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Abstract

Harnessing Function Space of Machine Learning Models for Interpretability,
Generalizability, and Efficiency

By Guangji Bai

Modern deep learning has achieved impressive results across a wide range of do-
mains, yet it remains fundamentally constrained by its reliance on parameter-space
representations. In deep neural networks, multiple parameter configurations can rep-
resent the same function, leading to redundancy, limited interpretability, and poor
generalization. This disconnect between parameter space and function space presents
a critical bottleneck for building scalable, adaptive, and efficient AI systems — par-
ticularly as we pursue the broader goal of Artificial General Intelligence (AGI).

This dissertation proposes a unifying perspective centered on the function space of
machine learning models — that is, reasoning about models based on the input-output
functions they represent rather than their specific parameter values. By shifting the
focus to functional behavior, we uncover new principles for enhancing interpretability,
generalizability, and efficiency — three foundational pillars for robust and scalable
AI.

For interpretability, we introduce Saliency-Regularized Multi-Task Learning (SR-
DML), which enforces structured task relationships via input gradients in function
space, resulting in more coherent and explainable multi-task models. Building on this,
SHARC combines saliency with associative memory replay to improve interpretability
and mitigate catastrophic forgetting in continual learning.

For generalizability, we propose Drift-Aware Dynamic Neural Networks (DRAIN),
which leverage temporal functional interpolation to handle evolving data distribu-
tions and enable robust domain generalization over time. We further extend the
function-space perspective to multi-source domain adaptation with Prompt-Based
Domain Discrimination (POND), employing prompt-tuning to disentangle invariant
and domain-specific behavior across domains.

For efficiency, we develop SparseLLM, a global pruning framework that formulates
pruning as a sparse functional optimization problem, enabling significant parameter
reduction in large language models (LLMs) while maintaining performance. This
direction is further advanced through FedSpaLLM, which incorporates sparsity-aware
aggregation and layer-wise sampling in federated learning to address both model
redundancy and system heterogeneity in decentralized environments.

Collectively, these contributions lay the foundation for a function-space-based
framework for designing machine learning models that are interpretable, generalizable,
and efficient — essential traits for the next generation of adaptive and resource-aware
AI systems.
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1

Chapter 1

Introduction

Recent years have seen tremendous breakthroughs in artificial intelligence (AI),

particularly in the form of deep learning. From generating realistic images and human-

like text to enabling autonomous driving and decision-making, deep neural networks

(DNNs) have delivered remarkable results across a wide range of domains. These suc-

cesses have sparked renewed interest in the long-standing vision of Artificial General

Intelligence (AGI) — the development of machines that can flexibly reason, learn,

and adapt across diverse tasks and environments, much like humans do.

Despite these advances, modern deep learning systems still fall short of the gener-

alization, interpretability, and efficiency required for AGI. A fundamental reason lies

in how models are currently designed, optimized, and analyzed — specifically, their

heavy reliance on parameter space.

From Parameters to Functions. At its core, supervised deep learning trains a

parameterized model fθ : X → Y to approximate an unknown target function g. The

model learns from data to map inputs to outputs, such as translating a sentence,

classifying an image, or predicting an action. But while our goal is to recover a

function, our entire training and evaluation pipeline focuses on the parameters θ.

This creates a subtle but significant issue: deep models are often overparameter-



2

ized, meaning that many different parameter configurations can produce the same

or similar functions. The result is a many-to-one mapping from parameter space

to function space, introducing redundancy and ambiguity that affect generalization,

optimization, and understanding.

One example of this redundancy arises in the self-attention mechanism [144], a

foundational component in modern transformer models. The output of self-attention

is computed as:

y = σ(QK⊤)V, (1.1)

where Q ∈ Rn×d is the query matrix, K ∈ Rn×d is the key matrix, V ∈ Rn×d is

the value matrix, and σ denotes the softmax operation applied row-wise. Consider a

simple case with two queries and three keys/values:

Q =

q1
q2

 , K =

(
k1 k2 k3

)
, V =


v1

v2

v3

 .

The attention output is computed as:

y = σ


q1k1 q1k2 q1k3

q2k1 q2k2 q2k3





v1

v2

v3

 .

Now, if we permute the rows of both K and V , say swapping k1 ↔ k3 and v1 ↔ v3,

we obtain:

K ′ =

(
k3 k2 k1

)
, V ′ =


v3

v2

v1

 .
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Then the new attention output becomes:

y′ = σ


q1k3 q1k2 q1k1

q2k3 q2k2 q2k1





v3

v2

v1

 .

It is straightforward to verify that y′ = y, even though the parameters K and V have

changed. This shows that the self-attention function is invariant to such permutations

— i.e., different parameter configurations yield the same output function.

This example illustrates the concept of permutation symmetry in attention layers,

revealing a fundamental redundancy in the parameterization. Such invariances make

it difficult to reason about model behavior purely from parameter space, reinforcing

the need to operate in function space.

Figure 1.1: Loss surface of a 121-layer DenseNet on CIFAR-10. Wide flat minima sug-
gest many parameter configurations represent similar functions. (Adapted from [72])

Actually, this gap is not only theoretical, but also visual. Empirical studies of

neural loss landscapes (e.g., Figure 1.1) show that overparameterized models often

converge to large flat regions in the loss surface — effectively wide basins of equivalent

solutions. These observations further underscore the disconnect between parameters

and actual functional behavior.
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The Function-Space Perspective. This gap motivates a shift in perspective: in-

stead of reasoning about models in parameter space, we advocate for directly studying

and optimizing in function space — i.e., the space of mappings f : X → Y .

By operating in function space, we can:

• Capture true behavioral similarity between models, independent of redundant

parameterizations.

• Regularize learning based on how models behave with inputs, rather than how

their weights are configured.

• Build more generalizable and efficient representations by focusing on what func-

tions do, not how they are encoded.

In this dissertation, I develop a function-space-guided learning framework to tackle

three core challenges that hinder progress toward AGI:

• Interpretability: Understanding how models make predictions and ensuring

their reasoning is transparent and meaningful.

• Generalizability: Enabling models to adapt to distribution shifts, unseen

environments, and evolving domains.

• Efficiency: Reducing the computational and memory burden of large-scale

models without sacrificing performance.

1.1 Research Issues

This section presents three core research areas that address critical challenges in

Functional-Space Guided Learning: alignment in multi-task learning, generalization

across domains and temporal dynamics, and optimization for efficiency in large-scale

systems. Each area is motivated by a unique perspective within the functional-space
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framework and is explored through specific methodological advancements. By tack-

ling these areas, this research lays the foundation for achieving scalable, efficient, and

generalizable AI systems.

1.1.1 Harnessing Function Space of Machine Learning Mod-

els for Interpretability via Saliency Methods

Saliency-Based Regularization for Functional-Space Knowledge Transfer lever-

ages saliency as a guiding principle to address challenges in multi-task learning

(MTL) and continual learning (CL). The Saliency-Regularized Deep Multi-task Learn-

ing (SRDML) framework redefines task relationships by utilizing saliency maps—gradients

of predictive functions—to regularize deep nonlinear functions across tasks, overcom-

ing the limitations of traditional parameter-based approaches. By aligning tasks in

saliency space, SRDML enhances interpretability and task relation learning while

providing theoretical guarantees for reduced generalization error. Complementing

this, Saliency-Augmented Memory Completion (SAMC) tackles memory inefficiency

and catastrophic forgetting in CL by storing and recovering task-relevant knowledge

through saliency-guided abstractions rather than raw data. Inspired by memory pat-

tern completion in neuroscience, SAMC efficiently abstracts learning episodes using

saliency maps and reconstructs them via image inpainting, significantly improving

memory usage and transparency. Together, these frameworks demonstrate the po-

tential of saliency-based methods to enhance functional-space knowledge transfer,

addressing alignment, efficiency, and interpretability challenges in modern AI.
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1.1.2 Harnessing Function Space of Machine Learning Mod-

els for Generalizability via Saliency Methods via Dy-

namic Graph Generation

The Dynamic Regularized Adaptation with Inference Networks (DRAIN) frame-

work introduces a novel approach for temporal domain generalization (DG) by cap-

turing and predicting the dynamics of both data distributions and model parameters

over time. Unlike traditional DG methods that assume fixed domain boundaries or

treat time as a simple feature, DRAIN formulates the problem through a Bayesian

perspective, jointly modeling the relationship between temporal data shifts and the

corresponding model adjustments. At its core, DRAIN represents the model as a

dynamic graph, where neurons and parameters form graph-structured entities whose

evolution across time is encoded and decoded using recurrent graph generation tech-

niques. This allows DRAIN to holistically track and adapt to data distribution drift,

making the model fully time-sensitive and capable of extrapolating its functionality to

unseen future domains without requiring future data. Furthermore, DRAIN employs

a sequential modeling mechanism to learn and leverage temporal patterns in data and

model dynamics, enabling robust prediction of model states in evolving environments.

With theoretical guarantees on uncertainty quantification and generalization error,

DRAIN addresses key challenges in expressiveness, temporal adaptability, and the-

oretical rigor, as demonstrated by its superior performance across various temporal

DG scenarios.

PrOmpt-based domaiN Discrimination (POND) introduces a novel framework for

multi-source time series domain adaptation, leveraging prompt tuning to enhance

generalizability across domains. Traditional domain adaptation methods often over-

look domain-specific information, focusing instead on learning domain-invariant rep-

resentations, which fail to capture valuable domain-specific trends and temporal pat-
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terns critical for effective adaptation. POND addresses these limitations by extending

prompt tuning to time series analysis, enabling the learning of flexible, domain-specific

prompts that adapt dynamically to evolving data distributions. To achieve this,

POND introduces a neural network-parameterized conditional module that generates

prompts tailored to each source domain, ensuring the model can capture both global

and local domain-specific information. Furthermore, it incorporates fidelity and dis-

tinction criteria to evaluate and optimize the quality of learned prompts, ensuring

that they maximize mutual information with labels while minimizing redundancy

across domains. By integrating these features into a robust architecture enhanced by

the Mixture of Experts (MoE) technique, POND achieves superior performance in

selecting the most suitable source domain for adaptation.

1.1.3 Harnessing Function Space of Machine Learning Mod-

els for Better Efficiency via Global Pruning

SparseLLM introduces a novel framework for globally optimizing the sparsity of

large language models (LLMs) to enhance computational and memory efficiency dur-

ing inference while maintaining strong performance. Unlike conventional global prun-

ing methods, which are impractical for billion-scale LLMs due to high memory de-

mands, and local pruning methods, which often yield suboptimal solutions by focus-

ing only on layer-wise sparsity, SparseLLM addresses these challenges by decomposing

the global pruning objective into manageable subproblems. Specifically, SparseLLM

reformulates the global pruning task using auxiliary variables, enabling the coordi-

nation of subproblems that correspond to individual layers or modules of the LLM.

An alternating optimization algorithm is then employed to solve these subproblems

efficiently, ensuring computational feasibility and global optimality through closed-

form solutions. SparseLLM consistently outperforms state-of-the-art local pruning

techniques such as SparseGPT and Wanda, particularly in high-sparsity regimes,
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achieving significant improvements in model perplexity at high sparsity levels. More-

over, its adaptable framework can seamlessly integrate with existing local pruning

solvers, enhancing their performance with minimal additional computational over-

head. By making global pruning feasible for extremely large models, SparseLLM sets

a new standard for resource-efficient LLM inference and serves as a versatile tool for

advancing model compression research.

Building on this foundation, FedSpaLLM extends the SparseLLM framework to

the federated learning setting, where resource constraints and system heterogeneity

present additional challenges. FedSpaLLM enables decentralized global pruning by

allowing each client to independently prune its local model based on private data and

specified sparsity targets. A novel ℓ0-norm-based aggregation function is then used

to unify the pruned models, ensuring that the global model maintains the desired

sparsity while accommodating heterogeneous pruning masks across clients. To fur-

ther reduce communication and computation costs, FedSpaLLM introduces a layer

sampling strategy that randomly selects a subset of layers for each client to update in

each round. Theoretical analysis guarantees both the global sparsity constraint and

unbiasedness of the aggregation process. By bridging the gap between centralized

global pruning and federated learning, FedSpaLLM brings the efficiency benefits of

SparseLLM to decentralized environments, making it suitable for edge deployment

and privacy-sensitive applications.

Together, SparseLLM and FedSpaLLM establish a function-space-driven paradigm

for scalable, efficient LLM pruning — both in centralized and federated contexts —

setting a new benchmark for resource-aware AI deployment.
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1.2 Contribution

The major proposed research contributions that have been addressed up to now

can be stated as follows:

Saliency-Regularized Deep Multi-Task Learning (SRDML): This paper makes

the following key contributions:

• We propose a new Saliency-Regularized Deep Multitask Learning (SRDML)

framework to address the challenges in multitask learning.

• We reconsider the feature weights in traditional linear multitask learning as the

input gradient and generalize the feature learning into the non-linear scenario

using the concept of saliency detection.

• We reformulate the task relation problem as the similarity among saliency re-

gions across tasks to regularize and infer task relationships.

• We provide theoretical analyses to:

– Demonstrate the equivalency of our proposed framework with traditional

methods.

– Show how the proposed regularization reduces generalization error.

• We validate the effectiveness and efficiency of our model on synthetic data and

multiple large-scale real-world datasets, outperforming various baseline meth-

ods.

Saliency-Augmented Memory Completion for Continual Learning (SAMC):

This paper makes the following key contributions:

• We propose a novel Saliency-Regularized Deep Multitask Learning (SRDML)

framework to address critical challenges in multitask learning.
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• We reinterpret feature weights in traditional linear multitask learning as input

gradients and extend this concept to non-linear settings by leveraging saliency

detection.

• We recast the task relation problem as the similarity among saliency regions

across tasks, enabling a new method to regularize and infer task relationships.

• We provide rigorous theoretical analyses to:

– Establish the equivalency of the proposed framework with traditional ap-

proaches.

– Demonstrate how the proposed regularization effectively reduces general-

ization error.

• We validate our model’s effectiveness and efficiency through experiments on

synthetic data and multiple large-scale real-world datasets, achieving superior

performance compared to various baselines.

Temporal Domain Generalization with Drift-Aware Dynamic Neural Net-

work (DRAIN): This paper makes the following key contributions:

• We develop a novel and adaptive temporal domain generalization framework

that can be trained in an end-to-end manner.

• We introduce an innovative approach that models the system as a dynamic

graph and utilizes graph generation techniques to create a fully time-sensitive

model.

• We propose using a sequential model to learn temporal drift adaptively and

leverage the learned sequential patterns to predict model states in future do-

mains.

• We provide theoretical analyses, including:
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– Uncertainty quantification.

– Generalization error of the proposed method.

• We demonstrate the efficacy and superiority of our model through extensive

experiments.

Towards Global Pruning of Pre-trained Language Models (SparseLLM):

This paper makes the following key contributions:

• We propose SparseLLM, a global pruning framework designed to achieve global

sparsity in large language models (LLMs) with low memory consumption by

decomposing the global pruning objective into manageable subproblems.

• We reformulate LLMs as a composite function and introduce auxiliary vari-

ables to facilitate the decomposition and coordination of subproblems, enabling

efficient global pruning while maintaining dependencies across model layers.

• We develop an alternating optimization algorithm that efficiently solves the

subproblems with closed-form solutions, achieving computational resource effi-

ciency and global optimality.

• We demonstrate that SparseLLM significantly improves the performance of local

pruning methods, especially in high-sparsity regimes (sparsity ¿ 60%), reducing

perplexity by up to 80% compared to state-of-the-art methods.

• We show that SparseLLM is adaptable and can enhance existing local pruning

solvers, such as SparseGPT and Wanda, with minimal additional computational

overhead, making it a versatile and practical tool for pruning LLMs.

Multi-Source Time Series Domain Adaptation with Information-Aware

Prompt Tuning (POND): This paper makes the following key contributions:
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• We propose a flexible prompt generator that extends prompt tuning to time se-

ries analysis by incorporating a conditional module to capture evolving domain-

specific information, with theoretical analysis demonstrating its superiority.

• We introduce two criteria, fidelity and distinction, to select high-quality prompts,

supported by theoretical guarantees on maintaining fidelity and introducing new

information.

• We develop an efficient meta-learning-based optimization algorithm and lever-

age the Mixture of Experts (MoE) technique to enhance the robustness of the

proposed POND model.

• We validate the effectiveness of the POND model through comprehensive ex-

periments on multiple benchmark datasets, achieving up to a 66% improvement

in F1-score over state-of-the-art methods.

1.3 Thesis Organization

The remainder of this dissertation is organized as follows:

Chapter 2 introduces methodologies for improving interpretability by leveraging

saliency-based regularization in function space. Specifically, this chapter presents

two frameworks: SRDML, which enforces task structure via input gradients, and

SAMC, which incorporates saliency into associative memory replay to mitigate for-

getting in continual learning. Both theoretical foundations and empirical results are

discussed.

Chapter 3 explores generalization under distribution shift through functional-

space modeling. It introduces DRAIN, a framework that enables temporal domain

generalization via functional interpolation over time, and POND, which leverages

prompt-tuning to disentangle invariant and domain-specific behaviors in multi-source
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settings. The chapter provides theoretical insights into uncertainty and generalization

error, supported by extensive experimental validation.

Chapter 4 focuses on enhancing efficiency through function-space-guided global

pruning. It presents SparseLLM, a scalable global pruning framework for large

language models based on structured sparse optimization, and FedSpaLLM, its

federated learning extension that incorporates sparsity-aware aggregation and layer

sampling to address both resource and system heterogeneity. Experimental results

demonstrate the effectiveness of both methods in reducing model redundancy while

preserving performance.

Finally, Chapter 5 concludes the dissertation by summarizing key contributions

across the three pillars of interpretability, generalizability, and efficiency. It also

discusses the broader implications of function-space reasoning and outlines several

promising directions for future research toward scalable and adaptable AI systems.
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Chapter 2

Harnessing Function Space of

Machine Learning Models for

Better Interpretability via

Saliency-based Methods

Functional space, as an abstract representation of how models encode knowledge

and relationships, has emerged as a powerful concept for designing algorithms that

enhance generalizability, interpretability, and efficiency. By leveraging insights from

functional space, we can design novel methodologies that not only optimize perfor-

mance but also reveal meaningful patterns in the underlying data and tasks. In

this chapter, we explore two key approaches that deploy saliency-based techniques to

achieve functional-space-guided learning: SRDML and SAMC.

The first approach, SRDML (Saliency Regularized Deep Multi-task Learning),

focuses on multi-task learning (MTL), where the goal is to improve the generalization

of multiple tasks by learning their relationships. SRDML addresses key challenges in

MTL, such as the lack of explicit task relation modeling and the inability to adaptively
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determine task-sharing structures. By modeling task relations through saliency-based

measures—specifically, the similarity of input gradients—it provides a theoretically

grounded framework for functional space regularization. This results in improved task

relation interpretability and generalization error bounds, as demonstrated through

rigorous analysis and experiments.

The second approach, SAMC (Saliency-Augmented Memory Completion), builds

on principles from cognitive neuroscience to address the problem of catastrophic for-

getting in continual learning (CL). SAMC introduces a saliency-guided memory sys-

tem that prioritizes the storage of the most task-relevant information in a bounded

episodic memory. Leveraging this saliency, SAMC employs an adaptive inpainting

mechanism to “complete” memories during training, ensuring storage efficiency, gen-

eralizability, and interpretability. This methodology highlights the role of saliency

in functional-space-guided learning by emphasizing the critical regions of input data

necessary for robust model performance.

By focusing on saliency as a mechanism for functional-space encoding, SRDML

and SAMC provide complementary strategies for addressing challenges in multi-task

and continual learning, respectively. Together, they lay the groundwork for under-

standing how functional space can guide learning systems toward more efficient and

interpretable solutions. The following sections delve deeper into these methods, their

theoretical underpinnings, and their practical implications.

2.1 Task Relation Learning via Saliency (SRDML)

2.1.1 Introduction

Multi-task learning (MTL, [23]) is an important research domain based on the

idea that the performance of one task can be improved using related tasks as induc-

tive bias. While traditional shallow MTL methods can fit the models for individual



16

tasks and learn task relations, they do not focus on generating features from scratch

and instead rely on pre-defined and explicit features [165, 140]. More recently, deep

representation learning empowers MTL to go ”deep” by equipping it with the ca-

pacity to generate features while fitting the tasks’ predictive models. Deep MTL is

usually categorized according to the ways of correlating tasks’ models into two major

types: hard-parameter sharing and soft-parameter sharing. Hard-parameter sharing

methods [166, 85] essentially hard-code which part of neurons or layers to share and

which part does not for different tasks instead of doing it adaptively. Moreover, they

usually share the layers for representation learning (e.g., convolutional layers) but not

those for decision-making (e.g., fully-connected layers for classification). On the other

hand, soft-parameter sharing methods [32, 99] do not require to hard-code the shar-

ing pattern but instead, build individual models for each task and ”softly” regularize

the relatedness among them. Hence, soft-parameter sharing has better flexibility in

learning the task relation, while may not be efficient since its model parameters in-

crease linearly with the number of tasks. Hard-parameter sharing, by contrast, is

more ”concise” but requires pre-defining which parts are shared or not.

Therefore, although MTL is a long-lasting research domain, it remains a highly

challenging and open domain that requires significantly more effort to address chal-

lenges such as the trade-off between model flexibility and conciseness of hard- and

soft-parameter sharing mentioned above. Although more recently, there have come

a few attempts trying to alleviate the dilemma, such as those regularizing task re-

lationships in task-specific layers in hard-parameter sharing to achieve knowledge

transfer in unshared layers [85] and those adaptively learning which part to share or

not by methods like branching [87] or Neural Architecture Search [134], the research

frontiers still suffer from several critical bottlenecks, including (1) Difficulty in

regularizing deep non-linear functions of different tasks. Adaptively learning

task relation requires regularizing different tasks’ predictive functions, which, how-
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ever, are much harder to achieve for nonlinear-nonparametric functions since they

require regularizing in the whole continuous domain of input. To work around it,

existing works [85, 130] typically resort to a reduced problem which is to regularize

the neural network parameters. Notice that this reduction deviates from the orig-

inal problem and is over-restricted. For example, first, two neural networks with

different permutations of latent neurons can represent the same function. Moreover,

even if they have different architectures, they can still possibly represent the same

function [68]. This gap deteriorates the model’s generalizability and effectiveness.

(2) Lack of interpretability in joint feature generation and task relation

learning. Despite the incapability of generating features, shallow MTL enjoys good

interpretability since they learn explicit task correlations via how the hand-crafted

features are utilized. However, in deep MTL, the generated features do not have

explicit meaning and how the black-box models relate to each other is highly obscure.

Increasing the interpretability of generated features and task relations is imperative

yet challenging. (3) Difficulty in theoretical analysis. While there are fruitful

theoretical analyses on shallow MTL, such as on generalization error [11] and con-

ditions for regularized MTL algorithms to satisfy representer theorems [4], similar

analyses meet strong hurdles to be extended to deep MTL due to the difficulty in

reasoning about neural networks whose feature space is given by layer-wise embed-

dings [154]. It is crucial to enhance the theoretical analyses on the model capacity

and theoretical relation among different deep MTL models.

This paper proposes a new Saliency-Regularized Deep Multi-task Learning (SRD

ML) framework to solve the challenges mentioned above. First, we reconsider the

feature weights in traditional linear multitask learning as the input gradient and

then generalize the feature learning into the non-linear situation by borrowing the

notion of saliency detection. Second, we recast the task relation problem as the

similarity among saliency regions across tasks so as to regularize and infer the task
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relation. Third, to validate our hypothesis, we have given a theoretical analysis

of their equivalency. Meanwhile, we also provide a theoretical analysis of how the

proposed regularization helps reduce the generalization error. Finally, we demonstrate

our model’s effectiveness and efficiency on synthetic and multiple large-scale real-

world datasets under comparison with various baselines.

2.1.2 Problem Formulation

Consider a multi-task learning problem with T tasks such that a dataset {X,Y1,Y2,

· · · ,YT} is given with i.i.d training samples Xt = {x(t)
1 ,x

(t)
2 , · · · ,x(t)

n }, Yt = {y(t)
1 ,y

(t)
2 ,

· · · ,y(t)
n }, where n is the sample size and (x

(t)
i ,y

(t)
i ) is a pair of input and label such

that x
(t)
i ∈ X and y

(t)
i ∈ R, ∀ i = 1, 2, · · · , n and t = 1, 2, · · · , T .

Given a predictor g which factorizes as g = f ◦ h, where ”◦” stands for functional

composition. The function h : X → RK is called the feature or representation

extraction part and is shared for all tasks, while f : RK → R is a function defined on

RK , a predictor specialized to each task at hand. K denotes the latent representation

or feature-map dimensions. We further assume that each task shares the same input

feature x, i.e., x(1) = x(1) = · · · = x(T ), which is very commonly seen in deep MTL

problems such as multi-task image classification task in the Computer Vision domain.

Our goal is to build a deep architecture for learning multiple tasks y
(t)
i = gt(xi), t =

1, 2, . . . , T which jointly generates semantic features and learns task relation to cor-

relate different tasks with interpretability. This goal poses significant challenges to

existing work: 1). Directly regularizing the prediction function of different tasks is

extremely hard. Existing work considered a reduced problem by regularizing the fea-

ture weights of different ft which is over-restricted. 2). How to learn interpretable

task relations with deep/implicit features is still unclear. 3). Theoretical analysis is

rare in deep MTL due to the non-linear and non-parametric functions of h and f . To

jointly solve these challenges, we reconsider the feature weights in shallow MTL as
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Figure 2.1: Illustrative examples of relation between saliency and task similarity.
Left: Two tasks are to detect whether the man is smiling and his mouth is open. The
salient regions for two tasks are both around the mouth. Right: Two tasks are to
detect the horse and person. The salient regions are close to each other, indicating
the potential similarity between the tasks.

input gradient, i.e., ∂f(x)/∂x, x ∈ RK , and generalize the feature learning into the

deep network by considering the saliency detection methods.

2.1.3 Motivation

To achieve model conciseness and efficiency as well as task relatedness flexibility,

we share the representation learning layers and learn task relationships in task-specific

layers. This is based on essential neuro-inspirations: human sensory organs and retina

are the same for all different tasks (meaning the convolution layers are shared). On

the other hand, the working memory will leverage the long-term memory for each

task, and related tasks will have related memory (i.e., model), and their relatedness

can be considered as the similarities of activation patterns for different tasks, namely

the similarity among the saliency maps for different tasks.

Then, the next question is how to regularize the relation among different tasks,

namely, how to regularize the (dis)similarity of the predictive functions of different

tasks. As mentioned above, it is problematic to directly regularize the neuron network

parameters due to their gap with the actual function. For example, neural networks

with different architectures or neuron permutations could represent the same function.

Therefore, this motivates us to explore an innovative alternative so that we can more

easily work towards the space of functional. Specifically, we propose to regularize

first-order derivatives with respect to the input of different tasks. This new strategy
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has two crucial merits: First, it is mathematically equivalent to directly regularizing

the function without the gap in existing works mentioned above. Second, it also finds

inspiration from the saliency map domain and comes with strong interpretability in

how tasks correlate.

Key Merit 1: Regularizing task functions without theoretical gap. Specifi-

cally, Theorem 2.1.1 below tells us that enforcing multiple tasks to have similar input

gradients is equivalent to encouraging those tasks themselves to be similar.

Theorem 2.1.1. Define F := {f ∈ C1 : f(0) = 0}, where Ck is the family of

functions with kth-order continuous derivatives for any non-negative integer k. Given

f1, f2 ∈ F , we have:

f1 = f2 if and only if f ′
1(x) = f ′

2(x), ∀x ∈ X (2.1)

Proof. Please refer to Appendix A for the formal proof.

Our analysis above allows us to regularize the prediction functions of different tasks

in the functional space instead of parameter space. The assumption over function

family F := {f ∈ C1 : f(0) = 0} is reasonable in practice since an all-zero input x

simply corresponds to a ”black” picture, and for any tasks we assume a black picture

contains no useful information and should be classified as the negative sample (i.e.,

ground-truth label should be 0).

Key Merit 2: Inspiration from saliency map and enhancement of inter-

pretability. Evaluating task relation with derivative similarity has justification from

a saliency perspective. Saliency is a derivative of the prediction score w.r.t. input

features, and it denotes the semantic features that influence the prediction most. In

addition, similar tasks tend to have similar saliency, while dissimilar tasks tend to

have dissimilar saliency. As shown in Figure 2.1, we enforce higher-level semantic

features as saliency.
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Many previous works have asserted that deeper representations in a CNN capture

higher-level visual constructs [14]. Furthermore, convolutional layers naturally retain

spatial information which is lost in fully connected layers, so we expect the last

convolutional layers to have the best compromise between high-level semantics and

detailed spatial information. By following a recent work called Grad-CAM [123], we

use the gradient information flowing into the last convolutional layer of the CNN to

capture the saliency map to each neuron for a particular task or class of interest.

2.1.4 Proposed Method

First, we will give a formal definition of saliency. For example, in computer vision,

given an input image I, a classification ConvNet f predicts I belongs to class c and

produces the class score fc(I) (abbrev. fc). Let A be the feature map activations of

the last convolutional layer. We are curious about the rank of each pixel in A based

on its importance, which is referred to as saliency. The relationship between fc and A

is highly non-linear due to the non-linearity in f . In this case, we use the first-order

derivatives, i.e., ∂fc/∂A, to approximate the saliency map, which basically reflects

the contributions of different pixels in A to the prediction fc.

The objective function of SRDML is defined as follows:

min
h,f1,··· ,fT ,ξ

∑T

t=1
Lt(ft(h(X)),Yt), s.t.

∀ i, j, dist(∇Afi,∇Afj) ≤ ξij ,
∑

1≤i<j≤T
ξij ≤ α

(2.2)

where i, j are task indexes with 1 ≤ i < j ≤ T , A = h(X) is the feature map

activations from the last convolutional layer of h, and∇Aft is the first-order derivative

of function ft with respect to A, i.e., ∂ft/∂A. The dist(·) function here can be any

distance measure including commonly-used ones like ℓ1, ℓ2, etc, and any potential

normalization on the input gradient can also be embeded in dist(·).
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Figure 2.2: A high level overview of SRDML architecture.

To adaptively learn the task relations, we introduce {ξij}1≤i<j≤T , which is a set

of learnable slack variables for each pair of tasks and α is a hyperparameter for

controlling the overall level of slacking. Notice each ξij can only take non-negative

value and this is guaranteed by the inequality constraint and the non-negative norm.

Directly optimizing Eq. 2.2 could be difficult due to the constraint. By utilizing

Lagrangian method, we further transform Eq. 2.2 into a regularized form as follow:

min
h,f1,··· ,fT ,ω

∑T

t=1
Lt(ft(h(X)),Yt)

+ λ ·
∑

1≤i<j≤T
ωij · dist(∇Afi,∇Afj)

s.t., ∀ i, j, ωij ≥ 0 and
∑

1≤i<j≤T
ωij ≥ β

(2.3)

where {ωij}1≤i<j≤T is a set of learnable parameters to explicitly model task relation-

ship during the multi-task training, and λ is the regularization coefficient. Our Eq. 2.3

is motivated by the graph regularization [35, 36], where each node corresponds to a

specific task and ωij represents the weight for the edge between task i and task j, so

a graph-structure task relationship can be adaptively learned by SRDML. We rear-

range the non-negative constraints over ω and apply normalization onto {ωij}1≤i<j≤T

to further simplify the constraints as follow:

min
h,f1,··· ,fT ,ω≻0

∑T

t=1
Lt(ft(h(X)),Y)

+ λ ·
∑

1≤i<j≤T

ωij

W
· dist(∇Afi,∇Afj)

(2.4)
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where W =
∑

1≤i<j≤T ωij. Thanks to our normalization trick, the overall objective

of SRDML is differentiable and can be trained in an end-to-end manner. We use

standard gradient descent (e.g., Adam [57]) to solve Eq. 2.4, where we aim to learn

multiple tasks and the task relationship simultaneously. Although the normalization

trick introduced in Eq. 2.4 no longer guarantees that the hard constraint of the

lower bound of all ωij can be strictly satisfied, our empirical results show that our

normalization trick works well in practice and SRDML can capture reasonable task

relationship by optimizing Eq. 2.4 with finetuned hyperparameters.

A general overview of SRDML architecture can be found in Figure 2.2. First, the

input image is fed into a shared feature extractor, which is implemented by a sequence

of convolutional layers. Right after the feature extraction process, we obtain a set of

flattened feature maps (shown as the blue bar in Figure 2.2), which contains high-

level semantic information with respect to the original image [123]. On top of the

feature map, each task-specific head will first calculate the saliency map with respect

to its own prediction. Based on the saliency map for all the tasks, the task similarity

can be calculated via some distance measure. Note that our overall framework is

differentiable and can be trained in an end-to-end manner.

Last, how to share the convolutional layers is orthogonal to the focus of our paper

because our SRDML focuses on task-specific layers instead of representation learning

layers. This also implies whichever is the best choice for the convolutional layer-

sharing strategy can be utilized to work for our model. Our empirical results also

demonstrated the reasonableness of the sharing policy that we used in this paper.

2.1.5 Theoretical Analyses

In this section, we present the theoretical analyses of our SRDML model. First, we

prove that our proposed regularizer can help reduce the generalization error. Second,

we formally analyze the relation between SRDML and other MTL methods. We put
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all formal proofs in Appendix A due to the limited space.

Generalization Error Bound

Here we show the generalization bound of our model. Our main contribution

here is we proved that our proposed regularization term can help reduce the

generalization error.

For simpler notation, define

Fϵ(α) :=
{
f ∈ FT : ∀ 1 ≤ i < j ≤ T, x ∈ X ,

dist(∇xfi,∇xfj) ≤ ϵij,
∑

1≤i<j≤T
ϵij ≤ α

} (2.5)

where f = (f1, f2, · · · , fT ) is the vectorization of each task’s function, and {ϵij}1≤i<j≤T

is a set of global slack variables. Hence, the optimization problem of Eq. 2.2 can be

simplified as

min
h∈H,f∈Fϵ(α)

1

nT

∑T

t=1

∑n

i=1
Lt(ft(h(xi)),y

(t)
i ) (2.6)

Before introducing the theorem, we make the following standard assumptions over

the loss function:

Assumption 2.1.2 ([95]). The loss function L has values in [0, 1] and has Lipschitz

constant 1 in the first argument, i.e.:

• L(y, y′) ∈ [0, 1]

• L(y, y′) ≤ y, ∀ y′.

Different Lipschitz constants can be absorbed in the scaling of the predictors and

different ranges than [0, 1] can be handled by a simple scaling of our results.

Definition 2.1.3 (Expected risk, Empirical risk). Given any set of function h, f1, · · · , fT ,

we denote the expected risk as:



25

E(h, f1, · · · , fT ) :=
1

T

∑T

t=1
E(X,Y )∼µt [Lt(ft(h(X)), Y )] (2.7)

Given the data Z = (X,Y), the empirical risk is defined as:

Ê(h, f1, · · · , fT |Z) :=
1

T

∑T

t=1

1

n

∑n

i=1
Lt(ft(h(xi)),y

(t)
i ) (2.8)

Definition 2.1.4 (Global optimal solution, Optimized solution). Denote (h∗, f∗) as

the global optimal solution of the expected risk:

(h∗, f∗) := arg min
h∈H,f∈Fϵ(α)

E(h, f1, · · · , fT ) (2.9)

and (ĥ, f̂) as the optimized solution by minimizing the empirical risk:

(ĥ, f̂) := arg min
h∈H,f∈Fϵ(α)

Ê(h, f1, · · · , fT |Z) (2.10)

The following theorem provides theoretical guarantee of our proposed method’s

generalizability.

Theorem 2.1.5 (Generalization Error). Let δ > 0 and µ1, µ2, . . . , µT be the probabil-

ity measure on X ×R. With probability of at least 1− δ in the draw of Z = (X,Y) ∼∏T
t=1 µ

n
t , we have:

E(ĥ, f̂)− E(h∗, f∗) ≤ c1L
G(H(X))

nT
+ c2B

√
λ−1
min suph ∥h(X)∥
n
√
nT

+

√
8 ln (4/δ)

nT
, (2.11)

where c1, c2 are universal constants, G(H(X)) is the Gaussian average defined as

G(H(X)) = E[suph∈H
∑

ktiγktih(xt
i)|xt

i], where {γkti} is i.i.d standard normal vari-

ables. L is the Laplacian matrix of graph with T vertices and edge-weights {ωij}1≤i<j≤T ,

and λmin is its smallest non-zero eigenvalue. B is any positive value that satisfies the

condition
∑T

i,j=1ωij · dist2(∇Afi,∇Afj) ≤ B2.
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Some remarks over Theorem 2.1.5: 1). The first term of the bound can be inter-

preted as the cost of estimating the shared representation learning function h ∈ H.

This term is typically of order 1
n
. The last term contains the confidence parameter.

According to [95] the constant c1 and c2 are pretty large, so the last term typically

makes a limited contribution in the bound. 2). The second or middle term contains

the cost of estimating task-specific predictors f ∈ F , and this term is typically of

order 1√
n
. Here the positive constant B provides important insights into the rela-

tionship between our proposed regularizer and the error bound. The smaller our

regularization term becomes, the smaller values B could take and in turn

reduce the second term in the bound. In general, our generalization error result

bounds the gap between the test error of the model trained from finite samples and

that trained from infinite data, namely the theoretically optimal model/solution. In

other words, Theorem 2.1.5 provides a theoretical guarantee for our performance on

the actual test set.

Relation with Other MTL Frameworks

In this section, we mathematically elucidate the relation and difference between

our proposed SRDML and other MTL methods, i.e., shallow MTL and deep MTL.

Proof can be found in the appendix.

Natural generalization of shallow MTL. Following [165], traditional multi-task

learning methods (i.e., linear model based MTL) can be generally classified into

two categories: multi-task feature learning and multi-task relation learning, with ob-

jective function minW,b,Θ L(W, b) + λ/2 · tr(W ⊺Θ−1W ) and minW,b,Σ L(W, b) + λ/2 ·

tr(W ⊺Σ−1W ), where Θ and Σ models the covariance between different features and

tasks, respectively. For any regularization-based shallow MTL defined as above, it can

be formulated as a special case under the general framework of SRDML, with identity

feature extraction function h, linear task-specific function f and the corresponding
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Table 2.1: Attributes summary in CelebA and COCO.

T.id CelebA COCO T.id CelebA COCO

1 ArchedEyebrows person 11 PaleSkin couch
2 BagsUnderEyes cat 12 Sideburns bed
3 BlackHair dog 13 Smiling dining table
4 BrownHair horse 14 WavyHair laptop
5 Chubby car 15 WearingLipstick tv
6 DoubleChin truck 16 Young cell phone
7 Goatee bus 17 bottle
8 HeavyMakeup motorcycle 18 cup
9 MouthSlightlyOpen bicycle 19 bowl
10 Mustache chair

regularizer on the input gradients.

Relation with deep MTL. Define two hyperparameters: 1). The coefficient of

regularizer in SRDML λ, and 2). the number of layers ℓ before which the model is

shared cross tasks. When λ equals 0 and ℓ is greater than 1 and less than L (total

number of layers), SRDML degenerates to hard-parameter sharing. On the other

hand, when ℓ equals 1 and λ is greater than 0, our SRDML is equivalent to soft-

parameter sharing. Hence, both hard-parameter sharing and soft-parameter sharing

can be formally formulated as special cases of our proposed SRDML framework.

2.1.6 Experiments

In this section, we validate SRDML on synthetic and real-world datasets against

multiple methods, on various aspects including performance, sensitivity, qualitative

analysis, and ablation study. The experiments were performed on a 64-bit machine

with 4-core Intel Xeon W-2123 @ 3.60GHz, 32GB memory, and NVIDIA Quadro

RTX 5000.

Experimental Settings

Controlled Synthetic Dataset. We first check the validity of SRDML on a con-

trolled regression synthetic dataset. We generate T tasks (T = 12) and for each task i

we generate m samples (m = 100). The input data Xi ∈ Rm×d (d = 20) for each task

i is generated from Xi ∼ N (ηi, I) with mean vector ηi and identity covariance matrix
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(a) (b) Learned relation (c) Per-task performance gain. (d) sensitivity analysis.

Figure 2.3: Experimental results on synthetic dataset. (a): Ground-truth of
each task’s feature weight. (b): Task relation learned by our proposed SRDML.
Tasks from different bases show strong independence (as in dark purple), tasks from
the same bases show clear similarities (as in light green), and each pair of twin tasks
shows very strong similarities (as in yellow). (c): The performance improvement of
SRDML over single task learning in RMSE (blue bar) and MAE (green bar). As
shown, the SRDML model generally outperforms STL on the synthetic dataset by a
large margin. (d): Sensitivity analysis on regularization coefficient.

I. Next, we generate feature weight W by the following steps: 1) Generate two base

feature weights. As shown in Figure 2.3a, the first base feature weight (on the LHS

column) corresponds to w1 = (1;0)⊺ and the second base feature weight (on the RHS

column) corresponds to w2 = (0;1)⊺, where 1 and 0 each denotes a 10-dimensional

all-one and all-zero vector respectively. In this way, w1 and w2 can simulate two

different regions in the input X since the regions zeroed out by w will not be helpful

in corresponding tasks. 2) Generate task specific feature weight. Based on w1 and

w2, we further consider creating different levels of saliency by multiplying the base

feature weights by some magnitude parameter. Here we select 3 different magnitude

parameters to create different levels of saliency for each base feature weight, and for

each level of saliency, we create two tasks which are basically twin tasks. For example,

in Figure 2.3a, task 1 and task 2 are twin tasks that share the same level of saliency,

and the lightest blue color means they are generated by the lowest magnitude param-

eter. We denote each generated task-specific feature weight as wi, i ∈ {1, 2, · · · , T}.

The aforementioned logistics are basically symmetric for w1 and w2. 3) Add noise

and create labels. We first inject some noise into each task’s feature weight by ran-

domly flipping the sign of the value in some positions of each wi. The proportion of
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Table 2.2: Performance (%) on real-world large-scale multi-task learning datasets.
Our proposed SRMTL outperforms most comparison methods on all three datasets.
Bold and underlined scores are for the best and second-best methods, respectively.

Model
CIFAR-MTL CelebA COCO

Accuracy AUC Precision Recall Accuracy AUC Precision Recall Accuracy AUC Precision Recall

STL 92.65 66.20 71.32 69.83 86.83 90.96 70.53 60.39 79.23 62.91 32.23 27.04
Hard-Share 94.70 95.56 76.30 72.28 89.24 91.38 71.40 58.84 85.11 73.68 37.43 19.84
Lasso 91.48 86.64 68.90 24.74 76.55 66.69 37.38 36.62 78.36 64.40 28.53 28.61
L21 91.50 87.58 68.01 29.32 76.09 66.12 37.11 36.13 75.07 65.02 28.95 27.34
RMTL 92.28 85.65 61.54 28.15 75.52 66.99 37.48 36.74 76.87 65.01 29.28 28.43
MRN 94.51 96.67 79.94 76.95 89.35 91.54 71.51 64.64 85.13 75.88 32.73 25.89
MMoE 93.53 93.17 73.42 69.32 77.57 67.84 68.79 58.92 81.20 62.37 33.08 26.14
PLE 94.01 93.32 75.26 70.15 83.21 69.32 70.03 59.72 82.53 63.42 35.27 27.53
MGDA-UB 90.74 84.38 57.80 24.10 90.03 92.92 73.42 62.65 84.51 73.68 36.17 16.08
PCGrad 95.11 96.69 79.03 74.82 90.11 92.87 73.51 62.92 85.42 74.39 34.52 25.26
SRDML 95.82 96.43 81.22 75.93 90.15 92.95 73.87 64.91 85.68 76.77 35.82 28.73
SRDML (w/. PCGrad) 96.03 96.72 82.59 77.01 90.26 93.01 73.93 65.30 85.87 78.38 36.14 30.02

the flipped positions is controlled to guarantee the overall pattern can be well-kept.

Then, we generate the label for each task by Yi = Xi ·wi + ϵi, where ϵi ∼ N (0, 0.1 · I)

is random normal noise.

Real-world Dataset. We evaluate the proposed method on 3 real-world benchmarks

with varying number of tasks and difficulty, including multi-task version of CIFAR-

10 [60] (CIFAR-MTL), a modified version of CelebA [84] and a modified version of

MS-COCO [80]. To follow our model’s assumption, all tasks are image classification

ones. For CIFAR-MTL, we follow existing work [122] to create one task for each of

the 10 classes in original CIFAR-10 dataset. There are 10 binary classification tasks

with 2k training samples and 1k testing samples per task. CelebA has 200 thousand

images of celebrity faces and each image is labeled with 40 facial attributes. We follow

existing work [170] to select 16 attributes more related to facial appearance and ignore

attributes around decoration such as eyeglasses and hats for our experiments. We

randomly selected 30k training samples and included the whole validation and test

set. For MS-COCO we select 19 types of objects and remove those with too sparse

labels. We include all images that contain at least two of the 19 types of objects and

randomly split them into training and testing set by half. All results are reported on

the test set. For hyperparameter tuning of our method, without further specification,

we applied grid search on the range of {10−3, 5∗10−3, · · · , 0.5, 1} for the regularization

coefficient.
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Comparison Methods We compare SRDML with various existing methods, includ-

ing two baselines, three shallow and five deep sate-of-the-art MTL methods:

• Practical Baselines: 1). Single Task Learning (STL) is to train a separate

predictor for each task independently. 2) Hard Parameter Sharing (Hard-Share)

considers a shared representation learning backbone (e.g., convolutional layers in

CNN) and task-specific prediction head.

• Shallow MTL Methods: 1) Lasso is an ℓ1-norm regularized method that in-

troduces sparsity into the model to reduce model complexity and feature learning,

and that the parameter controlling the sparsity is shared among all tasks. 2)

Joint Feature Learning (L21) [34] assumes the tasks share a set of common features

that represent the relatedness of multiple tasks. 3) Robust Multi-task Learning

(RMTL) [25] method assumes that some tasks are more relevant than others. It

assumes that the model W can be decomposed into a low-rank structure L that

captures task-relatedness and a group-sparse structure S that detects outliers.

• Deep MTL Methods: Multilinear Relationship Networks (MRNs) places a tensor

normal prior on task-specific layers of the deep multi-task learning model [85]. 2)

Multi-gate Mixture-of-Experts (MMoE) [90] adapt the Mixture-ofExperts (MoE)

structure to multi-task learning by sharing the expert submodels across all tasks,

while also having a gating network. 3) Progressive layered extraction (PLE) [136]

separates shared components and task-specific components explicitly and adopts a

progressive routing mechanism to extract and separate deeper semantic knowledge

gradually, improving the efficiency of joint representation learning and information

routing across tasks in a general setup. 4) Multi-task Learning as Multi-Objective

Optimization (MGDA-UB) [124] considers multi-task learning from an optimization

perspective by using Pareto optimality and Multiple Gradient Descent Algorithm.

5) Gradient Surgery for Multi-task Learning (PCGrad) [163] aims to solve the
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problem of gradient interference by gradient surgery, which is basically by gradient

projection to make sure the gradients of different tasks have direction smaller than

90◦. Since PCGrad targets gradient interference, it is only applied to the shared

layers of each model to avoid the contradiction of each task’s gradients. Specifically,

PCGrad is applied to the shared convolutional layers.

Implementation Details. All shallow MTL methods are implemented according

to the standard package MALSAR [171]. Deep MTL methods and our SRDML

are built based on VGG-16 [127], which is a very popular architecture in computer

vision. The convolutional layers are followed by one fully connected layer with 128

hidden neurons and one classification layer for our SRDML. Each model is trained

by Adam [57]. For PCGrad, due to the fact that it is a gradient surgery method

that is model-agnostic and can be applied to any deep MTL method, we report its

performance by combining it with the best baseline on each real-world dataset (i.e.,

Hard-Share on CIFAR-MTL, MGDA-UB on CelebA, MRN on COCO). In addition,

we also consider applying PCGrad to our own method SRDML, resulting in two

versions of our method, namely SRDML and SRDML with PCGrad.

Experimental Results

Effectiveness on a controlled synthetic dataset. The empirical results on

the regression synthetic dataset demonstrate that our model can generally outper-

form single-task learning and is capable of capturing the ground-truth task relations.

Quantitative evaluation in Figure 2.3c shows that SRDML can outperform single-

task learning in general, which can be attributed to the effective knowledge sharing

between task-specific layers. In addition, the task relationship pattern (i.e., wij in

Eq. 2.4) learned by SRDML as shown in Figure 2.3b is accurate and reasonable, since

tasks belong to different bases are well-separated and meanwhile each pair of twin

tasks shows very strong correlation (corresponds to those yellow boxes). Within each
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(a) CelebA (b) COCO

Figure 2.4: Visualization of task relation learned by SRDML on real-world dataset.
Zoom in for detail.

base, different pairs of twin tasks also show relatively strong relationships due to the

fact that they share the same base and only differ in magnitude.

Sensitivity analysis. The sensitivity of hyperparameter λ in SRDML on synthetic

dataset is shown in Figure 2.3d. As can be seen, the optimal value for λ is around 0.5

measured by RMSE. The general ”U” shape is potentially reasonable because as λ

goes to infinity the regularization term would dominate the overall objective function

while too small λ will reduce the functionality of the regularizer and finally degenerate

to single-task learning.

Effectiveness on real-world datasets.

• CIFAR-MTL: Table 2.2 shows the performance results of our proposed SRDML

and other baselines on the CIFAR-MTL dataset. We can make the following obser-

vations from the results. 1). Deep multi-task learning models generally outperform

shallow ones by a great margin, which confirms the importance of learning the deep

representation features as well as the shared policy of feature extraction part which

allows knowledge transfer across tasks. 2). Our proposed SRDML outperforms

baselines in the majority of metrics and achieves comparable performance in the

rest. 3). Combining with PCGrad can further improve the performance of SRDML
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due to the mitigated negative transfer in the shared convolutional layers by gradient

surgery of PCGrad.

• CelebA: In this case, we tackle a larger and more challenging benchmark, where

we tailored the dataset to contain 16 binary classification tasks with each one

corresponding to a certain human’s facial feature. As shown in Table 2.2, our

model outperforms all comparison methods in the majority of metrics, which is

attributed to the potential fact that the salient regions in some tasks are close to

those in the related tasks. For example, there are two tasks to classify whether a

celebrity’s beard is a goatee or mustache, respectively. For both tasks, the salient

regions are highly overlapped around the mouth area (as can be seen in Section

”Saliency map visualization” in the appendix) so enforcing similar input gradients

around the mouth area could improve the knowledge transfer and achieve better

performance.

• COCO: To evaluate our model under various settings, we consider COCO which

contains different types of objects like humans, animals, vehicles, furniture, etc, and

each type of object has a varying rate of occurrence. In Table 2.2, we report the

task-average classification error with lower values indicating better performance. As

shown in Table 2.2, our proposed SRDML outperforms all the baselines by a great

margin. This experiment also validates the effectiveness of our model when the

number of tasks is relatively large and the image context is complicated. Moreover,

MMoE and PLE perform generally not quite well probably due to the fact that these

two approaches are designed for multi-task learning under recommender system

scenario, which is not similar to that in multi-task image classification, e.g., the

number of tasks in our case is much larger and hence more challenging.

Qualitative analysis. Here we demonstrate that SRDML can learn reasonable task

relations on challenging real-world datasets by visualizing the task weight matrix
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Table 2.3: Sensitivity analysis on regularizer coefficient when tasks are contradicting.
Our regularizer coefficient can adaptively reduce to zero and avoid negative transfer.

λ 1 0.1 0.01 0.001 0
RMSE. 2.726 1.550 1.405 1.393 1.392
MAE. 2.198 1.260 1.127 1.127 1.126

(i.e., wij in Eq. 2.4). As shown in Figure 2.4, many highlighted task relations are

intuitive. In CelebA, our proposed SRDML successfully learned the similarity of tasks

sharing the same/similar regions around the face, like ”Arched Eyebrow” and ”Bags

Under Eyes”; ”Black Hair”, ”Brown Hair” and ”Wavy Hair”; ”Goatee”, ”Sideburns”

and ”mustache”, etc. On the other hand, our model can also learn reasonable task

similarities in COCO, including ”cat” and ”dog”; ”car”, ”bus” and ”bicycle”; ”couch”

and ”bed”, etc. We also conducted a qualitative analysis experiment on the saliency

map generated by our proposed SRDML on similar or related tasks. Please refer to

the appendix for the details.

Adaptive regularizer on contradicting tasks. In this section, we conducted

another sensitivity analysis when all tasks compete (we generate such a synthetic

dataset by following a similar procedure introduced in Section 5.1), and the results in

Table 2.3 demonstrate the efficacy of our regularization term, which can adaptively

decrease the task-similarity weight to zero and avoid competition.

Ablation study. In this section, we present an ablation study on the task relation

learning part in the regularizer. Specifically, we remove the {ωij}1≤i<j≤T in Eq. 2.3

and the coefficient for each term in the regularizer is just the hyperparameter λ. We

conducted experiments on all three real-world datasets to see the difference, and the

results are shown in Table 2.4.

Table 2.4: Ablation study on adaptive regularizer (Accuracy)

CIFAR-MTL CelebA MS-COCO

SRDML. (w/o regularizer) 94.92 89.74 85.18
SRDML. (w/. regularizer) 95.82 90.15 85.68
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2.2 Saliency-Augmented Memory Completion for

Continual Learning

2.2.1 Introduction

An important step toward next-generation Artificial Intelligence (AI) is a promis-

ing new domain known as continual learning (CL), where neural networks learn con-

tinuously over a sequence of tasks, similar to the way humans learn [108]. Compared

with traditional supervised learning, continual learning is still in its very primitive

stage. Currently, the primary goal is essentially to avoid Catastrophic Forgetting [96]

of previously learned tasks when an agent is learning new tasks. Continual learning

aims to mitigate forgetting while updating the model over a stream of tasks.

To overcome this issue, researchers have proposed a number of different strategies.

Among various approaches, the replay-based methods are arguably more effective in

terms of performance and bio-inspiration [121] as a way to alleviate the catastrophic

forgetting challenge and are thus becoming the preferred approach for continual learn-

ing models [118, 2]. However, the performance of these methods highly depends on

the size of the episodic memory. Recent work [59] proved that to achieve optimal per-

formance in continual learning, one has to store all previous examples in the memory,

which is almost impossible in practice and counters the way how human brain works.

Unlike avoiding (catastrophic) forgetting, the attempts on ‘how to reasonably forget’

is still a highly open question, leading to significant challenges in continual learn-

ing, including 1) Memory inefficiency. The performance of replay-based models

depends heavily on the size of the available memory in the replay buffer, which is

used to retain as many previous samples as possible. While existing works typically

store the entire sample in memory, we humans seldom memorize every detail of our

experiences. Thus, compared to biological neural networks, some mechanisms must
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still be missing in current models; 2) Insufficient generalization power. The pri-

mary focus of existing works is to avoid catastrophic forgetting by memorizing all the

details without taking into account their usefulness for learning tasks. They typically

rely on episodic memory for individual tasks without sufficient chaining to make the

knowledge they learn truly generalizable to all potential (historical and future un-

seen) tasks. In contrast, human beings significantly improve generalizability during

continual learning; 3) Obscurity of the memory and its importance to learn-

ing tasks. Human being usually has a concise and clear clue on how the relevant

memory is useful for learning tasks. Such a clue could even be helpful for telling if the

human has the necessary memory to be capable of a specific task at all. However, the

majority of existing works in CL pay little attention to pursuing such transparency

of continual learning models. For example, most works directly feed the images into

their model for training without any explanation generated, which may prevent users

from understanding which semantic features in the image are the most decisive ones

and how the model is reasoning to make the final prediction. In addition, without an

explanation generation mechanism, it is much more challenging for model diagnosing

or debugging, let alone understanding how knowledge is stored and refined through

the continual learning process.

To jointly address these challenges, this paper proposes Saliency-Augmented

Memory Completion (SAMC) framework for continual learning, which is inspired

by the memory pattern completion theory in cognitive neuroscience. The memory

pattern completion process guides the abstraction of learning episodes (tasks) into

semantic knowledge as well as the reverse process in recovering episodes from the

memorized abstracts. Specifically, in this paper, instead of memorizing all histor-

ical training samples, we memorize their interpretable abstraction in terms of the

saliency maps that most determine the prediction outputs for each learning task. Our

contribution includes, 1). We develop a novel neural-inspired continual learning
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framework to handle catastrophic forgetting. 2). We propose two techniques based

on saliency map and image inpainting methods for efficient memory storage and re-

covery. 3). We design a bilevel optimization algorithm with a theoretical guarantee

to train our entire framework in an end-to-end manner. 4). We demonstrate our

model’s efficacy and superiority with extensive experiments.

2.2.2 Problem Formulation

Continual learning is defined as an online supervised learning problem. Follow-

ing the learning protocol in [86], we consider a training set D = {D1,D2, · · · ,DT}

consisting of T tasks, where Dt = {(x(t)
i ,y

(t)
i )}nt

i=1 contains nt input-target pairs

(x
(t)
i ,y

(t)
i ) ∈ X × Y . While each learning task arrives sequentially, we make the

assumption of locally i.i.d, i.e., ∀ t, (x(t)
i ,y

(t)
i )

iid∼ Pt, where Pt denotes the data distri-

bution for task t and i.i.d for independent and identically distributed.

Given such a stream of tasks, our goal is to train a learning agent fθ : X → Y ,

parameterized by θ, which can be queried at any time to predict the target y given

associated unseen input x and task id t. Moreover, we require that such a learning

agent can only store a small amount of seen samples in an episodic memoryM with

fixed budget. Under the goal, we are interested in how to achieve continual learning

without forgetting problem setting defined as following: Given predictor fθ, the loss

on the episodic memory of task k is defined as

ℓ(fθ,Mk) := |Mk|−1
∑

(xi,k,yi)

ϕ(fθ(xi, k),yi), (2.12)

∀ k < t, where ϕ can be e.g. cross-entropy or MSE. We consider constrained optimiza-

tion to avoid the losses from increasing, which in turn allows the so called positive

backward transfer [86]. More specifically, when observing the triplet (x,y, t) from the
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current task t, we solve the following inequality-constrained problem:

minθ ℓ
(
fθ(x, t),y

)
, s.t.,

ℓ
(
fθ,Mk

)
≤ ℓ

(
f t−1
θ ,Mk

)
,

(2.13)

where f t−1
θ denotes the predictor state at the end of learning task t − 1 and k =

1, 2, · · · , t− 1. After the training of task t, a subset of training samples will be stored

into the episodic memory, i.e., M = M∪ {(x(t)
i ,y

(t)
i )}mt

i=1, where mt is the memory

buffer size for the current task. During the training of task t + 1, previously stored

samples will serve as Mt in Eq. 2.13.

Our goal above poses significant challenges to existing work: 1). The performance

of replay-based methods highly depends on the memory size. Existing work typically

considered storing entire samples into the memory, which was inefficient in practice.

2). Memorizing all the details could be problematic, and how to capture the most

important and generalizable knowledge through episodic memory is under-explored.

3). Interpretability and transparency over fθ are typically ignored in existing work,

which results in an obscure model with insufficient explanations on how the model is

reasoning towards its predictions and how knowledge is stored and refined through

the entire continual learning process.

2.2.3 Proposed Method

In this section, we introduce our proposed Saliency-augmented Memory Comple-

tion (SAMC) that addresses all the challenges mentioned earlier and thus narrows

the gap between AI and human learning. We innovatively utilize Explainable AI

(XAI) methods to select the most salient regions for each image and only store the

selected pixels in our episodic memory, thus achieving controllable and better mem-

ory efficiency. During the training phase, we leverage learning-based image inpainting

techniques for memory completion, where each partially stored image will be restored
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by the inpainting model. A bilevel optimization algorithm is designed and allows

our entire framework to be trained in an end-to-end manner. Our theoretical anal-

yses show that, as long as we properly select the salient region for each image and

the inpainting model is well trained, we can simultaneously achieve better memory

efficiency and positive backward transfer with a theoretical guarantee.

Saliency-augmented Episodic Memory.

In this section, we demonstrate how to leverage the saliency map generated by

saliency methods to select the “informative” region of each image and how we design

the episodic memory structure to store the images efficiently.

Saliency-based methods generate visual explanation via saliency map, which can

be regarded as the impact of specific feature map activations on a given prediction.

Given an input image I ∈ RH×W×C , a classification ConvNet fθ predicts I belongs to

class c and produces the class score f c
θ (I) (short as f c

θ ). The saliency map MI ∈ RH×W

is generated by assigning high intensity values to the relevant image regions that

contribute more to the model’s prediction, i.e.,

MI = Φ(I, fθ, c), (2.14)

where Φ can be any visual explainer that can generate saliency map as Eq. 2.14. In this

paper, we consider Grad-CAM as our choice of Φ, due to that it can pass important

”sanity checks” regarding their sensitivity to data and model parameters [1], which

differentiate Grad-CAM with many other explanation methods [33].

Suppose we are training on task t with predictor state f t−1
θ . Given a mini-batch

Bt = {(x(t)
i ,y

(t)
i )}bszi=1 from the current task’s data Dt (bsz denotes mini-batch size),

we generate the saliency map M following Eq. 2.14. Intuitively speaking, pixels with

higher magnitude in saliency map are more likely to be involved in the region of the

target class object while those with lower magnitude are more likely to be the non-
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target objects or background regions. Specifically, for any input pair (x, y) ∈ Bt, the

masked image x′ is

x′ = 1{Mx > µ} = 1{Φ(x, fθ, y) > µ}, (2.15)

where 1{·} is the indicator function and µ is the threshold for controlling each image’s

drop ratio.

We denote the mini-batch after extraction as B′
t. Due to the sparsity in x′, it

is inefficient to store the entire images in episodic memory. We propose to store

extracted images in the format of sparse matrix. Specifically, for each image in B′
t,

we first convert it into Coordinate Format (COO) [12], i.e., [(rowx′ , colx′ , valuex′)] =

COO(x′), where the left-hand-side is a list of (rwo,col,value) tuples. After trans-

forming the images into COO format, we store them into the episodic memory as

Mt = Mt ∪ COO(B′
t). We consider a simple way for adding samples into memory

similar to [86], where the samples are added into memory following first-in-first-out

(FIFO) and the last group of samples are stored in memory in the end.

Memory Completion with Inpainting.

As shown in Eq. 2.13, when we are training on task t we need to calculate the

loss on previous samples stored in episodic memory. However, due to the missing

pixels, classification models (e.g., CNN) cannot be operated on such ragged images.

There are various existing works on how to retrieve images with missing pixels, and

we consider the following two approaches:

Rule-based Inpainting. First approach is to handle the missing pixels by prescribed

rules [15, 138]. One advantage of such methods is that they introduce neither extra

model parameters nor training costs. Also, one does not need to worry about any

potential forgetting of the inpainting method itself during continual learning since it
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is purely based on hand-crafted rules. One naive candidate of rule-based inpainting

is simply padding all missing pixels with zeros. We have included it as a baseline in

this paper for comparison.

Learning-based Inpainting. An alternative is to utilize learning-based inpainting

models, and several deep learning models have demonstrated their state-of-the-art

performance on various image inpainting tasks [159, 111]. However, the trade-off of

their excellent performance is the potential higher memory cost and computational

inefficiency. Moreover, it is also challenging to ensure the model generalization for

each task during training without severe forgetting.

In this work, we consider autoencoder [14] as our learning-based inpainting model

since 1) autoencoder has been utilized as the backbone in many state-of-the-art deep

learning-based inpainting models [159, 111], which has proven its capability of learn-

ing any useful salient features from the masked image, 2) autoencoder is rather a

light-weight model which does not bring heavy burden to our framework. Specifi-

cally, the autoencoder Aξ(x
′) can be divided into two parts: an encoder pξe(z|x′) that

is parameterized by ξe, and a decoder pξd(x̃|z) that is parameterized by ξd, where

ξ = {ξe, ξd}, x′ is the masked image, x̃ is the recovered image, and z is a compressed

bottleneck (latent variable). Inpainting autoencoder aims at characterizing the con-

ditional probability

Aξ(x
′) = pξd(x̃|z) · pξe(z|x′) (2.16)

to reconstruct the image x̃ from its masked version x′. Moreover, Aξ(·) can be trained

with the objective of minimizing the reconstruction loss arg minξ ||x∗−Aξ(x
′)||22, where

x∗ is the ground truth image.

Furthermore, to maximize the number of samples into the memory Mk, it is

imperative to adopt a relatively large drop ratio µ. However, the generalization

power of the model would be affected since the details of the original image can

hardly be recovered in x̃ under a high drop rate. To ensure the model retains its
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generalization power under such circumstance, we leverage a novel image inpatinting

framework that incorporates both rule-based inpainting R(·) and the autoencoder

Aξ(x
′) to recover the image from coarse to fine. Specifically, given masked image x′

as defined in Eq. 2.15, we propagate it through rule-based inpainting module R(·)

to get a coarse prediction and then feed the output after rule-based inpainting into

autoencoder Aξ(·) for further refinement, i.e., x̃ = Aξ(R(x′)). If we are training on

task t, given masked images stored in episodic memoryMk,∀ k < t, we convert them

from COO format back to standard sparse image tensor and generate the memory

with pattern completion M̃t as

M̃k = Aξ

(
R
(
COO−1(Mk)

))
, ∀ k < t, (2.17)

where COO−1 denotes the decoding process from COO format back to sparse matrix.

Bilevel Optimization.

In each incremental phase, we optimize two groups of learnable parameters: 1)

the model parameter of continual learning classifier, θ, and 2) the inpainting model’s

parameter ξ. Directly optimizing the entire framework could be hard since θ and ξ are

coupled. In this paper, we consider formulating the problem as bilevel optimization,

i.e.,

Upper: ξ∗ = argminξ∥x−Aξ(R(x′))∥22

Lower: s.t. θ∗ = argminθ ℓ
(
fθ(x, t),y

)
s.t. ℓ(fθ,M̃k) ≤ ℓ(f t−1

θ ,M̃k),

(2.18)

where k < t and x′ = 1{Φ(x, fθ∗ ,y) > µ}. The upper-level corresponds to minimizing

the image reconstruction loss on the current task, where each raw image is masked by

saliency map and then inpainted by the inpainting model. The lower-level corresponds
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to the standard objective as Eq. 2.13 for training continual learning classifier fθ while

the constraints are based on inpainted images M̃k instead of actual images Mk.

Optimizing θ: Given ξ, the objective function over θ becomes a constrained opti-

mization problem. To handle the inequality constraints, we follow [86] but with a

clearer theoretical explanation.

Definition 2.2.1. Given loss function ℓ and an input triplet (x, y, t) or episodic

memory after completion M̃k, define the loss gradient vector as

g := ∂ℓ(fθ(x, t),y)/∂θ, g̃k := ∂ℓ(fθ,M̃k)/∂θ. (2.19)

The first lemma below proves the sufficiency of enforcing the constraint over the

loss gradient in order to guarantee positive backward transfer as in Eq. 2.13.

Lemma 2.2.2. ∀ k < t, with small enough step size α,

⟨g, g̃k⟩ ≥ 0 ⇒ ℓ(fθ,M̃k) ≤ ℓ(f t−1
θ ),M̃k). (2.20)

Guaranteed by the above lemma, we approximate the inequality constraints in

Eq. 2.18 by computing the angle between g and g̃k, i.e., ⟨g, g̃k⟩ ≥ 0, ∀ k < t. Whenever

the angle is greater than 90◦, the proposed gradient g will be projected to the closest

gradient g̃ in ℓ2-norm that keeps the angle within 90◦. For more details please refer

to [86] due to limited space.

Optimizing ξ: Following the training procedure of bilevel optimization [38], we

take a couple of gradient descent steps over the inpainting model parameter ξ when

samples from new task arrive, i.e.,

ξ ← ξ − β · ∇ξ∥x−Aξ(R(x′))∥22, (2.21)

where β is the step size for ξ. It has been shown that early stopping in SGD can be
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regarded as implicit regularization [117], and we adopt this technique over ξ to help

mitigate the forgetting of the inpainting model. We only take a few steps of SGD

over ξ that helps control any detrimental semantic drift of the autoencoder and thus

alleviate potential forgetting.

The next lemma shows that the difference between continual learning model’s

outputs over the original image and inpainted one can be upper bounded by factors

related to Grad-CAM’s saliency map and the inpainting model’s reconstruction error.

Lemma 2.2.3. Given input x ∈ Rd, suppose x̃ is the inpainted sample generated by

our proposed method. Denote ycx as fθ’s prediction over x that belongs to class c, and

∆x := max1≤i≤d |xi − x̃i|, then:

err(x, x̃) := |ycx − ycx̃| ≤ µ ·∆x · d−2. (2.22)

Our main theorem below guarantees that, with proper choice of the threshold µ

for pixel dropping and inpainting model with bounded reconstruction error, enforcing

the constraint over the memory after pattern completion M̃ is equivalent to that over

the memory with ground-truth images.

Theorem 2.2.4. Suppose ℓ is smooth with Lipschitz constant L, and the first order

derivative of ℓ, i.e., ∂ℓ/∂θ is Lipschitz continuous with constant Lθ. We have:

⟨g, g̃k⟩ > 0 ⇒ ⟨g, gk⟩ > 0, as x̃→ x, (2.23)

where gk is the gradient vector on ground-truth images.

Memory Complexity Analyses.

The complexity to store samples into the memory is O(T · (1− µ̄) · |Mt|), where

T is number of tasks, µ̄ is the average pixel drop ratio determined by µ in Eq. 2.15,
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and |Mt| is the episodic memory size for each task. The greater the µ̄, the lower the

memory complexity to store the same amount of samples. If we consider the learning-

based inpainting method and denote the number of parameters of the inpainting

model as S, the overall memory cost becomes O(T · (1 − µ̄) · |Mt| + S). The cost

of storing the inpainting model is often dwarfed by that of storing images since each

image is a high-dimensional tensor and the cost for storing the inpainting model is

constant w.r.t T .

2.2.4 Experiments

In this section, we compare our proposed method SAMC with several state-of-the-

art CL methods on commonly used benchmarks. More details and additional results

can be found in the appendix. Code available at https://github.com/BaiTheBest/

SAMC

Experiment Setups.

Datasets. We perform experiments on three widely-used image classification datasets

in continual learning: Split CIFAR-10, Split CIFAR-100, and Split mini-ImageNet [24].

CIFAR-10 consists of 50,000 RGB training images and 10,000 test images belonging

to 10 object classes. Similar to CIFAR-10, CIFAR-100, except it has 100 classes

containing 600 images each. ImageNet-50 is a smaller subset of the iLSVRC-2012

dataset containing 50 classes with 1300 training images and 50 validation images per

class. For Split CIFAR-10, we consider 5 tasks where each task contains two classes.

For Split CIFAR-100 and Split mini-ImageNet, we consider 20 tasks where each task

includes five classes. The image size for CIFAR is 32 × 32 and for mini-ImageNet is

84× 84.

Architectures. Following [86], we use a reduced ResNet18 with three times fewer

feature maps across all layers on all three datasets. Similar to [86, 24], we train and

https://github.com/BaiTheBest/SAMC
https://github.com/BaiTheBest/SAMC
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Figure 2.5: Effects of memory size. We compare ACC for varying memory size
per task on Split CIFAR-10, Split CIFAR-100 and Split mini-ImageNet, respectively.
Number of tasks for three datasets are 5, 20, and 20.

Figure 2.6: Evolution of test accuracy at the first task, as more tasks are
learned. We compare ACC of the first task over the entire training process on Split
CIFAR-10, Split CIFAR-100 and Split mini-ImageNet. When used, episodic memories
contain 10 samples per task. The legend is same and shown in the right sub-figure
only.

evaluate our algorithm in a ‘multi-head’ setting where a task id is used to select a

task-specific classifier head. For the learning-based inpainting method, we consider

the inpainting autoencoder with a three-layer encoder and a three-layer decoder with

a convolutional structure, respectively. Please refer to the appendix for more details.

Comparison Methods. We compare our method with several groups of continual

learning methods, including:

• Practical Baselines: 1) Finetune, a popular baseline, naively trained on the data

stream.

• Regularization methods: 2) EWC [58], a well-known regularization-based method;

3) LwF [77], another regularization-based method for CNNs.

• Replay-based Methods: 4) iCaRL [118], a class-incremental learner that clas-

sifies using a nearest exemplar algorithm; 5) GEM [86], a replay approach based

on an episodic memory of parameter gradients; 6) ER [24], a simple yet competi-
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tive experience method based on reservoir sampling; 7) MER [120], another replay

approach inspired by meta-learning.

• Pseudo-rehearsal Methods: 8) EBM [74], an energy-based method for continual

learning; 9) EEC [6], an autoencoder-based generative method.

Evaluation Metrics. We evaluate the classification performance using the ACC

metric, which is the average test classification accuracy of all tasks. We report back-

ward transfer, i.e., BWT [86] to measure the influence of new learning on the past

knowledge. Negative BWT indicates forgetting so the bigger the better. We put

detailed experimental settings in the appendix.

Experiment Results.

Classification Performance. Table 2.2 shows the overall experimental results,

where the memory size per task is set to 10 for all datasets, so the total memory

buffer size is 50, 200, 200 on CIFAR-10, CIFAR-100 and mini-ImageNet, respec-

tively. On each dataset, our proposed SAMC outperforms the baselines by significant

margins, and the gains in performance are especially substantial on more challenging

datasets where number of tasks is large and the sample size for each task is small, e.g.,

CIFAR-100 and mini-ImageNet. Specifically, our model achieves∼12% and∼15% rel-

ative improvement ratio in accuracy, while achieving ∼5% and ∼6% lower backward

transfer compared with the second best method on CIFAR-100 and mini-ImageNet,

respectively. This substantial performance improvement can be attributed to bet-

ter memory efficiency and generalizability provided by SAMC. EWC [58] performs

relatively poor without multiple passes over the dataset and only achieves similar

accuracy as finetune baseline. GEM is favored most on CIFAR-100 where it out-

performed other methods by some margin. Experience replay methods like ER and

MER achieved better performance on CIFAR-100. which is consistent with recent

studies on tiny size memory [24]. Pseudo-rehearsal methods [74, 6], though resemble
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Figure 2.7: Visualization of saliency map and inpainted images generated
by SAMC. Left: CIFAR-100. Right: mini-ImageNet. First row: Ground truth;
Second row: Saliency map; Third row: Inpainted image.

to our proposed method in a way, lack interpretability and suffer from forgetting in

the generative model, so achieve lower accuracy than SAMC.

Effects of Memory Size. As shown in Figure 2.5, we compare our proposed method

SAMC with GEM [86] over varying memory buffer size. Both GEM [86] and SAMC

benefit from larger memory size since the accuracy is an increasing function of mem-

ory size for both methods. SAMC’s improvement in performance over GEM is more

substantial in lower data regime, which is possibly due to that sample size is pro-

portional to the memory size. When sample size is small model may easily overfit

thus our extra samples can provide maximal benefits, while when sample size is al-

ready large enough to learn the model there is no need for extra data. Our model

achieves best performance gain in handling few-shot CL which we believe is the most

challenging while meaningful case in practice.

Effectiveness in Handling Forgetting. As shown in Figure 2.6, we demonstrate

the evolution of first task’s test accuracy throughout the entire training process. As

can be seen, the proposed method SAMC (red curve) is almost on top of all the

curves for the three datasets. Thanks to the memory efficiency of our algorithm and

the generalization ability brought by the inpainting model, the proposed method can

mitigate catastrophic forgetting to a higher level than other approaches, even with a

very small memory buffer.

Memory Usage Analysis. As shown in Table 2.5, we analyze the disc space and

training time required by our model on the mini-ImageNet dataset and demonstrate

that our computational bottleneck is negligible compared to our memory saving. The
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Table 2.5: Memory & computational cost analyses. Our method can achieve 60%
memory saving with only 7.5% extra computational cost on mini-ImageNet.

Disc Consupmtion (MB) Running Time (sec)
GEM 44 (model) + 413 (images) 133
SAMC 44 + 413* 1

3
(↓) + 0.5 (AE,↑) 133 + 7 (↑) + 3 (↑)

ratio ∼60% (↓) ∼7.5% (↑)

autoencoder (AE) we use is very light-weight and we apply early stopping for its

finetuning. By adding quantitative analyses we found our SAMC can achieve 60%

memory saving with only 7.5% extra computational cost. Specifically, on mini-

ImgNet, SAMC requires 44 MB for ResNet18, 137 MB for images (µ=0.6) and less

than 1 MB for AE, while GEM baseline requires 44 MB for ResNet and 413 MB for

real images. Meanwhile, by measuring the training time for the first two tasks in

a single epoch, SAMC takes 7s and 3s for computation induced by Grad-CAM and

autoencoder, respectively, in addition to GEM’s 130s training time, which leads to a

marginal 7.5% (=(7+3)/130) computational cost. Notice that Grad-CAM itself does

NOT introduce any extra parameter.

Qualitative Analysis. We visualize the saliency map and inpainted images by

SAMC in Figure 2.7. Both the saliency map and inpainted images are visually rea-

sonable. Saliency map localization is more accurate on larger images such as mini-

ImageNet. The inpainting model generates high-quality images close to the ground

truth though there exist occasional and small obscure regions in some cases.

2.3 Conclusion

In this chapter, we explored saliency-based methods as a cornerstone for functional-

space guided learning, focusing on two key approaches: SRDML and SAMC. Both

methods leverage saliency to extract meaningful representations from input data,

aligning the parameter space with the functional space to achieve better generaliza-

tion, interpretability, and efficiency.
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SRDML demonstrated how task relationships in multi-task learning can be effec-

tively modeled through input gradient similarity. By incorporating a novel saliency-

based regularizer, SRDML provides a theoretically grounded framework for improving

task relation interpretability and reducing generalization error, as validated through

extensive experiments.

SAMC, on the other hand, introduced a saliency-augmented memory mechanism

for continual learning, inspired by cognitive neuroscience principles. By prioritizing

the storage of task-relevant information and employing an adaptive memory inpaint-

ing mechanism, SAMC achieved a balance between storage efficiency and generaliz-

ability, addressing the inherent challenges of continual learning.

Together, these methods illustrate the power of saliency in guiding functional-

space learning, offering novel solutions to long-standing challenges in multi-task and

continual learning. These foundational contributions pave the way for further explo-

ration of functional-space guided methodologies, as we delve into dynamic mapping

approaches in the next chapter.
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Chapter 3

Harnessing Function Space of

Machine Learning Models for

Better Generalizability

Dynamic environments and evolving data distributions challenge the adaptability

and generalization of machine learning models. A critical step in addressing these

challenges is to establish a flexible mapping between parameter and functional spaces,

enabling models to adapt dynamically to changes. This chapter explores Dynamic

Mapping Methods for Functional-Space Learning, focusing on how mutual mappings

between these spaces can enhance the representation and generalization capabilities

of models.

We introduce DRAIN, a framework that leverages dynamic graph-based modeling

to capture and adapt to temporal changes in data distributions. By facilitating a

continuous exchange of information between parameter and functional spaces, DRAIN

enables robust learning in dynamic and non-stationary settings. Its novel approach

to dynamic mappings paves the way for scalable, interpretable, and generalizable

solutions in functional-space-guided learning.
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The sections that follow delve into the theoretical underpinnings, design principles,

and empirical evaluations of DRAIN, illustrating its contributions to this evolving

research area.

3.1 Bridging Parameter and Functional Spaces: A

Dynamic Framework for OOD Generalization

3.1.1 Introduction

In machine learning, researchers often assume that training and test data follow

the same distribution for the trained model to work on test data with some general-

izability. However, in reality, this assumption usually cannot be satisfied, and when

we cannot make sure the trained model is always applied in the same domain where

it was trained. This motivates Domain Adaptation (DA) which builds the bridge

between source and target domains by characterizing the transformation between the

data from these domains [13, 40, 143]. However, in more challenging situations when

target domain data is unavailable (e.g., no data from an unknown area, no data from

the future, etc.), we need a more realistic scenario named Domain Generalization

(DG) [125, 5, 31].

Most existing works in DG focus on generalization among domains with categori-

cal indices, such as generalizing the trained model from one dataset (e.g., MNIST [67])

to another (e.g., SVHN [104]), from one task (e.g., image classification [61]) to another

(e.g., image segmentation [80]), etc. However, in many real-world applications, the

“boundary” among different domains is unavailable and difficult to detect, leading

to a concept drift across the domains. For example, when a bank leverages a model

to predict whether a person will be a “defaulted borrower”, features like “annual

incoming”, “profession type”, and “marital status” are considered. However, due to
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Figure 3.1: An illustrative example of temporal domain generalization. Con-
sider training a model for some classification tasks based on the annual Twitter
dataset such that the trained model can generalize to the future domains (e.g., 2023).
The temporal drift of data distribution can influence the prediction model such as
the rotation of the decision boundary in this case.

the temporal change of the society, how these feature values indicate the prediction

output should change accordingly following some trends that could be predicted some-

how in a range of time. Figure 3.1 shows another example, seasonal flu prediction via

Twitter data which evolves each year in many aspects. For example, monthly active

users are increasing, new friendships are formed, the age distribution is shifting under

some trends, etc. Such temporal change in data distribution gradually outdated the

models. Correspondingly, suppose there was an ideal, always update-to-date model,

then the model parameters should gradually change correspondingly to counter the

trend of data distribution shifting across time. It can also “predict” what the model

parameters should look like in an arbitrary (not too far) future time point. This

requires the power of temporal domain generalization.

However, as an extension of traditional DG, temporal DG is extremely challenging

yet promising. Existing DG methods that treat the domain indices as a categorical

variable may not be suitable for temporal DG as they require the domain boundary

as apriori to learn the mapping from source to target domains [101, 100, 10, 5]. Until

now, temporal domain indices have been well explored only in DA [48, 107, 147] but

not DG. There are very few existing works in temporal DG due to its big challenges.
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One relevant work is Sequential Learning Domain Generalization (S-MLDG) [71] that

proposed a DG framework over sequential domains via meta-learning [38]. S-MLDG

meta-trains the target model on all possible permutations of source domains, with one

source domain left for meta-test. However, S-MLDG in fact still treats domain index

as a categorical variable, and the method was only tested on categorical DG dataset.

A more recent paper called Gradient Interpolation (GI) [103] proposes a temporal

DG algorithm to encourage a model to learn functions that can extrapolate to the

near future by supervising the first-order Taylor expansion of the learned function.

However, GI has very limited power in characterizing model dynamics because it

can only learn how the activation function changes along time while making all the

remaining parameters fixed across time.

The advancement of temporal domain generalization is challenged by several crit-

ical bottlenecks, including 1) Difficulty in characterizing the data distribution

drift and its influences on models. Modeling the temporally evolving distribu-

tions requires making the model time-sensitive. Intuitive ways include feeding the

time as an input feature to the model, which is well deemed simple yet problem-

atic as it discards the other features’ dependency on time and dependency on other

confounding factors changed along time [147]. Another possible way is to make the

model parameters a function of time. However, these ways cannot generalize the

model to future data as long as the whole model’s dynamics and data dynamics are

not holistically modeled. 2) Lack of expressiveness in tracking the model dy-

namics. Nowadays, complex tasks have witnessed the success of big complex models

(e.g., large CNNs [30]), where the neurons and model parameters are connected as

a complex graph structure. However, they also significantly challenge tracking their

model dynamics in temporal DG. An expressive model dynamics characterization and

prediction requires mapping data dynamics to model dynamics and hence the graph

dynamics of model parameters across time. This is a highly open problem, especially
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for the temporal DG area. 3) Difficulty in theoretical guarantee on the perfor-

mance. While there are fruitful theoretical analyses on machine learning problems

under the independent and identically distributed assumptions [45], similar analyses

meet substantial hurdles to be extended to out-of-distribution (OOD) problem due

to the distribution drift over temporally evolving domains. Therefore, it is essential

to enhance the theoretical analyses on the model capacity and theoretical relation

among different temporal domain generalization models.

To address all the above challenges, we propose a Temporal Domain Generaliza-

tion with DRift-Aware dynamIc neural Networks (DRAIN) framework that solves

all challenges above simultaneously. Specifically, we propose a generic framework

to formulate temporal domain generalization by a Bayesian treatment that jointly

models the relation between data and model dynamics. To instantiate the Bayesian

framework, a recurrent graph generation scenario is established to encode and decode

the dynamic graph-structured neural networks learned across different timestamps.

Such a scenario can achieve a fully time-sensitive model and can be trained in an

end-to-end manner. It captures the temporal drift of model parameters and data

distributions and can predict the models in the future without the presence of future

data.

Our contributions include: 1) We develop a novel and adaptive temporal

domain generalization framework that can be trained in an end-to-end manner. 2)

We innovatively treat the model as a dynamic graph and leverage graph generation

techniques to achieve a fully time-sensitive model. 3) We propose to use the sequential

model to learn the temporal drift adaptively and leverage the learned sequential

pattern to predict the model status on the future domain. 4) We provide theoretical

analysis on both uncertainty quantification and generalization error of the proposed

method. 5) We demonstrate our model’s efficacy and superiority with extensive

experiments.
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3.1.2 Problem formulation: Temporal Domain Generaliza-

tion.

We consider prediction tasks where the data distribution evolves with time. Dur-

ing training, we are given T observed source domains D1,D2, · · · ,DT sampled from

distributions on T arbitrary time points t1 ≤ t2 ≤ · · · ≤ tT , with each Ds ={
(x

(s)
i , y

(s)
i ) ∈ Xs × Ys

}Ns

i=1
, s = 1, 2, · · · , T where x

(s)
i , y

(s)
i and Ns denotes the input

feature, label and sample size at timestamp ts, respectively, and Xs, Ys denotes the

input feature space and label space at timestamp ts, respectively. The trained model

will only be tested on some target domain in the future, i.e., DT+1 where tT+1 ≥ tT .

Our setting further assumes the existence of concept drift across different domains,

i.e., the domain distribution is changing across time by following some patterns.

Our goal is to build a model that proactively captures the concept drift. Given

labeled data from the source domains D1,D2, · · · ,DT , we learn the mapping function

gωs : Xs → Ys on each domain Ds, s = 1, 2, · · · , T where ωs denotes the function

parameters at timestamp ts, respectively, and then predict the dynamics across the

parameters ω1,ω2, · · · ,ωT . Finally, we predict the parameters ωT+1 for the mapping

function gωT+1
: XT+1 → YT+1 on the unseen future domain. As shown in Figure 3.1,

due to the temporal drift in data distribution, e.g. the input features such as Twitter

user age distribution and number of tweets increase each year, the prediction model

is expected to evolve accordingly, e.g. the magnitude of model parameter weights

will decrease annually. Despite the necessity, handling the above problem is an open

research area due to several existing challenges: 1) Difficulty in characterizing data

distribution drift as well as how it influences the model. 2) Lack of expressiveness in

automatically capturing the dynamics of how neural network evolves across time. 3)

Theoretical guarantee on model’s performance (e.g., generalization error, uncertainty)

on future domains is hard to obtain due to the unknown and (potentially) complicated
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Figure 3.2: A high-level overview of our DRAIN framework. Best viewed in color.

concept drift.

3.1.3 Proposed Method: DRAIN

In this section, we introduce how we address the challenges mentioned above. For

the first challenge, we build a systematic Bayesian probability framework to repre-

sent the concept drift over the domains, which instantly differentiates our work from

all existing methods in DG. For the second challenge, we propose modeling a neu-

ral network with changing parameters as a dynamic graph and achieving a temporal

DG framework that can be trained end-to-end by graph generation techniques. We

further improve the proposed method’s generalization ability by introducing a skip

connection module over different domains. Finally, to handle the last challenge, we

explore theoretical guarantees of model performance under the challenging tempo-

ral DG setting and provide theoretical analyses of our proposed method, such as

uncertainty quantification and generalization error.

A probabilistic view of concept drift in temporal domain generalization

To perform domain generalization over temporally indexed domains, we need to

capture the concept drift within a given time interval. From a probabilistic point
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of view, for each domain Ds, s = 1, 2, · · · , T , we can learn a neural network gωs

by maximizing the conditional probability Pr(ωs|Ds), where ωs denotes the status

of model parameters at timestamp ts. Due to the evolving distribution of Ds, the

conditional probability Pr(ωs|Ds) will change over time accordingly. Our ultimate

goal is to predict ωT+1 given all training data D1,D2, · · · ,DT (D1:T for short), i.e.,

Pr(ωT+1|D1:T ). By the Law of total probability, we have

Pr
(
ωT+1

∣∣ D1:T

)
=

∫
Ω

Pr
(
ωT+1

∣∣ ω1:T ,D1:T

)︸ ︷︷ ︸
inference

·Pr
(
ω1:T

∣∣ D1:T

)︸ ︷︷ ︸
training

dω1:T , (3.1)

where Ω is the space for ω1:T . The first term in the integral represents the inference

phase, i.e., how we predict the status of the target neural network in the future

(namely, ωT+1) given all history statuses, while the second term denotes the training

phase, i.e., how we leverage all source domains’ training data D1:T to obtain the

status of the neural network on each source domain, namely ω1:T . By the chain rule

of probability, we can further decompose the training phase as follows:

Pr
(
ω1:T

∣∣ D1:T

)
=

∏T

s=1
Pr

(
ωs

∣∣ ω1:s−1,D1:T

)
= Pr

(
ω1

∣∣ D1

)
· Pr

(
ω2

∣∣ ω1,D1:2

)
· · ·Pr

(
ωT

∣∣ ω1:T−1,D1:T

)
.

(3.2)

Here we assume for each time point ts, the model parameter ωs only depends on

the current and previous domains (namely, {Di : i ≤ s}), and there is no access to

future data (even unlabeled). Now we can break down the whole training process

into T −1 steps, where each step corresponds to learning the model parameter on the

new domain conditional on parameter statuses from the history domains and training

data, i.e., Pr
(
ωs+1

∣∣ ω1:s,D1:s,Ds+1

)
, ∀ s < T .
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Neural network with dynamic parameters

Since the data distributions change temporally, the parameter ωs in gωs needs

to be updated accordingly to address the temporal drift across the domains. In this

work, we consider leveraging dynamic graphs to model the temporally evolving neural

networks in order to retain maximal expressiveness.

Intuitively, a neural network gω can be represented as an edge-weighted graph

G = (V,E, ψ), where each node v ∈ V represents a neuron of gω while each edge

e ∈ E corresponds to a connection between two neurons in gω. Moreover, given a

connection e between neuron u and v, i.e., e = (u, v) ∈ E, function ψ : E → R denotes

the weight parameter between these two neurons, i.e., ψ(u, v) = wu,v, ∀ (u, v) ∈ E.

Essentially, ω = ψ(E) = {wu,v : (u, v) ∈ E} is a set of parameter values indexed by

all edges in E and ω represents the entire set of parameters for neural network g.

Notice that we give a general definition of gω so that both shallow models (namely,

linear model) and deep neural networks (e.g., MLP, CNN, RNN, GNN) can be treated

as special cases here. We aim to characterize the potential drift across domains by

optimizing and updating the graph structure (i.e., edge weight) of gω. [162] have

proven that optimizing the graph structure of the neural network could have a smaller

search space and a more smooth optimization procedure than exhaustively searching

over all possible connectivity patterns.

We consider the case where the architecture or topology of neural network gω is

given, i.e., V and E are fixed, while the parameter ω is changing constantly w.r.t time

point ts. In this sense, we can write ωs = ψ(E|s) where ψ(·|s) (abbrev. ψs) depends

only on time point ts. Now the triplet G = (V,E, ψs) defines a dynamic graph with

evolving edge weights.
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End-to-end learning of concept drift

Given history statuses {ω1:s} of the neural network learned from {D1:s}, we aim

at generalizing and extrapolating ωs+1 so that it produces good performance on the

new domain Ds+1 in an end-to-end manner. In fact, by viewing the neural networks

{ω1:s} as dynamically evolving graphs, a natural choice is to characterize the latent

graph distribution of {ω1:s} by learning from its evolving trend. Consequently, ω’s

can be directly sampled from the distribution for the prediction in future domains.

We characterize the latent distribution of {ω1:s} as a sequential learning process

based on a recurrent architecture, and each unit fθ in the recurrent model is param-

eterized by θ to generate ωs by accounting for previous {ωi : i < s}. Specifically, at

each recurrent block (i.e., time step) ts, fθ produces two outputs (ms, hs), where ms

is the current memory state and hs is a latent probabilistic distribution (i.e., hidden

output of fθ) denoting the information carried from previous time steps. The latent

probabilistic distribution ht allows us to generate the dynamic graph ωs by a decod-

ing function Fξ(·). Intuitively, different from existing works that train and regularize

a neural network on single domain [103], here we focus on directly searching for dis-

tribution of networks with “good architectures”. Lastly, the sampled ωs is encoded

by a graph encoding function Gη(·), which then serves as the input of next recurrent

block. Such a recurrent model is trained on a single domain Ds to generate ωs for

prediction by minimizing the empirical loss, i.e., minθ,ξ,η

∑Ns

i=1 ℓ
(
gωs(x

(s)
i ), y

(s)
i

)
, where

ℓ(·, ·) can be cross-entropy for classification or MSE for regression. The optimal ωs

on domain Ds will then be fed into the next domain Ds+1 along with the memory

state ms as input to guide the generation of ωs+1 until the entire training phase is

done. For the inference phase, we feed the optimal parameters from the last training

domain, namely ωT , into the encoding function and leverage the recurrent block,

together with the memory state mT to predict the latent vector on the future domain

DT+1, followed by the decoding function to decode the latent vector and generate the
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optimal parameters ωT+1.

Less forgetting and better generalization

During the training of recurrent models, the performance degradation problem is

also likely to be encountered. Such a problem can be severe in temporal DG since a

more complicated concept correlation exists between each domain. In addition, if the

training procedure on each domain Ds takes a large number of iterations to converge,

we may also observe the forgetting phenomenon (i.e., the recurrent model fθ will grad-

ually focus on the current training domain and have less generalization capability for

future domains). To alleviate such a phenomenon, we leverage a straightforward tech-

nique - skip connection to bridge the training on Ds with previous domains {D1:s−1}.

Specifically,

Φ
(
ωs,

{
ωs−τ :s−1

})
:= ωs + λ ·

∑s−1

i=s−τ
ωi, (3.3)

where λ is regularization coefficient and τ denotes the size of the sliding window. The

skip connection could enforce the generated network parameters ωs to contain part of

the previous network’s information, and the implementation of the fixed-sized sliding

window can better alleviate the potential drawback of the computational cost.

3.1.4 Theoretical analyses

In this section, we provide a theoretical analysis of our proposed framework’s per-

formance in the target domain. Our analyses include uncertainty quantification and

generalization error. Uncertainty characterizes the dispersion or error of an estimate

due to the noise in measurements and the finite size of data sets, and smaller un-

certainty means less margin of error over the model predictions. On the other hand,

generalization error measures how accurate the model’s prediction is on unseen data.

Our analyses show that our proposed DRAIN achieves both better prediction ac-
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curacy as well as smaller margin of error on the target domain compared

with online and offline DG baselines.

First, we introduce two DG methods, namely online baseline and offline baseline,

as defined below:

Definition 3.1.1. Given timestamp ts+1 and domains D1,D2, · · · ,Ds+1, and model

parameter state from previous timestamp, namely ωs. Define online modelMon and

offline modelMoff as ωs+1 = argmaxωs+1
Pr(ωs+1|ωs,Ds+1) and ωs+1 = argmaxωs+1

Pr(

ωs+1|D1:s+1), respectively.

Offline method Moff is trained using ERM over all source domains, while online

method Mon considers one-step finetuning over the model parameter on each new

domain’s dataset. BothMoff andMon are time-oblivious, i.e., unaware of the concept

drift over time.

Assumption 3.1.2. Consider a parameterized function qθ(·) to approximate P (ωt+1|ωt),

which is the unknown ground-truth concept drift of the model parameter distribution.

It is assumed that the prior over qθ follows a normal distribution with: E[qθ0(ω)] =

ω, Var(qθ0(ω)) = σ2
θ0
, ∀ ω ∈ Ω.

Definition 3.1.3 (Predictive Distribution). Given training sample D1,D2, · · · ,DT ,

and input feature from future domain, namely xT+1, the predictive distribution can be

defined as

Pr
(
ŷ
∣∣ xT+1,D1:T

)
=

∫
Pr

(
ŷ
∣∣ xT+1, ωT+1

)
Pr

(
ωT+1

∣∣ D1:T

)
dωT+1. (3.4)

Our first theorem below shows that by capturing the concept drift over the se-

quential domains, our proposed method always achieves the smallest uncertainty in

prediction on the future domain.
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Theorem 3.1.4 (Uncertainty Quantification). Given training domains D1,D2, · · · ,DT

where V ar(Di) is the same, we have the following inequality over each method’s pre-

dictive uncertainty, i.e., the variance of predictive distribution as defined in Eq. 3.4:

V ar(Mours) < V ar(Mon) ≤ V ar(Moff).

Our second theorem shows that, besides uncertainty, our proposed method can

also achieves the smallest generalization error thanks to learning the concept drift.

Definition 3.1.5. Given predictive distribution in Eq. 3.4, as well as ground-truth

label yT+1 from the future domain, define the predictive or generalization error as

err := ℓ(E[P (ŷ|xT+1,D1:T )], yT+1).

Theorem 3.1.6 (Generalization Error). Assume gω(·) has Lipschitz constant with up-

per bound Lupper and lower bound Llower w.r.t ω. We have the following inequality over

each method’s predictive error defined above: err(Mours) < err(Mon) < err(Moff).

Complexity Analyses. In our implementation, the encoding and decoding func-

tions are instantiated as MLPs. The total number of parameters of the encoding and

decoding functions is O(Nd + C), which is linear in N . Here N is the number of

parameters in predictive models (namely ω), d is the width (i.e., number of neurons)

of the last hidden layer of the encoding and decoding functions, and C denotes the

number of parameters for all the layers before the last for the encoding and decod-

ing functions. Additionally, in many situations, the first few layers of representation

learning could be shared. Hence, we do not need to generate all the parameters in ω,

but just the last few layers.

3.1.5 Experiments

In this section, we present the performance of DRAIN against other state-of-the-

art approaches with both quantitative and qualitative analysis. The experiments in

this paper were performed on a 64-bit machine with a 4-core Intel Xeon W-2123
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Table 3.1: Performance comparison of all methods in terms of misclassification error
(in %) for classification tasks and mean absolute error (MAE) for regression tasks
(both smaller the better.) Results of comparison methods on all datasets except
”Appliance” are reported from [103]. ”-” denotes that the method could not converge
on the specific dataset.

Model
Classification (in %) Regression

2-Moons Rot-MNIST ONP Shuttle Elec2 House Appliance

Offline 22.4 ± 4.6 18.6 ± 4.0 33.8 ± 0.6 0.77 ± 0.1 23.0 ± 3.1 11.0 ± 0.36 10.2 ± 1.1
LastDomain 14.9 ± 0.9 17.2 ± 3.1 36.0 ± 0.2 0.91 ± 0.18 25.8 ± 0.6 10.3 ± 0.16 9.1 ± 0.7
IncFinetune 16.7 ± 3.4 10.1 ± 0.8 34.0 ± 0.3 0.83 ± 0.07 27.3 ± 4.2 9.7 ± 0.01 8.9 ± 0.5

CDOT 9.3 ± 1.0 14.2 ± 1.0 34.1 ± 0.0 0.94 ± 0.17 17.8 ± 0.6 - -
CIDA 10.8 ± 1.6 9.3 ± 0.7 34.7 ± 0.6 - 14.1 ± 0.2 9.7 ± 0.06 8.7 ± 0.2
GI 3.5 ± 1.4 7.7 ± 1.3 36.4 ± 0.8 0.29 ± 0.05 16.9 ± 0.7 9.6 ± 0.02 8.2 ± 0.6

DRAIN 3.2 ± 1.2 7.5 ± 1.1 38.3 ± 1.2 0.26 ± 0.05 12.7 ± 0.8 9.3 ± 0.14 6.4 ± 0.4

@ 3.60GHz, 32GB memory, and NVIDIA Quadro RTX 5000. Additional experi-

ment settings and results (e.g., hyperparameter settings and scalability analysis) are

demonstrated in the appendix.

Experiment setting

Datasets. We compare with the following classification datasets: Rotated Moons (2-

Moons), Rotated MNIST (Rot-MNIST), Online News Popularity (ONP), Electrical

Demand (Elec2), and Shuttle; and the following regression datasets: House prices

dataset (House), Appliances energy prediction dataset (Appliance). The first two

datasets are synthetic, where the rotation angle is used as a proxy for time. The

remaining datasets are real-world datasets with temporally evolving characteristics.

Comparison Methods. We adopt three sets of comparison methods: practical

baselines that do not consider the concept drift, including 1). Offline that treats all

source domains as a single domain, 2). LastDomain that only employs the last train-

ing domain, and 3). IncFinetune that sequentially trains on each training domain.

Continuous domain adaptation methods that focus only on DA, including 1).

CDOT [107] that transports most recent labeled examples to the future, and 2).

CIDA [147] that specifically tackles the continuous DA problem; and one temporal

domain generalization method: GI [103].
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Figure 3.3: Visualization of the decision boundary of DRAIN (blue dots and
red stars represent different data classes). As the distribution of data points is con-
sistently changing, as shown in Figure 3.3a - 3.3c, DRAIN can effectively characterize
such a temporal drift and predict accurate decision boundaries on the unseen testing
domain in Figure 3.3d.
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Figure 3.4: Visualization of decision boundary (blue dots and red stars represent
different data classes), where the right subfigure of comparison methods Figure 3.4a -
3.4f demonstrate the decision boundary predicted for the test domain DT+1, the left
subfigure in Figure 3.4a shows the decision boundary learned from the all data points
in the concatenated training domain ([D1, · · · ,DT ]), the left subfigure in Figure 3.4b
shows the decision boundary learned from all samples in the last training domain DT ,
and the left subfigures in Figure 3.4c - 3.4f show the decision boundary learned on
D4.

All experiments are repeated 10 times for each method, and we report the average

results and the standard deviation in the following quantitative analysis.
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Quantitative analysis

We first illustrate the performance of our proposed method against comparison

methods. The experiments are conducted in both classification and regression tasks

with the domain generalization setting, i.e., models are trained on the training do-

mains and deployed on the unseen testing domain.

As can be seen from Table 3.1, DRAIN consistently achieves competitive results

across most datasets. Specifically, DRAIN excels the second-best approaches on Elec2

(CIDA), House (GI), and Appliance (GI) by a great margin.

The only exception is the ONP dataset, where the Offline method achieves the

best result and all state-of-the-art methods cannot generalize well on unseen testing

domains since the ONP dataset does not exhibit a strong concept drift. Additionally,

all time-oblivious baselines perform rather unsatisfactorily since they are not capable

of handling the concept drift of the data distribution. Both CDOT and CIDA can

generate better results than time-oblivious baselines, yet their generalization ability

on the unseen domains is still limited as the maintained time-invariant representation

in both methods cannot address the concept drift without any data in the testing

domain. As the only method that addresses the temporal domain generalization

problem, GI imposes a gradient regularization with a non-parametric activation func-

tion to handle the concept drift, which relies too much on the task-specific heuristic.

In contrast, DRAIN proposes to sequentially model each domain in an end-to-end

manner, which could address the concept drift more inherently.

Qualitative analysis

We compare different methods qualitatively by visualizing the decision boundary

on the 2-Moons dataset. As shown in Figure 3.3a - 3.3c, we demonstrate the decision

boundary predicted by DRAIN atD2, D4, D6 training domains, and the final predicted

decision boundary on the testing domain D9 (Figure 3.3d). As can be seen, DRAIN
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Figure 3.5: Sensitivity analysis on the number of layers of the generated neural net-
work by DRAIN.

can successfully characterize the concept drift by sequentially modeling the {DT},

and the learned decision boundary could rotate correctly along time.

We further visualize the decision boundary learned by other comparison meth-

ods in Figure 3.4a - 3.4f. Firstly, the left subfigure in Figure 3.4a shows the decision

boundary learned by the Offline method on the concatenated training domains {D1:T},

and the learned decision boundary overfits the training data and shows poor perfor-

mance when generalizing on the unseen testing domain (the right subfigure of 3.4a).

Furthermore, as the current state-of-the-art continuous domain adaptation methods,

CDOT transports the most recent labeled data points in DT to the future, which

makes the learned decision boundary almost temporal-invariant (Figure 3.4d) and

cannot generalize well in the scenario of domain generalization. CIDA utilizes the

adversarial training technique to solve the domain adaptation, yet the predicted deci-

sion boundary in Figure 3.4e is less stable than other state-of-the-art methods due to

its model complexity. Lastly, even though GI is the only method proposed to tackle

the temporal domain generalization problem, the produced decision boundaries, as

shown in both the training domain and testing domain (Figure 3.4f), are still less

accurate than our proposed method, since they heavily utilize heuristics to regularize

the gradient.
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Sensitivity analysis

We conduct sensitivity analysis on the depth of the neural network gωs for DRAIN.

As shown in Figure 3.5, the optimal number of hidden layers for gωs is 2 and 1 on 2-

Moons and Electric datasets, respectively. The curve on both datasets has an inverse

”U” shape, meaning that too few layers may limit the general expressiveness of our

model, while too many layers could potentially hurt the generalization ability due to

overfitting.

Ablation study

Table 3.2: Ablation study. Comparison of
performance between our method and two
alternatives across two datasets for classifi-
cation tasks and one dataset for regression
tasks.

Ablation 2-Moons Rot-MNIST House

✗ RNN 22.4 ± 4.6 19.5 ± 3.4 11.0 ± 0.36

✗ Skip.C 7.1 ± 1.3 10.3 ± 1.7 9.7 ± 0.13

DRAIN 3.2 ± 1.2 7.5 ± 1.1 9.3 ± 0.14

We further conduct an ablation study

on three datasets to evaluate the effect of

different components in DRAIN, and the

results are exhibited in Table 3.2. Specif-

ically, we remove the sequential learning

model in DRAIN, and the resulting ab-

lated model ✗ RNN corresponds to the

offline baseline model. We also indepen-

dently remove the skip connection module to let the sequential learning model uni-

formly acquire information from all previous domains, and the resulting model is

named ✗ Skip.C.

As shown in the table, each component can effectively contribute to the overall

model performance, and modeling the temporal correlation between all domains by a

sequential model can provide a rather larger performance gain. In addition, removing

the skip connection in the sequential learning model would make DRAIN hard to cap-

ture the long-range temporal dependency among domains, since long-range domain

information could potentially be forgotten during the model learning.
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3.2 Domain Adaptation via Prompt Tuning for Time

Series Data

3.2.1 Introduction

Due to the prevalence of time series sensor data, time series analysis has found

applications in various real-world scenarios, including human activity recognition [3],

sleep stage classification [168], and machine fault diagnosis [145, 146, 69]. In these

applications, time series data are measured under different subjects, operating con-

ditions, or sensor configurations (i.e., domains). In other words, time series analysis

should be conducted across different domains. Unfortunately, the labels of time se-

ries data are difficult to collect due to the high costs of the labeling process [151]. To

mitigate labeling costs, researchers aim to leverage labeled data from some domains

(i.e., source domains) to infer labels for unlabeled data in other domains (i.e., target

domains) [149], which is defined as a time series domain adaptation problem. For

example, the goal of the transponder fault diagnosis problem is to detect the working

statuses of transponders (i.e., normal or abnormal) based on fiber-optic signals. In

this problem, the model is trained under certain working modes (e.g., single mode)

using labeled time series data, and then this trained model is applied to other working

modes (e.g., multi-mode).

However, the time series domain adaptation problem is highly challenging due to

complex dynamic time series patterns, distribution shift (i.e., different distributions of

inputs among different domains), and possible label shift (i.e., different distributions

of labels among different domains) [7, 46, 22]. These challenges have been extensively

investigated by researchers, leading to the proposal of various methods to address the

domain gap, such as kernel matching [82], context information alignment [65], and

temporal-spectral fusion [157]. Most existing methods, however, primarily focus on
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domain adaptation from a single source domain. Yet, it is more crucial to investigate

it from multiple sources. This is because the more source domains are utilized, the

greater potential improvements it can achieve. For instance, the collection of labeled

signal data from more modes facilitates a better understanding of transponder sta-

tuses. Despite the importance of the multi-source domain adaptation problem, it is

rarely explored in previous literature and requires attention and extensive investiga-

tions from researchers.

In order to effectively handle the multi-source time series domain adaptation

problem, three important challenges need to be overcome: 1. The lack of ex-

ploration to utilize domain-specific information for domain adaptation.

Existing domain adaptation methods primarily focus on learning a common feature

extractor to encode time series inputs from different source domains into domain-

invariant representations, and then apply this feature extractor to the target domain

[112, 76, 88, 54, 151]. While this strategy has its rationale, it often overlooks domain-

specific information (i.e., information unique to a specific time series domain), such as

global trends, local trends, and temporal patterns. Such domain-specific information

is valuable to evaluate which source domains are more suitable for adaptation to the

target domain. 2. The difficulty to learn domain-specific information that

changes over time. While it is important to capture domain-specific information

for better domain adaptation, such information can be dynamically changing, which

is extremely difficult to capture. In the example of the transponder fault diagno-

sis problem, different domains generate different distributions of fiber-optic signals,

which are important domain-specific information to capture. However, such distribu-

tions can be shifted drastically when the transponder suddenly suffers from a failure.

3. The difficulty to evaluate learned domain-specific information. Not only

is learning domain-specific information difficult, but it is also challenging to evaluate

learned domain-specific information. In other words, it is unclear whether learned
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Figure 3.6: Pipeline of our proposed POND model: Step 1 pretrains the proposed
POND model; Step 2 learns prompts of all source domains and the target domain;
Step 3 utilizes learned prompts to select the most similar source domain to the target
domain for domain adaptation.

domain-specific information accurately reflects the true one. This ambiguity arises

because domain-specific information is often associated with unique but inexplicable

underlying patterns. Unlike images and languages with human-recognizable features,

such time series patterns are difficult for humans to understand [89]. Consequently,

it becomes challenging, if not impossible, for humans to evaluate whether learned

domain-specific information matches such time series patterns.

In order to tackle these three challenges simultaneously, we propose PrOmpt-

based domaiN Discrimination (POND), the first framework to utilize prompts for

time series domain adaptation to our knowledge. Its pipeline is shown in Figure 3.6,

which consists of three steps: model pertaining, prompt tuning, and prompt adap-

tation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to

time series analysis and learn prompts to capture common and domain-specific infor-

mation. To handle Challenge 2, we introduce a conditional module for each source

domain to generate prompts from time series input data. For Challenge 3, we propose

two criteria to choose good prompts, which are used to select the most suitable source

domain for domain adaptation (i.e., prompt adaptation). Our contributions can be

summarized as follows:

• Propose a flexible prompt generator to learn domain-specific infor-

mation. We extend the idea of prompt tuning to time series analysis to capture
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information specific to source domains. However, traditional prompts have lim-

ited flexibility in learning domain-specific information that evolves over time.

To address this limitation, we introduce a conditional module that generates

prompts parameterized by a neural network to capture domain-specific infor-

mation. Theoretical analysis also demonstrates the superiority of our proposed

prompt generator over traditional prompt tuning.

• Develop two criteria for selecting good prompts. We propose two crite-

ria, fidelity and distinction, to ensure that prompts accurately capture domain-

specific information from all source domains. Fidelity is achieved by maxi-

mizing the mutual information between prompts and labels, while distinction is

achieved by minimizing the mutual information between prompts from different

source domains. Theoretical guarantees establish that our generated prompts

maintain fidelity and introduce new information.

• Present an efficient algorithm with a robust architecture. We intro-

duce a simple yet effective optimization algorithm based on meta-learning to

efficiently learn the objective. Additionally, we leverage the Mixture of Experts

(MoE) technique to enhance the robustness of our proposed POND model.

• Conduct comprehensive experiments on multiple benchmark datasets.

Extensive experiments across 50 scenarios on four benchmark datasets demon-

strate the effectiveness and robustness of our proposed POND model. Ex-

perimental results indicate that our proposed POND model outperforms all

state-of-the-art comparison methods by up to 66% on the F1-score.

3.2.2 Problem Setup

In this section, we mathematically formulate the multi-source time series domain

adaptation problem. Important notations are shown in Table 3.3. Given M source
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Table 3.3: Important notations and Descriptions.

Notations Descriptions

Si The i-th source domain
T Target domain
C Class set

(X
(Si)
j , Y

(Si)
j ) The j-th time series pair for Si

(X
(T )
j , Y

(T )
j ) The j-th time series pair for T

Y (Si), Y (T ) Label sets for Si and T
P Common prompt

∆P (Si) Domain-level prompt for Si

∆P
(Si)
j Instance-level prompt generated by X

(Si)
j for Si

time series domains Si(i = 1, · · · ,M) and a target domain T , their j-th time se-

ries inputs are denoted as X
(Si)
j ∼ p(X|Y (Si)

j ) and X
(T )
j ∼ p(X|Y (T )

j ), respectively,

where Y
(Si)
j and Y

(T )
j are corresponding labels of X

(Si)
j and X

(T )
j , respectively. Here,

X
(Si)
j , X

(T )
j ∈ Rn×L, where n is the number of channels and L is the sequence length.

The labels Y
(Si)
j , Y

(T )
j ∈ C = {c1, c2, · · · , cK}, where ci(i = 1, · · · , |C|) represents a

label class, and the number of classes is |C|. Y (Si) = {Y (Si)
j } and Y (T ) = {Y (T )

j } are

the label sets for the source domain Si and the target domain T , respectively. Sets

X(Si) = {X(Si)
j } and X(T ) = {X(T )

j } represent the input sets for the source domain

Si and the target domain T , respectively. We assume that the labeled time series of

all source domains Si(i = 1, · · · ,M) are abundant, but the labeled time series are

limited in the target domain T . Then the multi-source time series domain adaptation

problem is formulated as follows:

Problem Formulation: Given the time series input setsX(Si) and label sets Y (Si)(i =

1, 2, . . . ,M) of M source domains, and the time series input set X(T ) of the target

domain T , the goal of the problem is to predict the label set Y (T ) by learning the

mapping F :

F : X
(T )
i → Y

(T )
i .
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Our problem formulation is very flexible: the time series input can be either uni-

variate (i.e., N = 1) or multivariate (i.e., N > 1); the time series domain adaptation

can be from a single source (i.e., M = 1) or multiple sources (i.e., M > 1); the

classification problem can be either binary (i.e., K = 2) or multi-class (i.e., K > 2).

3.2.3 Prompt-based Domain Discrimination

In this section, we present our POND model to address the multi-source time

series domain adaptation problem.

The Flexible Prompt Generator

The goal of this section is to explore methods for learning information that changes

over time from different source domains for domain adaptation (i.e., tackling Chal-

lenges 1 and 2). Most existing papers propose various strategies to extract domain-

invariant representations from all source domains by making different domains indis-

tinguishable [112, 76, 54, 151, 169]. However, this idea may discard domain-specific

information from multiple source domains, which indicates which source domain is

most similar to the target domain. To address this, a natural solution is to directly

learn domain-specific information from the labeled time series pair (X
(Si)
j , Y

(Si)
j ). This

motivates us to utilize prompt tuning to learn domain-specific information, which

was first introduced by the NLP community and demonstrated impressive success in

many NLP tasks [18, 81, 70]. Compared with other domain adaptation techniques,

prompt tuning has three advantages: firstly, prompts are adjusted via gradients by

labeled data from multiple source domains, which offer domain-specific information;

secondly, prompt tuning leverages small amounts of labeled data effectively for adap-

tation, which is suitable for the target domain with limited labeled data [70]; thirdly,

prompts can be utilized as a heuristic to select the most similar source domain to the

target domain for adaptation.
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The prompt, which is extended from NLP to time series, is defined as a learnable

vector that prepends to the time series input to learn domain-specific information by

the labeled pair (X
(Si)
j , Y

(Si)
j ). Mathematically, let P (Si) ∈ Rn×m be the prompt of

the source domain Si, where m is the prompt length. Then, for the j-th time series

input X
(Si)
j , any time series model takes [P (Si), X

(Si)
j ] (i.e., the concatenation of P (Si)

and X
(Si)
j ) as its model input. We decompose P (Si) into two components:

P (Si) = P + ∆P (Si)

where P ∈ Rn×m is a common prompt to learn the common characteristics of all

source domains, which can also be directly applied to the target domain T , and

∆P (Si) ∈ Rn×m is a prompt to learn domain-specific information (i.e., information

unique to the source domain Si), which will be utilized to select the most similar

source domain to the target domain T .

While the domain-specific prompt ∆P (Si) is potentially effective in learning domain-

specific information about the source domain Si (i.e., address Challenge 1), it cannot

directly address Challenge 2. This is because ∆P (Si) is time-independent and has lit-

tle freedom to capture time-dependent domain-specific information (e.g., distribution

shifts of fiber-optic signals). To tackle this, instead of using a fixed prompt, we learn

such domain-specific information by prompts generated from the time series input.

This is because the time series input usually contains rich time-dependent information

(e.g., time series distributions and trends). Specifically, we introduce a conditional

module g(Si), parameterized by a neural network, to generate instance-level prompts

based on time series instances:

∆P
(Si)
j = g(Si)(X

(Si)
j ; ζ) ∈ Rm×n

where ∆P
(Si)
j is the instance-level prompt generated by the time series input X

(Si)
j
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Figure 3.7: Illustration of two criteria: high fidelity and high distinction. Fidelity
and distinction are represented as areas of A+B and C, respectively.

and a random variable ζ, and the domain-level prompt ∆P (Si) is the aggregation of all

instance-level prompts ∆P
(Si)
j (e.g., ∆P (Si) = 1

|Si|
∑|Si|

j=1 ∆P
(Si)
j ). For any time series

input X
(Si)
j , its corresponding prompt is formulated as P + ∆P

(Si)
j .

Our proposed prompt generator g(Si) conditionally generates instance-level prompts

for specific time series inputs, which intuitively has more freedom of expression to

learn domain-specific information than the traditional prompt tuning.

Two Important Criteria for Good Prompts

In the previous section, we extended prompt tuning to capture information on

specific time series domains. While prompts are easy to recognize in computer vision

and natural language fields, the learned prompts of time series data are not recogniz-

able to humans, making it hard, if not impossible, to evaluate whether prompts are

good enough to learn information for time series data. For example, a hard prompt

consists of natural language that clearly describes the task at hand, explicitly asks

the model for some result or action, and makes it easy to understand why the prompt

elicited such behavior from the model [70]. In contrast, the learned prompts of spe-

cific time series domains are visualized as extra time segments, which are difficult to
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understand by humans. Moreover, there is a lack of exploration on what constitutes a

good prompt that captures domain-specific information without human-engineering

priors. From our perspective, ideal prompts to capture domain-specific information

should maintain high fidelity and high distinction, as illustrated in Figure 3.7: high

fidelity suggests large overlaps between the learned domain-specific prompts and la-

bel information (i.e., large A + B in Figure 3.7), and high distinction implies small

overlaps among domain-specific prompts of different source domains (i.e., small C in

Figure 3.7). They are introduced in details as follows:

High Fidelity. One important criterion for the prompt generator g(Si) is fidelity

(i.e., the generated prompt ∆P
(Si)
j preserves the domain-specific information of the

source domain Si). Motivated by the theory of information bottleneck [139], high

fidelity is defined as the large mutual information between ∆P
(Si)
j and Y

(Si)
j , which

should be maximized:

max
M∑
i=1

|Si|∑
j=1

MI(∆P
(Si)
j , Y

(Si)
j ), (3.5)

where MI(•, •) denotes the operator of mutual information. Based on the definition

of mutual information, we have:

MI(∆P
(Si)
j , Y

(Si)
j ) = H(Y

(Si)
j )−H(Y

(Si)
j |∆P (Si)

j ),

where H(Y
(Si)
j ) represents the entropy of Y

(Si)
j and H(Y

(Si)
j |∆P (Si)

j ) is the entropy of

Y
(Si)
j conditioned on ∆P

(Si)
j . Since H(Y

(Si)
j ) is constant, Equation (3.5) is equivalent

to minimizing the conditional entropy H(Y
(Si)
j |∆P (Si)

j ), which can be expressed as:

min
M∑
i=1

|Si|∑
j=1

H(Y
(Si)
j |∆P (Si)

j ).

Due to the computational complexity of the conditional entropy H(Y
(Si)
j |∆P (Si)

j ),
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it can be approximated by the cross-entropy between f([∆P
(Si)
j , X

(Si)
j ]) and Y

(Si)
j

[161, 89], where f([∆P
(Si)
j , X

(Si)
j ]) is the prediction obtained by concatenating ∆P

(Si)
j

andX
(Si)
j as an input to our proposed POND model. The fidelity loss is then expressed

as:

ℓF =
M∑
i=1

|Si|∑
j=1

Y
(Si)
j log f([∆P

(Si)
j , X

(Si)
j ]). (3.6)

Now, we theoretically show that the learned prompt ∆P
(Si)
j , which minimizes the

fidelity loss (i.e., Equation (3.6)), possesses the following properties:

Property 3.2.1 (Preserving Fidelity). If ∆P
(Si)
j minimizes Equation (3.6), the mu-

tual information between ∆P
(Si)
j and the label Y

(Si)
j is equivalent to that between the

time series input X
(Si)
j and the label Y

(Si)
j , i.e.,MI(∆P

(Si)
j , Y

(Si)
j ) = MI(X

(Si)
j , Y

(Si)
j ).

Property 3.2.2 (Adding New Information). By minimizing Equation (3.6), the gen-

erated prompt ∆P
(Si)
j contains new information compared to the time series input

X
(Si)
j , i.e., H(∆P

(Si)
j ) ≥ H(X

(Si)
j ).

For the formal proofs of this work, one may refer to the original paper. These

properties demonstrate that minimizing Equation (3.6) ensures that the generated

prompts will not decrease fidelity and may add new information to the time series

input.

High Distinction. In addition to high fidelity, it is essential that the generated

domain-specific prompt ∆P (Si) distinguishes the unique information of the source

domain Si from other source domains. This unique information not only aids in

understanding the differences between multiple time series source domains but also

provides valuable insights for selecting suitable sources for domain adaptation. To

achieve this, from the perspective of information theory, we define the objective to
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maintain high distinction as minimizing the mutual information of domain-specific

prompts between different source domains, which should be minimized as follows:

min
∑
i1 ̸=i2

MI(∆P (Si1
),∆P (Si2

)), (3.7)

where ∆P (Si1
) and ∆P (Si2

) represent the domain-specific prompts of any two source

domains Si1 and Si2 . Equation (3.7) is computationally infeasible to minimize directly,

but it can be achieved by minimizing the leave-one-out upper bound [113, 89]. Other

mutual information upper bounds, such as the contrastive log-ratio bound [26], can

also conveniently be incorporated into our framework. Therefore, the objective to

encourage high distinction is formulated as minimizing the leave-one-out bound (i.e.,

discrimination loss):

ℓD =
∑
i1 ̸=i2

E log
exp(sim(∆P (Si1

),∆P (Si2
)))∑

i ̸=i1,i ̸=i2
exp(sim(∆P (Si1

),∆P (Si)))
, (3.8)

where sim(∆P (Si1
),∆P (Si2

)) = tr((∆P (Si1
))

T
∆P (Si2

)) denotes the inner product of

the two domain-specific prompts ∆P (Si1
) and ∆P (Si2

), and tr(A) represents the trace

of any matrix A.

The Learning Objective

After introducing two criteria for selecting good prompts, we present our learning

objective in this section.

Combining the fidelity loss ℓF in Equation (3.6) and the discrimination loss ℓD in

Equation (3.8), our learning objective is expressed as follows:

minP,g(Si) G(P, g(Si)) = ℓR + λ1ℓD + λ2ℓF , (3.9)

where ℓR = 1
M

∑M
i=1

1
|Si|

∑|Si|
j=1R(f([P + ∆P

(Si)
j , X

(Si)
j ]), Y

(Si)
j ) is the training loss that
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measures the performance of prompt tuning. Here, R(·, ·) is the loss function, and

[P +∆P
(Si)
j , X

(Si)
j ] is the concatenation of the overall prompt P +∆P

(Si)
j and the time

series input X
(Si)
j . Two tuning parameters λ1, λ2 > 0 control the trade-off among the

training loss, the fidelity loss, and the discrimination loss.

To optimize Equation (3.9), we need to enumerate all source domains, which may

be inefficient and unscalable [89]. To address this, we propose a simple yet effective

learning algorithm based on the classic Reptile meta-learning framework [105], which

randomly picks a source domain each time and conducts standard steps of gradient

descent without the need for calculating second derivatives.

After learning the common prompt P and the prompt generator g(Si), they can

be utilized for target domain transfer. Specifically, the prompt generator g(T ) is

optimized by the labeled time series pairs (X
(T )
i , Y

(T )
i ) in the target domain T as

follows:

ming(T )

1

|T |

|T |∑
i=1

R(f([P + ∆P
(T )
i , X

(T )
i ]), Y

(T )
i ), (3.10)

where ∆P
(T )
i = g(T )(X

(T )
i ) ∈ Rm×n is the instance-level domain-specific prompt of

the time series input X
(T )
i , and the domain-level domain-specific prompt of the target

domain T is ∆P (T ) = 1
|T |

∑|T |
j=1 ∆P

(T )
j . However, g(T ) may not be reliable for prediction

due to the limited labeled data involved. To handle this, ∆P (T ) is utilized as a

heuristic to find the most similar source domain by the simple nearest neighbor rule

(i.e., prompt adaptation):

Si = arg maxSi
sim(∆P (Si),∆P (T )), (3.11)

where sim(∆P (Si),∆P (T )) is a similarity function (e.g., cosine similarity) between the

domain-specific prompts ∆P (Si) and ∆P (T ). Then, we utilize the prompt generator

g(Si) for prediction in the target domain T : f([P + g(Si)(X
(T )
j ), X

(T )
j ]).
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Table 3.4: Statistics of four datasets.

Dataset # Domain # Channel # Class Seq Len # Train # Test
HAR 30 9 6 128 2300 990

WISDM 36 3 6 128 1350 720
HHAR 9 3 6 128 12716 5218
SSC 20 1 5 3000 14280 6130

3.2.4 Experiments

In this section, we employ four benchmark datasets to evaluate our proposed

POND model in comparison with six state-of-the-art methods. All experiments were

conducted on a Linux server equipped with an Intel(R) Xeon(R) Silver 4214 CPU

and an NVIDIA GPU running version 510. More experiments are included in the

supplementary materials.

Experimental Settings

Benchmark Dataset: We evaluated the performance of all methods on four

benchmark datasets, HAR, WISDM, HHAR and SSC [115]. The statistics of all

benchmark datasets are shown in Table 3.4, which are introduced as follows:

1. HAR [3]: The Human Activity Recognition (HAR) dataset incorporates data

collected from three sensors—accelerometer, gyroscope, and body sensors—deployed

on 30 subjects (i.e., domains) engaged in six distinct activities.

2. WISDM [63]: The WIreless Sensor Data Mining (WISDM) dataset, using

accelerometer sensors, involves 36 subjects participating in activities similar to the

HAR dataset, with additional challenges due to class distribution imbalances among

different subjects.

3. HHAR [129]: The Heterogeneity Human Activity Recognition (HHAR) dataset

was collected from 9 subjects using sensor readings from smartphones and smart-

watches.

4. SSC [42]: The Sleep Stage Classification (SSC) problem aims to categorize
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electroencephalography (EEG) signals into five stages. We utilize the Sleep-EDF

dataset [42], including EEG recordings from 20 healthy subjects.

Comparison Methods: We compared our proposed POND method with six

state-of-the-art time series domain adaptation approaches: Raincoat [46], CoDATs

[151], Deep Coral [131], MMDA [116], DIRT-T [126] and DSAN [174]. All comparison

methods are introduced as follows:

1. Raincoat [46]: it is an unsupervised domain adaptation method addressing

both feature and label shifts.

2. CoDATs [151]: it is the first method to handle multi-source domain adaptation

through adversarial training with weak supervision.

3. Deep Coral [131]: it minimizes domain shift by aligning second-order statistics

of source and target distributions.

4. MMDA [116]: it integrates Maximum Mean Discrepancy (MMD) and CORre-

lation ALignment (CORAL) along with conditional entropy minimization to address

domain shift.

5. DIRT-T [126]: it utilizes adversarial training, conditional entropy, and a teacher

model to align source and target domains.

6. DSAN [174]: it minimizes the discrepancy between source and target domains

via a Local Maximum Mean Discrepancy (LMMD) that aligns relevant subdomain

distributions.

Metrics: Two performance metrics were employed: Macro-F1 score and Accu-

racy. Macro-F1 is the unweighted mean of per-class F1 scores, treating all classes

equally. Accuracy is the ratio of accurately predicted samples to all samples.

Hyperparameter Settings: We adapted the setting of supervised domain adap-

tation, where ten samples in the target domain were used for domain transfer. All

source-target scenarios were selected randomly to ensure the fairness of the perfor-

mance evaluation. Single-source domain adaptation methods (e.g. Raincoat) were
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trained by combining all source domains. For the training set of all time series source

domains, 60% was used for pretraining our POND model, 20% for prompt tuning,

and 20% for validation sets. The batch size was set to 16. The number of global steps

N , global learning rate δ and the local learning rate η were set to 50, 0.01 and 0.001,

respectively. The number of experts was set to three. The prompt generator is a

two-layer Multi-Layer Perceptron (MLP) with Tanh activation. For the transformer

model, the numbers of encoder layers, decoder layers, and heads in the multi-head

attention were set to 2, 1, and 4, respectively. The dimensions of the multi-head

attention and the feed-forward layer were set to 16 and 128, respectively. The hyper-

parameters λ1 and λ2 were chosen based on performance on the validation set. λ1 and

λ2, along with other hyperparameters such as the number of epochs, are provided in

Table 3.5. All methods were averaged by ten times.

Table 3.5: Hyperparameters of all datasets.

Dataset #Epochs Prompt Length λ1 λ2

HAR 50 5 1 1

WISDM 200 3 1 1

HHAR 200 5 1 1

SSC 100 10 0.1 0.1

3.2.5 Experimental Results

Performance Evaluation: We conducted a comprehensive performance evalua-

tion to test all methods across approximately 50 scenarios on four datasets. Figure 3.8

displays the F1-score and accuracy of all methods on these datasets. Our proposed

POND method consistently outperforms others across all four datasets. Specifically,

on the HAR dataset, the F1-score of POND is approximately 0.9, only 2% lower than

the top-performing comparison method, Raincoat. The F1-score gaps on the HHAR,

and SSC datasets are 5% and 4.4%, respectively. The largest gap is observed in the

WISDM dataset, where the F1-score and accuracy of POND hover around 0.6 and

0.7, while all comparison methods score below 0.35 and 0.6, respectively. Considering
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(a). HAR. (b). WISDM.

(c). HHAR. (d). SSC.

Figure 3.8: The F1-score and accuracy of all methods on four benchmark datasets:
the proposed POND outperforms comparison methods consistently.

the inherent difficulty of training on the WISDM dataset due to class imbalance, this

highlights the effectiveness of our proposed POND, especially on challenging datasets.

Among the comparison methods, Raincoat emerges as the best overall. In terms

of F1-score, Raincoat outperforms MMDA by 5% on the HAR dataset and shows an

8% superiority over CoDATs on the HHAR dataset. For accuracy, Raincoat performs

7% better than DIRT on the HHAR dataset and surpasses Deep Coral by 3% on the

SSC dataset. CoDATs and Deep Coral also demonstrate competitive performance,

achieving around 55% accuracy on the WISDM dataset, while DSAN lags behind at

45%. On the other hand, MMDA, DIRT, and DSAN exhibit varying performance

across datasets. For instance, DSAN performs comparably to Raincoat on the SSC

dataset but ranks the lowest on the WISDM dataset.

Table 3.6 presents the performance of all methods across various scenarios in four

datasets, including the upper bound achieved by training and testing on the target

domain. The reported values include means and standard deviations from ten imple-
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Table 3.6: F1-score on different scenarios of four datasets: the proposed POND model
outperforms all comparison methods.
Scenario Raincoat CoDATs Deep Coral DIRT DSAN POND Target Only
HAR 1-15 → 16 0.823 ± 0.094 0.767 ± 0.093 0.773 ± 0.082 0.612 ± 0.135 0.738 ± 0.095 0.849 ± 0.021 0.856 ± 0.027
HAR 1-15 → 20 0.872 ± 0.142 0.932 ± 0.025 0.923 ± 0.023 0.848 ± 0.101 0.929 ± 0.033 0.968 ± 0.021 0.983 ± 0.018
HAR 1-15 → 21 0.867 ± 0.141 0.903 ± 0.070 0.882 ± 0.028 0.921 ± 0.090 0.909 ± 0.110 0.972 ± 0.021 1.000 ± 0.000
HAR 1-15 → 28 0.766 ± 0.107 0.775 ± 0.166 0.852 ± 0.044 0.671 ± 0.175 0.783 ± 0.046 0.829 ± 0.018 0.853 ± 0.019
HAR 16-20 → 1 0.792 ± 0.072 0.744 ± 0.053 0.667 ± 0.077 0.546 ± 0.060 0.698 ± 0.037 0.883 ± 0.017 0.986 ± 0.010
HAR 16-20 → 2 0.825 ± 0.048 0.821 ± 0.151 0.796 ± 0.055 0.509 ± 0.050 0.652 ± 0.057 0.936 ± 0.017 0.943 ± 0.024
HAR 16-20 → 3 0.814 ± 0.028 0.746 ± 0.078 0.741 ± 0.058 0.605 ± 0.056 0.565 ± 0.043 0.878 ± 0.018 0.978 ±0.013
HAR 16-20 → 4 0.679 ± 0.084 0.605 ± 0.082 0.479 ± 0.110 0.336 ± 0.110 0.436 ± 0.032 0.754 ± 0.033 0.921 ± 0.018
WISDM 0-17 → 18 0.379 ± 0.061 0.384 ± 0.049 0.346 ± 0.023 0.300 ± 0.041 0.287 ± 0.045 0.606 ± 0.020 0.705 ± 0.046
WISDM 0-17 → 20 0.354 ± 0.040 0.368 ± 0.039 0.376 ± 0.031 0.347 ± 0.071 0.269 ± 0.064 0.570 ± 0.023 0.704 ± 0.051
WISDM 0-17 → 21 0.355 ± 0.057 0.310 ± 0.088 0.259 ± 0.018 0.276 ± 0.055 0.245 ± 0.046 0.450 ± 0.026 0.636 ± 0.095
WISDM 0-17 → 23 0.306 ± 0.015 0.327 ± 0.075 0.318 ± 0.031 0.271 ± 0.016 0.277 ± 0.044 0.482 ± 0.017 0.538 ± 0.034
WISDM 0-17 → 25 0.365 ± 0.030 0.540 ± 0.125 0.435 ± 0.043 0.314 ± 0.107 0.353 ± 0.120 0.559 ± 0.050 0.672 ± 0.039
WISDM 0-17 → 28 0.399 ± 0.028 0.431 ± 0.033 0.418 ± 0.032 0.304 ± 0.044 0.339 ± 0.030 0.656 ± 0.046 0.689 ± 0.048
WISDM 0-17 → 30 0.314 ± 0.020 0.305 ± 0.028 0.298 ± 0.023 0.266 ± 0.035 0.246 ± 0.076 0.670 ± 0.039 0.791 ± 0.028
WISDM 18-23 → 5 0.648 ± 0.001 0.558 ± 0.129 0.534 ± 0.102 0.549 ± 0.097 0.484 ± 0.055 0.652 ± 0.035 0.734 ± 0.095
WISDM 18-23 → 6 0.544 ± 0.074 0.565 ± 0.143 0.437 ± 0.078 0.405 ± 0.089 0.454 ± 0.112 0.628 ± 0.033 0.872 ± 0.049
WISDM 18-23 → 7 0.588 ± 0.070 0.404 ± 0.117 0.530 ± 0.094 0.518 ± 0.120 0.476 ± 0.127 0.672 ± 0.029 0.888 ± 0.035
HHAR 0-6 → 7 0.765 ± 0.142 0.652 ± 0.108 0.815 ± 0.105 0.649 ± 0.005 0.730 ± 0.164 0.834 ± 0.014 0.861 ± 0.016
HHAR 5-8 → 2 0.321 ± 0.023 0.347 ± 0.082 0.309 ± 0.032 0.276 ± 0.021 0.314 ± 0.095 0.352 ± 0.014 0.881 ± 0.018
SSC 0-9 → 16 0.578 ± 0.028 0.510 ± 0.044 0.537 ± 0.024 0.523 ± 0.019 0.515 ± 0.044 0.568 ± 0.012 0.601 ± 0.018
SSC 0-9 → 17 0.511 ± 0.024 0.413 ± 0.118 0.452 ± 0.077 0.530 ± 0.053 0.463 ± 0.081 0.559 ± 0.006 0.602 ± 0.014
SSC 0-9 → 18 0.605 ± 0.016 0.548 ± 0.037 0.544 ± 0.046 0.574 ± 0.021 0.569 ± 0.046 0.604 ± 0.014 0.602 ± 0.013
SSC 0-9 → 19 0.562 ± 0.024 0.540 ± 0.052 0.531 ± 0.055 0.565 ± 0.028 0.568 ± 0.080 0.570 ± 0.010 0.613 ± 0.019
SSC 10-12 → 8 0.294 ± 0.028 0.380 ± 0.066 0.379 ± 0.076 0.322 ± 0.048 0.411 ± 0.046 0.470 ± 0.010 0.531 ± 0.019

mentations, with the best results highlighted in bold. Overall, our proposed POND

model consistently outperforms all methods, aligning with the observations in Fig-

ure 3.8. Notably, POND exhibits superior performance on the challenging WISDM

dataset, as indicated by Figure 3.8. For instance, POND outperforms all comparison

methods by at least 23% when transferring from domains 0-17 to domain 18. While

POND excels overall, there are instances where comparison methods outperform it.

For example, Deep Coral performs better than POND by 2% when transferring do-

mains 1-15 to domain 28 on the HAR dataset, and MMDA marginally outperforms

POND when transferring domains 1-15 to domain 21 on the HAR dataset.

In addition to superior performance, our proposed POND model demonstrates

greater stability compared to all comparison methods, as indicated by lower standard

deviations. For instance, the standard deviation of POND is 0.006 when transferring

domains 0-9 to domain 17 on the SSC dataset, while the standard deviations of all

comparison methods range between 0.024 and 0.118, being at least 3 times larger

than that of POND. Importantly, POND achieves results close to the upper bound

in many scenarios, such as ”HAR 1-15 → 16”, ”SSC 0-9 → 18”, and ”HHAR 0-6 →

7”.
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Table 3.7: Ablation study on the WISDM dataset: all components of our proposed
POND model contribute to the outstanding performance.

MoE 0-17→ 22 0-17→ 23 0-17→ 24 0-17→ 25 18-23→ 5 18-23→ 6 Overall
0.622±0.057 0.415±0.015 0.510±0.030 0.581±0.036 0.623±0.058 0.516±0.038 0.545±0.039
0.646±0.064 0.396±0.048 0.527±0.030 0.573±0.034 0.628±0.051 0.512±0.057 0.547±0.047
0.632±0.069 0.384±0.041 0.498±0.032 0.572±0.045 0.611±0.055 0.514±0.025 0.535±0.045

✓ 0.575±0.043 0.349±0.029 0.517±0.032 0.584±0.030 0.621±0.056 0.578±0.035 0.537±0.038
✓ 0.719±0.062 0.405±0.052 0.529±0.042 0.588±0.034 0.616±0.050 0.565±0.049 0.570±0.048
✓ 0.725±0.031 0.482±0.017 0.559±0.050 0.695±0.035 0.652±0.035 0.628±0.033 0.624±0.034

Ablation Study: Next, we demonstrate the ablation study of the proposed POND

method, whose goal is to identify whether all components of our proposed POND

model contribute to the performance. Specifically, we explore the necessity of the

MoE technique, common prompt, and prompt generator. The challenging WISDM

dataset was utilized to test the performance. Table 3.7 illustrates the performance

of different scenarios, all of which were averaged by 10 times. The first two rows

show the performance with the common prompt, and the prompt generator available

only, respectively. The fourth to sixth rows demonstrate the performance without

the MoE, common prompt, and prompt generator, respectively, and the last row

shows the performance of the complete POND model. Overall, our proposed POND

model performs best when the MoE, common prompt, and prompt generator are all

available, which suggests that all components are necessary for the outstanding per-

formance of our proposed POND model. For example, in the scenario of “18-23→

6”, the best performance without any component only achieves a performance no

more than 0.58, whereas that of the complete POND model is 5% better. The gap is

widened to 7% for the scenario “0-17→ 25”.

Sensitivity Analysis: In this section, we explore how source domains influence

performance on the target domain. Figure 3.9 illustrates the relationship between

performance metrics (F1-score and accuracy) and the number of source domains, av-

eraged over 10 implementations. Generally, our proposed POND model demonstrates

improved performance with an increasing number of source domains. For instance,

POND achieves 50% accuracy with two source domains for training, but this figure
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(a). F1-score. (b). Accuracy.

Figure 3.9: The F1-score and accuracy of the proposed POND model with different
source domains: the performance grows with the increase of source domains. (The
HHAR dataset has less than 10 domains.)

rises by 30% when an additional 8 source domains are included. Similarly, the F1-

score of POND increases by 20% when the number of source domains changes from

2 to 6. However, some exceptions exist. For example, there is a notable 25% drop in

F1-score when increasing the number of source domains from 6 to 7 on the WISDM

dataset. Another instance involves a 5% performance drop when increasing the source

domains from 4 to 5 on the SSC dataset.

Visualization of Discrimination Loss: Finally, we present a visualization of the

discrimination loss ℓD for pairwise source domains. Figure 3.10 illustrates the expo-

nents of discrimination losses for all pairs of source domains across four datasets. Both

the X-axis and Y-axis represent the indices of source domains. Darker colors indicate

smaller discrimination losses, reflecting better domain discrimination. The diagonals

are left blank. Overall, our proposed POND model effectively discriminates most

source domains, as evidenced by the predominance of dark squares. For instance,

domains 3-5 and domains 6-7 exhibit clear discrimination with losses below 0.05.

Similar effective discrimination is observed for domain pairs 6 and 0 on the WISDM

dataset, domain pairs 1 and 5 on the HHAR dataset, and domains 5-7 and 0 in the

SSC dataset. However, discrimination losses for some domain pairs are larger than
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(a). HAR. (b). WISDM.

(c). HHAR. (d). SSC.
Figure 3.10: The visualization of the exponent of discrimination loss: most pairs of
source domains are well discriminated.
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others. For instance, on the HAR dataset, the discrimination loss between domains

0 and 6 is the largest, approximately 0.30, but still within an acceptable range. It’s

worth noting that domain discrimination may not adhere to the transitive property.

For example, domains 3 and 9, as well as domains 4 and 9, are well-discriminated,

but domains 3 and 4 are relatively poorly-discriminated.

3.3 Conclusion

This chapter introduced dynamic mapping methods for functional-space guided

learning, with a focus on the DRAIN framework. By bridging parameter space and

functional space through a novel encoder-decoder mechanism, DRAIN addresses key

challenges in continual learning, including the need for adaptability, generalizability,

and efficient knowledge retention.

The encoder-decoder approach in DRAIN enables bidirectional mapping between

parameter and functional spaces, facilitating the encoding of task-specific knowledge

into a shared functional representation and its subsequent retrieval for learning. This

dynamic mapping enhances the model’s ability to generalize across tasks, adapt to

new information, and provide insights into how functional representations evolve over

time.

By formalizing the interaction between parameter and functional spaces, DRAIN

sets the stage for a deeper understanding of how functional-space principles can be ap-

plied to address dynamic and non-stationary learning scenarios. The framework high-

lights the potential of functional-space guided learning to improve the efficiency and

robustness of machine learning systems, serving as a stepping stone toward broader

applications.

The next chapter explores these applications, showcasing how functional-space

guided learning principles can address practical challenges in efficiency and domain
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adaptation.
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Chapter 4

Harnessing Function Space of

Machine Learning Models for

Better Efficiency via Global

Pruning

Optimizing the efficiency of large-scale machine learning models is a critical step

toward making advanced AI systems scalable and accessible. This chapter explores

a cutting-edge application of function space optimization: SparseLLM, a globally

optimized pruning strategy for large language models (LLMs). SparseLLM addresses

the challenges of computational and memory constraints by decomposing the global

pruning problem into smaller, manageable subproblems, enabling the efficient and

scalable pruning of billion-parameter LLMs.

This chapter begins by examining the limitations of traditional pruning tech-

niques, which either focus on layer-wise pruning or require large computational re-

sources for global pruning. SparseLLM bridges this gap by leveraging auxiliary vari-

ables and a flexible decomposition strategy to balance computational efficiency with
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global optimality. The resulting pruning framework not only improves the scalabil-

ity of pruning methods but also demonstrates superior performance in high-sparsity

regimes compared to state-of-the-art approaches.

The following sections detail the mathematical foundation, algorithmic design,

and empirical evaluation of SparseLLM, showcasing its adaptability to different model

architectures and its ability to significantly reduce perplexity while maintaining com-

petitive zero-shot performance. SparseLLM’s versatility makes it a valuable tool for

researchers and practitioners aiming to optimize LLMs for real-world applications.

4.1 Global Pruning of Pre-trained Language Mod-

els

4.1.1 Introduction

Large language models (LLMs) [141, 106] have recently transformed the field of

natural language processing (NLP) by delivering exceptional results across a variety of

intricate language benchmarks [150, 17, 20]. Nonetheless, these models, with billions

of parameters, generally necessitate significant computational resources. To make

LLMs more accessible, extensive efforts have been devoted to model compression

of LLMs [155, 8], including pruning, quantization, knowledge distillation, and low-

rank factorization. Pruning, by introducing sparsity, jointly enhances memory and

computational efficiency and offers unparalleled flexibility, seamlessly integrating with

any LLMs, thus standing out as a highly effective and widely adopted compression

strategy.

Model pruning has a long history [66] and has proven effective in applications

related to vision and smaller language models [47]. However, conventional pruning

techniques, which rely on global pruning and require loading the entire model into
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the same GPU [92, 128], become impractical for today’s LLMs due to their vast

size. Recently, several local pruning methods have been proposed for billion-scale

LLMs. These methods compress each layer separately, and the overall compressed

model is then obtained by “stitching together” the individually compressed layers.

SparseGPT [39], an efficient unstructured pruning method for LLMs with hundreds

of billions of parameters, achieves parameter reduction of up to 60% with minimal

performance loss. Another approach, Wanda [133], introduces a novel pruning cri-

terion that evaluates weights by considering both magnitude and related input acti-

vations. Despite its efficiency gains, local pruning only aims to minimize the local

error for each specific layer under sparsity constraints, resulting in a suboptimal solu-

tion for the overall model. This is because local pruning over-aligns the intermediate

layers’ activations, leading to suboptimal performance, especially in high-sparsity

regimes [128, 135].

Global Pruning Local Pruning SparseLLM (Ours)

Layer 𝑵
Layer 𝑵

Layer 𝟐

Layer 𝟏

Inp w/o prune

LLM too large to fit 
in a single machine!

Only consider local
error for pruning!

Out w/o prune

…

…

Layer 𝑵

Aux inp 𝑵

Layer 𝟐

Aux inp 𝟐

Aux out 𝟐

Layer 𝟏

Aux out 𝟏

…

Global pruning with 
low memory cost!

Inp N w/o prune

Out N w/o prune

Layer 𝟐

Inp 2 w/o prune

Out 2 w/o prune

Layer 𝟏

Inp 1 w/o prune

Out 1 w/o prune

Inp w/o prune

Out w/o prune

Figure 4.1: SparseLLM decomposes the
global pruning of LLMs into manageable
subproblems by leveraging the chain of
modules and auxiliary variables while
maintaining dependencies.

To address these challenges and achieve

global pruning with low memory consump-

tion, we propose SparseLLM that decom-

poses the global pruning objective into mul-

tiple subproblems, each of which can be

solved with low resources and coordinate to

achieve the global pruning objective. More

specifically, we first formulate LLMs as a

composite function where the output of one

module is the input of the next. Based on

this formulation, we reformulate the global

pruning goal into an equivalent form with auxiliary variables that facilitate its de-

composition and coordination of the subproblems. Then we propose an alternating

optimization algorithm to efficiently solve the subproblems, achieving computational
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resource efficiency and global optimality, due to the close-form solution of each sub-

problem. Empirically, we find that SparseLLM can consistently improve the perfor-

mance of local pruning methods, particularly in high sparsity regimes (¿ 60%), where

the perplexity can be significantly decreased by up to around 80% as compared to

the state-of-the-art methods.

Furthermore, our SparseLLM framework can be readily applicable to enhance the

performance of most existing local pruning solvers, such as SparseGPT and Wanda,

with marginal additional computational overhead. This adaptability ensures that

our framework can be seamlessly integrated into a wide range of LLMs and pruning

methods, making it a versatile tool and useful baseline for future research exploiting

the sparsity of LLMs.

4.1.2 Background and notation

Global pruning

Given a pre-trained neural network f with parameter W and inputs X, global

pruning aims to find a global sparsity mask M and possibly updated weights Ŵ

to minimize the global loss L between the final outputs of the uncompressed and

compressed model:

minM,Ŵ L
(
f(X;M⊙ Ŵ), f(X;W)

)
, (4.1)

where ⊙ denotes the element-wise multiplication. In addition to NP-hardness [16],

however, a critical challenge in solving Eq. 4.1 is the huge memory cost, as one needs

to store the entire model in a single GPU, rendering this method impractical for

modern billion-scale LLMs.
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Local pruning

Local pruning circumvents the memory issue mentioned above by dividing the full

model compression into subproblems for each layer and constructing a local loss to

measure the ℓ2-error between the outputs of the uncompressed and compressed layers.

Hence, the local pruning can be formulated by

minMℓ,Ŵℓ
∥Wℓ ·Xℓ − (Mℓ ⊙ Ŵℓ) ·Xℓ∥22. (4.2)

Although smaller than the global pruning, the local pruning still needs to optimize

both the mask Mℓ and the remaining weights Ŵℓ and thus remains NP-hard. There-

fore, exactly solving it for larger layers is unrealistic, leading all existing methods to

resort to approximations.

Mask selection & weight reconstruction. A particularly popular approach is

to separate the problem into mask selection and weight reconstruction [51, 64]. Con-

cretely, this means first choosing a pruning mask M according to some salient crite-

rion, like the weight magnitude [172], and then optimizing the remaining unpruned

weights while keeping the mask unchanged. Importantly, once the mask is fixed,

Eq. 4.2 turns into a linear regression problem that can be easily optimized.

Existing solvers. Early work [56] applied iterated linear regression to small net-

works. Recently, the AdaPrune approach [51] has shown good results for this problem

on modern models via magnitude-based weight selection, followed by applying SGD

steps to reconstruct the remaining weights. Follow-up works demonstrate that prun-

ing accuracy can be further improved by removing the strict separation between mask

selection and weight reconstruction. More recently, [39] developed SparseGPT, an effi-

cient unstructured pruning method for LLMs with hundreds of billions of parameters,

achieving up to 60% parameter reduction with minimal performance loss. [133] in-
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troduced a novel pruning criterion in Wanda, which evaluates weights by considering

both magnitude and related input activations.

What is wrong with local pruning?

As shown in Eq. 4.14, local pruning focuses on minimizing the error for each

specific layer ℓ subject to sparsity constraints. This results in a suboptimal solution

with respect to the global pruning problem. While the primary goal of pruning is

to ensure that the input and output of the pruned model align closely with those

of the original models, the local pruning overly constrains the activations of all the

intermediate layers between the two models, leading to performance degradation.

4.1.3 Proposed Method

We present our proposed method SparseLLM, that can address the drawbacks of

existing pruning methods by achieving a global pruning with low memory consump-

tion. SparseLLM decomposes the global pruning objective into many subproblems,

each of which can be solved using low resources and can coordinate with each other

toward the global pruning objective. An overview of SparseLLM on the OPT and

LlaMA configurations are shown in Figure 4.2.

Motivation

The development of SparseLLM is motivated by the observation: LLMs can be

formulated as a composite function such that the output of one module is the input of

the next. This allows us to reformulate the global pruning goal into its equivalent form

with auxiliary variables that enable the decomposition into multiple subproblems, as

detailed in Sec. 4.1.3. Then we develop a resource-efficient algorithm that achieves

the alternating optimization of the subproblems with global optimality, thanks to the

close-form solution of each subproblem, as illustrated in Sec. 4.1.4.
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A unified formulation of pruning

In this section, we present the reformulation of the global pruning problem into an

equivalent one by introducing auxiliary variables. This reformulation provides a more

flexible form and enables the decomposition of the problem into many manageable

subproblems.

The key idea behind our formulation is to decouple the densely parametric parts

(linear layers) from non-parametric parts (activation function, self-attention, layer

norm, etc) using a splitting technique. Rather than feeding the output of the dense

linear layer Wℓ directly into the non-parametric and potentially nonlinear layer ϕℓ,

we store the output of layer ℓ in a new variable zℓ = Wℓaℓ−1
1. We also represent the

output of the non-parametric layer as a vector of activations aℓ = ϕℓ(zℓ). We then

solve the following problem:

min
{Ŵℓ},{Mℓ},{aℓ},{zℓ}

L(zL,y),

s.t. zℓ = (Mℓ ⊙ Ŵℓ)aℓ−1, ∀ ℓ ∈ [L],

aℓ = ϕℓ(zℓ), ∀ ℓ ∈ Ω,

aℓ, zℓ = apre
ℓ , zpreℓ , ∀ ℓ ∈ [L− 1]\Ω,

(4.3)

where L represents the total number of dense (linear) layers and [L] = {1, 2, · · · , L}.

[L − 1]\Ω denotes the complement set of Ω. We use apre
ℓ , zpreℓ to denote the corre-

sponding intermediate variables’ values of the original dense (i.e., without pruning)

pre-trained model. y denotes the ground-truth final output of the dense pre-trained

model.

In our proposed formulation above, its unified nature lies in the interpretation and

application of the set Ω, which denotes the indices of layers subject to the pruning

1For the sake of simplicity and clearer presentation, the bias term is omitted in the following
equations where its exclusion does not lead to confusion.
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process. Intuitively, Ω measures how “global” the pruning is. The bigger the set

of Ω is, the more layers are connected via the second constraint, and the pruning is

more towards the global extreme, and vice versa. The generality and versatility of

our formulation is illustrated in the following remark:

Remark 4.1.1 (Generality and flexibility of Eq. 4.3). Given an LLM formulated as a

composite function with dense layers l ∈ {1, 2, . . . , L−1}, where L is the total number

of dense layers and Ω denotes the set of layers subject to the pruning process. Our

formulation can seamlessly treat both global and local pruning as special cases under

certain conditions. Specifically:

• When Ω = {1, 2, . . . , L− 1}, solving our pruning formulation is equivalent to global

pruning, accounting for inter-layer dependencies across the entire network.

• When Ω = ∅, the formulation simplifies to local pruning, considering each layer

independently (the last constraint dominates and “cuts” all layer dependencies with

pre-trained values.)

The ability to shift between these two extremes, and potentially any intermediate

configurations, demonstrates the flexibility and comprehensiveness of our formulation.

By adjusting Ω, one can seamlessly transition from a global perspective to a local

perspective. This flexibility not only caters to a wide range of pruning strategies

but also provides a unified framework to compare and contrast the effectiveness of

different pruning methods under a consistent mathematical lens.

4.1.4 Algorithm design

In this section, we introduce the algorithm design of SparseLLM, which alterna-

tively optimizes the subproblems associated with the corresponding variables. This

approach is resource-efficient and achieves global optimality, attributed to the closed-

form solutions that each subproblem yields.
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Figure 4.2: Illustration of SparseLLM on OPT and LlaMA. The auxiliary variables
and soft constraints (i.e., ≈) allow SparseLLM to decompose the global pruning
into manageable subproblems while maintaining the dependencies. Subproblems are
analytically solvable and enjoy fast convergence.

The key idea of our algorithm lies behind the flexibility of Ω in our Eq. 4.3, as we

want to find a better trade-off between completely global (memory bottleneck) and

completely local (suboptimal performance) pruning. Naively applying SparseLLM

to prune all layers globally is impractical. On the other hand, recent work shows

that the feed-forward network (FFN) module in each decoder layer accounts for more

than two-thirds of the total parameters in an LLM [83]. Therefore, our SparseLLM

prioritizes the global pruning of the FFN module, while still adhering to a local

pruning strategy for the multi-head attention (MHA) module (see Figure 4.2). This

strategy strikes a balance between the computational feasibility of pruning large-scale

models and the effectiveness of the pruning process, adhering to the limitations and

practices of state-of-the-art LLM pruning frameworks.

Formally speaking, rather than trying to solve Eq. 4.3 directly, we first relax

the constraints by adding an ℓ2-penalty function to the objective and attack the
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unconstrained problem:

L(zL,y) + α
∑

ℓ∈[L]
∥zℓ − (Mℓ ⊙ Ŵℓ)aℓ−1∥22 + β

∑
ℓ∈ΩFFN

∥aℓ − ϕℓ(zℓ)∥22, (4.4)

where α, β are hyperparameters for controlling the weight of each constraint. ΩFFN

denotes the set of indexes for the linear layers in the FFN module of each decoder layer,

i.e., linear layers from the same FFN module are pruned globally. For simplicity, the

superscript “pre” of aℓ and zℓ in the third constraint in Eq. 4.3 is omitted here, i.e.,

for ℓ ̸∈ ΩFFN the aℓ and zℓ are fixed and equal to the pre-trained model’s intermediate

value in the second term of Eq. 4.4. In the following subsections, we illustrate how

we approach the pruning of FFN and MHA modules, respectively.

SparseLLM on OPT models

For each decoder layer in a pre-trained LLM, our Eq. 4.4 instantly simplifies to

globally pruning the corresponding FFN module within that decoder layer as:

α∥zpreℓ+1 − (Mℓ+1 ⊙ Ŵℓ+1)aℓ∥22 + β∥aℓ − ϕℓ(zℓ)∥22 + α∥zℓ − (Mℓ ⊙ Ŵℓ)a
pre
ℓ−1∥

2
2, (4.5)

where layers ℓ and ℓ+ 1 correspond to the up-projection and down-projection linear

layers.

In this work, we consider the alternating method to optimize our Eq. 4.5, i.e.,

optimize each variable while keeping the rest fixed. The careful and elaborate design

of our Eq. 4.5 allows us to derive a closed-form solution to every subproblem as shown

below.

Pruning weight. First consider optimizing Eq. 4.5 with respect to Mℓ and Ŵℓ.

For each linear layer ℓ in a FFN module, the optimal solution minimizes ∥zℓ− (Mℓ⊙

Ŵℓ)aℓ−1∥22. To solve it, the first step is to decompose zℓ to Wℓaℓ−1, where Wℓ =

zℓa
†
ℓ−1 († denotes the pseudo-inverse.) Plug decomposed zℓ back in original loss and
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we get ∥Wℓaℓ−1 − (Mℓ ⊙ Ŵℓ)aℓ−1∥22, which aligns with the pruning objective of

Eq. 4.2 and can be analytically solved by existing pruning solver e.g., SparseGPT.

The superscript of “pre” for aℓ−1 is omitted in this section for simpler notation.

Updating activation. Minimization for aℓ is a simple least-squares problem similar

to weight pruning. However, in this case, the matrix aℓ−1 appears in two penalty

terms in Eq. 4.5, so we must minimize α∥zpreℓ+1− (Mℓ+1⊙Ŵℓ+1)aℓ∥22 +β∥aℓ−ϕℓ(zℓ)∥22

for aℓ, holding all other variables fixed. By following a very similar idea to Ridge

regression, the new value of aℓ is given by:

(αW⊺
ℓ+1Wℓ+1 + βI)−1(αW⊺

ℓ+1z
pre
ℓ+1 + β · ReLU(zℓ)), (4.6)

where Wℓ denotes the updated weight matrix after pruning, i.e., Wℓ := Mℓ ⊙ Ŵℓ.

Updating output. The update for zℓ requires minimizing the following loss:

β∥aℓ − ReLU(zℓ)∥22 + α∥zℓ − (Mℓ ⊙ Ŵℓ)a
pre
ℓ−1∥

2
2. (4.7)

This problem is non-convex and non-quadratic (because of the non-linear function

ReLU). Fortunately, because the ReLU function works entry-wise on its argument,

the entries in zℓ are de-coupled. Solving Eq. 4.7 is particularly easy for the case of

ReLU, as it can be solved in closed form followed by a simple if-then logic. Specifically,

one only needs to compute two solutions of a quadratic equation:

z
(1)
ℓ = (Mℓ ⊙ Ŵℓ)a

pre
ℓ−1, z

(2)
ℓ = (α + β)−1 ·

(
βaℓ + αz

(1)
ℓ

)
, (4.8)

where the first solution corresponds to those entries of zℓ that are negative (reduced

to zero by ReLU), and the second solution corresponds to those entries of zℓ that are

non-negative.
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SparseLLM on LlaMA models

In this section, we introduce how SparseLLM decomposes global pruning into

subproblems and solves them iteratively on LlaMA model families. The model archi-

tecture of LlaMA can be found in Figure 4.2. Overall, SparseLLM operates similarly

on both LlaMA and OPT models, with the main difference being that LlaMA in-

cludes an additional dense linear layer, known as the gate projection layer, and uses

the SiLU activation function instead of ReLU.

Pruning weight. In this part, SparseLLM functions almost identically to its oper-

ation on OPTs.

Updating activation aℓ. Similarly, for updating aℓ, SparseLLM works nearly the

same as on OPT. The minimization for aℓ is a simple least-squares problem, akin to

weight pruning. However, in this case, the matrix aℓ−1 appears in two penalty terms

in Eq. 4.5, necessitating the minimization of:

α∥zpreℓ+1 − (Mℓ+1 ⊙ Ŵℓ+1)aℓ∥22 + β∥aℓ − SiLU(sℓ)⊙ zℓ∥22, (4.9)

for aℓ, with all other variables held fixed. Following a concept similar to Ridge

regression, the updated value of aℓ is:

(
αW⊺

ℓ+1Wℓ+1 + βI
)−1(

αW⊺
ℓ+1z

pre
ℓ+1 + β · SiLU(sℓ)⊙ zℓ

)
, (4.10)

where Wℓ denotes the updated weight matrix after pruning, i.e., Wℓ := Mℓ ⊙ Ŵℓ.

Updating output zℓ. Updating zℓ is somewhat simpler in LlaMA since the activa-

tion function applies over the gate projection layer. The update requires minimizing

the loss:

β∥aℓ − SiLU(sℓ)⊙ zℓ∥22 + α∥zℓ − (Mℓ ⊙ Ŵℓ)a
pre
ℓ−1∥

2
2. (4.11)

This problem is quadratic when solving for zℓ with other variables fixed. Through
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mathematical manipulations, the analytical solution for zℓ is found by solving a

quadratic equation:

z∗ℓ =
(Mℓ ⊙ Ŵℓ)a

pre
ℓ−1 + SiLU(sℓ)⊙ aℓ

SiLU(sℓ)2 + 1
, (4.12)

where the division is element-wise and 1 denotes the all-one matrix.

Updating gate projection output sℓ. Updating sℓ involves minimizing:

β∥aℓ − SiLU(sℓ)⊙ zℓ∥22 + α∥sℓ − (Ms ⊙ Ŵs)a
pre
ℓ−1∥

2
2, (4.13)

where Ms and Ŵs denote the mask and layer weights for the gate projection layer.

This problem is non-convex and non-quadratic due to the non-linear SiLU function.

However, since SiLU operates entry-wise, the entries in sℓ are decoupled. Despite

LlaMA lacking a simple closed-form solution as in OPT (which uses ReLU), the

problem can still be solved quickly and analytically using a lookup table of pre-

computed solutions, since each element in sℓ depends on only three variables.

Remark 4.1.2 (Global convergence of SparseLLM). Consider the objective function

given by Eq. 4.5, under the condition that the activation function ϕ is ReLU. Notice

that (1) the objective function is convex with respect to each variable when all others

are fixed, and (2) given that closed-form solutions exist for the subproblems in the

alternating optimization scheme, the proposed algorithm resembles multiblock ADMM

which has been shown to converge to in many applications.

Pruning of MHAs

SparseLLM also prunes other linear layers besides those in FFNs. By following

Eq. 4.4, for each linear layer out of FFN modules, the pruning objective simplifies to

α∥zpreℓ+1− (Mℓ+1⊙ Ŵℓ+1)a
pre
ℓ ∥22, which is equivalent (with some simple math) to that

of completely local pruning as shown in Eq. 4.2. Existing LLM pruning solvers such
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as SparseGPT and Wanda are applicable here.

Time complexity analyses

The proposed SparseLLM consists of three main steps, with the overall time

complexity being the sum of the complexities of these steps. In the weights pruning

step, the complexity is dominated by the pseudo-inverse computation of matrix aℓ

(dimensions n × h), which is O(nh2). Using SparseGPT as the solver, the exact

pruning step has a complexity of O(h3). The second step, updating activations,

involves matrix inversion of the weight matrix Wℓ (size h× h) with a complexity of

O(h3). The third step, updating outputs, has a lower complexity. Thus, the overall

algorithm complexity is bounded by O(h3), therefore making our method’s per-epoch

time complexity comparable to SparseGPT.

4.1.5 Experiments

Experiments setup. We implemented SparseLLM in PyTorch [110] and use the

HuggingFace Transformers library [152] for handling models and datasets. All pruning

experiments are conducted on NVIDIA A100 GPUs. For calibration data, we follow

[39] and use 128 2048-token segments, randomly chosen from the first shard of the

C4 [114] dataset. This represents generic text data crawled from the internet and

ensures our experiments are zero-shot as no task-specific data is seen during pruning.

We followed existing work [39, 133] and pruned all linear layers (in FFN and MHA)

to the target sparsity.

Models, datasets & evaluation. We consider the OPT model family [164] and

LlaMA-2 model family [141] in our experiments as well as the most recent LlaMA-3

model. We show results on different sizes of models to provide a broader picture for

the performances of SparseLLM. In terms of metrics, we mainly focus on perplexity,

which is known to be a challenging and stable metric that is well-suited for evaluating
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the accuracy of compression methods [158, 27]. We consider the test sets of raw-

WikiText2 [98] (WT2) and PTB [93] as well as a subset of the C4 validation data, all

popular benchmarks in LLM compression literature [158, 109, 39, 133]. For additional

interpretability, we also provide zero-shot accuracy results following the same setup

of [133], which is based on the popular EleutherAI-eval harness [41].

Comparison methods. We compare against three baselines, magnitude prun-

ing [172] applied locally, and two other state-of-the-art local pruning methods, SparseG-

PT [39] and Wanda [133].

Results and analyses

Pruning vs. model sizes. We begin by exploring the pruning capabilities of

SparseLLM across various model sizes in comparison to baseline methods. For each

model, we consider unstructured sparsity ranging from 70% to 90% with a 10% in-

crement, as well as a 3:4 semi-structured sparsity. The 3:4 semi-structured sparsity is

inspired by our preliminary results that suggest good performance SparseLLM at high

sparsity regimes. However, note that two of our baselines, Magnitude and Wanda,

are unable to be configured to this sparsity out-of-box. We conduct a sensitivity

study on the calibration sample sizes (see Appendix D.2) and use calibration sample

sizes between 32 and 64 for all experiments. Moreover, we prune the first 50% of the

Transformer decoder layers in each model to achieve a balance between the computa-

tion resources and the performances. Detailed results can be found in Table 4.1 and

Table 4.2 as well as Table D.3 in Appendix D.4. Note that in Table 4.2 for LlaMA-

3 model, we only compare SparseGPT to the proposed SparseLLM. The perplexity

results of the dense models are reported next to the names of the models.

From the tables, it shows a general trend of increasing perplexity with increas-

ing sparsity. Moreover, we observe a trend of decreasing perplexity for SparseGPT

and SparseLLM at the same sparsity with increasing model sizes. However, such a
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Table 4.1: Perplexity of OPT models for sparsity ≥ 70%; the lower the perplexity,
the better.

OPT-1.3b (WikiText2 (WT2): 14.62; PTB: 20.29; C4: 16.07)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 6420.80 4828.13 3435.99 9998.71 1.1e4 5347.89 8209.13 1.0e4 4917.02 - - -
Wanda 21.56 34.77 25.78 142.20 146.76 142.24 5692.65 4751.69 4501.73 - - -
SparseGPT 18.04 28.19 21.45 69.67 93.36 60.83 2596.70 2361.86 1363.08 252.81 238.41 146.21
SparseLLM 17.82 27.72 20.99 58.92 85.33 58.36 1350.31 1192.36 655.76 128.83 144.48 106.01

OPT-2.7b (WikiText2 (WT2): 12.47; PTB: 17.97; C4: 14.32)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 1691.74 1237.08 1415.02 1.0e4 7916.69 6050.07 7.9e5 5.3e5 4.7e5 - - -
Wanda 88.61 140.09 90.06 6140.81 4746.96 5678.66 3.0e4 3.5e4 2.4e4 - - -
SparseGPT 13.79 21.18 16.18 24.32 37.82 25.92 2662.74 2285.01 1776.08 91.02 91.79 64.95
SparseLLM 13.82 21.07 16.14 23.87 37.09 24.90 1200.12 759.11 527.70 56.90 77.14 52.77

OPT-13b (WikiText2 (WT2): 10.13; PTB: 14.52; C4: 12.06)

Sparsity 70% 80% 85% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 9037.12 7734.58 5909.47 1.1e4 9140.88 6340.22 1.3e4 1.3e4 9087.50 - - -
Wanda 30.94 39.26 33.31 4216.04 2894.77 2450.57 1.1e4 1.1e4 7244.96 - - -
SparseGPT 10.89 16.35 13.39 21.42 33.62 21.01 8408.03 6380.30 3416.23 4715.16 7454.37 2.11e4
SparseLLM 10.96 16.57 13.38 19.07 28.77 19.29 2052.27 1536.51 538.61 289.17 687.48 677.13

OPT-30b (WikiText2 (WT2): 9.56; PTB: 14.04; C4: 11.45)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 8691.40 4769.89 4732.66 8941.81 5292.98 5092.26 3.8e7 3.0e7 1.4e7 - - -
Wanda 7766.61 5547.45 5741.74 8770.33 6020.70 7132.20 6354.15 4296.37 4654.27 - - -
SparseGPT 9.58 14.41 11.93 16.49 22.01 17.67 5747.87 5169.50 3555.24 441.35 464.73 209.44
SparseLLM 9.56 14.40 11.94 15.61 19.64 16.61 3050.63 2712.39 1758.63 51.28 73.61 37.99

OPT-66b (WikiText2 (WT2): 9.34; PTB: 13.36; C4: 10.99)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude OOM OOM OOM OOM OOM OOM OOM OOM OOM - - -
Wanda OOM OOM OOM OOM OOM OOM OOM OOM OOM - - -
SparseGPT 9.45 13.64 11.37 28.27 57.41 26.26 7803.10 6594.88 4433.35 6594.37 6329.59 3799.87
SparseLLM 9.37 13.66 11.37 16.45 21.00 17.70 7504.17 5644.65 3683.91 4641.8 5296.93 1618.43

trend is not obvious for Magnitude and Wanda. We also observe that SparseGPT

and SparseLLM consistently outperform Magnitude and Wanda by a significant mar-

gin. For smaller sparsity, SparseLLM achieves comparable perplexity to SparseGPT.

As we increase the sparsity, SparseLLM starts to demonstrate noticeable improve-

ments over SparseGPT. In numerous instances for the OPT model family, SparseLLM

achieves perplexity reductions of more than 50% compared to SparseGPT. We also
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Table 4.2: Perplexity of LlaMA models for sparsity ≥ 70%; the lower the perplexity,
the better.

LlaMA-2 7b (WikiText2 (WT2): 5.47; PTB: 37.91; C4: 7.26)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 1058.00 544.43 889.46 6380.27 NaN 4162.92 9498.91 1.02e4 7539.65 - - -
Wanda 2644.22 4040.95 1630.09 1814.01 3376.35 1124.26 5206.93 4607.30 2780.45 - - -
SparseGPT 15.98 302.15 18.58 53.20 803.02 52.57 344.97 2503.82 279.77 68.28 784.79 60.45
SparseLLM 16.15 274.35 18.23 49.96 664.39 47.39 225.23 2233.52 181.56 64.17 667.27 54.56

LlaMA-2 13b (WikiText2 (WT2): 4.88; PTB: 50.94; C4: 6.73)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 30.34 2317.39 28.48 4133.98 4706.65 4112.69 5580.71 5514.22 5090.63 - - -
Wanda 23.42 502.53 32.65 295.29 2340.13 261.15 3003.49 3804.69 1738.73 - - -
SparseGPT 12.98 267.63 15.95 45.59 550.59 45.20 825.99 1410.46 673.33 63.48 660.70 56.29
SparseLLM 12.95 277.76 15.77 36.36 578.35 38.63 646.15 1078.94 466.98 53.71 632.11 50.40

LlaMA-3 8b (WikiText2 (WT2): 6.14; PTB: 11.18; C4: 9.45)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

SparseGPT 22.37 36.56 30.53 72.87 113.95 79.86 214.68 261.18 198.34 96.75 107.52 102.11
SparseLLM 20.98 33.78 28.94 57.83 85.98 72.18 197.47 241.68 181.69 76.33 99.54 93.68

Table 4.3: Perplexity of 2:4 sparsity; the lower the perplexity, the better.

OPT-1.3b OPT-2.7b OPT-6.7b OPT-13b

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude 96.68 133.92 48.08 272.34 308.55 267.70 64.11 92.23 82.67 67.07 110.77 52.61
Wanda 15.63 24.04 18.23 13.66 21.67 16.10 11.86 18.54 14.77 10.33 15.35 12.54
SparseGPT 15.11 23.71 17.88 12.62 19.28 15.12 11.30 16.90 13.51 10.20 15.14 12.48
SparseLLM 14.97 23.40 17.67 12.62 19.28 15.12 11.07 16.73 13.42 10.20 15.14 12.41

see that performance improvements from SparseLLM over SparseGPT are more sig-

nificant for the OPT model family than the LlaMA-2 model family.

We provide additional set of perplexity results for a 2:4 semi-structured sparsity

for a few OPT models in Table 4.3. We see that SparseLLM and SparseGPT generally

outperform Magnitude and Wanda while SparseLLM has comparable if not slightly

better performances compared to SparseGPT with the 2:4 semi-structured sparsity.

Note that a 2:4 semi-structure sparsity is considered to be in low sparsity regime.

Zero-shot experiments. To further conclude the evaluations and discussions, we

show results for several zero-shot tasks in Table 4.4 and Table 4.5 as well as Ta-

ble D.4 in Appendix D.4, comparing SparseGPT and SparseLLM. These evaluations
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are known to be relatively noisy [28], but more interpretable. We also report the

results for zero-shot tasks from the dense models in the “Dense” row. We see that

the accuracy of both methods decreases with increasing sparsity, which is expected,

as more parameters are pruned. A similar trend of increasing accuracy with increas-

ing model size is observed too. Across all the tasks, OBQA and ARC-c remain the

most challenging ones as the accuracy for both methods is 30% or below 30% while

both methods perform well for BoolQ, RTE, WinoGrande, and ARC-e. In general,

SparseLLM is able to achieve higher accuracy in the majority of tasks across the

models of different sizes in both OPT and LlaMA-2 model families.

Table 4.4: Accuracy (%) of zero-shot tasks for OPT models; the higher the accuracy,
the better.

OPT-13b

SparsityMethod BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 65.87 57.76 52.44 66.02 67.82 33.46 28.62 53.14

70%
SparseGPT 63.03 54.87 50.89 65.43 67.47 32.85 26.40 51.56
SparseLLM 63.85 55.23 50.73 65.67 66.46 31.83 27.20 51.57

80%
SparseGPT 59.72 52.35 46.82 61.48 62.50 31.23 21.80 47.99
SparseLLM 60.89 53.07 46.19 62.12 62.21 30.38 23.00 48.27

90%
SparseGPT 47.49 52.71 33.17 51.54 39.98 21.33 17.80 37.72
SparseLLM 53.43 52.71 38.19 52.96 46.68 25.26 17.40 40.95

3:4
SparseGPT 47.55 53.43 31.30 50.20 37.63 22.53 17.60 37.18
SparseLLM 51.13 52.35 38.51 55.96 49.24 24.83 21.40 41.92

OPT-30b

SparsityMethod BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 70.46 61.82 54.27 69.02 70.47 35.49 30.20 55.96

70%
SparseGPT 68.78 58.48 53.83 67.64 69.15 34.30 29.60 54.54
SparseLLM 69.11 61.73 53.97 68.43 69.78 34.73 29.80 55.36

80%
SparseGPT 64.86 60.65 49.73 61.40 61.91 31.74 24.20 50.64
SparseLLM 65.41 59.57 50.65 61.96 62.71 32.25 26.50 51.29

90%
SparseGPT 37.83 53.79 25.96 49.88 26.47 20.22 12.60 32.39
SparseLLM 43.55 52.35 26.32 50.04 27.31 20.56 14.00 33.45

3:4
SparseGPT 55.81 51.26 33.64 54.54 42.05 21.33 21.00 39.95
SparseLLM 60.83 54.15 39.35 55.41 45.24 24.06 22.20 43.03
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Table 4.5: Accuracy (%) of zero-shot tasks for LlaMA models; the higher the accuracy,
the better.

LlaMA-2 7b

SparsityMethod BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

70%
SparseGPT 68.26 57.04 39.67 59.04 60.9 28.58 20.60 47.73
SparseLLM 67.61 57.31 40.12 61.39 59.39 28.76 21.40 48.13

80%
SparseGPT 59.36 52.71 28.83 48.7 34.22 18.34 14.40 36.65
SparseLLM 60.12 53.07 28.62 50.59 34.55 18.69 14.30 37.13

90%
SparseGPT 39.02 52.34 26.66 47.80 28.32 17.37 12.40 31.99
SparseLLM 39.45 52.71 26.79 51.17 28.32 19.52 12.50 32.92

3:4
SparseGPT 53.94 54.15 28.09 49.17 31.57 17.41 14.80 35.59
SparseLLM 57.34 53.43 28.26 48.86 32.45 18.17 14.4 36.13

LlaMA-2 13b

SparsityMethod BoolQ RTE HellaSwag WinoGrandeARC-e ARC-c OBQA Mean

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

70%
SparseGPT 70.03 53.43 42.20 66.54 64.94 31.66 25.40 50.60
SparseLLM 69.87 54.15 42.50 68.64 64.97 31.40 25.80 51.05

80%
SparseGPT 62.69 52.71 28.94 50.91 36.24 18.17 14.00 37.67
SparseLLM 64.39 52.86 29.19 51.46 35.69 18.77 14.20 38.08

90%
SparseGPT 50.21 51.35 26.71 49.14 26.68 19.71 13.2 33.86
SparseLLM 55.35 52.05 26.89 51.34 27.35 19.62 14.20 35.26

3:4
SparseGPT 61.28 53.71 28.40 47.99 33.21 18.26 14.00 36.69
SparseLLM 61.71 55.71 28.56 51.62 32.11 18.49 13.8 37.43

4.2 Federated Pruning of Large Language Models

4.2.1 Introduction

Large Language Models (LLMs) such as GPT [106] and LlaMA [141] have recently

transformed the field of Natural Language Processing (NLP) due to their ability to

perform exceptionally well across a variety of complex language benchmarks. How-

ever, the increasing scale of these models, which can contain billions of parameters,

also brings significant computational and storage costs. The high memory and in-

ference costs make it challenging to deploy LLMs in real-world applications where

resources are constrained [8]. Consequently, there has been an increasing interest in

model compression techniques such as pruning, quantization, and knowledge distil-

lation, which aim to reduce the computational load while maintaining model per-
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formance [173]. Among these techniques, pruning has emerged as a highly effective

approach for reducing the size and complexity of LLMs by introducing sparsity into

the models.

Despite the recent success of LLM pruning methods, existing approaches predomi-

nantly assume that the calibration data used for pruning is publicly available [39, 133].

However, in many real-world scenarios, especially when dealing with sensitive appli-

cations like medical agents or financial systems, the data used for pruning might be

private and cannot be shared openly [119]. On the other hand, Federated Learning

(FL), a distributed machine learning technique that enables multiple clients to col-

laboratively train models without sharing their private data, has gained significant

popularity in traditional machine learning [165]. However, most works on LLMs in

FL settings have focused on fine-tuning. Due to the intrinsic differences between

fine-tuning and pruning, existing FL-based fine-tuning methods cannot handle the

problem of pruning LLMs with private data.

To address the challenges posed by pruning LLMs in federated settings, where

private data cannot be shared and heterogeneity exists among clients, we propose a

novel method called FedSpaLLM (Federated Sparse LLM). FedSpaLLM is the first

framework that allows pruning LLMs under a federated learning setting with resource

heterogeneity. Our method allows each client to prune its local model based on its

data while maintaining privacy and accommodating diverse computational resources.

Our contributions are summarized as follows:

• Federated pruning framework for LLMs: We present the first framework for

pruning LLMs in FL, allowing collaborative pruning with private local data.

• ℓ0-norm aggregation: We introduce a novel aggregation function that preserves

important weights by averaging only non-zero elements across client models.

• Adaptive mask expansion: We propose a mask expansion technique to meet

global sparsity targets while accounting for client-specific pruning.
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• Layer sampling: We develop a resource-aware layer sampling strategy, enabling

personalized pruning and reducing communication costs.

• Extensive evaluation: We conduct comprehensive experiments, showing that

FedSpaLLM improves both pruning efficiency and model performance in heteroge-

neous federated environments.

4.2.2 Related Work

Pruning of LLMs. Pruning regained prominence in the late 2010s for reducing

inference costs [44]. LLM pruning can be categorized into structured and unstructured

pruning.

Unstructured pruning removes individual parameters without regard to model

structure, often using thresholds to nullify smaller weights. SparseGPT [39] achieves

up to 60% parameter reduction in LLMs with minimal performance loss. Wanda [133]

introduces a pruning criterion based on both weight magnitude and activations, par-

ticularly effective in linear layers. DynaTran [142] dynamically prunes activations at

runtime, enhanced by a custom ASIC architecture.

Structured pruning removes groups of parameters such as filters or attention heads.

LLM-Pruner [91] combines first-order data and Hessian information for structured

pruning, while LoSparse [75] uses low-rank and sparse approximations to balance

pruning and model expressiveness. Structured pruning of hidden dimensions, as

shown by [137], extends to embeddings and attention heads. ZipLM [62] optimizes

structured compression for accuracy and hardware efficiency.

Federated Learning with LLMs. FL on LLMs has primarily focused on LLM

fine-tuning and has gained attention for enabling private and efficient model updates.

FedPrompt [167] introduces prompt-tuning in FL, reducing communication costs by

updating only soft prompts. Fang et al. [37] and Li et al. [78] leverage low-rank

adapters for parameter-efficient fine-tuning, improving training speed and accuracy.
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FedNLP [79] provides a benchmarking framework for evaluating FL methods on NLP

tasks. FedAdapter [21] uses adapters to accelerate model convergence in federated

settings. FeDeRA [156] employs singular value decomposition to further improve

LoRA-based fine-tuning efficiency. C2A [55] introduces a hypernetwork-based frame-

work for generating client-specific adapters to handle client heterogeneity. FedBPT

[132] enables efficient prompt-tuning with a gradient-free approach, reducing mem-

ory and communication costs. PrE-Text [49] generates differentially private synthetic

data to enable central training, reducing on-device computation.

Federated Pruning on DNNs. Model pruning in FL improves efficiency by reduc-

ing communication and computation costs. FedP3 [160] and HeteroFL [29] address

client model heterogeneity, enabling smaller, personalized models. FedTiny [50] and

PruneFL [53] implement progressive pruning to fit models within resource constraints.

FedPrune [102] improves performance by pruning global models based on client capa-

bilities, while Complement Sparsification [52] reduces communication overhead using

sparsity techniques. However, all the work above only applies to smaller DNNs, and

cannot trivially scale to massive LLMs.

Federated Distillation. In addition to model pruning, knowledge distillation (KD)

has been explored as a resource-efficient approach to training NNs in edge environ-

ments [73]. In this paradigm, a smaller proxy model is used to facilitate learning,

either by mimicking the behavior of a larger model or by aggregating knowledge

from multiple clients. For instance, FedBiOT [153] introduces a method for locally

fine-tuning LLMs without requiring full-model transmission, allowing clients to distill

and learn from a proxy model. Similarly, DaFKD [148], a domain-aware FL knowl-

edge distillation framework, incorporates domain-specific adaptations to improve the

generalization of models across heterogeneous clients.

Despite the merits of federated distillation, our proposed approach offers several

advantages. Proxy models and FL distillation methods require training additional
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models, increasing computational overhead. Additionally, they assume an accessible

public dataset for generating the soft labels, which usually does not hold in practice.

Our framework directly prunes the global LLM without auxiliary models and any

additional public data. It achieves target sparsity across heterogeneous clients while

maintaining privacy through local pruning and aggregation.

4.2.3 Preliminaries

Pruning of LLMs

In this work, we focus on unstructured pruning, [39, 133, 9] which typically utilizes

local pruning. Local pruning circumvents the memory issue mentioned above by

dividing the full model compression into sub-problems for each layer and constructing

a local loss to measure the ℓ2-error between the outputs of the uncompressed and

compressed layers. Hence, the local pruning can be formulated by:

minMℓ,Ŵℓ
∥Wℓ ·Xℓ − (Mℓ ⊙ Ŵℓ) ·Xℓ∥22, (4.14)

where ⊙ denotes element-wise multiplication. Although smaller than the global prun-

ing, the local pruning still needs to optimize both the mask Mℓ and the remaining

weights Ŵℓ and thus remains NP-hard. Therefore, exactly solving it for larger layers

is unrealistic, leading all existing methods to resort to approximations.

Mask Selection & Weight Reconstruction. A particularly popular approach

is to separate the problem into mask selection and weight reconstruction [51, 64].

Concretely, this means first choosing a pruning mask M according to some salient

criterion, like the weight magnitude [172], and then optimizing the remaining un-

pruned weights while keeping the mask unchanged. Importantly, once the mask is

fixed, Eq. 4.14 turns into a linear regression problem that can be easily optimized.



114

Background of Federated Learning

FL is a distributed machine learning paradigm designed to enable collaborative

training of a single global model without exchanging private data between clients [43].

In this setup, multiple clients, each with their own local dataset, train their local mod-

els independently. The central server coordinates the process by sending the global

model to a selected group of clients. These clients then perform local optimization

using their respective datasets. After local training, the updated models are sent back

to the server, where they are aggregated to update the global model.

In each communication round, the server aggregates the updates from multiple

clients to refine the global model. Mathematically, let Di denote the local dataset of

the i-th client, and θ represent the global model parameters. The process of updating

the global model is given by:

θ̃ ∈ arg min
∑K

i=1
αi · L(Di; θ), (4.15)

where L(Di; θ) is the local objective function computed over the dataset Di with the

model parameters θ. The factor αi is typically proportional to the size of client i’s

dataset, i.e., αi = |Di|∑
i |Di| , and K denotes the total number of participating clients.

There exist various methods for aggregating client updates, with FedAvg [97] being

the most widely adopted due to its simplicity and effectiveness in a wide range of FL

applications. This method aggregates the client updates weighted by their respective

dataset sizes, providing a robust way to train models in data-sensitive environments.

4.2.4 Proposed Method

In this section, we present FedSpaLLM, our novel framework for federated prun-

ing of large language models (LLMs). The proposed method is designed to address

the challenges of pruning in federated learning settings, specifically targeting com-
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Figure 4.3: Visualization of the proposed FedSpaLLM framework. Instead of trans-
mitting the full model at each communication round, the server samples a subset of
layers based on each client’s computational resources. Clients prune only the sam-
pled layers and retain the rest from their cached pre-trained dense model. After
local pruning, clients only send their pruned layers to the server, which aggregates
the pruned layers using a novel ℓ0-norm aggregation function that averages only the
non-zero parameters. This approach ensures that important weights are preserved
while reducing communication overhead. The layer sampling strategy enables per-
sonalized pruning tailored to client heterogeneity, reducing resource usage without
compromising overall model performance.

munication efficiency and system heterogeneity across clients. We first formulate the

problem of pruning LLMs in an FL setup and introduce a specialized aggregation

function based on the ℓ0-norm to handle sparse model updates. Next, we propose

an adaptive mask expansion technique to ensure that the global model meets the

target sparsity, even when clients generate diverse pruning masks. Finally, we intro-

duce a layer sampling strategy that allows clients to prune subsets of model layers

based on their computational resources, enabling personalized pruning and reducing

communication costs.

Figure 4.3 provides a visual overview of the FedSpaLLM framework, illustrating

how clients and the central server interact during the pruning process.
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Problem Formulation

We present the first formulation of pruning LLMs under the FL setting. In this

scenario, multiple clients collaboratively prune a global LLM while ensuring that

their local data remains private. Let Wg denote the global model parameters, where

Wg ∈ Rd, and each client i holds its own local dataset Di = {Xi, Yi} for training and

pruning purposes.

During pruning, each client applies a binary pruning mask, Mi ∈ {0, 1}d, to its lo-

cal model Wi. This mask determines which weights are retained (Mi = 1) and which

are pruned (Mi = 0). The objective is to prune the global model while ensuring that

the pruned models on each client still perform effectively on their respective local

datasets. Importantly, our formulation allows for model heterogeneity or personaliza-

tion, meaning that each client can have its own set of model parameters, Wi, which

differs from the global model, Wg. This flexibility contrasts with the traditional FL

setting, where all clients share the same global model.

The overall objective of federated pruning is to minimize the weighted sum of

local losses across clients. Each client i minimizes its local loss function Li based on

the pruned model Mi ⊙Wi. Formally, this can be written as:

min
W1,...,WN ,M1,...,MN

∑N

i=1
αi · Li(Mi ⊙Wi), (4.16)

subject to the global model Wg being an aggregation of the locally pruned models:

Wg = Ω
(
M1 ⊙W1, . . . ,MN ⊙WN

)
, (4.17)

where Ω denotes the aggregation function that combines the pruned models from all

clients to update the global model.

Our formulation is general and supports model heterogeneity, where each client
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Figure 4.4: Visualization of the proposed Aggregation Function of FedSpaLLM to
handle heterogeneous sparsified parameters. After clients prune their local models,
the server aggregates the pruned layers by using the ℓ0-norm aggregation function.
This method avoids diluting the effect of unpruned weights by excluding zeros from
the averaging process, thus preserving important parameters. To achieve the target
global sparsity, an adaptive mask expansion is applied: the server counts the number
of times each weight has been pruned across clients and uses this information to
expand the pruning mask. The mask expansion prioritizes pruning weights that are
most commonly pruned across clients, balancing individual client pruning decisions
with the global sparsity goal.

may have its own model parameters, Wi, as opposed to the vanilla FL setting sharing

a common global model. This flexibility is crucial for accommodating diverse client

environments, making our method applicable to a wide range of real-world federated

pruning scenarios.

Aggregation Function

ℓ0-norm Aggregator. In traditional FL, the model weights from different clients

are aggregated using a simple mean average or a similar function after each round of

local updates. However, in our case, the parameters are sparsified through pruning,

resulting in binary pruning masks. Due to the discrete nature of these masks, us-

ing a vanilla average function is not suitable. Specifically, when aggregating binary

masks, dividing by the total count of clients would incorrectly include zeros (pruned

positions) in the calculation, causing the averaged value to approach zero. This leads

to an undesirable convergence, where the model parameters tend to vanish as the
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denominator grows larger than it should be.

To address this, we propose an aggregation function based on the ℓ0-norm. In-

stead of averaging over all elements, we compute the average only over the non-zero

elements (i.e., weights that are retained across clients). Mathematically, given the

pruning masks M1,M2, . . . ,MN from N clients and the corresponding local weights

W1,W2, . . . ,WN , the aggregation is defined as:

Wg =

∑N
i=1Mi ⊙Wi∥∥∥∑N

i=1Mi

∥∥∥
ℓ0

. (4.18)

In this way, the aggregation only considers the non-zero elements, ensuring that the

resulting global weights do not tend toward zero unless they are truly pruned across

all clients. This method ensures the correct balance between sparsity and preserving

important weights in the global model.

Adaptive Aggregation w/. Mask Expansion. Another challenge arises from

the heterogeneity of data across clients. Even with the same target sparsity, different

clients may generate different pruning masks based on their local data. If we simply

averaged these masks, the result would be equivalent to taking the intersection of all

local masks. In other words, only the weights pruned by all clients would be pruned

in the global model. This leads to a situation where the global model’s sparsity is

always smaller than the target sparsity, as fewer weights are pruned overall.

To address this, we propose an mask expansion technique. The idea is to first

apply the ℓ0-norm aggregation described above and then expand the global pruning

mask to achieve the target sparsity. Specifically, after the initial aggregation, we count

the number of zeros (pruned positions) for each weight across clients. If the count

is below the target sparsity, we sort the remaining weights and select the ones with

the most agreement (i.e., those that are most commonly pruned) to prune further,

ensuring the final sparsity matches the desired level.
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Let Cj represent the number of zeros for the j-th weight across clients, where:

Cj =
∑N

i=1
I(M (j)

i = 0), (4.19)

where I(·) is the indicator function that returns 1 if M
(j)
i = 0 (the j-th weight is

pruned by client i) and 0 otherwise. After counting, we sort the weights based on

their Cj values and expand the pruning mask for weights that are not fully agreed

upon by all clients. To achieve the target sparsity s, we select the top-k weights from

the sorted list, where:

k = ceil(s · d)−
∑d

j=1
I(Cj = N), (4.20)

where d is the total number of weights and s is the target sparsity. The first term

ensures that the final mask achieves the desired sparsity, and the second term sub-

tracts the number of weights that are already pruned by all clients (i.e., those where

Cj = N).

By employing this sorting and expansion method, we ensure that the global prun-

ing mask adheres to the desired sparsity while reflecting the commonly agreed-upon

pruned positions, balancing individual client decisions and the global sparsity require-

ment.

Personalization with Layer Sampling

In FL for LLM pruning, communication overhead, and system heterogeneity are

key challenges. The pruning of LLMs is typically done in a local manner, where

the pruning of each decoder layer is independent, allowing for efficient and flexible

layer sampling. This independence enables us to design a novel sampling strategy

that maintains both efficiency and pruning accuracy while addressing the diverse

computational capacities of clients.
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Remark: Unlike traditional FL, where models are typically fine-tuned holistically,

pruning in LLMs allows each decoder layer to be pruned independently. We exploit

this property by sampling layers, significantly reducing communication costs without

compromising the overall pruning outcome.

Layer Sampling Strategy. In each communication round, the server randomly sam-

ples a subset of layers from the LLM for each client to prune. Let L = {l1, l2, . . . , lm}

denote the set of all layers in the LLM, where m is the total number of layers. For

each client i, the server selects a subset of layers Li ⊆ L to be pruned, where the

number of layers sampled, |Li| = ki, is proportional to the computational capacity of

client i, denoted as ri. Formally,

Li = Sample(L, ki), ki ∝ ri. (4.21)

Once client i receives the subset Li, it prunes the sampled layers while retaining

the original weights of the unsampled layers. Let Wg = {W1,W2, . . . ,Wm} represent

the global model weights, and Mi = {M1,M2, . . . ,Mm} represent the pruning masks

for client i. The locally pruned model W ′
i is updated as:

W ′
i =


Mj ⊙Wj, if j ∈ Li,

W dense
j , if j /∈ Li.

(4.22)

For unsampled layers j /∈ Li, we retain their original unpruned dense weights W dense
j .

This process ensures that communication costs are minimized, as we only need to

communicate the sampled layers Li, only a portion of the model, in each round.

Corollary 4.2.1 (Sparsity Guarantee). Let Sglobal denote the target global sparsity,

and let Si be the sparsity achieved by client i on its local model. If the layer sampling

strategy ensures that all layers L are sampled at least once across all clients in each

communication round, the aggregated global pruned model Ŵg will maintain the same
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sparsity as the target sparsity Sglobal. Since all clients share the same target sparsity,

and our ℓ0-norm aggregation guarantees that the aggregated layers have the exact

sparsity as the locally pruned layers, the sparsity of the global model will always equal

the desired target. Formally:

Sglobal = Si, ∀i, (4.23)

where N is the total number of clients. Thus, the sparsity of the global model is

consistent with the target across all communication rounds.

This corollary ensures that, with our sampling strategy, the global model will meet

the desired global sparsity after aggregation.

Theorem 4.2.2 (Unbiased Estimator). Let Ŵg denote the global model obtained by

aggregating pruned models after layer sampling, and W ∗
g be the global model obtained

if all layers were pruned at every client (without sampling). The model Ŵg is an

unbiased estimator of W ∗
g under the layer sampling strategy. Formally:

E[Ŵg] = W ∗
g . (4.24)

This holds as long as each layer has an equal probability of being selected across clients

during each communication round, ensuring that all layers are eventually represented

in the final aggregated model.

Theorem 1 ensures that the global model obtained by layer sampling converges

to the same result as if every client had pruned all layers. The key here is the

randomness of the layer selection process: over multiple communication rounds, the

expected contribution of each layer is preserved, resulting in an unbiased estimate

of the fully pruned model. This guarantees that our sampling strategy does not

introduce systematic errors and that, over time, the sampled model will mirror the

performance of the fully pruned model.
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OPT-125m

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 1.45e4 1.36e4 1.17e4 1.86e4 1.74e4 1.62e4 2.16e4 2.09e4 1.96e4 3.22e4 3.22e4 3.03e4
Standalone 37.87 57.38 33.78 62.09 93.14 49.38 237.07 296.61 158.54 1699.62 1907.27 759.18
FedSpaLLM 37.65 57.07 33.75 61.28 92.32 48.96 226.44 287.72 152.96 1414.77 1699.16 739.97

OPT-1.3b

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 1.90e4 1.92e4 1.75e4 1.77e4 1.73e4 1.67e4 2.14e4 2.23e4 2.01e4 3.00e4 3.10e4 2.97e4
Standalone 18.16 26.78 20.31 23.55 35.93 24.15 62.08 97.46 52.13 1814.44 1756.18 636.56
FedSpaLLM 18.09 26.52 20.13 22.70 34.05 23.72 54.87 82.99 48.05 1653.65 1564.86 598.83

LlaMA-2 7b

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 8.83e4 1.20e5 1.41e5 1.98e5 2.99e5 1.92e5 5.06e4 4.98e4 4.93e4 4.99e4 4.91e4 4.97e4
Standalone 7.13 185.18 9.47 10.71 1255.83 13.52 31.60 6582.79 34.17 124.59 8398.51 110.45
FedSpaLLM 6.71 88.15 9.03 9.02 300.35 11.94 20.14 1371.44 23.28 119.21 3382.99 98.87

Table 4.6: Average perplexity of the client models and perplexity of the global model
with 4 clients; the lower the perplexity, the better.

OPT-125m

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 1.24e4 1.12e4 9.93e3 1.65e4 1.52e4 1.40e4 2.11e4 2.04e4 1.86e4 3.29e4 3.31e4 3.15e4
Standalone 38.40 57.51 33.95 64.52 94.19 50.08 244.90 308.59 158.49 1655.23 1893.9 732.29
FedSpaLLM 38.01 56.66 33.65 63.00 91.50 49.10 217.54 274.06 147.58 1415.78 1611.45 665.36

OPT-1.3b

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 1.59e4 1.44e4 1.40e4 2.15e4 2.17e4 1.84e4 2.26e4 2.27e4 2.06e4 3.25e4 3.27e4 3.22e4
Standalone 18.51 27.18 20.29 23.99 36.53 24.54 68.70 108.93 56.28 2109.46 2134.22 733.80
FedSpaLLM 18.38 27.89 20.03 23.20 35.60 23.75 63.31 105.37 54.85 1979.77 1989.21 690.86

LlaMA-2 7b

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 2.62e5 1.14e5 2.92e5 6.57e4 6.11e4 6.58e4 6.15e4 6.25e4 6.17e4 4.57e4 4.76e4 4.78e4
Standalone 7.17 193.89 9.43 10.76 1126.63 13.45 30.77 8349.21 33.31 134.08 1.3e4 108.87
FedSpaLLM 6.70 73.67 8.97 9.09 175.98 12.03 21.18 1242.25 24.98 117.73 2819.17 96.44

Table 4.7: Average perplexity of the client models and perplexity of the global model
with 8 clients; the lower the perplexity, the better.

4.2.5 Experiments

Experiments Setup. We implement our FedSpaLLM in PyTorch [110] and use

the HuggingFace Transformers library [152] for handling models and datasets. All
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OPT-125m

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 1.22e4 1.14e4 9.96e3 1.66e4 1.56e4 1.45e4 2.47e4 2.35e4 2.24e4 3.20e4 3.23e4 2.95e4
Standalone 38.24 57.37 33.91 67.42 98.29 51.92 264.88 326.87 171.83 1624.46 1764.94 777.79
FedSpaLLM 38.00 56.90 33.62 66.41 97.92 51.84 240.18 304.17 167.30 1389.22 1454.49 700.84

OPT-1.3b

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 1.80e4 1.77e4 1.53e4 1.88e4 1.87e4 1.75e4 2.32e4 2.22e4 2.14e4 2.99e4 3.02e4 2.94e4
Standalone 18.99 27.48 20.76 25.01 37.87 25.49 82.24 138.91 65.53 2472.21 2475.89 873.45
FedSpaLLM 18.20 27.30 20.52 23.93 36.36 22.72 77.51 129.40 63.62 2327.93 2361.86 838.53

LlaMA-2 7b

Sparsity 50% 60% 70% 80%

Dataset WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4 WT-2 PTB C4

Random 1.76e5 2.79e5 2.19e5 8.30e4 7.96e4 7.92e4 9.73e4 2.54e5 1.13e5 5.20e4 4.89e4 4.89e4
Standalone 7.17 188.35 9.41 10.80 969.84 13.44 31.81 6671.71 33.20 137.21 7757.43 106.87
FedSpaLLM 6.75 70.79 9.04 9.33 178.15 12.45 25.09 702.03 27.27 115.91 1791.83 94.87

Table 4.8: Average perplexity of the client models and perplexity of the global model
with 16 clients; the lower the perplexity, the better.

pruning experiments are conducted on NVIDIA A100 GPUs. For each client, we

utilize SparseGPT [39] to perform pruning. For the calibration data, we follow [39]

and use 2048-token segments, randomly chosen from the first shard of the C4 [114]

dataset. This represents generic text data crawled from the internet and ensures that

our experiments remain zero-shot since no task-specific data is seen during pruning.

In addition, we consider a random pruning baseline in which the model is randomly

pruned to the target sparsity.

In particular, we perform experiments on the OPT model family [164] and LlaMA-

2 model family [141] with 4, 8, and 16 clients. We consider OPT-125m, OPT-1.3b,

and LlaMA-2 7b with unstructured sparsity of 50% to 80%. In each communication

round, each of the clients receives a copy of the same global model from the server

and each client is assumed to utilize 32 calibration samples to perform its own prun-

ing. By evaluating models of varying sizes alongside different number of clients, we

can gain a more comprehensive understanding of FedSpaLLM’s performances in its

scalability and robustness. In terms of metrics, we mainly focus on perplexity, which
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is known to be a challenging and stable metric that is well-suited for evaluating the

accuracy of compression methods [158, 27], and thus measuring the performances

of the compressed models. We consider the test sets of raw-WikiText2 [98] (WT-2)

and PTB [93] as well as a subset of the C4 validation data, which are all popular

benchmarks in LLM compression literature [158, 109, 39, 133].

Results and analyses

We present the perplexity results in Tables 4.6 to 4.8. In the tables, we re-

port the random pruning baseline, denoted by “Random”, the average perplexity

of the client models, denoted by “standalone”, and the global model, denoted by

“FedSpaLLM”. From the results, we see that random pruning results in perplexity

that are orders of magnitude higher than both standalone and FedSpaLLM. As the

model size increases, the performances of random pruning becomes even worse. This

suggests that random pruning may have pruned weights that are crucial for main-

taining model quality. Comparing standalone and FedSpaLLM, we see that across

the models, datasets, and sparsity levels, FedSpaLLM consistently outperforms stan-

dalone in achieving lower perplexity. In general, as the target sparsity increases, we

see more noticeable improvements in the perplexity of the global model over the client

models. This is expected because as the sparsity increases, more information is re-

quired to accurately prune the model weights to maintain the model performances.

In essence, each of the client models is pruned with the private calibration samples of

each client while the global model benefits from the collaborative information from

the communicated weights from the clients. As a result, the global model is effectively

utilizing a signicantly larger calibration sample set, even though such a centralized

calibration sample set is prohibited in FL setting as the client’s calibration samples

are private. Notably, FedSpaLLM achieves substantially lower perplexity compared

to standalone in higher sparsity levels, highlighting the benefits of FedSpaLLM where
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the clients collaboratively contribute to the global model with much better perfor-

mances while the privacy of their own data is well maintained. Furthermore, we can

see the improvements in the perplexity of the global model over the client models

are particularly significant for the LlaMA-2 model family and the PTB dataset. We

observe that, in the case of LlaMA-2 7b, the client models generally struggle with

the PTB dataset from sparsity 60% and beyond, regardless of the number of clients.

In many of those cases, the global model achieves up to 5 times better perplexity

values. This demonstrates the effectiveness of FL in the pruning tasks. In addition,

we do not observe there is noticeable trend in perplexity values with varying number

of clients and the perplexity values of the global models are comparable regardless of

the number of clients participating in FL, when the sparsity level is small.
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Chapter 5

Conclusion

5.1 Summary of Research Contributions

This dissertation advances the field of functional-space-guided learning, offering

solutions to critical challenges in efficiency, generalization, and scalability for modern

machine learning systems. By leveraging insights from functional space, my research

has proposed innovative methodologies spanning multi-task learning, continual learn-

ing, domain adaptation, and model pruning. This section summarizes the completed

works of mine.

Saliency-Regularized Deep Multi-Task Learning (SRDML). Multi-task learn-

ing (MTL) provides an effective framework for transferring knowledge across related

tasks, yet existing methods often struggle with balancing task-specific and shared

representations. SRDML addresses this by employing saliency-based regularization

to align functional-space representations. This approach ensures task coherence while

preserving individuality, enabling improved generalization and interpretability. The-

oretical analyses validate the framework’s ability to minimize generalization error,

while experiments on synthetic and real-world datasets demonstrate its efficacy over

traditional MTL methods.
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Saliency-Augmented Memory Completion (SAMC). Continual learning sys-

tems often face catastrophic forgetting, where knowledge of earlier tasks is lost as new

ones are learned. SAMC introduces a biologically inspired framework that prioritizes

task-relevant saliency regions for episodic memory storage. The model employs an

adaptive inpainting mechanism to reconstruct missing information during training,

enhancing memory efficiency and task retention. Extensive experiments on bench-

mark datasets showcase SAMC’s superior performance in mitigating forgetting while

maintaining scalability.

Drift-Aware Dynamic Neural Networks (DRAIN). In dynamic environments,

temporal domain shifts pose significant challenges to machine learning models. DRAIN

bridges parameter and functional spaces through dynamic adjustment mechanisms,

allowing models to adapt to temporal concept drift effectively. This approach employs

drift-aware optimization strategies to maintain robust performance across unseen tem-

poral domains. DRAIN’s ability to generalize to future domains has been validated

through rigorous experimentation on real-world datasets, offering a robust solution

for time-sensitive applications.

SparseLLM: Global Pruning for Pre-Trained Language Models. The increas-

ing size of pre-trained language models (LLMs) presents substantial computational

and memory challenges. SparseLLM introduces a globally optimized pruning strategy

that reduces redundancy in LLMs while maintaining task performance. By leveraging

functional-space optimization, the framework decomposes pruning into manageable

subproblems, ensuring fast convergence and scalability. Experiments on models such

as OPT and LLaMA demonstrate the effectiveness of SparseLLM in achieving high

sparsity levels with minimal performance degradation, making it a key contribution

to resource-efficient AI.

FedSpaLLM: Federated Pruning of Large Language Models. FedSpaLLM

presents a federated sparse language model pruning framework that extends SparseLLM
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to address data heterogeneity and resource constraints in FL. It introduces a sparsity-

aware aggregation method to integrate heterogeneous client pruning masks, applies

structured pruning and gradient compression for improved efficiency, and establishes

theoretical guarantees for global sparsity and convergence.

Prompt-Based Domain Discrimination (POND). Adapting models to diverse

domains, particularly in time-series data, remains a challenging problem. POND

proposes a prompt-tuning approach for multi-source domain adaptation, leveraging

functional-space representations to capture domain-specific and invariant features.

The method incorporates saliency-guided alignment and domain discrimination loss

to enhance fidelity and distinction. POND has achieved state-of-the-art performance

on benchmark datasets, establishing itself as a powerful tool for domain adaptation

in real-world applications.

5.2 Future Work

5.2.1 Time-aware future generalization with foundation mod-

els by function-space modeling

One promising direction is to explore time-aware generalization using foundation

models through the lens of function-space modeling. In many real-world scenarios,

data distributions evolve over time due to concept drift, seasonality, or long-term

shifts. Modeling such temporal dynamics in function space enables us to learn rep-

resentations that are invariant or adaptable to time-specific patterns. By leveraging

large pre-trained foundation models and fine-tuning them in function space, we can

better capture temporal dependencies and develop models that generalize across fu-

ture time periods with improved robustness and interpretability.

This approach also opens new avenues for continual learning, where time is treated
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as a fundamental axis along which tasks arrive and evolve. By embedding time-aware

priors or temporal regularization in the function space, we can prevent catastrophic

forgetting while promoting forward transfer to unseen future domains.

5.2.2 Extending LLM global pruning to structured pruning

/ MoE pruning

While existing work such as SparseLLM focuses on unstructured global pruning

for LLMs, a natural extension is to incorporate structured pruning methods, includ-

ing block-wise, channel-wise, or layer-wise pruning. Structured sparsity not only

improves hardware efficiency during inference but also makes the pruning process

more interpretable and manageable. Integrating such structured constraints into the

global pruning pipeline in functional space can provide theoretical and empirical gains

in performance and deployability.

Another compelling direction is to extend the pruning framework to Mixture-

of-Experts (MoE) models. MoE architectures are inherently sparse and modular,

but managing expert activation across clients in federated or distributed settings

remains challenging. By pruning experts in function space based on their functional

contribution to task performance, it is possible to reduce memory and compute costs

while preserving the benefits of model specialization. This could also facilitate better

routing mechanisms and more scalable expert deployment.

5.2.3 Function-aware evaluations of deep learning models

Traditional evaluation metrics such as accuracy or loss provide limited insight

into the underlying functional behavior of models. A future direction is to develop

evaluation frameworks that are explicitly aware of the model’s function space. For

instance, we can measure how sensitive a model’s output function is to perturbations
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in the input space, or analyze the smoothness, curvature, and generalizability of the

function approximated by the network.

These function-aware evaluations can help identify overfitting, detect spurious

correlations, or assess model robustness in a principled way. They can also be used

to guide training, regularization, and model selection — providing a more holistic

understanding of what the model has learned beyond simple predictive performance.

These future directions build upon the principles established in this dissertation

while addressing critical gaps in current methodologies. Their exploration will con-

tribute to scalable, resource-efficient, and generalizable AI systems, aligning with the

broader vision of deploying AI in diverse and dynamic environments.

5.3 Publications

The research conducted during my doctoral studies has resulted in several pub-

lications across top-tier conferences and journals. This section lists the publications

grouped by category, including published works and preprints under review.

5.3.1 Published Work

• FedSpaLLM: Federated Pruning of Large Language Models

Guangji Bai, Yijiang Li, Zilinghan Li, Liang Zhao, Kibaek Kim. NAACL main

2025.

• Staleness-Alleviated Distributed GNN Training via Online Dynamic-

Embedding Prediction

Guangji Bai, Ziyang Yu, Zheng Chai, Yue Cheng, Liang Zhao. SDM 2025.

• SparseLLM : Towards Global Pruning for Pre-trained Language Mod-

els
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Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, Liang Zhao. NeurIPS 2024.

• Prompt-based Domain Discrimination for Multi-source Time Series

Domain Adaptation

Junxiang Wang*, Guangji Bai*, Wei Cheng, Zhengzhang Chen, Liang Zhao,

Haifeng Chen. KDD 2024.

• Continuous Temporal Domain Generalization

Zekun Cai, Guangji Bai, Renhe Jiang, Xuan Song, Liang Zhao. NeurIPS 2024.

• Temporal Domain Generalization with Drift-Aware Dynamic Neural

Networks

Guangji Bai*, Chen Ling*, Liang Zhao. ICLR 2023 (Oral, top 1%).

• Saliency-Augmented Memory Completion for Continual Learning

Guangji Bai, Chen Ling, Yuyang Gao, Liang Zhao. SDM 2023.

• Sign-Regularized Multi-task Learning

Guangji Bai, Johnny Torres, Junxiang Wang, Liang Zhao, Cristina Abad, Car-

men Vaca. SDM 2023.

• Saliency-Regularized Deep Multi-Task Learning

Guangji Bai, Liang Zhao. KDD 2022.

5.3.2 Preprints and Under Review

• Beyond Efficiency: A Systematic Survey of Resource-Efficient Large

Language Models

Guangji Bai et al., Under review at CSUR.

• Saliency-Guided Hidden Associative Replay for Continual Learning

Guangji Bai, Qilong Zhao, Xiaoyang Jiang, Yifei Zhang, Liang Zhao. AMHN@NeurIPS

2023.
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• Distributed Graph Neural Network Training with Periodic Historical

Embedding Synchronization

Zheng Chai*, Guangji Bai*, Liang Zhao, Yue Cheng. Preprint.

5.3.3 Collaborative Work

• Quantifying Uncertainty in Graph Neural Network Explanations

Junji Jiang, Chen Ling, Hongyi Li, Guangji Bai, Xujiang Zhao, Liang Zhao.

Frontiers in Big Data, 2024.

• Estimation of Daily PM2.5 Concentration Using a Geographically

Weighted Neural Network

Yun Li, Guangji Bai, Dazhou Yu, Liang Zhao. AGU23, 2023.

• Res: A Robust Framework for Guiding Visual Explanation

Yuyang Gao, Tong Steven Sun, Guangji Bai, Siyi Gu, Sungsoo Ray Hong, Liang

Zhao. KDD 2022.

Remark: * denotes co-first author with equal contribution.
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Appendix A

Theory Proof of SRDML

In this section, we provide the formal proof for all the theories presented in

Saliency-regularized Deep Multi-task Learning paper.

A.1 Proof of Theorem 2.1.1

Proof. Suppose X ⊆ RK is an open set and f1, f2 : X → R, where both functions are

differentiable and equal to zero at the origin.

”=⇒”: This direction is obvious, since two exactly the same functions will have the

same gradient at any input point.

”⇐=”: Given ∇f1(x) = ∇f2(x), we know that

∂f1/∂xk = ∂f2/∂xk, k = 1, 2, · · · , K, ∀ x ∈ X (A.1)

For arbitrary k, by ∂f1/∂xk = ∂f2/∂xk, we know that

∃ ck(x1, · · · , xk−1, xk+1, · · · , xK), s.t., f1 = f2 + ck (A.2)

Meanwhile, notice ∀ l ̸= k, ∂ck/∂xl = 0 (otherwise, contradiction!) Hence, dck = 0
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and we know ck is a constant. Also, the value of ck does not depend on k since for all

k, l, we have f1 − f2 = ck = cl, thus there exists a constant c such that f1 = f2 + c.

Finally, by the boundary condition that f1(0) = f2(0) = 0, we know that c = 0, i.e.,

f1 = f2, which finishes the proof.

A.2 Proof of Theorem 2.1.5

In this section, we provide the proof of our model’s generalization error bound.

First, we introduce some definitions and lemmas that will be continuously used, and

at the end of this section, we present the proof for Theorem 2.1.5.

In general, we will use γ to denote a generic vector of i.i.d. standard normal

variables, whose dimension will be clear in context. In addition, without further

specification, we will use K, T , n to denote the (flattened) dimension of the output

space from the feature extraction function h, the number of tasks, and the number

of training samples, respectively. We denote the representation class for task-specific

function f and representation extraction function h as F and H, respectively. Two

hypothesis classes here can be very general, and the only assumption here is that

∀f ∈ F , f has a Lipschitz constant at most L, for any positive L.

Definition A.2.1. Given a set V ⊆ Rn, define the Gaussian average of V as

G(V ) := E sup
v∈V
⟨γ, v⟩ = E sup

v∈V

n∑
i=1

γivi (A.3)

As mentioned in section 3.1 in the main paper, we denote the feature represen-

tation learning part as function h ∈ H. As we will see later, the complexity of the

representation class H is important in our proof for the error bound, so we define a

measure of its complexity by the Gaussian average.

Definition A.2.2. Given observed input data X ∈ X Tn, define a random set H(X) ⊆
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RKTn by

H(X) :=
{

(hk(xt
i)) : h ∈ H

}
. (A.4)

The Gaussian average over H(X) can be defined accordingly as

G(H(X)) = E[sup
h∈H

K,T,n∑
kti

γktihk(xti)|xti] (A.5)

The following lemmas will be useful in our later proof, and we will introduce them

here in advance.

Lemma A.2.3. ∀ A,C ∈ Rm×n and B ∈ Rm×m,

tr(A⊺BC) =
m∑
i,j

Bij

n∑
k=1

AikCjk. (A.6)

Lemma A.2.4. Suppose X ⊆ RK is an open set, and two differentiable functions

f1, f2 : X → R. ∀x ∈ X , if

∃ B > 0, s.t ∥∇f1(x)−∇f2(x)∥ < B (A.7)

then

lim
∆x→0

∣∣∣∣f1(x+ ∆x)− f1(x)

∥∆x∥
− f2(x+ ∆x)− f2(x)

∥∆x∥

∣∣∣∣ < B. (A.8)

Now we begin to prove our Theorem 2.1.5.

Proof. We start our proof from the generalization error bound for multi-task learning

in Maurer et al. [95], which also considers the shared representation learning part but

without the regularization on task-specific part.

Step 1

By Theorem 9 from Maurer et al. [95], ∀δ ≥ 0, with probability at least 1− δ in
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the samples Z = (X,Y), for all h ∈ H and f = (f1, · · · , fT ) ∈ Fϵ, we have that

E(h, f1, · · · , fT )− 1

T

T∑
t=1

1

n

n∑
i=1

L(ft(h(xi)),y
(t)
i ) ≤

√
2π

nT
G(S) +

√
9 ln (2/δ)

2nT
, (A.9)

where S = {(L(ft(h(xi)),y
(t)
i )) : f ∈ Fϵ, h ∈ H} ⊆ RTn. By our assumption over the

Lipschitz of the loss function L and Corollary 11 from [95], we have G(S) ≤ G(S ′),

where S ′ = {(ft(h(xi),y
(t)
i )) : f ∈ Fϵ, h ∈ H} ⊆ RTn.

By Theorem 12 from Maurer et al. [95], for universal constant c′1 and c′2,

G(S ′) ≤ c′1L(Fϵ)G(H(X)) + c′2D(H(X))Q(Fϵ) + min
v∈V

G(F(v)), (A.10)

where L(Fϵ) is the Lipschitz of function class Fϵ, D(H(X)) is the diameter of set

H(X), and

Q(Fϵ) = sup
y ̸=y′

Eγ sup
f∈Fϵ

⟨γ, f(y)− f(y′)⟩
∥y − y′∥

. (A.11)

For each term except Q(Fϵ) in the right hand side of (A.10), it can be upper-

bounded or replaced by another term as shown in Theorem 13 of Maurer et al. [95],

and we simply follow their proof for those terms. The main difference or the main con-

tribution of our theoretical analysis comes from bounding the term Q(Fϵ), which you

will see later connects our regularization and the generalization error bound. Hence,

for the rest of proof we will show how to bound Q(Fϵ) and bridge our regularizer with

the error bound.

Step 2

Given multi-sample y,y′ ∈ RKTn, where y ̸= y′, y = (yti) with yti ∈ RK , define

Q̂(Fϵ) := Eγ sup
(f1,f2,··· ,fT )∈Fϵ

T,n∑
t,i

γti ·
ft(yti)− ft(y′ti)
∥yti − y′ti∥

. (A.12)

Also, define two matrices Γ and ∆ as Γ = (γti) and ∆ = ((ft(yti)−ft(y′ti))/ ∥yti − y′ti∥),
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where Γ,∆ ∈ RT×n.

We first apply Cauchy-Schwarz Inequality as follows:

Eγ sup
(f1,f2,··· ,fT )∈Fϵ

T,n∑
t,i

γti ·
ft(yti)− ft(y′ti)
∥yti − y′ti∥

=Eγ sup
(f1,··· ,fT )∈Fϵ

⟨vec(Γ), vec(∆)⟩

=Eγ sup
(f1,··· ,fT )∈Fϵ

tr(Γ⊺ ·∆) (Lemma Theorem A.2.3)

=Eγ sup
(f1,··· ,fT )∈Fϵ

tr(Γ⊺ · A−1/2A1/2 ·∆)

=Eγ sup
(f1,··· ,fT )∈Fϵ

⟨vec(Γ⊺ · A−1/2), vec(A1/2 ·∆)⟩

≤Eγ sup
(f1,··· ,fT )∈Fϵ

∥∥Γ⊺ · A−1/2
∥∥
2
·
∥∥A1/2 ·∆

∥∥
2

(Cauchy-Schwartz Inequality)

= sup
(f1,··· ,fT )∈Fϵ

∥∥A1/2 ·∆
∥∥
2
· Eγ

∥∥Γ⊺ · A−1/2
∥∥
2
,

(A.13)

where A is any symmetric positive definite matrix with corresponding size. From the

second line to the third line we utilize our Lemma Theorem A.2.3 with B equal to

identity, A is Γ and C is ∆. The ℓ2-norm here is basically same as the standard vector

norm, i.e., the squared root of the summation over the square of each element within

the matrix. We omit the vectorization operator inside the norm for simpler and more

compact notation.

By doing so, we separate the random part and ”sup” part in Q̂(Fϵ) and our goal

now is to bound them respectively.

Step 2.a
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Using Jensen’s Inequality, we can bound the random part:

{Eγ

∥∥Γ⊺ · A−1/2
∥∥
2
}2

≤ Eγ[
∥∥Γ⊺ · A−1/2

∥∥2

2
] (Jensen’s Inequality)

= Eγ[⟨vec(Γ⊺ · A−1/2), vec(Γ⊺ · A−1/2)⟩]

= Eγ[tr((Γ⊺ · A−1/2)(Γ⊺ · A−1/2)⊺)]

= Eγ[tr(Γ⊺A−1Γ)] (A’s symmetry)

=
T∑

p=1

T∑
q=1

A−1
pq

n∑
i=1

E[γpi · γqi] (Lemma Theorem A.2.3)

=
T∑
t=1

A−1
tt

n∑
i=1

E{[γti]2} (γ is i.i.d N (0, 1)).

= n · tr(A−1).

(A.14)

Step 2.b

It is a little bit trickier to bound the ”sup” part. Notice the regularization term

in (2.3) is actually a special case of graph regularization or laplacian regularization

(Evgeniou et al. [36], Maurer [94]). The basic idea of our regularizer is to enforce the

distance between similar tasks’ input gradient to be small. More specifically, given

y ∈ RKn and replace the dist() in (2.3) with standard ℓ2-norm, we have

1

2

T∑
p,q=1

ωpq ∥∇fp(y)−∇fq(y)∥2 =
T∑

p,q=1

Lpq · ⟨∇fp(y),∇fq(y)⟩, (A.15)

where L is the Laplacian matrix of the graph with T vertices and edge-weights {ω}

(each weight is between 0 and 1) as given value, and∇ft(y) = (∇ft(y1)⊺,∇ft(y2)⊺, · · · ,

∇ft(yn)⊺)⊺ is the concatenated vector of function ft’s input gradient at each sample

yi ∈ RK .



139

We slightly modify the form in (A.15) by adding an identity matrix, i.e.,

1

2

T∑
p,q=1

ωpq ∥∇fp(y)−∇fq(y)∥2 + η

T∑
p=1

∥∇fp(y)∥2 =
T∑

p,q=1

(L + ηI)pq · ⟨∇fp(y),∇fq(y)⟩,

(A.16)

where η > 0 is any positive real number and I is the identity matrix. The correctness

of (A.15) and (A.16) can be validated by following section 3 in Maurer [94].

Recall the definition of Fϵ in (2.5). ∀ (f1, f2, · · · , fT ) ∈ Fϵ we have

1

2

T∑
p,q=1

∥∇fp(y)−∇fq(y)∥2 =
∑
p ̸=q

∥∇fp(y)−∇fq(y)∥2 ≤ α. (A.17)

Since {ω} are between 0 and 1, there exists positive value B that satisfies

T∑
p,q=1

ωpq ∥∇fp(y)−∇fq(y)∥2 ≤ B2 (A.18)

By Lemma Theorem A.2.4, we know that as y′ → y,

T∑
p,q=1

ωpq ·
∥∥∥∥fp(y)− fp(y′)
∥y − y′∥

− fq(y)− fq(y′)
∥y − y′∥

∥∥∥∥2

≤ B2 (A.19)

Replace the gradient by differential in (A.16), the equation still holds, i.e.,
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1

2

T∑
p,q=1

ωpq

∥∥∥∥fp(y)− fp(y′)
∥y − y′∥

− fq(y)− fq(y′)
∥y − y′∥

∥∥∥∥2

+ η
T∑

p=1

∥∥∥∥fp(y)− fp(y′)
∥y − y′∥

∥∥∥∥2

=
T∑

p,q=1

(L + ηI)pq · ⟨
fp(y)− fp(y′)
∥y − y′∥

,
fq(y)− fq(y′)
∥y − y′∥

⟩

=tr(∆⊺ · (L + ηI) ·∆) (Lemma Theorem A.2.3)

=
∥∥∆⊺ · (L + ηI)1/2

∥∥2

2

=
∥∥(L + ηI)1/2 ·∆

∥∥2

2
(Symmetry of L + ηI)

(A.20)

The second last equation can be derived by following (A.14) inversely. Just clarify

a slight difference in notation, where in (A.13) we use y but in (A.20) we use y without

bold. In section 3.1 of our main paper, we already assume the input feature is shared

cross different tasks, which corresponds to the definition of y (the last sentence before

(A.15)), and this is a special case of y. Hence, this difference in notation has no

influence on our proof.

The result in (A.20) indicates that by setting A = L+ ηI, we can potentially link

our regularization as in (A.15) and the ”sup” part in (A.13). The remaining proof

will show this formally.

By controlling the level of η, we want to let the first term in the first line of (A.20)

dominate. Since we assume the Lipschitz of function class F , we know that ∀t,

∥ft(y)− ft(y′)∥2 ≤ L2 ·
n∑

i=1

∥yi − y′i∥
2

= L2 · ∥y − y′∥2 . (A.21)

Hence, for the second term (without η) in the first line of (A.20) it can be upper-

bounded by T ·L2. We set η = B2/(2TL2), and the second term (with η) is no larger

than B2/2. Combining with (A.19) and notice the 1
2

before the first term in the first

line of (A.20), we have
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∥∥(L + ηI)1/2 ·∆
∥∥2

2
≤ B2. (A.22)

By plugging (A.14) and (A.22) into the last equation of (A.13), and notice these

two conclusions hold for arbitrary f ∈ Fϵ, we have

Q̂(Fϵ) = sup
f∈Fϵ

∥∥A1/2 ·∆
∥∥
2
· Eγ

∥∥ Γ⊺ · A−1/2
∥∥
2

≤ B ·
√
n · tr((L + ηI)−1)

= B
√
n ·

√√√√ T∑
i=2

1

λi + η
+

1

η

≤ B
√
n ·

√
T

λmin

+
1

η

≤ cηB
√
n ·

√
T

λmin

,

(A.23)

where λ2, λ3, · · · , λT are the non-zero eigenvalues of L in ascending order, with λ1 = 0

having multiplicity 1 that we used connectivity of the graph (Maurer [94] section 3),

and λmin corresponds to the minimal non-zero eigenvalue of L, i.e. λ2 here. cη is a

positive constant determined by η.

Step 3

Finally, notice (A.23) holds for arbitrary sample y and y′, we have

Q(Fϵ) = sup
y ̸=y′

Q̂(Fϵ) ≤ cηB
√
n ·

√
T

λmin

(A.24)

Substitute Q(Fϵ) by (A.24) (let cη be absorbed into universal constant c2) and

plug it into (A.10), then put everything in (A.10) back to (A.9) will give the result

of Theorem 2.1.5.
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A.3 Proof of Section 4.2

Natural generalization of shallow MTL

Proof. Basically, when the feature extraction function h is identity function and each

task-specific function ft, t = 1, 2, · · · , T are linear functions, we know for any input

x ∈ X ,

h(x) = x, ∇ft(x) = wt, ∀t (A.25)

where wt is the model parameter of linear model ft. Hence, denoteW = [w1;w2; · · · ;wT ]

and take the dist() function in Eq. 2.3 to be inner product, by Lemma A.2.3 we have

∑
i,j
ωij · dist(∇fi(x),∇fj(x)) =

∑
i,j
ωij · ⟨wi, wj⟩

= tr(W ⊺ΩW )

(A.26)

where Ω = (ωij). Let Ω to be either Θ−1 or Σ−1 as in section 4.2 can finish the proof.

Relation with deep MTL

Proof. First, we define two hyperparameters:

• λ: The coefficient of our regularizer in SRDML

• ℓ: The index of the layer before which the model is shared cross different tasks.

Case 1. If λ = 0 and 1 < ℓ < L, where L (please differentiate this L with that for

Lipschitz constant) denotes the total number of layers, our SRDML has no regular-

ization and is simply equivalent to hard-parameter sharing.

Case 2. If λ > 0 and ℓ = 1, each layer in our SRDML is separate for different tasks

and the regularization is posed on all the layers, which is equivalent to soft-parameter

sharing.
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Appendix B

Theory Proof of SAMC

In this section, we provide the formal proof of the theories presented in the paper

of Saliency-Augmented Memory Completion of Continual Learning.

Proof of Lemma 2.2.2

Proof. Denote θ = θ(t−1) − α · g, where step size α > 0, θt−1 is the state of model

parameter of fθ after task t− 1.

By Taylor Expansion of ℓ(fθ,M̃k) at θ(t−1),

ℓ(fθ,M̃k) = ℓ(fθ(t−1) ,M̃k) +

〈
∂

∂θ

∣∣∣∣
θ(t−1)

ℓ(fθ,M̃k), θ − θ(t−1)

〉
+O(∥θ − θ(t−1)∥2)

(B.1)

where we expand the loss function up to the first-order, and the last term on right-

hand side is the residual.

By some simple manipulation, we can get:



145

ℓ(fθ,M̃k)− ℓ(fθ(t−1) ,M̃k) =

〈
∂

∂θ

∣∣∣∣
θ(t−1)

ℓ(fθ,M̃k), θ − θ(t−1)

〉
+O(∥θ − θ(t−1)∥2)

= −α · ⟨g, g̃k⟩+O(∥θ − θ(t−1)∥2).

(B.2)

If we let α→ 0+, which means setting α to approach zero from the positive side,

the residual will shrink to zero quickly. Hence, we have:

ℓ(fθ,M̃k)− ℓ(fθ(t−1) ,M̃k) ≈ −α · ⟨g, g̃k⟩. (B.3)

Proof of Lemma 2.2.3

Proof. Given input x ∈ Rd and saliency map M ∈ Rd, we generate x̃ by:

• Drop any xi such that Mi < µ, i = 1, 2, · · · , d.

• Inpaint each element of xi if it is dropped in step 1.

• Copy each element of xi if it is not dropped in step 1.

• Combine step 2 and step 3 gives x̃.

Hence, we can find that

∥x− x̃∥22 =
d∑

i=1

(xi − x̃i)2 = (
∑

i∈dropped

+
∑
i∈kept

)(xi − x̃i)2 =
∑

i∈dropped

(xi − x̃i)2 (B.4)
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As a result,

err(x, x̃) := |ycx − ycx̃|

= |f c
θ (x)− f c

θ (x̃)|

≈ |⟨ ∂
∂θ
f c
θ (x), x̃− x⟩| (Taylor Expansion of f c

θ at x)

≤ ∥ ∂
∂θ
f c
θ (x)∥ · ∥x̃− x∥ (Cauchy-Schwartz Inequality)

≤ µ ·∆x ·
√
d

(B.5)

The last inequality holds since ∂
∂θ
f c
θ (x) is essentially the saliency of prediction f c

θ

and is bounded by µ for each dropped position i. On the other hand, ∥x̃−x∥ is upper

bounded by the following Eq. (B.4) and the definition of ∆x.

Now we present the proof of Theorem 2.2.4.

Proof of Theorem 2.2.4

Proof. First, notice that ⟨g, gk⟩ = ⟨g, gk + g̃k − g̃k⟩ = ⟨g, gk − g̃k⟩ + ⟨g, g̃k⟩. Since

⟨g, g̃k⟩ > 0 by our assumption, it suffices to show

∀ ϵ > 0, we can find appropriate x̃, s.t. |⟨g, gk − g̃k⟩| < ϵ (B.6)

By Cauchy-Schwarz Inequality,

|⟨g, gk − g̃k⟩| ≤ ∥g∥ · ∥gk − g̃k∥ (B.7)

By Lipschitz smoothness on ℓ, we have ∥g∥ ≤ L. In addition, by Lemma 2 and

Lipschitz continuity of ∂ℓ/∂θ, we have ∥gk − g̃k∥ ≤ Lθ · µ · ∆x ·
√
d. Hence, given

ϵ > 0, we can always find small enough µ and ∆x such that |⟨g, gk − g̃k⟩| < ϵ.
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Appendix C

Theory Proof of DRAIN

In this chapter, we provide the formal proof of theorems in the work of DRAIN.

C.1 Proof for Theorem 3.1.4

Proof. By definition of the predictive distribution,

P (ŷ|xT+1,D1:T ) =

∫
P (ŷ|xT+1, ωT+1)P (ωT+1|D1:T )dωT+1

=

∫
P (ŷ|xT+1, ωT+1)P (ωT+1|ω1:T )P (ω1:T |D1:T )dω1:T+1

(C.1)

Our goal is to prove that the variance of this predictive distribution for our pro-

posed method, online baseline, and offline baseline follows the inequality as in Theo-

rem 3.1.4.

Ours v.s. Online Baseline

Here we prove that Var(Mours) < Var(Mon).

Notice that the first term on the right hand side of Eq. C.1, namely P (ŷ|xT+1, ωT+1),

corresponds to deployment of the model with parameter ωT+1 on the future domain

DT+1, hence the variance of P (ŷ|xT+1, ωT+1) only depends on the noise or randomness

coming from xT+1 as long as ωT+1 is given. In other words, the uncertainty coming
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from P (ŷ|xT+1, ωT+1) can be cancelled for both methods since we are considering the

same set of domains. Now the problem reduces to proving that the variance of the

second and third terms on the right-hand side of Eq. C.1 for our model is smaller

than those for the online baseline.

Notice that

P (ω1:T |D1:T )

=

∫
Θ

P (ω1|D1) · P (ω2|ω1,D2, θ0) · P (θ1|ω1, ω2, θ0) · P (ω3|ω2,D3, θ1) · P (θ2|ω2, ω3, θ1)

· · ·P (ωT |ωT−1,DT , θT−2) · P (θT−1|ωT−1, ωT , θT−2)dθ0:T−1,

(C.2)

where θ is the parameter of the parameterized function to approximate the ground-

truth drift of ω, as defined in Assumption 3.1.2. For example, P (ω1|D1) denotes

that we train the model on the very first domain and P (ω2|ω1,D2, θ0) denotes that

we continue to train the model on the second domain but with initialization of ω2 as

qθ0(ω1) where ω1 is learned from the previous domain and qθ0 is trying to capture the

conditional probability or drift between ω2 and ω1, i.e., P (ω2|ω1). In our Bayesian

framework, we treat qθ as a learnable function (e.g., LSTM unit in our proposed

method) and we use the subscript of θ to differentiate the status of θ after the training

on each domain. In other words, qθ will be updated after the training on each domain

(at least for our method). Notice that θ0 always denotes the parameter initialization

as in Assumption 3.1.2.

By Bayes’ rule, we have:

P (ωt+1|ωt,Dt+1, θt−1) ∝ P (qθt−1(ωt))︸ ︷︷ ︸
prior on ωt+1

·P (Dt+1|ωt+1)︸ ︷︷ ︸
likelihood

, (C.3)

where P (qθt−1(ωt)) can be regarded as the prior of ωt+1 because as we mentioned

qθt−1 denotes the initialization of ωt+1 before we train the model on domain Dt+1, and
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P (Dt+1|ωt+1) corresponds to the likelihood of training ωt+1 on Dt+1. In addition,

P (θt|ωt, ωt+1, θt−1) ∝P (θt−1) · P (ωt, ωt+1|θt)

∝P (θt−2) · P (ωt−1, ωt|θt−1) · P (ωt, ωt+1|θt)

· · ·

∝ P (θ0)︸ ︷︷ ︸
prior on θ

·
t∏

i=1

P (ωi, ωi+1|θi)︸ ︷︷ ︸
likelihood

,

(C.4)

for any t = 1, 2, 3, · · · , T − 1. In the equation above, this time the prior is over

parameter θ and ωi, ωi+1 can be regarded as the ”training data” for θi.

For the online baseline, since it only keeps one-step finetuning of the model and

does not learn how ωt evolves, the θt for the online baseline is always equal to the

prior, i.e., θt = θ0. In other words, P (qθt−1(ωt)) = P (qθ0(ωt)) and P (θt|ωt, ωt+1, θt−1) =

P (θ0), ∀ t for the online baseline.

Since we follow the standard routine and assume all distributions are Gaussian, by

the Bayesian Theorem, we know that the posterior distribution always has a variance

smaller than the prior distribution under the expectation, i.e.,

E
[
V ar(θt|ωt, ωt+1, θt−1)

]
< V ar(θ0), (C.5)

which proves that our method has smaller variance in terms of Eq. C.4. On the

other hand, since the second term on the right-hand side of Eq. C.3 is the same for

both methods, and for the first term P (qθt−1(ωt)), by our Assumption 3.1.2 we know

that for baseline Pr(qθt−1(ωt)) = Pr(qθ0(ωt)) so the variance is basically σθ0 . For our

method, after each training step across a new domain, our θ will get updated and

achieve smaller variance (because of the posterior variance of the Gaussian), so we

also prove that our method has smaller variance in terms of Eq. C.3. Two parts

combined prove that our method has smaller variance in the third term of Eq. C.1,
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namely P (ω1:T |D1:T ).

The last step is to compare the variance from the second term in Eq. C.1, namely

P (ωT+1|ω1:T ). For online baseline, basically it uses the parameter from the last train-

ing domain, i.e., ωT as the final model on the future domain, i.e., P (ωT+1|ω1:T ) =

P (qθ0(ωT )).

On the other hand, for our method we have P (ωT+1|ω1:T ) = P (qθT−1
(ωT )) which

has a smaller variance due to the posterior variance of the Gaussian.

All together we finish the proof for Var(Mours) < Var(Mon).

Online Baseline vs. Offline Baseline

This case is simpler to prove. Again, the first term on the right-hand side

of Eq C.1, namely P (ŷ|xT+1, ωT+1) can be cancelled in this case. Moreover, the

second term, namely P (ωT+1|ω1:T ) has the same variance for both baselines, i.e.,

V ar(P (ωT+1|ω1:T )) = V ar(P (qθ0(ωT ))) = σθ0 . This makes sense since two baselines

do not learn the drift and the uncertainty in predicting ωT+1 based on ωT is always

the same as the prior distribution of θ0.

Hence, it suffices to compare the uncertainty of the last term of Eq. C.1, namely

P (ω1:T |D1:T ). Recall

Mon : ωt+1 = argmaxωt+1
P (ωt+1|ωt,Dt+1)

Moff : ωt+1 = argmaxωt+1
P (ωt+1|D1:t+1)

(C.6)

For the offline baseline, we are using all datasets so far, namely D1:t+1 to train the

model, while the online baseline only uses Dt+1. Since we are considering domain

generalization with temporal concept drift, i.e., for each i ̸= j we have Di ̸= Dj

(otherwise we merge them), the randomness of
⋃t+1

i=1Di is at least as large as that of

Dt+1 alone, i.e., V ar(
⋃t+1

i=1Di) ≥ V ar(Dt+1).

To prove this, let’s consider the case of two domains D1 and D2 without loss of

generality. Also, assume the sample size for both domains are equal. By definition of
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variance, we have

V ar(D1) =

∑n
i=1(x1,i − µ1)

2

n
, V ar(D2) =

∑n
i=1(x2,i − µ2)

2

n
, (C.7)

while

V ar(D1 ∪ D2) =

∑n
i=1(x1,i −

µ1+µ2

2
)2 +

∑n
i=1(x2,i −

µ1+µ2

2
)2

2n
, (C.8)

where µ1 and µ2 is the sample mean for each domain, respectively and n denotes the

sample size. Hence,

V ar(D1 ∪ D2)−
1

2

(
V ar(D1) + V ar(D2)

)
=

∑n
i=1(x1,i −

µ1+µ2

2
)2 +

∑n
i=1(x2,i −

µ1+µ2

2
)2

2n
−

∑n
i=1(x1,i − µ1)

2 +
∑n

i=1(x2,i − µ2)
2

2n

∝
n∑

i=1

(x1,i −
µ1 + µ2

2
)2 +

n∑
i=1

(x2,i −
µ1 + µ2

2
)2 −

( n∑
i=1

(x1,i − µ1)
2 +

n∑
i=1

(x2,i − µ2)
2
)

=
n∑

i=1

(
(x1,i −

µ1 + µ2

2
)2 + (x2,i −

µ1 + µ2

2
)2 −

[
(x1,i − µ1)

2 + (x2,i − µ2)
2
])

=
n∑

i=1

(
− (µ1 + µ2)x1,i − (µ1 + µ2)x2,i + 2µ1x1,i + 2µ2x2,i +

1

2
(µ1 + µ2)

2 − µ2
1 − µ2

2

)
=

n∑
i=1

(
(µ1 − µ2)x1,i − (µ1 − µ2)x2,i −

1

2
(µ1 − µ2)

2

)
=

n∑
i=1

(
(µ1 − µ2)(x1,i − x2,i)−

1

2
(µ1 − µ2)

2

)
=

n∑
i=1

(
(µ1 − µ2)

2 − 1

2
(µ1 − µ2)

2

)
=

n∑
i=1

(µ1 − µ2)
2

2
≥ 0,

(C.9)

where the equation from the third last row to the second last row is under expectation

as E
[
(x1,i − x2,i)

]
= µ1 − µ2. Since we assume V ar(D1) = V ar(D2), we finish the

proof that V ar(D1 ∪ D2) ≥ V ar(D2). One can generalize this conclusion to three or
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more domains.

Finally, combining V ar(
⋃t+1

i=1Di) is at least as large as that of V ar(Dt+1) with

Bayes’ rule, one can finish the proof.

C.2 Proof of Theorem 3.1.6

Proof. We finish our proof in two steps. First, we prove that the generalization error

of our method is smaller than that of the online baseline.

By definition, we know that

err := ℓ
(
E
[
P (ŷT+1|xT+1,D1:T )

]
, yT+1

)
= ℓ

(
gωT+1

(xT+1), yT+1

)
, (C.10)

where gω denotes the target neural network with parameter ω, and ωT+1 denotes the

parameter status on the (T + 1)-th domain (i.e., future domain).

For online baseline, since it does not consider the temporal information, the pa-

rameters on the future domain will be the same as the parameters after the training

on the last source domain, i.e, for online baseline we have ωT+1 = ωT .

For our method, we have ωT+1 = qθT (ωT ), where qθ is the recurrent structure and

θT denotes the parameter status of the recurrent structure after training on the first

T domains. In other words, our method utilizes the recurrent structure to generate

the model parameters on the next domain. Now it suffices to show that

ℓ
(
gωT+1

(xT+1), yT+1

)
< ℓ

(
gωT

(xT+1), yT+1

)
, (C.11)

where ωT+1 = qθT (ωT ). Here, the LHS and RHS above correspond to the generaliza-

tion error of our method and the online baseline, respectively.

Recall that qθ represents the LSTM unit in our case, and we train the LSTM
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unit to approximate the transition probability P (ωt+1|ωt), i.e., how neural network

g’s parameter distribution changes over time. From a probabilistic point of view,

during training of the LSTM unit qθ, we basically minimize the empirical loss, which

is equivalent to

min
θ
KL

(
qθ
∥∥P (ωt+1|ωt)

)
, t = 1, 2, · · · , T − 1. (C.12)

As mentioned in Assumption 3.1.2, we denote θ0 as the initialization of qθ. On

the other hand, after T − 1 times of training over the LSTM unit on the T source

domains, θ will converge to the optimum denoted as θ∗. Hence, the model parameter

ωT+1 generated by the converged LSTM unit for sure will be closer to the ground

truth than that generated by the random initialized LSTM unit, i.e.,

∥∥qθT (ωT )− qθ∗(ωT )
∥∥ < ∥∥qθ0(ωT )− qθ∗(ωT )

∥∥. (C.13)

By Lipschitz continuity of gω over the parameter ω, we have

Llower ·
∥∥ω − ω′∥∥ < ∥∥gω(x)− gω′(x)

∥∥ < Lupper ·
∥∥ω − ω′∥∥, ∀ x ∈ X , (C.14)

where X is defined as the input space of neural network gω. [19] proved that the

Lipschitz constant actually can have a lower bound for a neural network.

Denote ω∗ = qθ∗(ωT ), i.e., the optimal parameter for the target neural network g

on the future domain. Then, it directly follows Eq. C.14 that

∥∥gωT
(x)− gω∗(x)

∥∥ > Llower ·
∥∥ωT − ω∗∥∥,∥∥gωT+1

(x)− gω∗(x)
∥∥ < Lupper ·

∥∥ωT+1 − ω∗∥∥. (C.15)

Denote r = ∥ωT −ω∗∥/∥ωT+1−ω∗∥. Since neural network gω is a continuous function

of ω, there always exists a constant δ > 0 such that, within the sphere centering at ω∗
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with radius δ, namely S(ω∗, δ), the local lower and upper bound for the Lipschitz con-

stant of gω could satisfy Lupper/Llower < r. The reason behind this is, as δ approaches

0, due to the continuity of gω, the upper bound and lower bound of Lipschitz constant

within S(ω∗, δ) will become closer and finally identical, i.e., limδ→0+ Lupper/Llower = 1.

On the other hand, by Eq. C.13 we know that r is always greater than 1, so it is always

possible to find a δ to satisfy the above condition. As a result,

Lupper

Llower

· ∥ωT+1 − ω∗∥
∥ωT − ω∗∥

< 1 ⇐⇒ Lupper ·
∥∥ωT+1 − ω∗∥∥ < Llower ·

∥∥ωT − ω∗∥∥. (C.16)

Hence,
∥∥gωT+1

(x)− gω∗(x)
∥∥ < ∥∥gωT

(x)− gω∗(x)
∥∥. Since gω∗(x) is the optimal neural

network on the future domain, gω∗(xT+1) should achieve the lowest loss as defined in

Eq. C.11. Combining everything above together finishes the first step of our proof.

The second step of our proof is for the comparison between two baselines. We

consider the case where the drift of ωt is monotonic, but our proof can be generalized

to other cases easily.

As can be shown,

Online baseline: E[P (ωT+1|ω1:T )] = E[qθ0(ωT )] = ωT ,

Offline baseline: E[P (ωT+1|ω1:T )] = E[qθ0(ω̄)] = E[P (ω|D1:T )].

(C.17)

If we denote a distance function over the domains, as d, we assume that d(Dt+1,DT+1) <

d(Dt,DT+1). By the monotonic assumption, the distribution of each D1:T is changing

along a certain direction. Hence, among them DT has the distribution most close

to that of DT+1. In other words, the online baseline finetunes the model so its ωT

is leaning towards the last domain, while the offline baseline is using the averaged

domains to train the model, which finishes the proof.
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Appendix D

Appendix of SparseLLM

This chapter includes supplemental materials for the work SparseLLM.

D.1 Two-layer Demo on the Details behind our

Global Pruning

Figure D.1 illustrates the SparseLLM pruning method compared to conventional

global pruning and local pruning, using a two-layer neural network as an abstraction

for simplicity. The figure is divided into three main parts:

On the left, conventional global pruning is depicted. This method applies a global

mask to the entire network, resulting in significant memory costs due to poor scal-

ability. Both functions f1 and f2 are pruned using the same mask across all layers,

leading to high memory usage.

In the middle, local pruning is shown, where each layer is pruned independently.

This approach reduces memory costs by applying separate masks to each layer. How-

ever, it inevitably sacrifices performance because it ignores global supervision, which

can lead to suboptimal pruning decisions that do not consider the network as a whole.

On the right, the adaptive global pruning method of SparseLLM is presented.
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Figure D.1: Illustration of SparseLLM pruning method compared to conven-
tional global pruning and local pruning. We consider a two-layer neural network as an
abstraction for simplicity. Global pruning (left) is memory prohibitive due to poor
scalability. Local pruning (mid) considers pruning each layer independently, while
inevitably sacrificing performance due to the ignorance of global supervision. Our
adaptive global pruning (right) achieves global pruning with low memory cost by
leveraging auxiliary variables and soft constraints.

This method achieves global pruning with low memory cost by leveraging auxiliary

variables and soft constraints. It combines the benefits of global pruning—considering

the entire network structure—with efficient memory usage. The introduction of aux-

iliary variables allows for flexible and adaptive pruning, ensuring that the overall

performance of the network is maintained while keeping memory costs low.

Thus, the figure highlights the trade-offs between different pruning strategies.

Conventional global pruning incurs high memory costs, local pruning reduces memory

usage at the expense of performance, and the adaptive global pruning of SparseLLM

strikes a balance by maintaining performance with lower memory requirements through

the use of auxiliary variables and soft constraints.
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D.2 Calibration Samples

Figure D.2 and Figure D.3 present how perplexity changes with the calibration

sample sizes on the datasets PTB and C4 for OPT-2.7b and LlaMA-2 7b, respec-

tively. In both figures, as the number of calibration samples increases, the perplexity

decreases for both SparseGPT and SparseLLM. This indicates that having more cal-

ibration samples can be beneficial in the pruning process. Perplexity decreases more

rapidly from 8 samples to 32 samples. Beyond 32 samples, the rate at which perplex-

ity decreases starts to slow down. In addition, increasing the number of calibration

samples requires more computational resources, e.g., memory and computation time,

in the overall pruning process. This suggests that the calibration sample sizes should

be between 32 and 64 to ensure good performance while maintaining computational

efficiency. Lastly, the figures show that SparseLLM achieves better perplexity than

SparseGPT does with 32 or larger sample sizes for both OPT and LlaMA-2 models.

Figure D.2: Sensitivity of OPT-2.7b on the calibration sample sizes for datasets PTB
and C4.

D.3 Computation Time vs. Model Sizes

We study how the computation time per layer of SparseGPT and SparseLLM

varies with different model sizes, as illustrated in Table D.1 and Table D.2 for OPT
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Figure D.3: Sensitivity of LlaMA-2 7b models on the calibration sample sizes for
datasets PTB and C4.

models and LlaMA-2 models. The rate at which the time taken increases is com-

parable for SparseGPT and SparseLLM as the model size increases. Additionally,

computation time for SparseLLM are reported for a configuration of 4 to 10 epochs.

As we have reported in Section 4.1.5, SparseLLM can reduce the training loss in as

few as 2 to 3 epochs. This suggests that the proposed SparseLLM remains computa-

tionally efficient.

Table D.1: Computation time in seconds of OPT models.

Method OPT-
125m

OPT-
1.3b

OPT-
2.7b

OPT-
6.7b

OPT-
13b

OPT-
30b

OPT-
66b

SparseGPT2.30 10.18 18.35 24.40 28.65 48.91 103.19
SparseLLM16.34 22.79 42.86 174.08 85.62 174.07 284.59

Table D.2: Computation time in seconds of LlaMA-2 models.

Method Llama-
2 7b

Llama-
2 13b

SparseGPT11.94 16.58
SparseLLM146.80 252.48

D.4 Experiment Results for Additional Models

Detailed results on perplexity and zero-shot task accuracy for additional models

are reported in Table D.3 and Table D.4. Similar to other models, we report the
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perplexity results for the dense model next to the name of the model in the table.

In particular, we see that SparseGPT and SparseLLM outperform Magnitude and

Wanda with a significant margin across different sparsity. SparseLLM shares sim-

ilar perplexity with SparseGPT for smaller sparsity but demonstrates much better

perplexity for larger sparsity. Similar perplexity trends are observed across all three

datasets, although, PTB, having the highest perplexity for each sparsity and method,

is likely the most challenging dataset among the three. For the zero-shot taks accu-

racy, we see that SparseLLM achieves comparable results to SparseGPT for smaller

perplexity and the performance improvements are more obvious and significant with

higher sparsity.

Table D.3: Perplexity in high sparsity regimes (≥ 70%); the lower the perplexity, the
better.

OPT-125m (WikiText2 (WT2): 27.66; PTB: 38.99; C4: 26.56)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude3806.963429.352263.374890.964121.493213.856613.185380.804475.29- - -
Wanda 351.83 412.52 248.94 1912.452512.931066.864940.894337.273126.02- - -
SparseGPT239.26 265.83 156.33 2072.121952.851050.836131.576963.272443.331482.612215.44657.26
SparseLLM208.46 255.75 137.72 1358.101418.09654.54 5291.645067.412003.09914.87 1210.84450.01

OPT-6.7b (WikiText2 (WT2): 10.86; PTB: 15.77; C4: 12.71)

Sparsity 70% 80% 90% 3:4

Dataset WT2 PTB C4 WT2 PTB C4 WT2 PTB C4 WT2 PTB C4

Magnitude7054.215437.444850.257937.495971.866031.542.4e4 2.5e4 2.1e4 - - -
Wanda 54.95 129.73 116.67 1493.581196.93996.00 2.1e4 2.0e4 1.8e4 - - -
SparseGPT12.27 18.90 15.28 31.04 51.26 29.42 8871.245713.573797.20570.08 361.81 328.18
SparseLLM12.16 18.39 14.93 23.96 39.32 26.97 2095.851842.48953.44 83.36 128.99 62.11

D.4.1 Hyperparameter Selection

Hyperparameters α and β are used in Eq. 4.5. We select α and β from the set

{0.01, 0.1, 1, 5, 10, 100} and perform a study on models to understand the impact of

the hyperparameters. Results for OPT-1.3b with 70% sparsity are shown in Table D.5.
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Table D.4: Accuracy (%) of zero-shot tasks; the higher the accuracy, the better.

OPT-6.7b

SparsityMethod BoolQ RTE HellaSwagWinoGrandeARC-
e

ARC-
c

OBQA Mean

Dense 66.12 56.03 50.49 65.27 65.72 30.63 27.60 51.69

70%
SparseGPT61.74 54.87 48.46 63.85 64.31 29.27 25.40 49.70
SparseLLM60.61 54.51 48.8 62.9 64.14 30.03 26.60 49.66

80%
SparseGPT55.08 48.38 42.22 59.43 57.79 25.85 21.40 44.31
SparseLLM58.69 51.26 43.78 59.67 58.38 26.88 22.00 45.81

90%
SparseGPT38.53 53.07 26.00 48.07 26.81 21.67 14.40 32.65
SparseLLM46.48 52.71 26.21 51.70 27.44 19.71 13.40 33.95

3:4
SparseGPT46.70 54.15 28.82 51.07 32.45 18.17 15.40 35.25
SparseLLM53.49 53.42 36.24 53.51 43.94 22.61 17.40 40.09

Table D.5: Ablations of the hyperparameters α and β on OPT-1.3b with 70% sparsity
(in perplexity)

α / β 0.01 0.1 1 5 10 100

0.01 18.01 17.97 17.97 - - -
0.1 18.04 17.82 17.96 18.04 18.40 -
1 18.20 18.02 18.11 17.87 17.96 18.22
5 18.06 18.02 18.03 17.92 17.96 18.04
10 18.03 18.01 17.96 17.96 17.96 18.03
100 18.04 18.04 17.98 18.01 18.01 18.03
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Appendix E

Theory Proof of FedSpaLLM

E.1 Proof of Corollary 4.2.1 (Sparsity Guarantee)

Proof. 1. Client Sparsity Consistency: Each client enforces the same target

sparsity Sglobal. This implies that for each client i, the sparsity of the pruned layers

Li matches the global sparsity target Sglobal. Formally, we have:

Si = Sglobal, ∀i = 1, 2, . . . , N.

Since all clients prune their local models independently but according to the same

target sparsity, each pruned local model achieves the same sparsity.

2. Layer Sampling Strategy: The layer sampling strategy ensures that all

layers of the model L are eventually sampled across all clients during each commu-

nication round. Therefore, every layer in the global model Ŵg has been pruned by

each client according to the same sparsity criterion Sglobal.

3. Aggregation with ℓ0-norm: The aggregation function using ℓ0-norm aver-

ages only the non-zero elements (i.e., the pruned weights) from the client models.

Since all clients enforce the same sparsity, and the aggregation only involves the non-

zero weights from these pruned models, the sparsity of the aggregated global model
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will match that of the local models. Specifically:

Sglobal = Si, ∀i.

Thus, the sparsity of the global model after aggregation is equivalent to the sparsity

of each client model.

4. Conclusion: Therefore, the global model Ŵg will maintain the target spar-

sity Sglobal after aggregation in each communication round. The aggregation process

ensures that the global sparsity is consistent with the target sparsity across rounds.

Sglobal = Si, ∀i.

E.2 Proof of Theorem 4.2.2 (Unbiased Estimator)

Proof. 1. Layer Sampling Strategy: Let L = {L1, L2, . . . , Lm} denote the set of

all layers in the model, where m is the total number of layers. In each communication

round, the server randomly samples a subset of layers Li ⊆ L for each client i. Each

layer Lj ∈ L has an equal probability pj of being selected across clients.

The expectation of the sampled weights for layer Lj across all clients can be

expressed as:

E[Wi[Lj]] = pjW
∗
g [Lj],

where W ∗
g [Lj] is the weight of layer Lj in the fully pruned global model W ∗

g .

2. Unbiasedness of Layer Sampling: Since each layer has an equal probability

of being sampled across clients, the expected contribution of each layer is proportional

to its selection probability. Over multiple communication rounds, all layers will be

sampled enough times to represent the fully pruned model.
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Therefore, the expected value of the global model Ŵg is the same as the fully

pruned model W ∗
g . For any layer Lj, we have:

E[Ŵg[Lj]] = E

[
1

N

N∑
i=1

Wi[Lj]

]

=
1

N

N∑
i=1

E[Wi[Lj]] = W ∗
g [Lj].

(E.1)

Thus, the global model Ŵg is an unbiased estimator of W ∗
g , as the expected value of

the pruned weights matches the fully pruned model.

3. Conclusion: Therefore, the global model Ŵg obtained by aggregating pruned

models after layer sampling is an unbiased estimator of the fully pruned model W ∗
g .

Formally, we can conclude that:

E[Ŵg] = W ∗
g .

This unbiased property holds as long as each layer has an equal probability of being

selected across clients during each communication round.
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