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Abstract

Rational Points on a Family of Genus 3 Hyperelliptic Curves
By Roberto Hernandez

Let C/Q be a curve defined over the rational numbers of genus g ≥ 2. In 1922, Mordell
conjectured that such a curve had only finitely many rational points. This question
puzzled mathematicians for over 60 years until Faltings’ proved it in 1983. In fact,
Faltings’ proved the more general version which said that the curve was allowed to
be defined over any number field. This was a groundbreaking result and signified
a huge advancement in arithmetic geometry. Unfortunately, Faltings’ theorem isn’t
effective, meaning that the proof doesn’t actually tell us how to find the points, only
that there’s finitely many. Despite new, simpler proofs of Faltings’ theorem by Voljta
and Bombieri, we still do not have a grasp of an effective version of Faltings’ theorem.
In practice, Chabauty–Coleman is a powerful tool for finding rational points on curves,
but there are examples for which this method fails. We give a detailed exposition of
the method developed by Dem’yanenko and Manin to explicitly find rational points
on curves. To this end, we construct a family of genus 3 hyperelliptic curves for which
we can compute the rational points on via the method of Dem’yanenko–Manin while
avoiding the method of Chabauty–Coleman.
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Chapter 1

Introduction

In 1900, Hilbert challenged the mathematical community with his list of problems that

were to be tackled for the next century. In particular, the 10th problem asks whether

there exists a general algorithm which takes as input a Diophantine equation and

decides whether there exists a solution in the integers. This question was answered

negatively in 1970 with Matiyasevich [13] concluding the work that had been started 20

years earlier by Davis, Robinson, and Putnam. In 1983, Faltings [6] proved Mordell’s

Conjecture stating that any non-singular curve C defined over Q of genus greater than

one has finitely many rational points. In fact, he proved a more general version which

allowed the curve to be defined over any number field rather than simply over Q. His

ground breaking result symbolized an advancement in arithmetic geometry that had

been out of reach since 1922, the year Mordell first made the conjecture. Now, the

study of rational points on non-singular curves defined over Q can be fully classified

into the following trichotomy:

(a) Gen(C) = 0 : In this case, we know that C either has no rational points, or

infinitely many, in which case it can be realized as a conic in projective space.

(b) Gen(C) = 1: Assuming C has a rational point, these are known as elliptic curves

and the theory is rich in regards to the study of their rational points. It is a
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result of Mordell-Weil that the rational points form a finitely generated abelian

group and moreover, Mazur’s torsion theorem restricts the structure of the torsion

subgroup.

(c) Gen(C) > 1: This is precisely the case when Faltings’s theorem applies. Here we

know that C has finitely many rational points.

This exemplifies that geometry governs arithmetic, as the genus is the most important

geometric invariant of a curve. While Faltings’s theorem is revolutionary, its only

flaw is that it doesn’t give an instructive way to obtain all the rational points on

C. Effectively finding rational points on curves of genus greater than one is an

active area of research, with many working to better understand or improve current

methods. The method which has proved to be most powerful in computing rational

points on curves has been the method Chabauty–Coleman. In this thesis, we focus

on the method developed by Dem’yanenko [5] in 1968, extended by Manin [12] in

1969. We present an explicit family of curves for which we can use the method of

Dem’yanenko–Manin and will aim to restrict the cases so that we avoid satisfying the

hypothesis of Chabauty–Coleman.

1.1 Outline

This thesis is organized in the following way:

Chapter 2: We give the necessary background involving the theory of heights, elliptic

curves, hyperelliptic curves, elliptic surfaces and Jacobians. We follow the treatment

of the subject given in [9], [18], and [17].

Chapter 3: We describe the method of Dem’yanenko–Manin and give an outline of

how it provides an effective tool for computing rational points on specific curves. We

also give an overview of curves with certain geometric aspects that are well suited for

this method and why in practice it is difficult to find such curves.



3

Chapter 4: We demonstrate the construction of the family of genus 3 hyperelliptic

curves for which we can use Dem’yanenko–Manin and discuss the morphisms we

obtain to an elliptic curve. We also state one of our main results which deals with

the decomposition of the Jacobian for our family of curves. We also discuss how

we, conjecturally, have infinitely many curves in our family for which the method of

Dem’yanenko-Manin applies, while Chabauty-Coleman does not.

Chapter 5: Here we mainly state and prove our lemmas bounding the canonical

height of the image of a point on Ca, which in turn allows us to effectively find the

rational points. We end by demonstrating an example of the method in question.



Chapter 2

Background

Let k be a number field and let V/k be a smooth projective variety defined over k,

with a fixed embedding into some projective space Pn. In this situation, the study

of rational and integral points on varieties requires a way of measuring the “size” or

“arithmetic complexity” of a point. In order to do this, we use a fundamental tool

called a height function. A height function is a positive-valued function

h : V (k) → [0,∞)

which assigns to each point on the variety a positive real number. The idea here is

that we want a way to translate geometric information about the variety to arithmetic

information about its k-rational points. A good height function should therefore have

two properties:

1. There should be only a finite number of points with bounded height. In other

words, the set

{P ∈ V (k) : h(P ) ≤ B}

is finite. This is called the Northcott property.

2. The “size” of a point should reflect both the arithmetic nature of the point and

4
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the geometric characteristics of the variety.

Our survey of the subject closely follows [9] so we begin by describing height function

on projective space and then use the theory of divisors to extend the definition more

generally for varieties.

2.1 Heights

Let P ∈ Pn(Q) and write P = (x0, x1, . . . , xn) with xi ∈ Z and gcd(x0, x1, . . . , xn) = 1.

We define the height of P to be

H(P ) = max{|x0|, |x1|, . . . , |xn|}.

We note that in defining the height on Pn(Q) in this way, we satisfy the first property

that all “good” height functions should have. That is, the set

{P ∈ Pn(Q) : H(P ) ≤ B}

is finite, since there are only finitely many integers x satisfying |x| ≤ B.

Definition 1. Let k be a number field and let P ∈ Pn(k). The multiplicative height

of P is the quantity

Hk(P ) =
∏
v∈Mk

max{||x0||v, ||x1||v, . . . , ||xn||v}

and the logarithmic height is defined as

hk(P ) = logHk(P ).

The definition of the height of P in this way is well-defined, due to the product formula,
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and is independent of the choice of homogeneous coordinates for P . We can also define

an absolute height on Pn which is independent of the field.

Definition 2. The absolute multiplicative height on Pn is the function

H : Pn(Q) → [1,∞), H(P ) = Hk(P )
1/[k:Q]

where k is any field with P ∈ Pn(k). The absolute logarithmic height on Pn is given

by

h : Pn(Q) → [0,∞), h(P ) = logH(P ) =
1

[k : Q]
hk(P ).

Next we describe the first example of the interplay between geometry and arithmetic

through the language of height functions.

Theorem 2.1.1. Let X be a closed subvariety of Pn and let φ : X → Pn be a

morphism of degree d. Then

h(φ(P )) = dh(P ) +O(1) for all P ∈ X(Q).

It is important to note here that the O(1) depends only on the map φ, but it

independent of the point P . In practice, it is generally straightforward to provide

an upper bound of the form h(φ(P )) ≤ dh(P ) + c1(φ). However, providing a lower

bound of the form h(φ(P )) ≥ dh(P ) + c2(φ) is more challenging. We will see in a

future section how we handle these bounds in our case.

Now assume that V is a projective variety defined over Q with an embedding φ : V →

Pn into projective space. In this way we can define a height function on the variety V .

Definition 3. Let φ : V → Pn be a morphism. The height on V relative to φ is the

function

hφ : V (Q) → [0,∞), hφ(P ) = h(φ(P )),
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where h : Pn(Q) → [0,∞) is the height function on projective space that we defined

in the previous section.

In this way, we see that defining heights on varieties is very natural once you have an

embedding of your variety into projective space. In the following theorem, we present

Weil’s construction that associates a height function to every divisor. This gives us a

way to define a height function on every variety. This theorem can be viewed as a

machine that converts geometric statements in terms of divisor class relations into

arithmetic statements described by relations among height functions.

Theorem 2.1.2 (Weil’s Height Machine). Let k be a number field. For every smooth

projective variety V/k there exists a map

hV : Div(V ) → {functions V (k) → R}

with the following properties:

1. (Normalization) Let H ⊂ Pn be a hyperplane, and let h(P ) be the absolute

logarithmic height on Pn defined before. Then

hPn,H(P ) = h(P ) +O(1) for all P ∈ Pn(k).

2. (Functoriality) Let φ : V → W be a morphism and let D ∈ Div(W ). Then

hV,φ∗D(P ) = hW,D(φ(P )) +O(1) for all P ∈ V (k).

3. (Additivity) Let D,E ∈ Div(V ). Then

hV,D+E(P ) = hV,D(P ) + hV,E(P ) +O(1) for all P ∈ V (k).
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4. (Linear Equivalence) Let D,E ∈ Div(V ) with D linearly equivalent to E. Then

hV,D(P ) = hV,E(P ) +O(1) for all P ∈ V (k).

5. (Positivity) Let D ∈ Div(V ) be an effective divisor, and let B be the base locus

of the linear system |D|. Then

hV,D(P ) ≥ O(1) for all P ∈ (V −B)(k).

6. (Algebraic Equivalence) Let D,E ∈ Div(V ) with D ample and E algebraically

equivalent to 0. Then

lim
P∈V (k)

hV,D(P )→∞

hV,E(P )

hV,D(P )
= 0.

7. (Finiteness) Let D ∈ Div(V ) be ample. Then for every finite extension k′/k and

every constant B, the set

{P ∈ V (k′) : hV,D(P ) ≤ B}

is finite.

8. (Uniqueness) The height functions hV,D are determined, up to O(1), by normal-

ization, functoriality for embeddings, and additivity.

It is important to note that Weil’s height machine requires smoothness of your variety,

but the construction still works when dealing with singular varieties. One does have

to pass to use Cartier divisors rather than Weil divisors instead. Again, we state

that the O(1)’s appearing in the heights presented in Weil’s height machine are all

explicitly computable, and depend only on φ, V , and D.

Remark 1. Note that Property 4 in Weil’s height machine tells us that the heights
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given by linearly equivalent divisors are equal up to some constant, so in particular,

we can rephrase the previous theorem in terms of the Picard group of V , rather than

its group of divisors.

As we saw in the previous section, the height machine assigns to each divisor on

V a height function. These height functions are all well-defined and satisfy various

properties. In some cases, it is possible to define a height function with particularly

nice properties.

Theorem 2.1.3 (Néron, Tate). Let V/k be a smooth variety defined over a number

field. Let D ∈ Div(V ) and let φ : V → V be a morphism. Suppose that φ∗D ∼ αD

for some number α > 1. Then there is a unique function called the canonical height

on V relative to φ and D,

ĥV,φ,D : V (k) → R,

with the following properties:

1. ĥV,φ,D(P ) = hV,D(P ) +O(1) for all P ∈ V (k).

2. ĥV,φ,D(φ(P )) = αĥV,φ,D(P ) for all P ∈ V (k).

It is important to note here that the canonical height depends only on the linear

equivalence class of D and that it can be computed as the following limit:

ĥV,φ,D(P ) = lim
n→∞

1

αn
hV,D(φ

n(P )),

where φn = φ◦φ · · · ◦φ. In particular, the canonical height has many useful properties

when the theory is applied to abelian varieties with a symmetric divisor class, as we

see in the following result, again due to Néron and Tate.

Theorem 2.1.4 (Néron, Tate). Let A/k be an abelian variety defined over a number

field, and let D ∈ Div(A) be a divisor whose divisor class is symmetric. There is a
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height function

ĥA,D : A(k) → R,

called the canonical height on A relative to D, with the following properties:

1.

ĥA,D(P ) = hA,D(P ) +O(1) for all P ∈ A(k).

2. For all integers m,

ĥA,D([m]P ) = m2ĥA,D(P ) for all P ∈ A(k).

3. (Parallelogram Law)

ĥA,D(P +Q) + ĥA,D(P −Q) = 2ĥA,D(P ) + 2ĥA,D(Q) for all P,Q ∈ A(k).

4. The canonical height map ĥA,D : A(k) → R is a quadratic form. The associated

pairing ⟨·, ·⟩D : A(k)× A(k) → R defined by

⟨P,Q⟩D =
ĥA,D(P +Q)− ĥA,D(P )− ĥA,D(Q)

2

is bilinear and satisfies ⟨P, P ⟩ = ĥA,D(P ).

5. (Uniqueness) The canonical height ĥA,D depends only on the divisor class of the

divisor D. It is uniquely determined by (1) and (2) for any one integer m ≥ 2.

Moreover, if the divisor D from the previous theorem is ample, then we actually obtain

a stronger result, which says that the canonical height of a point P ∈ V (k) is 0 if

and only if P is a torsion point. Thus, ĥA,D is a positive definite quadratic form on

A(k)/(torsion). In fact, we know more is true.
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Proposition 1. Let A/k be an abelian variety defined over a number field, and let

D ∈ Div(A) be an ample divisor with symmetric divisor class.

1. For all P ∈ A(k), we have ĥA,D(P ) ≥ 0, with equality if and only if P is a point

of finite order.

2. The associated canonical height function extends R-linearly to a positive definite

quadratic form

ĥA,D : A(k)⊗ R → R.

In particular, if P1, . . . , Pr ∈ A(k)⊗ R are linearly independent, then the height

regulator

det(⟨Pi, Pj⟩D)1≤i,j≤r

is strictly greater than 0.

The two previous results are for divisor classes which are symmetric, but it turns

out that there are analogous results for anti-symmetric divisor classes. In that case,

it turns out that the associated canonical heights turn out to be linear rather than

quadratic. Now, since any divisor can almost be written as the sum of a symmetric

divisor and an antisymmetric divisor, then we can find a canonical height function

associated to every divisor on V . Of interest to us for this thesis will be when we

define the corresponding notions of heights on the simplest of abelian varieties, an

elliptic curve. In the next section we recall some of the theory surrounding elliptic

curves.

2.2 Elliptic Curves over Q

Our main focus in this section will be elliptic curves over Q, but it is important to

note that the theory has been well-developed more generally over number fields, and

even over local fields. All the facts we mention here can be found with more detail in
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[18]. First, we recall that an elliptic curve is defined as a smooth, projective, genus one

curve with a specified base point (usually ∞). It turns out that there is an equivalent

definition in terms of abelian varieties. Indeed, an elliptic curve can also be defined

as an abelian variety of dimension 1. For our purposes, we will focus mainly on the

former definition, and in fact, we will be more explicit in that we present explicit

equations for all the elliptic curves we will deal with. Concretely, an elliptic curve can

be described by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ Q, remembering that this is an affine representation of E and it includes the

extra point at infinity [0, 1, 0]. Even better, in our case we can write E in its short

Weierstrass form given by

E : y2 = Ax+B,

with A,B ∈ Q. This could be done anytime the characteristic of your field is not 2 or

3, via substitutions. Associated with each elliptic curve are two important invariants:

the discriminant ∆, and its j-invariant given by:

∆ = −16(4A3 + 27B2) and j = −1728
(4A)3

∆
.

Note that there are equations for the j-invariant and discriminant of the longer

Weierstrass equation above, but we present the ones for this form for convenience.

The j-invariant controls the isomorphism class of an elliptic curve over Q while the

discriminant can help us detect primes of bad reduction. In particular, we have the

following result:

Proposition 2. Two elliptic curves are isomorphic over Q if and only if they have

the same j-invariant.
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One of the most important features of elliptic curves is that their points satisfy a group

law, that is, the rational points of E, E(Q), forms a group with the identity being the

point at infinity, O. Now, once we know that we can properly define addition on the

rational points of an elliptic curve, a natural question one can ask is: are there points

P ∈ E(Q) such that [m]P = O where [m]P = P + P + · · ·+ P (m terms)?

Definition 4. Let E be an elliptic curve and let m ≥ 1 be an integer. The m-torsion

points on E form a subgroup of E(Q) and we denote them by

E[m] = {P ∈ E : m[P ] = O}.

The torsion subgroup of E, denoted Etor is the set of points of finite order, denoted

Etor =
∞⋃

m=1

E[m].

Now that we have defined the rational points on an elliptic curve as well as its torsion

subgroup, we are ready to state arguably the two most important results about the

arithmetic of elliptic curve.

Theorem 2.2.1 (Mordell-Weil). Let E be an elliptic curve over Q. The group E(Q)

is finitely generated, and moreover, it has the form E(Q) ∼= E(Q)tor × Zr where r is

called the rank of E(Q).

Theorem 2.2.2 (Mazur’s Torsion Theorem). Let E be an elliptic curve over Q. The

torsion subgroup Etor is isomorphic to one of the following fifteen groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these groups occurs as the torsion subgroup of some elliptic curve

over Q.
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In particular, the Mordell-Weil theorem implies that the rank of E really controls the

finiteness of rational points on E. Concretely, if Rank(E) = 0, then #E(Q) is finite;

otherwise there are infinitely many rational points on E. This is something that is

special about elliptic curves, as we will see in a future discussion, the infinitude of

rational points on curves is heavily dependent on the genus of the curve.

2.3 Elliptic Curves over Local Fields

Let E be an elliptic curve over some local field K, complete with respect to a discrete

valuation v. The main purpose of this section is to discuss the reduction of elliptic

curves modulo some prime number p. First, we recall that an elliptic curve is given

by some Weierstrass equation say,

E : y2 = a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the ai ∈ K. There is some notion of a minimal Weierstrass equation which is

determined by the decomposition of the discriminant. Concretely, if all the prime

factors appearing in the discriminant of E have valuation strictly less than 12, we can

conclude the given model of E is minimal. The important thing to keep in mind here

is that over any local field, every elliptic curve has a minimal model, which is unique

up to a change of coordinates.

Now that we can work under the assumption that we have a minimal model of E,

we turn our focus to the reduction modulo p of E, which we will denote Ẽ. It is

important to note that in our case, starting out with an integral model defined over

Q, and reducing modulo p means that Ẽ will now be defined over Fp. To obtain Ẽ,

we reduce the coefficients of E modulo p and we write

Ẽ : y2 = ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6
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where ãi ∈ k. Now, in doing the reduction of E we may inadvertently introduce

singularities in the form of cusps or nodes.

Definition 5. Let E be an elliptic curve over Q and let Ẽ be its reduction modulo

some prime p. Then

1. E has good reduction at p if Ẽ is nonsingular.

2. E has multiplicative reduction at p if Ẽ has a node.

3. E has additive reduction at p if Ẽ has a cusp.

In the cases of (1) and (2) we say that E has bad reduction at p. Moreover, if E has

multiplicative reduction at p, then the reduction is said to be split if the slopes of the

tangent lines at the node lie in Fp, and is otherwise called nonsplit.

The next result allows us to determine the reduction type of an elliptic curve from its

minimal Weierstrass equation.

Proposition 3. Let E/Q be an elliptic curve given by a minimal Weierstrass equation

E : y2 = a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let ∆ be the discriminant of this equation, and let c4 be the usual expression involving

the ai. Then

1. E has good reduction at p if and only if vp(∆) = 0. In this case Ẽ is an ellptic

curve.

2. E has multiplicative reduction at p if and only if vp(∆) > 0 and vp(c4) = 0.

3. E has additive reduction at p if and only if vp(∆) > 0 and vp(c4) > 0.
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2.4 Heights on Elliptic Curves

Having defined heights on projective space and varieties, we focus in more on our

main object of study which are elliptic curves and discuss the canonical height on an

elliptic curve. First, recall that any nonconstant function f in the function field K(E)

determines a surjective morphism from E to P1. Concretely, f gives the map

f : E → P1, P 7→


[1, 0] if P is a pole of f

[f(P ), 1] otherwise.

With this in mind, we can now define the height on an elliptic curve.

Definition 6. Let E/Q be an elliptic curve and let f be a function in the function

field of E. The height on E relative to f is the function

hf : E(Q) → R, hf (P ) = h(f(P )).

Then next result verifies that the height defined in this way satisfies the Northcott

property that we want height functions to have.

Proposition 4. Let E/Q be an elliptic curve and f be a nonconstant function. Then

for any constant C, the set

{P ∈ E(Q : hf (P ) ≤ C}

is a finite set of points.

We also present results which lie at the heart of the relationship between height

functions and the additive law we have on an elliptic curve.

Proposition 5. Let E/Q be an elliptic curve and let f be an even function (i.e., a

function satisfying f ◦ [−1] = f). Then for all P,Q ∈ E(Q) we have
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1. hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1).

2. hf ([m]P ) = m2hf (P ) +O(1) for m ∈ Z.

It’s important to remark here that the O(1)’s appearing in the proposition depend

on E, f , and m, but are independent of the points P and Q. Moreover, this result is

true more generally for odd functions as well since if f is odd, f 2 is even.

2.5 Elliptic Surfaces

One way to define an elliptic surface is an a one-parameter algebraic family of

elliptic curves. Concretely, since we are working over Q, consider rational functions

A(T ), B(T ) ∈ Q(T ), then we can look at the elliptic surface

ET : y2 = x3 + A(T )x+B(T ).

We can replace T with some t ∈ Q and for most cases, we will get a well-defined elliptic

curve over Q. The only cases where we do not obtain an elliptic curve is for those

values t ∈ Q for which A(t) = ∞, B(t) = ∞, or ∆(t) = −16(4A(t)3 + 27B(t)2) = 0.

We call Et the specialization of ET . It turns out that as long as the discriminant of

ET is non-zero, ET will be an elliptic curve defined over Q(T ), so much of the theory

that one develops over Q will still be true over the function field.

Definition 7. Let C be a non-singular projective curve. An elliptic surface over C

consists of the following data:

1. a surface E (2-dimensional projective variety)

2. a morphism

π : E → C
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such that for all but finitely many points t ∈ C(k), the fiber

Et = π−1(t)

is a non-singular curve of genus 1,

3. a section to π,

σ0 : C → E .

It turns out that most of the fibers of an elliptic surface will be smooth, and so we call

those good fibers. The cases where Et is not smooth are called bad fibers. Of particular

interest to us are rational elliptic surfaces and elliptic K3 surfaces. Following [15] we

describe some of the background about these two specific families of elliptic surfaces.

Definition 8. The Néron-Severi group of E , denoted by NS(E), is the group of divisors

modulo algebraic equivalence.

It turns out that NS(E) is a finitely generated group and that the intersection pairing

on the group of Div(E) gives a well-defined pairing on NS(E). Of importance to us will

be the fundamental relation between the rank of the elliptic surface, and its associated

elliptic curve.

Theorem 2.5.1 (Shioda-Tate). Let E be an elliptic surface defined over Q, and E be

its associated elliptic curve. Then

Rank(NS(E)) = Rank(E(Q)) + 2 +
∑
t∈C

(rt − 1),

where rt is the number of irreducible components in the fiber Et.

We should note that Rank(NS(E)) is called the Picard number of E , denoted ρ(E) and

so we will commonly use the Shioda-Tate formula to calculate the rank of the elliptic
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surface to help bound the rank of specializations from below. Concretely, we have the

reformulation of the Shioda-Tate formula as follows:

Rank(E(Q)) = ρ(E)− 2−
∑
t∈C

(rt − 1).

Rational elliptic surfaces are elliptic surfaces which are fibred over the projective

line. That is, in the definition we presented earlier, C ∼= P1. As a consequence of

Tate’s algorithm, we can present every rational elliptic surface with a globally minimal

Weierstrass model. In particular, a rational elliptic surface S with a section is given

by the following equation:

S : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with deg(ai) ≤ i. It turns out that the Picard number of a rational elliptic surface

defined over Q is exactly 10, which makes this class of elliptic surfaces nice for our

purposes since Shioda-Tate implies that to find the rank, we only need to compute

the number of components of the bad fibers. This will be incredibly useful when we

work with our explicit equations in Chapter 4.

We now turn our focus briefly to elliptic K3 surfaces. A K3 elliptic surface X has base

curve P1, and can be expressed by a globally minimal model as follows:

X : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where ai ∈ Q[t] and deg(ai) ≤ 2i. In general the Picard number of an elliptic surface S

is bounded above by b2(S), the 2nd Betti number. For elliptic K3 surfaces, b2(S) = 22

so that serves as an upper bound for X. In particular, when the field is of characteristic

0, the upper bound is 20. Thus, for our purposes, ρ(X) ≤ 20 and this will help us

place an upper bound on the elliptic K3 surface which appears as a factor in our
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Jacobian.

One of the main uses of elliptic surfaces is that they provide a way exhibit explicit

elliptic curves of high rank. Namely, we have the following result due to Néron and

Silverman.

Theorem 2.5.2. Let E/K(t) be a non-isotrivial (nonconstant j-invariant) elliptic

surface. Then the specialization map

σt : E → Et

is well-defined and injective for all but finitely many points t ∈ K.

In practice, one constructs an elliptic surface of large rank, and then tries to find

specializations in which the rank jumps. One of the most famous applications of this

technique was done by Elkies, when finding the, at the time, record breaking elliptic

curve of rank 28 over Q.

2.6 Hyperelliptic Curves and Jacobians

We now begin our discussion on hyperelliptic curves, which are generalizations of

elliptic curves. We note that our focus will remain over Q, but the theory is vastly

expansive over more general fields.

Definition 9. A hyperelliptic curve is of the form C : y2 = f(x), where f(x) is a

monic polynomial of degree 2g + 1 or 2g + 2, which admits a degree 2 map to P1.

It’s important to note that hyperelliptic curves live in weighted projective space

P(1, g + 1, 1) so the projective equation of a hyperelliptic curve ma contain one or two

points at infinity, depending on the degree of f . In particular, if deg(f) is even, then

C has two points at infinity, and if deg(f) is odd, then C only has one point at infinity.
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Moreover, every genus 2 curve is hyperelliptic. This is because the anti-canonical map

given by the anti-canonical divisor is a morphism of degree 2 from C to P1. In our

work, we will explicitly show the family of genus 3 hyperelliptic curves which arise

from our construction and since the genus is 3, Falting’s theorem tells us that there

are only finitely many rational points.

There is a natural abelian variety attached to each hyperelliptic curve called the

Jacobian, denoted J(C). It is an abelian variety of dimension g over Q, and it is

therefore projective and although it could in principle be presented through equations,

it is typically not favorable to work with it in that way. Instead, we use that there

is an Gal(Q/Q)-equivariant isomorphism between the abelian group J(Q) and the

group of linear equivalence classes of degree-0 divisors on CQ. The Jacobian can be

defined in fact for elliptic curves, but it turns out that for an elliptic curve E, we have

E ∼= J(E). Also, as it pertains to rational points, there have been many advancements

in the search for effective Falting’s through the use of the Jacobian. In particular, the

following result is one that is very commonly used to find rational points on curves.

Theorem 2.6.1 (Chabauty-Coleman). Let X be a curve of g ≥ 2 over Q. Let J be

it’s Jacobian. Let p be a prime of good reduction and let r = Rank(J(Q)). If r < g,

then X(Qp) ∩ J(Q) is finite. Moreover, #X(Q) ≤ #X(Fp) + (2g − 2).

The Jacobian possesses many nice geometric properties, but of main concern for us is

the fact that there is a nice way to embed a projective curve into its Jacobian. Indeed,

given a fixed point P0 ∈ C, then one defines the map P 7→ (P )− (P0) for P ∈ C. In

this way we’ve defined a map from the curve C to J(C) and it turns out that as long

as the genus of C is nonzero, this map is an embedding of C onto its Jacobian. For

our purposes, we will discuss the Jacobian of our hyperelliptic curves, but this fact is

true more generally for any smooth projective curve of genus at least 1.

Definition 10. A simple abelian variety is an abelian variety whose only subvarieties

are itself and zero.
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It turns out that, much like in the theory of finite abelian groups, there is a decompo-

sition of abelian varieties into simpler abelian varieties.

Proposition 6. Let A be an abelian variety. Then there exist pairwise non-isogenous

simple abelian varieties A1, . . . , Ar and positive integers n1, . . . , nr such that A ∼

An1
1 × · · · × Anr

r . This decomposition is unique up to isogeny.

In particular, this means that we can decompose the Jacobian of our curve into a

product of simpler abelian varieties. In our context, we will actually enforce the

Jacobian of our curves to decompose into a product of elliptic curves.



Chapter 3

Dem’yanenko–Manin

We now turn our attention to the method by which we will find the rational points

on our hyperelliptic curves. It was first developed by Dem’yanenko [5] to show that

rational points on a certain class of curves could be effectively computed and then

extended by Manin [12] to give an upper bound on the p-power torsion on elliptic

curves. More recently, it has been used by Silverman [16] to show that there are no

rational points on a certain family of twists of Fermat curves and by Viada [19] to find

rational points on curves of increasing genus embedded in products of elliptic curves.

Other examples of this method in practice are given by Kulesz and Girard [11], [7].

3.1 Statement

Let C be a smooth projective curve of genus g ≥ 2 over a number field K. Let A be

an abelian variety over K, and let f1, . . . , fm be morphisms from C to A defined over

K. Recall that a morphism is a rational map with no base points.

Definition 11. Let f1, . . . , fm be morphisms from C to A. We say the fi are

independent if
∑
nifi is the constant map, then ni = 0 for all i.

In practice, we don’t typically use the definition to check whether a set of morphisms

23
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are independent, instead we use a very nice lemma due to Cassels [4].

Lemma 3.1.1 (Cassels). Let f1, . . . , fm be morphisms from C to A. Let D be the

matrix whose coefficients are

⟨fi, fj⟩ =
1

2
(d(fi + fj)− d(fi)− d(fj)) ,

where d(fi) denotes the degree of the morphism. The m morphisms are independent

if and only if det(D) ̸= 0.

For our purposes, we will work with explicit morphisms between our curves and thus

these degrees are computable through the use of the computer programming system

Magma [3].

Theorem 3.1.2 (Dem’yanenko-Manin). Let C be a curve over a number field K and

A be an abelian variety over K. Let f1, . . . , fm be morphisms from C to A that are

defined over K and independent. Assume further that Rank(A) < m. Then C(K) is

finite and it is possible to effectively bound the height of the points in C(K).

It is important to note here that the conclusion that C(K) is finite is not of particular

interest, indeed, this is already true in this setting due to Falting’s. The important

part here is the second conclusion, ensuring that we can effectively find the K-rational

points on C via height considerations.

Sketch of proof. Let P ∈ C(K). Combining the functoriality relationship in 2.1.2 and

the relationship between the canonical and naive heights on A we obtain

ĥA(fi(P )) = cd(fi)hC(P ) +O(1),

where c is a constant depending on the normalization of the heights involved. Com-
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bining this fact with the height pairing in 2.1.4 we obtain

lim
hC(P )→∞

⟨fi(x), fj(x)⟩
hC(x)

= ⟨fi, fj⟩.

Now, taking the determinant over m gives the following:

lim
hC(P )→∞

det [⟨fi(x), fj(x)⟩]
hmC (x)

= det [⟨fi, fj⟩] ,

but the assumption that the m maps are linearly independent and the fact that the

pairing ⟨·, ·⟩ is positive definite, implies that det [⟨fi, fj⟩] > 0. Thus, it must be that

det [⟨fi(x), fj(x)⟩] > 0, provided that hC(x) is sufficiently large. Hence, by 3.1.1, we

have that f1(x), f2(x), . . . , fm(x) must be linearly independent on A. We can rephrase

this instead by saying that the set

{x ∈ C(K) : f1(x), f2(x), . . . , fm(x) are linearly dependent in A(K)}

is a set of bounded height. Due to the Northcott property, we know that this must then

be a finite set and, in particular, we can find a coefficient c such that hC(x) ≤ c.

In order to use this method of finding rational points on curves we need to obtain

multiple maps from our curve to the same abelian variety. Now, as we have discussed

before, the Jacobian is an abelian variety which can be decomposed into simpler

abelian varieties. Moreover, our curve embeds into the Jacobian, and thus if we can

impose conditions such that the Jacobian splits into a product of the same elliptic

curve we will obtain multiple maps from our curve C to the same abelian variety.

As one can imagine, it is difficult in practice to know whether the curve you are

dealing with has multiple maps to the same elliptic curve, which makes this method

not commonly used in the literature. Indeed, the few successful attempts of using

this method have been made through imposing conditions on the curve so that it
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naturally has maps to elliptic curves or its Jacobian splits. Moreover, if one looks at

a “random” curve with multiple independent maps to the same elliptic curve then

the images of a point P ∈ C by these maps are usually independent, invalidating the

hypothesis. In the next section we show the construction of our family of hyperelliptic

curves who have 2 maps to the same elliptic curve, then we only need to restrict the

rank of the elliptic curve to be exactly equal to 1, so that we also avoid the method of

Chabauty-Coleman. Our construction is most similar to the one exhibited in [11].

3.2 Simplification in Rank 1

We now describe how this method simplifies when Rank(A) = 1 since this is the

situation we will be in. Suppose we have two morphisms, say f1, f2 : C → A where

Rank(A) = 1. Let P ∈ C(K), then


f1(P ) = [n]R + T1

f2(P ) = [m]R + T2

where R is the generator of the free part of A and Ti ∈ A(K)tor. Taking canonical

heights we have 
ĥ(f1(P )) = n2ĥ(R)

ĥ(f2(P )) = m2ĥ(R).

Subtracting second equation from the first and taking absolute values gives us that

following relation:

∣∣∣ĥ(f1(P ))− ĥ(f2(P ))
∣∣∣ = ∣∣∣n2ĥ(R)−m2ĥ(R)

∣∣∣ = ∣∣n2 −m2
∣∣ ĥ(R).

If it happens to be the case that n = ±m, then that would imply that f1(P )±f2(P ) ∈

A(K)tor, and so we could find those points directly through computation since the
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torsion group is finite. Note also that we can bound this quantity from above using

the triangle inequality. Indeed,

∣∣∣ĥ(f1(P ))− ĥ(f2(P ))
∣∣∣ ≤ ∣∣∣ĥ(f1(P ))− h(f1(P ))

∣∣∣+∣∣∣ĥ(f2(P ))− h(f2(P ))
∣∣∣+∣∣∣h(f1(P ))−h(f2(P ))∣∣∣.

Thus, if n ̸= ±m, then combining these two expressions we can obtain an upper bound,

say B, such that |n2 −m2| < B. It is important to note here that the constant B

would only depend on f1, f2, and A, but would be independent of P . In this way, we

bound the possible values of n and m, and so all that would be left to do would be to

find the possible points on C(K) whose images on A(K) are of the form nR+ Ti with

n < B. Again, this is a finite computation that can be done fairly quickly on Magma.

Thus, we have effectively found all the K-rational points on C.



Chapter 4

Family of Genus 3 Curves

In this chapter we will describe the construction of the curves in our family and see

how some elliptic curves arise from that construction. In order to avoid the method

of Chabauty-Coleman, we will then need to also consider some restrictions on these

elliptic curves in order to control their ranks.

4.1 Construction of Ca

We now begin describing how we obtain the family of genus 3 hyperelliptic curves

and the maps to the same abelian variety. Consider the quartic g(x) = x4 − a2x2 + 1.

Notice that we can pick two distinct non-zero points z ̸= w such that g(z) = g(w). In

this way we obtain

z4 − a2z2 + 1 = w4 − a2w2 + 1

z4 − w4 = a2(z2 − w2)

z2 + w2 = a2,

but this last equation is a circle of radius a in z and w. As usual, we can parameterize

rational points on this circle by considering the line w = zx+ a, as long as a ̸= 0. In

28
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doing so we have

z2 + (zx+ a)2 = a2

z2 + z2x2 + 2zxa+ a2 = a2

z2(1 + x2) = −2zxa

z = − 2xa

x2 + 1
.

Thus, we obtain the parameterization of rational points on the circle given by

(z(x), w(x)) =

(
− 2ax

x2 + 1
,−a(x+ 1)(x− 1)

x2 + 1

)
for any x ∈ Q. Now, we take the

function z(x) = − 2ax

x2 + 1
and plug it into our quartic f(x). Indeed,

g(z(x)) =

(
− 2ax

x2 + 1

)4

− a2
(
− 2ax

x2 + 1

)2

+ 1,

which after multiplying the entire equation by (x2+1)4 to clear denominators simplifies

to

g(z(x))(x2 + 1)4 = x8 + (4− 4a4)x6 + (8a4 + 6)x4 + (4− 4a4)x2 + 1.

The right side of the above equation will define the f(x) for our hyperelliptic curve.

Concretely, our family of hyperelliptic curves will be defined as:

Ca : y
2 = x8 + (4− 4a4)x6 + (8a4 + 6)x4 + (4− 4a4)x2 + 1,

which since f(x) is degree 8, we can deduce that for every value of a, we obtain a genus

3 hyperelliptic curve. Also note that this construction arose from the first quartic

g(x) = x4−a2x2+1, and if we define the curve Ha : y
2 = x4−a2x2+1, this is a genus

1 hyperelliptic curve. This implies that Ha is in fact an elliptic curve and Magma can

give us the Weierstrass equation and the map between the curves. In fact, we have
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that

Ha : y
2 = x4 − a2x2 + 1 ∼= Ea : y

2 = x3 + 2a2x2 + (a4 − 4)x

(x, y) 7→ (2x2 − 2y − 1, 4x3 − 4xy − 2x).

In this way we have successfully constructed a curve with multiple maps to the same

elliptic curve, lending itself nicely to the method of Dem’yanenko-Manin. We can in

fact be very concrete and display the maps we obtain. Firstly, we obtain the maps

ψ1 : Ca → Ha

(x, y) 7→
(
z(x),

y

(x2 + 1)2

)
ψ2 : Ca → Ha

(x, y) 7→
(
w(x),

y

(x2 + 1)2

)

and composing ψ1, ψ2 with the isomorphism between Ha and Ea above, we have two

maps from Ca to Ea. From here on out, we will denote by the composition of these

maps φ1 and φ2.

Lemma 4.1.1. The maps φ1, φ2 : Ca → Ea are independent.

Proof. The maps φ1 and φ2 in projective coordinates are given explicitly by

φ1 = [−a2x6 + 5a2x4z2 − 2x2y + 5a2x2z4 − 2yz2 − a2z6,

4a3x5z − 24a3x3z3 + 8axyz + 4a3xz5,

x6 + 3x4z2 + 3x2z4 + z6]

φ2 = [a2x6 − 5a2x4z2 − 2x2y − 5a2x2z4 − 2yz2 + a2z6,

− 2a3x6 + 14a3x4z2 + 4ax2y − 14a3x2z4 − 4ayz2 + 2a3z6,

x6 + 3x4z2 + 3x2z4 + z6].
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The codomain of these maps is an elliptic curve so when we consider φ1 + φ2 we need

to remember that the addition is defined as on an elliptic curve. Luckily for us we do

not have to do the calculation by hand as it is a quick calculation on Magma that

deg(φ1) = deg(φ2) = 2, and that deg(φ1 + φ2) = 4. Thus, we obtain the matrix

M =

2 0

0 2


and we can clearly see that det(M) ̸= 0 and thus by 3.1.1 the maps are independent.

Now, maps between curves induce maps on their Jacobians so in particular we have

maps from J(Ca) → J(Ea) ∼= Ea. More importantly, these maps will be surjective

and have finite kernel, so they will be isogenies. This means that J(Ca) has two

factors of Ea in its isogeny decomposition. We also know that Ca has genus 3, and

dim J(Ca) = 3, hence the isogeny decomposition of J(Ca) is Ea ×Ea ×E ′ where E ′ is

some other elliptic curve. For our purposes, it will be useful to know an equation for E ′

since we will want to ensure it has nonzero rank so that we avoid Chabauty-Coleman.

It turns out that we can find an equation for E ′ by quotienting Ca by one of its

automorphisms and searching for an elliptic curve which is non-isogenous to Ea. This

a finite search that can be done on Magma and we obtain

E ′ : y2 = x3 + (−4− a4)x2 + 4a4x.

We are now in the position where we have a family of genus 3 hyperelliptic curves

whose Jacobian decomposes in a way favorable to the use of Dem’yanenko-Manin. We

summarize the above discussion in the following result.

Theorem 4.1.2. Let Ca be the genus 3 hyperelliptic curve

Ca : y
2 = x8 + (4− 4a4)x6 + (8a4 + 6)x4 + (4− 4a4)x2 + 1.
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Then, J(Ca) Ea × Ea × E ′.

At this point we now need to find conditions on the parameter a so that Rank(Ea) = 1

(since we have two independent maps φ1, φ2) and Rank(E ′) ̸= 0.

4.2 Controlling the Ranks of Ea and E ′

The focus of this section will be to demonstrate sufficient conditions to restrict the

ranks of Ea and E ′. The main tool to do this will be the Parity conjecture. Before

stating the conjecture we define global root numbers and discuss how we compute

them in practice. All throughout this section we consider an elliptic curve E over a

number field K.

Definition 12. The global root number w(E/K) of an elliptic curve over K is defined

as the product of the local root numbers w(E/Kv) ∈ {−1, 1}. In particular,

w(E/K) =
∏
v

w(E/Kv),

where the product runs over all places of K, including the infinite ones.

Local root numbers of elliptic curves are defined using epsilon-factors of Weil-Deligne

representations, however, for our purposes we will not need to introduce formal

definitions and we instead direct the interested reader to [14] for formal definitions.

They have been classified for all places of number fields, so we will not concern

ourselves with proving any results, but instead use them for our computations. For

instance, we make use of the following result from [10]. We remark that the result has

more cases, and we have only included the ones relevant to our purposes.

Theorem 4.2.1. Let E be an elliptic curve over a local field K of characteristic zero.

When K is non-Archimedean, let k be its residue field and let v : K× → Z denote
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the normalized valuation with respect to K. Let
(∗
k

)
denote the quadratic residue

symbol on k× and (a, b)K denote the Hilbert symbol in K.

1. If K is Archimedean, then w(E/K) = −1.

2. If E/K has good reduction, then w(E/K) = 1.

3. If E/K has split multiplicative reduction, then w(E/K) = −1.

4. If E/K has non-split multiplicative reduction, then w(E/K) = 1.

5. If E/K has additive, potentially multiplicative reduction and char(k) = 2, then

w(E/K) = (−1,−c6)K. In particular, if K = Q2, then

w(E/Q2) =


−1 if c

′
6 ≡ 1( mod 4)

+1 if c
′
6 ≡ 3( mod 4)

where c
′
6 =

c6
2v(c6)

.

In particular, this result tells us that to determine local root numbers, we only need

to determine the reduction type of our elliptic curve at its various primes. Now, over

Q, the places are precisely the primes, and the usual infinite place. It is a known fact

that the only places where our elliptic curve may have bad reduction is at the primes

which divide the discriminant and so we only need to consider those primes, since

the primes of good reduction have local root number 1, and as such will not change

the parity of the global root number. We now state the Parity Conjecture, which is

known to be true in certain cases and helps predict the existence of points of infinite

order on elliptic curves.

Conjecture 1 (Parity Conjecture). Let E/K be an elliptic curve over a number field.

Then

(−1)Rank(E) = w(E/K)



34

where w(E/K) is the global root number of E.

For our purposes, we will want to show that the global root number of Ea is 1, so

that we can conclude (conjecturally), that its rank is odd. I should also note that we

actually want its rank to be exactly 1, since we have two morphisms to Ea, but we are

only able to prove that the rank is odd. However, results by Bhargava and Shankar [2]

show that, when ordered by height, about 50% of elliptic curves over Q have rank 0

and the other 50% have rank 1. In particular, we note that we have not been able to

find a value of a which satisfies the conditions we prescribe such that Rank(Ea) ≥ 3.

Additionally, as we have been reiterating, to avoid Chabuaty-Coleman, we will also

impose conditions so that w(E ′/Q) = 1, implying that the rank is non-zero. We are

now ready to state and prove our results about the ranks of Ea and E ′.

Theorem 4.2.2. Let a ∈ Z such that a2 − 2 and a2 + 2 are both prime. Then,

Rank(Ea) is odd.

Proof. Per our previous discussion, we only need to determine the local root numbers

at the primes of bad reduction, which are the primes dividing the discriminant. Note

that ∆(Ea) = 28(a2 − 2)2(a2 + 2)2. Thus, we will only consider the cases where

p ∈ {2, a2 − 2, a2 + 2}.

First consider p = 2. Note that c4 = 16a4 + 192 and c6 = 64a6 − 2304a2 and thus we

have that v2(c4) = 4, v2(c6) = 6 and v2(∆) = 8. Looking at Table 1 in [8] and noting

that 2c′6 + c′4 ≡ 11 mod 16 tells us that w2(Ea) = −1. We remark that we’ve used

here the fact that a must be odd. Indeed, if a were even then a2 − 2 and a2 + 2 are

not prime.

Now consider p = a2 − 2. Reducing the equation of Ea modulo p gives us

y2 ≡ 2a2x2 + x3 mod p.

This is a nodal curve, so we have multiplicative reduction. Also, the Legendre symbol
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2a2

p

)
determines whether it is of non-split or split type. We have

(
2a2

p

)
=

(
2

p

)(
a2

p

)
=

(
2

p

)
since p ∤ a2

=


1 if p ≡ 1, 7 mod 8

−1 if p ≡ 3, 5 mod 8

=


1 if a2 ≡ 1, 3 mod 8

−1 if a2 ≡ 5, 7 mod 8

and since a is odd, it always the case that a2 ≡ 1 mod 8. Hence, in our situation(
2a2

p

)
= 1, and thus Ea has split multiplicative reduction at p = a2 − 2. By 4.2.1 we

have that wp(Ea) = −1.

Finally, consider p = a2 + 2. Reducing Ea modulo p gives

y2 ≡ 2a2x2 + x3 mod p.

We again have multiplicative reduction and

(
2a2

p

)
determines the type.

(
2a2

p

)
=

(
2

p

)(
a2

p

)
=

(
2

p

)
since p ∤ a2

=


1 if p ≡ 1, 7 mod 8

−1 if p ≡ 3, 5 mod 8

=


1 if a2 ≡ 5, 7 mod 8

−1 if a2 ≡ 1, 3 mod 8.
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Since a is odd, it is always the case that a2 ≡ 1 mod 8, and so

(
2a2

p

)
= −1. Thus,

Ea has non-split multiplicative reduction at p = a2 + 2. Hence, by 4.2.1 we have

wp(Ea) = 1.

Putting it all together we now have that the global root number of Ea over Q is

w(Ea/Q) = (−1)(−1)(−1)(1) = −1, which would imply that the rank of Ea is odd by

the Parity Conjecture.

Under these conditions we have an infinite family of elliptic curves Ea whose rank is

odd. We should also note that we’ve checked all values of a which satisfy the hypothesis

and are ≤ 2, 000, 000 and have not been able to find such an a with Rank(Ea) ̸= 1.

Conjecture 2. There are infinitely many a ∈ Z such that a2 − 2 and a2 + 2 are

simultaneously prime.

Although we do not prove the above conjecture, we note that this is very similar to

the Twin Prime Conjecture, which is widely accepted by the mathematical community.

We now do a similar analysis for E ′, but note that its discriminant is ∆(E ′) =

28a8(a2 − 2)2(a2 + 2)2, which complicates things because a, a2 − 2, and a2 + 2 are

simultaneously prime only once, exactly when a = 3. In general, one of a or a2 + 2

will be divisible by 3 so we will make from now on the assumption that a is divisible

by 3. Thus, we will need to do an analysis of E ′ at the primes 2, 3, q, a2 − 2, and

a2 + 2 for q a prime bigger than 3. We will see in our next result that we will need

another condition on q, in particular, we will need q ≡ 3 mod 4.

Theorem 4.2.3. Let a = 3q, with q prime, q ≡ 3 mod 4 and a2 − 2, a2 + 2 are both

prime. Then, Rank(E ′) is odd.

Proof. We proceed as we did with Ea. We have ∆(E ′) = 28a8(a2 − 2)2(a2 +2)2 and so

we need to find the reduction type at the following primes p ∈ {2, 3, q, a2 − 2, a2 + 2}.

First consider p = 2. Using Theorem 3.7 from [1] and noting that in their notation,
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E ′ = EC2×C2(−4,−a4, 1) = EC2×C2(a, b, d). We have v2(a) = 2, and bd ≡ 3 mod 4

and thus the reduction type is I∗0 . Since we have additive, potentially multiplicative

reduction and c′6 ≡ 3 mod 4, 4.2.1 tells us that w2(E
′) = 1. We should note that by

Theorem 3.7 in [1], we know that p = 2 is the only prime at which we have additive

reduction, and thus for the rest of the primes we only need to check whether the

reduction type is split or non-split.

Consider now p = 3. Reducing E ′ modulo p gives

y2 ≡ x3 + 2x2 mod p,

and since

(
2

3

)
= −1, we have non-split multiplicative reduction. Hence, by 4.2.1

w3(E
′) = 1.

Consider now p = q. Reducing E ′ modulo p gives

y2 ≡ x3 − 4x2 mod p,

so

(
−4

q

)
will determine the type. Note that

(
−4

q

)
=

(
−1

q

)(
4

q

)
=

(
−1

q

)
since q ∤ 4

= −1 if q ≡ 3 mod 4.

Thus, by 4.2.1, wq(E
′) = 1.

At the primes a2 − 2 and a2 + 2 we can verify via Magma that the reduction types are

split and so at the last two places needed we have wp(E
′) = −1.

Putting this all together we have w(E ′/Q) = (−1)(1)(1)(1)(−1)(−1) = −1, which

implies that the rank is odd by the Parity Conjecture.
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Conjecture 3. There are infinitely many 3q, with q > 3 and q ≡ 3 mod 4 such that

9q2 − 2 and 9q2 + 2 are simultaneously prime.

We again note that we do not know how to prove such a conjecture, but there is enough

evidence to believe its validity. We have now managed to (conjecturally) provide

an infinite set of curves such that we can find the rational points via Dem’yanenko-

Manin while avoiding Chabauty-Coleman. In the next chapter, we describe the height

restrictions on the rational points on Ca and explicitly find Ca(Q).



Chapter 5

Height Bounds

In order to find the rational points on Ca via Dem’yanenko-Manin, we first needed to

find conditions so that our family of curves satisfies the hypothesis. Having done that,

we now work with φ1 and φ2, in order to obtain bounds on the canonical height of

the possible rational points on Ca. Recall from our discussion in 3.2 that we have the

following inequality in terms of the canonical heights:

∣∣∣ĥ(f1(P ))− ĥ(f2(P ))
∣∣∣ ≤ ∣∣∣ĥ(f1(P ))− h(f1(P ))

∣∣∣+∣∣∣ĥ(f2(P ))− h(f2(P ))
∣∣∣+∣∣∣h(f1(P ))−h(f2(P ))∣∣∣.

The aim of this chapter will be to bound the last term on the right-hand side of the

inequality since the first two can be bounded via Magma by the command

SilvermanBound();

which takes as input an elliptic curve. Once we have accomplished that, we will be

ready to effectively find rational points on a certain set of curves from our family Ca.

39
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5.1 Bounding the Difference in Naive Heights

Recall that we have explicit maps φ1 and φ2 and if we are concerned with bounding

the quantity ∣∣∣h(φ1(P ))− h(φ2(P ))
∣∣∣,

then we should attempt to get a better understanding of what equations define φ1(P )

and φ2(P ) and calculate bounds for their naive height. Recall also that the naive height

of a point on an elliptic curve was simply defined as the height of the x-coordinate of

the image of the point and so we are really only concerned with the x-coordinate of

these images. In affine coordinates we have

x(φ1(P )) =
−a2x4 + 6a2x2 − 2y − a2

x4 + 2x2 + 1

x(φ2(P )) =
a2x4 − 6a2x2 − 2y + a2

x4 + 2x2 + 1
.

We run into an issue here that both numerators in these maps depend on the y-

coordinate of the point P which means that we will need to use the defining equation

of our curve to get the terms purely in terms of x. This step is essential for determining

lower bounds of the heights of φ1(P ) and φ2(P ).

Recall that the defining equation for our family of hyperelliptic curves is:

y2 = x8 + (4− 4a4)x6 + (8a4 + 6)x4 + (4− 4a4)x2 + 1

y =
√
x8 + (4− 4a4)x6 + (8a4 + 6)x4 + (4− 4a4)x2 + 1.

Note that 4− 4a4 is negative for all values of a > 1 and so, in particular these terms

will only decrease the value and so by ignoring them we “maximize” how large the
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y-coordinate could be. Indeed, we have

y′ =
√
x8 + (8a4 + 6)x4 + 1 ≥ y.

Moreover, we can further maximize y′ with the following inequality:

√
x8 + (8a4 + 6)x4 + 1 ≤

√
x8 +

√
(8a4 + 6)x4 + 1

≤ x4 + (3a2 + 3)x4 + 1 = y′′.

We arrive at the ladder of inequalities y′′ ≥ y′ ≥ y, and this is how we will minimize

the numerator of both the images of φ1 and φ2. In particular, replacing y with y′′ in

x(φ1(P )) and x(φ2(P )) we have:

x(φ1(P )) =
−a2x4 + 6a2x2 − 2y − a2

x4 + 2x2 + 1

≥ (−2− a2)x4 − 6x2 + (−2− a2)

x4 + 2x2 + 1

x(φ2(P )) =
a2x4 − 6a2x2 − 2y + a2

x4 + 2x2 + 1

≥ (a2 − 2)x4 + (−12a2 − 6)x2 + (a2 − 2)

x4 + 2x2 + 1
.

It will be convenient for us to define the following homogeneous polynomials

F1(X,Z) = (−2− a2)X4 − 6X2Z2 + (−2− a2)Z4

G1(X,Z) = X4 + 2X2Z2 + Z4

F2(X,Z) = (a2 − 2)X4 + (−12a2 − 6)X2Z2 + (a2 − 2)Z4

G2(X,Z) = X4 + 2X2Z2 + Z4.
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Note that F1(X, 1) and G1(X, 1) are simply the numerator and denominator for the

lower bound of x(φ1(P )) and that they are relatively prime in Q[X], so they generate

the unit ideal in Q[X]. This implies that we have the following result.

Lemma 5.1.1. Define the polynomials

F1(X,Z) = (−2− a2)X4 − 6X2Z2 + (−2− a2)Z4

G1(X,Z) = X4 + 2X2Z2 + Z4

f1(X,Z) = − 1

2(a2 − 1)
X2Z2 − 1

a2 − 1
Z4

g1(X,Z) = −
1
2
a2 + 1

a2 − 1
X2Z2 − 3

a2 − 1
Z4

f2(X,Z) = − 1

2(a2 − 1)
X2Z2 − 1

a2 − 1
X4

g2(X,Z) = −
1
2
a2 + 1

a2 − 1
X2Z2 − 3

a2 − 1
X4.

Then the following identities hold:

F1(X,Z)f1(X,Z) +G1(X,Z)g1(X,Z) = Z8

F1(X,Z)f2(X,Z) +G1(X,Z)g2(X,Z) = X8.

Proof. The existence of such identities is due to the fact that F1(X,Z) and G1(X,Z)

are relatively prime homogeneous polynomials. The validity of the identities is a

tedious calculation but can verified through computer algebra systems such as Magma

[3], for instance.

Remark 2. Our inequalities which“removed” the y-coordinate from the images of

φ1(P ) and φ2(P ) made it so that we had relatively prime F1(X, 1) and G1(X, 1),

which was a necessary step to find our identities.

We state our similar result for F2(X,Z) and G2(X,Z).
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Lemma 5.1.2. Define the polynomials

F2(X,Z) = (a2 − 2)X4 + (−12a2 − 6)X2Z2 + (a2 − 2)Z4

G2(X,Z) = X4 + 2X2Z2 + Z4

h1(X,Z) =
1

14a2 + 2
X2Z2 +

1

7a2 + 1
Z4

i1(X,Z) = −
1
14
a2 − 1

7

a2 + 1
7

X2Z2 +
6
7
a2 + 3

7

a2 + 1
7

Z4

h2(X,Z) =
1

14a2 + 2
X2Z2 +

1

7a2 + 1
X4

i2(X,Z) = −
1
14
a2 − 1

7

a2 + 1
7

X2Z2 +
6
7
a2 + 3

7

a2 + 1
7

X4.

Then the following identities hold:

F2(X,Z)h1(X,Z) +G2(X,Z)i1(X,Z) = Z8

F2(X,Z)h2(X,Z) +G2(X,Z)i2(X,Z) = X8.

Proof. This again relies on the fact that F2(X, 1) and G2(X, 1) are relatively prime

and a tedious calculation.

The polynomials f1, f2, g1, g2, h1, h2, i1 and i2 were all found through the help of Magma

[3] using the Euclidean algorithm for polynomials.

If we write x = x(P ) =
a

b
in lowest terms then we can write x(φ1(P )) =

F1(a, b)

G1(a, b)
and

x(φ2(P )) =
F2(a, b)

G2(a, b)
as quotients of integers. We can restate the identities for our our

lemmas using this notation. For 5.1.1, we have

F1(a, b)f1(a, b) +G1(a, b)g1(a, b) = b8

F1(a, b)f2(a, b) +G1(a, b)g2(a, b) = a8.
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This implies that we have

|b8| ≤ 2max{|f1(a, b)|, |g1(a, b)|}max{|F1(a, b)|, |G1(a, b)}

|a8| ≤ 2max{|f2(a, b)|, |g2(a, b)|}max{|F1(a, b)|, |G1(a, b)}.

Now looking at the expressions of f1, f2, g1, and g2, we have the following inequality:

max{|f1|, |f2|, |g1|, |g2|} ≤ 2max{|a|4, |b|4}.

Thus, we can combine the above inequalities to obtain the following lower bound on

the height of φ1(P ):

max{|a8|, |b8|} ≤ 4max{|a|4, |b|4}max{|F1|, |G1|}
max{|a|4, |b|4}

4
≤ max{|F1|, |G1|}

1

4
H(P )4 ≤ H(φ1(P ))

log

(
1

4

)
+ 4h(P ) ≤ h(φ1(P )).

We can do the exact same argument for the identities in 5.1.2 and obtain

log

(
1

4

)
+ 4h(P ) ≤ h(φ2(P )).

Now to obtain the upper bounds for the heights we use x-coordinate of the affine

maps for φ1 and φ2 which we recall here:

x(φ1(P )) =
−a2x4 + 6a2x2 − 2y − a2

x4 + 2x2 + 1

x(φ2(P )) =
a2x4 − 6a2x2 − 2y + a2

x4 + 2x2 + 1
.



45

The first way to obtain an “easy” upper bound is to simply ignore all the terms which

may decrease the numerator, that it all terms which are negative. We thus obtain,

x(φ1(P )) =
−a2x4 + 6a2x2 − 2y − a2

x4 + 2x2 + 1

≤ 6a2x2

x4 + 2x2 + 1

x(φ2(P )) =
a2x4 − 6a2x2 − 2y + a2

x4 + 2x2 + 1

≤ a2x4 + a2

x4 + 2x2 + 1
.

If we let x = x(P ) =
r

s
as before, we can rewrite these as:

x(φ1(P )) ≤ 6a2r2s2

r4 + 2r2s2 + s4

x(φ2(P )) ≤ a2r4 + s4a2

r4 + 2r2s2 + s4
.

Now, since the height is simply the max between the numerator and the denominator

we only need to determine which of the two is largest. In other words, we have:

H(φ1(P )) ≤ max{6a2H(P )4, 4H(P )4}

h(φ1(P )) ≤ log(6) + 2 log(a) + 4h(P )

and

H(φ2(P )) ≤ max{2a2H(P )4, 4H(P )4}

h(φ2(P )) ≤ log(2) + 2 log(a) + 4h(P ).

We summarize the bounds we have discussed above in the following lemma.
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Lemma 5.1.3. For P ∈ Ca(Q), we have:

log

(
1

4

)
+ 4h(P ) ≤ h(φ1(P )) ≤ log(6) + 2 log(a) + 4h(P )

log

(
1

4

)
+ 4h(P ) ≤ h(φ2(P )) ≤ log(2) + 2 log(a) + 4h(P ).

Combining the inequalities from 5.1.3, we obtain the inequality following inequality:

|h(φ1(P ))− h(φ2(P ))| ≤ log(6) + 2 log(a)− log

(
1

4

)
. (5.1)

We also have the following lemma regarding the difference between the canonical

height and naive height on our elliptic curve Ea.

Lemma 5.1.4. Let P ∈ Ea(Q). Then we have:

∣∣∣ĥEa(P )− hEa(P )
∣∣∣ ≤ 24.

Proof. As mentioned earlier, this can be computed on Magma via the command

SilvermanBound(E_a);

We should also mention that this bound can be improved using the command

SiksekBound(E_a);

We have finally arrived at the point where we can state our main theorem of this

section concerning the difference of canonical heights on Ea.
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Theorem 5.1.5. Let P ∈ Ca(Q). Then we have

∣∣∣ĥEa(φ1(P ))− ĥEa(φ2(P ))
∣∣∣ ≤ 51.18 + 2 log(a).

Proof. This is a combination of the inequalities (5.1) and 5.1.4 used in 5 we discussed

at the beginning of this chapter.

We are now in the position to demonstrate an example of how we find rational points

on a curve in our family.

Example 1. Let a = 3. Note that this value does not satisfy the conditions stipulated

in Conjecture 3 but we remark that those conditions are sufficient, not necessary

in order to find examples where we can use Dem’yanenko-Manin, while avoiding

Chabauty-Coleman. By Theorem 5.1.5, we have that

∣∣∣ĥE3(φ1(P ))− ĥE3(φ2(P ))
∣∣∣ ≤ 52.13.

Also, since a = 3, we have

E3 : y
2 = x3 + 18x2 + 77x

and using Magma we can find a generator for its free part, say R. We find ĥ(R) = 0.922.

This implies that

∣∣n2 −m2
∣∣ ≤ 57.88 ⇒ max{|n|, |m|} ≤ 1

2
(57.88 + 1) < 29.

Now all that is left to do is perform a search for either:

• P ∈ C3(Q) such that φ1(P )± φ2(P ) ∈ E3(Q)tor

• P ∈ C3(Q) such that φ1(P ) = nR + T or φ2(P ) = nR + T with T ∈ E3(Q)tor

and |n| ≤ 28.
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Both of these are finite computations which can be carried out easily on Magma so

we find:

C3(Q) = {(±1 : ±4 : 1), (0 : ±1 : 1), (1 : ±1 : 0)}.
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