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Abstract 

Multi-omic Analysis to Define Mechanisms of Antigenic Variation in Malaria 
By Christopher C. Tseng 

During Plasmodium knowlesi malarial parasitic infections, distinctive variations of antigens are 

made by the parasite and are presented at the surface of infected erythrocytes. These antigens 

are significant to malaria pathogenesis, since they can allow infected erythrocytes to avoid 

detection by the host immune system, making them a potential target for vaccine 

development. Due to the important role SICA (schizont-infected cell agglutination) antigens 

play in the virulence of the malaria parasite P. knowlesi, studying the conditions for the 

expression of the SICAvar genes can lead to a clearer picture of how variant antigens contribute 

to malaria pathogenesis. We are especially curious about how P. knowlesi establishes and 

expresses five different cloned phenotypes depending on host conditions, like a missing spleen 

in SICA(-) parasites, or having been cured of a past infection by P. knowlesi A or B clones, then 

reinfected (B and C cloned phenotypes, respectively). To investigate this, we first used long 

read results from PacBio next generation sequencing to confirm high coverage of the recently 

generated P. knowlesi B and C genome assemblies. With completed P. knowlesi A, B, and C 

genomes, RNA-Seq data of P. knowlesi A+, B+, and C+ clones, as well as between A+ and A- 

clones, are compared to determine if there were any significant, large-scale differences in gene 

expression, perhaps due to switching at the genomic levels, which could result in the expression 

of these different protein repertoires. Finally, we apply different machine learning techniques 

to analyze the RNA-Seq data and further explore how they can be utilized to detect additional 

patterns of association between parasitic genes from the data. Building upon our recent efforts 



in developing the first PacBio-based Plasmodium genome sequence and studying P. knowlesi 

gene expression through transcriptomic analysis, we use the established P. knowlesi model 

system to gain novel insights into the underlying causes behind antigen variability and 

virulence. By better understanding how the parasite adapts to specific host environments, we 

can contribute to the development of more effective control measures and the eventual 

eradication of malaria.  
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Chapter 1: Introduction 

 

1.1 Malaria: The disease 

Malaria is one of the deadliest diseases in human history. While significant progress has 

been made against malaria since its eradication was declared a United Nations Millennium 

Development Goal in 2000, there remains numerous regions of the world where human malaria 

continues to be transmitted and is endemic, namely Africa, Southeast Asia, the Eastern 

Mediterranean, Western Pacific, and Central and South America (WHO World Malaria Report 

2017). Though incidences of malaria have been on the decline, there was still an estimated 216 

million cases worldwide in 2016, with 445,000 deaths (WHO World Malaria Report 2017). 

Moreover, poorer, tropical areas have had to withstand the worst of the disease, with the 

majority of cases and deaths being concentrated in Africa and Southeast Asia (Sachs and 

Malaney 2002, WHO World Malaria Report 2017). Out of the five known malaria parasite 

species known to cause malaria in humans, P. falciparum remains the deadliest, accounting for 

99% of deaths (WHO World Malaria Report 2016). In response to this continued threat, much 

funding has been put towards fighting malaria. Worldwide expenditures to control and 

eliminate malaria in 2016 total about $2.7 billion for preventative measures like mosquito nets 

and insecticides, treatment, and logistics costs, with $572 million spent in 2015 on funding 

malaria research, mostly focused on the discovery of new antimalarial drugs and vaccines 

(WHO World Malaria Report 2017). Moreover, there are socioeconomic costs associated with 

malaria that are not as easily measured. According to Sachs and Malaney (2002), there are 
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social costs like changes in family behavior and local demographics, and macroeconomic costs 

like loss of trade opportunities and lower rates of economic development that can be 

associated with the prevalence of malaria in a society. As a result, malaria remains an important 

global health issue facing our world today. 

 

1.2 Malaria biology 

The disease is caused by parasites of the genus Plasmodium, a protist defined by several 

distinct characteristics. It has an “apical complex” structure at one end of the organism, used 

for host cell invasion, and a special plastid organelle called the apicoplast (Escalante and Ayala 

1995, Waller et al 1998). Moreover, the parasite demonstrates merogony, or asexual 

reproduction in host red blood cells, as well as produces the pigment hemozoin from 

metabolizing hemoglobin (Rich and Xu 2011). Though Plasmodium parasites are known to infect 

many different types of organisms, there are specifically five species of malaria parasites that 

have been identified to infect humans: P. falciparum, P. vivax, P. ovale, P. malariae, and P. 

knowlesi, with P. falciparum and P. vivax being the most common causes of malaria worldwide 

(WHO World Malaria Report 2016). The parasite is bloodborne, and it is transmitted via bites 

from a female Anopheles mosquito vector (Francis et al 1997). In this manner, its life cycle 

encompasses two hosts, the human and the female Anopheles mosquito (Francis et al 1997). In 

the mosquito gut, a male microgamete fertilizes a female macrogamete to produce a zygote, 

which eventually matures into an ookinete (Josling and Llinas 2015). Ookinetes are motile and 

migrate to the stomach lining of the mosquito to form an oocyst, which eventually bursts to 
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release haploid sporozoites that enter the mosquito salivary glands ready to be transmitted to 

the next human host (Josling and Llinas 2015). Thus, after sexual reproduction occurs inside the 

mosquito, sporozoites can then be transmitted to the next human the host mosquito feeds on 

by being deposited along with the mosquito’s saliva into the site of the bite in the human skin 

(Frevert 2004). From there, the sporozoites can then migrate to the liver and infect the new 

human host’s liver cells (Miller et al 2002). Once successful replication has occurred in the liver 

cells, the parasite will cause lysis of infected liver cells, releasing 20,000 merozoites per liver 

cell, which will then move on to start infecting red blood cells (Fonseca et al 2017). This leads to 

the human blood stage, or intraerythrocytic stage, which will cycle multiple times as the 

parasite replicates itself, producing upwards of 32 merozoites per red blood cell (Francis et al 

1997, Cowman and Crabb 2006). This intraerythrocytic stage is the most well documented of all 

the stages of the malaria life cycle, deservedly so due to it being the symptomatic phase of 

malaria (Miller et al 2002; WHO, “Malaria vaccine: WHO position paper”). 

 

1.3 Intraerythrocytic cycle 

The intraerythrocytic cycle itself is composed of multiple stages. During the merozoite 

stage, red blood cell invasion occurs, with the parasite displaying surface proteins for 

recognizing red blood cells, an actin-myosin motor for guiding the merozoite into the correct 

orientation for invasion, and apical organelle proteins for actually penetrating the red blood cell 

membrane (Florens et al 2002). During the trophozoite stage, the parasite undergoes a 

resource intensive phase where it is focused on nutrient acquisition and macromolecule 
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synthesis in order to replicate quickly inside the host cell, expressing transport proteins to 

mobilize nutrients in the host’s cytoplasm for parasitic metabolism (Florens et al 2002). At this 

time, the parasite may develop a food vacuole with an acidic inner environment to digest 

intracellular contents, especially hemoglobin (Francis et al 1997). The parasite also produces 

new organelles for synthesizing antigens to be displayed on the host cell’s surface membrane, 

like PfEMP1 from P. falciparum, or proteins that assist in their transport (Maier et al 2009). In 

the subsequent schizont phase, parasites inside infected red blood cells undergo asexual 

replication to produce more individual parasites in the merozoite form, which will lyse the host 

cell and spread through the bloodstream to infect new red blood cells (Josling and Llinas 2015). 

In the case of P. falciparum, less than 10% of merozoites produced from a replicating parasite 

inside an infected red blood cell will commit to sexual development instead of continuing to 

develop into mature asexual merozoites (Josling and Llinas 2015). These sexually differentiated 

parasites will develop into male or female gametocytes before they can be transmitted to the 

mosquito vector (Josling and Llinas 2015). 

 

1.4 Symptoms, Treatment, Vaccine 

Throughout the human blood stage of the disease, and as the parasite passes through 

multiple iterations of its life cycle, the infected patient will typically experience different 

symptoms indicative of classical malaria, including fever, chills, nausea, vomiting, and aching 

pain (CDC, “Malaria – Disease”). In more serious cases, typically caused by P. falciparum 

infections, severe malaria can result in impaired consciousness, severe anemia, renal 
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impairment, and possibly organ failure (WHO, “Severe Malaria”). As such, the blood stage has 

been the focal point of treatments for malaria. One common approach has been the drug 

chloroquine, which is still recommended by the CDC and the WHO for treatment of P. vivax 

infections (CDC, “Treatment of Malaria: Guidelines For Clinicians (United States)”; WHO, 

“Malaria – Overview of malaria treatment”). Chloroquine functions as an antimalarial drug by 

inhibiting the parasitic crystallization of the toxic molecule heme into the nontoxic hemozoin 

when inside an infected red blood cell, causing an increase in the amount of toxic heme present 

in the infected cell and premature destruction of it with the parasite (Hempelmann 2007). By 

the 1990s, though, chloroquine had become less effective as chloroquine resistant strains of 

Plasmodium, and especially P. falciparum, have arisen and become more prevalent in many 

regions of the world endemic for malaria, especially where P. falciparum predominates (Kim et 

al 2013). As a result, another common approach for treating malaria now includes the drug 

artemisinin and its derivatives like artesunate and artemether, which form the basis for 

artemisinin-based combination therapies (ACTs), currently the most effective treatment for 

non-severe malaria recommended by the WHO (WHO, “Malaria – Overview of malaria 

treatment”). These combination therapies work by including different treatments that 

specifically target different parasitic biological processes, making it less likely that a malaria 

strain resistant to multiple drugs will arise (Antony and Parija 2016). In terms of artemisinin, the 

mechanisms by which it works is still not clearly known, but research indicates that it may 

inhibit various parasitic metabolic pathways, as well as induce oxidative stress and therefore 

damage the parasite (Cui and Su 2014). Even so, the issue of drug resistant species and strains 
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of Plasmodium due to several factors including costly, insufficient, or incomplete treatment, 

continues to be a growing cause of concern in the ongoing fight against malaria (Kim et al 

2013). 

While the use of these treatments, as well as better diagnosis and prevention, has 

contributed to malaria’s decline in worldwide prevalence over the past several years, a fully 

efficacious malaria vaccine has yet to be developed. There currently is only one approved 

malaria vaccine: RTS,S, which after a phase 3 trial with children aged 5-17 months has a vaccine 

efficacy of 39% for cases of malaria and 32% for cases of severe malaria. With RTS,S still 

undergoing a pilot program in three African countries, the WHO is awaiting further results 

before recommending large-scale distribution of the vaccine (WHO, “Malaria vaccine: WHO 

position paper”). As such, there continues to remain a critical need to identify potential targets 

for drug and vaccine treatments in the intraerythrocytic stage of the malaria life cycle.  

 

1.5 Parasitic antigens 

One intriguing aspect of the blood stage, as mentioned above, is the presentation of 

parasitic antigens on the surface of infected red blood cells. Towards this end, one of the key 

aspects of the malarial life cycle is parasitic modification of the surface of infected erythrocytes 

with specific antigens. These antigens can serve multiple functions, such as enabling infected 

erythrocytes to evade the host immune system while the parasite reproduces, therefore 

playing a considerable role in malaria’s pathogenesis and many of its symptoms (Lapp et. al. 

2015; Galinski et. al. 2017). 
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In the case of P. falciparum, infected red blood cells produce antigens, specifically P. 

falciparum erythrocyte membrane protein 1 (PfEMP1) on its surface that allow infected red 

blood cells to adhere to and sequester itself to the endothelial lining of blood vessels (Berendt 

et al 1990, Hisaeda et al 2005).  Since these antigens are produced at the later trophozoite 

stage, the more mature trophozoite and schizont stage infected red blood cells are usually not 

found in circulating blood and thus more likely to avoid destruction by host immune system and 

successfully release its merozoites (Hisaeda et al 2005). The parasite can further escape 

immune recognition by hiding intracellularly inside red blood cells, having a high degree of 

surface antigenic variability which make them more difficult to identify by antibodies, and 

producing toxins that suppress the maturation of antigen presenting cells in the immune 

system (Hisaeda et al 2005). In this study, we will be focusing on one type of these proteins, 

specifically the SICA antigens presented on the surfaces of RBCs infected by the human malaria 

parasite species, P. knowlesi. 

 

1.6 Plasmodium knowlesi 

Originally known solely as a simian malaria species, awareness of P. knowlesi has grown 

in significance over the past fifteen years since it was fully recognized as a zoonotic transmitted 

malaria parasite species that contributes to a significant number of cases of human malaria in 

Malaysia (Singh et al 2004). Since then, cases of P. knowlesi have been identified throughout 

Southeast Asia, though it continues to remain especially prevalent in Malaysia, where it 

accounted for 81% of reported malaria cases in 2014 (Cox-Singh et. al. 2008, World Malaria 
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Report 2015). Moreover, the P. knowlesi intraerythrocytic cycle takes only 24 hours, allowing 

the parasite to reproduce faster than the other known human malaria species, which reproduce 

in about 48 hours or 72 hours in the case of P. malariae (Antinori et al 2013). Thus, P. knowlesi 

has the potential to be extremely virulent and proliferate rapidly in the body, especially as it 

can be difficult to differentiate from  P. malariae (Singh et al. 2004). As a result, the 

misdiagnosis of a P. knowlesi infection as an infection by less severe parasites like P. malariae 

can lead to the onset of a severe case of malaria and possibly death if not correctly and quickly 

detected and aggressively treated (Galinski and Barnwell 2009; Daneshvar et al 2009). 

In addition, as P. knowlesi can be studied in a wider range of settings, including in vivo, 

ex vivo and in vitro studies, it makes for a useful model for examining characteristics of other 

human malaria parasites that may not be as easily cultured (Lapp et. al. 2013; Lapp et. al. 2015; 

Galinski et. al. 2017). As an example, P. knowlesi is genetically more similar to P. vivax, but 

whereas a fully successful in vitro blood culture of P. vivax has yet to be developed, P. knowlesi 

can serve as such a model system for furthering basic research on the infected RBC biology 

(Lapp et. al. 2015). Furthermore, the SICAvar gene family of P. knowlesi is genetically and 

functionally similar to the var gene family of the more predominant human malaria parasite P. 

falciparum, both coding for variant surface antigens. Thus, P. knowlesi research can lead to 

developments addressing the malaria blight worldwide. 
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1.7 SICA variant proteins 

As mentioned in the previous section, P. knowlesi can serve as a useful model organism 

is in the study of antigen variability. In addition, the types of antigens being presented are 

dependent on multiple factors including the malaria species and the host. Plasmodium knowlesi 

has two known gene families that code for variant antigens, namely SICAvar and kir. Of 

particular interest for this project are the Schizont Infected Cell Agglutination (SICA) variant 

antigens (Howard et al 1983) coded for by the large SICAvar gene family of P. knowlesi (Al-

Khedery et al 1999), significant because they have been associated with P. knowlesi’s virulence 

(Barnwell et al 1983). Monkeys with infected red blood cells displaying SICA antigens would 

experience a daily 10-fold increase in red blood cells infected by the parasite, leading to a more 

severe form of malaria which would eventually lead to death if not treated. By contrast, 

monkeys with infected red blood cells that did not display the SICA antigens would experience 

peak parasitemia of 6% after a few days, but after which the percentage of infected red blood 

cells declined naturally, indicating that the infection had been controlled (Barnwell et al 1983). 

As SICA antigens are biologically similar to P. falciparum’s PfEMP1 variant antigens, they likely 

play a similar role in allowing infected red blood cells to avoid detection by the host immune 

system and via adhesion to the inner lining of blood vessels, although to a much lesser extent 

(Korir and Galinski 2005; Galinski et al. 2017). 

As of the most up to date P. knowlesi genome sequence (Lapp et al 2017), there are 136 

full-length SICAvar genes recognized, along with 59 fragments. Moreover, the SICAvar genes 

can be further classified into type I and type II. Type I SICAvar genes are in general longer with 
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7-14 exons, while type II SICAvar genes have 3-4 exons (Pain et al 2008). In addition, there are 

only 19 type II SICAvar genes, with the majority being type I (Lapp et al 2017). The SICAvar 

genes are randomly distributed across all 14 chromosomes of the P. knowlesi genome (Pain et 

al 2008, Lapp et al 2017), which itself spans 24.7 megabases of DNA and encodes 5384 genes 

based on the most recent published sequence (Lapp et al 2017). The SICAvar gene family codes 

for SICA antigens, which also have a well-defined basic protein structure. SICA antigens are 

characterized by a series of cysteine-rich domains positioned throughout the majority of the 

surface-exposed protein, followed by a transmembrane domain and a cytoplasmic domain at 

the C-terminus (Al-Khedery et al, 1999; Lapp et al 2009; Pain et al 2008; Lapp et al 2017). The 

number of cysteine rich domains can vary, which are each coded for by a number of exons (Pain 

et al 2008; Lapp et al 2017). Furthermore, SICA proteins were originally defined as ranging in 

size from 180 kDa to 225 kDa (Barnwell et al 1983), determined since to correspond to the 

expression of different SICAvar genes from amongst the many options in the large multigene 

family (Al-Khedery et al. 1999; Lapp et al 2013; Lapp et al 2017). 

For P. knowlesi infected erythrocytes, variant expression of the SICAvar genes has been 

demonstrated to be dependent on environmental factors such as the presence of a spleen and 

whether the host had been previously exposed to P. knowlesi infection (Barnwell et al 1982; 

Barnwell et al 1983; Howard et. al. 1983; Lapp et. al. 2013). Thus, due to the important role 

SICA antigens play in the virulence of the malaria parasite P. knowlesi, studying the conditions 

for the expression of the SICAvar genes can lead to a clearer picture of how variant antigens 

contribute to malaria pathogenesis. We are especially curious about how P. knowlesi 
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establishes and expresses five different clones depending on host conditions, like a missing 

spleen in SICA[-] parasites, or having been cured of a past infection by P. knowlesi A+ or B+ 

SICA[+] clones, then reinfected with the homologous clone (resulting in the in vivo switched B+ 

and C+ SICA[+] populations and cloned phenotype, respectively). The related SICA[+] clones 

have been characterized by the expression of different SICA proteins while SICA[-] parasites lack 

SICA protein expression (Howard et. al. 1983; Barnwell et al 1982; Barnwell et al 1983; Lapp et. 

al. 2013; and unpublished data). The process for how these and other different P. knowlesi 

clones were created is illustrated in the figure below. The C+ clone was created at Yerkes using 

a similar approach, essentially by infecting a rhesus that had a B+ immune response with the B+ 

parasites and then expanding one micromanipulated iRBC of the resulting C population in a 

naïve animal to generate the C+ clone. 

 

Figure 1: Description of the process utilized to create the different P. knowlesi clones, adapted 

from Al-Khedery et al 1999. 
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In terms of the spleen, monkeys with a spleen have infected red blood cells that display 

SICA antigens (SICA[+]), whereas infected red blood cells of splenectomized monkeys do not 

display a detectable level of SICA antigens (SICA[-]) (Barnwell et al 1982; Barnwell et al 1983). 

Of significance is the fact that when SICA[-] P. knowlesi parasites were used to infect a monkey 

with a spleen, infected red blood cells reverted back to presenting SICA antigens, indicating the 

significance of the spleen (Barnwell et al 1983). In addition, the SICA protein repertoire being 

displayed also depends on the host’s immune response to malarial infection (Al-Khedery et al 

1999). As the host immune system produced antibodies specific to the SICA antigens being 

displayed on infected red blood cells, successive parasitized red blood cells display a different 

set of SICA variant antigens (Brown and Brown 1965; Barnwell et al 1983). Thus, changing the 

variant SICA antigens being presented depending on the anti-SICA antigen antibodies generated 

by the host allows P. knowlesi infected red blood cells to evade the host’s immune system 

response (reviewed in Galinski et al 2017). Though there have been past efforts to study P. 

knowlesi gene expression using microarray analysis (Lapp et. al. 2015), new RNA sequencing 

techniques and bioinformatics tools that have been developed since then can now be applied 

to introduce more accurate and multifaceted insights into the underlying molecular 

mechanisms behind antigen variability (Garber et. al. 2011; Chappell, Lapp et. al., in 

preparation).  
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1.8 Systems Biology/Omics 

In the modern day, with the advent of big data, biological research is producing larger 

and more complex datasets at a staggering pace (Stephens at al 2015). Sequencing, initially 

confined to the analysis of DNA, has been further expanded to the realms of RNA and proteins, 

leading to the advances in the fields of transcriptomics and proteomics, respectively (Soon et al 

2013, Chou 2009). Beyond sequencing, advances in other technologies have allowed for greater 

exploration in studying other types of biological data. For an example, recent developments in 

mass spectroscopy and nuclear magnetic resonance imaging have made it easier to rapidly 

quantify the thousands of different small molecules produced during human metabolism, or 

metabolites, revealing novel insights into our body’s internal biochemistry (Patti et al 2012). In 

this manner, our capability to generate whole organism profiles of a variety of biological 

molecules has led to remarkable progress in the study of these datasets, or -omics, with 

significant practical impacts on other fields of research, like personalized medicine and disease 

diagnosis (Soon et al 2013). 

This explosion of such technological knowledge and capabilities has been accompanied 

by an equally dramatic increase in computational tools to process and analyze these types of 

data, such as the application of clustering algorithms to classify genes that may share similar 

functionality (Lockhart and Winzeler 2000). In addition, all this knowledge has brought up the 

nontrivial challenge of where and how to store all this newly generated data. According to one 

study, it will take an estimated 2 – 40 exabytes of memory just to store sequencing data for the 
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entire human population, over 10,000 times the 3.6 petabytes of genomic data currently being 

stored by the National Institutes of Health National Center for Biotechnology Information 

(NIH/NCBI)’s Sequence Read Archive, which contains sequences from most research 

publications (Stephens et al 2015). Moreover, new databases have been developed for a variety 

of organisms, including E. coli (EcoCyc) and Plasmodium (PlasmoDB), giving scientists the 

opportunity to not only obtain raw datasets, but view different analyses and visualizations of 

that data, allowing for a comprehensive perspective of an organism’s inner workings all stored 

in a readily accessible, convenient location (Lockhart and Winzeler 2000, Aurrecoechea et al 

2009, Chin et al 2013). As a result, now more than ever before, researchers need to be able to 

determine how to make use of all this data that has been generated. As John Naisbitt wrote in 

his book Megatrends, “We are drowning in information but starved of knowledge.” How then 

do we not only identify which pieces of data are actually relevant, but also piece them all 

together into a useful result that can solve a practical problem facing the world today? 

In order to address the difficult question of how to effectively combat a disease as 

multifaceted as malaria, the pathogen needs to be addressed from many different angles, with 

research that is able to identify specific aspects of the parasite that can be targeted and lead to 

the development of more effective approaches to treatment (Le Roch et al 2012). This all plays 

into the emerging field of systems biology and its far-reaching goal to be able to synthesize 

many distinct types of biological data into coherent results that reveal insights into how those 

many different systems interact (Alberghina and Westerhoff 2007). By using a diverse range of 

raw datasets that have been and are being generated by different wet labs, systems biologists 
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can gain a big picture understanding of the inner workings of malaria and the precise means by 

which this disease affects the infected host. Thus, to investigate those underlying mechanisms 

of the malaria disease, my project will apply multi-omic, specifically genomic and 

transcriptomic, analyses. By building upon the Malaria Host-Pathogen Interaction Center’s 

(MaHPIC’s) recent efforts developing the first PacBio-based Plasmodium genome sequences 

(Chien et. al. 2016; Lapp et. al. 2017) and P. knowlesi gene expression studies through 

transcriptomic analysis using RNA-Seq methods (Chappell, Lapp et. al., in preparation), I set out 

to make use of the established P. knowlesi – monkey model system to gain novel insights into 

the underlying causes and mechanisms behind antigen variability and malaria’s virulence.  

 

1.9 Genomics/Next Generation Sequencing  

DNA sequencing, a field long dominated by Sanger sequencing (Sanger et al 1977), has 

been recently succeeded by next generation sequencing (NGS) (Soon et al 2013). The main 

advantage of NGS approaches are that they are high throughput, incorporating parallelization 

to sequence multiple DNA strands simultaneously, which gives NGS techniques the capability to 

sequence genomes at an increasingly faster rate and lower cost (Soon et al 2013, Heather and 

Chain 2016). As such, the field of genomics has expanded greatly in scope, with current 

technologies creating an estimated 35 petabytes of data each year and growing (Stephens et al 

2015). At the current rate, the genomes of 1.2 million animal and plant species will likely be 

sequenced within a decade (Stephens et al 2015). This wave of genome sequencing driven by 

NGS has largely been accomplished by short-read sequencing, so named because it generates 



16 

 

many small DNA fragments that are several hundred base pairs long (Heather and Chain 2016). 

By identifying overlaps between different fragments, reads can be aligned together and 

assembled to recreate the full DNA strand that was being sequenced, a process called de novo 

assembly (Chin et al 2013, Heather and Chain 2016). One ongoing issue with short-read 

sequencing, though, is the need for DNA amplification in order to generate a high enough read 

depth for assembly, a process that can lead to additional sequence errors (Chin et al 2013, 

Heather and Chain 2016). In addition, highly repetitive regions in the DNA being sequenced can 

be difficult to account for using short reads, creating gaps in the genome assembly (Chaisson et 

al 2014). To address these issues, we turn to what has been termed third generation 

sequencing, or long-read sequencing (Heather and Chain 2016). 

For this project, we make use of recently assembled P. knowlesi genomes produced 

using Pacific Biotechnology (PacBio)’s long-read sequencing technique, which can generate 

reads of upwards of 10,000 bases in length (Heather and Chain 2016). Though current long 

reads generally tend to have lower accuracy compared to short reads, the lack of amplification 

means less reads that need to be generated and higher overall coverage of the genome being 

sequenced (Stephens et al 2015, Chaisson et al 2014, Chin et al 2013). Since each read 

produced by PacBio techniques is significantly longer than the average short read, PacBio long 

reads can be used to assemble genomes with fewer gaps, and moreover can provide coverage 

for current existing gaps in genomes assembled with short-read sequences, leading to 

resolution of those missing sequences (Chin et al 2013, Chaisson et al 2014, Heather and Chain 

2016). As PacBio long reads can function as “seed” reads that shorter reads can be mapped to 
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in order to create consensus reads of higher quality (Chin et al 2013), they can furthermore be 

used to validate recently assembled P. knowlesi genomes and assess their overall accuracy and 

completeness.  

For this study, I first used the recently developed and annotated P. knowlesi A+ genome 

sequence, based on long-read results from PacBio NGS and High-throughput Chromosome 

Conformation Capture (Hi-C) technology (Lapp et. al. 2017) to validate P. knowlesi B+ and C+ 

genomes that have been recently assembled using similar PacBio long-read de novo assembly 

procedures. Since a genomic alteration was previously identified with pre-NGS methods 

between P. knowlesi A+ and B+ clone genomes that coincided in SICAvar switching (Al-Khedery 

et. al. 1999, Corredor et. al. 2004), comparing the P. knowlesi A+ clone to B+ clone genomes 

and B+ clone to C+ clone genomes can indicate if and what type of differences in total may exist 

between these clones.  

 

1.10 Transcriptomics/RNA-Seq 

Similar to the field of genomics, transcriptomics has also been radically transformed 

through the NGS. Transcriptomics seeks to study the RNA produced by a cell, or population of 

cells or tissues, and thus determine the types of genes being expressed and understand their 

functionality and how they contribute to that specific state of the specimen under study (Wang 

et al 2009). If a higher than normal quantity of a specific transcript is measured at a certain 

time, it can be interpreted as the gene corresponding to that transcript being expressed at a 

higher level, indicating that the more active gene may play a more significant role with regards 
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to the specimen’s current condition. In order to create such a profile of a sample’s transcripts, 

past approaches have utilized microarrays, where probes corresponding to specific genes are 

placed onto an array and transcript levels determined by how much they bind to certain probes 

on the microarray (Wang et al 2009). While the microarray technique is high throughput and 

has proven to be an effective tool in the study of transcriptomics, it has several drawbacks, 

including difficulty in filtering out background noise and only being able to detect transcripts 

that correspond to predetermined gene sequences (Wang et al 2009). 

As such, the application of sequencing techniques to transcriptomics has led to the 

development of RNA sequencing, or RNA-Seq. Using this method, RNA strands are directly 

sequenced, then mapped to a reference genome to see which genes those transcripts are 

matched to (Wang et al 2009). As such, a higher frequency of one particular RNA sequence can 

indicate that the gene it corresponds to is more active at that particular point, and the protein 

that it corresponds to also is more important to the organism and is potentially produced at a 

higher rate. This all leads back to my project’s interest in the factors that play a role in the 

variant expression of the SICAvar genes and by association the different phenotypes of SICA 

antigens they code for. By being able to quantify the levels of gene expression by the malaria 

parasite during the intraerythrocytic development cycle while it is producing SICA antigens, we 

can better understand what other genes and biological pathways play a role in the upregulation 

or downregulation of the SICAvar genes. 
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Thus, along with completed P. knowlesi A+, B+, and C+ reference genomes, newly 

generated and already available RNA-Seq data of P. knowlesi A+, A-, B+, B- and C+ clones can be 

compared to determine if there were any significant, large-scale differences in gene expression, 

perhaps due to switching at the genomic or epigenomic levels, which could result in the 

expression of these different phenotypes. Moreover, if such differences are found, the 

transcriptomes of P. knowlesi A+, B+, and C+ clone genomes can be further compared to 

determine additional factors which would relate to SICA antigen variation.  

To accomplish this, I used the aforementioned stage-specific transcriptomic data that 

have been collected from the infected red blood cells of five variant antigen phenotypes of P. 

knowlesi to construct a time course of gene expression for each during P. knowlesi’s 24-hour 

life cycle by utilizing a pipeline of RNA sequencing and bioinformatics approaches. I then 

applied machine learning techniques and gene ontology analysis to predict which P. knowlesi 

genes and corresponding biological pathways are associated with regulating the expression of 

SICA antigens, which will lead to a better understanding of the factors that contribute to P. 

knowlesi antigen variability and the parasite’s virulence. By learning how the parasite 

undergoes switches in gene expression as it adapts to specific host environments, my project 

can contribute to the development of novel interventions in line with today’s global goal of 

malaria eradication. This research represents a significant part of the Malaria Host-Pathogen 

Interaction Center’s (MaHPIC)’s mission as it works to identify host-parasite interactions and 

biological mechanisms of pathogenesis using systems biology approaches. 

  



20 

 

Chapter 2: Methods 

 

2.1 Genome Sequence Analysis 

Potential sequence differences between P. knowlesi A+, B+, and C+ genomes can be 

determined by multiple sequence alignment, using tools like the functionality included in 

Geneious (Kearse et al 2012) like the Mauve multiple sequence aligner. By performing such 

alignments, we can detect matching regions of the different genomes that exhibit significant 

variation and thus identify if differences in gene expression are due in part to switching at the 

genomic level (Al-Khedery et. al. 1999; Corredor et al 2004). Moreover, I can make use of the 

Artemis Comparison Tool (ACT) (Carver et al 2005) as well as the Mauve alignment viewer built 

into Geneious to perform a comparison between the sequences of the genomes of the different 

P. knowlesi phenotypes and visualize the results of the analysis. 

As long reads generated from PacBio NGS have been used for de novo assembly of the 

P. knowlesi A+ genome (Lapp et al. 2017), they can serve as a viable reference for recently 

assembled P. knowlesi B and C genomes. Thus, using the bioinformatics software tool Geneious, 

specifically its Mauve multiple sequence aligner, PacBio generated B and C long reads can be 

aligned with the recently published P. knowlesi A genomes to ensure the quality and 

completeness of the P. knowlesi B and C genome assemblies. This was accomplished by first 

taking all the quality controlled reads from the P. knowlesi B and C sequencing runs and 

attempting to align them to the P. knowlesi A genome. As the A genome is published and has 

been annotated, it should serve as a reference for ensuring that the PacBio reads used to create 
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their respective B and C assemblies are suitable for assembling the B and C scaffolds. This 

mapping was completed using the “Map to Reference” mapping tool implemented in Geneious. 

Once good coverage is ascertained, the next step will be to assemble the 14 scaffolds for 

both the B and C genomes. This was done using the polished P. knowlesi B and C unitigs that 

were put together by a graduate student that had been working on that specific project. Again 

using “Map to Reference” tool from Geneious, the B and C unitigs were assembled to the 

reference A genome to generate B and C scaffolds for their respective genomes. Any remaining 

reads that were unmapped from the previous step were then attempted to be individually 

mapped again using the Geneious mapping tool to all the scaffolds, particularly ones with large 

gaps in their assemblies to see if they can be matched to a specific scaffold. If that fails, 

remaining reads were aligned with the P. knowlesi A scaffolds again, this time using the more 

precise progressive Mauve algorithm as implemented in Geneious. If the Mauve algorithm was 

unable to identify which scaffold the unmapped unitig corresponds to, that unitig was excluded 

from the final P. knowlesi B and C assemblies. Finally, the complete scaffolds from A, B and C 

can be compared to each other. This comparison was done using the Mauve aligner, with a one 

to one comparison done between scaffolds (i.e. A scaffold 1 to B scaffold 1), and the A genome 

compared to the B genome, and the B genome compared to the C genome. These results can 

be visualized using the Mauve alignment viewer. The progressive Mauve algorithm tries to align 

homologous regions between different sequences together into “locally colinear blocks” 

(Darling et al 2004). Thus, by comparing the genomes of two different P. knowlesi clones 

together using Mauve, we can visually identify which regions have been grouped together into 
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locally colinear blocks and are thus conserved between the different clones, and which regions 

fall outside of those locally colinear blocks and are sections of those sequences that may have 

experienced recombination when transitioning to a different protein repertoire.  

 

2.2 RNA-Seq 

The RNA-Seq work developing most of the RNA sequencing data was completed prior to 

the start of my project in collaboration with the Sanger Institute in the United Kingdom. As 

noted below, some data was also generated at Yerkes. Our collaborators at the Sanger Institute 

had been provided RNA samples from ex vivo cultures of P. knowlesi infected erythrocytes that 

were acquired from infected rhesus monkeys. The RNA reads were produced by P. knowlesi 

expressing five different cloned phenotypes, A+, B+, A-, B-, and C. These RNA reads were 

collected over a 24-hour time period in 4-hour intervals. To isolate the mRNA from the other 

types of RNA present in the sample, the poly-A tails of mRNA were targeted using poly-T 

strands attached to magnetic beads. Poly-A tails of mRNA bind to the poly-T strands attached to 

the magnetic beads and those beads isolated were then washed to remove the mRNA strands. 

The RNA was then fragmented to produce shorter reads. Reverse transcriptase was then used 

to create cDNA libraries from the RNA reads, specifically using the dUTP protocol described in 

Zhong et al 2011. RNA transcripts were then sequenced using Illumina technology and the 

transcriptome for each time point assembled using RNA-Seq techniques (Figure 1) (Wang et al 

2009, Otto et al 2010). 
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2.3 Quality Assessment 

 FastQC is used to perform a data quality assessment of the RNA sequences by applying 

various metrics for measuring read quality. Quality checking is necessary to detect multiple 

issues that may have occurred during sequencing and indicate if additional RNA data 

modifications, such as trimming extraneous adapter sequences that may remain from the 

creation of the RNA-Seq libraries will be necessary to attempt to improve quality. Specifically, 

after consulting with the Sanger Institute lab that generated this RNA-Seq data, adapter 

trimming at this stage would be unnecessary as there would only be a few reads that may be 

unmappable due to extraneous adapters, and therefore this additional computational step 

would lead to a very minor improvement in percentage of uniquely mapped reads. In general 

though, if any modifications are made, those modified reads will then need to be reassessed to 

ensure that data quality had improved. 

 

2.4 Splice Transcript Aligned to a Reference (STAR) 

The Spliced Transcripts Alignment to a Reference (STAR) software is a high performing, 

RNA-Seq aligner that is designed to map RNA transcripts to a reference genome (Dobin et al 

2013). For this project, STAR was used to align the RNA reads from RNA-Seq to the P. knowlesi 

genome (Anders and Huber 2010). Mapping the data allows for the determination of which 

transcripts correspond to which section of the P. knowlesi genome at each time point. 

Ran on STAR version 2.4.1c 

Parameters:  
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runThreadN 2 

sjdbGTFtagExonParentTranscript Parent 

maxIntronLength 15000 

 

2.5 High-Throughput Sequencing (HT-Seq) 

After determining what each read’s position is on the reference genome, it can be 

compared to an annotated features file for P. knowlesi to identify which exon the read 

corresponded to using High-Throughput Sequencing (HT-Seq) (Anders et al 2015). Since each 

exon corresponds to a gene, HT-Seq will count how many reads were mapped to each exon (the 

feature) and therefore mapped to a gene. It will then return the number of reads that were 

mapped to each gene in the annotation file. Therefore, the more reads that are mapped to a 

gene in a time point, the more that will be counted and the higher the level of expression for 

that gene. Results were then cleaned up where all genes with no expression (i.e., fragments 

that were not mapped to any chromosomes in the annotations) across all time points were 

removed. Finally, aligned reads will be concatenated together by gene and time point into a 

unified matrix for each phenotype of P. knowlesi using the R programming language. 

Concatenation of the data will allow for improved visualization and comparison of all results 

across the entire 24-hour window of observation. 

Ran on HTseq version 0.6.1p1 

Parameters:  
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Mode=union 

Stranded=reverse 

Order=name 

Type=exon 

Idattr=Parent 

 

2.6 Normalization 

Using R, this project undertook the nontrivial task of exploring and developing different 

approaches for normalizing levels of RNA expression across multiple time points among all 

genes. With all RNA expression data standardized to a specific scale, the magnitude of changes 

in gene expression could be more accurately compared so that the subsequent clustering 

produced more meaningful results. Normalization was accomplished using the same 

methodology as that implemented in the counts function in DE-Seq (Anders and Huber 2010). 

Each time point was first transformed by the natural log. All zeros were ignored in order to 

avoid returning infinity. The geometric mean of each time point was then calculated and each 

value in the time point is multiplied by that geometric mean and that product put into a 

separate column. The median of all gene expression levels multiplied by the geometric mean is 

then determined, and the actual expression levels in that time point are multiplied by the 

median of the geometric means. After each time point is adjusted in such a manner, the entire 

data set has been normalized. 
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2.7 Preliminary Classification 

In order to determine if clustering would produce relevant and significant results, I first 

needed to determine if it is possible for a machine to learn the similar patterns and associations 

in activity that exist between genes and be able to identify genes that are part of the same 

biochemical or biological pathways in the organism. Thus, using supervised machine learning, I 

attempted to train a logistic regression classifier using our experimental RNA-Seq data and by 

labelling each gene according to their most significant biological pathway from the KEGG 

profile, and see if the machine is capable of classifying genes into the correct biological pathway 

category. This was implemented using the Scikit-Learn toolbox implemented in Python 

(Pedregosa et al 2011). 

 

2.8 Clustering 

I then applied different clustering algorithms to group together genes whose levels of 

expression are closely correlated. These algorithms identify patterns of expression between 

different genes that are temporally similar and cluster them together. A detailed description of 

the three algorithms used: hierarchical, k-means, and self-organizing map (SOM) follows in the 

next three sections. 

 

2.9 Hierarchical Clustering 

Hierarchical clustering involves first assigning each data point to its own cluster. The 

algorithm tries to merge the most similar clusters together based on a certain threshold. That 
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threshold is increased until eventually all data points have been classified into one single 

cluster. As a result, hierarchical clusters are frequently illustrated as dendrograms, with data 

points that are more similar to each other being connected by nodes closer to the bottom of 

the tree. There are different considerations to take when running the algorithm. For our 

method, I applied the parameter for calculating the distance between data points through 

Euclidean distance, which is merely the straight-line distance from one point to another. Ward’s 

clustering is then applied to combining the clusters, which seeks to minimize the within-cluster 

variance. This is accomplished by combining clusters with the shortest distance between their 

respective cluster centers. Note that the Euclidean distance is not squared as indicated in true 

Ward’s criterion. Once hierarchical clustering is completed, each “cluster” is determined by 

finding the cutoff height of the tree that will lead to k number of subtrees below the cutoff 

threshold. Implemented using the stats package in R (R Core Team 2016). 

 

2.10 K-means Clustering 

The elbow method was applied to determine the optimal number of clusters for the 

data set. This was done by applying the k-means algorithm iteratively with successively 

increasing number of clusters (k) and calculating the within groups sum of squares for each 

clustering result. Though the within groups sum of squares will decrease with increasing k, 

viewing the graph plotting the within group sum of squares against k should display one point 

where the within group sums of square for a certain value of k does not significantly decrease 
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for higher values of k. This characteristic will appear as an “elbow” that can be visually 

appraised from a plot. How significant of a bend the elbow needs to have is subjective. 

After specifying k number of clusters, all data points are assigned to a cluster so that 

there are roughly equal numbers of data points per cluster. The centroid of each cluster is then 

calculated. Each data point is then visited and if it is closer to the centroid of another cluster 

then to the centroid of its own cluster, it is reassigned to that cluster and the centroid of that 

cluster is recalculated. This indicates that the algorithm seeks to minimize the dissimilarity 

between points within their own cluster while maximizing the dissimilarity between different 

clusters. This is repeated until a convergence point is reached where none of the clusters 

overlap and each data point in a cluster is closer to the centroid of its own cluster than to the 

centroid of any other cluster. Note that k-means clusters are globular and occupy a 

multidimensional space. In our experiment, the Hartigan and Wong version of the k-means 

algorithm was employed using the stats package in R (R Core Team 2016). 

 

2.11 Self-Organizing Map (SOM) 

SOM is a type of artificial neural network, an unsupervised learning approach. It is used 

to map a 2D grid onto a multidimensional dataset. The points of the SOM are first initialized to 

random points. One point in the dataset is then randomly selected. The closest node of the 

SOM is then determined and it is moved a certain distance towards that data point. 

Furthermore, neighboring nodes are also moved to a less extent along with that closest node 

towards the data point. Afterwards, another random point in the dataset is selected and the 
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process is repeated all over again. After enough iterations, the shape of the SOM should have 

taken on a form encompassing the topography of the dataset. We used 100 iterations for 

creating the SOM with a Kohonen network. There is a risk of overfitting, but we believed that 

drawback of neural networks is countered by the advantages of a more organic approach to 

finding the underlying organization of the dataset. This was implemented using the kohonen 

package in R (Wehrens et al 2007). 

 

2.12 Plotting Clusters 

We plotted the clustering results of each method using the plotcluster method from the 

fpc package in R [17]. It creates a discriminant projection plot that converts a multidimensional 

space like clustering results into a 2-dimensional space. Though this approach allows us to 

illustrate the clusters, it can lead to some misconceptions such as why the largest clusters seem 

small and why the clusters seem to overlap. This is all due to the projection, since a perspective 

on the multidimensional space had to be selected to slice it and make it 2-dimensional.  

 

2.13 Consensus Clustering 

To determine which genes were grouped into the same clusters by each method, a 

consensus clustering approach was applied (Bansal et al 2014). A simple heuristic was utilized 

to create the consensus clusters. We assumed that all three methods were generally effective 

in correctly identifying which genes had expression dynamics correlated together, as the 

proportion of genes split between each cluster was about the same. Thus, the biggest clusters 
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identified by each method were assumed to be the same. Therefore, to create the consensus 

cluster, I had to first assign the same clustering number to each corresponding cluster, hence 

“1” for the largest clusters from each method, “2” for the second largest, and so on and so forth 

to create a consensus cluster numbering system. Therefore, each gene will have been assigned 

a consensus cluster number from each method. A Venn diagram can then be used to illustrate 

the results of the consensus clustering. As a result, the genes that have been clustered into the 

same consensus cluster will be the most strongly correlated with each other, as each method 

had identified those genes with the same consensus clustering number. Optimally, we seek to 

minimize the number of genes that fall in the overlap between different consensus clusters, 

since that would indicate those genes lie on the boundaries between different clusters and are 

not as strongly related to the genes in either cluster. 

 

2.14 Second stage of clustering 

We isolated the specific SICAvar genes and the clusters that each SICAvar gene was 

assigned to. Using the consensus clustering results, we could identify which cluster most of the 

SICAvar genes fell into. After the initial clustering and creation of the consensus cluster, I 

discovered that a very large majority of the SICAvar fell into the same cluster. To make the 

results more precise in regard to the genes that correlate with SICAvar expression, we repeated 

the same clustering process again on the largest cluster that contained the majority of SICAvar 

genes and analyzed those results specifically. 
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2.15 Gene Pathway/PlasmoDB Analysis 

We then used hierarchical clustering to identify which genes are the most correlated 

with SICAvar by reclustering into 20 clusters and again checking where most SICAvar genes 

were located. A list of the genes IDs was collected for genes that were clustered into the largest 

cluster, then uploaded to the Plasmodium database PlasmoDB for analysis with Gene Ontology 

(GO) Enrichment, a functionality that has been integrated into PlasmoDB (Aurrecoechea et al 

2009). GO analysis can be used to identify biological function and relationships between 

clustered genes. In this manner, we can quantify the distribution of parasitic gene expression 

levels during the different stages of the P. knowlesi intraerythrocytic cycle and determine which 

sets of genes are upregulated and/or downregulated with SICAvar, indicating the biological 

pathways which may play a potential regulatory role in the variation of SICA antigen expression. 

PlasmoDB instructions 

1. On PlasmoDB homepage, on top toolbar go to New Search -> Genes -> Annotation, curation, 

and identifiers -> Gene IDs 

2. Click on Upload a text file and upload a file with all gene IDs, then click Get Answer 

3. Click on blue Analyze Results button 

4. Click on Gene Ontology Enrichment, then click submit 

5. Results generated and displayed in table form 

 

2.16 Machine learning approach 
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For machine learning, we used P. knowlesi A+, B+, and C+ single timepoint RNA-Seq data 

that had been recently sequenced at Yerkes. For each P. knowlesi clone there were three 

samples, each with one timepoint taken at the ring stage of the malaria life cycle where the 

expression levels of each malaria parasite gene were measured. These values were then 

normalized using the DE-Seq2 normalization approach, or dividing by the geometric mean (Love 

et al 2014), to get the final dataset used for linear regression analysis. Moreover, the P. 

knowlesi A+ 7 timepoint RNA-Seq data was used for the training and testing dataset for the 

artificial neural network. In general, for both datasets, each column is a timepoint and each row 

is a gene. All machine learning techniques used the implementation given by the Python library 

Scikit-learn.  

 

2.17 Linear Regression 

Preprocessing the data for linear regression involved first concatenating the columns 

(each column corresponding to a sample) from two of the P. knowlesi clones together to create 

an X dataset. Next, the columns of the remaining P. knowlesi clone had to be merged together 

into one, using some representative value for the expression level of that gene across all three 

samples to create a Y dataset. Different measurements were tested, including minimum, 

maximum, mean, and median. This process was repeated for three different combinations 

(columns of two P. knowlesi clones combined to make X dataset in order to predict merged 

columns of remaining P. knowlesi clone which is the Y dataset): A and B to predict C, A and C to 

predict B, and B and C to predict A. 
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For this study, the LinearRegression class from Scikit-learn was used. Simple linear 

regression attempts to fit a linear model using the dependent input values (X dataset) to 

independent output values (Y dataset) (Pedregosa et al 2011). In this manner, we will be able to 

learn a linear function in the form y = f(x) that can be used to predict output values from new 

input values. This linear function is found by drawing a line that minimizes the distance 

between the given data points and the line, so that the residual sum of squares between the 

given Y output values and the approximated Y output values given by the line is as small as 

possible (Pedregosa et al 2011). Thus, the coefficients of this best fit line describe the amount 

of variation each feature/column of the X dataset has on the Y dataset, which can be observed 

by the magnitude of its coefficient in the resulting linear model after fitting.  

 

2.18 Neural Network 

Preprocessing the RNA-Seq data involved first associating each P. knowlesi gene with a 

specific biological pathway as assigned from gene ontology (GO) terms in PlasmoDB. Genes 

with no biological pathway listed in PlasmoDB were excluded. The dataset was then split into a 

training and testing dataset using StratifiedKFold validation, which split the data into k subsets, 

with each subset further split into a training set and a testing set. A stratified split means that 

each k subset would have a similar proportion of genes from each pathway as the proportions 

of genes from those pathways in the original dataset (Pedregosa et al 2011). Thus the classifier 

can be trained k times with each training dataset in that k subset, then tested with its 

corresponding testing dataset to measure the accuracy of the neural net in predicting the 
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biological pathway of the genes in the testing dataset. In this study 10-fold validation was 

performed, so k = 10. 

For this study, the MLPClassifier class from Scikit-learn was used (Pedregosa et al 2011). 

The Multi-layer Perceptron (MLP) is a type of neural network, a classifier that attempts to learn 

a non-linear regression model from a training dataset that can be used to predict an output 

value from a set of input values. The MLP is made up of an input layer, multiple hidden layers, 

and an output layer. An entry from the training dataset is fed into the input layer, which is then 

entered into the first hidden layer. Each hidden layer is composed of several artificial neurons 

(perceptrons), where each neuron transforms values from the last layer into new values by 

multiplying the input values by a weighted vector then mapping those weighted values to new 

output values by an activation function which are then fed into the next layer. The output layer 

takes values from the last layer and output a predicted class for the original input entry. The 

MLP classifier is trained by adjusting the weights of the perceptrons in the hidden layers 

depending on how accurately the current neural network is able to predict the known class of a 

training set of input values. Thus, for each new dataset used to train and further refine the 

weights of the neural network, the MLP classifier should become more accurate in categorizing 

a set of values from the testing dataset into a specific class. Some notable aspects of 

MLPClassifier is that it is trained via backpropagation, which involves backpropagating any 

mistakes in classification back through the hidden layers by adjusting the weights in the 

perceptrons. Moreover, in order to perform multiclass classification, the SoftMax function is 
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utilized to calculate from the output layer the probabilities of each possible class being the 

correct class for the given input set of values and returns the class with the highest probability.  
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Chapter 3: Results 

 

3.1 Genomics results 

P. knowlesi 

clone 

PacBio reads 

assembled to A 

genome 

PacBio reads 

not assembled 

to A genome 

Total PacBio 

reads 

Percentage PacBio 

reads assembled 

B 28,361 231 28,592 99.2%  

C 36,861 129 36,990 99.7%  

Table 1: Coverage percentages for Pk B and C from Geneious 

A to B scaffold alignment comparison 

Note: In Mauve alignment visualizations, gaps between colinear blocks are indicative of 

nonhomologous regions that didn’t match between the two sequences, which may be areas of 

recombination (Darling et al 2004). 14 B scaffolds were assembled from aligning 64 B unitigs to 

14 A scaffolds. 

 

Figure 2.1: B scaffold 1 aligned to A scaffold 1. 98.3% coverage of A reference scaffold 1 by B 

unitigs to assemble B scaffold 1. 
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Figure 2.2: B scaffold 2 aligned to A scaffold 2. 99.4% coverage of A reference scaffold 2 by B 

unitigs to assemble B scaffold 2. 

 

Figure 2.3: B scaffold 3 aligned to A scaffold 3. 99.7% coverage of A reference scaffold 3 by B 

unitigs to assemble B scaffold 3. 

 

Figure 2.4: B assembled scaffold 4 aligned to A scaffold 4. 99.1% coverage of A reference 

scaffold 4 by B unitigs to assemble B scaffold 4. 
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Figure 2.5: B scaffold 5 aligned to A scaffold 5. 100% coverage of A reference scaffold 5 by B 

unitigs to assemble B scaffold 5. 

 

Figure 2.6: B scaffold 6 aligned to A scaffold 6. 99.8% coverage of A reference scaffold 6 by B 

unitigs to assemble B scaffold 6. 

 

Figure 2.7: B scaffold 7 aligned to A scaffold 7. 99.99% coverage of A reference scaffold 7 by B 

unitigs to assemble B scaffold 7. 
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Figure 2.8: B scaffold 8 aligned to A scaffold 8. 99.8% coverage of A reference scaffold 8 by B 

unitigs to assemble B scaffold 8. 

 

Figure 2.9: B scaffold 9 aligned to A scaffold 9. 99.7% coverage of A reference scaffold 9 by B 

unitigs to assemble B scaffold 9. 

 

Figure 2.10: B scaffold 10 aligned to A scaffold 10. 99.3% coverage of A reference scaffold 10 by 

B unitigs to assemble B scaffold 10. 
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Figure 2.11: B scaffold 11 aligned to A scaffold 11. 99.99% coverage of A reference scaffold 11 

by B unitigs to assemble B scaffold 11. 

 

Figure 2.12: B scaffold 12 aligned to A scaffold 12. 99.6% coverage of A reference scaffold 12 by 

B unitigs to assemble B scaffold 12. 

 

Figure 2.13: B scaffold 13 aligned to A scaffold 13. 99.2% coverage of A reference scaffold 13 by 

B unitigs to assemble B scaffold 13. 



41 

 

 

Figure 2.14: B scaffold 14 aligned to A scaffold 14. 99.7% coverage of A reference scaffold 14 by 

B unitigs to assemble B scaffold 14. 

 

Figure 2.15: B whole genome aligned to A whole genome 

B to C scaffold alignment comparison 

Note: 14 B scaffolds were assembled from aligning 63 B unitigs to 14 A scaffolds. 

 

Figure 3.1: C scaffold 1 aligned to B scaffold 1. 99.6% coverage of A reference scaffold 1 by C 

unitigs to assemble C scaffold 1. 
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Figure 3.2: C scaffold 2 aligned to B scaffold 2. 99.8% coverage of A reference scaffold 2 by C 

unitigs to assemble C scaffold 2. 

 

Figure 3.3: C scaffold 3 aligned to B scaffold 3. 99.7% coverage of A reference scaffold 3 by C 

unitigs to assemble C scaffold 3. 

 

Figure 3.4: C scaffold 4 aligned to B scaffold 4. 99.7% coverage of A reference scaffold 4 by C 

unitigs to assemble C scaffold 4. 
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Figure 3.5: C scaffold 5 aligned to B scaffold 5. 100% coverage of A reference scaffold 5 by C 

unitigs to assemble C scaffold 5. 

 

Figure 3.6: C scaffold 6 aligned to B scaffold 6. 99.9% coverage of A reference scaffold 6 by C 

unitigs to assemble C scaffold 6. 

 

Figure 3.7: C scaffold 7 aligned to B scaffold 7. 99.9% coverage of A reference scaffold 7 by C 

unitigs to assemble C scaffold 7. 
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Figure 3.8: C scaffold 8 aligned to B scaffold 8. 98.3% coverage of A reference scaffold 8 by C 

unitigs to assemble C scaffold 8. 

 

Figure 3.9: C scaffold 9 aligned to B scaffold 9. 99.7% coverage of A reference scaffold 9 by C 

unitigs to assemble C scaffold 9. 

 

Figure 3.10: C scaffold 10 aligned to B scaffold 10. 38.8% coverage of A reference scaffold 10 by 

C unitigs to assemble C scaffold 10. 
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Figure 3.11: C scaffold 11 aligned to B scaffold 11. 42.7% coverage of A reference scaffold 11 by 

C unitigs to assemble C scaffold 11. 

 

Figure 3.12: C scaffold 12 aligned to B scaffold 12. 99.5% coverage of A reference scaffold 12 by 

C unitigs to assemble C scaffold 12. 

 

Figure 3.13: C scaffold 13 aligned to B scaffold 13. 99.99% coverage of A reference scaffold 11 

by C unitigs to assemble C scaffold 11. 
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Figure 3.14: C scaffold 14 aligned to B scaffold 14. 99.9% coverage of A reference scaffold 14 by 

C unitigs to assemble C scaffold 14. 

 

Figure 3.15: C whole genome comparison to B whole genome 

Overall, after assembly, most assembled scaffolds from both the P. knowlesi B and C 

unitig assemblies matched fairly closely to the scaffold they were compared with. Scaffolds with 

large regions that do not match with the corresponding position in the scaffold it is being 

compared to are described further in the discussion section. 
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3.2 RNA-Seq analysis results 

 

Figure 4.1: SICA[+] 3-cluster results from hierarchical clustering 

 

Figure 4.2: SICA[+] 3- cluster results from k-means clustering 

 

Figure 4.3: SICA[+] 3-cluster results from SOM clustering 
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Figure 4.4: SICA[-] 3-cluster results from hierarchical clustering 

 

Figure 4.5: SICA[-] 3-cluster results from k-means clustering 

 

Figure 4.6: SICA[-] 3-cluster results from SOM clustering 
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The clustering results from both the SICA[+] and SICA[-] RNA-Seq clustering show that all 

three clustering algorithms return fairly similar clusters for their respective clones. 

Furthermore, the returned clusters look noticeably different when comparing results from the 

same clustering algorithm between SICA[+] and SICA[-], indicating that overall expression 

patterns change between the two P. knowlesi clones. 

Gene Ontology (GO) results 

Rank Biological Process Number of Genes P-Value 

1 cellular lipid metabolic process 26 4.29e-7 

2 lipid biosynthetic process 22 6.68e-7 

3 lipid metabolic process 32 1.07e-6 

4 glycerolipid biosynthetic process 10 1.30e-5 

5 glycerophospholipid biosynthetic process 10 1.30e-5 

6 cellular response to stimulus 40 1.52e-5 

7 GPI anchor biosynthetic process 9 4.02e-5 

8 glycolipid biosynthetic process 9 4.02e-5 

9 phosphatidylinositol biosynthetic process 9 4.02e-5 

10 membrane lipid biosynthetic process 9 4.02e-5 

Table 2.1: SICA[+] gene ontology (GO) enrichment analysis from PlasmoDB 
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Rank Biological Process Number of 
Genes 

P-Value 

1 nucleic acid metabolic process 77 2.32e-3 

2 cellular component assembly 14 2.96e-3 

3 nucleobase-containing compound metabolic 
process 

95 4.75e-3 

4 biological process 324 5.66e-3 

5 cellular aromatic compound metabolic process 99 5.68e-3 

6 metallo-sulfur cluster assembly 6 5.83e-3 

7 iron-sulfur cluster assembly 6 5.83e-3 

8 RNA processing 28 7.02e-3 

9 cellular component organization 24 7.18e-3 

10 heterocycle metabolic process 99 8.19e-3 

Table 2.2: SICA[-] gene ontology (GO) enrichment analysis from PlasmoDB 

Initial exploratory analysis shows that the largest cluster with the most number of 

SICAvar genes had many gene pathways associated with lipid biosynthesis. Furthermore, a high 

percentage, almost 50%, of all SICAvar genes were clustered together with genes associated 

with the lipid biosynthesis pathway, indicating that many SICAvar genes share similar 

expression patterns with that of genes in lipid biosynthesis pathways, pointing to possible co-

expression. This is corroborated with the high proportion of SICAvar genes, almost 75%, in that 

largest initial cluster that were then placed in the cluster that was identified as mainly 

composed of genes from the lipid biosynthesis pathway. 
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3.3 Machine learning results 

Linear Regression results 

Note: A two clone combination of A+, B+ or C+ are utilized to make the X dataset and different 

measurements are used to merge the values of the remaining third clone into the Y values. As 

such, the X dataset should have 6 columns and the Y dataset should have 1 column. 

 

Table 3.1: Coefficients of the linear model after fitting with input X composed of B+ and C+ to 

predict Y composed of A+ 

 

Table 3.2: Coefficients of the linear model after fitting with input X composed of A+ and C+ to 

predict Y composed of B+ 

 

Table 3.3: Coefficients of the linear model after fitting with input X composed of A+ and B+ to 

predict Y composed of C+ 
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C A1 A2 A3 B1 B2 B3 

min 

      

max 

      

mean 

      

med 

      

Table 3.4: Scatter plots of the linear model after fitting each individual sample from A+ and B+ 

to predict C+ 

Multi-layer Perceptron (MLP) results 

 

K 1 2 3 4 5 6 7 8 9 10 

Accuracy 3.0% 6.5% 8.7% 11.2% 13.1% 15.4% 15.5% 

 
17.1% 

 
19.1% 

 
21.0% 

 

 
Table 4: Accuracy of MLP classifier in identifying the correct class of the testing dataset after 

training at each k fold iteration 

 
After 10 fold validation, average accuracy was 13.1%.  
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Chapter 4: Discussion 

 

4.1 Genomics Analysis Discussion 

Coverage with the several thousand corrected reads from P. knowlesi B and C 

assemblies was good, indicative that the vast majority of the PacBio reads correspond to the P. 

knowlesi A reference genome. As we would expect the sequences of both the P. knowlesi B and 

C genomes to be mostly similar to the P. knowlesi A genome, the fact that over 99% of reads 

from both assemblies were successfully aligned to the A genome  

It is possible that misalignments observed in the assembled B and C scaffolds are due in 

part to recombination, as a known rearrangement of a SICAvar gene can be seen as a region 

with missing coverage at around the same position of that gene in the corresponding P. 

knowlesi B scaffold 4 (Al-Khedery et al 1999, Corredor et al 2004; Lapp et al 2017). Due to this 

observation and the multiple regions with missing coverage that can be seen in Mauve 

alignment comparisons between the A genome and the B genome, and the B genome and the C 

genome, there is evidence pointing towards the presence of other regions that have 

experienced genome-level rearrangements. 

One of the central difficulties that had to be confronted in this approach was the lack of 

additional data to validate the position and direction of unitigs from the given P. knowlesi B and 

C assemblies in the actual B and C genomes. While both the B and C genomes are likely to be 

very similar in sequence to the A genome, using the A genome as a reference for mapping the 

assembly unitigs to the correct scaffold makes it more difficult to ascertain if regions with no 
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coverage in the assemblies are due to gaps from PacBio sequencing or due to actual genomic 

rearrangements. We would need validation from other sources, such as short reads from 

Illumina sequencing, or Hi-C results to confirm that the position and orientation of a unitig is 

accurate as had been determined from assembly using Geneious. Such validation was applied in 

part by MaHPIC to create the current most up to date P. knowlesi genome (Lapp et al 2017), 

and thus would be necessary to verify that the P. knowlesi B and C genome assemblies are 

correct as well. 

Moreover, while the P. knowlesi B genome assembly went fairly smoothly, the C 

genome assembly ran into some additional difficulties. Significant regions of missing coverage 

were present in C scaffold 10, 11, and 13, after the first assembly by the Geneious read mapper. 

We attempted to resolve these misalignments using unmapped unitigs with progressive Mauve. 

This result was achieved with some success with the C scaffold 10 assembly. As can be seen 

from the figure below, after the first mapping run there was no coverage of almost the first 1 

million bases of scaffold 10. 

 

Figure 5: C scaffold 10 assembly after first mapping run with C assembly unitigs 

That region of no coverage, though, was proved by progressive Mauve to be due to the 

mapper being unable to align unitig 10 from the C assembly, which had been labelled as an 
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unused read. This can be seen in the figure below, as untig 10 fills in the misaligned region 

observed in the previous figure. 

 

Figure 6: Alignment of longest C unitigs to A scaffold 10 using progressive Mauve algorithm 

To resolve that region I then extracted the localized collinear blocks that had been 

identified to match with A scaffold 10 (the topmost sequence in the above figure), and 

realigned them to A scaffold 10, resulting in a consensus sequence with higher coverage than 

after the first mapping run and which was then used as the assembled C scaffold 10, though full 

coverage of the A scaffold by C assembly unitigs continues to remain elusive. 

Another notable issue was the inability of the Geneious read mapping tool to find any C 

unitigs that matched with scaffold 8. A second alignment attempt using Mauve determined that 

unitig 4 was just a reverse complement of P. knowlesi A scaffold 8. This issue was resolved by 

extracting the reverse complements of those unitigs and using those reverse complements to 

map to the reference sequence, as the direction and complementariness of the unitigs are 

arbitrarily assigned when put into the data file. 
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Figure 7: Mauve alignment of A scaffold 8 to unitig 4 

Most interesting to this discussion is the presence of a long unitig 0 from the P. knowlesi 

C assembly that appears to be made up of sequences from P. knowlesi A scaffold 11 and 

scaffold 13. This issue turned out to be nontrivial as unitig 0 could not just be split where it 

diverges between aligning to scaffold 11 and scaffold 13 since the exact position of that unitig 

in the C genome has not been validated. As such the large regions with no coverage in the 

assembled C scaffold 11 and 13 had to be left in place. This unitig 0 may potentially correspond 

to a completely rearranged chromosome, but such a conclusion would require additional data 

to validate. Furthermore, the region where the two different sections corresponding to 

different scaffolds “meet” on untig 0 may be intriguing to investigate to see if it’s a region with 

many repeats, or other interesting features. 

 

Figure 8: Matching alignments between C unitig 0 and A scaffold 11 and A scaffold 13 
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Thus, significant gaps remain in both the P. knowlesi B and C genome assemblies, with 

several unitigs from both assemblies failing to be placed into any of the current scaffolds for 

both assemblies. These gaps are attributable to multiple reasons, including potential errors 

from the PacBio sequencing, a lack of robustness of the Geneious read mapper to correctly 

place short length unitigs into a scaffold, and potential large-scale recombination events in 

those genomes that would make using the P. knowlesi A genome as a reference not very useful. 

All these explanations are ones that can be addressed with more careful validation of the 

current B and C genomes, with the hope that those gaps can be resolved. 

 

4.2 RNA-Seq Analysis Discussion 

Using a state-of-the-art quantification of the distribution of parasitic gene expression 

levels during the different stages of the P. knowlesi infected RBC cycle, we could determine 

parasitic cellular processes that may be associated with SICAvar expression. Of interesting note 

is the clear difference between the SICA[+] and SICA[-] RNA-Seq data analysis results. First of all, 

as would be expected due to the given clone names, there are much more SICAvar genes and 

fragments present in the SICA[+] RNA-Seq data than the SICA[-] RNA-Seq data, 163 compared to 

30, respectively. Furthermore, there is also a marked difference in the gene ontology (GO) 

enrichment results from the genes in the largest cluster after the second clustering. In the 

SICA[+] GO enrichment results the majority of the top 10 processes identified by PlasmoDB are 

related to lipid biosynthesis, as mentioned above. In the SICA[-] GO enrichment results, though, 

the associated GO processes are much more diverse and general. With this in mind, it is evident 
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that in SICA[+] clones the parasite is much more focused on what is likely to be surface protein 

production with extensive upregulation of genes that code for lipid biosynthesis, whereas in 

SICA[-] the parasite expresses genes for more general cellular processes. This decrease in lipid 

biosynthesis activity may also be indicative of the downregulation of the production of other 

parasitic surface proteins that help infected red blood cells escape detection by the host 

immune system, further explaining how infection by SICA[-] clones are less virulent. While lipid 

biosynthesis would be an expected correlated biological function as SICA antigens are produced 

and displayed on the infected red blood cell membrane surface, further investigation of the 

pathways and cellular mechanisms associated with clusters whose genes do not appear to have 

closely related functionality can point towards a clearer picture of how changing levels of gene 

expression due to different host conditions can lead to variations in parasite-derived antigens. 

In addition, it would be intriguing to also determine the specific mechanisms that lead to the 

observed differences in gene expression profiles between SICA[+] and SICA[-] as transcription 

level modifications and potential translational repression are known to play a role in how the 

production of SICA antigens is regulated during the malaria lifecycle (Lapp et al 2013). 

 

4.3 Consensus Clustering Discussion 

Consensus clustering is a useful method to identify a more accurate set of clusters from 

those generated by the hierarchical, k-means, and SOM approaches to compensate for 

potential biases that may arise from the inherent drawbacks of each individual method. The 

consensus clustering approach (consensus by order of cluster size) I utilized to determine which 
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clusters from all three clustering algorithms matched and could be merged together to produce 

consensus clusters is a relatively naïve approach. In order to assess this aspect, I produced a 

Venn diagram showing how much overlap there was between clusters of relatively similar size 

from the results of the three clustering algorithms.  

 

Figure 9.1: SICA[+] Venn diagram comparing similarity between the results of the three 

clustering algorithms when clusters are matched by size 
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Figure 9.2: SICA[-] Venn diagram comparing similarity between the results of the three 

clustering algorithms when clusters are matched by size 

By using this Venn diagram, one should be able to visualize the level of similarity 

between the different clusters, as if the approach is valid we should see the majority of genes in 

only one circle of the Venn diagram but not in the overlap between the other circles. Genes 

that do fall in those overlaps can be determined to be unclear in terms of which consensus 

cluster they should be placed in and are confounds for the validity of this approach. Despite the 

Venn diagram, a more thorough approach to consensus clustering outside of sorting by largest 

sized cluster and placing the gene in its highest frequency cluster would ultimately be necessary 

to point to a more valid result. Such a comprehensive approach would require much more 

parameter tuning in terms of running more iterations of each clustering algorithm and finding 
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consensus between results from the same algorithm, the parameters of the clustering 

algorithms themselves, the selection of the value of k, comparison between the consensus 

clusters from different consensus approaches, just to name a few. 

Furthermore, this approach also assumes that each clustering algorithm is capable of 

detecting significantly different patterns of expression levels between the different P. knowlesi 

genes from our RNA-Seq time series data. This validity is explored in the machine learning 

discussion section. Even so, applying clustering algorithms to RNA-Seq data has been previously 

attempted in other studies and has been determined to be useful for identifying potential 

regulatory interactions between different genes that have been clustered together (Lockhart 

and Winzeler 2000). As such, clustering should have a useful contribution towards exploring our 

own RNA-Seq data and looking for novel interactions between parasitic genes. 

In addition, it may be necessary to undertake an alternate approach to consensus 

clustering. To determine relevant results from clustering, I need to be able to obtain a useful 

comparison between the results of the three different clustering algorithms. This can be 

accomplished by classifying each cluster that is produced by each algorithm by the biological 

pathway/cellular function that has the most corresponding genes in that cluster. After all the 

clusters from each result are classified, the clusters will be ranked according to percentage of 

SICAvar genes contained within that cluster. Thus, by ordering the clusters by the 

aforementioned rank, we can also order the biological pathways by that rank, and determine 

which pathways/functions are most highly associated with the expression of SICAvar genes. In 
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this manner, we can identify the biological pathways that potentially play a significant part in 

the regulation of the production of SICA antigens and the variation in the specific phenotypes 

being expressed. 

The final potential issue is how useful consensus clustering even is in the first place. 

While there is research that indicates that consensus clustering may not be necessary (Nguyen 

and Caruana 2007), there is also significant evidence that points to the “wisdom of the crowds” 

and how consensus approaches can lead to results that are more accurate than individual 

algorithmic approaches when assessing using gold standards (Marbach et al 2012). With this in 

mind, exploring how consensus clustering can be applied to producing better results with RNA-

Seq analysis warrants future study. 

 

4.4 Machine learning discussion 

A variety of machine learning approaches were applied to the P. knowlesi A+, B+, and C+ 

single timepoint RNA-Seq data. These approaches include linear regression and multilayer 

perceptron (MLP). The main issue with these results was a general lack of features per gene 

entry. For linear regression, there was only one timepoint measured for each sample, with nine 

samples in total, with three for each P. knowlesi clone (specifically A+, B+ and C+). Though each 

timepoint is from a different individual monkey, the monkeys that correspond to each P. 

knowlesi clone share similar host conditions, as P. knowlesi parasites isolated from those 

monkeys will be the same respective P. knowlesi clone expressing their specific protein 

repertoire. Still, the fact that each sample is technically a different individual presents a 
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potential issue of how the gene expression levels between the samples of different P. knowlesi 

clones can accurately be compared, since the purpose of the linear regression analysis is to 

describe how different features in the data contribute the most variability to the observed 

output results. As such, more timepoints for each sample would be useful for providing more 

data so that different samples can be compared with each other.  

Moreover, after preprocessing the RNA-Seq dataset for the MLP classifier, 3953 genes 

out of the total 5384 (73.4%) P. knowlesi genes had to be excluded as they did not have a 

biological pathway associated with them on PlasmoDB. This reduced the usable data down to 

1431 genes, making the dataset smaller than it already was, a complication further 

compounded by the large number of biological pathways, specifically 425 classes that the 

neural network would need to be trained to categorize different genes into, making the 

classification task difficult. In addition, using raw accuracy as a measurement for assessing the 

performance of the MLP classifier is a very strict definition as it involves multiclass classification 

with many more potential wrong classifications than the one correct classification.  

Finally, the MLP neural network used in this study was prebuilt and run with default 

parameters. The architecture of a neural network should be designed specifically with the type 

of data that it will be trained with in mind. This level of specificity tailored to the dataset would 

require building a neural network from scratch, a complex task outside of the amount of time 

given to complete this study. Also, the performance of a neural network is known to be heavily 

dependent on parameter tuning to accommodate for the unique quirks of the dataset being 
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used to train the classifier, again a nontrivial task that would require multiple performance tests 

at different parameter settings and difficult to decide fully given the time frame of this project. 

As such, a higher level of optimization would be necessary to produce better results from the 

MLP neural network (Pedregosa et al 2011). 
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Chapter 5: Conclusion 

 

Analyses were completed comparing the differences between the P. knowlesi A+, B+, 

and C+ clones, in addition to the differences between the SICA[+] and SICA[-] (specifically A+ 

and A-) clones. There is promising evidence of genomic recombination events between the P. 

knowlesi A+ and B+ clones and between the B+ and C+ clones due to multiple regions of 

sequence misalignments when comparing the different genomes to each other. Though these 

apparent “gaps” in the resulting assembled B+ and C+ scaffolds could point towards potential 

rearrangements, they are also attributable to multiple other factors like inherent PacBio 

sequencing errors and would thus require more data to validate the actual position of the P. 

knowlesi B+ and C+ assembly unitigs in their respective genomes. This necessary step of 

validation would allow for the assembly of more accurate scaffolds and thus improved genome 

comparisons.  

Moreover, the RNA-Seq data analysis indicated a distinct difference in the genes being 

significantly expressed between the SICA[+] and SICA[-] clones. In the cluster with the most 

SICAvar genes, parasitic genes coding for the biological process associated with lipid 

biosynthesis predominated as the highest ranked GO processes in the SICA[+] clones whereas 

only more general biological processes were identified as the highest ranked GO processes for 

the SICA[-] clone. This decrease in lipid biosynthesis activity in SICA[-] clones may also be 

indicative of a decrease in the production of other parasite produced surface antigens, making 

it more difficult for infected red blood cells to evade the host immune system and therefore 
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allowing the infection to be controlled. As such, the biological processes associated genes 

assigned to clusters outside the ones with the most SICAvar genes would warrant future 

investigation, as well as utilizing other techniques like the R software package TCseq (Wu and 

Gu 2017) with our RNA-Seq data.  

Finally, though preliminary results from applying machine learning approaches to the 

RNA-Seq A+, B+, and C+ data were produced, those tools turned out to require much more 

work in data preprocessing and parameter tuning than we had time to complete in the course 

of this study. As such, the given results using linear regression and neural networks are 

promising explorations towards applying those techniques to analyze malaria RNA-Seq data and 

reveal underlying patterns of parasitic gene expression. Overall, multi-omic analysis of a wide 

variety of P. knowlesi data using several different computational approaches can confirm 

already known biological characteristics of P. knowlesi as well as provide fascinating insights 

into the numerous genomic and transcriptomic level differences between the clones of P. 

knowlesi, and thus the different factors that play a role in the SICA antigen variation. 
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