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   Estimates of adverse health effect due to outdoor air pollution from epidemiological 

studies can be used in setting the regulatory standards and help improve public health. 

The objective of this paper to is to use time-series analysis to examine the association 

between counts of deaths and ambient PM2.5 concentration accounting for confounders 

including meteorology and long-term and seasonal trends in mortality. Multiple models 

including Poisson generalized linear models, Bayesian Poisson models, and Bayesian 

negative binomial models were used to examine the health effects associated with PM2.5 

concentrations.  

   We found positive associations between mortality and ambient PM2.5 concentrations 

but none of the estimates from the three models are statistically significant.  We also 

found that the negative binomial model fits the data better compared to a Poisson 

regression model, suggesting the importance of accounting for over-dispersion in 

mortality count data.  

 

 

 

 

Keywords: 

 

Air pollution, particulate matter 2.5 (PM2.5), Generalized Linear Model, Poisson 

Regression, Negative Binomial Regression, Time-series Analyses 

 

 

 

 

 



 
 
 

Time-series analyses of the association between 

mortality and ambient PM2.5 concentration 
 
 
 
 
 

By 

 
Chenyin Lin 

 
Emory University, 2013 

 
MPH, Emory University 

 
Rollins School of Public Health 

 
2015 

 
 
 
 
 
 
 

 

Advisor: Howard H Chang 
 
 
 
 
 
 
 
 
 
 

A thesis submitted to the Faculty of the 

Rollins School of Public Health of Emory University 

 
in partial fulfillment of the requirements for the degree of 

Master of Science in Public Health 

 
in Biostatistics 

 
2015 



 
 

Acknowledgements 
 

 

   First, I really appreciate my supervisor Howard Chang. Thanks for his patience and 

instruction in the process of writing this thesis. His advice and support helped me a lot in 

all steps of the project including paper review, data analyses and paper writing write this 

thesis. I also appreciate Lance Waller for taking his time to read my thesis.  

    At last, I want to thank the faculty and staff in Biostatistics Department. They provide 

a good study environment with diligence and hard work.  



1 
 

Chapter I 

Introduction 

 

1. Applications of time-series air pollution and mortality study 

Ambient air particulate matter (PM) is formed by particles directly emitted or due to 

chemical reaction of gases. High levels of particulate matters were found to be associated 

with many diseases including respiratory, lung related disease, cardiovascular diseases, 

which may lead to increased mortality (EPA, 2003). PM2.5, the particles with diameters 

below 2.5𝜇𝑚, draw most attention due to their small size and maybe more relevant to 

adverse health effects than other particulate matter (Schlesinger, 2007) In recent years, 

studies provide evidence that PM2.5 levels relate to potential negative health effects in 

both epidemiology and toxicology studies (Schlesinger et al, 2003). However, the 

specific connection between PM and mortality is still debated (Levy et al., 2000). 

Early studies on the health effects of PM were conducted when PM levels were 

extremely high for several days, leading to high mortality and morbidity in a short period 

(Goldberg et al., 2001). However, modern air pollution researches have focused on 

investigating the associations when PM concentration was at a much reduced level (Bell 

et al, 2004). Time-series analysis methods are the most commonly used approach to 

detect the small short-term health risk associated with day-to-day PM2.5 concentration 

variation, while controlling for confounders (Bell et al., 2004). These potential 

confounding effects include other pollutants, weather, and seasonal variations in the 

health outcome (Wyzga, 1978). Since seasonal variations can only be tested over a 

relatively long period, we need time-series data collected for a long period of time 
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(Chang et al, 2012). The data used in this paper are from multiple regions where large 

fractions of the population are at risk. Such Multi-city data have advantage in reducing 

bias and stabilizing estimates from previous studies (Stieb et al., 2009). The time-series 

approach has been facilitated by the increasing accessibility of public data sources in 

many countries. Results from time-series studies have played an important role in 

improving human health by setting appropriate air quality standards for particulate matter 

pollution such as the Clean Air Act and the National Ambient Air Quality Standards. 

(Greenbaum et al., 2001) 

  

2. Poisson Regression  

To explore these effects, we use Poisson regression (Kuhn 1994). We begin by defining 

a series of event counts at a particular time i with density given by:    

           𝑔(𝑦𝑖; 𝜆𝑖) =
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖!
 

where yi is the observed number of counts for i =1, 2, …, n; 𝜆i is the mean of the Poisson 

distribution. The number of events follows a Poisson distribution. The mean 𝜆i is related 

to a vector of explanatory variables Xi as follows: 

          log (𝜆i) = Xi 𝛽  

where 𝛽 is a vector of unknown coefficient to be estimated (Loomis, 2005).  

One important and common analytic issue in Poisson model is over-dispersion. Over-

dispersion appears when the variance of the fitted Poisson model is larger than the 

variance of the Poisson model. One reason for over-dispersion can be that one or more 

important explanatory factors are missing. Another potential reason is that the incorrect 

distribution is specified (Hastie, 1986). Because of the existence of over-dispersion, it is 
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important to evaluate the model by comparing the results of Poisson regression to 

estimates from other models, such as a generalized Poisson linear model, or a negative 

binomial linear model (Ismail et al., 2007). 

 

3. Negative binomial Regression 

    Negative binomial (NB) regression models have been widely used for regression of 

discrete count response because they accommodate overdispersion in the count data. 

Assume the random variable Y follows a negative binomial distribution Y ~ NB (𝜇, k), 

the mean and variance of Y satisfy following requirements:  

                                           E(Y) = 𝜇,  

                                           Var (Y)= 𝜇+ 𝑘−1 𝜇2,  

where 𝜇 > 0 , k> 0. Here, the over-dispersion is determined by term 1+  𝜇/k, which 

depends on 𝜇. k is the dispersion parameter. If k equals zero, the mean and variance of Y 

are equal, and then the distribution is reduced to a Poisson distribution. If k > 0, the 

variance is larger the mean and the distribution allows for over-dispersion (Ismail, 2007). 

NB log-linear regression models assume the mean count response (μ) relates to 

explanatory variables through log(μ) = Xβ, where X is a series of explanatory variables 

and  β  is a vector  of unknown regression coefficients to be estimate (Mi, 2015). 

    In this study we investigate the association between PM2.5 concentration and 

mortality using a time-series approach. The modeling process of time-series analyses is 

conducted in both Bayesian and non-Bayesian frameworks. To address concerns with 

overdispersion we examined both Poisson and negative binomial regression under a 

Bayesian framework.  
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Chapter II 

Methods 

 

1. Mortality and Air Pollution Data Descriptions 

    The dataset contains 1823 observations and 23 variables. Table 1 describes a summary 

of original and created variables in the study. Mortality data were obtained from the 

National Center for Health Statistics. The study region consists of five counties in New 

York City (Bronx, Kings, New York, Queens and Richmond). The dataset includes daily 

number of deaths from 2001-2005. Only deaths due to cardiovascular and respiratory 

diseases were included as defined by the International Statistical Classification of 

Diseases 10th revision. We acquired mean daily temperature and dew point temperature 

from the National Oceanic Atmospheric Administration’s National Climatic Data Center. 

Daily ambient PM2.5 data were downloaded from Statistically Fused Air Quality database 

(http://www.epa.gov/esd/land-sci/lcb/lcbsfads.html).    

    From Table 1, we see the mean average ambient PM2.5 concentration for previous three 

days is 15.12 μg/m3 with standard deviation is 6.31 μg/m3. The mean daily temperature is 

55.58 °F with standard deviation 17.38 °F. The average temperature for the previous three 

days is 55.61 °F with standard deviation 16.97 °F. The mean daily dew-point temperature 

is 42.56 °F with standard deviation of 18.58 °F.  The average dew-point temperature for 

previous three days is 42.60 °F with standard deviation of 18.57 °F. The mean daily total 

number of deaths has mean of 143.92 with standard deviation of 17.35. 

 

2. Mortality Model and Risk Estimation 

http://www.epa.gov/esd/land-sci/lcb/lcbsfads.html
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    We consider three statistical models for the daily counts of death: Poisson generalized 

linear models, Bayesian Poisson models and Bayesian negative binomial models. The 

goal of considering a negative binomial model is to account for any over-dispersion in the 

outcome. 

 

Poisson Generalized linear Model 

    Regression models are used in time-series analysis to estimate associations between 

observed changes in mortality associated with changes in ambient air pollution level on a 

short-term basis. The mortality model specification follows Chang et al. (2012). We 

considered the average PM2.5 levels for the previous three days as the exposure of 

interest. Time-series studies are fairly robust against confounding by population 

characteristics which remain constant over the study period (Bell et al., 2004). However, 

health outcome and pollution can be affected by confounding from some other factors 

that vary on shorter time scales.  In order to apply time-series analysis to these data, we 

need to control for seasonal and temperature factors. Potential confounding by these 

seasonal trends and weather effects could be controlled by assigning natural cubic splines 

to the following variables: present day temperature (d=6) and average temperature of 

previous three days (d=6); present day dew-point temperature (d=3) and average dew-

point temperature for the previous three days (d=3); calendar date (d=40, 8 per year); and 

indicators for day of the week. We assume the daily number of deaths yi follows an over-

dispersed Poisson distribution with expected value E (yi)= 𝜇𝑖. The regression model is 

given as follows: 

             yi ~ Poisson(𝜇i) 
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            ln (𝜇𝑖) = 𝛽0 + 𝛽1 ∗ 𝑎𝑣𝑝𝑚25 + 𝛽2 ∗ 𝑛𝑠(𝑡𝑒𝑚𝑝, 6)1 + ⋯ + 𝛽7 ∗ 𝑛𝑠(𝑡𝑒𝑚𝑝, 6)6 +

𝛽8 ∗ 𝑛𝑠(𝑎𝑣𝑡𝑒𝑚𝑝, 6)1 + ⋯ + 𝛽13 ∗ 𝑛𝑠(𝑎𝑣𝑡𝑒𝑚𝑝, 6)6 + 𝛽14 ∗ 𝑛𝑠(𝐷𝑝𝑇𝑒𝑚𝑝, 3)1 + ⋯ +

𝛽16 ∗ 𝑛𝑠(𝐷𝑝𝑇𝑒𝑚𝑝, 3)3 + 𝛽17 ∗ 𝑛𝑠(𝑎𝑣𝐷𝑝𝑇𝑒𝑚𝑝, 3)1 + ⋯ + 𝛽19 ∗ 𝑛𝑠(𝑎𝑣𝐷𝑝𝑇𝑒𝑚𝑝, 3)3 +

𝛽20 ∗ 𝑛𝑠(𝑑𝑎𝑡𝑒, 40)1 + ⋯ + 𝛽59 ∗ 𝑛𝑠(𝑑𝑎𝑡𝑒, 40)40 + 𝛽60 ∗ (𝑑𝑜𝑤 = 𝑀𝑜𝑛𝑑𝑎𝑦) + ⋯ +

𝛽66 ∗ (𝑑𝑜𝑤 = 𝑆𝑢𝑛𝑑𝑎𝑦) 

where avpm25 denotes average ambient PM2.5 concentration for previous three days; 

temp denotes current day temperature; avtemp denotes average temperature for previous 

three days; dptemp denotes current day dew-point temperature; avdptemp denotes 

average dew-point temperature for previous three days; dow is the indicator for day of the 

week (from Monday-Sunday). 

 

Bayesian Poisson and Negative Binomial Models 

    For the Bayesian Negative Binomial Model analyses, we assigned the following prior 

distributions:  

               𝛽𝑖~𝑁(0, 0.00001)  

             log(𝛼) ~𝑁(0, 0.0001) 

    For the Bayesian Poisson analyses, we used the following prior distributions: 

               𝛽𝑖~𝑁(0, 0.00001) 

    We used the R Package “R2winBUGS” to run WinBUGS from R to implement both 

models. We used the coefficients from the Poisson generalized linear model as initial 

values in the Bayesian analyses. The total number of iterations was 20,000 with a burn-in 

sample of 10,000. The WinBUGS code is given below:  

### Bayesian Poisson model ##### 
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model{ 

for (i in 1:1823){ 

Y[i]~dpois(mu[i]) 

mu[i]<-exp(mut[i]) 

mut[i]<-inprod(beta[1:66], X[i,1:66])} 

for(i in 1:66){ 

beta[i]~dnorm(0, 0.00001)} 

} 

### Bayesian negative binomial model ##### 

model{ 

for (i in 1:1823){ 

Y[i]~dpois(mu[i]) 

mu[i]<-exp(rho[i]*mut[i]) 

mut[i]<-inprod(beta[1:66], X[i,1:66]) 

rho[i]~dgamma(alpha,alpha)} 

for(i in 1:66){ 

beta[i]~dnorm(0, 0.00001) } 

alpha<-exp(logalpha) 

logalpha~dnorm(0,0.0001) 

} 
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Chapter III 

Results 

    

    In this study, the comparison between the negative binomial model and the Poisson 

model is through the deviance information criterion (DIC). The Bayesian negative 

binomial model has a smaller DIC of 14420.4 compared to that of the Bayesian Poisson 

model, which is 14427.7. Thus, we find that the negative binomial Bayesian model fits 

our data better. 

    The estimate of odds ratio from the Bayesian Poisson model of 1.000766 is similar 

with the estimate of non-Bayesian generalized linear model of 1.000769. The 95% 

confidence interval of generalized linear model is (0.9998945, 1.001644). The Poisson 

Bayesian model has a wider 95% posterior interval, which is (0.999855, 1.001707). The 

Bayesian negative binomial model gives a smaller estimate for the association of 

mortality and PM2.5 concentration, which is 1.000764. The 95% posterior interval of 

negative binomial model is between the range of Poisson general linear model and 

Poisson Bayesian model, which is (0.9998635, 1.001655). However, the 95% interval 

estimates of the log relative risk from all three models include 1. Thus, in this study, we 

do not find evidence of association between ambient PM2.5 concentration and daily 

mortality. 
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Chapter IV  

Discussion 

 

     We identified a positive association between daily mortality and ambient PM2.5 

concentration in the study; however, estimates from all three models (Poisson GLM, 

Poisson Bayesian, negative binomial Bayesian) were not statistically significant. We 

found that the DIC was smaller for the negative binomial model, demonstrating that over-

dispersion may be present in the mortality data and it is important to account for it.  

Several additional analysis on this dataset can be considered. For example, we could 

consider different pollutant exposures and lag effects, or use the Generalized Poisson 

distribution which can better capture the tail distribution (Ismail et al., 2007). Future 

work could also focus on spatial variations in time-series associations to find local areas 

of highest risk. 
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Appendix 

 

Table 1.  Mean and SD of total mortality, daily PM2.5 ambient concentrations (𝜇𝑔/𝑚3) and 

confounders. 

Characteristics Mean ± SD Description 

Alldeaths  143.92 ± 17.35 Total mortality 

Pm25 15.12  ± 8.35 Ambient PM2.5 concentration 

Avpm25   15.12 ± 6.31 Average ambient PM2.5 concentration for 

previous three days 

Temp 55.58 ± 17.38 Present day temperature 

Dptemp  42.56 ± 18.58 Present day dew-point Temperature  

Avtemp  55.61 ± 16.97 Average temperature for previous three days 

Avdptemp 42.60 ± 18.57 Average dew-point temperature previous 

three days 

Dow  Indicator for day of the week (Monday-

Sunday) 

 

 

Table 2. Comparison between different models 

Point Estimate Odds Ratio 95% interval for OR AIC/DIC 

0.0007689698 1.000769 (0.9998945, 1.001644) 14427.0 

0.0007658876 1.000766 (0.999855, 1.001707) 14427.7 

0.0007632831 1.000764 (0.9998635, 1.001655) 14420.4 
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