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Abstract

Low Resource RAG: From Slide Data Processing to RAG Systems
By Andrew Chung

Large Language Models (LLMs) have emerged as a transformative force in technological
development over the past few years. These models have been widely integrated across
educational, research, and business applications, serving as tools to enhance learning, a source
of curiosity for research exploration, and streamline business operations in both internal and
customer-facing systems. While LLMs offer diverse capabilities, one of their most sought-after
application across all different sectors has been their potential to provide precise, contextual
information and insights from domain-specific knowledge bases. In this context, Retrieval-
Augmented Generation (RAG) has emerged as the leading framework for leveraging LLMs’
capabilities while maintaining accuracy and reliability.

To advance the understanding and development of successful retrieval-augmented gen-
eration systems, we examine various components to identify essential elements and poten-
tial performance improvements across different methodologies. Through collaboration with
Hyundai, we develop a low-resource domain retrieval-augmented generation system designed
to answer questions about automotive safety collision tests using information from multimodal
slides. Our approach introduces a novel, language model-centric data processing pipeline that
effectively transforms slide information into textual content suitable for retrieval and answer
generation. We evaluate the performance of different state-of-the-art retrieval-augmented
generation frameworks on our processed data, as well as different variations of embedding
models. To assess our system’s effectiveness, we generate synthetic question-answer pairs from
our refined data to test the accuracy of different retrieval models. Furthermore, we create
additional synthetic question-answer pairs specifically targeting the multimodal table and
chart information extracted from the slides. Our findings indicate that utilizing fine-tuned
embedding models and language models with the original retrieval-augmented generation
framework achieves the highest accuracy. We also finetune Vision Large Language Models to
see if open-sourcing our data processing pipeline is possible. We conclude by outlining next
steps to encourage research toward developing open-source retrieval-augmented generation
frameworks for low-resource domains.
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Chapter 1

Introduction

1.1 Background and Motivation

Large Language Models (LLMs) have emerged as powerful tools for question answering

across diverse domains. Various benchmarks evaluate LLMs on tasks ranging from math-

ematics and chemistry to logical reasoning. However, LLMs are inherently constrained by

their training data, leading to three critical limitations in their question-answering capabil-

ities:

1. Inability to access post-training information and current events

2. Persistence of outdated information as presumed facts

3. Limited comprehension of domain-specific knowledge for specialized applications

While newer LLM iterations incorporate more recent information, the challenge of

domain specificity remains significant for organizations seeking to leverage LLM-based

question-answering systems for specialized use cases. Creating and customizing infor-

mation systems for specific data types or organizational requirements continues to be a

pressing challenge. Moreover, continuous LLM training proves impractical for most appli-

cations due to its substantial computational and financial demands. In response to these

1
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Figure 1.1: The general concept of RAG. Utilize an external database to have domain-
specific/updated information.

limitations, retrieval-augmented generation [1] (RAG) has emerged as the current state-of-

the-art solution.

RAG addresses the challenge of incorporating novel information by retrieving relevant

contextual information from an external database based on user queries. This retrieved

information is then provided to an LLM alongside the query, enabling the generation of

informed responses. Following RAG’s introduction, numerous frameworks and methodolo-

gies have been proposed, each claiming superior performance. In our research collabora-

tion with Hyundai, we faced the challenge of developing a question-answering system for

novel multimodal data in a low-resource domain. This led us to investigate various RAG

frameworks, embedding models, and data processing methodologies to create an effective

system for handling multimodal data in safety collision testing and automotive applica-

tions. Additionally, we were tasked to build an open-source RAG system without utilizing

closed-source models like GPT or Claude due to privacy and security concerns.
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A notable aspect of our research involves processing visual information, including tab-

ular data and crash test imagery. Our findings suggest that while limitations exist, visual

information can be integrated through text conversion, enabling the development of a

functional RAG system. Furthermore, we aimed to develop a RAG model specifically op-

timized for the Korean language, adding another layer of complexity to our low-resource

domain challenge. We find that the fine-tuning of LLMs and embedding models lead to

significant improvements and usability in Korean-based RAG systems and allows the mod-

els to learn about the low resource car domain. Thus, our primary objective is to develop

a sustainable RAG system and robust data conversion pipeline capable of continuously

integrating new test data while providing accurate and fluent responses to user queries in

Korean. To investigate this, we explore the following questions:

1. How can recent advances in multimodal large language models be leveraged to effec-

tively process diverse data types (visual, positional, and graphical) within retrieval-

augmented generation systems?

2. What methods can improve the quality and usability of textual representations de-

rived from multimodal information, and how do these enhancements affect retrieval

performance and answer generation?

3. What factors influence the effectiveness of different RAG architectures across lan-

guages and domains, and what optimization strategies can improve performance in

multilingual settings?

4. With the recent advancement of open-source vision large language models, are we

able to capture the multimodal data through text as well as existing closed source

models?
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1.2 Research Objective

This thesis was developed in collaboration with Hyundai Motor Company as part of a

broader research initiative [2]. The work focuses primarily on data processing methodolo-

gies and the evaluation of various retrieval-augmented generation frameworks. Our goal is

to develop a system capable of effectively answering user questions based on multimodal

vehicle collision data. The key contributions of this work include:

1. We develop a novel, LLM-centric data processing pipeline that can effectively convert

slide information into a usable text format that takes into account positional, graphi-

cal, and visual information presented on slide images.

2. We conduct qualitative and quantitative analyses of LLM-generated data representa-

tions and evaluate retrieval performance across various data preprocessing strategies,

including the incorporation of explanatory text and handling of tabular and graphi-

cal elements.

3. We systematically evaluate the retrieval performance of various Korean-language em-

bedding models to assess the current capabilities of available open-source solutions

for multilingual information retrieval

4. We conduct benchmarking of state-of-the-art RAG frameworks for the retrieval as-

pect using our domain-specific data to evaluate and compare retrieval effectiveness

across different methodological approaches in Korean

5. We finetune Qwen2.5-VL-7B [3], a SOTA vision large language model to create an

open source solution for our data processing pipeline.

Due to the nature of our domain, our research explores how retrieval-augmented gen-

eration systems perform within low-resource domains, such as the car domain. Through

this research, we hope to present a reliable, open-source solution that can be applied for

all different low-resource domains that contain multimodal information.
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1.3 Thesis Statement

Our thesis investigates retrieval-augmented generation in low-resource environments and a

develops method for creating synthetic textual data that represents multimodal elements.

We evaluate various RAG methods and analyze how retrieval performance changes across

different components of the RAG pipeline.



Chapter 2

Background

2.1 Background and trends in NLP and

information systems

Natural Language Processing [4] (NLP) represents a significant intersection of computer

science, computational linguistics, and machine learning dedicated to enabling compu-

tational systems to understand, interpret, and generate human language. This field has

experienced unprecedented growth in recent years, primarily driven by advancements in

deep learning architectures and the emergence of LLMs.

LLMs [5] have fundamentally transformed the NLP landscape, establishing themselves

as the state-of-the-art approach for a diverse range of language-related tasks. These mod-

els, trained on vast corpora of text data, have demonstrated remarkable capabilities in

understanding context, generating coherent responses, and performing complex linguis-

tic tasks with human-like proficiency. Their impact extends beyond academic research,

permeating various industrial applications through multiple implementation strategies:

fine-tuning for domain-specific tasks [6] [2], deployment as autonomous agents capable of

executing complex workflows [7], and integration into conversational systems that facilitate

natural human-computer interaction [8].

6
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Concurrent with the rise of LLMs, sophisticated embedding models [9] have been de-

veloped that capture semantic relationships by representing linguistic units—words, sen-

tences, or entire documents—as dense vectors in high-dimensional space. This development

from sparse to dense embedding representations have allowed for embedding models to

encode richer semantic information, effectively mapping the complex relationships between

linguistic elements while preserving their contextual meaning. This has enabled semantic

search capabilities that transcend traditional keyword-based and sparse representation

approaches. By computing similarity metrics between query vectors and document vectors,

these models can identify conceptually related content even when exact term matches are

absent.

There has been a significant shift across industries toward developing robust internal

search systems for proprietary or restricted documents that cannot be indexed by con-

ventional web search engines [10]. This trend reflects growing organizational needs to effi-

ciently access and leverage institutional knowledge contained within private repositories.

The combination of embedding models and LLMs has catalyzed a more natural language

interface. Modern systems can now interpret user queries expressed in conversational lan-

guage, retrieve relevant information based on semantic understanding, and generate com-

prehensive answers that synthesize information from multiple sources.

2.2 Exploring Retrieval-Augmented Generation

Retrieval-augmented generation [1](RAG), at its core, is a methodology enabling users to

obtain domain-specific or up-to-date answers from an LLM. By accessing retrieved docu-

ments from an external database, the LLM generates answers based on this input rather

than solely relying on internal knowledge. The core components of RAG can be distilled

to: user queries, LLMs, embedding models, and a vector store or external database. Since

RAG’s emergence, researchers have modified various aspects of this framework. Works like
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Figure 2.1: The retrieval-augmented generation framework. A user query is inputted into
the system, where it allows for document retrieval and answers the user question based on
retrieved documents through LLM answer generation.

RAG-FUSION [11] and Hypothetical Document Embeddings [12] (HyDE) have refined

user queries through hypothetical answer generation and multi-query techniques. Other

approaches enhance answer generation by fine-tuning LLMs for specific domain knowl-

edge and implementing self-evaluation and correction mechanisms [13]. Embedding models

have been fine-tuned and retrieval results re-ranked based on document relevance [2] [14].

Additionally, data preprocessing has been optimized through synthetic data generation, hi-

erarchical structuring, and diverse chunking strategies using semantic or paragraph-based

segmentation [15]. Methodologies like Recursive Abstractive Processing for Tree Organized

Retrieval [16] (RAPTOR) have become a staple method for developing databases for long

context retrieval through creation of synthetic generation based on clustered documents.

From the numerous RAG-oriented frameworks available, we selected two approaches

that we believe would achieve optimal retrieval quality on our synthetically generated

data. These frameworks include the original retrieval-augmented generation framework,

Hypothetical Document Embeddings (HyDE), and Recursive Abstractive Processing for

Tree Organized Retrieval(RAPTOR). Beyond the baseline RAG framework, the other
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three approaches enhance the retrieval component through either data manipulation or

query manipulation/rewriting.

The HyDE framework improves retrieval performance—subsequently enhancing an-

swer accuracy—by pre-generating a hypothetical answer to the user query. This generated

answer, despite potentially containing hallucinated information, typically incorporates

domain-specific terminology and concepts relevant to the user’s inquiry. This approach

enhances retrieval performance because the embedding generated from this hypothetical

answer often exhibits stronger correlation with embeddings in the vector database through

increased lexical and semantic similarity. We leverage this answer generation approach

using our LLM fine-tuned on the vehicle collision safety domain. We attempt to utilize

different variations of the HyDE framework by including questions

Additionally, we implemented the RAPTOR framework, which generates synthetic

larger-context summaries for clustered documents. This approach theoretically enhances

retrieval by providing higher-level conceptual information alongside specific details, giving

the model a more comprehensive understanding of the cross-document context relevant to

the user’s query. By clustering semantically related documents and generating abstracted

summaries of these clusters, RAPTOR creates a hierarchical knowledge representation

that bridges the gap between granular document-level information and broader thematic

connections. This multi-level retrieval strategy potentially improves answer generation by

supplying the LLM with both the specific details needed for accuracy and the contextual

framework necessary for coherence, particularly beneficial when responding to complex

queries that span multiple related concepts within the vehicle collision safety domain.

However, this framework was ultimately dropped, as it was not possible to fairly evaluate

against the other models.
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2.3 Embedding Models

RAG systems are inherently text-based, as most embedding models have historically uti-

lized text to generate embeddings. The evolution of these embedding models began with

transformer-based architectures like BERT [17] (Bidirectional Encoder Representations

from Transformers), which revolutionized NLP by introducing contextualized word repre-

sentations. Significant advances emerged with Siamese BERT networks [18], which utilize

twin BERT encoders with shared weights to learn similarity between text pairs, dramati-

cally improving retrieval performance for semantic search applications. These BERT-based

embedding models established the foundation for semantic search by encoding textual in-

formation into dense vector representations that capture contextual meaning.

In recent times, embedding models have evolved beyond traditional text-based ap-

proaches, with the Beijing Academy of Artificial Intelligence (BAAI) leading advance-

ments through its BGE series, particularly BGE-M3 [19]. BGE-M3 is a multi-functional

embedding model that supports dense, sparse, and multi-vector retrieval, enabling more

flexible and accurate information retrieval in RAG systems. Built on a transformer-based

architecture similar to XLM-RoBERTa, it leverages self-knowledge distillation to refine

embeddings across different retrieval tasks. Its multilingual capabilities, which were par-

ticularly important for our Korean-based RAG system, and ability to process long-form

documents make it highly effective for cross-lingual and large-scale knowledge augmenta-

tion, enhancing the precision and contextual relevance of retrieved information in RAG

workflows.

As RAG frameworks evolved, the limitations of text-only processing became appar-

ent, particularly when dealing with diverse information sources containing images, audio,

and video. This recognition prompted the development of multimodal embedding mod-

els capable of processing and aligning representations across different modalities. Models

such as CLIP [20](Contrastive Language-Image Pre-training) pioneered this approach by

jointly training on image-text pairs, enabling semantic search across both textual and vi-
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sual content. However, even with current advancements there was much to desire for image

embedding models and vision large language models(VLLM).

Despite these advancements, challenges remain in effectively integrating multimodal

information within RAG systems. The biggest issue was due to VLLM image understand-

ing, as at the point of the experiments open-source VLLMs were not advanced enough to

coherently understand complex images and slides. This was further shown when utilizing

Korean, as many of these open-source VLLMs and image embedding models were much

more proficient in English, with a significant decrease in performance in languages like

Korean. This ultimately led us to convert all visual information that we have into textual

information.

2.4 Fine-tuning

Fine-tuning [21] LLMs and embedding models have proven to be very effective in recent

times, and have been used across all different domains and applications. Through fine-

tuning the weights of a model, or learnable parameters, are able to be adjusted to bet-

ter align with specific domain knowledge and task requirements. This process allows pre-

trained models to adapt to specialized contexts while maintaining the foundational knowl-

edge acquired during their initial training phase.

For LLMs, fine-tuning typically involves exposing the model to domain-specific cor-

pora and training it to generate responses that reflect the linguistic patterns, terminology,

and knowledge structures unique to that domain. In the context of vehicle crash collision

safety, this means training the model to understand and accurately reproduce specialized

technical vocabulary, safety regulations, engineering principles, and analytical frameworks

common in this field. The fine-tuning process can be further enhanced through instruction-

tuning [22], where the model learns to follow specific formats and patterns for question

answering based on the anticipated user queries.
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Embedding models benefit similarly from domain-specific fine-tuning [19], though the

objective differs slightly. Here, the goal is to optimize the vector space representation to

better capture the semantic relationships particular to the domain. By fine-tuning on pairs

of domain-specific texts with known semantic relationships, the embedding model learns

to map related concepts closer together in the vector space, even when those relationships

might be obscure or technical. This is particularly valuable in specialized fields like vehicle

safety, where technical terms may have precise relationships that general-purpose embed-

ding models might not fully capture.

2.5 Multimodal Data Processing in RAG

In our context, utilizing multimodal data requires the conversion of non-textual elements

into textual components. Due to limitations in both language support and the integration

of images in an open-source setting, converting all images into textual descriptions allows

us to leverage state-of-the-art (SOTA) multilingual textual embedding models and incor-

porate the Korean language more effectively. Additionally, the limitations of open-source

vision-language models [23] (VLMs) played a crucial role in our data processing decisions.

At the initial stage of experimentation, the available vision-language models were not

of sufficient quality to ensure reliable retrieval and generation, making a text-centric ap-

proach more viable.

Previous research has explored the integration of image embeddings and textual ele-

ments within retrieval-augmented generation (RAG) systems. Notably, models such as

MuRAG [24] (Multimodal Retrieval-Augmented Generation) have attempted to retrieve

both image and textual information to enhance knowledge-grounded generation. Similarly,

frameworks like REVEAL [25] have introduced retrieval-augmented pretraining strategies

that incorporate multimodal knowledge to improve generative outputs. However, these

approaches primarily rely on direct multimodal embeddings and fusion rather than con-
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verting images into text for retrieval purposes.

To our knowledge, no prior research has specifically investigated the use of image-to-

text conversion within retrieval-augmented generation systems. Furthermore, there has

not been any formal research on slide presentation data processing and utilizing different

complex multimodal elements within. There has been evaluation of tabular data within a

text format, but the evaluations simply focused on the table data rather than any other

elements [26]. While this method is commonly employed in industry for practical appli-

cations—such as image captioning, OCR-based document processing, and search engine

optimization—there has not been an in-depth quality analysis of how image-to-text trans-

formations affect retrieval performance and generative accuracy within RAG architectures.

Our work aims to address this gap by systematically evaluating the impact of textualized

visual data on retrieval quality, particularly in resource-constrained language environments

such as Korean.

Our research makes a novel contribution by textualizing complex multimodal elements

including tabular data, charts, and images through detailed explanations and direct con-

tent extraction. This approach presented significant challenges, as converting these diverse

visual elements into coherent and retrievable text required developing specialized process-

ing techniques. Our evaluation indicates that this textualization method proved moder-

ately effective for improving retrieval quality, particularly when handling Korean-language

content.

By structuring multimodal data into a purely textual format, we aim to enhance the

alignment between visual knowledge and language models while ensuring compatibility

with existing retrieval and generation architectures. This approach not only improves

retrieval efficiency but also allows for seamless integration with Korean-language NLP

systems. Future research may explore hybrid approaches that balance text-based image

representations with multimodal embeddings to further optimize retrieval performance.
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2.5.1 Synthetic QA and Data Generation

Synthetic QA generation [27] has emerged as a critical technique in addressing data scarcity

challenges for training and evaluating NLP systems. Traditional QA datasets rely on hu-

man annotation, which is costly, time-consuming, and often limited in scope. Synthetic

data [28] generation offers a scalable alternative by algorithmically creating customizable

datasets tailored to specific domains.

Recent advances in LLMs have significantly improved synthetic data quality [29]. Mod-

els can now generate natural-sounding questions and answers that closely mimic human

content across diverse domains. This capability has enabled wider adoption of synthetic

data for both training and evaluation purposes.

In our work, we leveraged synthetic QA generation to create an evaluation dataset

tailored to our synthetically generated domain data. This approach provided a controlled

evaluation environment with known ground truth, enabling precise measurement of system

performance. The generated QA pairs facilitated detailed analysis of retrieval mechanisms

in RAG systems, helping identify strengths and weaknesses in finding relevant context

from our synthetic corpus.

Additionally, our synthetic QA dataset supported the fine-tuning of both embedding

models, LLMs, and VLLMs [2] [19] [30] , allowing them to better align with our specific

domain requirements and query patterns. By generating questions targeting specific as-

pects of our synthetic data, we ensured comprehensive coverage of various information

types and complexity levels.

This synthetic data generation approach formed a crucial component of our evaluation

framework, providing insights that would have been difficult to obtain through manually

created datasets alone. As LLM capabilities continue to advance, synthetic data represents

an increasingly valuable technique for developing robust, domain-specialized AI systems.



Chapter 3

Approach

3.1 Data Processing

Data processing was a critical component of our retrieval-augmented generation system.

Due to limitations in open-source VLLM image understanding capabilities and our sys-

tem’s Korean language requirements, we developed a data processing pipeline to convert

image data into textual markdown format for use in our vectorstore.

Type Source File Slide Q&A Pairs

PPT
Test Report 1,463 4,662 59,402
Meeting Report 249 882 7,696

Page Chapter Q&A Pairs

PDF Textbook 404 81 1,505

Total 5,625 68,603

Table 3.1: Raw data statistics by source, along with the corresponding number of gener-
ated Q&A pairs.

3.1.1 Dataset

Our dataset comprised 1712 slide presentations containing 5,544 individual slides with

diverse complex elements including images, tables, charts, text, and various combinations

thereof. There was a lot of company domain-specific knowledge like internal collision test

15
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naming conventions, abbreviations, and classified information that an LLM could not have

been previously trained on. We also incorporated a textbook with 404 pages on vehicle

crash collision safety. The textbook processing was handled by another lab member and

falls outside the scope of this thesis. This data was all in the Korean language with mini-

mal english content, adding an additional challenge for OCR processing.

Figure 3.1: An example of potential elements that exist within slide data. Includes com-
plex tables, charts, and more.

The multimodal nature of the slide content necessitated specialized processing tech-

niques for images, charts, and tables. Our objective was to generate high-quality synthetic

textual markdown data suitable for effective retrieval and for fine-tuning both the embed-

ding model and the LLM.
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3.1.2 Slide Data Processing

In order to process the data, we utilized a 3-stage data processing pipeline that mitigated

many different issues that existed at the time of when we processed the data. The 3-stage

pipeline presented in figure 3.2 showcase an LLM-centric pipeline that utilizes both the

original slide presentation data as well as the images to create quality data extractions

and explanations. The pipeline leverages both Python-based tools and advanced LLMs,

specifically Claude 3.5 Sonnet.

Figure 3.2: A 3-stage process for data processing of slide data. Each process further refines
or extrapolates synthetic data from the original slide presentation.

Process 1: Data Extraction and Initial Processing

The original PPTX file is processed in two parallel streams:

• Python-pptx is employed to extract textual content directly from the slides, convert-

ing it into an initial markdown format.

• Simultaneously, each slide is converted into a PNG image.

Claude Sonnet 3.5 is then tasked with analyzing the slide images. It extracts compre-

hensive information, including all text, tables, and detailed descriptions of images and
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charts.

Process 2: Comparative Analysis and Error Correction

In this stage, the LLM performs a comparative analysis between its extracted content

from the slide images and the text directly extracted by Python-pptx. This crucial step

helps identify and rectify OCR errors, misspellings, and formatting inconsistencies. The

LLM corrects the extracted contents of the slide image based on this comparison, ensuring

high fidelity to the original content.

Process 3: Expert-Level Explanation Synthesis

In this stage the LLM generates detailed, expert-level explanations for all contents on

each extracted slide. Importantly, this process incorporates context from the previous two

slides (n = 2), allowing for more coherent and contextually relevant explanations. The

output is a final Markdown (MD) file containing comprehensive explanations for each

slide.

This systematic approach transforms complex visual presentations into structured, con-

textually rich markdown content. By combining Python-based text extraction, image pro-

cessing, and multi-stage LLM analysis, we ensure a comprehensive conversion optimized

for both human readability and machine processing in RAG frameworks.

The original hypothesis for utilizing explanations of the data rather than the raw data

extraction itself, was that table data would contain many unnecessary characters that offer

no value for the embeddings generated by our embedding model. However, after evaluation

of the data, it was shown that the explanations had no tangible benefit for both retrieval

and fine-tuning of the different embedding models. In the future it would be wise to skip

stage three, but was kept here as it is an interesting point of exploration.

3.1.3 Additional Headers

In addition to the slide presentation data, there was a spreadsheet that contained specific

information about the different test reports and presentations such as ID numbers, region



19

Figure 3.3: Example Header that was prepended to all slide chunks

where testing took place, and the names and purpose of the test report. As shown in figure

3.3, these small sections of testing information was prepended to all slide chunks, provid-

ing extra keywords and topics that could relate better to user queries for specific tests or

examples of tests.

3.1.4 Synthetic QA Generation

Using our generated synthetic data, we created synthetic question-answer pairs that served

multiple purposes. These synthetic QA pairs enabled us to fine-tune both our LLM and

embedding model, which were not previously trained on crash-collision safety domain

knowledge or our classified dataset, and severed as evaluation queries for retrieval and

answer generation. This approach provided the LLM with enhanced context for retrieved

data during answer generation and allowed the embedding model to learn contrastive

elements between different data chunks.

To generate these synthetic QA pairs, we employed an LLM with carefully engineered

prompts to create multiple distinct questions based on each chunk of textbook content

and slide data. The questions comprehensively covered various content elements from each

source, including image descriptions and tabular/chart data.

We also created a synthetic QA dataset to specifically test files that contained table or

chart extractions. The QA pairs generated for this part of the evaluation set specifically
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focused on specific details within the tables and charts that were extracted from slide

images. This was done in order to focus on the evaluation of multimodal data converted

into text format, as this was a crucial part of the overarching Hyundai Project.

We deliberately generated these QA pairs in Korean to closely simulate the real-world

use case, as our target users would be inputting queries in Korean and expecting responses

in the same language. This approach ensured our system would function effectively in its

intended language environment.

3.1.5 Evaluation of Synthetic Data

To evaluate our synthetic data, we utilized qualitative and quantitative analysis. We take

a deep dive into Korean OCR performance, as well as qualitative analysis on table/chart

extraction. We utilize token counts to compare the changes between process 1 and pro-

cess 2 from figure 3.2, giving a quantitative perspective on the amount of change between

both the first and second processes; this allows us to calculate the total difference in to-

kens, overall change, and largest differentials in token count between the first and second

processes of each document to name a few. We also calculate hallucination through the

number of tokens that were processed incorrectly across 63 different documents. We also

perform qualitative analysis on the generated files through looking at the differences be-

tween process 1 and process 2 documents, as well as looking at the results generated for

each of the different modalities present within the documents.

We perform special analysis, specifically on domain-specific abbreviations. Through-

out the slide documents, it was noted that there were many different abbreviations that

are company specific. For example, terms such as RTE meaning restraint energy or DAB

meaning driver airbag were company specific abbreviations used across all slide presenta-

tions. When utilizing these terms, we evaluated the rate at which they were incorrectly

interpreted by the LLM for explanation generation for 18 predefined abbreviations.
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3.2 Embedding Model - BGE-M3

For our experiments, we attempted to use many different embedding models within our

framework. This included models such as KoSimCSE, KoBERT, as well as SNU-Bert [31]

which are all models specifically designed to understand and utilize Korean text. How-

ever, upon our preliminary testing, these models underperformed significantly, achieving

very low precision and MAP. With that in mind, we utilized the state-of-the-art BGE-M3

embedding model, which allows for not only multilingual embeddings, but cross-lingual em-

beddings. This model proved to be superior in our use case, and significantly improved as

we fine-tuned the model on different variations of the dataset, further described in Chapter

4. The vector representations generated by BGE-M3 allows for the usage of cosine similar-

ity between vectors, calculated as:

Cosine Similarity(v1, v2) =
v1 · v2

||v1|| × ||v2||
(3.1)

By calculating the cosine similarity between two vectors we are able to obtain a score

that compares the query to each document in the vectorstore, allowing us to rank doc-

uments by relevance to the user’s query. Higher cosine similarity scores indicate greater

semantic similarity between the query and document vectors.

In general, for a question q, the model retrieves the top n chunks from m chunks D,

based on the cosine similarity between the normalized embeddings of q and each chunk

di ∈ D, as follows:

q[CLS] ∈ R1×d; D[CLS] ∈ Rm×d

q̂[CLS] =
q[CLS]

||q[CLS]||
; D̂[CLS] =

D[CLS]

||D[CLS]||

Similarity(q,D) = q̂[CLS] · D̂⊤
[CLS] ∈ R1×m

Dtopn = Sort (D, key = Similarity(q,D)) [: n]

(3.2)
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The BGE-M3 model’s architecture is based on a transformer encoder with 580 million

parameters, trained on a diverse multilingual corpus spanning 100+ languages. Its cross-

lingual capabilities were particularly valuable for our application, as it could effectively

handle both Korean and English technical terminology within the same embedding space.

This allowed us to maintain consistent semantic relationships regardless of the language

mixture in our slides.

In our implementation, we configured the model to generate 1,024-dimensional embed-

dings, which provided sufficient representational capacity for the technical domain while

maintaining reasonable computational efficiency.

3.2.1 Fine-Tuning

To fine-tune BGE-M3, we utilized synthetically generated QA pairs derived from our

dataset. Two variants were created: one incorporating explanatory with the slide extrac-

tions and another excluding the explanations. Both variants were fine-tuned using dense

retrieval methodologies, focusing on optimizing the encoder for dense embeddings.

BGE-M3 employs contrastive learning to effectively distinguish between similar and

dissimilar documents in relation to a query. In our approach, each query was paired with

a positive document and negative documents. Negative samples were selected through

random sampling, ensuring they were contextually relevant yet distinct from the positive

samples. This fine-tuning process led to notable improvements in retrieval performance.

3.3 RAG Frameworks

3.3.1 Frameworks

For our retrieval-augmented generation frameworks, we initially planned to use Hypotheti-

cal Document Embeddings (HyDE) cite, Recursive Abstractive Processing for Tree Orga-

nized Retrieval (RAPTOR) cite, and the original RAG framework as a baseline. However,
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we ultimately dropped RAPTOR because its higher-level summaries—generated during

database build time—made it impossible to create precise citations for the underlying text

chunks. Since a single summary can encompass multiple chunks, it would lead to citations

for several different slides, which would be unhelpful to the end user. Citations were a cru-

cial requirement in our system, and RAPTOR’s approach hindered this need. Moreover,

developing a fair evaluation method based on the synthetically generated data proved chal-

lenging, as it would require human evaluation and be impractical for comparison against

our automated approach for the remaining two methods.

We also explored modifications to the HyDE framework to enhance retrieval perfor-

mance. In its traditional implementation, HyDE generates a hypothetical response to a

query and then uses that response to retrieve relevant documents. In our modified ap-

proach, we concatenate the original question with the generated answer before perform-

ing retrieval. Both theoretically and practically, this combined input better captures the

query’s intent even when the original query lacks domain specific terminology, resulting

in more accurate document matches. Considering these factors, we ultimately evaluated

three methods: the original RAG framework, standard HyDE, and our modified HyDE

that includes the question with the hypothetical answer.

3.3.2 Storage of Data

In order to utilize our data for retrieval in our different RAG systems, we need to store

our data. Many different vector databases and indexes were tested, such as ChromaDB

or FAISS, however, these different vector database indexings had their own optimizations

that degraded performance. The trade-offs of the optimization, which was almost always

related to the speed of lookup times, was not significant enough for our data which was on

the smaller side with less than 10,000 chunks of textual data.

In terms of how the data was chunked and stored in the database, we utilized each slide

image as a chunk.
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Figure 3.4: Each slide of each slide presentation is stored as a chunk in the database and
given a dense vector representation through the embedding model.

Total Chunks =
N∑
i=1

si (3.3)

The equation above represents the total number of chunks, where si represents the

number of slides in presentation i. Each of these chunks were encoded with a dense vector

representation of the textual elements through our fine-tuned embedding models. Separate

databases were created for each of the different variations of the embedding models and

sets of stored data, as the encoding of the dense vector representation would change be-

tween them. The textbook data was stored in a similar manner, where each section of the

book was considered a single chunk and stored into the database. These vectors are later

used with cosine similarity to retrieve documents that can best answer the user query. For

storage efficiency and experimental flexibility, we utilized NumPy’s .npy file format, which

provided optimal I/O performance while maintaining the structural integrity of our vector

representations.
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3.3.3 Evaluation of Retrieval

To evaluate our retrieval quality, we utilize mean average precision (MAP) and success

rate as our primary evaluation metrics.

Mean Average Precision (MAP) measures the quality of document ranking across multi-

ple queries:

MAP@k =
1

|Q|
∑
q∈Q

AP@k(q) (3.4)

where |Q| represents the total number of queries in our evaluation set, and AP@k(q) is the

average precision for a specific query q up to rank position k.

Average Precision (AP) for an individual query is calculated as:

AP@k(q) =
1

min(m, k)

k∑
i=1

P (i)× rel(i) (3.5)

where m is the number of relevant documents (in our case, always 1), P (i) is the precision

at cutoff position i, and rel(i) is an indicator function that equals 1 if the document at

rank i is relevant to query q, and 0 otherwise.

Success rate provides a simpler metric that measures whether the relevant document

appears in the top-k retrieved results:

Success@k =


1 if

∑k
i=1 rel[i] > 0

0 otherwise

(3.6)

We evaluate MAP at k = 1, 5, and 10, and success rate at k = 5 and 10. These metrics

at different k values help us understand both the precision of our highest-ranked results

and the overall coverage of relevant documents within various retrieval depths.

For our evaluation methodology, we leveraged synthetic question-answer pairs specif-

ically generated to correspond with individual slide chunks. This approach established a

controlled experimental environment where each query had exactly one designated cor-
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rect document in the corpus. We considered a document retrieved successfully only if it

matched the specific slide chunk from which the question was derived.

This single-source ground truth assumption was implemented to ensure objective and

consistent evaluation across different model variations. It eliminated the subjectivity of

determining which additional documents might contain partial or alternative answers

to a given query. Consequently, traditional metrics like recall were not applicable to our

evaluation framework, as we deliberately constrained the relevant document set to exactly

one item per query, rather than attempting to identify all potentially relevant documents

in the corpus.

3.4 Open Source VLLMs for OCR Processing

Over the course of the past six months, there has been tremendous growth and improve-

ment in the open-source community, especially for vision LLMs. Beginning with the release

of Llama 3.2 generation of models, open-source vision models had a large increase in accu-

racy and usability. However, even then these models were the most capable in the English

language rather than other non-Latin alphabet languages like Korean or Japanese. With

the release of Qwen2.5-VL, the capabilities and possibility of open-source OCR extraction

became much more apparent and its abilities to OCR and understand languages other

than English grew tremendously.

With the data extracted through our data processing pipeline from Section 3.1.2, we

explored the possibility of fine-tuning an open-source VLLM to skip over process 1 and

immediately get useful synthetic data that can be used as a source of data for synthetic

QA generation and integration into a RAG system as data within the external database.

This would give us an open source solution for data generation, and a much more priva-

tized way for companies like Hyundai to generate data to put into a RAG database. We

fine-tune the Qwen2.5-VL-7B model for OCR and synthetic data generation from our slide
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presentation images.

3.4.1 Fine-tuning VLLM

In order to fine-tune a VLLM, it is very similar to an LLM, in that you need quality data

to shift the weights or parameters of a model to suit your task. However, there is now

the added input of an image that is fed in along with the text prompt. Since we want the

VLLM to have an increased understanding in OCR processing of presentation slides, we

created a dataset consisting of slide images paired with their correctly extracted textual

content.

The fine-tuning process involved optimizing the model to recognize and extract text

and create descriptions from slides while maintaining the semantic relationships between

visual elements. We employed full fine-tuning in order to improve OCR and synthetic data

generation accuracy. We fine-tune Qwen2.5-VL 7B for its performance in OCR processing

and visual understanding. We employ two H200 GPUs contained 144GB of memory for

each H200.

3.4.2 Data Preparation

To prepare the data, we set up the training examples in the following format:

"messages": [

{"role": "system", "content": SYSTEM_PROMPT},

{"role": "user", "content": [TEXT_PROMPT, IMAGE_PLACEHOLDER]},

{"role": "assistant", "content": MARKDOWN_ANSWER}

],

"image_path": IMAGE_PATH

Where ”messages” contains the system prompt given to the VLLM, the textual prompt

with instructions, the image placeholder indicating where the slide image should be pro-
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cessed, and the expected answer containing the extracted text. The ”image path” field pro-

vides the location of the slide image file to be tokenized and inserted at the IMAGE PLACEHOLDER

position during training.

Each training example pairs a slide image with its corresponding OCR output, allowing

the model to learn the mapping between visual slide elements and their textual represen-

tation. This format follows the standard conversational structure required for fine-tuning

VLLMs while incorporating the image processing capabilities needed for the OCR task.

In order to utilize our images, we utilized the recommended resizing from Qwen, which

recommended 448×448 dimensions. We tested increasingly higher resolutions up to 2400×1800

to determine optimal performance across various image sizes. The actual size that is in-

putted into the VLLM may differ, as Qwen automatically estimates pixel sizes to the near-

est multiple of 28.

3.4.3 Evaluation of VLLM

Our evaluation strategy focused on assessing multiple fine-tuned variants with different

image resolution configurations. We trained our model on 4,742 data points, reserving 447

for evaluation purposes. For this generation task, we employed several different metrics.

In order to get a sense of quality of the OCR, we utilized standard OCR metrics which

includes character error rate (CER) and word error rate (WER). These equations can be

written as follows:

CER =
Sc +Dc + Ic

Nc

(3.7)

where Sc, Dc, and Ic represent the number of character substitutions, deletions, and

insertions, respectively, required to transform the predicted text into the reference text,

and Nc is the total number of characters in the reference text.
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WER =
Sw +Dw + Iw

Nw

(3.8)

where Sw, Dw, and Iw represent the number of word substitutions, deletions, and inser-

tions, respectively, and Nw is the total number of words in the reference text.

We also utilize the BERT-Score similarity metric to evaluate semantic similarity be-

tween the generated and reference texts. While character and word error rates capture

surface-level differences, they fail to account for semantic equivalence or contextual mean-

ing. BERT-Score addresses this limitation by leveraging contextual embeddings from pre-

trained language models to measure similarity at a deeper semantic level.

This metric is particularly valuable for our VLLM evaluation because OCR errors may

preserve semantic meaning despite character-level differences. For instance, substituting

”organization” with ”organisation” would significantly impact CER and WER metrics

despite maintaining identical meaning. This limitation becomes particularly pronounced

when evaluating descriptions of images or charts, where two semantically equivalent de-

scriptions that identify identical key elements may use entirely different phrasing or struc-

tural organization, resulting in severely penalized WER and CER scores despite their func-

tional equivalence. BERT-Score [32] allows us to calculate precision, recall, and F1 scores

based on contextual embeddings and shows higher correlation with human judgments com-

pared to traditional string-matching metrics, making it especially suitable for evaluating

text with potential paraphrasing or minor variations that preserve the core information.

The BERT-Score is computed as:

PBERT =
1

|x|
∑
xi∈x

max
yj∈y

cos(exi
, eyj) (3.9)

RBERT =
1

|y|
∑
yj∈y

max
xi∈x

cos(exi
, eyj) (3.10)
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FBERT = 2 · PBERT · RBERT

PBERT +RBERT

(3.11)

where exi
and eyj are the contextual embeddings of tokens xi and yj in the candidate

and reference texts, respectively.

In this context, BERT-Score Precision (PBERT) measures how well the generated

(candidate) tokens align with the most semantically similar tokens in the reference text.

It evaluates whether the generated output contains relevant information by checking if

each token in the candidate has a close match in the reference text. A high precision score

suggests that the generated text contains words or phrases that are contextually similar to

those in the reference, reducing the likelihood of extraneous or irrelevant information.

Similarly, BERT-Score Recall (RBERT) assesses how well the reference tokens are cov-

ered by the generated text. It measures whether the important elements in the reference

text are retained in the candidate output by checking if each reference token has a seman-

tically similar counterpart in the generated text. High recall indicates that the generated

text captures most of the meaningful content from the reference, ensuring completeness.

Since precision and recall often have trade-offs—where high precision may lead to overly

concise outputs and high recall may introduce verbosity—BERT-Score F1 (FBERT) pro-

vides a balanced measure by taking their harmonic mean. A high FBERT score indicates

that the generated text not only contains relevant information (precision) but also com-

prehensively retains the key aspects of the reference text (recall), resulting in an overall

semantically faithful representation.

Unlike traditional precision, recall, and F1-score in information retrieval (which rely

on exact token matching), BERT-Score leverages contextual embeddings to compare

words based on meaning rather than surface similarity. This allows it to effectively account

for paraphrasing, synonym usage, and slight rewording while still maintaining the core

meaning of the text. As a result, BERT-Score provides a more robust evaluation metric

for OCR-extracted data, especially when assessing descriptive text, where different but
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semantically equivalent expressions may be used to describe the same visual content.

Lastly, we evaluated documents quality through an LLM-as-Judge methodology [33].

Building on our successful application of this evaluation approach for RAG system answer

generation [2], we adapted the technique to assess our slide extraction responses. The eval-

uation used the original slide extraction document from the data processing pipeline as the

reference standard, comparing responses from different fine-tuned model variants. Rank-

ings were determined based on similarity to the original slide documents from our closed-

source data processing pipeline. We compared the 448×336, 1280×960, and 2400×1800

model variants, excluding the 448×448 fine-tune due to its inferior performance relative

to the other three fine-tuned models. For these evaluations, we utilized GPT-4o as the

impartial judge, as the evaluation data was processed with Claude and Qwen. To counter

positional bias within the prompt response, the positions of the documents were randomly

shuffled each time the documents were sent to the model.

Qualitative analysis is also done on the highest performing image dimension fine-tune

models to evaluate the quality of explanations and overall OCR processing. We compared

our original extracted documents to those produced by the best performing models to see

the quality difference.
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Experiments

4.1 Evaluation of RAG and Embedding Models

In our experiments, we evaluate three main frameworks: the original RAG framework,

HyDE, and a variant of HyDE that uses both the question and the answer as the retrieval

query. We also consider three variants of the BGE-M3 embedding model: the original

vanilla model, one fine-tuned on both slide and explanation data, and another fine-tuned

solely on slide data. We measure performance using Mean Average Precision (MAP) and

Success at various retrieval depths (1, 5, and 10 documents). We assume each test query

has exactly one relevant document. To ensure consistency in our HyDE evaluations, we use

a file of pre-generated answers for each test query.

We begin by experimenting with data that combines slides and explanations. Specifi-

cally, we test the RAG and HyDE (answer-only) frameworks using both the vanilla and

explanation-fine-tuned BGE-M3 embedding models.

Model Method MAP@1 MAP@5 Success@5 MAP@10 Success@10

Vanilla-BGE RAG 28.28 38.11 54.32 39.41 64.06
Vanilla-BGE HyDE 18.08 24.62 35.67 25.65 43.30
Fine-Tune BGE RAG 47.60 59.27 77.86 60.32 85.52
Fine-Tune BGE HyDE 21.28 29.16 42.49 30.42 51.95

Table 4.1: Comparison of RAG vs. HyDE for Vanilla-BGE and Fine-Tune BGE.

32



33

Through the above results, we can see that between RAG and HyDE, HyDE performs

worse even with the fine-tuned embedding models. At MAP@10, there is a 30% difference

between RAG and HyDE performance for the fine-tuned variation of the BGE-M3 embed-

ding model. It is also worthy to note that Success@10 for the RAG model is at 85.52%,

meaning that when k is 10, the golden document is retrieved within the top 10 documents

85% of the time. Also, fine-tuning significantly increases the performance across both

methodologies, with RAG having a significant increase in retrieval quality. However, there

is still more to be desired from these retrieval metrics.

We further our evaluations by testing not only data with both the slide extractions and

explanations, but also data that only contains the slide extractions.

Test Data Method MAP@1 MAP@5 Success@5 MAP@10 Success@10

Slide RAG 29.83 39.74 56.05 40.89 64.65
Slide + expl RAG 28.58 37.91 53.69 39.25 63.69

Table 4.2: Vanilla BGE-M3

In Table 4.2, we observe that the vanilla embedding model achieves slightly higher re-

trieval performance when explanations are excluded from the dataset. Based on our prelim-

inary experiments with various dataset formats, we extended our evaluation by fine-tuning

an additional version of the BGE-M3 embedding model exclusively on slide extraction

data. If document retrieval improves with data containing only slide extractions, a model

fine-tuned solely on this content may yield even better results. Additionally, we evaluated

the HyDE retrieval method using a combination of both the question and answer across

all three embedding models, given that the performance of the original HyDE framework

indicated room for improvement. We adjust our experiments based on the results shown

in tables 4.1 and 4.2 to further test different frameworks, data formats, and embedding

models.

Table 4.3 shows the results for various combinations of data and frameworks using

an embedding model fine tuned on slide extraction and explanation data. The findings
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Test Data Method MAP@1 MAP@5 Success@5 MAP@10 Success@10

Slide RAG 47.46 59.06 77.35 60.23 85.97
Slide HyDE(A) 21.58 29.60 43.36 30.78 52.12
Slide HyDE(QA) 33.62 44.26 61.74 45.62 71.95
Slide + expl RAG 47.79 59.23 77.44 60.34 85.51
Slide + expl HyDE(A) 21.44 29.35 42.66 30.65 52.40
Slide + expl HyDE(QA) 34.00 44.46 61.56 45.82 71.70

Table 4.3: BGE-M3 Fine-tuned on slide and explanation data

indicate that each matching framework performs similarly across both datasets, with RAG

achieving the highest performance on both the slides only and the slides with explanations.

Although HyDE lags behind base RAG, it has a notable performance increase, by 11 to

13%, when the questions are appended along with the generated hypothetical answers.

Due to the comparable performance between the two datasets, we continue testing on both

sets. Although the embedding model is fine tuned on the explanation and slide dataset,

the overall performance remains similar no matter the type of data that is being retrieved.

We continue our experiments by fine-tuning the BGE-M3 embedding model specifically

on slide data, without utilizing any explanations. From the table shown below, we can

see a significant increase in both MAP and Success performance across all the different

frameworks and datasets.

Test Data Method MAP@1 MAP@5 Success@5 MAP@10 Success@10

Slide RAG 60.42 71.09 87.09 71.73 91.79
Slide HyDE(A) 26.40 34.64 48.18 35.63 55.45
Slide HyDE(QA) 42.56 53.63 71.10 54.70 78.95
Slide + expl RAG 58.26 69.00 85.16 69.79 90.99
Slide + expl HyDE(A) 26.51 34.52 47.53 35.59 55.29
Slide + expl HyDE(QA) 42.44 53.28 70.36 54.31 77.98

Table 4.4: BGE-M3 Fine-tuned on slide data

RAG continues to perform the best across both slide data and the combination of slide

and explanations. However, we can see the massive performance increase when utilizing

the embedding model that is fine-tuned on slide data rather than the combination dataset.

The performance of all the frameworks increase significantly, ranging between a 5% - 13%



35

percent increase across the metrics. However, with the embedding model fine tuned on

slide data, RAG with the slide data performs significantly better than all the frameworks

and datasets tested, sitting at 60.42% MAP at 1, and over 90% success rate at top 10

documents retrieved.

4.2 Evaluation of Table and Chart Data

Given that the multimodal aspect is integral to our data processing pipeline, we focus

on evaluating the chart and table data extracted from the markdown text. We select a

subset of our test dataset containing tables and charts using string matching, and generate

synthetic QA pairs following the method described in Section. Using these questions, we

assess retrieval accuracy on data both with and without explanations. For this evaluation,

we employ the basic RAG framework, as it demonstrated the best performance among the

three frameworks tested.

Model Data MAP@1 (%) MAP@10 (%)

BGE-M3(Slides) slide 33.28 45.63
BGE-M3(Slides) slide + Expl 34.52 46.52
BGE-M3(Expl) slide 31.68 43.15
BGE-M3(Expl) slide + Expl 33.60 45.44

Table 4.5: Example results for Fine-Tune BGE on slides vs. explanations.

From Table 4.5, the best-performing variant of our RAG framework was the BGE-M3

model fine-tuned on slide data, using a database that included both the original data and

the corresponding explanations. Interestingly, even with the inclusion of explanations, the

model fine-tuned solely on slide extractions outperformed the one specifically intended to

process explanation data.
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4.3 Evaluation of VLLM

We evaluate the performance of different variations of the Qwen2.5-VL-7B model through

our test data containing 447 data points. There are 4 models that were finetuned on 4

different image dimensions: 448x448, 448x336, 1280x960, and 2400x1800 pixel sizes. We

begin by calculating common OCR metrics to get a sense of the overall performance of

each of the models:

Base or FT Image Size Avg. CER (%) Avg. WER (%)

Base 448x448 111.52 111.74

Finetuned 448x448 99.02 118.10
448x336 78.89 97.88
1280x960 63.87 80.86
2400x1800 59.62 78.62

Table 4.6: Comparison of different image dimension configurations for finetuning Qwen2.5-
VL-7B, grouped by configuration.

An overall trend within the table is developed, as the larger the dimensions of the im-

age, the smaller the error rates across both characters and words. It is also notable that

the recommended 448x448 pixel dimension given by Qwen is not ideal, as it tends to per-

form significantly worse, even against image dimensions of similar size like 448x336. While

these metrics signify poor performance, it is also important to consider that our OCR

process is not strictly relating to text; it also contains descriptions of the multimodal ele-

ments, as well as table generation. When utilizing metrics like the ones above that require

exact matching, the error rate may misrepresent the contents within the OCR document.

It is also important to note that the error rate goes over 100% due to hallucinations, as a

significant larger token count can lead to multiple substitutions, deletions, and insertions

being necessary.

Due to the limitation in the basic OCR metrics, as exact characters are required to

achieve a good score, we also utilize BERT-Score to get a better sense of the semantic sim-

ilarities between our golden documents and the new outputs for each of the tested model
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variants. We also test each of the image dimensions on the base, or unfinetuned, Qwen2.5-

VL-7B model to compare the finetuned variants. We calculate Bert-Score precision, recall,

and F1 and attain the following results:

Image Size Base (%) Finetuned (%)

BS-P BS-R BS-F1 BS-P BS-R BS-F1

448x448 7.27 6.67 6.92 74.01 71.25 72.52
448x336 10.38 9.65 9.96 77.31 76.46 76.83
1280x960 5.48 4.99 5.21 82.26 81.39 81.76
2400x1800 3.82 3.34 3.55 82.39 81.47 81.88

Table 4.7: Comparison of BERT-Score metrics (in percentages) grouped by image dimen-
sions.

Across all finetuned models, there is a significant increase in precision, recall, and F1

score for its corresponding image dimension. Across each row, there is between a 60% -

78% increase in contextual similarity with the original golden document. The 448x448

image dimensions continues to perform the worst, while the 1280x960 and 2400x1800 fine-

tuned models perform the best, with 2400x1800 image dimension only slightly outper-

forming its lower dimension counterpart. There is a positive effect overall for all finetune

variants, and finetuning helps to significantly increase semantic similarity to closed-source

generated documents.

We further explore the quality of our data by employing an LLM-as-Judge methodology.

Two distinct judging systems are evaluated: one where the golden answer is the original

Claude-extracted slide document, and another where the golden answer is the original slide

image. To mitigate potential positional bias, we randomize the order of the documents

before including them in the evaluation prompt.

For the evaluation using the golden document, outputs from the 1280×960, 2400×1800,

and 448×336 finetuned variants are compared against the original document.

In the bar chart, where we compare the finetuned outputs to the original Claude-processed

document, both the 1280×960 and 2400×1800 finetunes substantially outperform the

smaller 448×336 variant. Although 2400×1800 is twice the resolution of 1280×960, the
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Figure 4.1: Bar graph showing the distribution of rankings assigned by an LLM-as-Judge
evaluator. The chart uses the the original synthetic data as ground truth, comparing the
best-performing finetuned models against our original synthetic data.

LLM judges them to be rather similar which suggests that beyond a certain threshold, in-

creasing the resolution does not proportionally boost quality.
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Analysis

5.1 Synthetic Data

With our generated synthetic data, we evaluate the quality of the extracted data through

qualitative and quantitative analysis. We also delve into the different between process 1

documents, documents that have no correction, and process 2 documents, documents that

have been corrected with text directly extracted from the slide presentations. We find the

following commonalities and improvements in our processing pipeline.

5.1.1 Qualitative Analysis

From our qualitative analysis we find different examples of the usefulness of the OCR

and data correction that occurs in process 2, as well as the results of chart and image

extractions.

Text correction

The two-stage process also demonstrates remarkable efficacy in correcting Optical Char-

acter Recognition (OCR) errors and typos, particularly in multilingual contexts. A salient

example observed in our Korean language test cases shows the system’s ability to differ-

39
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Figure 5.1: Each color represents a phrase or word as it goes through the process and
shows character correction. The text in the process 2 results matches the original slide,
while process 1 contains mistakes.

entiate between visually similar but semantically distinct characters. For instance, the

correction of ”힘” (power) to ”휠” (wheel) illustrates the system’s enhanced contextual

understanding and linguistic nuance recognition.

Perhaps most notably, LLM employed in our pipeline exhibits an improved capacity

for contextual comprehension. This is evidenced by its ability to discern and reconcile

differences between the initially extracted text and the LLM-processed slide information.

Such contextual awareness is crucial for accurate interpretation and representation of slide

content, especially in cases where direct translation or transcription might lead to errors.

Table correction

In addition to OCR corrections, process 2 also addresses errors in table structure. Al-

though the LLM accurately recognizes the table contents, its initial extraction can some-

times result in a disorganized structure. As illustrated in Figure 5.2, a missing component

is reinstated during process 2, which notably alters the table’s interpretation. While the
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Figure 5.2: The Red box indicates a structural change that occurs through the self-
correction step in process 2.

resulting formatting may appear suboptimal—yielding three separate boxes at the top

rather than a single merged box—this is solely due to the limitations of markdown table

formatting and is deemed acceptable for our purposes. Capturing complex the complex

table structures is significantly enhanced with the self correction procedure and there are

many instances where the above example occurs.

Image Extraction

For the images, we prompt the LLM to interpret and describe the content based on the

slide’s context. Our data processing pipeline yields satisfactory results, generating detailed

explanations of the visual content. Although the analysis may not match the precision of

a Hyundai Engineer, it adds significant value by offering a descriptive understanding and

identifying tested car components and clarifying what is depicted.

However, there are times when the image explanation is very generic. In these cases, it

simply describes basic visual elements, such as colors or objects that appear in the image,



42

Figure 5.3: An image is given to the LLM to generate a descriptive explanation that show-
cases the image’s purpose.

instead of providing an explanation that draws on the slide context. While these outputs

may be useful, they are not as significant as the more detailed explanations generated

earlier. It is important to note that the explanations are not incorrect; they simply do not

offer the level of detail that an engineer might provide.

Chart Extraction

For the charts, we prompt the LLM to interpret and accurately represent the numeri-

cal values as well as any legend or key associated with the chart. The model is expected

to identify elements such as the x and y axis and note any highlighted values or trends

present in the graph. It is also able to relate the chart to the context of the overall slide

image that is sent to the LLM.

In some cases, the analysis of charts can be overly broad or may contain inaccuracies.

This issue tends to arise when there are several charts in a single slide image or when a

chart contains multiple components, making it challenging to determine which data points
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Figure 5.4: An image of a chart is given to the LLM to generate a descriptive portrayal of
the chart, picking out key values and parameters.

correspond to a specific key. This limitation highlights the challenges in optical character

recognition and the visual understanding capabilities of even the most advanced language

models, such as Claude.

Example Generation

As discussed in the explanation generation section, we initially attempted to produce slide

explanations that ignore insignificant markdown formatting characters, such as those

found in markdown tables. Although these explanations do not detail every individual

cell, they provide an overarching summary of key trends and significant figures present in

the table. The explanation process was mostly for these tables, as well as to potentially

create a more coherent understanding of the overall premise of the slide and give more

descriptive value of the talking points present. While this explanation generation process

can reduce the overall retrieval performance of our RAG systems, we present the concept

for those interested in replicating or extending this work in the future.
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5.1.2 Quantitative Analysis

Domain-specific Abbreviations

Throughout our data quality analysis for the explanations, we noticed an interesting pat-

tern in the synthetic data: the use of abbreviations. Numerous domain specific and com-

pany specific abbreviations appear in the slide presentations. These abbreviations refer

to various car and car crash safety terms, but they may be unclear to an LLM because it

lacks the internal expertise found in companies like Hyundai.

To investigate further, we randomly sampled 50 documents that include 18 predeter-

mined abbreviations provided by a Hyundai engineer and evaluated whether the abbre-

viations were correctly interpreted in the explanations. Among 338 instances of use, 12

instances (approximately 3.55%) were misinterpreted. Further analysis revealed that all 12

errors were associated with 4 of the 18 abbreviations. These abbreviations include RTE,

which stands for Restraint Energy, DAB for Driver Airbag, TTF for Time to Fire, and

C/PAD for Crash Pad. The abbreviation most frequently misinterpreted was RTE, which

was often read as Return to Earth, a common meaning of the RTE acronym. This error

accounted for over half of the misinterpretations.

Token Count Analysis: Raw OCR vs. Self-Correction Synthetic Data

Further evidence of the improvements between the first and second prompts can be ob-

served in the changes in token count. An analysis of 63 files revealed that 46 files (73%)

experienced changes in their token counts. Specifically, 31 markdown files showed an in-

crease in token count, while 15 files demonstrated a decrease. The average difference in

token count was 4.63 tokens, with a standard deviation of 25.55.

At first glance, the average change of 4.63 tokens might not seem substantial. However,

the high standard deviation of 25.55 is particularly noteworthy. This large spread indi-

cates significant variability in the changes across files, suggesting that some files underwent
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Metric Value

Total tokens (1st CSV) 27745
Total tokens (2nd CSV) 28037
Overall token change 292
Mean token difference 4.63
Std. dev. of difference 25.55
Files with increased tokens 31
Files with decreased tokens 15
Files with no change 17
Largest increase in tokens 23.68%
Largest decrease in tokens 14.24%
Hallucination by token count 6.74%

Table 5.1: Token Count Analysis Statistics(n=63)

much more extensive modifications than others. This variability is crucial to our under-

standing of the process. Larger increases in token counts represent cases where the second

prompt successfully captured missing information, such as previously omitted table data

or misrepresented content. These instances align with our earlier observations regarding

improved table extraction and content representation. It is also important to note, that

even the files that contained no token count change had small typo corrections as well.

Conversely, some files experienced relatively large decreases in token count. While this

might initially seem concerning, closer examination of these cases is necessary to under-

stand the nature of these reductions. These decreases represent the correction of redun-

dancies or the refinement of improperly extracted content, rather than the loss of valuable

information.

It is important to note that after the self-correction step, the hallucination rate by to-

ken count was 6.74%. This indicates that while we can correct many typographical errors

and inaccuracies, some errors remain. To calculate this statistic, we tokenized the text and

manually checked each word or phrase for inaccuracies. The percentage of hallucination

was calculated for each document and averaged together for the final result.

The wide range of token count changes underscores the complex nature of the refine-

ment process between the first and second prompts. It highlights the system’s ability to
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make substantial corrections where needed, while also performing more subtle refinements

in other cases. This nuanced approach contributes to the overall improvement in the qual-

ity and accuracy of the extracted content, reinforcing the value of our two-stage prompting

method.

5.2 RAG Frameworks & Retrieval Analysis

5.2.1 Embedding Models

Among the fine-tuned BGE-M3 embedding models, training solely on slide-extracted data

consistently yielded the highest performance across both datasets. Although the inclusion

of explanation data provided a performance boost, it did not match the retrieval quality

achieved by the slide-only model. This result is surprising given our initial hypothesis

that explanations would offer a clearer and more cohesive view of the slide content. One

possible explanation is that the increase in document length and complexity - when slides

are combined with explanations - makes learning an effective vector representation more

challenging. Alternatively, the explanation data may not contribute significant additional

semantic value, as they often contain repetitive information despite some novel details in

table or chart descriptions. Overall, it could be said the short and concise slide extractions

allow for the embedding model to more clearly understand patterns or contrasts within our

data.

5.2.2 RAG Frameworks

Among the tested frameworks, the original RAG significantly outperformed both vari-

ants of the HyDE methodology. This finding is unexpected, considering that many HyDE

variants have been reported to surpass the original RAG in performance. One potential

reason is that the embedding model was not fine-tuned to use answers as part of the user

query, but rather only the question itself. Furthermore, incorporating more domain-specific
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terms from the hypothetical answer generation did not seem to improve the performance,

showcased especially when both the question and answer are combined before utilizing

the query to search for documents. Although alternative RAG frameworks might be more

effective in different scenarios, our results indicate that even a widely used variant of RAG

performs under the original RAG framework in our specific use case. The best performance

was achieved by combining RAG with an embedding model fine-tuned solely on slide data,

while restricting retrieval exclusively to slide content without explanations. We are able to

create an effective RAG system that pulls in relevant documents on low-resource domain-

specific data.

5.3 Qwen 2.5 VL Fine-tuning Analysis

5.3.1 Image Dimensions

Our findings indicate that larger image dimensions significantly improve performance in

image understanding, OCR, and descriptive analysis of multimodal elements on slides. It

is important to note that, contrary to Qwen’s recommended 448×448 image dimension

size, we do not utilize a 1:1 image dimension ratio. Instead, to maintain the aspect ratio

of the original slide image, we used a 4:3 image dimension (448×336), which could have

led to the performance difference between synthetic data generation with 448×448 and

448×336 image sizes. Although the width was consistent and the size of 448x448 is larger,

the difference between a square shape and a rectangular shape seems to significantly alter

performance.

We also note that at a certain point in image resolution, there are diminishing returns.

While the gap between the 448×336 fine tuned variant and the 1280×960 fine tuned vari-

ant was very noticeable, the performance difference between the 1280×960 fine tuned vari-

ant and the 2400×1800 fine tuned Qwen2.5-VL-7B model led to much smaller differences

in metrics and performance across the LLM-as-Judge evaluation.
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5.3.2 Base Model vs. Finetuned Model Data

As shown in Table 4.7, there is a notable difference in semantic similarity when comparing

data generated by the base model to the golden document versus data from the fine-tuned

model. Fine-tuning the Qwen model with our own images has led to key improvements,

including enhanced table generation, higher-quality image descriptions, improved chart

interpretation, and more accurate OCR capabilities.

To assess these enhancements, we conducted a qualitative comparison of 50 documents

generated by both the base and 2400x1800 variants of the fine-tuned models, focusing on

various aspects of OCR and synthetic data generation. One immediate improvement is

a reduction in spelling errors. We compared 50 documents from each model to our origi-

nally processed documents—omitting any word that does not appear in the golden docu-

ment—and found that the base model’s output contained an average of 2.6875 mispelled

words, whereas the fine-tuned model’s output averaged 1.0625 mispelled words. In effect,

for every three spelling errors in the base model’s synthetic data, there is only about one

error in the fine-tuned variant.

During this evaluation, we also observed an interesting phenomenon: occasionally, Ko-

rean words were rendered in Chinese characters and vice versa. Although rare, this pattern

was consistently noted across our data. This behavior may be attributed to the origins of

the Qwen model, which was developed in China and is likely trained on extensive Chinese

corpora and documents. Also, across both datasets but much more frequent in the base

synthetic data, the markdown tables are sometimes formatted with ”¡br¿” rather than the

”—” character.

We also assessed the number of missing components or data points that were not cap-

tured from the images. As expected, the fine-tuned models successfully extracted all ele-

ments present in the slide presentations. In contrast, the base model occasionally missed

certain aspects, such as image and chart descriptions, table extractions, or OCR text.

Among the 50 documents reviewed, 6 exhibited missing features. Notably, both the fine-
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tuned and base models sometimes produced generic or placeholder-like image descriptions.

However, it is important to note that the fine-tuned data tends to include more ”place-

holders” rather than actual descriptions for image data. This occurs because the golden

documents sometimes contained placeholders like ”[IMG CAR CRASH].jpg” instead of de-

tailed descriptions, leading the model to learn these patterns. To mitigate this issue, future

improvements could involve using cleaner documents and incorporating synthetic data.

Overall, fine-tuning significantly enhances the modeling of our golden data, improving

both character recognition and information extraction from image presentations. Further

improvements could be achieved by utilizing the full three-step processing pipeline rather

than attempting to extract all information in a single input-output sequence through the

LLM.

5.3.3 LLM Judge Preference - Qualitative Analysis

Figure 5.5: We highlight different corresponding areas of each of the tables in different col-
ors, showcasing the correctness of each of the outputs from the different finetune variants.
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Our evaluation reveals a clear preference pattern: GPT-4o consistently favors data gen-

erated by Qwen models fine-tuned on larger image dimensions compared to our original

synthetic data. Closer analysis confirms this preference is justified, as the quality of con-

tent from smaller-dimension models is demonstrably lower, particularly in table generation

tasks.

The smaller-dimension models exhibit a higher rate of hallucination, frequently pro-

ducing incorrect cell values and header organizations. Figure 5.5 illustrates this dispar-

ity—while both dimension variants maintain correct table structure, critical content dif-

ferences emerge upon inspection. In the highlighted example, the original table contains

”신작” in the third and fourth cells of the last column. The larger-dimension model cor-

rectly preserves this term, whereas the smaller-dimension variant incorrectly substitutes ”

빔 직물화 외부 형상 변경” in the third column and leaves the second column blank. Simi-

lar errors appear consistently throughout the table.

For image descriptions, quality remains relatively consistent across all three synthetic

data variants. Each variant produces detailed explanations that capture the maximum

visual information permitted by the VLLM’s capabilities. Formatting analysis reveals

another advantage of larger-dimension files: they demonstrate more consistent document

organization patterns compared to the lower-dimension models. This consistency manifests

in header usage, text organization, chart interpretations, and data arrangement when

converting visual elements like bar charts into tabular format. This finding aligns with our

quantitative observations, where we recorded very similar BERT scores when comparing

these documents to the original Claude-processed synthetic data.

OCR character recognition remains highly consistent across all models, with only minor

errors in text extraction. In general, larger image dimensions improve the accuracy of

visual extractions, particularly for table and chart data, making them preferable for the

LLM.



Chapter 6

Conclusion

6.0.1 Future Directions

Following our experiments, several research avenues and potential improvements can be ex-

plored to further enhance retrieval-augmented generation (RAG) systems for low-resource

domains:

1. Qwen2.5-VL-72B Variant – In our exploration of open-source data processing, we

utilized the 7B variant of the Qwen2.5-VL model series. While effective, the perfor-

mance may have been constrained by the model’s size. Future research could inves-

tigate the benefits of scaling to larger variants, such as the 72B model, which may

enable more comprehensive information extraction and improved processing capabili-

ties.

2. Advancing RAG Frameworks – Although we evaluated RAG frameworks that

best suited our use case, the rapid development of new retrieval-augmented genera-

tion methodologies presents opportunities for further improvements. Exploring and

integrating newer frameworks could yield significant gains in retrieval accuracy, re-

sponse quality, and multimodal integration.

3. True Multimodality – Rather than converting all multimodal elements into text,
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future work could explore direct multimodal processing. At the time of our research,

multimodal embeddings, vision-language models, and embedding techniques were

still in their early stages. However, with advancements in vision-language (VL) mod-

els, a more sophisticated multimodal RAG approach could improve retrieval effective-

ness by directly leveraging visual, positional, and textual information.

4. Enhanced Data Refinement – While synthetic data generated using Claude

proved valuable, further refinements could enhance data quality and retrieval accu-

racy. Future research could explore alternative methods for synthetic data generation,

including leveraging multiple AI models, incorporating domain-specific fine-tuning,

and refining preprocessing techniques to improve the consistency and relevance of

extracted information.

By addressing these research directions, future work can build on our findings to de-

velop more robust, efficient, and scalable RAG systems for low-resource domains.

6.0.2 Conclusion

This thesis explored the development of a retrieval-augmented generation (RAG) system

for low-resource domains, focusing on multimodal data processing in the automotive safety

sector in Korean. Through collaboration with Hyundai, we designed and evaluated a novel

data processing pipeline that converts slide-based visual information into structured tex-

tual representations, enhancing retrieval and question-answering capabilities. Additionally,

we examined variations in retrieval and fine-tuned data within different RAG frameworks,

systematically testing multiple retrieval strategies and embedding model fine-tuning tech-

niques to determine the most effective approach for domain-specific applications.

Our findings demonstrate that fine-tuning both language and embedding models signif-

icantly improves retrieval accuracy and information extraction, particularly when applied

to specialized datasets. Notably, fine-tuning on slide-based data yielded superior perfor-
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mance compared to models incorporating additional explanations. Furthermore, our experi-

ments underscore the importance of larger image dimensions in improving OCR accuracy

and structured data extraction, emphasizing the need for high-resolution processing in

multimodal RAG applications.

Building on these insights, we explored advancements in vision language models, fine-

tuning Qwen2.5-VL-7B with various image dimensions to replicate our closed-source data

processing pipeline. The fine-tuned models exhibited significant improvements over the

base model, validated through qualitative and quantitative analyses. While challenges

remain in optimizing model output quality, our results demonstrate meaningful progress in

fine-tuning open-source models, particularly in Korean OCR. Integrating this model into

our three-stage processing pipeline could further enhance retrieval performance and data

quality.

Despite these improvements, multimodal processing still presents challenges. While

tabular structure extraction improved with fine-tuning, further refinements are needed

for table processing, chart interpretation, and image description quality. Developing a

more systematic approach for extracting and structuring chart data could enhance overall

retrieval effectiveness.

Ultimately, this work advances the development of robust, scalable RAG frameworks

for low-resource domains, providing a foundation for future innovations in information

retrieval, question-answering systems, and AI-driven knowledge management. We are able

to convert multimodal data into a usable format that can be retrieved and utilized in

LLMs. It is possible to develop an effective RAG application for low-resource domains,

even in languages like Korean where resources for LLMs, embedding models, and data are

scarce.



Appendix A

Appendix

We utilized two different prompts to process the synthetic data, converting from images to

text.

A.0.1 Converting image-to-text prompt:

This prompt was used to extract all elements on the slide image into usable textual ele-

ments.

"""

1. Examine the provided image of a PowerPoint slide from a car collision safety report.

2. Convert all content into markdown format, preserving the original structure and information.

3. Use a single hashtag ( # ) for section headings only. Do not use any variation of hashtags for

anything else. Only use one hashtag for each section heading. All heading MUST have section content

underneath it. There should never be two headings in a row without content in between.

4. Each graphic element type should have a section heading. This means tables, graphs, and images

should each have their own section heading. Text should be included in the appropriate section

or if different enough, have its own section.
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5. Structure your output as follows:

< markdown_conversion >

# Heading appropriate for section content underneath

[section content goes here]

< / markdown_conversion >

6. For each element type:

Text:

- Convert to markdown, maintaining structure, bullet points, and numbering.

- Include all text: titles, subtitles, and body.

Tables:

- Convert to markdown table format.

- Maintain original content and structure.

- Provide a detailed interpretation after each table.

- For images in cells, describe them within the appropriate cell in markdown.

Graphs and Images:

- For graphs, try to recreate the data in markdown table format.

- Describe in detail: type, labels, data representation, trends.

- Explain significance in the context of car collision safety under it.

Remember:

- Do not use unnecessary affirmations or filler phrases.

- Do not include personal opinions or anecdotes.

- Use markdown for code snippets if applicable.
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"""

A.0.2 Correction of results:

This prompt was utilized in Process 2, where we attempted to fix the OCR errors within

the slide extraction.

’’’

Original Analysis:

{concatenated_text}

Extracted Text:

{extracted_slide}

Instructions:

1. Review the Original Analysis for typos and errors.

2. You MUST maintain the content and structure of the Original Analysis.

3. Correct any typos or obvious errors found in the Original Analysis.

4. KEEP ALL SECTIONS OF THE ORIGINAL ANALYSIS INTACT(<markdown_conversion>).

5. If you encounter a table in both the Original Analysis and the Extracted Text that are similar,

replace the table in the Original Analysis with the one from the Extracted Text.

6. If a table from Extracted Text does not exist in the Original Analysis, add it to the corrected analysis.

6. If the table has image explanations, ensure that the image explanations are included in the corrected tables.

7. Use the Extracted Text as reference for fact checking and typo checking.

8. Fix the exper analysis after all the corrections are made.

9. Return ONLY the CORRECTED version of the Original Analysis in its ENTIRETY.

10. Remove any sections or text that explainn or have the text "Together We Can" or "HYUNDAI MOTOR GROUP".

’’’
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