 7.6: (a) The distribution of velocity profile Vx, basing on Eqn. 7.8. (b) The
distribution of strain rate γ̇, basing on Eqn. 7.9. The darker color corresponds to the
larger magnitude, and the white curves are contour lines.

by removing the mean Eqn. 7.1 from the real velocities of droplets,

Ṽx(x, y) = Vx − β(x) × y′2 − α(x). (7.10)

Fig. 7.7(a) is the probability of nonaffine motion Ṽx at two x locations 3.5 (hollow

circles) and 7 mm (solid circles). Both have non-Gaussian tails, and the Ṽx for

narrower location has larger standard deviation. Given that the distribution of the

velocity field could affect the nonaffine rearrangement, we normalize the nonaffine

motion by the velocity field Ṽx/Vx, and get the Fig. 7.7(b). After the normalization,

the probability distributions seem to overlap to each other. And this tendency holds

for nonaffine motion at all location of the hopper, as shown in Fig. 7.7(c). This

velocity scaling suggests that there are some similarity between the rearrangements

at different locations of the hopper. But it also implies that in the narrower region

with larger flow rate, the kinetic energy for rearrangement is larger, which could

lead to some irreversible plastic changes during the flow. In Fig. 7.7(c), there is a

bumper on the left shoulder. It is due to non symmetrical shape of the hopper, where
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the boundary angles have ±2◦ bias. And in Fig. 7.7(d), we see the scaled nonaffine

motions Ṽx/Vx do not symmetrically distribute along y axis. Fig. 7.7(e)-(h) shows

that this scaling of nonaffine motion Ṽx by velocity Vx holds for all the data with

different flux rates.

To quantify the plastic rearrangement, we use the definition of “T1” event [134,

16, 17] as introduced in Fig. 6.4. Fig. 7.15(a) shows the distribution of T1 events in

the hopper. Most of the T1 events happen near the narrow region, which confirms

that larger nonaffine motion have higher chance of triggering plastic events.

7.2.3 Stress fluctuations

Plastic changes of materials usually involves large energy fluctuations in macro me-

chanics. And this mechanical change is related to the stress distribution inside mate-

rial. There are two ways to quantify interaction between droplets, one is from droplet

contacts and another is from their deformed shapes. Because of the surface tension,

the 2D droplets prefer to have round shape. When under compression or stress from

neighbors, a droplet would be deformed, and at the same time have contact area

with the neighbors. The larger the stress is, the larger contact and larger shape

deformation the droplet would have.

From the image, we identify the droplet contact (green lines) as shown in Fig. 7.9(a).

Similar to the droplets’ interaction in 3D [4], we assume the force magnitude between

droplets is proportional to their contacts lcontact. Therefore, the interaction in 2D

could be written as fcontact = σlcontact/R
′, where R′ = RgapR2D/(Rgap + R2D) and σ

is the surface tension [136]. Rgap and R2D are the two radii of curvature of the quasi-

2D droplet, one is from the side view of the narrow chamber, and another is from

the top view. Rgap is the radius between the channel gap, which is approximately

half channel gap H/2. And R2D is the disk radius in the 2D image taken from the

channel top. Given that Rgap < R2D in the 2D system, R′ is approximately equal to
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Figure 7.7: (a) Data 1: The probability distribution of nonaffine mobility Ṽx at
x = 3.5 mm (hollow circles) and 7 mm (filled circles). The region at x = 3.5 mm has
the width of 16 droplet diameters, and the region at x = 7 mm has the width of 9
droplet diameters. The dashes lines are Gaussian fitting. (b) Data 1: The probability
distribution of Ṽx normalized by Vx at x = 3.5 mm (hollow circles) and 7 mm (filled
circles). The dashed lines are Gaussian fitting. The two curves almost overlap to
each other. (c) Data 1: Probability distribution of Ṽx normalized by Vx for all the
droplets in the channel. The data are averaged over 2700 droplets from a movie of
200 s. (d) Data 1: Averaged Ṽx/Vx as a function of y. (e) Data 6: similar analysis
to (b) for the data 1. (f) Data 6: similar analysis to (c) for the data 1. (g) Data 5:
similar analysis to (b) for the data 1. (h) Data 5: similar analysis to (c) for the data
1.
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1 mm

Figure 7.8: (a)-(c) The distribution of T1 events in the channel for the data 1, 6,
and 5. The dark color corresponds to the higher probability of T1 rearrangements in
that region. Due to the image-size limit, part of the channel on the left can not be
observed, which is extended by the dashed lines.

Rgap, which is close to the half of the chamber gap H/2. So fcontact ≈ 2σlcontactH ,

where H and σ are constant for droplets in the same chamber. Fig. 7.9(b)-(d) is the

probability distribution of contacts. Given that force magnitude fcontact ∼ lcontact, the

shape of distribution of lcontact is also that of the stresses. The tail of large contact (or

large force) shows that the probability distribution has an exponential decay, similar

to the stress distribution found in 3D frictionless emulsion [4]. To check the spatial

distribution of those large stress or contact, we plot Fig. 7.9(a). The large stresses

are represented by the thick red lines. The graph shows that most of the large stress

are near the hopper boundary, and some of them align up into chains perpendicular

to the wall. This perpendicular orientation of large force chains is due to the shearing

on wall [137, 19]. And because large shear rates concentrate near the wall of the

narrow region (Fig. 7.6(b)), the large stresses tend to distribute in this region. From

Fig. 7.9(a), the red color indicates large interacting forces between droplets. It shows

that those large (red) force chains extend several droplet sizes. And when the gap

narrows down to this size on the right side, the chains cross both sides of the hopper

forming a temporary (jamming) arch, which is similar in granular materials [3]. In

addition, those large force chains starting from wall suggest that the the stress on the

wall is directly related to that inside the hopper. Therefore, the micro rearrangements
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happening in the flow could affect the macro stress on the boundary.

1.0

f/<f>

0.5

1.75

Figure 7.9: (a) A force map from a image of the data 1. The contacts (green lines)
between neighboring droplets are identified by the code originally from Ken Desmond.
By assuming the contact forces are linearly dependent on the contact length, we plot
the short bonds connecting droplet centers to represent the interactions between them.
The bond thickness of are linearly independent on the force magnitude. And the color
bar indicates the stresses, linearly increasing from 0.5〈fcontact〉 (blue) to 1.75〈fcontact〉
(red). The stresses smaller than 0.5〈fcontact〉 are colored blue, and the stresses larger
than 1.75〈fcontact〉 are colored red. And the stress between is colored based on the
color bar. (b) The probability distribution of contact lcontact from (a). (c)-(d) The
probability distribution of contact lcontact from images of data 6 and 5.

Another way to quantify the stress on a droplet is based on its deformed shape.

We define the droplet deformation as the standard deviation of the radius:

D =

√

〈r2〉θ − 〈r〉2θ
〈r〉θ

, (7.11)
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where the r(θ) is the distance from droplet center to its boundary in the direction

of angle θ to the x axis. And we use 200 points as the perimeter for each droplet

boundary with a equal angle interval from 0 to 2π. Fig. 7.10(a) shows the distribution

of deformation in the hopper. Agreeing with Fig. 7.9(c), more large deformation

distribute on the wall near the narrow end. To confirm the correlation between

the two methods of stress quantification, we plot the largest contact length on a

droplet as a function of its deformation for different data with various flux rates, as

in Fig. 7.10(b)-(d). They all show that on average the droplets having larger shape

deformation D tend to have larger contacts lcontact with neighbors. This confirms

the strong correlation between contacts and the shape deformation, and the droplet

interaction could be quantified by either way. Therefore, droplet deformation is used

to quantify stress in the later discussion.

To quantify the stress on macro scale, we obtain the averaged deformation in a

large region. Given different velocities at different location of the hopper, we consider

the temporal distribution of mean deformation at 3 sections along the channel in

Fig.7.11. It shows that stress fluctuations exist in all sections, and sometimes large

stress drops happen during short time. It confirms that even without static friction,

the dense flow through hopper still have stress fluctuations, similar to that in frictional

granular materials [23, 133]. And the large stress releases or fluctuations are also found

in granular materials under shear [23, 133, 22, 131].

It is believed that the large energy release during the stress fluctuations may be

related to the shear-induced plasticity. To quantify the fluctuations, we consider two

aspects of the deformation drops: magnitude ∆Ddrop and lag time ∆tdrop [131], as

shown in Fig. 7.11. In the landscope of temporal deformation, ∆Ddrop is a deformation

decrease from the local maxima to the local minima, and ∆tdrop is the lag time during

this drop. So to investigate the stress fluctuations during the whole movie, we plot

Fig. 7.12, the probability distribution of deformation decrease ∆Ddrop and lag time
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1.0

f/<f>

0.5

1.75

Figure 7.10: (a) The deformation distribution along the channel, overlapped with the
forces in Fig. 7.9(c). Each droplet is shaded with a shade of gray corresponding to
the deformation. The deformation ranges from 0 to 0.4, and the larger magnitude
corresponds to the darker color. (b)-(d) Data 1, 6, and 5: The largest contact length
lcontact on a droplet as a function of its deformation D normalized by the mean 〈D〉.
The vertical bars represent the standard deviation.
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Dtdrop

DDdrop

1          2         3

Figure 7.11: (a) Data 1: The deformation fluctuations at 3 sections along the channel
as indicated in (b). The left region (solid line) has the widest gap (∼ 19〈d〉, 〈d〉 =
0.48 mm is mean droplet diameter). Due to the limitation of the image size, the
region can not cover the whole part of the channel (dashed lines). The middle region
(dots) has the gap of ∼ 13〈d〉. The right region (dashed line) has the narrowest gap
of ∼ 7〈d〉. To reduce noise, the deformation is averaged over droplets in each region
during a short time scale τ . To keep the same amount of droplets for the statistics in
the different regions, we choose the time intervals τ inversely proportional to 〈Vx〉y(x)
(0.33, 0.23, and 0.13 s), and select those regions with same amount of area. During
the fluctuation, there are built-up events (increase in deformation) and release events
(decrease in deformation). And to investigate stress fluctuations, we consider the
deformation decrease ∆Ddrop and lag time ∆tdrop in each release event [131]. (c)-(d)
The deformation fluctuations for the data 6 and 5.
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∆tdrop. Given that the deformation is larger and flow rate is faster near the narrow

region, the deformation D is normalized by the mean 〈D〉 in (a), and the lag time τ

is scaled by the average time intervals τ̄ inversely proportional to Vx. The probability

distributions in both graphs are roughly exponential. The decay constant for the are

around 0.08〈D〉 and 2.1τ , which are insensitive to the time interval τ we choose. And

in other data as shown in Fig. 7.12(c)-(f), the decay constant for Ddrop is smaller for

smaller flux rates, but no much difference to tdrop distribution. It suggests that larger

flux rate could lead to larger deformation drops, but the temporal distribution should

be the same. In addition, those graphs show that the distribution of stress drops in

these regions are qualitatively same after the scaling, either in the deformation drop or

lag time. It means that the statistics of the stress fluctuations are similar in the three

regions, although the velocity and shear conditions are different. In the previous shear

experiment on granular material [131] similar results are found, where the statistics

of stress fluctuations distribution is found qualitatively same under different shear

rates. All that suggests that the exponential decay in stress drops is not dependent

much on shear rates or flow rates.

In addition, it is interesting to check the power spectrum of deformation fluctu-

ations D(t). Fig. 7.13 shows the power spectra for different regions. In this log-log

plot, the straight line has a slope of -1. And at high frequency ω/2π > 0.1 s−1, the

spectrum P (ω) ∼ ω−1, which holds for different regions with different shear rates.

After scaled by the averaged deformation 〈D〉 at each regions, those spectra almost

overlap to each other. And the similar power-law in stress fluctuation spectrum is

also found in granular experiments [138].

7.2.4 Stress fluctuations vs. T1 event

As discussed above, the plasticity could be quantified either by stress fluctuations in

macro scale, or by the T1 events in micro scale. Therefore, it is interesting to inves-
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Figure 7.12: (a) Data 1: Probability distribution of deformation decrease ∆Ddrop (a)
and lag time ∆tdrop (b) of stress fluctuations at 3 sections same as in Fig. 7.11: the
left (solid line) with the widest gap of ∼ 19〈d〉, the middle (dots) with the gap of
∼ 13〈d〉, and the right (dashed line) with the narrowest gap of ∼ 7〈d〉. Given that the
deformation is larger and flow rate is faster near the narrower region, the deformation
D is normalized by the mean 〈D〉 in each region (a). And the lag time τ is scaled
by time intervals τ = 0.33, 0.23, and 0.13 s. The probability distributions in both
graphs are roughly exponential with the decay constants around 0.08〈D〉 and 2.1τ .
Both graphs are based on the statistics of 2700 droplets in a 200 s movie. (c)-(d):
Similar analysis above for the data 6. The probability distributions in both graphs are
also roughly exponential with the decay constants around 0.04〈D〉 and 1.8τ . (e)-(f):
Similar analysis above for the data 5. The probability distributions in both graphs
are also roughly exponential with the decay constants around 0.06〈D〉 and 1.7τ .
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Figure 7.13: (a)-(c) Data 1, 6, and 5: The power spectrum for deformation fluctuation
at the three regions as shown in Fig. 7.11(b). The straight line has a slope of -1.
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tigate the relation between them. So we investigate both the temporal fluctuation

of the deformation and the cumulative number of T1 events on the left side of the

channel, as shown in Fig. 7.14 (a) and (b). It is found that during the period of large

stress drops (4.3-6.3 s, and 12.9-14.2 s), T1 events happen more frequently. It suggests

strong correlation between the stress fluctuations and the micro T1 rearrangements.

To confirm the relation between large stress release and T1 frequency, we plot the

Fig. 7.14(c), the averaged T1 frequency fT1 as a function of deformation drop Ddrop

normalized by the mean 〈Ddrop〉. It confirms that during the large stress releases, T1

rearrangements tend to happen more frequently.

In addition, Fig. 7.15(a) shows the T1 particles during the time period 12.9-14.2 s

in Fig. 7.14(b). It shows that those T1 events group together, forming a larger

active region. This spatial correlation between T1s is confirmed in Fig. 7.15(b), the

pair correlation function of T1 during short time scale τ = 2 s when the flux only

moves over one-droplet distance. The correlation peak at around one droplet diameter

distance suggests that T1 events would trigger another T1 rearrangement among the

neighbors in the next short period. And in this way, groups of T1s happen in the

neighboring regions during short period. As shown in Fig. 7.15(c)-(d), this spatial

correlation between T1 rearrangements can also found in other data with different

flux rates.

For further investigation on the relation between deformation and T1 event, we

take a look at one typical T1 event, and study how the deformation changes during

the rearrangements. Fig. 7.16 shows the the deformation of the neighbor region

around a T1 event before, in the middle, and after the rearrangement. During the

rearrangement, the whole group of droplets only move over one-radius distance, but

some neighbors have large deformation releases. It suggests that a micro T1 event

could lead to stress relaxation in the neighbor region.

We do further statistics over 125 T1 events in the left region of the channel with the
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Figure 7.14: (a) Data 1: Deformation fluctuations of the left side of channel as
shown in the inset. To reduce noise, the deformation averaged over a short time
scale τ = 0.33 s. The dash lines indicate two stress-release periods, during the time
4.3-6.3 s, and 12.9-14.2 s. (b) Data 1: Cumulative number of T1 events distributing
over time in the same channel section and time period. The dash lines correspond
to the same stress-release periods. (c) Data 1: T1 frequency fT1 vs. deformation
drop Ddrop for each drops. The linear correlation is 0.35. (d) Data 1: The probability
distribution of fT1 for large drops D > 〈D〉 (dashed line) and for small drops D < 〈D〉
(solid line) (e)-(f) Data 6: similar analysis as in (c)-(d) for the data 1. The linear
correlation between T1 frequency fT1 vs. deformation drop Ddrop is 0.28. (g)-(h)
Data 5: similar analysis as in (c)-(d) for the data 1. The linear correlation between
T1 frequency fT1 vs. deformation drop Ddrop is 0.27.
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Figure 7.15: (a) T1 particles during the time period 12.5-13.9 s in Fig. 7.14(b). (b)
Pair correlation of T1s during a short time interval τ = 2 s in the region between the
two dash lines. This function tells how many other T1s could be found at the distance
of ∆r from one T1 event. During such short time interval, the flux in this region only
moves over one-droplet distance. The statistics is for 125 T1 events during a movie of
200 s. The x axis is the distance between T1s, normalized by mean droplet diameter
〈d〉 = 0.48 mm. (c)-(d) The pair correlation functions of T1s for the 6 and 5.

Figure 7.16: A typical example of deformation distribution before (a), in the middle
(b), and after (c) a T1 rearrangement. The scale bar is 1 mm. The droplet defor-
mation ranges from 0 to 0.18 with the filling color from white to black. The time
period during this rearrangement is 0.4 s, where the droplet group only move over
one-radius distance.
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width of 20 droplet diameters. Fig. 7.17 is the 2D temporal and spatial distribution

of deformation around T1 events. Deformation magnitude D close to the mean 〈D〉

is colored white. And larger than the mean is more red, the less than the mean is

more blue. The x axis is the distance from T1 center to neighbor area, normalized

by mean droplet diameter 〈d〉 = 0.48 mm. The y axis is the lag time ∆t from the

T1 moment. The graph shows that when T1 rearrangement starts (∆t = 0), the

stress is built up in a short time (∼0.5 s) among the 4 T1 particles. But during

the rearrangement, the stress is then quickly released with a large drop (from red to

blue). The blue region range ∼ 2 s in y (temporal) axis, and one droplet diameter in x

(spatial) axis. It means that it takes a longer time for droplets to recover back to the

average level, comparing to the time for the stress to built up. And this stress drop

does not only happen between 4 T1 particles, but also affect their neighbors within

4 droplet radius distance. As shown in Fig. 7.17(b)-(c), this one-diameter spatial

influence of T1 rearrangements can also found in other data with various flux rates.

In addition, the flux rates of those data from (a), (b) to (c) are decreasing, which is

A1 > A5 > A6. But the blue or red area seem to extend longer along the y (time)

axis. As mentioned in Fig. 7.14, the stress fluctuations can be scaled by longer time

intervals under slower flow rates. And in the similar way, those T1 rearrangements

appear longer at lower flux rates.

7.3 Discussion

By using 2D emulsion, we study both macroscopic stresses and microscopic dynamics

in a dense flow passing through a hopper. Our first main observation is that under

different flux rates, the flow profiles in a hopper are very similar. Our second main

observation is that large temporal stress fluctuations in a large scale. We also find

that at different locations of the same hopper, the stress fluctuations have similar
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Figure 7.17: (a) Data 1: 2D temporal and spatial distribution of deform around T1
events happening in the left side of the channel with width of 20 droplet diameters
(w(x) ∼ 20〈d〉). The map averages over 125 T1 events during a movie of 200 s. As
shown in the color bar, deformation magnitude D close to the mean 〈D〉 is colored
white. And larger than the mean is more red, the less than the mean is more blue.
The x axis is the distance from T1 center to neighbor area, normalized by droplet
mean droplet diameter 〈d〉 = 0.48 mm. The y axis is the lag time ∆t from the T1
moment. (b) Data 5: 2D temporal and spatial distribution of deform around T1
events, similar to (a) for the data 1. (c) Data 6: 2D temporal and spatial distribution
of deform around T1 events, similar to (a) for the data 1.

probability distribution after scaling by the flow speed. Our third main observation

is that local neighbor rearrangements (“T1 events”) are related to macroscopic stress

fluctuations. We find individual T1 events can lead to large local stress release among

their neighbors within one diameter distance. And for the stress fluctuation in a

large scale, T1 events tend to happen more frequently during large stress drops.

Our analysis of this emulsion system shows a direct and local relationship between

rearrangements and stress fluctuations. In addition, by comparing with granular

shear experiments [22, 130, 131, 23, 133], we find some similar properties of stress

fluctuations during the flow. It suggests to us that those could be the common

characteristics of complex fluid under shear for both frictionless and frictional systems.



Chapter 8

Summary and outlook

8.1 Summary

My work in our lab is studying the shear induced transition of jammed materials

from solid-like state to fluid-like state. The hallmark of the jammed materials is that

they could resist applied stress or shear, but have an disordered structure like liquid.

When the stress or shear is over a yielding point, the original structure could no

longer hold, and the material starts to flow in a unjammed fluid state. This process

involves two disparate features of the materials: force distribution on structure (force

chain), and particles’ moving in yielded flow (micro dynamics).

In Chapter 4 [43], I use 3D colloidal system to study micro dynamics of a jammed

material under large shear strains. Motivated by the shear-transformation-zone the-

ory (“STZ”) [8], I quantify the plasticity through particle motions. I find the spatial

distribution of the plastic rearrangements is heterogeneous, where active particles

tend to group in local regions. In addition, although the shear is happening in a par-

ticular direction, I find those the local plastic regions do not have obvious directional

bias in the disordered materials.

To probe another feature of jammed materials, the force distribution, I use 2D

emulsion droplets in Chapter 7. This 2D system allows us study not only droplet in-
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teractions but also their dynamics as well. Therefore, I focus on the inter-connection

between the forces and the dynamics. I find the micro plastic dynamics(“T1 event”)

is directly related to the macro stress releases (avalanches). An individual “T1”

rearrangement can lead to large stress release in neighbors. And these plastic rear-

rangements tend to group together, leading to larger stress changes in a longer length

scale. Therefore the large stress changes inside the jammed materials could eventually

propagate onto the wall, which is detected as stress fluctuations or avalanches in the

macro flow behavior.

By comparing the two projects, some methods of analysis are similar. For example,

in both experiments, I study the “nonaffine motion”, the deviation from the averaged

flow profiles. The nonaffine rearrangements reflect structural changes in local area.

And in both experiments, we find that those large nonaffine motions come from large

shear strains. But I probe these micro-dynamics from slight different perspectives in

the two experiments. In the emulsion experiment, I investigate the relation between

macroscopic stresses and microscopic nonaffine motions, which are specified as “T1

events”. While in the colloid experiment, I focus more on the extension of the micro-

dynamic regions in the 3D space. By combining those two, I can have a better

understanding of the physics behind the “plasticity”: it distributes heterogeneously

in space but with no directional bias; and it leads to large stress fluctuations in the

macro scale.

8.2 Outlook

Basing on those results, one of the hypothesis I would like to propose for the future

experiments is: when shearing “3D” emulsion droplets, we can see the isotropic plastic

rearrangements, as well as the large stress fluctuations from those regions. This

experiment combines my two experiments above, and provide new perspectives for
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understanding “plasticity”. If the active rearranging regions are not isotropic, we

could argue that the situation for hard-sphere colloids and soft droplets are different.

If we did not see the large fluctuations from the active regions, we could say the

geometry changes, from 2D to 3D, may be important for plastic flow. In addition,

this experiment could be conducted in the exact same shear cell as in the colloidal

experiment. So in practice, the experimental setup should be easy and quick, although

droplet tracking and stress calculation could be challenging.

There may be other interesting experiments by modifying the experimental setup

a little bit. One is to develop the 2D emulsion systems with different geometries

besides the hopper. With the help of the soft lithography, we could make different

shapes of 2D channels, and we could compare the dynamic-stress relation between

different geometries. Besides, rather than the flux rate, we could also control the

pressure of flow by using the air regulator. We could see if there are any difference in

the stress fluctuations or dynamics.

In addition, we can also slightly change the properties of samples. For example,

the concentration or the polydispersity is important for jammed materials in the static

state. And those properties could make a difference to the response to shearing. So

it is interesting to repeat my experiments with the same setups but use the samples

with different concentration or polydispersity. One concern for larger polydispersity

is the tracking could be harder, since the inter-image distance should be less than the

minimum size of particles. After all, all those experiments mentioned above could

lead to a better understanding of “plasticity” in jammed materials.
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