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Abstract

Techniques for Pattern Recognition in High-Throughput Metabolomic
Data

By Anna Jolly Blackstock

Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) have
been introduced to studies of metabolite composition of biological fluids and tissues,
providing information relating to disease states and other conditions. The collection
of data from many types of biological samples is both simple and inexpensive, and
most of these substances require very little pre-processing. However, the best methods
for processing and analyzing complex metabolomic data are still being sought. We
present NMR data pre-processing methods appropriate for metabolomic studies and
techniques for recognizing patterns of metabolite levels in time course and cross-
sectional data.

First, methods for overcoming issues that complicate metabolomic data are discussed,
with a focus on NMR data. While NMR spectroscopy and MS provide a wealth
of information about the collection of metabolites found in biological substances,
the resulting data are extremely complex. Small changes in conditions can lead
to significant shifts in NMR spectra, making it critical that metabolomic data be
appropriately processed before analysis. NMR data are used to demonstrate existing
pre-processing methods and to introduce a set of techniques appropriate for studies
aiming to characterize the behavior of individual features.

Next, the possible periodic behavior of NMR features is assessed using time course
data. Metabolite levels change throughout the day, and the identification of features
with sinusoidal periodic behavior is of interest. Periodic regression is used to obtain
estimates of the parameter corresponding to period for individual NMR features. A
mixture model is then used to develop clusters of peaks, taking into account the
variability of the regression parameter estimates. Methods are applied to NMR data
collected from human blood plasma over a 24-hour period, and simulation results are
presented.

Lastly, we present a method for investigating age-related changes in metabolite levels
using MS data. Metabolite levels associated with some biological processes are
thought to experience shifts at different times in life. An algorithm is used to identify
metabolite level changes in blood plasma collected from marmosets of different ages.
Clusters of breakpoints with similar locations of metabolite level shifts are determined,
and metabolites corresponding to MS features with breakpoints are identified.
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Chapter 1

Introduction

1.1 Overview

In the last decade, the relationship between molecular science and medicine has been

strengthened by the Human Genome Project and other advancements (Fernald et al.,

2011), encouraging hope in the field of personalized medicine. However, using full

genomic sequences is not common in medicine years later, and personalized medicine,

while used in some cases, has not progressed as people had hoped. One reason

that genomic information is not used more in practice is that genes alone do not

determine phenotype, as the environment plays a large role as well (Soltow et al.,

2010). Instead of focusing solely on the genome, there is increasing interest in studying

the metabolome.

Metabolites are small cellular molecules that participate in or are produced by metabolic

processes and can include amino acids, vitamins, environmental toxins, and pharma-

ceutical components, to name a few. When taken together, these small molecules

form the metabolome (Nicholson et al., 1999; Beckonert et al., 2007). Metabolites can

be found in tissue extracts and biofluids such as blood plasma, urine, and digestive
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fluids, many of which are very easily and inexpensively collected. Studies of the

metabolome often employ a systems approach and can be used to compare disease

classes, to measure toxicity, to analyze digestive properties, and to investigate many

biological processes. It is hoped that information collected from genomic, proteomic,

and metabolomic studies can together produce a more complete picture of human

biological processes. Since the metabolome is furthest downstream from genetic

information, metabolomic studies could produce results that are affected by both

genetic information and the environment (Soltow et al., 2010).

Different studies concerned with metabolites may have different goals and thus may

be considered metabolic profiling, metabolomic analysis, or metabonomic analy-

sis. In metabolic profiling, individual metabolites are pre-specified, and the goal is

to identify as well as quantify these substances from a biological material (Fiehn,

2002). Metabolomics and metabonomics, on the other hand, address the entire

metabolome. Although referring to the same type of data and often used inter-

changeably, metabolomic and metabonomic studies were originally characterized dif-

ferently. Metabonomics has been described as “the application of data-rich analyt-

ical chemistry technology to study the multi-component metabolic composition of

biofluids”(Bollard et al., 2005b) and was concerned with changes in the metabolome

over time or comparisons of data collected under different conditions. Metabolomic

studies, however, concentrated on describing the metabolome (Bollard et al., 2005b).

Since these terms are now considered equivalent, we will use the more prevalent

“metabolomics.” Data used in these types of studies commonly result from mass

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy.

In this chapter, I will give an introduction to NMR spectroscopy and MS technologies.

A description of the numerous challenges presented by metabolomic data will be

provided, along with applications and statistical techniques commonly used for this

type of study. Two datasets will be introduced, one with information collected from
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human blood plasma of individuals over the course of a day, and the other containing

information from blood plasma from marmosets of different ages. These are the

motivating datasets for the next three chapters. In Chapter 2, methods for the

extensive processing necessary before any metabolomic study can be carried out will

be detailed. Also, specific steps used to pre-process the human blood plasma dataset

before it is analyzed will be developed. This dataset is analyzed in Chapter 3, where

the periodic behavior of individual NMR peaks is of interest. A method for detecting

clusters of peaks with similar periodic behavior will be presented. In Chapter 4, a

study aiming to detect ages at which system-level shifts in metabolite levels occur

will be detailed.

1.2 Nuclear Magnetic Resonance (NMR) Spectroscopy

and Mass Spectrometry (MS)

Nuclear Magnetic Resonance (NMR) Spectroscopy and Mass Spectrometry (MS) can

be used to analyze the same substances and have complementary results (Beckonert

et al., 2007). MS measures mass-to-charge ratios (m/z) of ions, or charged particles,

while NMR measures the effective field strength of nuclei (McMurry, 1996). Mass

spectrometers measure m/z in various ways, depending on the type. In time of flight

(TOF) spectrometers, particles are accelerated using an electric field. The velocity of

an ion and thus the time it takes it to travel through a flight tube corresponds to its

mass-to-charge ratio. Fourier Transform (FT)-based machines use the frequencies of

the orbits of molecules to determine their mass-to-charge ratios (Eckel-Passow et al.,

2009). Since the number of charges on each ion is usually one, m/z is generally

equal to mass. The intensity values for MS data represent the number of ions with a

particular m/z value.
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If MS is used in metabolomic studies, metabolites are first separated using gas

chromatography (GC) or liquid chromatography (LC). This step involves dissolving

the substance of interest in a solvent (mobile phase) and passing this solution over

an adsorbent material (stationary phase). Different components of the substance

adsorb to the stationary phase to varying degrees and thus travel through this phase

at different rates, emerging at “retention times” inversely proportional to these rates

(McMurry, 1996). Non-polar molecules generally elute faster than polar molecules.

This technique succeeds in separating metabolites from other substances found in

biological samples (Dunn et al., 2011). While results of MS are commonly presented

in a graph with mass-to-charge values on the horizontal axis and intensity on the

vertical axis, the retention time is also available when LC-MS is used. These retention

times provide additional information and can be used to produce more accurate data

in terms of feature detection, quantification, and alignment (Yu et al., 2009).

The other analytical technique we focus on, 1H NMR spectroscopy, is related to the

magnetic field strength of hydrogen nuclei in organic compounds. These nuclei act as

if spinning on an axis, and in the absence of an external magnetic field, these spins

are oriented randomly. In NMR spectroscopy, substances are placed between poles of

a strong magnet, causing nuclei to either align their magnetic fields with the magnet’s

field (parallel orientation) or away from it (antiparallel orientation). These oriented

nuclei are disturbed by an electro-magnetic pulse, usually a radio frequency pulse.

This is done until the nuclei with parallel orientation, which is the lower energy state,

flip to the higher energy state, or antiparallel orientation (McMurry, 1996). When

this happens, they are said to be in “resonance” with the applied energy. This will

occur at different frequencies depending on the strength of the magnetic field as well

as on the properties of the nuclei themselves, allowing one to distinguish between

different types of hydrogens present in a compound and leading to identification of a

substance. NMR results are often presented in a plot with intensity on the vertical
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axis and chemical shift on the horizontal axis, where chemical shift is a measure

of the effective field strength of a nucleus. The chemical shift of a peak is given in

parts per million (ppm), corresponding to one millionth of the spectrometer operating

frequency (McMurry, 1996). The area under each peak corresponds to the number of

1H protons with the same chemical shift and thus is an indication of the concentration

of a substance in a sample.

1.3 Challenges of Metabolomic Data

The analysis of metabolomic data is complicated by many factors. Data resulting

from MS and NMR spectroscopy are very complex, with a single spectrum consisting

of thousands, or even millions in the case of high resolution MS, of data points.

Needless to say, the number of data points will almost surely be greater than the

number of subjects in a study, making traditional statistical analysis of complete

spectra impossible. Another factor complicating NMR data is that a single substance

will often be represented by multiple groups of peaks with different chemical shifts

in NMR spectra. This does not make the identification of substances impossible, but

it does make the process more complex and could affect the manner in which NMR

data should be analyzed.

Unwanted variation introduced by a myriad of sources for both mass and NMR spectra

further complicates metabolomic data. Differences in temperature, salt content, and

pH level in samples can lead to chemical shift differences in spectra, even though

the same molecules are represented (Alm et al., 2009). The electric field used in

some FT-based mass spectrometers causes frequency shifts and thus affects the m/z

values for molecules (Eckel-Passow et al., 2009). Although technicians try to keep

variation due to controllable conditions to a minimum by regulating sample conditions
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and machine settings, some variation is inevitable. This makes it impossible to

compare chemical shift or mass-to-charge ratio across spectra without first making

adjustments. Many processing techniques are being used, but there is no standard

methodology as methods used are dependent upon the nature of a study.

1.4 Analysis of Metabolomic Data

Metabolomic studies have been conducted with many different goals in mind. Data

collected in such studies have been analyzed in various manners as well. There

are, however, some common themes in terms of both applications of such data and

techniques for analysis.

1.4.1 Applications of Metabolomic Methodology

Metabolomic studies can be used in many different types of investigations. Studies

can focus on topics such as the characterization of metabolic processes, the toxic

effects of drugs or drug interactions, the effects of injuries or interventions such as

surgeries and diets, or the detection of markers for various diseases, just to name a

few.

Some studies aim at using metabolomic data to investigate toxicity in response to

the administration of certain drugs. Studies of toxicity in vivo are generally very

expensive and can be lengthy (Ebbels et al., 2007), so an alternative approach to

these types of studies would be welcomed. The effects of hydrazine toxicity in rats

and mice are studied in Bollard et al. (2005a), and it is shown that the toxic response

varies by species. Ebbels et al. (2007) investigate the use of metabolomic methods for

toxic screening using 80 different treatments in rats, concluding that such screening
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programs could be used to detect and classify toxic responses. The metabolic effects

of drug doses, both toxic and non-toxic, in rats are studied by Beckonert et al. (2003),

who believe based on their results that drug toxicity can be predicted. Studies such

as these may help scientists better understand toxic effects of drugs and could one

day lead to non-invasive early detection of toxicity.

Metabolic changes can occur not only due to drug disturbances but also to injury,

dietary change, or other alteration in circumstance. In Viant et al. (2005), changes

in metabolic behavior in rats following traumatic brain injury (TBI) are examined.

Differences in brain metabolites due to injury, both global and specific, are found.

Bertram et al. (2006) investigate the biochemical effects of a whole grain diet in pigs,

attempting to identify metabolic evidence that might explain the known advantages

of a whole grain diet. Hopefully, some of this type of research can be extended to

humans and can help identify those with certain types of injuries or dietary risk

factors so that interventions or treatments could be more suitable to patients.

Differences in metabolic profiles may also be attributed to disease status. If certain

metabolic patterns or individual metabolite markers were found to be indicative

of particular diseases, metabolomic methods could provide a non-invasive disease

detection method. Metabolomic studies could also provide information on disease

processes, aiding in the treatment of such diseases. Odunsi et al. (2005) show that

metabolomic methods are promising in the early detection of epithelial ovarian cancer.

In Denkert et al. (2006), metabolite differences in invasive ovarian carcinomas and

ovarian borderline tumors are demonstrated, and differences between colon carcinoma

and normal colon tissue are found in Denkert et al. (2008).

As mentioned above, many of metabolomic studies involve comparing normal samples

to disturbed or diseased samples. These samples may be collected from subjects that

differ in diet, disease status, drug dose, or some other factor. In order to accurately
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compare these samples, the underlying normal behavior of metabolites must be

studied. Bollard et al. (2005b) demonstrate that while metabolic profiles are different

among species, the variation of metabolites within the human species is considerable.

They go on to characterize differences based on age, gender, stress levels, diurnal

effects, and other factors. In Park et al. (2009), differences in macronutrient regulation

among subjects throughout the course of a day are examined. Although regulation

varies from individual to individual, overall time-of-day patterns are identified.

1.4.2 Statistical Tools for Analysis

Metabolomic studies use statistical methods dependent upon the specific focus of the

research. Most studies aim to use spectra to differentiate between different groups, to

identify individual features that may distinguish one group from another, or both. It is

possible for spectra to be separated on the basis of many qualities such as injury status

(Viant et al., 2005), drug treatment groups (Keun et al., 2002; Forshed et al., 2003;

Bollard et al., 2005b), disease groups (Odunsi et al., 2005), species (Bollard et al.,

2005b), and country of origin (Dumas et al., 2006). Common methods used in order

to separate these groups include K-means clustering, hierarchical clustering, principal

components analysis (PCA), and partial least squares regression discriminant analysis

(PLS-DA).

K-means clustering uses the squared Euclidean distance between points to determine

the best cluster profile for a given number of clusters. Hierarchical clustering, on

the other hand, does not require a pre-specified number of clusters. In the most

common form of this clustering method, observations that are most similar in terms

of some dissimilarity matrix are grouped together, then those groups that are similar

are grouped together, and so on until one cluster containing all data remains. The

number of clusters chosen is determined by how similar the user would like elements
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within the same cluster to be relative to other clusters (Hastie et al., 2001). In PCA,

principal components (PCs) are calculated as linear combinations of the data so that

the first linear component explains the as much as possible of the variation present

in the data, and the subsequent PCs explain less and less variation. All PCs are

orthogonal to one another, and plots of various PCs can reveal clustering patterns

(Hastie et al., 2001). PLS-DA also involves calculating a linear combination of data

but uses features as well as class membership in this process (Barker and Rayens,

2003). Similar to PCA, scores resulting from this method can be plotted and can

reveal separation of groups. Along with providing a means for separation, PCA

and PLS-DA also allow for the identification of important features that differ among

groups. In PCA the coefficients for the linear combination of variables, or “loadings,”

convey how much of the variation explained by a PC is due to each variable. Loadings

resulting from PLS can be used similarly.

While K-means and hierarchical clustering methods provide a means for separation,

PCA and PLS-DA also allow for the identification of important features that differ

among groups. In many studies, combinations of all of these methods are used

to determine the number of clusters, cluster membership, and important features

contributing to cluster differences. In Park et al. (2009), metabolite patterns over

the course of a day are investigated using PCA to determine the number of clusters,

followed by K-means clustering to determine group membership.

1.5 Proposed Methods

We intend to develop methods to characterize healthy metabolite patterns, as under-

standing healthy behavior will aid in distinguishing healthy from abnormal behavior

in the future. In this section, I will first describe the datasets that motivate this
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research. Brief summaries of the material presented in the following chapters will

then be provided.

1.5.1 Motivating Datasets

NMR Human Blood Plasma Data

Blood samples were drawn from eight subjects every hour, beginning at 8:30 in the

morning and ending at 8:30 the next morning, for a total of 25 samples per person.

From the blood collected, high resolution 1H NMR spectra were obtained for analysis.

Conditions were held constant for the subjects, and meals were administered at 9:30

am, 1:30 pm, 5:30 pm, and 9:30 pm. Half of the subjects were male and half were

female, and they were of various ages. For more details, see Park et al. (2009).

LC-FTMS Marmoset Blood Plasma Data

Blood plasma was collected from 76 marmosets at the New England Primate Research

Center. These marmosets ranged in age from 2 to 13 years and and had similar

living conditions. Mass spectra were obtained using anion exchange (AE) liquid

chromatography coupled with Fourier transform mass spectrometry (LC-FTMS). For

each sample, spectra were produced in order to increase the number of metabolites

detected for each marmoset. See Soltow et al. (2011) for more details.

1.5.2 Peak Identification and Pre-processing Methods for NMR

Data

Methods for overcoming the complex and sensitive nature of NMR data are discussed.

These methods include phase and baseline correction, normalization and scaling,
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binning, using a calibration peak, spectral alignment, and the elimination of chemical

shift ranges. The NMR human blood plasma dataset is used to demonstrate some of

these existing methods, and a set of techniques appropriate for the identification of

metabolomic NMR peaks is established.

1.5.3 Clustering on Periodicity Using Metabolomic Time Course

Data

Metabolic information gathered by NMR spectroscopy over time can be used to

study metabolite patterns of the human body. Metabolite levels change with time,

and the identification of peaks with sinusoidal periodic behavior is of interest. We

consider NMR human blood plasma data, obtained from eight subjects every hour

over a 24-hour period. We use periodic regression and obtain estimates of the

parameter corresponding to period for the various peaks. A mixture model is then

used to develop clusters of peaks, taking into account the variability of the regression

parameter estimates. Simulation studies under various conditions are presented.

1.5.4 Using Mass Spectra to Determine Possible Ages of

Metabolic System-Level Shifts

Metabolite levels are thought to change with age, and metabolomic data will be used

to investigate the locations of possible metabolic system-level shifts. The LC-FTMS

marmoset blood plasma dataset will be analyzed, eliminating those marmosets con-

sidered unhealthy at the time of the blood draws. We use an algorithm to determine

age locations at which metabolite levels change for individual MS features. Clusters

of breakpoints are then determined, and features and corresponding metabolites with

similar shift locations are identified.
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Chapter 2

Peak Identification and

Pre-processing Methods for NMR

Data

2.1 Introduction

Unwanted variation is inevitably present in metabolomic data resulting from nuclear

magnetic resonance (NMR) spectroscopy. This variation can be caused by sample

differences such as pH level and temperature as well as by differences in machines

or experimental conditions. These factors affect the resulting spectra from these

methods, making direct comparisons of raw spectra unwise. Analysis of metabolomic

data is further complicated by its size since spectra are often comprised of thousands

of data points. For these reasons, pre-processing of this type of data is mandatory,

and many context-dependent pre-processing schemes have been proposed.

In this chapter, existing methods for carrying out pre-processing steps are described.

The pre-processing of an NMR blood plasma dataset is then outlined in detail, using
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both existing and developed methods. Although all metabolomic data must be

pre-processed to overcome the complicating issues listed above, we focus on NMR

data. The pre-processing of NMR spectra can include a multitude of steps but

usually includes phase and baseline correction, alignment of spectra, elimination

of uninformative peaks, and normalization to an internal standard. Often, a data

reduction step is used as well.

2.2 Existing Adjustment and Processing Techniques

2.2.1 Shimming, Phasing, Baseline Correction, and Assign-

ing a Calibration Peak

Shimming, phasing, baseline correcting, and using calibration peaks are all adjust-

ments used to make NMR spectra more accurate and comparable by controlling for

different factors. Differences in magnetic field over a sample are called “gradients” and

can affect the accuracy of NMR spectra if not addressed. Adjusting magnets called

“shims,” or shimming, can correct this problem if done properly. Shimming must be

performed every time a sample is run due to slight changes in sample temperatures,

NMR tubes, sample levels, and other seemingly small differences so that all spectra

are of good quality and are comparable (Pearson, 1991).

NMR spectra can be distorted in several ways and must be adjusted appropriately.

Zero-order and first-order phase errors can be present, zero-order arising from the

fact that the x-axis is not perfectly in line with the reference, and first-order errors

being introduced since machines cannot begin to collect data at the exact moment

of an electro-magnetic pulse (Sanders, 1993). These errors cause peaks to change

shape, a problem that can be corrected by “phasing” the spectra. For the zero-order
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correction, the largest peak is usually selected, and the phase is adjusted until it

appears to have the correct shape. This process is repeated with another peak for

the first-order correction.

Another problem is that NMR spectra have “rolling baselines,” meaning that the

baseline rises and falls throughout the spectrum, making it difficult to recognize true

signals. This type of baseline distortion can be caused by the recovery time necessary

after a radio frequency pulse or by a phase change in the filters used to exclude

noise (Sanders, 1993). Baseline correction can be used to eliminate this problem so

that signals can be identified and spectra can be compared. One method of baseline

correction uses a polynomial fit to estimate the baseline and then subtracts this from

the spectrum.

Calibration peaks are used to define the zero chemical shift location of spectra. A

small amount of a substance not naturally present in a sample is added to produce

this peak. An ideal substance would produce only one peak, which would have a lower

ppm value than other naturally-occurring peaks. Also, peaks of naturally-occurring

components would not be affected by the addition of this substance. For these reasons,

tetramethylsilane (TMS) is a good substance to use to produce calibration peaks in

1H NMR spectra. The substance 3-trimethylsilylpropionic acid (TSP) is also used for

this purpose.

2.2.2 Correcting Chemical Shift Differences

Small differences in magnetic field strengths, sample conditions such as temperature,

concentration, and pH levels, or other factors can cause a peak to present at different

chemical shifts across spectra (Forshed et al., 2003; Craig et al., 2006). Since it is

impossible to obtain spectra under exactly the same conditions, this issue must be

addressed in most if not every study. Some propose aligning spectra using various
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algorithms, and others think chemical shift differences can be minimized by integrat-

ing spectra over a number of spectral regions, a process often called “binning.” The

choice of method is guided by the goals of the study and the type of analysis.

Binning

“Binning” or “bucketing” involves summing peaks over spectral segments and is fast

and easy to implement. Commonly, bins of 0.04 ppm are used for urine samples,

which seems to correct for small shifts that may be present for peaks (Craig et al.,

2006; Odunsi et al., 2005). Bins of different sizes can be used, however, and some

studies use bins as small as 0.005 ppm for tissue and plasma samples (Viant et al.,

2005). Summing over groups of peaks simplifies the data, but information is lost in

the process. Also, inaccuracies can arise since unrelated peaks can be placed in the

same bin and peaks can be split between different bins (Alm et al., 2009). Some

try to get around this problem by combining bins known to contain the same or

related substances (Keun et al., 2002; Viant et al., 2005). This method is used in

classification studies, but since peak locations are combined, biomarker identification

is not possible using such a method (Craig et al., 2006). With modern computing

power, other more sensitive methods such as spectral alignment are available.

Spectral Alignment

Alignment algorithms generally shift and/or stretch and shrink specified spectral

segments until a certain criterion or stopping point is met, and some sort of distance

measure is used to measure the success of alignment. Forshed et al. (2003) suggest

using a genetic algorithm for alignment of predetermined regions of spectra to the

corresponding regions of a reference spectrum. The alignment and thus the correlation

coefficient improves with each iteration, or “generation,” and the algorithm is stopped
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after a certain number of generations. The correlation coefficients for the reference

spectrum with both the complete unaligned spectra and the aligned spectra are

used to measure the success of alignment. This algorithm is relatively efficient and

is appropriate for complex NMR data, unlike other alignment methods. Lee and

Woodruff (2004) propose a new and faster method based on the Forshed et al. (2003)

method but replacing the genetic algorithm with a beam-search algorithm. Recent

alignment attempts use algorithms originally used for image analysis (Alm et al.,

2009), and new alignment methods will probably continue to be introduced.

2.2.3 Elimination of Uninformative Peaks

Often, some peaks should be removed from NMR spectra in the processing stage.

Biofluids such as urine and blood plasma have high water content relative to the other

molecules present. If the water signal were not suppressed, NMR peaks corresponding

to water protons would be so large that other substances would not be visible. The

effects of this water suppression are not constant, however, causing resulting water-

related peaks to be meaningless. These peaks, generally occurring between 4.5 and

6 ppm, are often removed from NMR spectra for this reason (Antti et al., 2002;

Keun et al., 2002; Odunsi et al., 2005; Bertram et al., 2006; Dumas et al., 2006).

Regions corresponding to other substances such as contaminants (Viant et al., 2005)

or substances that are not of interest (Keun et al., 2002; Park et al., 2009; Nicholson

et al., 1995) are often removed as well.

2.2.4 Normalization and Scaling

Normalization generally refers to a subject operation, and scaling refers to a feature

or peak operation. In normalization, the spectra are divided by their total sums or
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some other spectrum-dependent value. The result is that relative concentrations of

substances are found, and thus samples are comparable. This can be particularly im-

portant in urine samples, where the volume and thus the concentration of substances

can depend heavily on a drug being taken or on a toxicity level (Craig et al., 2006).

If the spectra intensity totals are used in normalization, an increase in one peak

will make it appear that other peaks have decreased even if they have not, causing

problems. Instead, some prefer normalizing to an internal standard.

When normalizing to an internal standard, reference compounds that do not natu-

rally occur in a substance such as a biofluid are added to samples before obtaining

NMR spectra. A known amount is added to each sample, so the size of the peak

corresponding to this substance can be used to normalize spectra in a study. The

height or the area of the internal standard peak can be used to define its size, although

area may be more appropriate since it better corresponds to the concentration of a

substance.

Several different substances can be used as the internal standard for NMR spectra.

In aqueous solutions, the sodium salt of 3-trimethylsilylpropionic acid (TSP) is often

used. However, this compound should not be used as a reference standard in samples

with a high protein content such as blood plasma samples. Since it can bind to

proteins, it will affect the results of the NMR, but formate can be used instead

(Beckonert et al., 2007). Other substances that can be used include Tetramethylsilane

(TMS) (Park et al., 2009) and 3-trimethylsilylpropyl (TMSP) (Viant et al., 2005).

Scaling, a peak-specific operation in our case, can also be used. Often, spectral

positions are mean-centered and scaled to unit variance. They can also be Pareto-

scaled by dividing by the square root of the standard deviation of the position

values or logarithmically scaled (Craig et al., 2006). There is much variation in

how normalization and scaling procedures are carried out. Normalization and scaling
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can both be used on a dataset, but the types of samples and studies should dictate

which methods are used.

2.3 Application of Processing Techniques: Blood

Plasma NMR Data

Processing of the blood plasma data is described below, from initial basic processing

steps to spectral denoising and peak identification. The dataset is processed for

a peak-specific study, the goal of which is to characterize the periodic patterns

of increase and decrease for metabolite peaks. Different methods would be more

appropriate for other types of studies with classification or other goals.

2.3.1 Initial Processing

Blood samples were drawn from eight subjects every hour, beginning at 8:30 in the

morning and ending at 8:30 the following morning, for a total of 25 samples per person

(see Park et al., 2009, for more details). From the blood collected, high resolution 1H

NMR spectra were obtained for analysis, and these original spectra consisted of 16384

data points each. The water signal (4.8 ppm) was suppressed and parameters were

standardized so that spectra could be compared. Also, the location of a chemical shift

of zero was defined using the internal standard tetramethylsilane (TMS). The NMR

spectra were phase and baseline corrected using NUTS NMR data processing software

(Acorn NMR, Inc). Suitable areas were chosen to represent the baseline signal, and

baseline correction was implemented using least squares polynomial regression. The

spectra were then aligned using a beamsearch algorithm maximizing the correlation

between a reference spectrum and the rest of the spectra (Lee and Woodruff, 2004).
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Also, the water region was eliminated (4.8 - 5 ppm), and the spectra were normalized

using the size of the reference tetramethylsilane (TMS) peak. The spectra were

limited to the range of 0 to 5.5 ppm since it was determined that no usable signal

existed for chemical shifts above this range (Nicholson et al., 1995; Park et al., 2009).

Limiting to this range decreased the number of data points per spectrum to 8192.

Figure 2.1 includes a plot of one of the raw spectra as well as a plot of the same

spectrum after these processing steps. You can see that the water peaks between 4.8

and 5 ppm dominate this spectrum.
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Figure 2.1: The top plot displays a raw spectrum, and the bottom plot shows the same
spectrum after initial processing steps. Details are more visible after the elimination
of the dominant water peak between 4.8 and 5 ppm.

2.3.2 Wavelet Smoothing

Initial pre-processing takes care of many problems, but NMR spectra still display

considerable noise (Figure 2.2). In an effort to try to isolate the true signal in our

data, the spectra were wavelet denoised. This process involves using a wavelet filter to
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first transform and decompose a signal into different levels of detail. Assuming that all

coefficients are not needed to accurately represent the true signal, wavelet coefficients

that are not larger in magnitude than a threshold value are set to zero to denoise

data (Strang, 1996). If those coefficients that are larger than the threshold value are

retained, this is called “hard thresholding.” In “soft thresholding,” coefficients larger

in magnitude than the threshold value are shrunk toward zero by the threshold value

while other values are set to zero. Hard thresholding was used to denoise our data,

as shrinking of the signals was not necessary. The threshold value was defined as the

standard deviation of the level of finest detail.

Region of Raw Data

 

 

Figure 2.2: NMR spectra exhibit considerable noise.

There are many different wavelets that can be used to transform signals, allowing

an appropriate wavelet for a particular type of signal to be chosen (Burrus, 1998).

The Haar wavelet is the simplest and can be used for “blocky” data since it is

discontinuous, but it is often not practical (Hastie et al., 2001). The Daubechies
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family of wavelets is more complicated, with the members having different orders

indicating their complexity. The Daubechies wavelet of order two is the same as the

Haar wavelet, and the maximum order for Daubechies wavelets is ten. The Symmlet

family of wavelets includes modifications to the Daubechies family, and these two

groups have very similar properties. The Symmlet wavelet of order four is widely

used and is often appropriate for denoising images. The largest order for Symmlet

wavelets is eight.

Figure 2.2, as mentioned above, shows a small range of an NMR spectrum before

denoising. Figure 2.3 shows the same region along the top row, and the results of

wavelet smoothing with different wavelet filters are given below. The Haar wavelet

result shows that this wavelet is not a good choice for our data. Other results vary

in the level of smoothness. The goal was to choose a wavelet filter that preserved the

visible peaks, meaning that the image was not oversmoothed but did not keep too

much detail. This is very subjective, but with the NMR data, the decision was fairly

straightforward. The Symmlet 4 wavelet was chosen as the best to transform the

NMR spectra for denoising using these criteria. Figure 2.3.2 shows another portion

of the NMR spectrum along with its denoised counterpart. It looks as if major peaks

are preserved while not including too much detail, so the denoising wavelet choice

seems appropriate.

2.3.3 Identification of Peaks

After wavelet smoothing of the spectra, peaks were identified for each spectrum.

Observation of the spectra indicated that peaks would be appropriately represented

by relative maxima. All relative maxima and relative minima for each spectrum were

identified, and a sample of these results can be seen in Figure 2.5. We defined peak
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Figure 2.3: Region of NMR spectrum before denoising is depicted on the top row.
Other rows show results of wavelet denoising using various wavelet filters.

magnitudes to be the differences between the relative maxima and the corresponding

relative minima. Of course, all but the smallest and largest relative maxima were

sandwiched between two relative minima. The smaller of the relative minima around

these maxima were used to calculate peak magnitudes. The total number of peaks

after using this algorithm was 44183 amongst all spectra, or about 221 per spectrum.

Only peaks greater than 5 times the standard deviation of the noise were kept, where

the standard deviation of the noise was defined as the standard deviation of the region

of the spectrum with no discernible signal. This threshold was chosen to eliminate

many of the noisy or very small peaks without removing peaks with a strong signal.
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Example of Data Before Smoothing

 

 

Example of Data After Smoothing

 

 

Figure 2.4: The top plot shows a portion of one of the spectra before wavelet denoising.
The same portion after denoising is shown in the bottom plot.

Also, only unique peaks were kept, meaning that peaks occurring at the same exact

position as peaks on other spectra were eliminated. This brought the total peak count

down even further to 1242.

2.3.4 Determination of Peak Locations

Although 1242 unique peak locations were found amongst all spectra, some of these

peak locations were very similar. The spectra were aligned, as mentioned above,

but no alignment algorithm is perfect. Some peaks representing analogous protons

could have surfaced close to one another but not at exactly the same chemical shift.

Examining the data revealed that several spectra showed peaks that were determined

to be the same peak but were about 6 units (about 0.004 ppm) apart. Therefore, if

peaks on multiple spectra were similar in chemical shift, they were classified as the

same peak. Peaks that were the closest to one another were combined first, and the

range of peaks identified as representing the same peak did not exceed 0.005 ppm (8

units). This window is slightly larger than the 0.004 ppm observed between peaks so is
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Figure 2.5: Relative maxima and relative minima were identified for each spectrum
and used to define peak magnitudes.

a little more flexible. A final list of peaks from all spectra was produced. Spectra peaks

were standardized by subtracting the mean and dividing by the standard deviation.

For every location on the peak location list, the maximum value within 4 units (about

0.0025 ppm) in either direction was found in each spectrum. This value could be a

peak for some spectra and a non-peak for others, but the values kept for each spectrum

were in the same locations. The peaks were then normalized. After all processing,

each spectrum, which originally contained 16384 data points, was whittled down to

only 259 peaks. Figure 2.6 shows a histogram of the identified peak locations and how

it corresponds to one of the processed NMR spectra. You can see that regions where

peaks are visible in the spectrum did in fact have peaks identified in their areas, so

the method appears to have performed well.
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Figure 2.6: One of the processed NMR spectra is shown in the top panel, and the
bottom panel is a histogram of the final peak list found.

2.4 Discussion

Variation present in all metabolomic data, along with the sheer number of data points,

can make analysis of such data very difficult. Therefore, pre-processing this type of

data is absolutely necessary. Pre-processing techniques used for metabolomic data

often include baseline correction, alignment of spectra, elimination of uninformative

peaks, and normalization to an internal standard. These methods among others are

detailed above, and then multiple pre-processing steps of a particular NMR dataset

are described.

Although some pre-processing techniques are thought to be more appropriate than

others, no automatic complete pre-processing techniques are recommended or are

currently available, and this issue is being addressed (Trainesel et al., 2007). Tech-

niques chosen depend on the resources available to a researcher as well as on the

particular features of study. The processing of the human plasma dataset detailed

above focuses on achieving a final dataset comprised of information for individual
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peaks rather than complete spectra. This focus influenced the choice of techniques,

but others with similar goals may not choose to use the same methods for their data.

For instance, other smoothing methods or normalization techniques could be used.

Although different, both sets of tools could be equally valid. Thus, at least for now, it

is up to the researcher to choose appropriate methods for his or her data and analyze

the resulting data accordingly.
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Chapter 3

Clustering on Periodicity Using

Metabolomic Time Course Data

3.1 Introduction

Originally used for structure determination in organic chemistry, nuclear magnetic

resonance (NMR) spectroscopy is also a useful tool in the biosciences as it can be

used to investigate the metabolic composition of biofluids (Beckonert et al., 2007).

NMR spectroscopy provides a tool for characterizing the nuclei found in a substance

in terms of relative field strength and concentration (McMurry, 1996). Results are

often presented in a plot with intensity on the vertical axis and chemical shift on

the horizontal axis, where chemical shift is a measure of the effective field strength

of a nucleus. In 1H NMR spectroscopy, the area under each peak corresponds to the

number of 1H protons with the same chemical shift and thus is an indication of the

concentration of a substance in a sample. NMR spectra taken from biological samples

could provide information relating to diseases and disorders. Collecting blood plasma

and urine samples is relatively simple and inexpensive, and most of these substances
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require very little pre-processing. For these reasons, NMR data is an attractive source

of information.

Information collected from NMR data has already been used for several purposes.

NMR spectra have been used to investigate metabolic and other types of disorders

(Odunsi et al., 2005; Denkert et al., 2006, 2008), to determine whether or not indi-

viduals were in a normal metabolic state following surgery, dietary intervention, or

injury (Beckonert et al., 2003; Bertram et al., 2006; Viant et al., 2005), and to detect

toxic drug levels in individuals (Ebbels et al., 2007; Bollard et al., 2005a; Beckonert

et al., 2003). Distinguishing between different groups using average NMR spectra is

often of interest. Methods commonly used include K-means clustering, hierarchical

clustering, principal components analysis (PCA), and partial least squares regression

discriminant analysis (PLS-DA). While K-means and hierarchical clustering methods

provide a means for separation, PCA and PLS-DA also allow for the identification

of important features that differ among groups. In many studies, combinations of all

of these methods are used to determine the number of clusters, cluster membership,

and important features contributing to cluster differences.

One area of current research using NMR data focuses on the characterization of

metabolite time-of-day patterns. Some biochemical, physiological, and behavioral

processes in the human body display circadian rhythm, having cycles repeating about

once every 24 hours (Leikin, 2003; Blanco et al., 2007). Melatonin, which affects

many physiological actions, is under circadian regulation and is produced mainly

at night (Simko and Pechanova, 2009). Disruptions in circadian rhythm and thus

melatonin levels are thought to lead to increased risk of cardiovascular disease (Simko

and Pechanova, 2009), metabolic syndrome (De Bacquer et al., 2009), sleep disorders

(Blask, 2009), and even some types of cancer (Blask, 2009; Stevens, 2009). The study

of the daily patterns of physiological systems has resulted in treatment regimens that

take into account the circadian variation in phenomena such as blood pressure (Simko
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and Pechanova, 2009).

The influence of circadian forces on metabolite levels and the possible presence of

other periodic patterns of metabolites are investigated in Park et al. (2009). In order

to observe metabolite patterns over time, Park et al. (2009) collected blood plasma

samples from subjects every hour, beginning at 8:30 am, over a 24-hour period. Meals

were administered to study participants at 9:30 am, 1:30 pm, and 5:30 pm, and a

snack was given at 9:30 pm. Each sample collected was used to produce a 1H NMR

spectrum. After averaging spectra for each time point, Park et al. (2009) find that

average spectra can be classified into groups corresponding to morning, afternoon,

and night using PCA and K-means clustering. Summed metabolic signal intensities

in certain NMR regions differ when comparing spectra collected during morning,

afternoon, and night hours, and graphical evidence suggests the existence of periodic

time-of-day patterns of metabolites.

Identifying periodic metabolic peaks could aid in the understanding of the behavior

of the human body, providing information useful in diagnosing and treating many

conditions. In order to supply investigators with detailed time-of-day information

from metabolic signals, we propose a method that will provide a means for extraction

of NMR peaks exhibiting periodic behavior and that will characterize this behavior.

Techniques mentioned above succeed at finding groups with similar spectra and can

even identify features that most contribute to differences in groups. However, our

goal is to estimate the period of individual NMR peaks and to find groups of peaks

with similar behavior. A new method is thus developed.

Periodic regression is used to model the behavior of identified peaks in the NMR

spectra, and the regression coefficients are then used to identify groups with different

periodic behavior. While some methods use the joint distribution of the parameter

estimates in the clustering procedure (Qin and Self, 2006), we propose using only the
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marginal distribution of the parameter associated with periodicity. It is of scientific

interest to find clusters of peaks with similar periodic patterns, regardless of amplitude

and phase shift. Even if clusters existed such that peaks within a cluster shared

the same amplitude, phase shift, and period, these clusters would not provide the

desired result: clusters of peaks with homogeneous periodic patterns. The parameters

corresponding to phase and amplitude can therefore be ignored during the clustering

process. This will allow peaks with different phase shifts but similar periods to

be classified together. We want to allow for the possibility that patterns in one

cluster could be opposite of one another. This is because, similar to other biological

processes (Spellman et al., 1998; Yu, 2010), functionally related metabolites may

have similar periodicity yet differ in phase. Metabolic regulation involves inhibition

of the production of a metabolite once that substance reaches high levels. Thus, as

the substance increases, intermediate metabolites involved in the production of the

substance may decrease.

Additionally, since values for the period-related parameter are estimated in the peri-

odic regression step, we propose accommodating the variability associated with the

parameter estimates of interest in the clustering process. The method is applied to

our sample data, extracted from 1H NMR spectra collected from eight subjects every

hour for 25 hours (spectra also used in Park et al. (2009)), and the periodic behavior

of the identified peaks is assessed. Simulation studies are used to show that when

there is an extra variance component due to estimation of parameter estimates, it

should be accounted for in clustering.
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3.2 Data Pre-Processing and Peak Identification

The 25 1H NMR spectra collected from each subject were phase and baseline corrected

using NUTS NMR data processing software (Acorn NMR, Inc). The spectra were

then aligned using a beamsearch algorithm maximizing the correlation between a

reference spectrum and the rest of the spectra (Lee and Woodruff, 2004). Also, the

water region was eliminated, and the spectra were normalized using the size of the

reference tetramethylsilane (TMS) peak (Kim and Park, 2005). The spectra were

limited to the range of 0 to 5.5 ppm since metabolites are known to present in this

region (Nicholson et al., 1995) and since the signal-to-noise ratio is high here. The

data were denoised using a Symmlet wavelet transformation of order four with hard

thresholding. The standard deviation of the level of finest detail was used as the

threshold level, meaning that only wavelet coefficients larger than this value were

retained. The wavelet denoising process resulted in much smoother data.

The relative maxima of the smoothed spectra were considered to be peaks. The

differences between the relative maxima and the smaller of the relative minima around

these maxima were taken to be the magnitudes of the peaks. Only peaks with

intensities greater than 5 times the standard deviation of the noise were used in the

analysis, where the region of the spectrum with no discernible signal was used to define

the noise. After imposing this threshold, redundant peak locations were removed. If

peaks on multiple spectra were similar in chemical shift, they were classified as the

same peak, and a total peak location list was found. The range of peaks identified as

being the same did not exceed 0.005 ppm. Spectra were standardized, and for every

location on the peak location list, the maximum value within about 0.0025 ppm was

found in each spectrum. At a particular location, the maximum value within the

0.0025 ppm range could be classified as a peak for some of the spectra and a non-

peak for other spectra, but values for each peak location were found in each spectrum.
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The peaks in the final peak list were then normalized. For more details, see Chapter

2.

3.3 Methods

3.3.1 The Model

Our goal is to detect clusters of peaks so that peaks within a cluster have similar

periodicity but those in different clusters can be dissimilar in this regard. All peaks

are not expected to behave periodically, and preliminary plots of the data show that

a sine curve is appropriate for a subset of peaks (Figure 3.1). It is not of interest

to find groups of peaks in which each group has the same amplitude, phase shift,

and period. Although some peaks may exhibit the same periodic pattern, they may

have different amplitudes and phase shifts, some perhaps beginning at lower levels

and reaching higher levels later in the day, and some having the opposite pattern.

These peaks could be affected by the same mechanism and should be classified in the

same group. Thus, we focus our attention on estimating the parameter associated

with periodicity, βp. Instead of fitting a model in which the joint distribution of the

parameters associated with the amplitude, periodicity, and phase shift is explicitly

defined, we fit a simplified model for each peak in which the marginal distribution of

βp is specified. After estimating the βp values, these estimates along with the (known)

variability associated with estimating them are used to find clusters of peaks.

Suppose an NMR spectrum consists of P peaks and that we have spectra collected

from N subjects at multiple times. Thus, we have a measurement for peak p (p =

1, 2, ..., P ) for each subject i (i = 1, 2, ..., N) at each time j (j = 1, 2, ..., J). Let Yijp be

the observed peak magnitude for subject i at time j for peak p, and let tij be the time

of the measurement for subject i at time j. Let Xi be an indicator variable for person
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Figure 3.1: Plot of intensity vs. time for subset of peaks. It appears that a sine curve
would be a good fit for these peaks.

i, where Xi = 1 for person i and 0 otherwise and using i = N as the reference subject.

Consistent with the notation in Qin and Self (2006), assume there are K classes of

peaks with distinctive periodic behavior, and let up = k (k = 1, 2, ..., K) denote

class membership for peak p. Alternatively, one can use up = (up1, up2, ..., upK)T

to indicate class membership, where upk = 1 if peak p belongs to class k and 0

otherwise. Let π = (π1, π2, ...πK)T be the vector of probabilities associated with each

class membership vector up, where πk ≥ 0 and
∑K

k=1 πk = 1.
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The model can be written as, given up = k:

Yijp = αpsin(βptij + γp) + δipXi + εijp, (3.1)

εijp ∼ N(0, σ2),

βp = µβk + ep,

ep ∼ N(0, σ2
k),

up ∼ Multinomial(π).

Parameters αp, βp, and γp are the regression parameters associated with the sine

function for peak p. The amplitude of the sine curve for peak p is given by |αp|, the

period is 2π/|βp|, and the phase shift for the curve is given by −γp/βp (Swokowski,

2009). We assume that the subject effect δip is fixed, and the error values are given by

εijp are assumed to be independent and identically normally distributed with mean

zero and constant variance σ2. βp has mean µβk and residual ep, which is normally

distributed with mean zero and variance σ2
k. The class membership vector, up, has a

multinomial distribution with parameter π.

With this model, the periodic behavior of peaks within a cluster is similar, but

periodicity can be different across clusters. Heterogeneity is allowed in the parameters

associated with amplitude and phase shift since these curve attributes are not of

interest. The joint distribution of αp, βp, and γp is not specified in Model 3.1, so

the complete maximum likelihood procedure cannot be carried out for this simplified

model since the full likelihood is unknown. Note that a full model incorporating the

joint distribution of the sine curve parameters would imply the simpler Model 3.1,

but the reverse is not necessarily true.
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3.3.2 Estimation

The estimate β̂ for each peak has mean µβk , the mean value for the peaks in class

k, with a traditional residual component ep as well as a random effect signifying the

extra variation due to the estimation of βp denoted by ψp. We rewrite the model as

β̂p = µβk+ep+ψp, where ψp ∼ N(0, s2p), and where s2p is the variability associated with

the estimation of β and is assumed to be known. It follows from these relationships

and from Model 3.1 that, given up = k, β̂p has the distribution:

β̂p ∼ N(µβk , σ
2
k + s2p). (3.2)

Given class k, β̂p is normally distributed with mean µβk and with a known peak-

specific variance component as well as an unknown class-specific variance component.

The βp values are first estimated using nonlinear least squares regression with the

Gauss-Newton algorithm with Levenberg-Marquardt modifications for global con-

vergence (Matlab, The MathWorks, Inc.). Starting values and iteration limits are

changed as necessary to successfully model as many peaks as possible. The βp values

and their variances are of primary interest in terms of the periodic behavior of the

peaks.

After estimating the βp values, the expectation-maximization (EM) algorithm (Demp-

ster et al., 1977) is used to find groups of peaks with similar periodic behavior while

considering the variability in the parameter estimates of interest. This algorithm’s

first step is the expectation step (E step), which involves computing the expected

value of the log-likelihood of the complete data using current parameter estimates.

The next step, or maximization step (M step), finds maximum likelihood parameter

estimates using the expected likelihood calculated in the E step.

Let ∆pk = 1 if β̂p is in class k and 0 otherwise. Let πk be the probability that β̂p is in
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class k (π1 + π2 + ...+ πK = 1), so that Pr(∆pk = 1) = πk for each β̂p. Let ηpk be the

expected value of ∆pk given parameter estimates θ and observed data Z, as detailed

in (and with similar notation as) Hastie et al. (2001), such that:

ηpk = E(∆pk|θ,Z) = Pr(∆pk = 1|θ,Z) =
Pr(Z|∆pk = 1, θ)Pr(∆pk = 1)

Pr(Z|θ)
. (3.3)

The vector θ includes parameter estimates for µk and σ2
k values, and Z consists of the

β̂p values. Substituting for these quantities for our particular situation, we get

ηpk =
πkφθk(β̂p)∑K
k=1 πkφθk(β̂p)

(3.4)

where φθk(β̂p) is the normal density for β̂p with mean µβk and variance σ2
k + s2p. More

specifically,

φθk(β̂p) =
1√

2π(σ2
k + s2p)

e−((β̂p−µβk )
2)/(2(σ2

k+s
2
p)) (3.5)

Using this information, we can get the expected log-likelihood at each iteration j+1

(E-Step):

E(`(θ; T)|Z, θ̂(j)) =
P∑
p=1

K∑
k=1

[(η̂pklogφθk(β̂p)) + (η̂pklog(πk))], (3.6)

where T is the complete data and includes the unknown classes, Z is the observed

data, and θ̂(j) represents the parameter estimates at iteration j. The estimate η̂pk is

found by replacing πk and θk in (3.4) with their current estimates π̂k and θ̂k. This

allows us to get maximum likelihood estimates for µ̂βk , σ̂
2
k, and π̂k at each iteration

using the following equations (M-Step):

µ̂βk =

∑P
p=1 η̂pkβ̂p/(σ

2
k + s2p)∑P

p=1 η̂pk/(σ
2
k + s2p)

(3.7)
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P∑
p=1

η̂pk
σ̂2
k + s2p

−
P∑
p=1

η̂pk(β̂p − µβk)2

σ̂2
k + s2p

= 0 (3.8)

π̂k =

∑P
p=1 η̂pk

P
(3.9)

At each step, equations 3.7 and 3.8 are solved iteratively until the sum over all k of

the squared changes in estimates µ̂βk and σ̂2
k are less than a certain tolerance level.

The overall stop criterion is that the sum of the squared changes over k for all three

estimates (µ̂βk , σ̂
2
k, and π̂k) is less than the tolerance level for consecutive iterations.

Note that when s2p is set to zero, the equations for mean and variance estimates

(equations (3.7) and (3.8)) reduce to those of a simple Gaussian mixture model. For

more derivation details, please see Appendix A.2.

3.4 Application to Blood Plasma NMR Data

The blood plasma data consists of high resolution 1H NMR spectra from eight people

obtained from blood samples collected every hour over a period of 24 hours. After

smoothing, peak identification, and peak consolidation, it was determined that 259

peaks were represented in at least one of the spectra. Before modeling individual

peaks as described above, hierarchical clustering was used to find preliminary groups

of peaks. A one-sine model, ignoring the person effect, was then fit for each of the

preliminary clusters to obtain starting values for the periodic regression models for

the individual peaks. Out of the 259 peaks, 258 were fit with a one-sine model (3.1),

for a total of 258 values for β̂ and variance estimates for each. The one peak for which

sine curve parameters were not identifiable was ignored in the analysis.

Peaks with amplitude or frequency close to zero do not have levels that significantly
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change with time and thus do not effectively behave periodically. These peaks were

ignored. Out of the 258 peaks, 159 (61.6%) were found to have amplitude and fre-

quency significantly different than zero (t-test, α = 0.05) and to be in the reasonable

range of −π to π (Quinn and Thomson, 1991). Since sin(βt+γ) = sin(−βt−(γ+π)),

meaning that models with an apparent negative β can be transformed to an equivalent

model with a positive β, the absolute value of β̂ was used for all peaks in the clustering

procedure. Also, clustering was performed using log-transformed values so that the

normality assumption was better satisfied. Variances for the log-transformed values

were found using the delta method (Casella and Berger, 2002). The EM algorithm

was implemented to find clusters of peaks, with the number of total clusters ranging

from one to five. Results were given in terms of period τ , where τ = 2π/|β|, so that

the results could be more easily interpreted and compared.

For each number of clusters, the log-likelihood was calculated using the resulting

parameter estimates. Since the log-likelihood increases as the number of clusters

increases, it cannot be used to determine which model is best. Instead, the Bayesian

Information Criterion (BIC), which penalizes models based on the number of pa-

rameters they include, was used (Schwarz, 1978). Although all necessary conditions

for the BIC are not met by mixture models, the use of the BIC in this context is

supported (Fraley and Raftery, 1998). The BIC was calculated as 2`(θ) −m log(n),

where `(θ) is the log-likelihood, m is the number of parameters, and n is the number of

observations, or in our case, peaks. The number of clusters corresponding to the first

relative maximum of the BIC values is recognized to be the best (Fraley and Raftery,

1998). The three- and four-cluster results were found to have BIC values that were

almost identical (-324.5 and -324.9, respectively), so the simpler three-cluster model

was determined to be the best (Table 3.1).

Details of the results are given in Table 3.1. In the table, the means of the clustered

values are labeled as “µ̂” and are given for each cluster. The transformed mean values,
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Table 3.1: Analysis of blood plasma data, including extra variationa

Number of Cluster
Clusters Number N (% of 258) µ̂ (Period) σ̂2 π̂ BIC (`)

1 1 159 (61.6) -1.420 (36.3) 0.666 1 -403.2 (-196.5)
2 1 47 (18.2) -2.505 (77.1) 0.011 0.285 -364.3 (-169.5)

2 112 (43.4) -0.991 (19.6) 0.288 0.715
3 1 51 (19.8) -2.470 (74.9) 0.019 0.319 -324.5 (-142.0)

2 64 (24.8) -1.227 (21.4) 0.0004 0.358
3 44 (17.1) -0.589 (12.8) 0.244 0.324

4 1 51 (19.8) -2.468 (74.8) 0.019 0.321 -324.9 (-134.6)
2 67 (26.0) -1.222 (21.3) 0.002 0.414
3 25 (9.7) -0.668 (12.3) <0.0001 0.134
4 16 (6.2) -0.213 (8.8) 0.237 0.132

5 1 36 (14.0) -2.568 (81.9) <0.0001 0.220 -333.0 (-131.0)
2 14 (5.4) -2.229 (58.4) <0.0001 0.102
3 68 (26.4) -1.222 (21.3) 0.002 0.413
4 25 (9.7) -0.668 (12.3) <0.0001 0.134
5 16 (6.2) -0.212 (8.7) 0.236 0.132

a Of 258 possible peaks, 159 (61.6%) met all criteria and were used in the analysis.

corresponding to the periods for the clusters, are given in parentheses. Also given are

the values for the variance, σ̂2, and the mixing probability, π̂, for each cluster. The

mixing probability represents the percentage of 159 peaks that fall into each cluster,

and the percent of the total 258 peaks is listed as well.

As Figure 3.2 shows, there is a clear separation of clusters when the extra variation

is taken into account. With mean periods of 21.4 and 12.8, the peaks in two of the

clusters have patterns that repeat roughly once or twice per day, respectively. The

other cluster has mean period of 74.9 hours, or about three days. Since the data

spans only 24 hours, the periodic pattern seen in this cluster is outside the scope of

the data. Thus, a total of 41.9% of the peaks express periodic behavior which can be

explained using 24-hour data: about 24.8% of the 258 peaks have the once-per-day

pattern, and 17.1% have a pattern that repeats about twice per day.

Heatmaps provide visual representations of data, assigning a range of colors to values

so that the more similar values are, the more similar their colors are as well (Eisen

et al., 1998). This type of graphic could give us an idea of how well our clustering
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Figure 3.2: Scatter plot and histogram of log(β) (periodicity parameter) for three
clusters. The ‘*’ for each cluster denotes the location of the mean.

algorithm grouped similar peaks by allowing us to view the behavior of the peaks

within each cluster over time. Heatmaps of the processed data for the 24 hours of our

study, averaged over the eight subjects, were produced for each cluster (Figure 3.3).

Each heatmap has time in order across the horizontal axis. The individual peaks

make up the rows and have been rearranged based on hierarchical clustering results

to aid in visual interpretation. The heatmap for Class 2, which has a period of 21.4,

clearly shows a strong pattern across the 24 hours (Figure 3.3). The patterns within

Class 3 are not as clear, perhaps due to different phase shifts in the data. It does,

however, look as if a twice-repeating pattern is visible in Class 3, which was found to

have a period of 12.8 hours. Even though the presence of a 74.9-hour period for Class

1 cannot be evaluated with data spanning only 24 hours, a strong pattern appears to

exist in this cluster. These peaks have levels that increase throughout the course of

the day and return to lower levels the following morning.

Figure 3.4 displays a pre-processed spectrum along with the peaks identified as being

in Classes 1, 2, and 3. It appears that there are overlapping regions for the three
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Figure 3.3: Heatmaps of observed data for three classes, averaged over eight subjects.
Times (in order) are on the horizontal axis, and peaks are on the vertical axis.

classes, but there are regions that seem closely related to the classes as well. In their

1995 article, Nicholson et al. identify resonances from 1H-NMR spectroscopy which

can be assigned to particular metabolites (Nicholson et al., 1995). One can compare

Figure 3.4 and the figure in which Nicholson et al. label identified metabolites in an

NMR spectrum (Figure 1 from Nicholson et al. (1995)).

This comparison reveals that peaks in the region of glucose-β1 are mainly found in

Classes 2 and 3, and most of the peaks in the glucose-β4, glucose-β2, and choline

region are found in Class 3. The region of albumin lysyl looks most closely matched

by Class 2, and it appears that Classes 1 and 2 contain the peaks in the lipid, acetyl

signals from α1-acid glycoprotein (NAC1 and NAC2), VLDL, LDL, HDL, valine, and

alanine regions. The peaks for lactate appear to be in Class 3.

3.5 Simulation Results

As detailed above, the clustering method accounted for the extra variability associated

with the estimation of periodicity. Simulation studies were used to evaluate methods

of clustering parameter estimates when there is an extra variance component due to
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the fitting of these estimates. Two cases were considered: one method included the

variation due to estimating the parameters as a known extra variance component

when clustering, and the other method ignored this extra variation. The goal was to

determine whether or not the variation of parameter estimates should be considered in

the clustering process. Data for two clusters were generated using difference distances

between cluster centers (1, 5, and 10) and different pairs of cluster variances (σ2
1 = 1

with σ2
2 = 2, σ2

1 = 1 with σ2
2 = 0.1, and σ2

1 = 0.1 with σ2
2 = 0.1). Three different

χ2 distributions were used to generate the extra variance component, denoted by

s2p: χ2
0.25, χ

2
0.5, and χ2

1. For each combination of cluster center difference, variance

pair, and extra variance distribution, values for 5000 peaks were generated and were

clustered both including and ignoring the extra variance component.

Each of the 5000 peaks was randomly classified as being in cluster one or cluster

two with probabilities 0.7 and 0.3, respectively, for each simulation. For a cluster

center difference of one, cluster one values were generated from the distribution

N(−0.5, σ2
1 + s2p), and cluster two values were generated from N(0.5, σ2

2 + s2p). For a

cluster center difference of five, these generating distributions were N(−2.5, σ2
1 + s2p)

and N(2.5, σ2
2, s

2
p) for the two clusters. For a cluster center difference of ten, the

distributions N(−5, σ2
1 + s2p) and N(5, σ2

2 + s2p) were used.

Table 3.2 shows that the misclassification rates decrease as cluster centers get farther

apart and that they increase as the degrees of freedom for the s2p distribution increases,

whether or not the extra variation is accounted for. Also, misclassification rates

are smaller when the clusters have less variation, regardless of method. However,

the misclassification rates for the simulations accounting for the extra variation are

always less than or comparable to those in which the extra variation is ignored. This

difference becomes less pronounced as the distance between cluster centers increases.

Also, σ̂2 is consistently overestimated when this extra variation is ignored, as one

would expect (see Appendix A.1). Again, the differences in estimates from the two
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methods are more pronounced for tighter clusters, and differences decrease as the

cluster centers become more spread out. For more simulation details, please see

Appendix A.1.

Table 3.2: Misclassification rates for simulation scenarios with different distances
between clusters, cluster-specific variances, and distributions for known peak-specific
variance components

Variance Information Including s2p Ignoring s2p
(σ2

1, σ2
2) dfa Db= 1 D = 5 D = 10 D = 1 D = 5 D = 10

(1, 2) 0.25 0.250 0.024 <0.001 0.256 0.025 0.001
0.5 0.258 0.029 <0.001 0.276 0.032 0.001
1 0.263 0.045 0.002 0.292 0.046 0.003

(1, 0.01) 0.25 0.227 0.006 0 0.237 0.009 0.001
0.5 0.244 0.014 <0.001 0.262 0.015 0.001
1 0.272 0.023 0.001 0.517 0.024 0.002

(0.1, 0.1) 0.25 0.098 0.004 0 0.307 0.004 0
0.5 0.146 0.006 <0.001 0.310 0.007 <0.001
1 0.193 0.015 <0.001 0.675 0.017 0.001

5000 values were generated for each combination of parameters.
a s2p ∼ χ2 with degrees of freedom = df.
b D = Difference in cluster centers

3.6 Discussion

Presented is a method of clustering NMR peaks so that peaks within a cluster would

have similar periodic behavior but could have heterogeneous amplitudes and phase

shifts. In this method, the variation due to estimation of the period-related parameter

estimates is treated as an extra, peak-specific variance component in addition to the

cluster-specific variation. This clustering method is used for the analysis of NMR

data in which metabolic behavior over the course of a day was observed. The general

periodic behavior of the metabolites is of interest, the goal being to find groups of

peaks with similar daily patterns in terms of periodicity, regardless of phase shift.

It was determined that three clusters are present in the data, two with patterns

repeating about once or twice per day, and one with a period of 74.9 hours, close to
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three days.

Certain metabolites may have levels that rise and fall more than once per day, and

these metabolites may be found in the cluster identified as having a period of about

12 hours (Class 3). This class could contain glucose, lactate, and choline. Other

metabolites may have levels that rise and fall once per day, which would correspond to

the pattern seen for Class 2. This group could include lipids, VLDL, LDL, HDL, and

valine, and albumin. The heatmap for Class 1 shows a consistent pattern of increase

throughout the day and then a dramatic decrease. The metabolites identified as being

in this cluster appear to have a 24-hour pattern, but the pattern of increase until

about 6:30 am, followed by an abrupt decrease, may not be modeled appropriately

with a sine curve. Peaks from the substances in Class 2, representing substances

cleared about once per day, could also be present in this group. Another explanation

for Class 1 having such a large period, which exceeds the scope of the data, could

be that subjects were going through an equilibration period caused by a change in

diet. The 74.9-hour pattern could indicate that the shift toward a new equilibrium

for metabolites in this cluster lasts about three days.

Previous work suggests that the glucose pattern might be different than other metabo-

lite patterns since glucose is dependent on food intake, which supports the idea

that glucose would be cleared multiple times per day and fall into Class 3. Other

metabolites might increase and then be cleared once per day and fall into Classes

1 and 2 (Park et al., 2009). These classes contain lipids and lipoproteins, which

are related to slower metabolic processes. The speed at which these metabolites are

cleared might differentiate the substances with peaks found in Class 1 from those with

peaks in Class 2, but the underlying pattern for these classes appears to be similar.

This metabolite information could prove to be useful, but linking metabolite peaks to

their identities more strongly could provide better information on the metabolism of

the human body and aid in diagnosing and treating metabolic and eating disorders.
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Also, in this study, classification is based on the most likely cluster for each feature.

While in genetic studies it might be of interest to allow genes to belong to multiple

clusters or pathways, allowing a feature to belong to more than one group based on

periodicity does not make sense using our model. Some features may have ambiguous

cluster membership, however, and these features should be further investigated.

Simulation studies were used to determine whether or not it is appropriate to cluster

parameter estimates treating the variation of the estimates as an extra variance

component. Misclassification rates are as good or better for the proposed method

when compared to the other method for all scenarios tested. Also, estimates are

often more accurate for the proposed method. Differences in these estimates and in

misclassification rates are more pronounced for tighter clusters, and the two methods

produce more similar results as cluster centers become farther apart.

The peaks identified as displaying periodic patterns could serve as a window into the

metabolic patterns of the human body. There is a possibility that knowledge of the

behavior of NMR peaks of metabolites under normal conditions could help in the

diagnosis and treatment of metabolic and other disorders and aid in determining the

level of success achieved by various interventions such as surgeries and dietary changes.

However, the dataset used for this study is limited to only 25 measurements for each

of eight people, therefore there is not an abundance of information with respect to

periodicity. We chose to use a sine curve due to its simplicity and to the fact that

empirical data supported this choice. Relaxing the parametric assumption of the sine

curve could be possible, but observations spanning a longer period of time would be

needed. A non- or semi-parametric model could provide better behavioral details for

all classes, especially for the class with an apparent 75-hour periodic pattern, so this

approach should be explored in the future.
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Chapter 4

Using Mass Spectra to Determine
Possible Ages of Metabolic
System-Level Shifts

4.1 Introduction

The aging process of organisms, generally considered a change from fully functional at

younger ages to a state of declining or failing function later in life, is not thoroughly

understood and has been investigated for decades (Soltow et al., 2010). Studies of

aging often involve non-human organisms such as worms, mice, and flies, but these

organisms do not live long enough for a successful aging process similar to that of

humans to be examined (Austad, 2009). An appropriate and convenient species for the

study of long-term aging would be small and manageable, would live for a long time for

its body size, and would have certain cognitive similarities to humans (Austad, 2009;

Soltow et al., 2010). For these reasons, the common marmoset (Callithrix jacchus)

has emerged as a useful tool in this area. This small primate is the size of a rat,

lives an average of seven to ten years, and lives a maximum of 16 years. Also, it has

stronger cognitive abilities than rhesus monkeys, the species most commonly used in

non-human aging studies to date (Austad, 2009).

There are many hypotheses regarding the causes and effects of aging, and studies
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of marmosets have been used to determine developmental stages of the animals

(de Castro Leão et al., 2009), to examine neurogenesis (Leuner et al., 2007), and

to characterize oxidative stress over time (Terman and Brunk, 2006). Other studies

list inflammation and hormone dysregulation as possible causes for aging, but it could

be a combination of these factors and more (Soltow et al., 2010). It is thought that

information available using genomics, proteomics, and metabolomics could aid in

the study of aging. Since the metabolome is the furthest downstream from genetic

information and thus could represent gene function as well as environmental factors,

the study of metabolites could be particularly useful (Soltow et al., 2010).

Due to the possibility that the metabolome could provide an abundance of information

on aging, this study focuses on the relationship between marmoset age and blood

plasma metabolite levels. Blood was drawn from the 76 members of a marmoset

colony cross-sectionally. Metabolomic data was obtained from the samples with liquid

chromatography coupled with high resolution Fourier transform mass spectrometry

(LC-FTMS), using anion exchange (AE) chromatography (Soltow et al., 2011). MS

is used to determine the mass-to-charge ratios (m/z) of ions and quantify those ions,

with resulting intensity corresponding to the number of ions with a particular m/z

value. The use of liquid chromatography results in retention times for each data

point. LC-FTMS spectra thus consist of data points with values for m/z, retention

time, and intensity. Using retention time information results in more accurate data,

and the more precise m/z values can be used for feature identification (Yu et al.,

2009).

In preliminary analyses presented in Soltow et al. (2010), marmosets are divided into

“old” and “young” using a cut-off of six years of age, and metabolite characteristics

for the two groups are compared. Instead of dividing marmosets into groups in this

manner, our goal is to identify marmoset ages at which levels of metabolites change.

These ages may not be the same for all groups of metabolites. We propose first
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using a segmentation algorithm to find the locations (ages) at which mass spectra

(MS) intensity changes occur. MS features with similar breakpoint locations will

then be identified. The hope is that breakpoints, representing system-level shifts of

the metabolic system at particular ages, can be identified. Markers associated with

age-related changes could provide useful information about the aging process and

could be helpful in the development of personalized medicine.

4.2 Pre-Processing of the Data

As mentioned above, blood was drawn from the 76 members of a marmoset colony,

and metabolomic data was produced from resulting plasma samples with LC-FTMS,

using anion exchange (AE) chromatography (see Soltow et al., 2011, for more details).

Of the 76 marmosets in the colony, 61 were round to be healthy. Two spectra

were available for 60 of the 61 marmosets, and the remaining marmoset had only

one spectrum available. Mass spectra were processed using the method of adaptive

processing of high-resolution LC-MS data (Yu et al., 2009) available in the apLCMS

R package (Yu, 2011; R Development Core Team, 2008). This processing step allowed

for more accurate feature detection, quantification, and alignment.

After initial processing, up to 3238 features were present for each spectrum. An

intensity value of zero was interpreted as absent, so several techniques were used to

address these values. Only features found in at least 75% of the spectra were kept,

for a total of 1058 (32.7%) MS features. At this point, over 92% of the values were

not equal to zero. Spectra from the same marmoset were then “merged,” meaning

the average intensity was taken if two intensities were present for a feature, and the

non-zero intensity was taken if one of the values was absent. After this step, close to

97% of the values were not equal to zero. K-nearest neighbor imputation was then

used to impute the remaining missing values (Hastie et al., 2011). Next, quantile
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normalization was used to force all of the marmosets to have the same distribution

of values (Bolstad, 2010). For each feature, a normal score transformation was then

used to reduce the impact of outliers (Hothorn et al., 2006, 2008).

4.3 Segmentation and Clustering

After data pre-processing, there were 1058 MS feature intensities for each of 61

marmosets. The heatmap in Figure 4.1 shows the different features as the rows,

with marmosets in age order as the columns. For some features, it looks as if

intensity levels change at certain ages. We want to consider each feature individually

and find locations of breakpoints that would identify marmosets of some ages as

having different intensity levels than those of other ages. For example, if we found a

breakpoint at 1000 days in a feature, marmosets older than 1000 days old would have

a different intensity for that particular feature than younger marmosets.

4.3.1 Segmentation

Our first goal is to detect breakpoints, also called changepoints or steps, in the data.

Several different types of breakpoints exist. For some data, it may be expected that

a linear model would fit the data well, perhaps with a change in slope at a particular

breakpoint (Seber and Lee, 2003). This model can be represented as:

Y =

 α1 + β1X + ε if x ≤ γ

α2 + β2X + ε if x ≥ γ
(4.1)

where the α parameters give the intercepts of the lines, the β parameters give the

slopes of the lines, and ε is the error term (ε ∼ N(0, σ2)). Parameters α1 and β1 apply

where input data point x is less than or equal to breakpoint γ, and parameters α2

and β2 apply otherwise. Using this model, the slope of the line changes at breakpoint
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Figure 4.1: Heatmap with reordered features as rows and marmosets in age order as
columns.

γ, and the two lines are forced to meet at this breakpoint.

However, for the marmoset data, we expect mean intensity levels to shift at certain

times due to biological changes. Evidence of this type of shift can be seen in Figure

4.1. Thus, a slope of zero on either side of a breakpoint between changing mean

intensity levels is expected, and the model becomes a piecewise constant linear model

(Gustafsson, 1994; Hawkins, 1976):

Y =

 α1 + ε if x ≤ γ

α2 + ε if x > γ.
(4.2)

Here, the breakpoint γ indicates the location of a change in mean intensity level.

More generally, if more than one breakpoint is present in the data, the model can be
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written as:

Y =


α1 + ε if x ≤ γ1,

αj + ε if γj−1 < x ≤ γj and 1 < j < J ,

αJ+1 + ε if x > γJ .

In this model, γj is the jth breakpoint (j = 1, 2, ..., J), and the ε terms represent

independent errors with mean zero. The total number of segments created by the J

breakpoints is J + 1, and αj represents the mean value for segment j.

In our situation, the number of breakpoints for a particular feature is unknown,

and different features could have a different number of breakpoints. Aiming to find

this type of breakpoint makes our goal similar to the goal of finding breakpoints

in chromosomes which indicate locations of change in DNA copy numbers. This

practice has been used to identify chromosomal regions of malignant tumors in which

genetic material has been gained or lost, which could lead to the identification of

genes involved in tumor suppression or progression (Hupé et al., 2004). Several

segmentation algorithms have been used for this type of data (Yu et al., 2007) and

are available as packages in R. The marmoset data is very different than the genomic

data for which the algorithms were intended. For this reason, an updated version

of the Gain and Loss Analysis of DNA (GLAD) method proposed in Hupé et al.

(2004) was chosen for the detection of breakpoints in the marmoset data due to the

availability of necessary tuning parameters. These parameters allow the user to adjust

the sensitivity to changes in mean intensity levels, controlling how easily breakpoints

are identified. This method, available in the GLAD R package, allows breakpoints to

be detected without specifying the hypothesized number of breakpoints (Hupe, 2009).

The implementation of the GLAD method involves several steps. First, the marmoset

data are smoothed, and breakpoints are detected using a piecewise constant function.

Regions of constant intensity levels are identified within each feature. The number

of breakpoints is then optimized, and any undesirable breakpoints representing very
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minor changes in small regions are removed. The last step, which involves finding

segments among all features with homogeneous intensity levels, does not help fulfill

the goal of our study and will be ignored.

In the GLAD method, data can be smoothed and segmentation can be performed us-

ing several algorithms. These include extensions of the Alternative Weights Smooth-

ing (AWS) procedure introduced by Polzehl and Spokoiny (2000), as well as an

algorithm using Haar segmentation developed by Ben-Yaacov and Eldar (2008). The

faster Haar segmentation was chosen for our data.

Haar segmentation involves applying an undecimated discrete wavelet transform (UDWT)

using the Haar wavelet to the data. This results in a decomposition of the signal

including a “smooth” subband and a set of detail subbands at different scales (Burrus,

1998; Hastie et al., 2001; Ben-Yaacov and Eldar, 2008). It is assumed that some of

the levels of detail can be ignored, resulting in a representation of the data as a

piecewise constant signal when reconstructed from the remaining levels. The levels of

detail, or detail subbands, chosen to be retained influence how sensitive to noise the

piecewise constant signal will be. If finer detail subbands are included, the algorithm

becomes more sensitive to noise. This could result in very small segments of data

being identified. As finer subbands are excluded, the algorithm is less sensitive to

noise but is more likely to miss breakpoints separating small sections. The coarsest

detail subband level should be large enough to not be overly sensitive to noise but

small enough so that very minor changes are not detected.

The detail subbands are composed of wavelet coefficients. These coefficients provide

information about the differences between mean intensity levels in consecutive regions

and are used to determine breakpoint locations. Haar wavelet coefficients wS,n are
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given by (Ben-Yaacov and Eldar, 2008):

wS,n =
1√

2S+1

n+(2S−1)∑
k=n

yk −
n−1∑

k=n−2S
yk


where S is the detail subband and yn is the nth data point. The equation for wS,n

can be rewritten as a difference in means of two regions:

wS,n =
√

2S−1

 1

2S

n+(2S−1)∑
k=n

yk −
1

2S

n−1∑
k=n−2S

yk


As S increases, the window size of the regions being compared widens and the level

of detail decreases. If there is no difference between the regions being compared, then

the coefficient will be zero.

Relative maxima of the absolute values of the coefficients are found for each of

the selected detail subbands, and each maximum is a breakpoint candidate. The

maxima are thresholded for each subband separately using a false discovery rate

(FDR) thresholding procedure (Benjamini and Hochberg, 1995). The number of

coefficients kept as possible breakpoints is limited by the FDR threshold value, the

larger coefficients being kept over the smaller ones.

The remaining maxima from all subbands are then grouped together to create a list

of significant breakpoints in the data. Some breakpoints could surface in more than

one detail subband with an offset, so redundant breakpoints should be removed. This

involves taking the maxima from the level of finest detail, say Smin, and adding the

maxima from Smin+1 if they are not less than 2Smin−1 + 1 measurements away from

the maxima in Smin. For Smin = 2, maxima would be added from S = 3 if they were

greater than 22−1 + 1 = 3 measurements away from the maxima found in S = 2. This

process of compiling breakpoints found in the different detail subbands is repeated

until maxima from all subbands, given that they meet the criteria, have been added

to the breakpoint list. For more details on the Haar smoothing and segmentation,
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see Ben-Yaacov and Eldar (2008).

After the GLAD method of segmentation implements Haar smoothing and segmen-

tation to identify significant breakpoints in the data, there is a step for additional

filtering of the breakpoints. Breakpoints creating small regions with small changes in

intensity can be removed, as the number of breakpoints is optimized using a method

based on the penalized log-likelihood. The hypothesized region size can be given,

requesting that breakpoints creating regions with fewer members than the region

size specified be eliminated except in cases of strong evidence. There is also a step

for optimizing the number of breakpoints, which uses a penalty term to control the

number of breakpoints found. Two parameters used in the penalty term, L and D,

aim to eliminate unnecessary breakpoints while retaining true breakpoints. D is the

parameter used in the kernel function in the penalty term, and L is the penalty term

coefficient. For more information on the GLAD procedure, see Hupé et al. (2004).

After breakpoints are identified, the piecewise constant signal between two break-

points is found by taking the average of all data points between the breakpoints.

This allows the direction of change at a breakpoint, either increase or decrease, to be

seen.

4.3.2 Classification

After finding a list of breakpoints at different marmoset ages for each of the MS

features, it is of interest to find groups of features exhibiting similar changes with

age. Although breakpoints that are identified in two features, say at 1000 and 1001

days old, may not be exactly the same, it is believed that the changes indicated by

the two breakpoints could be biologically related. Kernel density estimation is used

to identify clusters of intensity change locations. Density relative maxima are the

locations at which change is most likely. Relative minima are used as the cut-offs for
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the different clusters.

4.4 Application to Marmoset MS Data

Our data includes mass spectra (MS) from 61 marmosets of various ages. Since some

ages were repeated, 0.1 was subtracted from the first marmoset with a repeated age so

that the exact location of a breakpoint could be determined. The Haar segmentation

algorithm was used to find age breakpoints in the individual MS features, with detail

subbands being limited to levels two to five. It was determined that the penalty term

coefficient L would be set to four and the penalty term kernel parameter D would be

set to three since the number of breakpoints leveled off at this parameter setting 4.2.

For more details on the selection of parameters, please see Appendix B.1.

The combination of parameters chosen resulted in 167 total breakpoints, with 115

features (10.9% of of 1058) having at least 1 breakpoint. A total of 74 (7.0%) features

were found to have one break, 30 (2.8%) were found to have two breaks, and 11 (1.0%)

were found to have three breaks. Of the 61 marmoset spectra, 39 (63.9%) were found

to contain a breakpoint for at least one feature 4.1. These 39 spectra represented 38

unique marmoset ages. A total of 13 (21.3%) of these breakpoint locations occurred

in only one feature, and 27 (44.3%) were found three or fewer features. On the other

hand, the breakpoint at 4545 days occurred in 44 features, the breakpoint at 765

was found in 16 features, and the breakpoint at 4409 days was found in 11 features.

Since 765 days and 4545 days are the minimum and maximum breakpoint ages and

had more breakpoints than the other ages, a possible edge effect of the algorithm was

investigated by eliminating marmosets with extreme ages. (Note that the minimum

and maximum breakpoints are NOT the minimum and maximum marmoset ages,

but the extremes of the breakpoints detected.) An abundance of breakpoints at the

extreme breakpoint locations was no longer detected. A difference in the extreme
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ages can be seen in the heatmap as well (Figure 4.1), thus it was determined that

these breakpoints signified actual metabolite level changes instead of being artifacts

of the algorithm used.
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Figure 4.2: The total number of breakpoints (multiplied by -1) plotted against values
for D and L.

The entire list of 167 breakpoints was considered when trying to find clusters in

the data, meaning that some clusters could be identified that contained multiple

breakpoints from the same feature. The kernel density of the log of the breakpoint

locations was used to identify clusters. This density was estimated from 200 points

using the method of Sheather and Jones (1991) to select the bandwidth, which was

multiplied by two to reduce the level of detail captured by the kernel density to a

reasonable level.

The relative maxima of the density were considered the most likely breakpoint lo-

cations, and the relative minima between the maxima were used as cut-off values to

distinguish values in one cluster from another. Figure 4.3 shows the histogram of

the log of the breakpoint locations with the kernel density. It can be seen that five

relative maxima and thus five clusters were identified. The most likely breakpoints
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Table 4.1: The number of features with breakpoints at the different marmoset ages.
If breakpoints were found in the spectra of marmosets with non-unique ages, (1) and
(2) are used to indicate the (arbitrary) ordering of these spectra.

Age in Days Number of Features

765 16
817 2
899 1
989 1
1006 1

1015 (2) 1
1074 1
1161 2
1199 1
1228 1

1374 (1) 3
1431 1

1463 (1) 3
1463 (2) 1

1478 2
1632 2
1766 1
1857 5
1921 3
2016 5

Age in Days Number of Features

2072 3
2124 6
2555 5
2738 3
2762 3
2766 3
2806 6
2854 2
3054 1
3374 4
3380 6
3754 1
3757 4
3934 6
3983 1
4000 2
4296 3
4409 11
4545 44

for the five clusters were found to be 771 days, 1448 days, 2006 days, 2749 days,

and 4459 days, or roughly 2, 4, 5.5, 7.5, and 12.5 years. Figure 4.3 also shows how

many features were found to have breakpoints at each of the breakpoint locations,

indicating cluster membership for each of the breakpoint locations. A total of 19

breakpoints from 19 different features were found in Cluster 1, and 20 breakpoints

from 18 features were found in Cluster 2. Cluster 3 and Cluster 4 both contain 23

breakpoints from different features. Cluster 5 contains the most breakpoints with 82,

representing 72 different features.

In Figures 4.4 and 4.5, heatmaps of the features identified as having breakpoints in

each of the five clusters are shown along with plots showing which breakpoints were

identified as belonging to a each cluster. On the left side are the heatmaps, and on the

right are plots of the breakpoint locations for the features in each cluster. Features

(rows) are in the same order in the heatmaps and the breakpoint location plots so
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that patterns can be compared. The breakpoints classified in the particular cluster of

interest are shown in red. You can see that some of the features have more than one

breakpoint in a given cluster and that features can show up in more than one cluster

if they have more than one breakpoint.
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Cluster 1: Breakpoint = 771
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Cluster 2: Breakpoint = 1448
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Figure 4.4: Heatmaps with breakpoint location information, Clusters 1-3.
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Cluster 4: Breakpoint = 2749
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Cluster 5: Breakpoint = 4459
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Figure 4.5: Heatmaps with breakpoint location information, Clusters 4-5.

While features are listed in Figures 4.4 and 4.5 using indices which range from 1 to

1058, these features are actually representative of mass-to-charge ratios (m/z) of the

mass spectra. Figure 4.6 shows the average intensity across all marmosets for the

different m/z values. Below the plot, features identified as having breakpoints in each

of the five clusters are shown. The m/z values for the features found in each cluster

were entered in the Madison-Qingdao Metabolomics Consortium Database (MMCD)

in order to find metabolite matches (Cui et al., 2008). A subset of the results found can

be seen in Tables 4.2 and 4.3, and full tables are available in Appendix B.2. Cluster 1
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likely contains arginine, creatine and stearoylcarnitine appear to have been found in

Cluster 2, and Cluster 3 could contain either aldosterone or cortisone, two steroids,

as well as stearoylcarnitine. Emetine, vitamin D2, dipeptides, and tripeptides were

likely to have been found in Cluster 4, and the Cluster 5 appears to contain many

amino acids, dipeptides, tripeptides, and lysophospholipids. Not all m/z values in

the clusters were found to have MMCD matches. Of the 115 features found to have

breakpoints, only 51 (44.3%) had at least one match in the database. Many of those

with at least one match had many possible matches (Tables 4.2 and 4.3, and Appendix

B.2), making identification more difficult. From a biological standpoint, some of the

possibilities were more probable than others, and these have been indicated in bold

in Tables 4.2 and 4.3.
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Figure 4.6: Average mass spectrum shown with locations of breakpoints from the five
clusters.
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Table 4.2: MMCD Matches for Clusters, Part 1. A tolerance of 10 ppm was used, and metabolites matched were of the [M+H]+
and [M+Na]+ varieties. Likely candidates for identification are shown in bold.

Cluster Input Mass Type Database Mass Formula Name

1 197.1022449 [M+Na]+ 174.1116757 C6H14N4O2 L-Arginine;(S)-2-Amino-5-guanidinovaleric acid
197.1022449 [M+Na]+ 174.1116757 C6H14N4O2 D-Arginine;D-2-Amino-5-guanidinovaleric acid
459.3476132 [M+Na]+ 436.35526 C27H48O4 5-b-Cholestane-3a-7-tetraol
459.3476132 [M+Na]+ 436.35526 C27H48O4 Cholestane-3,7,12,25-tetrol
459.3476132 [M+Na]+ 436.35526 C27H48O4 3alpha,7alpha,12alpha,26-Tetrahydroxy-5beta-cholestane;

5beta-Cholestane-3alpha,7alpha,12alpha,26-tetraol;
5beta-Cholestane-3alpha,7alpha,12alpha,26-tetrol

459.3476132 [M+Na]+ 436.35526 C27H48O4 5b-Cholestane-3a,7a,12a,23-Tetrol

2 132.0759201 [M+H]+ 131.0694765 C4H9N3O2 Creatine;alpha-Methylguanidino acetic acid;Methylglycocyamine
132.0759201 [M+H]+ 131.0694765 C4H9N3O2 3-Guanidinopropanoate
428.3692035 [M+H]+ 427.3661591 C25H49NO4 Stearoylcarnitine

3 231.095881 [M+H]+ 230.0902716 C9H14N2O5 TETRAHYDRODEOXYURIDINE
231.095881 [M+H]+ 230.0902716 C9H14N2O5 Aspartyl-L-proline
231.095881 [M+H]+ 230.0902716 C9H14N2O5 3,4-DIHYDRO-1H-PYRIMIDIN-2-ONE NUCLEOSIDE
361.1976803 [M+Na]+ 338.2093241 C19H30O5 Shiromodiol diacetate
361.1976803 [M+Na]+ 338.2093241 C19H30O5 Idebenone; drug
361.1976803 [M+Na]+ 338.2057365 C20H28F2O2 4,4-Difluoro-17beta-hydroxy-17alpha-methyl-androst-5-en-3-one
361.1976803 [M+H]+ 360.193674 C21H28O5 Aldosterone;11beta,21-Dihydroxy-3,20-dioxo-4-pregnen-18-al; drug
361.1976803 [M+H]+ 360.193674 C21H28O5 Cinerin II
361.1976803 [M+H]+ 360.193674 C21H28O5 Cortisone;17alpha,21-Dihydroxy-4-pregnene-3,11,20-trione;

Kendall’s compound E;Reichstein’s substance Fa; drug
361.1976803 [M+H]+ 360.193674 C21H28O5 Prednisolone; drug
361.1976803 [M+H]+ 360.193674 C21H28O5 Tricyclodehydroisohumulone
428.3692035 [M+H]+ 427.3661591 C25H49NO4 Stearoylcarnitine
481.3068156 [M+H]+ 480.2988078 C29H40N2O4 Emetine

4 231.095881 [M+H]+ 230.0902716 C9H14N2O5 TETRAHYDRODEOXYURIDINE
231.095881 [M+H]+ 230.0902716 C9H14N2O5 Aspartyl-L-proline
231.095881 [M+H]+ 230.0902716 C9H14N2O5 3,4-DIHYDRO-1H-PYRIMIDIN-2-ONE NUCLEOSIDE
317.1130363 [M+Na]+ 294.1255944 C19H18O3 METHYL (2Z)-3-METHOXY-2-2-[(E)-2-PHENYLVINYL]PHENYLACRYLATE
317.1130363 [M+Na]+ 294.1255944 C19H18O3 (2-Butylbenzofuran-3-yl)(4-hydroxyphenyl)ketone;

2-Butyl-3-(4-hydroxybenzoyl)benzofuran
317.1130363 [M+Na]+ 294.1215717 C14H18N2O5 Aspartame; drug
317.1130363 [M+Na]+ 294.1215717 C14H18N2O5 Glutamylphenylalanine
317.1130363 [M+Na]+ 294.1215717 C14H18N2O5 2-(BETA-D-GLUCOPYRANOSYL)-5-METHYL-1-BENZIMIDAZOLE
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Table 4.3: MMCD Matches for Clusters, Part 2. A tolerance of 10 ppm was used, and metabolites matched were of the [M+H]+
and [M+Na]+ varieties. Likely candidates for identification are shown in bold.

Cluster Input Mass Type Database Mass Formula Name

5 148.0593598 [M+H]+ 147.0531578 C5H9NO4 3-METHYL-ASPARTIC ACID
148.0593598 [M+H]+ 147.0531578 C5H9NO4 L-Glutamate;L-Glutamic acid;L-Glutaminic acid
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-ACETYL-SERINE
148.0593598 [M+H]+ 147.0531578 C5H9NO4 Glutamate;Glutaminic acid;2-Aminoglutaric acid
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-Methyl-D-aspartic acid;N-Methyl-D-aspartate;NMDA
148.0593598 [M+H]+ 147.0531578 C5H9NO4 O-Acetyl-L-serine;O3-Acetyl-L-serine
148.0593598 [M+H]+ 147.0531578 C5H9NO4 2-Oxo-4-hydroxy-5-aminovalerate
148.0593598 [M+H]+ 147.0531578 C5H9NO4 L-threo-3-Methylaspartate
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-HYDROXY-N-ISOPROPYLOXAMIC ACID
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-(Carboxymethyl)-D-alanine
148.0593598 [M+H]+ 147.0531578 C5H9NO4 L-4-Hydroxyglutamate semialdehyde
148.0593598 [M+H]+ 147.0531578 C5H9NO4 Isoglutamate;Isoglutamic acid;3-Aminopentanedioic acid
153.0760536 [M+H]+ 152.0684735 C5H12O5 Xylitol
153.0760536 [M+H]+ 152.0684735 C5H12O5 D-Ribitol;D-Adonitol
153.0760536 [M+H]+ 152.0684735 C5H12O5 L-Arabitol;L-Arabinol;L-Arabinitol;L-Lyxitol
153.0760536 [M+H]+ 152.0684735 C5H12O5 D-Arabitol;D-Arabinitol;D-Arabinol;D-Lyxitol
183.076994 [M+H]+ 182.0691422 C8H10N2O3 2-AMINO-4-OXO-4(1H-PYRROL-1-YL)BUTANOIC ACID
183.076994 [M+H]+ 182.0707955 C6H15O4P TRIETHYL PHOSPHATE
183.076994 [M+H]+ 182.0707955 C6H15O4P Diisopropyl phosphate
219.0959433 [M+H]+ 218.0902716 C8H14N2O5 L-Ala-gamma-D-Glu
219.0959433 [M+H]+ 218.0902716 C8H14N2O5 gamma-L-Glutamyl-D-alanine
231.095881 [M+H]+ 230.0902716 C9H14N2O5 TETRAHYDRODEOXYURIDINE
231.095881 [M+H]+ 230.0902716 C9H14N2O5 Aspartyl-L-proline
231.095881 [M+H]+ 230.0902716 C9H14N2O5 3,4-DIHYDRO-1H-PYRIMIDIN-2-ONE NUCLEOSIDE
241.029228 [M+Na]+ 218.0401503 C12H10O2S 1,1’-BIPHENYL-2-SULFINIC ACID
241.029228 [M+Na]+ 218.0401503 C12H10O2S cis-1,2-Dihydroxy-1,2-dihydrodibenzothiophene
241.029228 [M+H]+ 240.0238483 C6H12N2O4S2 L-Cystine;L-Dicysteine;L-alpha-Diamino-beta-dithiolactic acid
241.029228 [M+H]+ 240.0238483 C6H12N2O4S2 Cystine;Dicysteine;alpha-Diamino-beta-dithiolactic acid
247.105723 [M+Na]+ 224.1160924 C11H16N2O3 (6,10-DIOXO-OCTAHYDRO-PYRIDAZINO[1,2-A][1,2]DIAZEPIN-1-YL)-

ACETALDEHYDE FRAGMENT
247.105723 [M+Na]+ 224.1160924 C11H16N2O3 2-(4-AMINO-PHENYL)-5-HYDROXYMETHYL-PYRROLIDINE-3,4-DIOL
247.105723 [M+H]+ 246.1004423 C13H14N2O3 Mephobarbital; drug
247.105723 [M+H]+ 246.1004423 C13H14N2O3 5-AMINO-4-OXO-1,2,4,5,6,7-HEXAHYDRO-AZEPINO[3,2,1-HI]

INDOLE-2-CARBOXYLIC ACID
247.105723 [M+H]+ 246.1004423 C13H14N2O3 Alanine, N-indol-3-ylacetyl- (6CI) Indole-3-acetylalanine N-

(3-Indolylacetyl)-L-alanine
247.105723 [M+H]+ 246.1004423 C13H14N2O3 N-Acetyl-D-tryptophan
276.1167155 [M+H]+ 275.1117353 C10H17N3O6 Norophthalmic acid
277.1005288 [M+H]+ 276.0939004 C22H12 Benzo[ghi]perylene;1,12-Benzoperylene
277.1005288 [M+Na]+ 254.1088985 C12H18N2O2S Thiamylal;5-Allyl-5-(1-methylbutyl)-2-thiobarbituric acid; drug
277.1005288 [M+H]+ 276.0957509 C10H16N2O7 Glu-Glu
277.1005288 [M+H]+ 276.0957509 C10H16N2O7 gamma-glutamyl-D-glutamate
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4.5 Discussion

Since marmosets could provide useful information about aging, it is of interest to

determine marmoset ages at which metabolite levels change. In this study, the Gain

and Loss Analysis of DNA (GLAD) method (Hupé et al., 2004), developed for the

analysis of DNA copy numbers in tumors, is applied to marmoset mass spectra to

identify breakpoints indicating changes in mean metabolite levels for a subset of

features.

It was determined that the breakpoints found could be divided into five clusters, with

the most likely breakpoint locations for the groups at 773 days, 1444 days, 2008 days,

2759 days, and 4496 days. This means that some metabolite levels in the marmoset

colony change at about 2, 4, 5.5, 7.5, and 12.5 years old. Most features having any

breakpoints have breaks at only one of these locations, but some features have two

or three breakpoints.

Some of the breakpoints found could be due to changes in environment. For instance,

at age two, marmosets are often removed from their original groups and form new

breeding pairs. This could be accompanied by a change in diet or behavior that could

influence different metabolites. Other possible causes of metabolite level shifts include

changes in food or drug therapies and change in activity level. Age-related changes

could include those related to the onset of renal disease and osteoporosis between

seven and eight years of age. Also, there could be metabolite changes in females due

to the onset of menopause. The dataset used here does not allow for the detection of

sex-specific breakpoints, but this possibility should be addressed in the future.

Cluster 1 likely contains arginine, which is related to nitric oxide metabolism and

is associated with hypertension (Taddei et al., 1996). Creatine and stearoylcarnitine

appear to have been found in Cluster 2, which could signify changes in muscle mass or
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activity level at around age four. Cluster 3 contains breakpoints that may be related

to a change in steroid levels. Emetine, vitamin D2, dipeptides, and tripeptides were

likely to have been found in Cluster 4, perhaps due to changes in food habits and

drug therapy. Cluster 5 appears to contain many amino acids, dipeptides, tripeptides,

and lysophospholipids, so breakpoints in this cluster seem to be related to protein

and amino acid metabolism. Many of the other metabolites identified in the five

clusters are artifacts from food and environmental sources, such as flame retardants

and plasticizers absorbed after exposure to commercial products.

Being able to better identify the metabolites found in the different clusters would

aid in separating age-related breakpoints from those that could be explained by

environmental or other changes. While metabolite databases include more infor-

mation now than in recent years, they are by no means complete (Soltow et al., 2010;

Wishart et al., 2009). In our study, only 51 of the 115 MS features (44.3%) found to

have breakpoints have at least one match in the MMCD database. Identification of

all of the components of the metabolome would dramatically increase the amount

of information available from metabolomic studies. Clusters of metabolites with

similar age-related changes could provide clues as to which metabolites are biologically

related, perhaps being associated with the same biological process. Differentiating

those metabolites that increase at a particular age from those that decrease could

also provide useful information about the aging process.

In this study, the complete list of breakpoints was considered when determining cluster

membership, regardless of feature. For some features with two or three breakpoints,

the breakpoints were identified as being in different clusters. For others, however,

breakpoints on the same feature were classified together. It could be the case that

these breakpoints should belong to the same cluster but that artifacts in the data

allowed for more than one breakpoint to be identified. It could also mean that some

clusters have been missed. Improved methods for classification could help determine
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which of these might be true. One method of interest is using the EM algorithm

assuming a mixture of truncated normal distributions to identify clusters in the data.

This proposed method is discussed in more detail in the “Future Work” section below.

In addition to improving the classification method, other adjustments may also be

made in the future. Several marmosets in the colony analyzed in this study have

non-unique ages. For every repeated age, one marmoset’s age was adjusted to make

the ages unique for the purposes of this study. There is difficulty in interpreting

a breakpoint found at either of the repeated ages but not the other. If there is a

true breakpoint at a certain repeated age, one would expect it to surface for both

marmosets of this age. Having the marmosets analyzed side-by-side when they are

actually the same age may make a breakpoint more ambiguous. For this study,

very few marmoset ages are repeated, and very few breakpoints are discovered at

the repeated ages, so this is not thought to have caused problems. In the future,

this issue will be resolved. Additional data could also improve this analysis in the

future. While a cross-sectional dataset is used here, longitudinal data may soon be

available. Collecting data from the same marmosets over time would allow between-

subject variation to be controlled. Many improvements are possible, but this study

provides a solid step in the direction of identification of metabolite groups that could

provide useful information about aging and possibly lead to advances in personalized

medicine.

4.6 Future Work

Another approach of interest in analyzing the marmoset data is using the Expectation-

Maximization (EM) Algorithm for finite mixtures (Dempster et al., 1977). It is

assumed that breakpoints exist at which metabolic systems experience shifts, resulting

in changes in metabolite levels. The breakpoints detected in the marmoset data are
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assumed to come from a mixture of normal distributions, with means of the mixture

components representing the true breakpoints. The specific mixture component from

which a particular breakpoint comes is treated as unknown. A set of starting values

for the parameters is first selected. Parameters include means, variances, and mixing

proportions for the different components, with mixing proportions summing to one

and being between zero and one inclusive. In the expectation step (E step), the

expected value of the log-likelihood of the complete data is computed using the current

parameter values. Next, in the maximization step (M step), maximum likelihood

estimates of the parameters are found. The E step and M step are repeated, using

updated values of the parameters, until convergence.

As you can see in Figure 4.3, many breakpoints are found near the extremes in the

marmoset data. In a Gaussian mixture model, one would expect values to taper off

rather than peak in these areas. Therefore, a Gaussian mixture model may not be

appropriate, as components may not have a normal distribution. Instead, a mixture

model with truncated normal components may better fit the data. A truncated

normal distribution results when a normal distribution is truncated on the left, on the

right, or on both the left and right. Left-truncated and right-truncated distributions

are referred to as singly truncated, and distributions with truncation on both the left

and right are referred to as doubly truncated.

Let X be the random variable of interest, and let Ta represent the left truncation

point and Tb represent the right truncation point. As explained in Cohen (1991), the

pdf fTab for a doubly truncated distribution is:

fTab(x;µ, σ) =


1

σ
√
2π(F (Tb)−F (Ta))

exp(−1
2
(x−µ

σ
)2) if Ta ≤ x ≤ Tb

0 elsewhere
(4.3)

where µ and σ are the mean and standard deviation of the non-truncated distri-



71

bution, and F (Ta) and F (Tb) represent the CDF for points Ta and Tb (F (x) =∫ x
−∞ f(y;µ, σ)dy). In this pdf, the normal pdf is being adjusted for the truncation

by dividing by the proportion of the distribution that remains after truncation. For

a right-truncated distribution, this would amount to dividing by F (Tb), and for a

left-truncated distribution, one would divide by 1− F (Ta).

Using a truncated distribution is appealing for the marmoset breakpoints. This could

be accomplished by assuming that all mixture components are doubly truncated.

However, the truncation may be on the left for the smallest breakpoint component

and on the right for the largest breakpoint component, with no truncation for other

components. To account for this, we could allow different components to have different

truncation patterns, with the leftmost component being left-truncated, the rightmost

component being right-truncated, and any other components being free of truncation.

If truncation exists in the marmoset data, using the EM algorithm for Gaussian

mixtures will result in incorrect estimates for breakpoint locations. For example,

suppose we have a two-component mixture model with equal mixing proportions for

the two components. Data points from the two components Z1 and Z2 are generated

using Z1 ∼ N(−2, 1) and Z2 ∼ N(2, 1), and the distributions are truncated at −3

and 3. A visual representation of this truncated mixture model is given in Figure 4.7.

Although means -2 and 2 are used to generate the data, using the EM algorithm and

assuming a finite mixture model with two components results in means of -1.7 and

1.7 due to truncation (Figure 4.7). Additionally, standard deviation estimates from

the EM algorithm for both components are about 0.8 instead of the value of 1 used

to generate the data. While these may be accurate representations of the parameters

for the truncated distribution components, we are interested in the parameters from

the corresponding non-truncated distribution in the marmoset data.

Many have expressed interest in using truncated distributions, and as a result, several
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Figure 4.7: Example of truncated mixture distribution. Means used to generate the
data are indicated by blue arrows, and means resulting from EM algorithm for a
Gaussian mixture model are indicated by red arrows.
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R functions for the analysis of truncated data exist. In the “Multi-state Markov and

hidden Markov models in continuous time” package (Jackson, 2011), functions allow

one to input the mean and standard deviation of a distribution before truncation

and find the density, distribution function, and quantile function for the truncated

distribution. Random numbers from a truncated distribution can also be produced.

Functions in the “Truncated normal distribution” package (Trautmann et al., 2010)

allow one to find the same values, and this package also has functions for finding the

expected value and variance of the truncated distribution. The “Truncated Multi-

variate Normal and Student t Distribution” package (Wilhelm and Manjunath, 2010)

adds to these functions a means for finding the maximum likelihood estimates from

the corresponding non-truncated distribution when truncation points are known. In

the future, we would like to use similar methodology to find non-truncated maximum

likelihood estimates for truncated mixture models. Preliminary attempts reveal that

the underlying data may not be normal, with a disproportionately high number of

breakpoints at the minimum and maximum ages at which breakpoints were found.

We plan on using simulation studies to investigate the robustness of the method

when the underlying distributions of one or more mixture components deviate from

normality.
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A.1 Full Simulation Results

Table A.1: Simulation Results (1): σ2 = (1, 2); π = (0.7, 0.3)
µ̂ σ̂2 π̂ MRa µ̂ σ̂2 π̂ MRa

Extra Variation Including Ignoring

1.1 s2p ∼ χ2
0.25 s2p ∼ χ2

0.25

µ : (−0.5, 0.5) (-0.43, 0.43) (1.03, 2.33) (0.75, 0.25) 0.250 (-0.40, 0.29) (1.13, 2.91) (0.72, 0.28) 0.256
µ : (−2.5, 2.5) (-2.52, 2.42) (0.96, 2.09) (0.70, 0.30) 0.024 (-2.53, 2.44) (1.16, 2.19) (0.70, 0.30) 0.025
µ : (−5, 5) (-5.03, 4.97) (1.03, 2.00) (0.71, 0.29) <0.001 (-5.03, 4.96) (1.28, 2.29) (0.71, 0.29) 0.001
1.2 s2p ∼ χ2

0.5 s2p ∼ χ2
0.5

µ : (−0.5, 0.5) (-0.48, 0.77) (1.08, 1.86) (0.78, 0.22) 0.258 (-0.35, 0.06) (1.23, 3.32) (0.65, 0.35) 0.276
µ : (−2.5, 2.5) (-2.49, 2.47) (1.00, 1.92) (0.70, 0.30) 0.029 (-2.50, 2.48) (1.45, 2.30) (0.70, 0.30) 0.032
µ : (−5, 5) (-5.00, 5.03) (0.93, 1.87) (0.70, 0.30) <0.001 (-5.01, 5.04) (1.45, 2.40) (0.70, 0.30) 0.001
1.3 s2p ∼ χ2

1 s2p ∼ χ2
1

µ : (−0.5, 0.5) (-0.56, 0.48) (0.91, 2.09) (0.63, 0.37) 0.263 (-0.32, 0.08) (1.54, 5.06) (0.70, 0.30) 0.292
µ : (−2.5, 2.5) (-2.49, 2.55) (1.03, 2.06) (0.70, 0.30) 0.045 (-2.51, 2.56) (1.86, 2.94) (0.70, 0.30) 0.046
µ : (−5, 5) (-5.02, 4.93) (0.96, 1.84) (0.71, 0.29) 0.002 (-5.05, 4.87) (1.85, 2.86) (0.71, 0.29) 0.003

a MR = Misclassification rate
b 5000 values were generated for each simulation.
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Table A.2: Simulation Results (2): σ2 = (1, 0.1); π = (0.7, 0.3)
µ̂ σ̂2 π̂ MRa µ̂ σ̂2 π̂ MRa

Extra Variation Including Ignoring

2.1 s2p ∼ χ2
0.25 s2p ∼ χ2

0.25

µ : (−0.5, 0.5) (-0.54, 0.49) (1.01, 0.11) (0.68, 0.32) 0.227 (-0.42, 0.48) (1.31, 0.12) (0.76, 0.24) 0.237
µ : (−2.5, 2.5) (-2.51, 2.50) (1.04, 0.10) (0.70, 0.30) 0.006 (-2.49, 2.52) (1.36, 0.25) (0.70, 0.30) 0.009
µ : (−5, 5) (-5.01, 4.97) (0.98, 0.01) (0.71, 0.29) 0 (-5.01, 4.98) (1.30, 0.33) (0.71, 0.29) 0.001
2.2 s2p ∼ χ2

0.5 s2p ∼ χ2
0.5

µ : (−0.5, 0.5) (-0.53, 0.53) (1.03, 0.11) (0.67, 0.33) 0.244 (-0.38, 0.45) (1.73, 0.16) (0.77, 0.23) 0.262
µ : (−2.5, 2.5) (-2.51, 2.50) (1.03, 0.11) (0.70, 0.30) 0.014 (-2.49, 2.53) (1.45, 0.46) (0.70, 0.30) 0.015
µ : (−5, 5) (-4.99, 5.00) (1.02, 0.10) (0.69, 0.31) <0.001 (-4.99, 5.01) (1.56, 0.62) (0.70, 0.30) 0.001
2.3 s2p ∼ χ2

1 s2p ∼ χ2
1

µ : (−0.5, 0.5) (-0.53, 0.47) (0.99, 0.10) (0.67, 0.33) 0.272 (-0.43, -0.02) (3.05, 0.90) (0.46, 0.54) 0.517
µ : (−2.5, 2.5) (-2.50, 2.50) (1.02, 0.10) (0.69, 0.31) 0.023 (-2.53, 2.56) (1.86, 0.84) (0.69, 0.31) 0.024
µ : (−5, 5) (-5.01, 4.99) (0.95, 0.10) (0.70, 0.30) 0.001 (-5.00, 5.02) (1.92, 1.06) (0.70, 0.30) 0.002

a MR = Misclassification rate
b 5000 values were generated for each simulation.
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Table A.3: Simulation Results (3): σ2 = (0.1, 0.1); π = (0.7, 0.3)
µ̂ σ̂2 π̂ MRa µ̂ σ̂2 π̂ MRa

Extra Variation Including Ignoring

3.1 s2p ∼ χ2
0.25 s2p ∼ χ2

0.25

µ : (−0.5, 0.5) (-0.51, 0.48) (0.10, 0.10) (0.69, 0.31) 0.098 (-0.21, -0.05) (0.39, 2.77) (0.93, 0.07) 0.307
µ : (−2.5, 2.5) (-2.50, 2.51) (0.10, 0.09) (0.71, 0.29) 0.004 (-2.51, 2.51) (0.26, 0.30) (0.71, 0.29) 0.004
µ : (−5, 5) (-5.00, 4.99) (0.10, 0.10) (0.70, 0.30) 0 (-5.01, 4.99) (0.34, 0.33) (0.70, 0.30) 0
3.2 s2p ∼ χ2

0.5 s2p ∼ χ2
0.5

µ : (−0.5, 0.5) (-0.47, 0.56) (0.11, 0.08) (0.75, 0.25) 0.146 (-0.23, -0.14) (0.46, 3.04) (0.87, 0.13) 0.310
µ : (−2.5, 2.5) (-2.51, 2.49) (0.10, 0.10) (0.70, 0.30) 0.006 (-2.52, 2.50) (0.54, 0.56) (0.70, 0.30) 0.007
µ : (−5, 5) (-5.01, 4.96) (0.10, 0.11) (0.72, 0.28) <0.001 (-5.02, 4.98) (0.63, 0.53) (0.72, 0.28) <0.001
3.3 s2p ∼ χ2

1 s2p ∼ χ2
1

µ : (−0.5, 0.5) (-0.51, 0.42) (0.09, 0.12) (0.69, 0.31) 0.193 (-0.30, -0.23) (3.67, 0.59) (0.22, 0.78) 0.675
µ : (−2.5, 2.5) (-2.50, 2.48) (0.10, 0.10) (0.70, 0.30) 0.015 (-2.55, 2.48) (0.90, 0.94) (0.70, 0.30) 0.017
µ : (−5, 5) (-5.00, 5.00) (0.09, 0.09) (0.70, 0.30) <0.001 (-4.99, 4.99) (1.05, 1.07) (0.70, 0.30) 0.001

a MR = Misclassification rate
b 5000 values were generated for each simulation.
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A.2 Derivation of Maximum Likelihood Estimates

for µk, σ
2
k, and πk

As noted in 3.3.2, the expected log-likelihood at each iteration j+1 (E-Step) is given

by (equation (3.6) above):

E(`(θ; T)|Z, θ̂(j)) =
P∑
p=1

K∑
k=1

[(η̂pklogφθk(β̂p)) + (η̂pklog(πk))],

where T is the complete data and includes the unknown classes, Z is the observed

data, and θ̂(j) represents the parameter estimates at iteration j. The estimate η̂pk is

found by replacing πk and θk with their current estimates π̂k and θ̂k in the following

equation (equation (3.4) above):

ηpk =
πkφθk(β̂p)∑K
k=1 πkφθk(β̂p)

,

where φθk(β̂p) is the normal density for β̂p with mean µβk and variance σ2
k + s2p.

Specifically,

φθk(β̂p) =
1√

2π(σ2
k + s2p)

e−((β̂p−µβk )
2)/(2(σ2

k+s
2
p)).

Maximum likelihood estimates of µ̂βk , σ̂
2
k, and π̂k are then found for each iteration

(M-Step) by taking the derivative of E(`(θ; T)|Z, θ̂(j)) with respect to each of the pa-

rameters, setting each to zero, and solving for the respective parameters. Derivations

for these equations follow.
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Derivation for µ̂βk :

∂(E(`(θ; T)|Z, θ̂(j)))
∂µβk

=
∂

∂µβk

P∑
p=1

K∑
k=1

(η̂pklogφθk(β̂p))

=
∂

∂µβk

(
P∑
p=1

η̂pk

(
log(2π)−

1
2 + log(σ2

k + s2p)
− 1

2 − (β̂p − µβk)2

2(σ2
k + s2p)

))

= −
P∑
p=1

η̂pk(β̂p − µβk)
(σ2

k + s2p)

= −
P∑
p=1

η̂pkβ̂p
(σ2

k + s2p)
+

P∑
p=1

η̂pkµβk
(σ2

k + s2p)

Set = 0 :

µ̂βk =

∑P
p=1 η̂pkβ̂p/(σ

2
k + s2p)∑P

p=1 η̂pk/(σ
2
k + s2p)

Derivation for σ̂2
k:

∂(E(`(θ; T)|Z, θ̂(j)))
∂σ2

k

=
∂

∂σ2
k

P∑
p=1

K∑
k=1

(η̂pklogφθk(β̂p))

=
∂

∂σ2
k

(
P∑
p=1

η̂pk

(
log(2π)−

1
2 + log(σ2

k + s2p)
− 1

2 − (β̂p − µβk)2

2(σ2
k + s2p)

))

=
P∑
p=1

−1

2
η̂pk(σ

2
k + s2p)

−1 −
P∑
p=1

−1

2
η̂pk(β̂p − µβk)2(σ2

k + s2p)
−2

=
P∑
p=1

η̂pk(σ
2
k + s2p)

−1 −
P∑
p=1

η̂pk(β̂p − µβk)2(σ2
k + s2p)

−2

Set = 0 :

0 =
P∑
p=1

η̂pk
σ̂2
k + s2p

−
P∑
p=1

η̂pk(β̂p − µβk)2

σ̂2
k + s2p

For σ̂2
k, the equation was not solved explicitly for σ̂2

k since the expressions were

complicated by the s2p value. Instead, an iterative procedure is used to find estimates
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for µ̂βk and σ̂2
k(3.3.2).

Derivation for π̂k:

∂(E(`(θ; T)|Z, θ̂(j)))
∂πk

=
∂

∂πk

P∑
p=1

K∑
k=1

η̂pklog(πk)

=
P∑
p=1

K∑
j=1

(−η̂pjπk + η̂pk)

= −
P∑
p=1

πk +
P∑
p=1

η̂pk

= −Pπk +
P∑
p=1

η̂pk

Set = 0 :

π̂k =

∑P
p=1 η̂pk

P

In the derivation for π̂k, πk was expressed as eλk∑K
j=1 e

λj
(Hastie et al. (2001); Bishop

(1995)). This enforced necessary constraints on πk (πk ≥ 0,
∑K

k=1 πk = 1). The

index j was used to represent all values 1 to K, while k was used as the index of the

particular π value of interest.
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Appendix B

Appendix for Chapter 4
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B.1 Selection of parameters for the implementa-

tion of GLAD

For Haar segmentation, detail subbands were limited to levels two to five. The finest

level of detail was set to two since a segment was expected to span at least x = 4

units, so applying the rule of thumb in Ben-Yaacov and Eldar (2008), we find that

the finest level of detail equals log24 = 2. The level of coarsest detail was set to five,

at which point the number of breakpoints stabilized so that including coarser detail

subbands produced the same number of breakpoints. The false discovery rate (FDR)

threshold used was 0.0001, meaning a very small proportion of false positives was

allowed. Also, it was indicated that the region size expected was four. This does

allow for regions smaller than four in some cases, but it decreases the number of very

small regions that are produced by segmentation. Again, regions spanning fewer than

four marmoset ages were generally not of interest unless there was strong evidence in

the data that such small regions existed.

Several combinations of the penalty parameters L and D were investigated, where D

is the parameter used in the kernel function in the penalty term, and L is the penalty

term coefficient. Both D and L were allowed to take values from one to ten, and

segmentation was performed for every combination of values. A subset of results is

shown in Table B.1. In order to determine appropriate values for these parameters,

the number of total breakpoints was plotted against values of parameters D and L.

In Figure B.1, the number of total breaks is plotted against parameter D separately

for the different L values. This relationship is reversed for Figure B.2, in which the

number of breaks is plotted against L for the different D values. Additionally, Figure

4.2 shows a plot of the total number of breaks by both D and L. For the different

values of L, the number of breakpoints appeared to level off after D = 3 (Figure B.1).

Similarly, the L plots show that the number of breakpoints stabilize after L = 4 for
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the different values of D (Figure B.2).
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Figure B.1: Number of breakpoints plotted against penalty term kernel parameter D
for various penalty term coefficient L values. Chosen value D = 3 is shown in red.
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Table B.1: Results using various values of penalty term coefficient L and penalty term
kernel parameter D.

L D Tot. Num. Num. Feat.
of Breaks with Breaks

1 1 1092 713
1 2 966 641
1 3 983 642
1 4 979 641
1 5 977 639
1 6 976 638
1 7 975 638
1 8 975 638
1 9 975 638
1 10 975 638
2 1 983 653
2 2 670 459
2 3 564 377
2 4 536 352
2 5 510 330
2 6 502 323
2 7 507 322
2 8 494 318
2 9 494 318
2 10 493 317
3 1 865 588
3 2 431 310
3 3 297 200
3 4 253 161
3 5 229 143
3 6 216 132
3 7 215 131
3 8 212 130
3 9 207 127
3 10 206 126
4 1 796 556
4 2 323 235
4 3 167 115
4 4 123 78
4 5 98 58
4 6 89 50
4 7 87 49
4 8 82 46
4 9 78 43
4 10 77 42
5 1 742 526
5 2 253 194
5 3 105 72
5 4 46 31
5 5 38 23
5 6 30 16
5 7 28 15
5 8 28 15
5 9 28 15
5 10 28 15

L D Tot. Num. Num. Feat.
of Breaks with Breaks

6 1 706 506
6 2 223 174
6 3 60 43
6 4 22 13
6 5 7 4
6 6 7 4
6 7 7 4
6 8 7 4
6 9 7 4
6 10 7 4
7 1 683 492
7 2 189 150
7 3 39 30
7 4 11 8
7 5 5 3
7 6 3 2
7 7 3 2
7 8 3 2
7 9 3 2
7 10 3 2
8 1 661 480
8 2 170 137
8 3 29 24
8 4 4 3
8 5 3 2
8 6 3 2
8 7 3 2
8 8 3 2
8 9 3 2
8 10 3 2
9 1 654 473
9 2 156 127
9 3 22 19
9 4 3 2
9 5 3 2
9 6 3 2
9 7 3 2
9 8 3 2
9 9 3 2
9 10 3 2
10 1 635 462
10 2 140 117
10 3 16 14
10 4 3 2
10 5 3 2
10 6 3 2
10 7 3 2
10 8 3 2
10 9 3 2
10 10 3 2
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Figure B.2: Number of breakpoints plotted against penalty term coefficient L values
for various values of penalty term kernel parameter D. Chosen value L = 4 is shown
in red.
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B.2 Metabolite Matches from the Madison-Qingdao Metabolomics Consor-

tium Database (MMCD).

For all searches, a tolerance of 10 parts per million (ppm) was used. Metabolites matched were for the [M+H]+ species (no

adducts) and the sodium adduct [M+Na]+.

Table B.2: Cluster 1 MMCD Matches
Input Mass Type Database Mass Formula Name

196.098814 [M+H]+ 195.0929141 C7H17NO3S ETHYL DIMETHYL AMMONIO PROPANE SULFONATE
197.1022449 [M+Na]+ 174.1116757 C6H14N4O2 L-Arginine;(S)-2-Amino-5-guanidinovaleric acid
197.1022449 [M+Na]+ 174.1116757 C6H14N4O2 D-Arginine;D-2-Amino-5-guanidinovaleric acid
199.1680346 [M+H]+ 198.16198 C12H22O2 (-)-Menthyl acetate;l-Menthyl acetate
199.1680346 [M+H]+ 198.16198 C12H22O2 Citronellyl acetate;3,7-Dimethyl-6-octen-1-yl acetate
199.1680346 [M+H]+ 198.16198 C12H22O2 5-Dodecenoic acid
210.1145263 [M+H]+ 209.1051934 C11H15NO3 Propoxur;Aprocarb;2-Isopropoxyphenyl N-methylcarbamate; drug
210.1145263 [M+H]+ 209.1051934 C11H15NO3 Tyr-OEt
210.1145263 [M+H]+ 209.1051934 C11H15NO3 p-Lactophenetide;4’-Ethoxylactanilide
210.1145263 [M+H]+ 209.1051934 C11H15NO3 N,O-DIMETHYL-L-TYROSINE
210.1145263 [M+H]+ 209.1051934 C11H15NO3 3-HYDROXY-4-AMINO-5-PHENYLPENTANOIC ACID
261.0901498 [M+H]+ 260.0830777 C10H16N2O4S d-biotin d-sulfoxide
261.0901498 [M+Na]+ 238.0987278 C8H18N2O4S 1-Piperazineethanesulfonic acid, 4-(2-hydroxyethyl)-
264.9879506 [M+H]+ 263.9800049 C4H10O9P2 3-HYDROXY-2-OXO-4-PHOPHONOXY- BUTYL)-PHOSPHONIC ACID
280.0764361 [M+H]+ 279.0695568 C17H10FNO2 3-(3-FLUORO-4-HYDROXYPHENYL)-7-HYDROXY-1-NAPHTHONITRILE
371.3121317 [M+H]+ 370.3083098 C22H42O4 Di(2-ethylhexyl) adipate;Dioctyl adipate
459.3476132 [M+Na]+ 436.35526 C27H48O4 5-b-Cholestane-3a-7-tetraol
459.3476132 [M+Na]+ 436.35526 C27H48O4 Cholestane-3,7,12,25-tetrol
459.3476132 [M+Na]+ 436.35526 C27H48O4 3alpha,7alpha,12alpha,26-Tetrahydroxy-5beta-cholestane;

5beta-Cholestane-3alpha,7alpha,12alpha,26-tetraol;
5beta-Cholestane-3alpha,7alpha,12alpha,26-tetrol

459.3476132 [M+Na]+ 436.35526 C27H48O4 5b-Cholestane-3a,7a,12a,23-Tetrol
582.2948387 [M+H]+ 581.2908219 C23H43N5O12 N3’-Acetylapramycin; drug
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Table B.3: Cluster 2 MMCD Matches
Input Mass Type Database Mass Formula Name

132.0759201 [M+H]+ 131.0694765 C4H9N3O2 Creatine;alpha-Methylguanidino acetic acid;Methylglycocyamine
132.0759201 [M+H]+ 131.0694765 C4H9N3O2 3-Guanidinopropanoate
183.076994 [M+H]+ 182.0691422 C8H10N2O3 2-AMINO-4-OXO-4(1H-PYRROL-1-YL)BUTANOIC ACID
183.076994 [M+H]+ 182.0707955 C6H15O4P TRIETHYL PHOSPHATE
183.076994 [M+H]+ 182.0707955 C6H15O4P Diisopropyl phosphate
190.0851209 [M+H]+ 189.0789786 C11H11NO2 Phensuximide; drug
190.0851209 [M+H]+ 189.0789786 C11H11NO2 1,3-Dimethyl-6,8-isoquinolinediol
190.0851209 [M+H]+ 189.0789786 C11H11NO2 INDOLYLPROPIONIC ACID
190.0851209 [M+H]+ 189.0789786 C11H11NO2 Backebergine
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 Metaraminol; drug
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 Phenylephrine; drug
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 (-)-Sympatol
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 2,5-Dihydrophenylalanine
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 Epinine;Deoxyepinephrine
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 alpha-methyldopamine
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 Ethinamate; drug
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 4-methoxytyramine
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 p-Synephrine
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 PHENYLALANINDIOL
190.0851209 [M+Na]+ 167.0946287 C9H13NO2 3-Methoxytyramine
281.1544039 [M+H]+ 280.1463299 C19H20O2 demethylmenaquinone
296.129168 [M+H]+ 295.1208434 C18H17NO3 Pukateine
296.129168 [M+H]+ 295.1208434 C18H17NO3 (+)-Mecambroline
296.129168 [M+H]+ 295.1208434 C18H17NO3 Mecambrine
296.129168 [M+H]+ 295.1208434 C18H17NO3 Japonine
296.129168 [M+H]+ 295.1208434 C18H17NO3 Xylopine
296.129168 [M+H]+ 295.1208434 C18H17NO3 Pukateine
296.129168 [M+H]+ 295.1208434 C18H17NO3 (+)-Mecambroline
296.129168 [M+H]+ 295.1208434 C18H17NO3 Mecambrine
296.129168 [M+H]+ 295.1208434 C18H17NO3 Japonine
296.129168 [M+H]+ 295.1208434 C18H17NO3 Xylopine
428.3692035 [M+H]+ 427.3661591 C25H49NO4 Stearoylcarnitine
459.3476132 [M+Na]+ 436.35526 C27H48O4 5-b-Cholestane-3a-7-tetraol
459.3476132 [M+Na]+ 436.35526 C27H48O4 Cholestane-3,7,12,25-tetrol
459.3476132 [M+Na]+ 436.35526 C27H48O4 3alpha,7alpha,12alpha,26-Tetrahydroxy-5beta-cholestane;

5beta-Cholestane-3alpha,7alpha,12alpha,26-tetraol;
5beta-Cholestane-3alpha,7alpha,12alpha,26-tetrol

459.3476132 [M+Na]+ 436.35526 C27H48O4 5b-Cholestane-3a,7a,12a,23-Tetrol
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Table B.4: Cluster 3 MMCD Matches
Input Mass Type Database Mass Formula Name

231.095881 [M+H]+ 230.0902716 C9H14N2O5 TETRAHYDRODEOXYURIDINE
231.095881 [M+H]+ 230.0902716 C9H14N2O5 Aspartyl-L-proline
231.095881 [M+H]+ 230.0902716 C9H14N2O5 3,4-DIHYDRO-1H-PYRIMIDIN-2-ONE NUCLEOSIDE
264.9879506 [M+H]+ 263.9800049 C4H10O9P2 3-HYDROXY-2-OXO-4-PHOPHONOXY- BUTYL)-PHOSPHONIC ACID
361.1976803 [M+Na]+ 338.2093241 C19H30O5 Shiromodiol diacetate
361.1976803 [M+Na]+ 338.2093241 C19H30O5 Idebenone; drug
361.1976803 [M+Na]+ 338.2057365 C20H28F2O2 4,4-Difluoro-17beta-hydroxy-17alpha-methyl-androst-5-en-3-one
361.1976803 [M+H]+ 360.193674 C21H28O5 Aldosterone;11beta,21-Dihydroxy-3,20-dioxo-4-pregnen-18-al; drug
361.1976803 [M+H]+ 360.193674 C21H28O5 Cinerin II
361.1976803 [M+H]+ 360.193674 C21H28O5 Cortisone;17alpha,21-Dihydroxy-4-pregnene-3,11,20-trione;

Kendall’s compound E;Reichstein’s substance Fa; drug
361.1976803 [M+H]+ 360.193674 C21H28O5 Prednisolone; drug
361.1976803 [M+H]+ 360.193674 C21H28O5 Tricyclodehydroisohumulone
404.2032174 [M+Na]+ 381.2151377 C20H31NO6 Symphytine;7-Tiglyl-9-(-)-viridiflorylretronecine
404.2032174 [M+Na]+ 381.2164751 C21H27N5O2 [PHENYLALANINYL-PROLINYL]-[2-(PYRIDIN-4-YLAMINO)-ETHYL]-AMINE
428.3692035 [M+H]+ 427.3661591 C25H49NO4 Stearoylcarnitine
455.13414 [M+Na]+ 432.1467406 C20H24N4O5S METHYL N-[(4-METHYLPHENYL)SULFONYL]GLYCYL-3-

[AMINO(IMINO)METHYL]-D-PHENYLALANINATE
455.13414 [M+Na]+ 432.1420324 C22H24O9 2-(2,4,5-Trimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-1-benzopyran-4-one
455.13414 [M+Na]+ 432.1420324 C22H24O9 (-)-Medicocarpin;Medicarpin 3-O-glucoside
455.13414 [M+Na]+ 432.1420324 C22H24O9 2-(3,4,5-Trimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-1-benzopyran-4-one
455.13414 [M+Na]+ 432.1420324 C22H24O9 (-)-medicarpin-3-O-glucoside
481.3068156 [M+H]+ 480.2988078 C29H40N2O4 Emetine
582.2948387 [M+H]+ 581.2908219 C23H43N5O12 N3’-Acetylapramycin; drug
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Table B.5: Cluster 4 MMCD Matches
Input Mass Type Database Mass Formula Name

199.1680346 [M+H]+ 198.16198 C12H22O2 (-)-Menthyl acetate;l-Menthyl acetate
199.1680346 [M+H]+ 198.16198 C12H22O2 Citronellyl acetate;3,7-Dimethyl-6-octen-1-yl acetate
199.1680346 [M+H]+ 198.16198 C12H22O2 5-Dodecenoic acid
231.095881 [M+H]+ 230.0902716 C9H14N2O5 TETRAHYDRODEOXYURIDINE
231.095881 [M+H]+ 230.0902716 C9H14N2O5 Aspartyl-L-proline
231.095881 [M+H]+ 230.0902716 C9H14N2O5 3,4-DIHYDRO-1H-PYRIMIDIN-2-ONE NUCLEOSIDE
263.0352379 [M+H]+ 262.0253821 C6H12FO8P 2-DEOXY-2-FLUORO-ALPHA-D-GLUCOSE-1-PHOSPHATE
280.0764361 [M+H]+ 279.0695568 C17H10FNO2 3-(3-FLUORO-4-HYDROXYPHENYL)-7-HYDROXY-1-NAPHTHONITRILE
304.0616617 [M+H]+ 303.0534452 C10H11ClFN5O3 2-CHLORO-9-(2-DEOXY-2-FLUORO-B -D-ARABINOFURANOSYL)

-9H-PURIN-6-AMINE
315.1478418 [M+H]+ 314.1412613 C13H22N4O3S Ranitidine
315.1478418 [M+Na]+ 292.1575633 C19H20N2O 16-Epivellosimine
315.1478418 [M+Na]+ 292.1575633 C19H20N2O Vellosimine
317.1130363 [M+Na]+ 294.1255944 C19H18O3 METHYL (2Z)-3-METHOXY-2-2-[(E)-2-PHENYLVINYL]PHENYLACRYLATE
317.1130363 [M+Na]+ 294.1255944 C19H18O3 (2-Butylbenzofuran-3-yl)(4-hydroxyphenyl)ketone;

2-Butyl-3-(4-hydroxybenzoyl)benzofuran
317.1130363 [M+Na]+ 294.1215717 C14H18N2O5 Aspartame; drug
317.1130363 [M+Na]+ 294.1215717 C14H18N2O5 Glutamylphenylalanine
317.1130363 [M+Na]+ 294.1215717 C14H18N2O5 2-(BETA-D-GLUCOPYRANOSYL)-5-METHYL-1-BENZIMIDAZOLE
320.1609073 [M+Na]+ 297.172879 C19H23NO2 Ibuprofen piconol; drug
447.3430143 [M+H]+ 446.33961 C28H46O4 Stylisterol B
447.3430143 [M+H]+ 446.33961 C28H46O4 3-dehydroteasterone;dehydroteasterone
447.3430143 [M+H]+ 446.33961 C28H46O4 Di-n-decyl phthalate;Didecyl phthalate;Didecyl 1,2-Benzenedicarboxylate
447.3430143 [M+H]+ 446.33961 C28H46O4 Diisodecyl phthalate
455.2918962 [M+Na]+ 432.3028305 C30H40O2 4,4’-Diaponeurosporenic acid
455.2918962 [M+H]+ 454.2831577 C27H38N2O4 Verapamil; drug
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Table B.6: Cluster 5 MMCD Matches, Part 1
Input Mass Type Database Mass Formula Name

120.0470801 [M+H]+ 119.0404846 C4H9NOS S-Acetylthioethanolamine
142.0287976 [M+Na]+ 119.0404846 C4H9NOS S-Acetylthioethanolamine
148.0593598 [M+H]+ 147.0531578 C5H9NO4 3-METHYL-ASPARTIC ACID
148.0593598 [M+H]+ 147.0531578 C5H9NO4 L-Glutamate;L-Glutamic acid;L-Glutaminic acid
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-ACETYL-SERINE
148.0593598 [M+H]+ 147.0531578 C5H9NO4 Glutamate;Glutaminic acid;2-Aminoglutaric acid
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-Methyl-D-aspartic acid;N-Methyl-D-aspartate;NMDA
148.0593598 [M+H]+ 147.0531578 C5H9NO4 O-Acetyl-L-serine;O3-Acetyl-L-serine
148.0593598 [M+H]+ 147.0531578 C5H9NO4 2-Oxo-4-hydroxy-5-aminovalerate
148.0593598 [M+H]+ 147.0531578 C5H9NO4 L-threo-3-Methylaspartate
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-HYDROXY-N-ISOPROPYLOXAMIC ACID
148.0593598 [M+H]+ 147.0531578 C5H9NO4 N-(Carboxymethyl)-D-alanine
148.0593598 [M+H]+ 147.0531578 C5H9NO4 L-4-Hydroxyglutamate semialdehyde
148.0593598 [M+H]+ 147.0531578 C5H9NO4 Isoglutamate;Isoglutamic acid;3-Aminopentanedioic acid
153.0760536 [M+H]+ 152.0684735 C5H12O5 Xylitol
153.0760536 [M+H]+ 152.0684735 C5H12O5 D-Ribitol;D-Adonitol
153.0760536 [M+H]+ 152.0684735 C5H12O5 L-Arabitol;L-Arabinol;L-Arabinitol;L-Lyxitol
153.0760536 [M+H]+ 152.0684735 C5H12O5 D-Arabitol;D-Arabinitol;D-Arabinol;D-Lyxitol
179.0156802 [M+H]+ 178.0088501 C9H6O2S 3-Hydroxy-2-formylbenzothiophene
183.076994 [M+H]+ 182.0691422 C8H10N2O3 2-AMINO-4-OXO-4(1H-PYRROL-1-YL)BUTANOIC ACID
183.076994 [M+H]+ 182.0707955 C6H15O4P TRIETHYL PHOSPHATE
183.076994 [M+H]+ 182.0707955 C6H15O4P Diisopropyl phosphate
183.076994 [M+H]+ 182.0691422 C8H10N2O3 2-AMINO-4-OXO-4(1H-PYRROL-1-YL)BUTANOIC ACID
183.076994 [M+H]+ 182.0707955 C6H15O4P TRIETHYL PHOSPHATE
183.076994 [M+H]+ 182.0707955 C6H15O4P Diisopropyl phosphate
219.0959433 [M+H]+ 218.0902716 C8H14N2O5 L-Ala-gamma-D-Glu
219.0959433 [M+H]+ 218.0902716 C8H14N2O5 gamma-L-Glutamyl-D-alanine
231.095881 [M+H]+ 230.0902716 C9H14N2O5 TETRAHYDRODEOXYURIDINE
231.095881 [M+H]+ 230.0902716 C9H14N2O5 Aspartyl-L-proline
231.095881 [M+H]+ 230.0902716 C9H14N2O5 3,4-DIHYDRO-1H-PYRIMIDIN-2-ONE NUCLEOSIDE
241.029228 [M+Na]+ 218.0401503 C12H10O2S 1,1’-BIPHENYL-2-SULFINIC ACID
241.029228 [M+Na]+ 218.0401503 C12H10O2S cis-1,2-Dihydroxy-1,2-dihydrodibenzothiophene
241.029228 [M+H]+ 240.0238483 C6H12N2O4S2 L-Cystine;L-Dicysteine;L-alpha-Diamino-beta-dithiolactic acid
241.029228 [M+H]+ 240.0238483 C6H12N2O4S2 Cystine;Dicysteine;alpha-Diamino-beta-dithiolactic acid
247.105723 [M+Na]+ 224.1160924 C11H16N2O3 (6,10-DIOXO-OCTAHYDRO-PYRIDAZINO[1,2-A][1,2]DIAZEPIN-1-YL)-

ACETALDEHYDE FRAGMENT
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Table B.7: Cluster 5 MMCD Matches, Part 2
Input Mass Type Database Mass Formula Name

247.105723 [M+Na]+ 224.1160924 C11H16N2O3 2-(4-AMINO-PHENYL)-5-HYDROXYMETHYL-PYRROLIDINE-3,4-DIOL
247.105723 [M+H]+ 246.1004423 C13H14N2O3 Mephobarbital; drug
247.105723 [M+H]+ 246.1004423 C13H14N2O3 5-AMINO-4-OXO-1,2,4,5,6,7-HEXAHYDRO-AZEPINO[3,2,1-HI]

INDOLE-2-CARBOXYLIC ACID
247.105723 [M+H]+ 246.1004423 C13H14N2O3 Alanine, N-indol-3-ylacetyl- (6CI) Indole-3-acetylalanine N-

(3-Indolylacetyl)-L-alanine
247.105723 [M+H]+ 246.1004423 C13H14N2O3 N-Acetyl-D-tryptophan
247.105723 [M+Na]+ 224.1160924 C11H16N2O3 (6,10-DIOXO-OCTAHYDRO-PYRIDAZINO[1,2-A][1,2]DIAZEPIN-1-YL)-

ACETALDEHYDE FRAGMENT
247.105723 [M+Na]+ 224.1160924 C11H16N2O3 2-(4-AMINO-PHENYL)-5-HYDROXYMETHYL-PYRROLIDINE-3,4-DIOL
247.105723 [M+H]+ 246.1004423 C13H14N2O3 Mephobarbital; drug
247.105723 [M+H]+ 246.1004423 C13H14N2O3 5-AMINO-4-OXO-1,2,4,5,6,7-HEXAHYDRO-AZEPINO[3,2,1-HI]INDOLE-2-

CARBOXYLIC ACID
247.105723 [M+H]+ 246.1004423 C13H14N2O3 Alanine, N-indol-3-ylacetyl- (6CI) Indole-3-acetylalanine N-

(3-Indolylacetyl)-L-alanine
247.105723 [M+H]+ 246.1004423 C13H14N2O3 N-Acetyl-D-tryptophan
247.1269753 [M+H]+ 246.1215717 C10H18N2O5 2,4-BIS(ACETYLAMINO)-1,5-ANHYDRO-2,4-DIDEOXY-D-GLUCITOL
261.1426419 [M+H]+ 260.1347193 C15H20N2S Methaphenilene
261.1426419 [M+H]+ 260.1372218 C11H20N2O5 (E)-N 6 -[3-CARBOXY-1-(HYDROXYMETHYL)PROPYLIDENE]-L-LYSINE
263.0352379 [M+H]+ 262.0253821 C6H12FO8P 2-DEOXY-2-FLUORO-ALPHA-D-GLUCOSE-1-PHOSPHATE
271.0380657 [M+H]+ 270.0310421 C10H10N2O5S 2-(OXALYL-AMINO)-4,5,6,7-TETRAHYDRO-THIENO[2,3-C]PYRIDINE-3-

CARBOXYLIC ACID
276.1167155 [M+H]+ 275.1117353 C10H17N3O6 Norophthalmic acid
277.1005288 [M+H]+ 276.0939004 C22H12 Benzo[ghi]perylene;1,12-Benzoperylene
277.1005288 [M+Na]+ 254.1088985 C12H18N2O2S Thiamylal;5-Allyl-5-(1-methylbutyl)-2-thiobarbituric acid; drug
277.1005288 [M+H]+ 276.0957509 C10H16N2O7 Glu-Glu
277.1005288 [M+H]+ 276.0957509 C10H16N2O7 gamma-glutamyl-D-glutamate
281.1544039 [M+H]+ 280.1463299 C19H20O2 demethylmenaquinone
282.2772066 [M+H]+ 281.2718648 C18H35NO (9E)-OCTADEC-9-ENAMIDE
304.0616617 [M+H]+ 303.0534452 C10H11ClFN5O3 2-CHLORO-9-(2-DEOXY-2-FLUORO-B -D-ARABINOFURANOSYL)-

9H-PURIN-6-AMINE
313.1412633 [M+Na]+ 290.1518092 C17H22O4 Laurenobiolide
313.1412633 [M+Na]+ 290.1518092 C17H22O4 epi-Tulipinolide
313.1412633 [M+Na]+ 290.1518092 C17H22O4 Tulipinolide
313.1412633 [M+H]+ 312.1361591 C19H20O4 Montanin A
313.1412633 [M+H]+ 312.1361591 C19H20O4 Butylbenzyl phthalate;Butyl phenylmethyl 1,2-benzenedicarboxylate
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Table B.8: Cluster 5 MMCD Matches, Part 3
Input Mass Type Database Mass Formula Name

313.1412633 [M+H]+ 312.1361591 C19H20O4 m-(beta-Acetyl-alpha-ethyl-p-hydroxyphenethyl)benzoic acid
313.1412633 [M+H]+ 312.1361591 C19H20O4 4’-Prenyloxyresveratrol
320.1609073 [M+Na]+ 297.172879 C19H23NO2 Ibuprofen piconol; drug
328.282355 [M+H]+ 327.2728499 C4H22B18Co COBALT BIS(1,2-DICARBOLLIDE)
338.073982 [M+H]+ 337.0667161 C13H15N5O2S2 2-[3-(5-MERCAPTO-[1,3,4]THIADIAZOL-2-YL)-UREIDO]-N-METHYL-3-

PHENYL-PROPIONAMIDE
338.073982 [M+Na]+ 315.084848 C18H18ClNS Chlorprothixene; drug
338.073982 [M+H]+ 337.067501 C10H16N3O8P 5-Hydroxymethyldeoxycytidylate;2’-Deoxy-5-hydroxymethylcytidine

5’-phosphate
338.073982 [M+H]+ 337.067501 C10H16N3O8P N4-METHOXY-2’-DEOXY-CYTIDINE-5’-MONOPHOSPHATE
338.073982 [M+H]+ 337.067501 C10H16N3O8P 5-METHYLCYTIDINE-5’-MONOPHOSPHATE
338.073982 [M+H]+ 337.067501 C10H16N3O8P O2’-METHYLYCYTIDINE-5’-MONOPHOSPHATE
338.073982 [M+Na]+ 315.0868632 C17H15O6+ Rosinidin
404.2032174 [M+Na]+ 381.2151377 C20H31NO6 Symphytine;7-Tiglyl-9-(-)-viridiflorylretronecine
404.2032174 [M+Na]+ 381.2164751 C21H27N5O2 [PHENYLALANINYL-PROLINYL]-[2-(PYRIDIN-4-YLAMINO)-ETHYL]-AMINE
404.2032174 [M+Na]+ 381.2151377 C20H31NO6 Symphytine;7-Tiglyl-9-(-)-viridiflorylretronecine
404.2032174 [M+Na]+ 381.2164751 C21H27N5O2 [PHENYLALANINYL-PROLINYL]-[2-(PYRIDIN-4-YLAMINO)-ETHYL]-AMINE
422.023739 [M+H]+ 421.0170197 C9H13BeF3N2O9P2 N-METHYL O-NITROPHENYL AMINOETHYLDIPHOSPHATE BERYLLIUM TRIFLUORIDE
422.023739 [M+Na]+ 399.0326183 C17H22BrNOS2 Timepidium bromide;Timepidium bromide anhydrous
426.0157679 [M+Na]+ 403.0296619 C17H13N3O5S2 Sulfathalidine;Phthalylsulfathiazole;2-[[[4-[(2-Thiazolylamino)sulfonyl]

phenyl]amino]carbonyl]benzoicacid; drug
426.0157679 [M+Na]+ 403.0227387 C15H15ClFN3O3S2 Fluthiacet methyl
455.2918962 [M+Na]+ 432.3028305 C30H40O2 4,4’-Diaponeurosporenic acid
455.2918962 [M+H]+ 454.2831577 C27H38N2O4 Verapamil; drug
455.2918962 [M+Na]+ 432.3028305 C30H40O2 4,4’-Diaponeurosporenic acid
455.2918962 [M+H]+ 454.2831577 C27H38N2O4 Verapamil; drug
465.0523806 [M+Na]+ 442.0615992 C23H18FeN2O4+2 [[2,2’-[4-CARBOXYETHYL-1,2-PHENYLENEBIS(NITRILOMETHYLIDYNE)]

BIS[PHENOLATO]](2-)-N,N’,O,O’]-IRON
481.3068156 [M+H]+ 480.2988078 C29H40N2O4 Emetine
481.3068156 [M+H]+ 480.2988078 C29H40N2O4 Emetine
508.33502 [M+Na]+ 485.3464863 C25H47N3O6 3-HYDROXY-6-METHYL-4-(3-METHYL-2-(3-METHYL-2-(3-METHYL-BUTYRYLAMINO)-

BUTYRYLAMINO)-BUTYRYLAMINO)-HEPTANOIC ACID ETHYL ESTER
527.3014379 [M+Na]+ 504.3172518 C24H40N8O4 Dipyridamole; drug
558.2932796 [M+H]+ 557.2901142 C30H40FN3O6 N-[(BENZYLOXY)CARBONYL]LEUCYL-N 1 -[3-FLUORO-1-(4-HYDROXYBENZYL)-

2-OXOPROPYL]LEUCINAMIDE
582.2948387 [M+H]+ 581.2908219 C23H43N5O12 N3’-Acetylapramycin; drug


