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Abstract

Precision particle tracking of discretized light spots in images using machine learning
By Schuyler Arn

Particle tracking is a broad field of software with myriad applications, including use in the
study of dusty plasma, a system in which colloidal “dust” particles in the µm regime are
suspended in a plasma. Dusty plasma can be created experimentally in a lab or found in
space and the Earth’s upper atmosphere, but attempts to study the dynamics of such micro-
scopic particles are often plagued by pixel-locking, a phenomenon under which estimations of
positions for randomly positioned particles in digital images are unnaturally biased towards
integer values. This bias is due to the discretization of light detected by digital camera
sensors to produce pixelized images, as well as due to the feature detection method used
to estimate particle positions. Accordingly, we attempted to train machine learning models
on a data set containing simulated images of individual dusty plasma particles with known
positions to better estimate the positions and dynamics of simulated test images. We found
that the error between the predicted positions found by the rudimentary models, as well as
the presence of pixel-locking, and their ability to track a moving particle was comparable to
if not better than the extant standard in Python-based particle tracking with TrackPy. Our
findings imply that trained machine learning models are capable of becoming more accurate
at simulated particle position estimation than pixel-intensity weighted algorithms, and this
performance increase possibly extends to testing on actual experimental data. So long as
the relationships between the accuracy metrics we employ to quantify method performance
persist on experimental data, machine learning models could provide faster and more accu-
rate dynamical measurements for small particles with possible benefits of great biological,
astronomical, and physical interest.
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Chapter 1

Introduction

1.1 What is Particle Tracking?

Object tracking, at its most general, is the use of some kind of electromagnetic or acous-

tic sensor to determine dynamical information about a target in a number of contexts and

different scales. This is a large field of interest, with applications ranging from video surveil-

lance, radar tracking of aircraft and weather balloons, and GPS devices, all the way down

to the study of individual cells like lymphocytes [8]. We are most interested in single object

tracking on targets with scales comparable to the latter, which is more specifically defined

as particle tracking, though the general process of object tracking from the raw signal of a

detected observable to digitally treated data and estimated position, as described in Fig. 1.1,

is adhered to regardless of scale. A target object must be imaged by a sensor with some

detection of energy, which introduces a degree of electronic noise in the process. The data

from this detection must be processed before passing this information to the tracking al-

gorithm, at which point the measurement is made, the data is gated to treat noise and

determine the valuable information contained in the measurement, and an estimate of the

particle’s position is produced. Particle tracking, then, as it derives from object tracking,

is this process of determining the position of one or many microscopically small particles as
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Figure 1.1: Illustration of a generalized, computer-assisted object tracking system. Repro-
duced from [8].

they move throughout their confinement space, though I will often use the phrase “feature

detection” interchangeably when discussing the process of finding the particle’s location in

a single frame or at a specific moment in time.

This feature detection can be done either manually or with the assistance of a computer,

using a number of image processing programs. The former introduces some degree of human

error into feature detection and can be very time-consuming when large amounts of data or

multiple particles are processed. However, a trailblazing paper by Crocker and Grier showed

off the possibilities of computer-assisted feature detection on colloids in digital videos, and

their work continues to influence the field today with the standardization of automated

particle tracking [11]. Importantly, they recognized that the imaged colloids create pixel

intensity patterns that can be modeled by a Gaussian surface of revolution, as generally

shown in Eq. 1.1, where r0 = (x0, y0) describes the estimated origin of the particle, A0 is the

maximum intensity of the light scattering from the particle, and s is the particle’s apparent

radius or the Gaussian’s half width at half maximum.

A(x, y) = A0 exp

(
−2|r− r0|2

s2

)
(1.1)

Countless research efforts in this field have since relied on and built upon this model,
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and by extension, the scope of possible imaging scenarios is often defined by the ability

of a particle or feature to be emulated by the Gaussian model. Moreover, the procedure

that the paper describes of initially assuming the brightest pixel present as containing the

feature’s center and then refining that guess with a weighted offset from the intensities of

the surrounding pixels is still used today. This weighting methodology is described by an

analog of the classical center of mass equation, where the neighboring pixels, Xk are the

different points of measurement about the space and their intensities, Ik, are regarded as

their corresponding “mass” to find the calculated centroid coordinate, Xcalc, as shown in

Eq. 1.2 [12].

x̄ =
1

M

∑
i

ximi −→ Xcalc =

∑
k

XkIk∑
k

Ik
(1.2)

This methodology is still championed by the original IDL program made by Crocker and

Grier, along with a number of successors developed across many other programming lan-

guages. For example, MosaicSuite and ImageJ allow for both automated or manual selection

of features per frame by users in prepackaged programs, while Python’s TrackPy library also

bases its feature detection process on this procedure for broader code implementation [3, 28].

Many modifications to TrackPy have been made over the years, ranging from general im-

provements in efficiency and data processing to an update to its algorithm that allows for

refined feature accuracy by using the previously estimated particle positions to inform pre-

dicted coordinates and assist in linking detected particles over time [30]. TrackPy’s ability

to link traveling features over time parallels another, similar category of dynamical particle

tracking methods, which is known as particle image velocimetry, or PIV. PIV involves de-

termining the local velocity in small sections of an image or video frame to produce a vector

field of velocities and is often employed in fluids studies, while lower-density images enter

into the regime of particle tracking velocimetry, or PTV, which is often used to examine

dynamics of individual or smaller numbers of particles [2].
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Alongside the Crocker and Grier tracking algorithm, there are dozens of alternative op-

tions for particle tracking programs available, with a number of data processing methods

employed beyond the original Gaussian model. Chenouard et al. even produced a survey

comparing of multiple methods of feature detection and trajectory linking on four simulated

data sets to see if a particular method was ideal. While no silver bullet method appeared,

working perfectly regardless of application, they remarked both that particle density and the

signal-to-noise ratio present in the image were notable determinants of performance and that

the models themselves were all largely similar [9, 29]. This suggests that the development

of particle tracking models which largely adhere to previous tracking implementations while

adding improved parameter selection and treatment or processing of provided data could be

the key to future improvements in the field.

1.1.1 Broad Applications of Particle Tracking

There are a number of research applications where knowing the precise locations or dynamics

of microscopic or distant objects are of great benefit or interest, such as when investigating

biological processes, astronomical bodies, and as we will extensively discuss, dusty plasma. In

the realm of biology, particle tracking has been used to study the dynamics of individual cells

in developing embryos, among other hard-to-differentiate groups of small bodies [7]. Another

often-used experimental procedure for biological and dynamical study involves the insertion

of fluorescent beads or a polymer into a region of interest, be that in cells of human skeletal

muscle fibers, a fluid, or the cytoskeleton of an individual cell’s cytoplasm, so as to signal or

even cause microscopic dynamics with the movement of these small markers [6, 13, 16, 31].

Expansion microscopy is name for the latter technique, and it is employed when the polymer

present is used to physically expand or alter the structure of the target of study, rather than

simply promoting visibility of desired features.

Particle tracking is also providing insights into the nature of comet trails now that we have

the ability to capture images from probes orbiting remote comets. Pfeifer et al. developed a
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new algorithm in Python specifically for tracking the dust and other material ejected from

comet 67P in imaging captured by the Rosetta probe in early 2016, which works to detect

individual particle positions and then uses a paired tracking between neighboring frames to

calculate other dynamical properties [21].

These instances are generally colloidal, but TrackPy’s documentation even includes ex-

amples of more specialized tracking applications used in published research such as imaging

moving clusters of bubbles in a foam, or even non-colloidal imaging of particle rings in

bright-field microscopy [25, 27]. Importantly, the reference to a specific “particle” in the

more general process of particle tracking can be expanded to just about any object that

occupies a small neighborhood of pixels in the captured image—allowing for the use of these

same particle tracking methods in the astronomical study of stars and other bodies, so long

as the similar appearance of these objects to the colloidal analog is maintained. Examples

of particle tracking use in a number of fields is shown in Fig 1.2. The key operation for the

use of particle tracking on objects with a range of sizes is the scaling of smaller or larger

objects into meso-scale digital images for computer analysis, though this transition is often

accompanied a number of issues.

1.1.2 Pixel-Locking and Limitations of Particle Tracking Methods

While TrackPy does an admirable and efficient job of locating the pixel-scale position of

image features, the algorithm often leaves much to be desired where the sub-pixel resolution

of particle positions are concerned. This becomes particularly nascent when attempting to

take measurements of feature dynamics of microscopic particles, such as velocity, wherein

errors in the found location of the particle contribute to greater inaccuracy in these further

or derived measurements. These errors most commonly take the form of a systemic bias

introduced with digital imaging known as pixel-locking or peak-locking.

Pixel-locking is a problem that arises due to the limited pixel resolution offered by a digital

camera sensor, causing a loss of intensity information which tends to cluster the sub-pixel,
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A

B

D

C

E

Figure 1.2: Examples of different particle tracking applications. (A) depicts an experimental
bitmap image of a crystallized, monolayer suspension of micro-spheres in a dusty plasma [12].
(B) is a colorized image of NET1A-green fluorescent protein signals in plant cells from
Arabidopsis thaliana, a small flowering plant [19]. (C) shows the photoactivation of a single
copy of MutS-PAmCherry, a protein related to DNA repair, in a cell [29]. (D) is a cleaned
and brightness-inverted image of the dust ejected from the surface of comet 67P as captured
by the Rosetta probe [21]. (E) is a frame from a sequenced image example of cells in a
developing embryo [7].
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Figure 1.3: Illustration of the discretization of particles when imaged by a digital camera.

decimal component of particles’ found position about integer values representing the edges

of the pixels [10, 12, 22]. This ultimately makes accurate particle position detection without

pixel-locking bias a kind of discretization problem, as illustrated in Fig. 1.3. Incident light

that scatters from the object of interest reaches the digital camera sensor, which has both

a limited resolution and the need to translate the random impact of photons on the sensor

into digital values of pixel intensity. With the current inability to develop a digital camera

with such high resolution as to image microscopic targets without discretization, requiring

the resolution of the camera sensor to rival the size of the colloidal target, pixel-locking

continues to affect digital cameras and other imaging methods. Additionally, examination of

the centroid methodology for determining particle position has found it contributes to biasing

towards the center of a pixel when selecting random subpixel positions for features [19]. In

each instance, this bias is obviously problematic, whether due to the camera or the analysis

method, because the sub-pixel coordinates of truly randomly positioned particles in space

are expected to follow a uniform distribution, under which no particular sub-pixel value or

position would be preferred by the particles. The presence of pixel-locking is then suggested
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Figure 1.4: Examples of sub-pixel distributions with and without the presence of pixel-
locking. The heavy pixel-locking instance comes from TrackPy performance in x on a ran-
domly generated, 100000-element image set.

and can be estimated by viewing sub-pixel position distributions for the predicted particle

positions, which feature peaks about preferred coordinates at the boundaries or center of

the possible values, as shown in Fig. 1.4. Notice the flatness of the uniform distribution to

the left of the image, while the image on the right exemplifies a biasing towards the whole

integer values with greater density of predicted particle positions appearing about the center

at 0, while less frequently appearing about the edges of the distribution approaching ±0.5.

Importantly, however, these plots are generated from the averaged predicted positions in

both x and y. While we can make some initial assessments on the degree of pixel locking

present with this one-dimensional representation, valuable information is gained by using a

2D plot to visualize pixel-locking effects due to x and y separately.

The camera used to image particles in tracking is also the source of additional errors and

biases beyond pixel-locking, often coming from the electronic noise of the digital sensor, shot

noise, and other random errors [10]. Shot noise, or photon noise, is of particular interest,

coming about due to the photons reaching the camera sensor following an uneven Poisson
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distribution, while other types of noise are introduced depending on the type of camera and

sensor used [26, 29]. However, given their systemic and often immutable nature, as side

effects of the imaging system in use, we have to work around this noise and attempt to

reduce error with more direct confrontation of pixel-locking.

While some observables, such as ensemble averages of PIV-found velocity fields, can be

treated or averaged to minimize or largely negate the effects of pixel-locking, the majority

of other particle characteristics require alternative solutions [10]. One treatment for the

problems that arise from pixel-locking in feature detection is the single-pixel interior filling

function or SPIFF. SPIFF attempts to remedy pixel-locking by integrating or summing

over the cumulative distribution of estimated positions in the given dimension to make the

particles’ found positions assume a uniform distribution as would correlate to a truly random,

unbiased estimation of position [5]. SPIFF is rather easy to implement, and accordingly, does

a great deal in providing performance and accuracy improvements over the initial feature

detection of TrackPy. Yifat et al. studied the efficacy of SPIFF in correcting the mean error

of tracked, simulated data and found a sizeable reduction of up to 0.19 pixels in the mean

error and 0.04 pixels in the standard deviation between the predicted and ground truth

positions [32]. However, when compared to the reduced error and faster performance of

machine learning models when it comes to feature detection on individual simulated images,

it seems that SPIFF is often only partially effective in its goal of increasing detected feature

position accuracy by reducing the effects of pixel-locking.

One solution proposed as an alternative to more standard fixes for pixel-locking, like the

general histogram-equalization process of SPIFF or defocussing/blurring the image in the

context of PIV, is the treatment of each vector individually due to the non-uniform nature

of pixel-locking across the imaging space. Because integer values might be often reached at

boundaries, pixel-locking is a localized phenomenon, and errors can be generated unevenly

across the field by the camera. Accordingly, the use of per-vector histogram-equalization

produces a series of transfer functions for each location in the vector field, which tends to
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be more accurate than non-specific application [15]. Alternatively, Adatrao et al. suggest

a method for reducing pixel-locking bias in PIV by calculating a regression of dynamic

measurements over a range of time steps, as a means of smoothing over the effect present

under a constant ∆t value [1].

1.2 Dusty Plasma

The interest in machine learning for increased precision in determining particle positions

came about because our lab also conducts experiments to study the nature of dusty plasma,

a low-pressure plasma that is found in planetary rings and comet tails, among other scenar-

ios [22]. Wentao Yu, my mentor and a graduate student in the Burton Lab, has recently

been working to understand the presence of non-reciprocal forces exerted on the dusty plasma

particles. These come about due to differences in the vertical position and charge on each

particle, along with ionic perturbations in the plasma due to the charge of the electrode.

Achieving greater accuracy in particle position estimations is then an ongoing struggle of

great importance in this space due to the spatial dependence present in force calculations and

the dynamics of these particles, as examining their velocities (or acceleration) requires dif-

ferentiating over their found positions with respect to time. Accordingly, any errors in found

particle location, such as those arising from pixel-locking, are immediately compounded and

undesirable when a greater degree of accuracy in measurement or use in testing experimental

data against simulated models is needed.

Experimentally, the plasma of study is created in a stainless-steel vacuum chamber which

is filled with diatomic nitrogen and kept at very low pressures, typically in the range of

0.3mTorr or less. This experimental setup is illustrated in Fig. 1.5. When subjected to a

voltage, plasma is generated in the chamber, while the presence of a bias voltage, Vbias, on the

electrode in the bottom of the chamber creates a repulsive force on the particles to oppose

gravity. Also within the chamber are multiple particulate reservoirs which we can use to
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manually deposit or “shake” dust particles into the plasma. We use melamine-formaldehyde

particles produced by microParticles GmbH with diameters ranging from 4.90µm to 12.8µm.

Once the particles are suspended at some height in the plasma, we use a diode laser with

a wavelength of 538.2 nm and the two lenses pictured to create a laser sheet across the

confinement space. With the laser sheet, we can use a high-speed camera to visualize the

movement of the individual particles and the formation of crystalline structures. The incident

photons in the laser sheet hit the particles and are occasionally scattered in a process of

Mie scattering, the light from which can be detected by the digital camera above. It is

important to note the particle dynamics resulting from modulating the Vbias through the

radio-frequency power supply, which can excite the particles out of crystallization and into

oscillatory traversal about the confinement space at speed [14, 18].

Besides oscillation or crystallization in a 2D plane, the dust particles are also able to

oscillate in the z-direction, leading to the use of the galvo mirror and a connected function

generator to oscillate the laser sheet up and down across the vertical space. While the

thickness of the laser sheet is quite large compared to the size of the particles (≈ 100µm),

their vertical movement often requires using the sweeping motion of the laser sheet to image

the particles throughout the chamber [14]. With adequately high frame rates on the imaging

camera filming from above, the vertical position of the particle can also be extrapolated as

the height of the laser sheet is sliced across a series of frames. Accordingly, experimental

data can effectively be translated between two or three spatial dimensions against a time

dimension for analysis by simply skipping empty or ‘off-height’ frames to only view those in

the series where the particle is at a constant height.
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Figure 1.5: Illustration of our lab’s experimental setup for studying dusty plasma. Repro-
duced from [14, 33].

1.3 Machine Learning: A Better Solution for Tracking

Dusty Plasma Particles

Machine learning is already a transforming force across current scientific research, as neural

networks are assisting in the solving of categorization and regression tasks in a number

of fields. Within cellular microscopy, one extant application of neural networks is training

them to detect markers that, while hard to see with the human eye, signify states of dynamic

muscle fiber characteristics, among other biological processes [16]. Accordingly, the use of

a machine-learning approach to particle tracking came about from the hope that we could

somehow exploit the unknown, ‘black-box’ nature of machine-learning algorithms to find a

better way of determining particle coordinates than we are currently able. This describes the

often unknown nature of the means by which neural networks can make connections between

data points to arrive at a desired result. By training the machine-learning models on a large
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data set containing millions of simulated images of particles and the corresponding origin

coordinates we used to produce said images, we hoped that the models would be able to

find some sort of hidden relationship between the position of the particle and its discretized,

digital representation.

The search for this relationship describes a typical regression problem for machine-

learning models, as opposed to a classification problem. The former has continuous values

as its output while the latter is related to more categorical data, such as the common com-

puter vision problem of determining whether an image depicts a member of a particular

group. These might describe choosing if an image contains a cat or a dog, or whether the

sensors on a semi-autonomous car are detecting a pedestrian, car, or truck. Instead, for a

regression model, we generally describe the system as some order of polynomial weighted

by a series of parameters, as shown in Eq. 1.3, which we teach the model to optimize for

through a supervised learning process [4]. Within our particular use case, the “features” or

individual pixels of the images that we will pass to the machine learning models become the

xn terms described, as the models must work to discover a relationship between the desired

coordinates of the given particle and intensity pattern expressed by the image.

y = w0 + w1x+ w2x
2 + ...+ wnx

n (1.3)

Python libraries already allow for the easy implementation of this learning process, only

requiring the selection of a model, training data set, and test data set—which we hope to

employ to make a straight-forward and potentially better-performing feature detection model

than already offered by TrackPy.
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Chapter 2

Methods

2.1 Image Generation

To generate simulated images of dusty plasma particles for testing the feature detection

capabilities of TrackPy, training new machine-learning models, or testing said models, we

had to develop a pipeline for producing large batches of images in series. The product

of said image simulation along with a comparison against actual experimental data of a

particle suspended in dusty plasma is demonstrated in Fig. 2.1. Generating features that

appear visually similar to individual experimental particles is trivial at small scales where the

feature is only around 3 pixels wide. At the same time, however, this figure only includes one

simulated image, the parameters of which I chose to closely approximate the actual particle.

The generalizability of the data we train machine-learning models on is of great concern,

as a model can only accurately predict positions for particles that are similar in nature to

those it is already trained on. To then ensure that the simulated particles describe a breadth

of possible experimental scenarios for accurate training of models, including programmed

variation of parameters was necessary. This was done by initially simulating images within a

5×5 array, where we could corral the origin of the particle to a single central pixel about the

origin, with bounds in both x and y given by the interval −0.5 ≤ (x, y) ≤ 0.5 for a Cartesian
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Figure 2.1: Comparison between real and simulated dusty plasma particles. Scale bar is
1 pixel ≈ 50µm. The actual particle was imaged experimentally with a Phantom high-speed
CCD camera and then cropped to fit a 5 × 5 pixel resolution. Simulated image parameters
employed were A0 = 120, σ = 1.1, α = 2, µ = 8, and x0 = y0 = −0.2.

plane. Initially, we described these bounds with reference to the indices of the generated

arrays, which instead would place the particle within 1.5 ≤ (x, y) ≤ 2.5 and require a

translation for further analysis, but the use of Numpy’s meshgrid() method alleviated this

issue. This simulation involved using an expanded version of the Gaussian expression that

Crocker and Grier relied on, as given by

A(x, y) = A0 exp

(
−
(
|x− x0|α

2σα
+

|y − y0|α

2σα

))
+Np(µ). (2.1)

There are a number of parameters contained within this expression, including the origin

coordinates of the feature, which are randomly selected from uniform distributions and influ-

ence the appearance of the features in the generated data set. A0 is the maximum amplitude

or pixel intensity of the Gaussian peak, while σ determines the width of the peak and α

determines its sharpness. See Table 2.1 for a list of the ranges of values these parameters

pulled from, along with Fig 2.2 for a visualization of the simulated image differences due

to changes in each parameter. By gradually tapering the interval for each distribution over
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generations of simulated data sets and tests for the capabilities of our detection methods,

we were able to settle on a set of parameter ranges that can accurately approximate actual

µm-scale particles and be detected by each detection method. For example, smaller values of

σ can result in the Gaussian function peaking entirely within the space of a single pixel. This

minimizes the impact seen in neighboring pixel brightness and can, in turn, prevent TrackPy

from effectively determining a feature’s sub-pixel position when its “center of mass” detec-

tion method is only able to weigh neighboring pixel intensity comparable to noise. Crocker

and Grier initially found the best outcomes from choosing camera and magnification settings

so that the imaged particle radii ≈ 3 pixels, so we opted for 0.6 ≤ σ ≤ 1.2 [11]. Similarly,

smaller values for A0 and the signal-to-noise ratio can impede efforts to distinguish particles

from noise, leading to the inaccurate detection of multiple non-existent, ghost features, so

A0 was given a minimum value of 100 while Np, the Poisson-distributed noise we add to the

Gaussian, has a maximum mean value of µ = 20. This ensures that each simulated image

is generated with a signal-to-noise ratio ≥ 5, which is widely recognized as a kind of lower

bound for acceptable performance with many feature detection methods [9].

Table 2.1: Tabulation of the parameters selected when generating simulated images and the
stochastic harmonic oscillator time series.

Parameter Values Selection Description
x0 [-0.5, 0.5] Uniform Distribution Feature Origin in x
y0 [-0.5, 0.5] Uniform Distribution Feature Origin in y
A0 [100, 255] Discrete Uniform Distribution Amplitude of Intensity
σ [0.6, 1.2] Uniform Distribution Feature Width
α [2, 6] Uniform Distribution Feature Sharpness
µ [5, 20] Uniform Distribution Mean of Poisson Noise
γ 0.9 Constant SHO Damping Coefficient
ω 1.8 s−1 Constant SHO Frequency

Image creation occurs in three general steps, as shown in Fig. 2.3. From the employment

of the first term in Eq. 2.1 with randomly selected parameters to generate the initial Gaussian

on the blank, square image array with size 5×5 or 7×7. Many of the pixels, particularly those

about the borders of the image, still have an intensity value which is either zero or incredibly
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Figure 2.2: Examples of the effects of varied parameters on image generation. If not altered,
the parameters held fixed in this image set were A0 = 140, σ = 1.4, α = 4, and N = 12.
Each image generated shares an identical origin of x0 = −0.352 and y0 = −0.314, as marked
with the red circles.
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small due to the exponential decay present in the function. Because this does not reflect the

degree of noise or pixel intensity values present in experimental images, Poisson-distributed

noise, NP , is then added over the array. The decision to use specifically Poisson-distributed

noise in simulation came about due to the nature of the aforementioned shot noise and the

sensor of a digital camera effectively functioning as a photon detector when creating digital

images of real particles. There can only be an integer number of photons impacting each

pixel area of the sensor, along with only one “brightest” pixel for a single particle when

correctly focused. These characteristics along with the translation of the captured light to

three-channel, 8-bit integer RGB color values ranging from 0-255 in the third step mean

that Poisson-distributed noise makes for an accurate approximation for the noise present

when filming particles moving in experimental dusty plasma. Applying the equivalent of

this translation from the analog to the digital when producing the simulated images also

required care for the instances that could see the peak of the Gaussian acquire a value

greater than 255 once we applied noise. For Python, visually representing an array where

this is the case simply subtracts 255 from that pixel’s intensity value, causing what should

be the brightest pixel in the image to unrealistically become the dimmest. In reality, that

light would simply flood or blow out the digital camera’s sensor with photons and reach the

maximum brightness possible. Accordingly, we had to add conditions for the conversion of

the generated array from the continuous Gaussian output to discrete integer color values

without deviation from the expected behavior of the real imaging. These processes are

all packaged into a single function, allowing for reproducibility and easy alteration of the

generation parameters across data sets of any size, though the computational demand of

enough memory to store the data of each image array is a limiting factor when making

image sets. However, this is concern is reduced thanks to the small image size we used and

storing only one channel of the image intensity.

In one last addition to the initial procedure employed for generating simulated images,

we also increased the size of the confinement space for the particle depending on the use
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Figure 2.3: Process for generating Gaussian images from initial function to noised, discretized
array. Greater resolution for the continuous representations is used for visualization, while
computational efficiency requires that the actual images are generated from their final array
size. This image was generated with Gaussian parameters of A0 = 233, σ = 0.876, α = 2.724,
µ = 6.988, x0 = −0.141, and y0 = 0.935.
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case. This provides greater variation in particle origin, ensures that movement of a driven

particle would be captured, and prevent possible “edge cases” causing issues for TrackPy,

which were further reduced by framing the enlarged image in an array with an additional 2

or 3 pixels of zero intensity “matte.”

2.2 Machine Learning Models

To implement machine learning into the research, we utilized the scikit-learn library for

Python, which provides a number of regression models and accompanying methods for treat-

ing them that we can use to predict sub-pixel positions of features in images [20]. We wanted

to use machine learning as a “black box” into which we could pass known, ground truth po-

sition vectors along with the corresponding simulated images for the methods to generate

models specifically trained to predict features within our produced data sets. Recognizing

that this task would require the use of a regression model to produce the desired coordinate

estimations, we considered each option that scikit-learn offers for regressors. We settled on

testing three different machine-learning models, namely Multi-Level Perceptrons Regression

or MLP, Linear Regression or LR, and Histogram-based Gradient Boosting Regression, or

HGB. Additionally, each model required a number of particular arguments to modify oper-

ating parameters and ensure that they could handle the number of training features present

in the simulated images, which equaled the number of pixels present.

MLP is a neural network model which can work as a non-linear function approximator,

taking the input features of the images and assigns each to a neuron in the first layer of

the model, known as the input layer [20]. This process then establishes each pixel as a

weighted term in the regression form of Eq. 1.3, before translating this into a chosen acti-

vation function, such as the hyperbolic tangent function, tanh(x). This supervised learning

process continues through the arranged layers of neurons as the model works to minimize

the square error function between the paired ground truth positions we provided and the
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predicted coordinates. Because of the assignment of image pixels to features, we had to

ensure that the layers of perceptrons were wide enough to capture the total number of pixels

or elements present in the image arrays. This communication between layers of neurons is

where the “black-box” nature of the machine learning comes in, as the predicted coordinates

are produced from the connections the model forms between the ground truth points and

the corresponding element of the flattened intensities row vector. As a model with native

support for multi-output training and prediction, we can pass the ground truth positions

as a vector of size (n × 2), instead of creating separate column vectors for x0 and y0 to

individual MLP models for each dimension. The latter approach is capable of causing dis-

parate performance between each model due to what we’ve termed the ’wraparound issue,’

wherein the scikit-learn limitation of a 1D features array might give x-coordinate prediction

an advantage over the same prediction in y. The flattened intensities row vector is arranged

in row-major order, such that each row of pixels in the simulated image is appended to the

preceding one. Neighboring pixels in each row remain neighbors, possibly providing greater

context about the particle position in x, while the model is left to infer the relationship

between neighboring pixels in each column, which now occupy each mth element of the array

if m is the array size. Nonetheless, this possibility partly informs our decision to average

over both x and y predictions when engaging in error analysis for each model.

For the linear regression model, we had to treat the data and slightly alter the model

to ensure that its performance was comparable to the other two models. As a single linear

regression implementation, we are again referencing the general form of Eq. 1.3, where the

prediction comes from minimizing an ordinary least squares difference between the given

data set and an linear approximation [20]. However, we should note that there are some

drawbacks for using such a simple model. It is easy for the model to be overwhelmed

by the number of features contained in the simulated images passed to the model, greatly

increasing the error between predicted and actual positions to be so large that the model’s

predictions become effectively worthless. Accordingly, we treat the data with scikit-learn’s
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built-in QuantileTransformer method, which processes the features of the simulated images

to follow a uniform distribution, as expected from our generation methodology. Next, the

complexity of the model is reduced by using the PolynomialFeatures method to limit the

relationships formed between features to a second-degree polynomial or less. Finally, we need

to promote the inputs and outputs of the model to handle the same paired ground truth

positions array as the MLP training process, which is done by the MultiOutputRegressor

method. A beneficial side effect of this promotion is the greater computational power that

we can now provide the model, speeding up the training process for the linear regression to

be much faster than both of the other models.

Histogram-based gradient boosting regression was selected for its increased performance

benefits over the regular gradient boosting regression model when operating on a very large

data set, as we intend to do. This improvement comes from the pre-binning of data into

histogram bins instead of the model working through sorted continuous values, while still

using squared error as its loss function. Preparing the model requires less effort than the

linear regression model, but we still must promote the inputs and outputs of the model

to handle the same paired ground truth positions array as the MLP training process with

the MultiOutputRegressor method. Limiting the maximum depth and number of iterations

to 3 and 200 respectively alters the nature of the decision trees that constitute the model,

meaning that the model can produce 200 trees and each now has 3 “edges” between the root

and deepest leaf [20].

In the interest of ensuring that the memory required to generate a large set of images

and parameters would remain low while slightly increasing the image size to allow for more

particle exploration of the space, we altered the simulated image generation to fill a 7 × 7

array for the final n = 2500000 element image set. Regardless, the process shown in Fig. 2.4

is still generally applicable to the training and prediction stages of the machine learning

models beyond the selection of a particular n and array size.

To train the machine learning models on finding the particle positions, we enforced an
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Figure 2.4: A representation of the procedure for training and prediction with the machine
learning models.

80/20 training and testing split, such that 80% of our data set’s generated images and known

particle positions were passed into each model, while the remaining 20% of the generated

images were used as the basis for position predictions by the now-trained model. Error anal-

yses on the accuracy of the predictions were then carried out by comparing said predictions

against the already-known positions of the remaining 20% test set used to initially generate

the images for the predicted set. In this process, the models are never given the test set

positions, so the performance on the test image set is both entirely determined by the larger

training set and directly comparable to data unknown to the model to avoid overfitting or

simply regurgitating provided values.

2.3 Particle as a Stochastic Harmonic Oscillator

To study the dynamics of particles that are not only simulated to appear like the actual

dusty plasma particles we hope to study, but also moving as they do, we then turned to
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Mathematica in using an Ito process to generate a time series solving an under-damped

Stochastic Harmonic Oscillator, or SHO. This oscillator is driven by the Brownian motion

of a Wiener Process as a surrogate for the traversal of particles within the dusty plasma

field of vacuum chamber experiments and is described by the stochastic differential equation

given in Eq. 2.2 [17, 23, 24]. This model was previously found to accurately describe the

forces exerted on the µm-scale particles when suspended in a diatomic nitrogen plasma when

accompanied by an accurate frequency of oscillation (ω = 1.8s−1) and damping coefficient

(γ = 0.9) for the restorative force, so we adhered to it when attempting to more accurately

detect sub-pixel features of this kind [33]. Given the independent nature of each dimension

of the particle’s movement along with the one-dimensional SHO implementation, separate,

random-integer seeded time series for each dimension were generated to ensure that the

particle is free to roam about the confinement space, as shown in Fig 2.5. We can also plot

the simulated features produced at selected time steps to see the influence of origin position

in image generation along with the translation due to independent changes in x0 and y0.

This independence also eases later error analysis due to the effectively identical behavior of

the SHO in both x and y, allowing for averaging over both dimensions as with the positions

predicted for the randomly-generated image set.

d2x(t)

dt2
= −γ

dx(t)

dt
− ω2x(t) +NW (2.2)

Slightly modifying the initial procedure employed for generating simulated images, we

created a large data set based upon a pair of time series with a length of n = 2500000

and time steps of dt = 0.02 using the Mathematica solver. We then treated the velocity

distributions of each series to normalize the standard deviation of the velocity, σv, to have

a value of 0.3 pixels/s. This limitation prevents the particle from traveling too far in the

course of the time series, corralling it into an acceptable range extending approximately one

pixel around the origin for generating the simulated images when translating into Python.

For this transition, the series are exported as 64-bit floating point binary files, which can be
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Figure 2.5: Translation of SHO time series positions into simulated images. Units of µm are
reached from the approximation of 1 pixel ≈ 50µm.

read into Python with NumPy. We can then pass the time series into our modified image

creation function instead of producing uniformly-distributed x0 and y0 pairs to image the

motion of the simulated particle for further study. With these new driven image sets, we

can test the performance of TrackPy and the previously-trained machine-learning models in

recognizing the dynamics of the particle over time.



26

Chapter 3

Results and Discussion

3.1 Parameters and Pixel-Locking

One important result of our simulation parameter study is the recognition that σ, the pa-

rameter responsible for the particle’s sharpness, has an impact on the degree of pixel-locking

present in generated images. The differences in sub-pixel distribution, as imaged by TrackPy,

between 6 evenly-spaced values of σ chosen from the generation range used are depicted in

Fig. 3.1. Note first the absence of values about the edges of each distribution, as seen in

the “pillow” shaped feature characterizing the first four plots. This suggests that there is

some bias away from the whole integer values of pixels. σ = 0.6 has greater concentration of

predicted features at the (0, 0) origin, while σ = 0.72, 0.84, and 0.96 all have similar concen-

trations towards the corners of the distribution with x = y = ±0.5. At the two higher values

of σ, the same central clustering behavior returns but to a smaller degree. We must also

recognize the often nearly-uniform distribution of sub-pixel features within the accessible

regions. The “TV static” appearance of swaths of each plot corresponds to some degree of

uniformity, though this is not as important as the fact that this uniformity does not extend

to cover the entire distribution.

Clearly, the width of the particle generated has a notable effect on the presence of pixel
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locking, at least when viewed on a large scale. At larger values of σ, the entirety of the

particle’s Gaussian peak can be contained within one pixel, which might promote more

uniform determination of sub-pixel position with less ability to reference neighboring-pixel

context. Conversely, at smaller values of σ, the peak of the Gaussian spreads across multiple

pixels, providing a wealth of information with the neighboring-pixel context of 10 or 12

pixels that are differentiable from the image’s background noise. Therein, there is something

about the peak width with middling values of σ that leads to a pixel-locking bias towards

the corners of the central 0.4 ≤ (x, y) ≤ 0.6 sub-pixel ranges. Note that we do not see the

expected tendency towards integer values, nor to the center of the distribution, which seem

to be more likely when examining pixel-locking.

This phenomena warrants further study beyond simply determining and describing the

presence of pixel-locking about preferred values due to changes in σ with only TrackPy.

Differences in performance across the machine learning models might be expected, as might

changes in the distribution when controlling for another parameter that could have some

relationship with σ. For example, α, which instead determines the “flatness” of the Gaussian

peak, also influences the number of neighbors present about the central bright pixel of a

feature, as shown in Fig. 2.2. Sub-pixel distributions of flatter, wider features might then

behave differently to those with sharper peaks due to the influence of neighbors, among other

factors.

3.2 Machine Learning Performance and Pixel-Locking

To consider the errors between each of the feature detection models and the ground truth

positions for x and y from the test set, we used a root mean squared error calculation to see

how far from the actual position of the particle each predicted feature was. Again, each model

is accurate enough to correctly identify the pixel or array index where the particle is located,

but the sub-pixel accuracy is what we are truly concerned with, so we would expect to see
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Figure 3.1: Pixel locking due to differences in σ. Distributions were produced from TrackPy
feature detection on 6 sets of n = 100000 arrays generated from uniformly distributed pa-
rameters besides selected σ values as listed.
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Figure 3.2: Average error comparison between the feature detection models. Whiskers depict
±σerror, the standard deviation of the error values for model performance. MLP is Multi-
Level Perceptrons, LR is Linear Regression, HGB is Histogram Gradient-Boosting, TP is
TrackPy, and TP+S is TrackPy with added SPIFF correction.

error values that are within pixel resolution. To compare the error values, we then plotted

each of the averaged values of the calculated error on a bar plot and generated error bars

based on the standard deviation about the average value for each model, or σerror, as shown

in Fig 3.2. We can see that the average error was lowest for MLP, even outperforming both

TrackPy and TrackPy with SPIFF. Of course, linear regression has the highest error value

with its σerror value extending all the way to 0.30, which suggests very poor performance on

this data set.

The calculated error between the predicted and actual particle positions is unable to tell
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Figure 3.3: Sub-pixel distribution for predicted positions from each feature detection model.
Darker colors indicate greater density of features, while lighter colors indicate less density
regions. A distribution without pixel-locking would have a similar density across the entirety
of the plot, as opposed to biasing towards the center, edge, or corner values.
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us the full story about the quality of predictions. This is where the analysis of the sub-pixel

distributions of the predicted positions comes in, as we need to also determine the degree to

which pixel-locking is present in each method’s estimations. The same relationship works in

reverse, as if we were to look only at the pixel-locking performance of each model, we might

not attain a full understanding of the model performance. While the distribution for linear

regression appears to be rather flat outside of the center and corners, if not comparable to

HGB and TrackPy, we know this to be less valuable due to its much higher degree of error

compared to the rest of the models. Interestingly, while MLP had the best error performance,

its sub-pixel distribution appears to have some biasing towards the edges of the plot, though

this still handily outperforms both TrackPy and TrackPy with SPIFF. We can clearly see

the benefit of applying the SPIFF correction to the predicted positions TrackPy generated,

as the sub-pixel distribution of TrackPy with SPIFF set more uniformly distributes positions

to fill in the missing spaces of the “pillow” shape about the edges, though this appears to

make the degree of pixel-locking in the corners of the distribution more aggressive.

The spread of error values described by σerror is also worth examining, as it seems that

the σerror value for HGB is comparable to TrackPy, even though we can see a rather extreme

case of pixel-locking on the HGB predictions in its sub-pixel distribution plot. Clearly, it

seems difficult for a single feature detection method to produce the trifecta of a low value for

the average error, low accompanying σerror, and a uniform distribution without a presence

of visually obvious pixel bias. For example, if we were to test MLP on experimental data,

we might produce a number of estimated positions which are on average rather close to the

actual position of the experimental particles, but this is a rather shallow victory if many of

the estimations are still especially affected by pixel-locking.
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3.3 Velocity Distributions and Estimated p Fit

To analyze the velocity distributions generated for the prediction of the simulated SHO series

and ensure that the models were capable of recognizing the noise to be Gaussian in nature

we used a central difference across the data points in the time series (with time steps of

∆t = 0.02 s) to differentiate the position of the particle for its velocity. The velocities were

then treated with a moving average with a window size of 2000 elements, averaged across both

vx and vy, binned, and an estimated fit line was produced. This curve fitting optimization was

carried out by SciPy, and involved also taking the logarithm of the data to generate a power

law relationship between the normalized velocities and the binned frequencies, as described

by Eq. 3.1. As expected, the power, p, of this expression fitting the velocity distribution

of the SHO particle’s exact position from the time series approaches p = 2.00, as shown in

Fig. 3.5. The results of this same process, as completed on the particle tracking methods,

are shown in Fig. 3.6. Ultimately, the tracking model that seemed to most closely align with

the fit model was that of MLP, though we can see that there is still some error involved in its

predictions with p = 2.03, though the fit falls within a standard deviation of p = 2.00. Each

of the other models display some notable degree of fitting inaccuracy, with the exception

of linear regression, which comes rather close to the expected fit. Something interesting

to note is the negative impact that applying SPIFF had on the already poor performance

of TrackPy, as the TrackPy with SPIFF fit is the worst performer with p = 2.29, a large

departure from the expected fit.

log(y) = Aep + C (3.1)

We expect the velocity distribution of the particle, regardless of feature detection treat-

ment, to follow that of a Gaussian corresponding to a fit line of p = 2, as described in

previous research from our lab and shown in Fig. 3.4 [33]. Deviation from this Gaussian

characterization must come from inaccuracies in feature detection when the movement of
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Figure 3.4: Previously found velocity distribution performance. (a) shows a comparison of
simulated data with the presence of Gaussian, non-Gaussian, and additional pixel-locking
noise, corresponding to the red, blue, and yellow fit lines respectively. (b) shows another
comparison of experimental data trajectories with the same fitting procedure. Note that the
degree of pixel-locking present in these figures is worse than what we find to be the case for
each feature detection model on the simulated data set.

the particle is driven solely by the Wiener Process. In this way, fitting the velocity distri-

butions derived from the detected positions of the SHO particle over time serves as a way

to quantify the degree of pixel-locking present with each model. We cannot use a typical

sub-pixel distribution as above to depict the presence of pixel-locking because the SHO is a

system oscillating about equilibrium with turning points roughly a pixel away. The particle

will then spend a great deal of its existence about and passing through the equilibrium, and

even more accelerating and decelerating about the turning points.

It is important to note the influence of bin count and size on the curve fitting carried

out by SciPy, as particularly large bin counts can still provide a fit of p = 2.0, though the

data points therein will be widely scattered about the more central fit line. To that end,

the decision to lock the bin count for each curve fit at 100 was implemented, followed by

changing to a more accurately distributed but lower bin count which more closely aligned

with the greater frequency of smaller velocities present. This change allowed for a more
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Figure 3.5: Result of curve fitting procedure on the SHO time series. Velocity values have
been normalized and averaged across x and y.



35

Figure 3.6: Result of curve fitting procedure on the SHO time series with each particle
tracking method. Velocity values have been normalized and averaged across x and y.
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Figure 3.7: Average error comparison between the feature detection models’ performance on
SHO particle.

accurate comparison of deviations from the stochastic noise to be detected across the models.

However, because the deviation from the expected fit line cannot communicate the whole

story of the models’ performance on the SHO particle set, we need to also carry out another

error analysis comparison, as shown in Fig. 3.7.

Analyzing the result of this comparison, we find that the lowest average error is again

produced by the MLP model, which outperforms both the other machine-learning models

and the TrackPy methods, with and without the SPIFF correction. Note also that SPIFF

appears to do even less to reduce the average error in prediction for TrackPy here, as the

average error for the TrackPy with SPIFF method is still above that of MLP, and its σerror is
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still greater than HGB and LR with their smaller average error values. This could be due to

the fact that SPIFF attempts to correct for non-uniform subpixel distributions, but again,

the subpixel distribution of the SHO time series is biased due to the nature of the system

itself more than pixel-locking. The standard deviation from this average error value is also

worth discussing, as we see that σerror smallest for MLP, but it is still almost as large as

the value of the average error in detection. This would suggest a large spread in the error

values produced by MLP that largely overlaps with the spread for the rest of the methods on

the lower end, while still capturing much lower values on the higher end of the average with

σerror. This suggests that MLP ends up performing more accurately than TrackPy under the

conditions of this time series test, while the velocity distribution for these predicted positions

was more accurate than TrackPy.
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Chapter 4

Conclusion

Our research finds that the performance of relatively simple machine learning models trained

on randomized simulated data in detecting feature positions of simulated particles is compa-

rable to if not better than the performance of existing, widely used tracking methodologies.

Note that this is just beginning to scratch the surface of machine learning implementation

possible in this field, especially as the capability of machine learning processes continues

to increase at lightning speed. More extensive testing of both the parameters that influ-

ence pixel-locking and the performance of machine learning models on dynamic systems like

the simple harmonic oscillator could show a greater advantage over the older methods. Of

course, the ultimate test will be the application of these techniques towards the study of

actual experimental data, though this would likely require greater training set diversity to

reflect further variations in particle characteristics. With said validation, greater accuracy

in biological studies of cells and cellular processes, the dynamics created by expansion mi-

croscopy, or the movement of dusty plasma particles could be achieved and influence further

scientific discoveries for years to come.
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4.1 Future Research

As far as future directions in this research are concerned, the promotion of the machine

learning implementation to use more advanced customizable models through Pytorch or

TensorFlow stands as a probable next step, along with the introduction of additional particle

variation or even imaging multiple simulated particles at once. More powerful libraries for

machine learning in Python give access to convolutional neural network models, not to

mention the ability to pass image intensities into the models during the training stage as

a 2D array instead of a vector. Providing expanded spatial context for the task instead of

making the models develop that connection on their own could yield greater model accuracy

and remove possible dimensional differences of the aforementioned “wraparound problem.”

On the other hand, a theoretically more accurate data set extends to include the possibility of

cylindrical particles with independent values for the width of the particle in each dimension

by including both σx and σy in the Gaussian function. In this instance, we would also need

to modify our model to allow for particle rotation, as different orientations influence the

shape of the intensity pattern created in images.
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