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Abstract 
 

The Role of Cross-Situational Word Learning in Children’s Vocabulary Acquisition: 
Theory, Behavior, and Mechanisms 

By Sumarga H. Suanda 
 

Over the first 6 years of life, children are reported to have amassed a 
vocabulary of about 14,000 words. What are the processes that underlie such 
prolific learning? Based on a wealth of evidence built up over the past 40 years, one 
process appears to be fast mapping, children’s ability to draw on a host of referential 
cues to infer a word’s meaning from a single exposure to a new word. More recently, 
a growing body of evidence has suggested that another process is cross-situational 
word learning, word learners’ ability to determine word meaning not within a single 
encounter but across multiple encounters by tracking the cross-situational 
consistency between words and their candidate referents. Although the notion that 
children acquire their vocabulary at least in part through cross-situational learning 
is neither novel nor unintuitive, theoretical treatments and empirical investigations 
into this learning process are scarce relative to those of fast mapping.    

The overarching goal of the research presented herein is to further 
investigate the nature of children’s cross-situational learning capacities and to 
better understand the role of this type of learning in vocabulary acquisition. Two 
behavioral experiments that examine 5- to 7-year-olds’ cross-situational word 
learning are reported. These experiments constitute the first empirical 
investigations of school-aged children’s ability to acquire new word-to-referent 
mappings when the only cues to reference are the cross-situational co-occurrence 
statistics between words and their referents. These studies also examine whether 
some of the behavioral signatures previously observed in adults’ cross-situational 
learning are also evident in children’s learning. Additionally, a series of 
computational simulations that explore the candidate mechanisms underlying 
children’s cross-situational word learning are reported. Although the results of 
these simulations do not provide a conclusive mechanistic account of children’s 
learning, they do specify some conditions that readily account for the observed 
learning patterns and accurately predict other empirical phenomena. Collectively, 
the research presented here contributes to our understanding of the various 
processes that make children’s impressive word learning possible.     
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Chapter 1. Introduction 

How do children learn the meanings of words? For the past 40 years, 

investigations into children’s word learning has had both theoretical and practical 

significance in the cognitive, developmental, linguistic and educational sciences. 

From a theoretical perspective, examinations of word learning have served as test 

beds for accounts of children’s developing conceptual systems (see Murphy, 2002), 

the nature of children’s socio-cognitive competence (see Tomasello, 2003), the 

origins of children’s linguistic capacities (Gleitman, 1990), and the mechanics of 

children’s learning (Smith, Colunga, & Yoshida, 2010). Additionally, the study of 

word learning has been a battleground for a number of major theoretical debates in 

the cognitive and developmental sciences including the domain-generality versus 

domain-specificity debate of children’s learning and cognitive capacities (e.g., 

Markson & Bloom, 1997; Namy & Waxman, 1998; see Namy, 2012, for a review), 

and the continuity versus discontinuity debate of learning and cognitive processes 

over development (McMurray, 2007; Nazzi & Bertonucci, 2003).  

From a more applied standpoint, there is great interest in children’s word 

learning in part due to the large inter-individual differences observed in vocabulary 

sizes and growth patterns, and the predictive powers of these differences. For 

example, whereas some two-year-olds have productive vocabularies of greater than 

500 words, others have vocabularies of fewer than 50 words (Fenson, Dale, Reznick, 

Bates, Thal, & Pethick, 1994). The toddlers with lower vocabularies, or late talkers 

(Rescorla, 2009), are at greater risk for developing Specific Language Impairments 

(SLI), a condition marked by difficulty understanding and/or producing spoken 
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language without any clear hearing, physical, cognitive or social deficits (Tomblin, 

Records, Buckwalter, Zhang, Smith, & O'Brien, 1997). Additionally, having a low 

vocabulary is associated with poorer pre-literacy and literacy skills (for a review, 

see Lee, 2011). Thus, both speech pathologists and educators are invested in better 

understanding the nature of early word learning in order to gain insight into the 

nature and sources of the variability, as well as to develop intervention strategies to 

remedy the negative consequences of low vocabularies.   

The study of word learning involves understanding at least three inter-

connected problems children that face. First, children must segment spoken speech 

into the correct word units and maintain phonological representations of those 

units (Cutler, 1994). Second, children must carve their representation of the world 

into the appropriate concepts and categories to which words refer (Carey, 1994). 

Finally, and arguably the focus of most word learning research, children must 

correctly link the phonological representation to the conceptual representation, a 

task referred to as the mapping problem (L. Bloom, 2000; Gleitman, 1990).   

The overarching goal of the research reported herein is to extend our 

understanding of how children solve this mapping problem. In Chapter 2, I provide a 

brief literature overview of proposed solutions to the mapping problem. I first 

describe the most commonly proposed solution, which is that children are sensitive 

to a host of cues that allow them to figure out the meanings of words at the moment 

new words are uttered (i.e., children fast map words onto their correct referents). I 

then describe a second proposed solution, which is that children learn words by 

gradually accumulating the co-occurrence regularities between words and their 
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referents over time (i.e., children learn word-referent pairings cross-situationally). 

Although this second solution to the problem is an intuitive idea, it has been 

neglected until recent years in empirical word learning research. Further, much of 

the recent work that has examined cross-situational word learning has employed 

adult learners as models of early word learning (e.g., Yu & Smith, 2007; Suanda & 

Namy, 2012). Thus across Chapters 3 and 4, I present two empirical studies testing 

the nature of children’s (6-year-olds) ability to learn new words across a series of 

ambiguous naming events when the only cue to reference is the cross-situational 

regularities with which words and referents co-occur. Then in Chapter 5, I present a 

series of computational simulations that shed light on candidate mechanisms that 

may underlie children’s cross-situational word learning. I conclude this dissertation, 

in Chapter 6, with a general discussion of the place of cross-situational learning in 

word learning theory and some suggestions for future directions that may 

contribute further to cross-situational learning’s impact on the field.  
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Chapter 2. Fast Mapping and Cross-Situational 

Approaches to Children’s Word Learning 

To help conceptualize the mapping problem that children face, language 

acquisition researchers (e.g., Macnamara 1972; Markman, 1987; Golinkoff, Mervis, & 

Hirsh-Pasek, 1994; Woodward, 2000) regularly invoke an argument initially raised 

by the philosopher W.V.O. Quine in reference to the problem of translating words 

across two languages. Quine (1960) asked us to imagine a linguist attempting to 

translate a new word uttered by a speaker of an unknown language (e.g., “gavagai”) 

as a white rabbit scurried by. What is the English translation of “gavagai”? Is it a 

basic-level category term (e.g., “rabbit”)? Is it a superordinate category term (e.g., 

“animal”)? Or is it a property term (e.g., “white”)? According to Quine, the word’s 

translation, and thus its meaning, is simply underdetermined from physical 

experience. That is, even if the linguist was able to rule out translations such as 

“white” or “animal” through further instances of “gavagai”, there still exist an infinite 

number of possible translations besides “rabbit”. For example, Quine suggests that 

“gavagai” might mean “all and sundry undetached rabbit parts…[or]…brief temporal 

rabbit segments” (Quine, 1960, pp. 52-53). Quine’s point is that for any given 

observation, or set of observations, of a word (“gavagai”) associated with a non-

verbal stimulus (a white rabbit), there exist an infinite number of hypotheses about 

the word’s meaning consistent with that observation (Quine, 1960; 1968; 1987).   

Children appear to face a similar problem in learning new words. That is, 

imagine a child playing with a toy train and hearing his mother say the word “train”. 
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How does the child figure out to what the word “train” refers? Does the word refer 

to trains in general, that particular train, the act of playing with trains, the color of 

the train, etc.? Despite this under-specificity, children are exceptionally proficient 

word learners. According to one estimate, by the age of six, children have amassed a 

vocabulary of 14,000 words (Carey, 1978). Some have translated this number into 

the impressive statistic that children acquire on average 9-10 new words each day 

(Golinkoff & Hirsh-Pasek, 2000; Woodward & Markman, 1998; but see P. Bloom, 

2004). Further, children apparently require very little effort or exposure to learn a 

word. That is, under some circumstances children learn a word after only a single 

exposure, a process known as fast mapping (Carey, 1978; Carey & Bartlett, 1978; 

Heibeck & Markman, 1987; Markson & Bloom, 1997).  

2.1 A Fast Mapping Approach to the Mapping Problem 

A central goal of lexical acquisition research has thus been to explain this 

paradox between the apparent difficulty of the mapping problem in word learning 

and the apparent facility with which children learn words. Many, if not most, 

empirical investigations into children’s word learning have involved simple, well-

controlled, artificial settings. For example, experiments commonly employ an initial 

labeling phase in which an experimenter introduces a novel word (e.g., “blicket”) in 

the context of a particular object (e.g., a whisk), or set of objects. Importantly, 

despite the simple nature of this artificial learning task, it simulates the ambiguity of 

word learning described in Quine’s gavagai scenario. That is, “blicket” may refer to 

that particular whisk, whisks in general, the color of the whisk, etc. The 

experimenter then tests the child’s word mapping in a testing phase, by later 
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presenting the labeled object (or a related object, such as a different whisk), as well 

as an unlabeled object(s), and asking the child to “find the blicket”.  

Variations on this basic paradigm have provided researchers with insights 

into the fast mapping process (see P. Bloom, 2000; Golinkoff et al., 2000; Woodward 

& Markman, 1998; for reviews). For example, manipulating the types of objects 

available in the testing phase has revealed children’s bias to interpret novel words 

in specific ways. For example, if children are taught in the labeling phase that 

“blicket” refers to a red plastic whisk, they will tend to select in the testing phase a 

wooden whisk over a red plastic fork as an extension for “blicket”. Findings such as 

this have been interpreted as a tendency to extend newly learned nouns to objects 

similar in shape (known as the shape bias, see Samuelson & Bloom, 2008, for a 

review), rather than objects similar in material (see Smith, 2000). Additionally, 

manipulating the social context of the labeling phase has highlighted children’s 

attention to social variables when interpreting new words. For example, if the 

speaker is not looking at the whisk at the time of utterance, children will reject the 

label as referring to the whisk (e.g., Baldwin, 1991; 1993a; 1993b). This 

manipulation, as well as other manipulations of social contextual cues including the 

speaker’s pointing gestures (Jaswal & Hansen, 2006), the speaker’s knowledge state 

(Akhtar, Carpenter, & Tomasello, 1996), or the speaker’s intentional state at the 

time of utterance (Diesendruck, Markson, Akhtar, & Reudor, 2004; Tomasello & 

Barton, 1994), have been interpreted as evidence that children are tuned in to the 

speaker’s referential intentions; and, that this “mind-reading” capacity is what 
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allows children to quickly match words to the correct referents (see Akhtar & 

Tomasello, 2000; P. Bloom, 2000; for reviews).  

Yet other manipulations to this basic paradigm have led to the conclusion 

that children also attend to a range of linguistic cues in learning new words. For 

example, Namy and Waxman (2000) introduced 18-month-olds to novel word-

object pairings either embedded within a familiar sentence frame (e.g., “Look at the 

blicket!”) or in isolation (e.g., “Blicket!”). Eighteen-month-olds mapped the words to 

their referent objects more readily in the former condition, suggesting that infants 

may use particular sentential contexts (e.g., “look at the ____” or “this is a _____”) as 

indexing reference (see also Fernald & Hurtado, 2006; Kedar, Casasola, & Lust, 

2006). Other researchers have examined young word learners’ attention to subtler 

linguistic cues to word meaning (e.g., Belanger & Hall, 2006; Hall, Lee, & Belanger, 

2001; Katz, Baker, & Macnamara, 1974). For example, Belanger and Hall (2006) 

revealed that at 20, but not 16 months, infants can use the presence of a determiner 

(e.g., “a”, “the”) to distinguish possible word meanings. When an experimenter 

labeled an object by saying, “This is daxy”, infants interpreted “daxy” as denoting 

only that individual object (as if it were a proper name like “John”). However, when 

an experimenter labeled an object by saying, “This is a daxy”, infants extended the 

label to other similar objects (as if it were a count noun, like “car”).   

Studies such as these highlight children’s impressive capacity for solving the 

problem of referential ambiguity at the moment novel words are encountered 

through the use of attentional (Smith, 2000), social (Akhtar & Tomasello, 2000), 

linguistic (Gleitman, 1990), and conceptual (Markman, 1990) cues to reference. 
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Although much has been learned, and continues to be learned (e.g., Borovsky, 

Elman, & Kutas, 2012; Gampe, Liebal, & Tomasello, 2012), about children’s lexical 

acquisition through fast mapping, there are reasons to believe that children’s real 

world word learning is not always a function of fast mapping within a single naming 

instance. First, as many scholars have noted and cautioned (e.g., Smith & Yu, 2008; 

Tomasello, 2003), children’s real world word learning environments are far more 

cluttered than the prototypical word learning study. In the real world, children are 

exposed to full sentences containing many words (e.g., “Let’s put your car and train 

into the box”), any of which could refer to a number of visible referents (e.g., among 

other things, a car and its properties, a train and its properties, and a box and its 

properties). Thus word learning biases, such as the shape bias mentioned above, 

would not enable children to infer which is the “train” and which is the “car”. 

Second, a number of scholars have reported that the nature of children’s input 

varies across cultures (see Lieven, 1994, for review) and that word learning studies 

do a particularly poor job of simulating the experiences of these children. That is, it 

has been suggested that at least in some Javanese (Smith-Hefner, 1988), Kaluli (Ochs 

& Schieffelin, 1984; 2008), Mayan (Pye, 1986), and Samoan (Ochs & Shieffelin, 1984; 

2008) cultures, children rarely are presented with the types of direct parent-child 

interactions the prototypical word learning study is intended to mimic. It is likely 

that from the perspective of children in these cultures, their learning contexts 

provide less direct access to the rich social referential cues present in Western 

cultures, suggesting that children do not learn words exclusively through such cues.  
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A final reason to suspect that there is more to the word learning process than 

children’s quick initial mappings is that although there is some evidence that even 

12- to 13-month-olds can learn a new word following only a single or a few 

exposures (Campbell & Namy, 2003; Woodward & Hoyne, 1999; Woodward, 

Markman, & Fitzsimmons, 1994), a close inspection of the data for children under 

the age of two reveal that this ability is delicate. That is, alterations to the testing 

procedures (Yoshida, Fennell, Swingley, & Werker, 2009), reward regimen (Evey & 

Merriman, 1998), phonological properties of the to-be-learned words (Werker, 

Fennell, Corcoran, Stager, 2002, Yoshida et al., 2009), saliency of the to-be-learned 

referents (Pruden, Hirsh-Pasek, Golinkoff, & Hennon, 2006), and presence of 

labeling frames (Namy & Waxman, 2000) result in no learning, reduced learning or 

patterns difficult to explain such as sporadic gender differences (Katz et al., 1974; 

Woodward et al., 1994). Further, a number of recent studies have demonstrated that 

even when words are successfully fast-mapped, children’s retention of these words 

was weaker than initial studies suggested (Horst & Samuelson, 2008; Horst, Scott, & 

Pollard, 2010; Kucker & Samuelson, 2012; Vlach & Sandhofer, 2012). Thus, these 

findings suggest that at least early in development, the end product of fast mapping 

may be a fragile, fleeting initial hypothesis about a word’s meaning rather than a 

definitive final mapping.  

2.2 A Cross-Situational Approach to the Mapping Problem 

The sufficiency of a fast mapping solution to the mapping problem has long 

been questioned. In fact, even when Carey and Bartlett initially coined the term fast 

mapping, they were quite clear that it represents only a component of children’s 
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lexical acquisition; and that only through a “long, drawn out mapping, extended over 

the entire period of several encounters with the word” (Carey & Bartlett, 1978, pp. 

18) do children acquire a word’s full meaning (see also Carey, 1978, 2010). Other 

prominent language acquisition scholars (Gleitman, 1990; Pinker, 1989) have also 

argued that word learning in part involves attending to the systematic regularities 

across the contexts in which words appear, a process known as cross-situational 

word learning (see also Yu & Smith, 2007). Despite its intuitive appeal and long-

standing history, empirical investigations and theoretical treatments of this process 

are scarce. In current theories that endorse some form of cross-situational word 

learning (e.g., P. Bloom, 2000; Tomasello, 2003), the mechanisms are rarely 

discussed and the importance of this learning process takes back seat to fast 

mapping capacities. Recently however, interest in cross-situational word learning 

has experienced a revival within cognitive and developmental psychology. The goal 

of this section is to review the recent evidence, both behavioral and computational, 

for cross-situational word learning. 

2.2.1 Cross-situational word learning: Behavioral evidence 

In a series of recent studies, Yu and Smith (Smith & Yu, 2008, in press; Yu & 

Smith, 2007, 2011) investigated the extent to which human learners could learn 

word-to-object mappings purely through the regularities across contexts with which 

words and objects co-occur (i.e., co-occurrence statistics). Employing adult subjects 

as model word learners, Yu and Smith (2007) presented subjects with a series of 

learning trials, each involving ambiguous reference. In each trial, subjects viewed 

multiple pictures of objects (between 2 and 4) simultaneously on a computer screen 
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and heard multiple spoken words played sequentially in a random order. In each 

trial, it was unclear which words referred to which objects. However, over trials, 

every time the subjects heard a particular word, its corresponding referent object 

was present. Further, across trials, word-object pairs did not always appear with the 

same set of accompanying word and objects. Thus, subjects could learn the words if 

they attended to the regularities with which particular words and objects co-

occurred (but see K. Smith, Smith, & Blythe, 2009 for an alternative explanation). Yu 

and Smith found that adult learners were remarkably sensitive to these co-

occurrence statistics. Subjects correctly mapped up to 50% of the total words tested 

to their referents (where chance responding would predict 25% accuracy) after 

encountering each word-object pairing only six times, all in ambiguous situations. 

This capacity is robust and the finding has been replicated across multiple labs 

(Ichinco, Frank, & Saxe, 2009; K. Smith et al., 2009; Suanda & Namy, 2012; Vlach & 

Sandhofer, 2010).  

 Other studies have also revealed the benefits of attending to multiple contexts in 

word learning although they were not specifically designed to probe cross-

situational word learning. In a series of studies investigating the limits of 

observational learning in acquiring different classes of words, Lila Gleitman and her 

colleagues developed a paradigm known as the Human Simulation Paradigm 

(Gillette, Gleitman, Gleitman, & Lederer, 1999; Kako, 2005; Pappafragou, Cassidy, & 

Gleitman, 2007; Snedeker & Gleitman, 2004) intended to simulate children’s word 

learning using adult humans as model participants. In this paradigm, Gleitman and 

colleagues constructed short 30-second video clips of parents interacting with their 
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children. The clips depicted scenes during which the parent uttered words children 

commonly know (e.g., “dog”, “car”, “eat”, etc.). The entire audio track of the clip was 

removed and a beep was inserted at the precise moment the target word was 

uttered. Gleitman and colleagues presented adult subjects with multiple instances of 

each target word and asked them to guess the reference after each instance. The 

pertinent result was that subjects’ identification of the target word increased with 

each additional context, suggesting that subjects used the similarity across contexts 

in identifying word meaning (Gillette et al., 1999). 

Together, these findings, and others (see Vouloumanos, 2008; Vouloumanos 

& Werker, 2009; Yoshida, Rhemtulla, & Vouloumanos, 2012) provide evidence for 

the capacity to learn words cross-situationally. Further, these findings are 

consistent with recent claims that human learners are remarkably sensitive to the 

statistical properties of their linguistic environments, and that the capacity to pick 

up on these properties (i.e., statistical learning) may play an important role in a 

range of language tasks including phonetic processing (Maye, Werker, & Gerken, 

2002), speech segmentation (Saffran, Aslin, & Newport, 1996), and syntax 

acquisition (e.g., Gomez & Gerken, 1999; Thompson & Newport, 2007).   

However, these initial studies of cross-situational word learning primarily 

serve as existence proofs of the behavior rather than specific tests of the possible 

underlying learning mechanism. More recently, researchers have begun to shed 

light on the processes and factors that make this form of learning possible. One 

factor that has recently been shown to have an effect on cross-situational word 

learning is the diversity of contexts in which a given word-referent pair appears. For 
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example, in an extension of Yu and Smith’s initial paradigm that manipulated 

contextual diversity, Kachergis, Yu, and Shiffrin (2009) found that the greater the 

diversity of other word-object pairings with which a target word-referent pair co-

occurred, the more likely that word-referent pairing was to be learned (see also 

Suanda & Namy, 2012). Interestingly, contextual diversity effects have recently been 

reported in children’s real world word learning as well. That is, in an analysis of a 

large corpus of child-directed speech transcripts and order of acquisition norms for 

children’s early words, Hills and colleagues (2010) found that the number of 

different word types that co-occurred with particular words predicted the order in 

which children typically acquire the words. Contextual diversity, and variability 

more generally, has been reported to have a positive effect on learning in other 

studies of word learning (Bolger, Balass, Landen, & Perfetti, 2008; Perry, Samuelson, 

Malloy, & Shiffer, 2010), as well as phonological processing (Rost & McMurray, 

2009; 2010; Singh, 2008) and artificial grammar acquisition (Gomez, 2002); though 

this benefit of variability is in no way universal (see e.g., Maguire, Hirsh-Pasek, 

Golinkoff, & Brandone, 2008; Vlach & Sandhofer, 2011).  

 A second aspect of cross-situational word learning that has recently been 

examined is the type of information that cross-situational word learners “compute”. 

For example, researchers have asked whether cross-situational learners rely on 

simple co-occurrence frequencies between words and their referents (i.e., joint 

probability) or the predictive relations between words and referents (i.e., 

conditional probability). In a recent study, Klein and Yu (2009) modified Yu and 

Smith’s (2007) original design and controlled for word-object frequency but varied 
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conditional probabilities. Klein and Yu found that adult learners readily used 

conditional probabilities when joint probabilities were not indicative of word-to-

referent mappings, a pattern of results consistent with a number of recent findings 

in other domains (Aslin, Saffran, & Newport, 1998; Fiser & Aslin, 2001; 2002; but 

see Meyer & Baldwin, 2011). 

The capacity to track predictive relations may be particularly important for 

young word learners given that the most frequent words in the child’s input as 

measured by corpus speech analyses (Li & Shirai, 2000; MacWhinney, 2000; 

Hochmann, Endress, & Melher, 2010) consist of function words such as articles (e.g., 

“a”, “the”), conjunctions (e.g., “and”, “or”, “but”, “yet”), and particles (e.g., “to”, “not”). 

If word learners strictly computed which words most frequently occurred with 

objects and events in the environment, they would likely mismap these function 

words to referents of the less frequently occurring content words that follow (e.g., 

“car”, “eat”).  

  A third aspect of cross-situational word learning recently investigated is the 

extent to which the learning involved is best characterized as implicit or explicit in 

nature. As a first step in assessing the automaticity of learning, Suanda and Namy 

(2012) asked adult participants in a replication of Yu and Smith’s (2007) paradigm 

to estimate their performance in a post-experiment interview. The results indicated 

that participants vastly underestimated their actual performance, consistent with 

previous anecdotal evidence of participants’ lack of awareness of cross-situational 

word learning (Ichinco et al., 2009; Yu & Smith, 2007). However, participants’ verbal 

reports were positively correlated with their actual learning rates, suggesting some 
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explicit awareness of performance. This pattern of results is consistent with a recent 

study that examined cross-situational word learning while learners were engaged in 

a primary task that distracted participants from attending to the word-referent 

correspondences (Kachergis, Yu, & Shiffrin, 2010). Kachergis and colleagues found 

that although participants continued to demonstrate cross-situational word learning 

under these more implicit conditions, performance was poorer compared to explicit 

learning conditions.  

 Finally, in an attempt to understand the role of cross-situational learning in the 

context of the broader word learning literature, researchers have begun to 

investigate the extent to which cross-situational word learning may interact with 

known learning constraints from the fast mapping tradition. For example, one 

constraint that has been proposed to play a role in cross-situational word learning is 

mutual exclusivity (Markman & Wachtel, 1988). Briefly, the mutual exclusivity 

constraint refers to a word learner’s default tendency to accept only one label for 

each object (Markman, 1990). This assumption has recently been demonstrated to 

contribute to cross–situational word learning as one way to limit the word-to-

referent hypothesis space, guiding learners away from entertaining many-to-one or 

one-to-many word-referent mappings (Ichinco et al., 2009; Yurovsky & Yu, 2008). 

Additionally, cross-situational learners also appear to use mutual exclusivity to rule 

out possible referents for unknown words at the time of referent selection (Suanda 

& Namy, 2012; Yoshida et al., 2012), suggesting that in-the-moment learning 

constraints and cross-situational learning are used conjointly to determine word-

referent mappings (see also Monaghan & Mattock, 2012).  
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 The findings discussed in this section highlight the ways in which researchers 

have begun to move from demonstrating that word learners can acquire word-

referent mappings via cross-situational word learning toward understanding the 

nature of the learning process, its connection with other word learning processes, 

and its relation to other areas of learning more broadly.  

2.2.2 Cross-situational word learning: Computational evidence 

Computational models of word learning have served as a complementary 

source of evidence for the role of cross-situational learning in children’s lexical 

acquisition. Generally speaking, the computational paradigm used to study word 

learning involves 1) simulating behavioral patterns characteristic of children’s word 

learning using a computer program; and then 2) examining the learning algorithms 

and output patterns employed by those simulations as a window into the processes 

underlying children’s actual word learning. Through the lens of these computational 

models (see Regier, 2003, for a review), lexical acquisition researchers have 

investigated phenomena such as growth rate of vocabulary (Li, Zhao, & 

MacWhinney, 2007; McMurray, 2007; Plunkett, Sinha, Moller, & Strandsby, 1992; 

Regier, 2005), the production-comprehension asymmetry (Plunkett et al., 1992), the 

development of word learning biases (Colunga & Smith, 2005; Merriman, 1999; 

Regier, 2005; Samuelson, 2002), the emergence of fast mapping (Mayor & Plunkett, 

2010; Regier, 2005) and the prototype effect in categorization (e.g., Mayor & 

Plunkett, 2010; Plunkett et al., 1992).  

In a sense, all of these examples employ cross-situational learning in that 

models are typically trained with multiple instances of a word-to-referent pairing 
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and learning is achieved through a process of accruing information. However, these 

models are fed the word-referent associations. Thus the researcher, not the model, 

resolves the mapping problem.  

A particular subset of models, however, has focused on learning algorithms 

designed to solve the problem of referential ambiguity (Blythe, Smith, & Smith, 

2010; Caza & Knott, 2012; Fazly, Alishahi, & Stevenson, 2010; Frank, Goodman, & 

Tenenbaum, 2009; Siskind, 1996; Yu, 2008; Yu & Ballard, 2007). These models have 

thus employed cross-situational word learning more akin to the sense of the term 

adopted in this paper. In these studies, the models are given the task of figuring out 

the “meaning” of words from multiple ambiguous contexts. In any given situation 

the models are typically presented with a set of words (e.g., “John”, “took”, “the”, 

“ball”) and possible meanings (e.g., the meanings [John], [took], [the], and [ball]). At 

the onset of training, the models do not know which word goes with which meaning 

(i.e., the word “John” could equally likely mean [John], [took], [the], or [ball]). The 

model’s task is to figure out across situations, the meanings of the words.  

What makes these cross-situational models interesting and relevant for 

children’s word learning is not the fact that an artificial learning algorithm can 

identify word-referent mappings from artificially generated scenarios. Instead, what 

make these cross-situational models compelling are the following. First, although 

some cross-situational models utilize artificially constructed input (e.g., Siskind, 

1996; Blythe et al., 2010; see Vogt, 2012), more recent models employ as their 

inputs transcriptions of child-directed speech (Fazly et al., 2010) as well as coded 

input representing the surrounding visual context (Frank et al., 2009; Yu & Ballard, 
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2007; Yu, 2008). These models suggest that, at least in principle, a cross-situational 

learning mechanism could acquire words from ecologically valid word-learning 

environments characteristic of children’s word learning. Second, some models show 

learning rates that parallel those of child word learners (Blythe et al., 2010; Siskind, 

1996). For example, Siskind’s model is comparable to child word learners in the 

amount of input (i.e., number of utterances) needed to acquire a lexicon of 10,000 

words, based on estimations from observational studies (Snow, 1977 as cited in 

Siskind, 1996). Third, these models demonstrate a number of signature 

characteristics of children’s word learning. These include the vocabulary spurt (a 

relatively flat learning curve followed by a steeper one; see Siskind, 1996), mutual 

exclusivity behavior (preference to attach a novel label onto a novel object as 

opposed to a familiar one; see Frank et al., 2009), and synonym learning (learning a 

second word for a meaning already associated with another word; see Fazly et al., 

2010, Siskind, 1996).  

Together, the behavioral and computational findings discussed in the above 

sections provide some recent evidence for a cross-situational learning approach to 

the mapping problem. However, the studies discussed are recent and limited in 

scope relative to the number of investigations devoted to children’s fast mapping 

capabilities. As a result, cross-situational word learning has played a relatively small 

role in contemporary theories of children’s word learning. In the remaining sections 

of this chapter, I raise two limitations of the recent studies of cross-situational word 

learning, which will be the focus of the experimental studies that follow.     

2.3. Outstanding Questions 
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2.3.1 Scaling from adult word learning to children’s word learning 

The vast majority of the studies of cross-situational word learning have 

employed adult learners. This reliance on adult subjects in artificial language 

learning studies has a rich history in language acquisition research (see Gomez & 

Gerken, 2000, for discussion). However, given that the primary phenomena of 

interest with respect to cross-situational word learning occurs in infancy and 

childhood, it is also critical for researchers to begin to extend their empirical 

investigations to developmental populations. 

Towards this goal, Smith and Yu (2008) recently designed a version of their 

adult cross-situational learning paradigm suitable for testing infant learners. 

Employing a simplified looking-based version of the task, Smith and Yu found that 

12- to 14-month-old infants successfully associated words and their corresponding 

objects in a task that, like its adult precursor, required them to attend to the co-

occurrence statistics across situations (Smith & Yu, 2008, in press; Yu & Smith, 

2011). Clearly, studies such as Smith and Yu’s (see also Vouloumanos & Werker, 

2009) help bridge the findings based on adult samples and developmental 

populations. However to date, most of the work that probes into the underlying 

learning mechanism of cross-situational learning (e.g., Ichinco et al., 2009; Kachergis 

et al., 2010; Klein & Yu, 2009; K. Smith et al., 2009; Suanda & Namy, 2011) have 

relied solely on adult models.  

In part this is due to the fact that such studies involve complex paradigms that 

are beyond what current infant research methodologies would allow, given the 

small stimulus sets required to accommodate infants’ limited attention spans. I 
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suggest that one possible way to bridge the gap between the findings based on adult 

samples and the generalization to infant learners is to supplement the infant studies 

with artificial learning tasks with older children (i.e., 5- to 7-year-olds). These 

children are old enough to complete artificial language learning tasks that are closer 

in complexity to those used with adult learners. At the same time, these children are 

obviously closer in age to infant language learners than adults and thus may serve as 

better models of early language learning. 

A handful of studies across various aspects of language acquisition have 

adopted this approach. In a number of cases, researchers have found very little 

difference between adults’ and children’s performance (Saffran, 2001; 2002; 

Saffran, Newport, Aslin, Tunick, & Barrueco, 1997). Others, however, have identified 

conditions under which adults and children perform differently. For example, in a 

series of studies on artificial grammar learning, Hudson Kam and Newport (2005; 

2009) found that 6- to 7-year-olds tend to over-generalize a probabilistically 

prevalent grammatical pattern, whereas adults tend to distribute their patterns in a 

manner that matches the probability with which each grammatical patterns 

occurred in the input. Finally, some researchers have proposed that the differences 

between adults and children are mainly quantitative, rather than qualitative, in 

nature, likely reflecting simply increases in information processing capacity over 

development (e.g., Braine et al., 1990; Ferman & Karni, 2010; Janacsek, Fiser, & 

Nemeth, 2012; Piccin & Waxman, 2007).  

Thus, although early school-aged children are far from equivalent to novice 

language learners, their inherently more limited memory and attentional capacities 
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may nonetheless lead to different patterns of performance compared to adult 

learners. This approach has the potential to assess whether some of the cross-

situational learning findings gleaned from adult learning tasks are operating in 

development.       

2.3.2 The nature of the underlying learning mechanisms 

A second issue that warrants further investigation is the nature of the 

mechanism that underlies cross-situational word learning. As described above (see 

Section 2.2.2), numerous formal and computational models have been proposed that 

suggest that word learning involves aggregating information across situations. 

These extant models vary greatly in the detailed mechanics of their operations and 

thus comparing between them can be difficult. At a high level of abstraction 

however, most of them can be classified as falling into two broad classes of learning 

processes: hypothesis testing models and associative learning models. In hypothesis 

testing models (e.g., Siskind, 1996), cross-situational word learning is 

conceptualized as a process through which the learner selects specific word-to-

referent mappings from a pre-defined set of possible mappings. Over the course of 

learning, mappings are either confirmed or rejected and replaced based on 

additional input, depending on the consistency across naming events. The outcome 

of learning in these accounts is conceptualized as a hypothesis list, a set of definitive 

mappings between a specific word and a specific referent. A separate class of 

models (e.g., Yu, 2008) suggests a more basic associative learning account of cross-

situational word learning. According to this account, a word is linked to multiple 

candidate referents each time that word is uttered. Over time, the learner develops a 
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large associative network consisting of connections between multiple words and 

multiple referents. The strength of each connection is proportional to the regularity 

with which the relevant word and referent co-occur. Thus, in associative learning 

accounts, the outcome of learning is not a definitive mapping between a word and 

its referent but rather multiple probabilistic word-to-referent links that vary in their 

associative strength.   

Recently, there has been great debate over which of these models best 

account for the current data (Nicol Medina, Snedeker, Trueswell, & Gleitman, 2011; 

K. Smith, Smith, & Blythe, 2010; Yu & Smith, 2012). One limitation to this current 

debate, and to many extant process-models of cross-situational word learning more 

generally, is that it is based largely on analysis of adult learner behavioral data (for 

one notable exception, see Yu & Smith, 2011). As a result, its relevance to the 

mechanisms of children’s cross-situational word learning is an open question. 

Indeed some scholars have hypothesized that relative to adult learners, young 

children may exhibit more associative characteristics whereas later learning may 

take more of a hypothesis testing form (e.g., Smith & Yu, 2008). Thus, in addition to 

elucidating the general mechanics of children’s cross-situational word learning, 

computational analyses of developmental data may also shed light onto the 

associative learning – hypothesis testing debate.  

In the chapters that follow, I present a series of studies with the goal of 

addressing these two outstanding issues. In Chapters 3 and 4, I ask whether young 

school-aged children possess the cross-situational word learning prowess 

previously observed in mature adult learners. The study in Chapter 3 provides an 
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initial test of children’s cross-situational learning capacities. The study also 

represents a first step in understanding the constellation of factors that impact 

children’s learning by examining the extent to which the contextual diversity of the 

learning environment, a factor known to influence adults’ learning (Kachergis et al., 

2009; Suanda & Namy, 2012), influences children’s learning. The study reported in 

Chapter 4 probes further children’s learning by testing the precision of the word-to-

referent mappings made across ambiguous naming events. In Chapter 5, I present a 

series of simulation studies that explore the candidate mechanisms underlying 

children’s cross-situational word learning. Specifically, I construct two 

computational models that instantiate the principles of hypothesis testing and 

associative learning respectively, and test simulations of these models performing 

artificial versions of the tasks reported in Chapters 3 and 4. Of interest is the extent 

to which, and under what conditions, each model predicts children’s observed 

learning patterns. Finally, in Chapter 6, I end this dissertation with a broad 

discussion of the role of cross-situational learning in accounts of children’s word 

learning.   
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Chapter 3. The Effect of Contextual Diversity on 

Children’s Cross-Situational Word Learning 

3.1 Background 

In this chapter, I report the results of an experiment on cross-situational 

word learning in school-aged children. Although cross-situational statistical word 

learning has received much attention recently as a potentially important component 

of children’s vocabulary growth, much of the current research on this type of 

learning has been conducted with adult learners (Fitneva & Christiansen, 2011; 

Ichinco et al., 2009; Kachergis et al., 2009; Kachergis, Shiffrin, & Yu, 2012a; Klein & 

Yu, 2009; Klein & Yu, 2009; K. Smith et al., 2009; K. Smith et al., 2010; Suanda & 

Namy, 2012; Vlach & Sandhofer, 2011; Vouloumanos, 2008; Yu & Smith, 2007; Yu, 

Zhong, & Fricker, 2012; Yurovsky & Yu, 2008; Yurovsky, Fricker, Yu, & Smith, 2010). 

Important exceptions do exist (Akhtar & Montague, 1999; Smith & Yu, 2008, in 

press; Vouloumanos & Werker, 2009; Yu & Smith, 2011). For example, in one recent 

study, Smith and Yu (2008) demonstrated that in a simplified version of the adult 

learning paradigm, 12- and 14-month-old infants were able to map words onto their 

referents when the only cue to reference was the word-to-referent cross-situational 

co-occurrence statistics. The finding that even young word learners possess the 

capacity for cross-situational word learning is important because it is an existence 

proof for the claim that a process such as cross-situational word learning can get 

early lexical acquisition off the ground.  
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In the current experiment, I examine cross-situational word learning in an 

older population of children, between the ages of 5 and 7. There are two reasons 

why this age group is an interesting population for studying lexical development. 

First, this is a period of development in which children are very much in the process 

of building their vocabulary. In fact, the rate of vocabulary growth during middle 

childhood is greater than during late infancy and toddlerhood, the period typicaly 

emphasized in word learning theory (for discussion, see Anglin, 1993; P. Bloom, 

2000; Snedeker, 2009). Thus an understanding of cross-situational word learning 

during this period of vocabulary development has the potential to inform not only 

the role of cross-situational learning in later stages of lexical development, but also 

the constellation of learning processes that support prolific word learning more 

generally.  

A second reason to study cross-situational word learning in older children is 

that older children may be an effective population to test the extent to which 

accounts of the nature of cross-situational word learning developed from research 

with adult learners (e.g., K. Smith et al., 2010; Yu & Smith, 2007) are applicable to 

developmental populations. That is, school-aged children are mature enough to 

complete a range of tasks that are commonly used with adults but, for 

methodological reasons, are difficult to implement in infant populations. At the 

same time, school-aged children still possess more limited attentional, memory, and 

general cognitive capacities, and thus can address whether more limited learners 

exhibit similar learning patterns as mature learners. Indeed, although a number of 

researchers have found similarities between adult and child learners within 



 26 

artificial language learning tasks (Meuleumans, Van der Linden, & Perruchet, 1998; 

Saffran, 2001; 2002; Saffran et al., 1997), other researchers have found both 

quantitative and qualitative developmental differences (e.g., Braine et al., 1990; 

Ferman & Karni, 2010; Hudon Kam & Newport, 2005; 2009; Piccin & Waxman, 

2007). 

To test cross-situational word learning capacities in school-aged children, I 

have adapted Yu and Smith’s adult cross-situational word learning paradigm (Yu & 

Smith, 2007) to render the task suitable for young children. As in the adult 

paradigm, children encounter ambiguous naming events in which they see multiple 

pictures of objects and hear multiple words with no disambiguating information 

regarding which word refers to which picture. Across situations, words and their 

referents always co-occur together while the accompanying word-referent pairings 

vary. Thus the logic behind this paradigm is that children can figure out word 

reference only if they are able to utilize the cross-situational co-occurrence 

information.  

Given that there is referential ambiguity present on every single trial, success 

in Yu and Smith’s paradigm has been interpreted as evidence for cross-situational 

word learning. However, K. Smith and colleagues have recently proposed an 

alternative explanation for success in the Yu and Smith paradigm (K. Smith et al., 

2009). They argue that a learner who simply keeps track of the set of words and 

objects present during a single learning trial could successfully demonstrate 

learning. That is, imagine a hypothetical single-trial learner who is presented with 

the three ambiguous naming events in Figure 1A. Further, imagine that this learner 
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only encodes the final trial in the sequence. From this trial alone, the learner would 

know that the words “hiplex” and “bemkin” go with either the object on the left 

(yellow tool) or the object on the right (chandelier). As K. Smith and colleagues 

pointed out, this knowledge alone would be sufficient to respond correctly on the 

test trial presented in Figure 1B because only one of the candidate objects is present 

at test. K. Smith and colleagues supplemented their critique with a formal analysis 

revealing that the levels of adult learning in Yu and Smith’s original task were not 

above the levels that would be predicted through single-trial learning, suggesting 

that Yu and Smith may have overestimated learners’ abilities to track cross-

situational co-occurrence information (K. Smith et al., 2009). 

 

Figure 1. A sample of a series of learning trials containing the word “hiplex” and its referent 

(A). A 4-Alternative-forced-choice (4AFC) task testing learning of the word “hiplex” (B). 
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Given K. Smith and colleagues’ critique, coupled with evidence suggesting 

that relative to adults, children may be less likely to aggregate information across 

trials (e.g., Piccin & Waxman, 2007), the current paradigm includes a manipulation 

that sheds light on the extent to which children employ a single-trial learning 

strategy or a truly cross-situational one. Specifically, children participated in one of 

three learning conditions that differed in the contextual diversity of the learning 

environment. Contextual diversity here refers to the different word-object pairings 

with which a particular word-object pair co-occurs; the difference between a high 

and low diversity context is illustrated in Figure 2. To illustrate how manipulating 

contextual diversity sheds light on the underlying learning strategy, consider single-

trial learners in both high and low contextual diversity conditions, who randomly 

select a single observation of the word “hiplex” (e.g., the last trial). Across both 

conditions of contextual diversity, the single trial learner should perform identically. 

That is, nothing about a single encoding from a high diversity context makes 

learning more or less difficult than a single encoding from a low diversity context. In 

contrast, imagine a cross-situational learner who attempts to figure out the referent 

of the word “hiplex” by tracking information across trials. This learner may find 

conditions of high contextual diversity more conducive to learning because there 

are more opportunities to disambiguate “hiplex”’s referent. Indeed research with 

adult learners in this paradigm (Kachergis et al., 2009; Suanda & Namy, 2012) has 

found that more diversity leads to better learning. To the extent that children also 

demonstrate an effect of contextual diversity on learning this would suggest a 

strategy that involves combining co-occurrence information across situations.      
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In the following experiment, I randomly assigned children to one of three 

conditions of contextual diversity: high contextual diversity, moderate contextual 

diversity, and low contextual diversity. To ensure that any difference between 

conditions would be attributable to contextual diversity, I tested all children’s word 

learning under identical conditions. To the extent that I find an effect of contextual 

diversity on learning, this would rule out a single-trial learning explanation of 

performance and would suggest that learning at this age is driven by a cross-

situational learning strategy.   

  

Figure 2. A sample of learning trials under conditions of high contextual diversity (A). A 

sample of learning trials under conditions of low contextual diversity (B). 

3.2 Method 

3.2.1 Participants 
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Eighty-four 5- to 7-year-olds (Mean age = 73.6 mos, Range = 57.3 - 94.9) from 

the greater Atlanta area participated. Forty-nine children were female. Participants 

were children of families who had volunteered to participate in studies at Emory 

University’s Child Studies Center. 77% of children were Caucasian, 19% were 

African-American, 2% were Asian, and 1% were of other racial categories. 9% of 

families identified as Hispanic or Latino. An additional 13 participants were 

excluded from data analysis due to exhibiting a position bias. See Coding (section 

3.2.5) below for details on exclusion criteria.   

3.2.2 Stimuli 

Stimuli were eight recorded bi-syllabic novel words (e.g., “blicket”) and eight 

pictures of uncommon or artificially altered objects (e.g., a phototube). The same 

female speaker recorded all the words using adult-directed speech and neutral 

prosody. Each word was paired with a picture to create eight to-be-learned word-

object pairings. Initial pilot data revealed that children exhibited no bias towards 

learning any particular word-object mapping.  Four additional novel word-object 

pairings were used for task familiarization. The full stimulus set used in the 

experiment proper is displayed in Figure 3 below. Stimuli were incorporated into a 

computer application that was created in-house using Real Basic software 

(REALbasic, 2008) and used to control stimulus presentation on a 17-in. monitor 

connected to a Power Mac G5. An add-on touch screen (Magic Touch, 2009) was 

mounted onto the monitor to allow children to advance trials and make selections at 

test. 
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Figure 3. Stimuli employed in the experiment: pictures of novel/altered objects used (A); 

orthographic representation of novel spoken words used (B).  

3.2.3 Design  

Children were randomly assigned to one of three conditions varying in the 

contextual diversity of the learning environment: High Contextual Diversity (High 

CD), Moderate Contextual Diversity (Moderate CD), and Low Contextual Diversity 

(Low CD). The association matrices in Table 1 illustrate the total frequencies with 

which words (columns) co-occur with different pictures (rows) in each condition. In 

all three conditions, a word co-occurred with its referent in a total of four trials. In 

each learning trial, a second word and picture was also presented, with the 

correspondence between words and pictures ambiguous on any given trial. 

Conditions differed in the number of different distractors with which a word co-

occurred across the four trials, as well as the frequency with which a given distractor 

co-occurred with a word. To illustrate, in Table 1, Word 1 (W1) co-occurs with its 

referent (Picture 1-P1) on four trials throughout learning. W1-P1 is accompanied by   
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Table 1. Association matrices representing word – picture co-occurrence frequencies across conditions. 
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W2-P2 on one of those trials, W3-P3 on a different trial, W4-P4 on another trial, and 

W5-P5 on yet another trial, resulting in maximal contextual diversity. In the 

Moderate CD condition, word-picture pairings will co-occur with one word-picture 

pairing on two trials, and two other word-picture pairings on the other two trials, 

resulting in less diversity across trials. Finally, in the Low CD condition, word-

picture pairings co-occurred with one word-picture pairing three times, and another 

word-picture pairing once, so the diversity across trials is low. 

3.2.4 Procedure 

Children sat in front of the touch-screen computer next to the experimenter 

with a video camera positioned over children’s shoulders (see Figure 4). The 

experimenter employed a ladybug puppet named “Lulu the Ladybug” and 

introduced the experiment as a game with the goal of learning Lulu’s names for her 

favorite toys. Children completed a familiarization phase followed by a learning and 

test phase.  

 

Figure 4. Image still from a participant depicting the experimental session layout. 

3.2.4.1 Familiarization phase  
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The goal of the familiarization phase was to introduce children to the 

experimental setting and to the general goal of learning Lulu’s names for her toys. 

This procedure has been thoroughly piloted and adapted to optimize task 

comprehensibility for children. There are three parts to the familiarization phase. 

First, the twelve pictures (the 8 to-be learned pictures and 4 additional pictures) 

were displayed simultaneously on the computer screen. Then, the twelve novel 

words that corresponded to each of the pictures were played in a random order. The 

experimenter then told children, “We are going to learn which name goes with 

which picture”. In the second step of the familiarization phase, the experimenter 

explicitly taught children the name of two of the 12 pictures. One novel picture was 

presented on the computer screen and its corresponding word was played. This was 

repeated for a second novel picture. Then, children’s learning of those two words 

was tested in two four-alternative forced-choice (4AFC) trials. In these trials, the 

same four pictures (the two labeled pictures and two unlabeled pictures) appeared 

simultaneously on the computer screen. In the first trial, the first novel word was 

played and children were asked to make a choice by touching the picture they 

thought went with the word. A second 4AFC trial tested children’s learning of the 

referent of the second novel word. Correct selections were reinforced by the 

experimenter’s clapping and a rewarding audio clip (applause and cheering). For 

any incorrect selections, children were asked to make a different selection until they 

were correct. The two novel word-picture pairings taught during the familiarization 

phase as well as the two distractors present in the 4AFC test trials of the 

familiarization phase did not appear during the experiment proper. The goal of the 
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familiarization phase was simply to familiarize children with the game of learning 

words. Given that there was no referential ambiguity in the learning of words during 

this phase, the familiarization phase was not likely to “train” children on how to 

learn words cross-situationally. However, it did familiarize children with the 

experimental setting, the touch screen, the 4AFC task and the goal of the task, to 

learn words. 

3.2.4.2 Learning phase  

 

Figure 5. Sample trial structure in the experiment: a learning trial (A); a test trial (B). 

Following the familiarization phase, children proceeded immediately to the 

learning phase. At this time, the experimenter said, “Now, we are going to learn all of 

the names of Lulu’s other toys”. In each trial of the learning phase, children saw two 

pictures, one on each side of the monitor. Children also heard two spoken words, 

played sequentially in random order, corresponding to the two pictures (see Figure 

5A). The use of two picture-word pairings on each learning trial, which is the 



 36 

simplest (i.e., lowest amount of referential uncertainty) version employed in Yu and 

Smith’s adult paradigm (Yu & Smith, 2007), was selected to minimize the task 

demands for children.  

Each of the eight to-be-learned word-object pairings occurred on four trials 

throughout the learning phase. Given that these 32 instances of word-object 

pairings were presented two at a time on each trial, the learning phase consisted of 

16 total learning trials. Two training lists were created with the order of the trials 

pseudo-randomized such that each of the eight word-object pairings appeared once 

before any given pairing was repeated and no word-object pairing appeared in 

back-to-back trials, consistent with Yu and Smith’s original adult paradigm. Which 

training list was used was counterbalanced across participants.  

3.2.4.3 Test phase.  

The test phase immediately followed the learning phase and consisted of 

eight 4AFC test trials, one per target word. In each trial, four pictures appeared 

simultaneously, one in each quadrant, followed by the presentation of the target 

word (see Figure 5B). The child indicated which picture she thought went with the 

target word by touching the picture on the screen. Children received no feedback 

during the test phase. All test trials were constructed by selecting the target word’s 

corresponding picture and 3 pseudo-randomly selected foils that had never co-

occurred with the target word during the learning phase. All pictures served as foils 

an equal number of times. Two test lists were created and were identical across 

conditions. Which test list was employed was counterbalanced across participants.   
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Since none of the foils had co-occurred with the target word during the 

learning phase, this testing regimen was not designed to detect whether children 

definitively mapped the target word to its correct referent. Instead, this procedure 

simply tested children’s sensitivity to whether the word had co-occurred with the 

target picture at all during the learning phase. Although this testing regimen did not 

provide the most rigorous test of word mapping within each condition, it did 

provide a straightforward way to assess the effect of contextual diversity across 

conditions. A follow-up experiment (see Chapter 4) was designed more specifically 

to address the definitiveness of children’s word mappings.  

3.2.5 Coding 

For each test trial, children’s choices were automatically registered as correct 

or incorrect. Children were considered as exhibiting a position bias and excluded 

from the analysis if they selected the object located in the same quadrant on five or 

more of the eight trials. This cut-off was chosen because it is the point at which the 

probability of selecting a single quadrant across 8 independent trials is statistically 

greater, p < .05, than would be predicted by chance responding.  

Because the experimental procedure involved some interaction between 

experimenter and child, it was important to ensure that the experimenter (a) did 

not inadvertently cue children to the correct answer, and (b) conducted sessions 

identically across conditions. To ensure that the experimenter was not providing 

any cues at test, two coders blind to experimental condition and blind to the correct 

answer watched each test trial of each child and judged whether they believed the 

child had gotten the trial correct or incorrect. The logic behind this coding is that if 
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the experimenter was providing some cue or feedback to the child, the coders 

should be able to reliably discriminate a child’s correct from incorrect trials. To test 

whether coders were able to detect correct from incorrect trials, I calculated a 

Cohen’s Kappa coefficient (Κ) to measure the agreement between each coder’s 

conjecture and children’s actual performance1. Coders’ guesses showed very little 

agreement with children’s actual performance (Κcoder 1 = .07, Κcoder 2 = .07). There was 

also little agreement between the two coders’ conjectures (Κ = .12). This suggests 

that there were no obvious observable cues that may have influenced children’s 

testing performance.   

To ensure cross-condition consistency in experimenter protocol, a coder 

blind to experimental condition watched the entire learning phase for each child 

and rated the experimenter’s enthusiasm during the session (from 1 to 7). Mean 

enthusiasm rating was similar across all three conditions (MHigh= 4.26, MMod= 4.29, 

MLow= 4.21). A second coder also blind to experimental condition watched 25% of 

the sessions. Agreement between the two coders on enthusiasm ratings was high, Κ 

= .782.  

3.3 Results 

For each child, I computed the proportion of test trials answered correctly. I 

then derived a mean proportion correct for each condition of contextual diversity. 

Initial analyses within each condition revealed no effects of training list, testing list, 

                                                        
1 The Kappa coefficient was chosen over other measures (e.g., percent correct) to take into 
consideration baseline differences between how often coders believed children answered 
correctly and how often children actually answered correctly. 
2 For reliability calculations, enthusiasm ratings were reduced to a three-point scale. On a 
seven-point scale, 83% of the two coders’ ratings were within one point of each other. 
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or interaction, on mean proportion correct, smallest p = .10. Thus all subsequent 

analyses were collapsed across training and testing lists. To explore any effects of 

age on performance, I examined, within each condition, the correlation between age 

and mean proportion correct. I found no correlation between age and performance 

in any condition (rHigh = .12, rMod = .15, rLow = .006; smallest p = .43). There were no 

sex differences in performance, p = .30.  

 

Figure 6. Mean proportion correct across levels of contextual diversity. Note: *** p <.001, ** p 

< .01 

Figure 6 shows the mean proportion correct across conditions of contextual 

diversity (MHigh = .48, SDHigh = .21; MMod = .39, SDMod = .20; MLow = .34, SDLow = .18). To 

test whether children demonstrated word learning, for each condition I conducted a 

series of single-sample t-tests to examine whether mean proportion correct was 

above the proportion that would be expected from chance performance (i.e., 

random guessing in a 4AFC trial, .25) in each condition.  These tests revealed that 
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learning in each condition was significantly above chance performance (tHigh(27) = 

5.80, dHigh = 1.10; tMod(27) = 3.57, dMod = .67; tLow(27) = 2.77, dLow(27) = .52, all p’s 

<.01). This finding underscores the power of children’s cross-situational learning: 

from only a handful of ambiguous naming events, children mapped words to their 

referents even when confronted with low levels of contextual diversity. 

To investigate the effect of contextual diversity on learning, I conducted a 

one-way analysis of variance (ANOVA) on mean proportion correct with condition 

as a between-subjects factor. As depicted by the downward trend in mean 

proportion correct across conditions in Figure 6, contextual diversity had a 

significant effect on performance, F(2, 81) = 3.53, p = .03, η2 = .08. Planned 

comparisons with Bonferroni correction revealed that the only statistically 

significant pair-wise difference, was between the High CD and Low CD conditions, p 

= .03. The difference between the High CD and Moderate CD conditions, p = .23, or 

Moderate CD and Low CD conditions, p = .28, did not reach statistical significance. 

The finding that increased contextual diversity improves cross-situational word 

learning is consistent with research with adult learners in a similar paradigm 

(Kachergis et al., 2009; Suanda & Namy, 2012). This finding is particularly 

informative because it rules out a single-trial learning explanation of children’s task 

performance and underscores that children’s learning must have emerged from a 

process of tracking word-picture associations across situations.  

To investigate how representative these group-level results were of 

individual children’s performance, I examined individual patterns of performance, 

dichotomizing children in each condition as either performing above chance or 
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performing at/below chance. Figure 7 illustrates the proportion of children across 

conditions that performed above chance. The main patterns of the group level 

analyses were upheld at the individual level. That is, the proportion of children 

performing above chance in each condition (PropHigh = .786, PropMod = .643, PropLow 

= .500) was statistically greater than the proportion that would be predicted from 

chance performance (.321)3, pHigh < .001, pMod < .001, pLow = .04. Further, a chi-square 

test of independence revealed a marginally significant effect of contextual diversity 

on individual level performance, χ2 = 4.97, p = .08.  

 

Figure 7. Proportion of children performing above chance level (.25) across levels of 

contextual diversity. Note: ***p < .001, *p < .05. 

                                                        
3 Chance for this analysis was defined as the proportion of times one would expect to see a 
participant perform above chance (.25) if participants randomly guessed on each trial. This 
chance value was derived from multiplying the likelihood of each response pattern given 
random guessing (i.e., the likelihood of getting exactly 3 trials correct, 4 trials correct, etc.) 
and the number of permutations of each response pattern that is above chance (e.g., there 
are exactly 56 different ways in which a random performer would get exactly 3 trials 
correct = trials 1,2,3 are correct, trials 1,2,4 are correct, trials 1, 2, 5 are correct, etc.).  
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As Figure 7 illustrates, the marginal difference revealed by the individual-level 

analysis is consistent with that revealed by the group-level data, namely that the 

largest difference is between proportion of children performing above chance in the 

High CD condition and the proportion of children performing above chance in the 

Low CD condition.   

3.4 Discussion 

In the current experiment, 6-year-old children learned word-to-referent 

mappings from just a handful of ambiguous naming events. Although children 

demonstrated learning across all conditions of contextual diversity, children’s 

learning patterns clearly indicated that the more diverse the learning contexts, the 

better the learning. These findings are consistent with previous findings suggesting 

that infants, toddlers and adults are prodigious cross-situational word learners 

(Scott & Fisher, 2012; Smith & Yu, 2008; Yu & Smith, 2007) and that contextual 

diversity influences performance in adult learners (Kachergis et al., 2009; Suanda & 

Namy, 2012). This latter finding begins to shed light on the underlying learning 

strategy children employed in this task. Although the specific mechanism remains 

unclear, that contextual diversity impacts learning rules out a single-trial learning 

strategy as a candidate process, and suggests that the process is one that involves 

combining co-occurrence information across situations. In what follows, I discuss 

three implications and issues raised by the present results: (a) the role of cross-

situational word learning in school children’s vocabulary growth; (b) similarities 

and differences in adult and child statistical learning; and (c) contextual diversity 

effects in learning 
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3.4.1 Cross-situational word learning in children’s vocabulary growth 

 Most developmental research on cross-situational word learning has focused on 

infant and toddler populations (Akhtar & Montague, 1999; Scott & Fisher, 2012; 

Smith & Yu, 2008; in press; Yu & Smith, 2011; but see Piccin & Waxman, 2007; 

Werner & Kaplan, 1950, for notable exceptions). This focus on young word learners 

is warranted: to the extent that cross-situational word learning is a viable candidate 

process that gets word learning off the ground, it is important to demonstrate the 

availability of this learning process in the youngest of word learners. But what about 

the role of cross-situational word learning in later vocabulary development? 

According to some theorists (e.g., Golinkoff & Hirsh-Pasek, 2006; Nazzi & Bertoncini, 

2003) early word learning is qualitatively different from later learning. Whereas 

early learning (i.e., prior to 18- to 24-months) is driven by associative learning 

mechanisms that are characteristically slow and effortful, later learning is driven by 

sophisticated social and cognitive learning processes that are characteristically fast 

and effortless. Thus, perhaps cross-situational word learning plays its primary role 

in early lexical acquisition. Alternatively, cross-situational word learning may 

continue to play an important role in later word learning as well. Two features of 

vocabulary acquisition during middle childhood support this latter view.  

First, the contexts in which most words are learned during middle childhood 

appear to be particularly conducive to a cross-situational word learning strategy. 

That is, many words learned during this phase are acquired unintentionally through 

reading (Gordon, Schumm, Coffland, & Doucette, 1992; Nagy, Herman, & Anderson, 

1987; Nagy, Herman, & Anderson 1985; Shu, Anderson, & Zhang, 1995) or listening 
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(Elley, 1989; Robbins & Ehri, 1994) contexts. This type of word learning is known as 

incidental word learning in educational and reading studies (see Swanborn & de 

Glopper, 1999, for review). Evidence suggests that incidental word learning exhibits 

two patterns suggestive of a cross-situational learning process: (A) the type of word 

knowledge children acquire from these contexts are often only fragments of 

children’s eventual word knowledge  (e.g., Nagy, et al., 1985, 1987; Schwanenflugel, 

Stahl, & McFalls, 1997); (B) researchers have found that children benefit from 

multiple exposures to words, and that a single exposure is rarely sufficient for 

learning (Horst, Parsons, & Bryan, 2011; Jenkins, Stein, & Wysocki, 1984; Robbins & 

Ehri, 1994). Thus, the ability to track probabilistic relations between words and 

potential meanings across multiple contexts, like the ability demonstrated by the 

children in the current study, seem well suited for incidental word learning. 

A second finding about the nature of vocabulary development during middle 

childhood that suggests a role for cross-situational word learning in later 

development is the type of words acquired during this phase in development. In an 

in-depth analysis of the vocabularies of 6-, 8-, and 10-year-olds, Anglin (1993) found 

that much of the increase in vocabulary size during this period is accounted for by a 

large increase of derivative words (e.g., “advisable”, “competitive”). Specifically, 

Anglin found that whereas derived words account for only 16% of a 6-year-olds’ 

vocabulary, they account for 39% of a 10-year-olds’. Anglin’s findings are consistent 

with other findings suggesting that derivational morphology is a relatively late 

development (e.g., Freyd & Baron, 1982; Wysocki & Jenkins, 1987) and one that 

plays an important role in children’s vocabulary growth (e.g., McBride-Chang, 
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Wagner, Muse, Chow, & Shu, 2005; McBride-Chang et al., 2008). The type of cross-

situational learning demonstrated by the children in the current study may help 

explain how children could come to use morphological patterns to derive the 

meaning of newly encountered derivative words. That is, perhaps as some have 

argued (e.g., Goldberg, 1999; Tomasello, 2003), children initially learn words with 

common affixes (e.g., doable, fixable, understandable) individually. As children 

continue to hear other similarly structured words (e.g., drinkable), they begin to 

notice consistent relations between the affix and its underlying semantic and 

syntactic effects. Once children have learned the general rule, they can then 

implement these patterns when confronted with new instances (e.g., cur-able).      

Further research is needed to investigate the extent to which the findings 

from the study of incidental word learning and morphological problem solving 

(Anglin, 1993) is linked to the cross-situational learning work reported in the 

current study. Such research would not only shed light on the role of cross-

situational word learning beyond the earliest stages of vocabulary development, it 

would also bring together approaches to children’s vocabulary acquisition that are 

currently investigated separately.   

3.4.2 Statistical learning in adult and child learners 

In the current study, I find that children, like adults (e.g., Yu & Smith, 2007), 

can rapidly learn words despite referential uncertainty within naming events. 

Additionally, similar to adults’ learning (Kachergis et al., 2009; Suanda & Namy, 

2012), children’s learning is positively impacted by contextually diverse learning 

conditions. Thus, in conjunction with the research on adult cross-situational word 
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learning, the current findings are in accord with other statistical language learning 

studies in other domains (Meulemans et al., 1998; Saffran et al., 1997) that find 

similarities between adults’ and children’s statistical learning. 

The extent to which adult and child learners show similar or different 

learning patterns in the context of artificial language learning studies is of great 

interest given the well-known finding that children are often more successful at 

acquiring a second language relative to adults (Newport, 1990). Thus, that children 

show similar patterns to adult learners in the context of statistical learning studies 

may raise the question of whether learning in these artificial settings has anything 

to do with real-world language learning. Although whether and how performance in 

artificial language learning studies is related to real-world language learning 

abilities is an important and under-studied area of inquiry (but see Misyak & 

Christiansen, 2012, for a recent exception), it is important to point out that children 

do not outperform adult learners in all aspects of real-world language learning. 

Additionally, in statistical learning studies of syntactic acquisition, a domain of 

language learning where children often do outperform adult learners (e.g., Johnson 

& Newport, 1989), researchers have found that children and adults demonstrate 

different learning patterns (Hudson Kam & Newport, 2005; 2009). Further, even 

when researchers do find similarities between adult and child learners, as is the 

case in word learning, the extent to which similar performance is driven by the 

same processes is always an open question. To further probe the similarities and 

differences between adult and child cross-situational word learning, future should 

explore whether children’s learning is similarly constrained by in-the-moment cues 
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to reference (Ichinco et al., 2009; Kachergis et al., 2012a; Yoshida et al., 2012; 

Yurovsky & Yu, 2008) and whether children’s learning exhibits similar 

computational signatures (Klein & Yu, 2009) and memory effects (Vlach & 

Sandhofer, 2010) as adult learning.        

3.4.3 Why does contextual diversity aid learning? 

In the current experiment, greater diversity in learning contexts aided 

children’s word-to-referent mapping. This finding is consistent with previous 

studies of adult learners in a similar paradigm (Kachergis et al., 2009; Suanda & 

Namy, 2012), other work on learning new words from written texts (Bolger et al., 

2008), and observational and corpus analyses that connect early language 

environments to acquisition outcomes (Hills et al., 2010; Hoff & Naigles, 2002). 

Further, this finding is in accord with a broader body of evidence suggesting that 

increasing variability of learning environments improves learning (Gomez, 2002; 

Hintzman & Stern, 1978; Postman & Knecht, 1983; Rost & McMurray, 2009, 2010; S. 

Smith, Glenberg, & Bjork, 1978; Verkoijen, Pikers, & Schmidt, 2004).  

Although there is abundant evidence demonstrating that contextual diversity 

helps learning, the precise reason for why it helps is unclear, though a number of 

hypotheses have been put forward. First, some have argued that increasing 

variability of learning instances allows for more decontextualized representations 

(e.g., Apfelbaum & McMurray, 2011). Second, based on earlier memory research, 

some scholars have argued that contextually diverse learning environments allow 

for a greater number of potential cues at time of memory retrieval (Bower, 1972, 

Glenberg, 1979). Finally, Bjork and colleagues have offered an explanation based on 
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the notion of “desirable difficulties” in learning. That is, contextually diverse 

learning opportunities initially create more difficult individual learning instances 

due to the mismatch between learning instances. This initial difficulty boosts the 

strength of learning in the long run, so long as the encoding of individual instances is 

successful (Bjork, 2011). Thus, a number of potential explanations exist to explain 

the current findings and determining which is at play in the current study is an 

interesting direction for future work.   

Adding to the puzzle of the nature of contextual diversity effects in learning is 

the large number of findings across the memory, learning, and language literatures 

that fail to find a benefit of contextual diversity on learning (Dempster, 1987; 

Postman & Knecht, 1983; Young & Bellezza, 1982), as well as those that find a 

benefit for context redundancy across learning contexts (e.g., Haryu, Imai, & Okada, 

2011; Maguire et al., 2008; Vlach & Sandhofer, 2011). For example in one study of 

early verb learning, Maguire and colleagues presented two-year-olds with an actor 

performing a novel action coupled with a verb-naming event, “wow, watch her 

blicking!” Two-year-olds either saw four instances of the same actor blicking, or four 

instances of four different actors blicking. Maguire and colleagues found that 

children who were presented with the same actor on all learning instances were 

better able to extend the label to a novel instance of blicking (i.e., with a novel actor). 

These results in the domain of verb learning (see also Haryu et al., 2011) are 

reminiscent of other findings from the infant and child categorization literatures 

suggesting that children are better able to detect higher-order relational categories 

when presented with instances that share similar surface characteristics (e.g., 
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Casasola, 2005; Cohen & Oakes, 1993; Gentner & Namy, 1999; Namy, Clepper & 

Gentner, 2007; Namy & Gentner, 2002). 

Thus, although the current findings, along with others (Kachergis et al., 2009; 

Suanda & Namy, 2012) clearly demonstrate a positive effect of increased contextual 

diversity in cross-situational word learning, the nature of these contextual diversity 

effects, and how they relate to other findings of contextual diversity, is a topic for 

future research.  

3.4.4 Conclusion 

In the current study, children readily discovered word meaning through a 

process of tracking word-to-referent co-occurrence information across situations. 

This work extends previous work on cross-situational word learning in both infant 

and adult learners, as well as previous work on children’s statistical learning in 

other areas of language acquisition. The current work begins to shed light on the 

constellation of factors that influence learning, demonstrating the positive effect of 

contextual diversity on children’s learning. Future work is needed to uncover other 

factors that influence learning, whether they are the same as those that influence 

adult learning, and whether cross-situational word learning shares similar patterns 

to other types of learning. Finally, although the current work highlights the 

availability of a cross-situational learning strategy in children during a critical 

period of vocabulary growth, future research should more directly assess whether 

these children employ their cross-situational learning in real-world word learning. 
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Chapter 4. Probing the Precision of Children’s Mappings 

in Cross-Situational Word Learning 

4.1 Background 

How precise were the mappings children made from the few ambiguous 

naming events presented to them in the above experiment? Recall that the structure 

of the test trials in the experiment in Chapter 3 involved the presentation of a target 

word, a target object, and three foil objects that had never occurred with the target 

word during the learning phase. Although this structure allowed for equating the 

structure of the test trials across conditions and thus served as a strict test of the 

effects of contextual diversity on learning, it did not allow for a strict test of the 

specificity of mappings between words and their referents. That is, based on the test 

results in the experiment above, we do not know if children created a definitive 

mapping between words and their most frequently co-occurring objects, or whether 

children simply discriminated between objects that had versus those that had not 

co-occurred with the target words during learning. 

The goal of the current experiment is to probe the precision of children’s 

cross-situational mappings following a small number of ambiguous naming events. 

In this experiment, children completed a task identical to the experiment presented 

in Chapter 3 with the exception that at test, children were presented with 4AFC 

trials that contained foils that also had co-occurred with the target word, with 

varying degrees of frequency. Of particular interest in this experiment is the nature 

of children’s selection patterns. If what children gained from these ambiguous 



 51 

naming events is a broad sensitivity to objects that had versus had not co-occurred 

with the target word, then I should find that children distribute their answers 

equally among objects that had co-occurred with the target object. Alternatively, if 

children’s learning was sensitive to the relative frequencies with which objects had 

co-occurred with the target word, then children’s selection patterns should reflect 

word-to-object co-occurrence frequencies, resulting in a preference for selecting the 

objects that occurred more consistently with the word over those that co-occurred 

with the word less frequently. 

4.2 Method 

4.2.1 Participants 

Twenty-eight 5- to 7-year-olds (Mean age = 74.7 mos, Range = 62.5 – 96.5) 

from the greater Atlanta area participated. Fourteen children were female. As with 

Experiment 1, participants were children of families who had volunteered to 

participate in studies at Emory University’s Child Studies Center. 78% of children 

were Caucasian, 13% were African-American, 3% were Asian, and 6% identified as 

members of other racial categories. 6% of families identified as Hispanic or Latino.     

4.2.2 Stimuli, Design & Procedure 

The stimuli, design, procedure, and coding were identical to the experiment 

reported in Chapter 3 except in the following ways. There was only one learning 

condition in the experiment. The contextual diversity of the learning environment 

was identical to that of the Moderate CD condition of Chapter 3’s experiment (see 

Table 1, page 32). The critical difference between the current experiment and 

Chapter 3’s experiment was the structure of the test trials. In Chapter 3’s 
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experiment, the foils presented on test trials had never co-occurred with the target 

word during learning. In the current experiment, the foils had co-occurred with the 

target word during learning. Specifically, each of the eight 4AFC test trials was 

constructed such that the target word was paired with its corresponding referent 

and 3 pseudo-randomly selected foils that had co-occurred at different rates with 

the target word during the learning phase. One foil had co-occurred with the target 

word on two of the four learning trials in which that word occurred, another foil had 

co-occurred with the target word once during the learning phase, and the other foil 

had never co-occurred with the target word during the learning phase. Of interest is 

whether children’s selection patterns reflect the co-occurrence frequency between 

the item selected and the target word.    

As in Chapter 3’s experiment, two coders, blind to the experimental 

hypothesis, tested for experimenter bias. Enthusiasm ratings of the current 

experiment (M = 4.25) were comparable to the ratings reported in Chapter 3 (M = 

4.25). Additionally, there was very little agreement between coders’ judgments of 

children’s performance and children’s actual performance (ΚCoder 1 <.01; ΚCoder 2 

<.01), or between the two coders’ judgments (Κ = .08).    

4.3 Results 

As in the previous experiment, I computed the proportion of trials each child 

answered correctly. Preliminary analyses revealed a significant effect of training list, 

qualified by a significant interaction between training list and test list on mean 

proportion correct, p = .043, suggesting that performance in one training-test list 

combination was significantly higher than the others. An inspection of the data 
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revealed that this effect was driven primarily by a single child who performed well 

above mean performance for the group. When this child was removed from the 

analysis, the training and testing list effect was no longer statistically significant, p > 

.05. Importantly, the statistical significance of the primary analyses presented below 

were not markedly altered when this participant’s data were removed from 

analyses. As in the previous experiment, I found no correlation between age and 

performance, r = -.01, p = .95, and no sex differences in performance, p = .71.    

 

Figure 8. Distribution of answers to objects differing in co-occurrence frequency with target 

word 

To examine the extent to which participants learned word-to-referent 

pairings in this more challenging testing regimen, I performed a single-sample t-test 

on mean proportion correct against the learning rate that would be expected by 

chance performance (.25). Results revealed that the mean proportion correct (M = 

.335; SD = .19) was significantly higher than chance levels, t(27) = 2.41, p = .02, 
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suggesting that children successfully mapped words onto their referents. This 

group-level analysis was supported by individual-level analysis of performance. A 

chi-square goodness-of-fit test revealed that the proportion of children performing 

above chance (Prop. = .50) was significantly higher than what would be predicted by 

random performance, χ2 = 4.09, p = .04.  

To investigate the precision of children’s mappings, the primary question of 

interest in the current experiment, I examined the relation between the likelihood of 

selecting a particular picture and the word-to-picture co-occurrence frequencies. As 

Figure 8 illustrates, there is a relation between the word-to-picture co-occurrence 

frequency and picture selection probability: the more frequently a word and picture 

co-occurred during learning, the more likely that picture was selected at test. To 

statistically investigate this relation, I conducted a series of pair-wise comparisons, 

given that the responses across the four response types were non-independent.  I 

compared the relative likelihood of selecting one item (e.g., the item that co-

occurred 4 times with the target word) over a different item (e.g., the item that co-

occurred 0 times with the target word). To do this, for each child, I tallied the 

number of trials the child selected either item (e.g., the 4-item or the 0-item). I then 

examined the proportion of these trials (i.e., trials in which the child selected either 

the 4-item or the 0-item) that the child selected the item with greater frequency (in 

this case, the 4-item). A mean proportion across all children was derived and 

compared to the proportion that would be expected if the child selected the greater 

frequency item just as much as the lower frequency item (i.e., .50). Comparisons 

were made for all possible answer pairs (see Table 2). As the table illustrates, 
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children were more likely to select the 4-item more than the 0- and 1-item. That 

children discriminated between the 4-item and 1-item, suggests that children’s 

mappings were more than just an acknowledgement that a word-picture pairing had 

co-occurred, children’s mappings reflected sensitivity to the relative frequency with 

which a word-picture had co-occurred. However, the lack of statistical significance 

in all other pair-wise comparisons highlights the imprecision of children’s 

mappings. For example, there is no evidence to suggest that children discriminated 

between the two items that co-occurred most frequently with the target word (i.e., 

the 4- and 2-item).  

Table 2. Pair-wise comparisons of the likelihood selecting a particular item type (word-object 

co-occurrence frequency type). 

Pair-wise 

Comparison (word-

object co-occurrence 

frequency) 

Mean Proportion 

Selection of More 

Frequent Item (SD) 

One Sample t-test 

t-value p-value Cohen’s d 

4 vs. 0 .663 (.24) 3.66 .001 .69 

4 vs. 1 .633 (.23) 3.08 .005 .58 

4 vs. 2 .564 (.28) 1.19 .24 .23 

2 vs. 0 .553 (.32) .86 .39 .17 

2 vs. 1 .535 (.32) .56 .58 .11 

1 vs. 0 .521 (.33) .34 .73 .06 

 

4.4 Discussion 
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In the current experiment, I investigated children’s ability to distinguish 

between candidate referents differing in their frequency of co-occurrence with the 

target word. Results from the study suggested that children were sensitive not only 

to whether a word and picture had co-occurred but, at least in part, to the relative 

frequencies with which pictures and target word had co-occurred. At the same time, 

there was imprecision in children’s mappings. That is, although children picked out 

the picture with a high co-occurrence frequency relatively more often than the 

object with a low co-occurrence frequency, they did not select the picture with a 

high co-occurrence frequency more than the picture with a moderate co-occurrence 

frequency.  

There are at least two learning processes that can readily explain the pattern 

of performance children exhibited. First, children may have kept track of multiple 

candidate referents for each word via an associative learning process (see Yu, 

2008). Consequently, the observed selection pattern is a result of the relative 

strength of internalized associative links between words and objects that reflect the 

relative co-occurrence frequencies of the learning environment. Alternatively, 

children may have adopted a hypothesis testing strategy (see Nicol Medina et al., 

2011) by which they generated and tracked a single hypothesized mapping for each 

target word. Under this account, the selection pattern is a result of a simple 

likelihood analysis: the likelihood of landing on a particular hypothesized referent 

object is proportional to the frequency with which that object had co-occurred with 

the target word. There has been recent debate over which of these two learning 

mechanisms best explains cross-situational word learning (Nicol Medina et al., 
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2011; Scott & Fisher, 2012; Yu & Smith, 2012). Although the current findings cannot 

distinguish between the two, through a series of computational simulations 

conducted in the following chapter, I hope to shed some light onto this issue. 

Regardless of whether the current findings are the result of an associative 

learning or hypothesis testing mechanism, the finding that children’s learning fell 

short of definitive mappings between words and their correct referents highlights 

an important fact about real-world word learning: learning word meaning is not an 

all-or-none process. The notion that children go through intermediate levels of 

learning and may possess only partial knowledge of a word’s meaning might seem 

like a trivial notion. However, partial learning is a topic that has received very little 

attention in the early word learning literature, though it is a topic that is studied in 

both reading research (Schwanenflugel et al., 1997; Wagovich & Newhoff, 2004) and 

adult learning literature (Durso & Shore, 1991; Frishkoff, Perfetti, Collins-

Thompson, 2011; Shore & Durso, 1990; Whitmore, Shore, & Smith, 2004). This lack 

of attention to partial learning is likely the result of a number of factors, including 

(1) a theoretical focus of word learning theories on fast mapping and the nature of 

children’s initial word mappings (see Carey, 2010; Swingley, 2010 for discussion), 

(2) methodological limitations in the measurement instruments of children’s 

vocabulary that tend to be binary (e.g., in parent report measures, see Fenson et al., 

1994, parents commonly simply indicate whether children do or do not know a 

word), and (3) methodological limitations in how partial word knowledge is 

operationalized (i.e., partial word knowledge is often operationalized in part using 

metalinguistic judgments at which young children are notoriously weak, see 
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Marazita & Merriman, 2004). The growing interest in cross-situational word 

learning and the development of cross-situational learning paradigms, such as the 

one presented here, provides the opportunity to study the progression of learning 

through different degrees of word knowledge, as well as study the role partial word 

knowledge may play on subsequent word learning (see Yu, 2008; Yurovsky et al., 

2010).  
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Chapter 5. Children’s Cross-Situational Word Learning: 

Hypothesis Testing or Associative Learning?  

5.1 Background 

In Chapters 3 and 4, I reported two behavioral experiments on children’s 

cross-situational word learning. The experiment in Chapter 3 served as both a first 

test of school-aged children’s cross-situational learning capacities and an initial 

investigation into the factors that influence learning. The findings of that experiment 

revealed that children could readily learn new words by tracking word-to-referent 

co-occurrence statistics across ambiguous naming events. Furthermore, the results 

pointed to one factor that appears to influence cross-situational word learning, 

namely the diversity of contexts in which words and their candidate referents co-

occur. The experiment in Chapter 4 probed further the nature of cross-situational 

word learning by testing the precision of children’s word-to-referent mappings. The 

findings of that experiment revealed that although children displayed some 

sensitivity to the relative frequencies of word-to-referent co-occurrences, they also 

exhibited some imprecision in their mappings, namely they were unable to 

discriminate between highly frequent and moderately frequent co-occurring 

referents.  

Documentations of learning patterns and investigations into the factors that 

influence learning are necessary steps to understanding cross-situational word 

learning. However, a deeper understanding of the phenomenon involves 

investigating the underlying mechanisms that underlie behavior. The experimental 
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manipulation in Chapter 3 was a first step in this direction. That is, that 

manipulations of contextual diversity impacted children’s learning ruled out one 

potential mechanism, namely a one-trial learning strategy. Thus, children must have 

recruited the cross-situational consistencies in word-to-referent co-occurrences in 

the service of word learning. However, multiple mechanisms, as discussed in 

Chapter 4, are consistent with learning via sensitivity to cross-situational co-

occurrence statistics. For example, it is possible that when children encounter a new 

word in an ambiguous naming event, they pick out a specific object as a 

hypothesized referent of the word. As children encounter this word in a subsequent 

naming event, children either confirm the hypothesis if it is consistent with the 

event (i.e., the initially hypothesized referent is also present in the subsequent 

event) or reject and replace the hypothesis if it is inconsistent with the event (i.e., 

the initially hypothesized referent is not present in the subsequent event). This 

process of confirming or replacing hypothesized word-to-referent mappings should 

yield successful cross-situational word learning based on the logic of probability: 

more frequently co-occurring word-to-object pairs will be more likely to be selected 

as word-to-referent hypotheses than infrequently co-occurring word-to-object 

pairs.  

Alternatively, it is also possible that when children encounter a new word in 

an ambiguous naming event, they encode the connection between this word and 

multiple, if not all, co-occurring objects. As children encounter this word in 

subsequent naming events, they strengthen previous connections as well as create 

new connections. This process of aggregating cross-situational co-occurrence 
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statistics also yields successful learning because the connections between 

frequently co-occurring word-to-object pairs will be stronger than infrequently co-

occurring word-to-object pairs.  

Thus, at least two learning mechanisms are consistent with cross-situational 

word learning. These two learning processes, better known as hypothesis testing and 

associative learning (see Yu & Smith, 2007, 2012; Xu & Tennenbaum, 2007a) have 

long been central to many discussions of children’s word learning (e.g., Markman, 

1992; Smith, 2000). They have received increased attention in recent years in the 

context of cross-situational word learning as there has been much debate over 

which of the two mechanisms best accounts for the empirical data (e.g., Nicol 

Medina et al., 2011; Scott & Fisher, 2012; K. Smith et al., 2010; Yu & Smith, 2011). 

Thus, the goal of this chapter is to investigate the mechanisms underlying children’s 

cross-situational word learning and to shed light onto the hypothesis testing vs. 

associative learning debate. I do so by comparing how readily computer simulations 

of the two learning algorithms model and predict the children’s data collected in 

Chapters 3 and 4. In what follows, I briefly discuss the two accounts and summarize 

important differences between them. I then describe the current computational 

instantiations of these accounts and present a series of simulations that test models 

of these processes against the children’s data, testing the extent to which, and the 

conditions under which, they can account for the behavioral findings. I then end by 

discussing the implications of these findings for the learning mechanisms 

underlying cross-situational word learning.  

5.1.1 Hypothesis Testing 



 62 

Under hypothesis testing accounts (e.g., Frank et al., 2009; Nicol Medina et 

al., 2011; Siskind, 1996; Xu & Tennenbaum, 2007a), learning involves a process of 

picking out specific hypothesized word-to-referent mappings that are consistent 

with a given naming event and then testing these hypotheses against future naming 

events. Imagine a simple example of a child hearing the word “ball” in the context of 

a ball and a bat. If the child has no experience with this word and these objects, 

according to a basic hypothesis testing account, the child would randomly select one 

of the objects (e.g., the bat) as the referent of “ball”. Further, imagine the same child 

encountering “ball” again, but now in the context of a ball and a basket. According to 

this account, that the hypothesized referent (i.e., bat) is not present in the 

environment would lead the child to discard this hypothesis and select a new 

hypothesized referent (e.g., ball). This process continues until the child lands on a 

word-to-referent hypothesis that has received sufficient cross-situational 

confirmation.     

Computational models that reflect variations of this general process have 

been proposed as candidate mechanisms of many empirical findings in children’s 

word learning, including cross-situational word learning. In one of the earliest 

computational investigations of cross-situational learning, Siskind (1996) examined 

the extent to which a computer algorithm could learn word-meaning mappings from 

a large corpus of artificially generated sentences (e.g., “John walked to school”) each 

paired with the sentence’s corresponding meaning (e.g., [John], [walked (John, to 
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school)], [school])4. Learning in the model involved reducing the hypothesis space 

for candidate word meanings by testing hypotheses generated via a series of 

inference rules (e.g., that each word must map onto only a single meaning). Not only 

could Siskind’s model eventually converge on the right word-meaning mappings, the 

model demonstrated a number of findings that parallel children’s vocabulary 

development. For example, the model showed a pattern of slow word learning in the 

early stages (i.e., the model required a large number of instances to learn a single 

word), followed by a pattern of fast learning later in the process, consistent with the 

typical trajectory of vocabulary development in children (see Fenson et al., 1994). 

More recent computational models that employ a hypothesis testing algorithm have 

accounted for other aspects of children’s learning such as children’s bias to 

generalize novel nouns based on shape (Kemp, Perfors, & Tenenbaum, 2007), the 

effect of labeling contexts in novel noun generalization (Xu & Tennenbaum, 2007a), 

the effect of socio-pragmatic cues in word learning (Frank et al., 2009; Xu & 

Tennenbaum, 2007b), and children’s mutual exclusivity bias (i.e., children’s 

preference to map a novel label onto a novel object over a familiar one; Frank et al., 

2009; Regier, 2003).  

5.1.2 Associative Learning 

In contrast to hypothesis testing, associative learning accounts of word 

learning typically involve a learning process that builds a network of associations 

                                                        
4 In this example, predicates are represented in a [P(x,y)] format where P is the predicate, 
and x,y represents the predicate’s arguments. In Siskind’s actual model, there was a broader 
range of meanings from the sentence “John walked to School”: [John], [Go(John, school)], 
[Go(John,y)], [Go(,school)], [To(school)], [To(x)], [school] 
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between many words and many referents. Under these accounts, definitive word-to-

referent mappings do not necessarily exist. Instead, there may simply be strongly 

associated word-referent pairings and weakly associated ones. Returning to the 

example mentioned above, if a child encounters the word “ball” in the context of a 

ball and a bat, according to this account, the child would link the word “ball” with 

both the ball and the bat. The child would also link the word “ball” with the objects 

present in the second naming event, thus increasing the strength of the link between 

the word “ball” and the ball and adding an associative link between the word “ball” 

and the basket. According to this account, as children develop their vocabulary, they 

acquire a large associative network between many words and many referents; with 

certain associative links being stronger and others weaker. Word mappings in any 

given moment are resolved probabilistically based on the relative strengths of the 

associations with all candidate referents. 

A number of recent computational models of cross-situational word learning 

employ associative principles. For example, Yu (2008) conducted one computational 

study to examine the extent to which an associative learning model could learn 

word-to-referent mappings from input patterns derived from parent-child semi-

naturalistic interactions. Parents narrated text-free picture books to their children. 

The words parents produced while viewing each page coupled with the pictures 

appearing on that page were then fed to the associative model as input. The model 

learned words by tracking the associative probabilities between words and objects 
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in the pictures5. After presenting the model with multiple exposures to each page of 

the book (multiple parent-child dyads contributed to the input), the model was 

tested for whether it correctly associated words with their referents. Yu found that 

the simple learning model could reliably discover correct word-object mappings 

from a set of inputs that approximates the types of input to which child word 

learners are exposed. Over the years, associative models have accounted for a 

number of other empirical findings in children’s word learning, including the shape 

(Colunga & Smith, 2005; Samuelson, 2002) and taxonomic biases (Mayor & Plunkett, 

2010) in children’s novel noun generalizations, the vocabulary spurt (Plunkett et al., 

1992; McMurray, 2007) and the increasing sensitivity to linguistic forms in word 

learning that children exhibit with development (Apfelbaum & McMurray, 2011; 

Regier, 2005). 

5.1.3 Current Endeavor 

Clearly, both hypothesis testing and associative learning accounts have 

established records in accounting for a wide range of word learning phenomena. 

The goal of the current endeavor is to test these two accounts against the behavioral 

findings reported in Chapters 3 and 4. Given the success of both accounts, it is 

plausible, and in fact likely, that both models could account for the findings. Thus, 

the purpose of this endeavor is not necessarily to address whether some hypothesis 

testing or associative learning model can account for children’s learning patterns 

but rather to understand the conditions under which each account does so 

successfully. To do this, I purposefully start this endeavor by creating and testing 

                                                        
5 Yu (2008)’s model also included additional processes such as a function-word filter as well 
as a mutual exclusivity component. 
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versions of each model that are maximally different from one another along three 

properties of learning: (1) the learning algorithm of the models, (2) the nature of 

information intake, and (3) the type of information the models retain. Table 3 

illustrates how the two models differ along these properties. Although many recent 

instantiations of hypothesis testing and associative learning models stray from 

these standards, and thus blur the line between the two models, these differences 

are generally considered to be the core canonical properties on which the two 

accounts differ (for discussion, see Nicol Medina et al., 2011; Yu & Smith, 2012). The 

complete architecture of each model is presented in the following section.  

Table 3. Core differences between hypothesis testing and associative learning models on three 

computational properties.  

 Model 

Model Property Hypothesis Testing Associative Learning 

Cross-situational 

learning algorithm 

Updating of word-to-referent 

hypotheses via a process of 

hypothesis confirmation, 

rejection, and/or replacement 

based on a defined confidence 

threshold 

Accrual of associative links 

between co-occurring words 

and objects, the strength of 

which can vary continuously 

Information selection 

within a naming event 

Mutually exclusive word-to-

referent mappings 

Associations between multiple 

words and multiple objects 

Information retention 

from previous naming 

events 

Alternative hypotheses, 

information from past learning 

situations are not retained  

Previously associated word-

object pairs are represented in 

the associative network  

 
5.2 Models 

5.2.1 Hypothesis Testing (HT) Model 
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A Hypothesis Testing (HT) model was developed to instantiate the learning 

components described above in Table 3. In the HT model, the learners’ lexicon is 

represented as a hypothesis list of mutually exclusive word-to-referent hypotheses. 

That is, each word is mapped to one and only one candidate referent. Learning in 

the HT model occurs through a process of updating the hypothesis list based on the 

matches and mismatches between the existing hypothesis and incoming evidence 

from naming events. Below is a step-by-step description of the current model’s 

operation, followed by a toy example of the model in action.   

At the onset of learning, the learner’s hypothesis list is blank. On each naming 

event, the model randomly selects mutually exclusive word-to-referent hypotheses 

from the candidate mappings that are present in the naming event. For example, if a 

naming event consisted of two words {W1, W2} and two objects {O1, O2}, the model 

might select hypotheses W1-O2 and W2-O1 from the naming event’s set of 

candidates {W1-O1, W1-O2, W2-O1, W2-O2}. Early in the learning phase, when 

there are no existing hypotheses to guide learning, selected hypotheses are simply 

added to the hypothesis list. As learning progresses, the learner updates the 

hypothesis list by confirming, rejecting, or replacing hypotheses. That is, if a selected 

hypothesized word-referent pair from a naming event is consistent with a learners’ 

existing hypothesis, then that hypothesis is confirmed, and the learner adds 

confidence in the hypothesis. Alternatively, if the hypothesis selected is inconsistent 

with any existing hypotheses (i.e., the learner possesses a different hypothesis for 

either the word, the object, or both), then what happens depends on the learners’ 

confidence in the existing hypothesis relative to a set threshold value. The threshold 
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value is a model parameter that is free to vary and determines whether hypotheses 

are rejected or maintained. If the strength of the existing hypothesis is above the 

threshold, then the hypothesis is retained, even in the face of conflicting evidence, 

and the selected hypothesis generated by that naming event is rejected. 

Alternatively, if the strength of any existing hypothesis is below the threshold, then 

the existing hypothesis is replaced in favor of the newly selected hypothesis 

generated on that trial.  

When tested for word knowledge (i.e., presented with a 4AFC test trial), 

there are two potential outcomes for the simulated hypothesis tester. If the learners’ 

hypothesized referent for the target word is among the objects available to select, 

then the learner will select that object. Alternatively, if the learners’ hypothesized 

referent for the target word is not among the objects available to select, then the 

learner selects randomly among available objects. 

To illustrate how the HT model works, consider the toy example in Figure 9A. 

In this example we will assume that the simulated learners’ confidence threshold ω 

(i.e., the threshold that determines whether selected hypotheses are rejected or 

existing hypotheses replaced) is set at 2. That is, the simulated learner will be 

sufficiently confident in a hypothesis if it has been selected from two naming events. 

When the simulated learner is presented with the words a and b, and objects A and 

B on the first trial, the learner randomly selects two mutually exclusive hypotheses 

{a-A, b-B}, and these hypotheses are added to the hypothesis list. On the second 

learning trial, two additional randomly selected hypotheses {c-D, d-C} are added to 

the hypothesis list. On the final trial, the model selects the hypotheses a-A and c-C. 
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Because one hypothesis {a-A} is consistent with the existing hypothesis list, this 

hypothesis is confirmed, and confidence in this hypothesis is increased. Since the 

second selected hypothesis in this example {c-C} is inconsistent with existing 

hypotheses in the list {c-D, d-C}, and these existing hypotheses are below the 

hypothesis threshold, the existing hypotheses are replaced in favor of the newly 

selected hypothesis. On the test trial illustrated in the figure, this simulated learner 

would select object A because it is the existing hypothesized referent of the word 

tested (a).  

 

Figure 9. Toy example illustrating the learning algorithms implemented in the 

Hypothesis Testing model (A) and Associative Learning model (B).  

This toy example illustrates how a HT learner could succeed at learning 

amidst referential ambiguity. Because words and their referents always co-occur, 
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simulated learners are more likely to have the opportunity to select, and build 

confidence in, correct hypotheses over incorrect hypotheses. The toy example also 

underscores the importance of the confidence threshold parameter in hypothesis 

testing. For example, had the confidence threshold in this example been set lower (ω 

= 1), then on the third learning trial, the learner would not have replaced the 

incorrect existing hypotheses c-D and d-C in favor of the correct hypothesis c-C. In 

the reported simulations below, the confidence threshold ω is a model parameter 

that is varied across simulations to examine its effects on cross-situational word 

learning.  

5.2.2 Associative Learning (AL) Model 

The current Associative Learning (AL) model was constructed to instantiate 

the learning principles laid out in the right-hand column of Table 3. The lexicon of 

the simulated associative learner is represented as a large word-object association 

matrix, with cells representing the associative strength between specific word-

object pairings. Over learning, cells are updated using a simple learning algorithm: 

the associative strength between a word-object pairing is increased whenever that 

word and object co-occur. Importantly, this updating is applied to all word-object 

pairs present on a given trial. There is no lateral inhibition built in to this associative 

learning model. That is, the association strength between a word and objects that 

are not present on a given trial is not diminished by virtue of those objects’ absence.  

Instead, the association strength established on previous trials is maintained. Below 

is a step-by-step description of the model’s operation, followed by a toy example of 

the learning algorithm employed.    
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At the onset of learning, the association matrix consists of empty cells. On 

each learning trial, the model links all presented words with all presented objects 

with equal weighting or association strength. For example, if words W1 and W2 

were presented with objects O1 and O2, then the four possible associations {W1-O1, 

W1-O2, W2-O1, W2-O2} would be added to the learner’s association matrix. As 

learning progresses, the simulated learner updates its cells using the following 

simple function: 

 

In this equation, Mt(w,o) represents a particular word-object association on the t-th 

trial, and α represents a parameter controlling the gain in associative strength.  

At test, the simulated learner computes a probability value for each object 

present, which is equal to the association strength between the target word and that 

object normalized by the sum of the association strengths between the target word 

and all objects present in the test trial. Thus, if the learner is presented with target 

word W1, and objects O1, O2, O3, and O4, the learner computes the probability of 

selecting O1, p(O1), which is equal to: 

 

The learner then selects one object with a likelihood equal to the computed 

probability value for that object.  
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To illustrate how the AL model works, consider the toy example presented in 

Figure 9B. In this example, the learning parameter α is set to 1 (multiple values of α 

will be tested in the actual simulations). On Trial 1, the simulated learner associates 

all presented words with all presented objects {a-A, a-B, b-A, b-B}. These four 

associations are added to the learner’s lexicon and the same association strength 

value is added to the relevant association cells. On Trial 2, four additional 

association cells {c-C, c-D, d-C, d-D} are added and receive activation. Finally, on 

Trial 3, the four cells {a-A, a-C, c-A, and c-C} receive activation. On the test trial, 

when the learner is presented with the target word a and the objects A, B, C, and D, 

the learner has a .5 probability of selecting the “correct” referent A which is higher 

than the probability of selecting any other individual object:

 

This learner has only a .25 probability of selecting objects B and likewise object C. 

This learner will never select object D. The model implements a choice in the 

current simulations via random selection from a weightedpool. This can be 

conceptualized as analogous to picking a lottery ball from a box with half of the balls 

marked A, a quarter of them marked B and a quarter marked C. Although on any 

given trial the simulated learner might select an object with a lower probability, 

over repeated testing the average of selecting each object should converge on that 

object’s probability value.     
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This toy example illustrates how an associative learner, who links a single 

word to multiple objects and a single object to multiple words, nonetheless succeeds 

at a test of cross-situational word learning: when tested for the referent of a 

particular target word, the probability with which the simulated learner selects the 

most frequently co-occurring object is always greater than the probability with 

which the simulated learner selects less frequently co-occurring objects.  

In the following simulations, I examine the extent to which hypothesis testing 

and associative learning mechanisms can model and predict children’s learning 

patterns reported in Chapters 3 and 4. I will first present data addressing the extent 

to which HT and AL models are impacted by the contextual diversity of the learning 

environment in a way similar to children as reported in Chapter 3. I then test 

whether the HT and AL models predict similar item-selection patterns to children’s 

reported in Chapter 4.  I then end by considering the implications of the results for 

potential mechanisms underlying children’s cross-situational word learning. 

5.3 Simulation 1: The role of contextual diversity in cross-

situational word learning 

5.3.1 Method 

As with children in the experiment in Chapter 3, simulated learners 

completed one of three learning phases, differing in the contextual diversity of the 

learning environment. Following the learning phase, simulated learners completed a 

series of 4AFC trials that included the target word, the target word’s referent and 

three foils that had not occurred with the target word during learning. To compare 

model performance with children’s performance, the data from simulated learners 
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were processed the same way that children’s data were. That is, a proportion 

correct score was derived from each simulated learner. Then, a mean proportion 

correct across simulated learners was computed for each condition of contextual 

diversity. Of interest is the extent to which simulated hypothesis testers and 

associative learners produce the same contextual diversity effect observed in 

children. That is, does accuracy at test increase as contextual diversity during 

learning increases? 

Each models had one free parameter, word knowledge threshold in the HT 

model and learning rate in the AL model.  Four variants of each model (varying only 

in the value of the free parameter) were tested. HT models varied in the word 

knowledge threshold (ω = 1, 2, 3, and 4). In HT models with a high word knowledge 

threshold, simulated learners would need to observe evidence consistent a word-to-

referent hypothesis more times before they commit to that hypothesis. AL models 

varied in the learning rate (α = .25,  .5,  .75, and 1). In AL model variants with high 

learning rates, there is larger gain in associative strength added each time a word-

object pair co-occurs. As a consequence, models with high learning rates will have a 

larger absolute difference in the associative strength between frequently co-

occurring word-to-object pairs and infrequently co-occurring word-to-object pairs.  

For each model variant, I conducted 30,000 runs (each run representing 1 

simulated learner). Because there is variation in each simulated learner, the large 

number of runs ensures that averages across runs converge on the learning 

algorithms’ true predictions. The large number of runs is particularly needed in the 

HT model where the simulated learner randomly selects the hypotheses, which 
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leads to great variation between learners depending on which hypotheses are 

selected on each learning trial. Multiple runs are also needed in AL simulations 

because the testing algorithm, as described earlier, makes a semi-random choice on 

each test-trial.    

To assess the fit between simulated learners and children, I correlated 

simulated learners’ average performance in the three conditions of contextual 

diversity to children’s average performance in those same conditions. I used a 

simple Pearson’s correlation coefficient with a sample size of 3 (one data point per 

condition) as the metric of comparison. This metric was selected because my 

primary interest was not necessarily whether the models would show the same 

learning rate as children but rather whether models would show the same pattern 

of learning (i.e., increased learning as levels of contextual diversity increased). By 

evaluating models using this method (as opposed to using a metric such as mean 

squared error), fit in this case speaks only to the relative difference between 

conditions, rather than on absolute fit in accuracy. One limitation to employing a 

correlation coefficient in the current context is the small sample size, which will lead 

to the possibility that large correlation values could be observed by chance alone as 

well as the increased possibility of a Type II error, a failure to reject the null 

hypothesis.  

5.3.2 Results  

5.3.2.1 HT model results 

HT models’ performance is depicted in Figure 10. As the figure illustrates, 

there is variability in the extent to which HT models are affected by contextual 
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diversity. Specifically, only the model with a moderately low threshold (ω = 2) 

shows a clear downward trend in performance, exhibiting lower accuracy under 

conditions of lower contextual diversity. 

 

Figure 10. HT models performance in Simulation 1: Mean proportion correct across models 

varying in word knowledge threshold (ω) and across conditions of contextual diversity.  

5.3.2.2 AL model results 

As Figure 11 illustrates, and in contrast to the HT models’ results, there is no 

evidence that any of the AL models’ performance is impacted neither by the 

contextual diversity of the learning environment nor by associative learning rates. 

All AL model variants exhibit a ceiling effect across all conditions of contextual 

diversity in this simulation. 

5.3.2.3 Correlations between models’ and children’s performance 
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Results of correlation analyses between children’s performance variants of 

each model are reported in Table 4. These analyses confirm that only the HT model 

with a moderately low threshold (ω = 2) shows a marginally significant correlation 

with the contextual diversity effect observed in children. In contrast to the qualified 

success of the HT model in accounting for children’s learning patterns, none of the 

AL model variants’ performance patterns correlate with children’s contextual 

diversity effect.  

 

Figure 11. AL models performance in Simulation 1: Mean proportion correct across models 

varying in learning rates (α) and across conditions of contextual diversity. 

 Although these correlation analyses revealed little evidence that either HT 

or AL models fit the contextual diversity effects observed in children, the power of 

these analyses was quite low given the small number of observations per analysis.  
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One potential issue with interpreting correlations with a low number of 

observations is that there is an increased chance of a Type II error.  

Table 4. Correlation results between models’ and children’s performance in Chapter 3. Note: 

all tests of significance in this chapter were one-tailed, ^p < .10  

Models Tested 
Correlation Statistics 

r p 

HT Models varying in hypothesis threshold (ω)   

HT Model 1 (ω = 1) .361 .38 

HT Model 2 (ω = 2) .954 .09^ 

HT Model 3 (ω = 3) -.278 .41 

HT Model 4 (ω = 4) .758 .22 

AL Models varying in learning rate (α)   

AL Model 1 (α = .25) -6 - 

AL Model 2 (α = .5) - - 

AL Model 3 (α = .75) - - 

AL Model 4 (α = 1) - - 

To address this concern, I conducted a separate type of analysis on the 

models. Rather than running a large number of simulations and averaging across 

simulated learners, I instead conducted a series of simulated “experiments”, each 

with a sample size equivalent to that collected with children. In these simulated 

experiments, 84 simulated learners were randomly assigned to one of the three 

conditions of contextual diversity. In each experiment, mean proportion correct 

across conditions was correlated with children’s condition means in Chapter 3. One 

                                                        
6 Pearson values of all AL models could not be calculated because there was no variability in 
the simulated learners’ averages across conditions of contextual diversity.  
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thousand simulated experiments were conducted, and each experiment was 

classified as either correlating strongly (r > .50), moderately (.30 > r > .50), or 

weakly (r < .30) with children’s performance7. Of interest in these simulated 

experiments is the proportion of experiments that correlate strongly with children’s 

performance. Thus, this analysis addresses the question: given a particular 

population of simulated learners, what is the likelihood of sampling a group of 

learners that mimic children’s performance? 

 

Figure 12. Proportion of simulated experiments of HT and AL models whose results correlated 

strongly, moderately, and weakly with children’s contextual diversity effects.   

The results of these simulated experiments are displayed in Figure 12. As the 

figure demonstrates, the results are consistent with, and clarify, the first analysis. 
                                                        
7 Cut-off values were chosen based on thresholds established by Cohen and colleagues 
(Cohen, 1992a, 1992b; Hemphill, 2003) 
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Specifically, there is a much higher likelihood of sampling learners whose results 

strongly correlate with children’s performance in the second HT model (ω = 2) than 

in the other HT models tested. None of the AL models correlated strongly, or even 

moderately, with children’s performance.  

5.3.3 Discussion 

The results from these simulations suggest that a simple hypothesis testing 

model can account for children’s contextual diversity effects. However, only one 

version of this model consistently predicts the contextual diversity effect. 

Specifically, only when the learner’s hypothesis threshold, ω, is set neither too low 

nor too high will the model display the patterns observed in children. When ω is set 

too low (i.e., ω = 1), simulated learners commit too quickly to randomly selected 

word-to-referent hypotheses, which are just as likely to be incorrect as correct 

hypotheses. In contrast, when ω is set too high (e.g., ω = 4), simulated learners 

commit the opposite error. These learners rarely achieve confidence in their 

hypotheses and thus are too quick to replace existing hypotheses with newer ones, 

which are again equally likely to be correct and incorrect. Important in the context 

of the current study is the fact that the consequence of both too liberal and too 

conservative of a hypothesis threshold is a lack of contextual diversity effects on 

performance. However, when the threshold is set neither too low nor too high, 

simulated learners in the High CD condition only ever achieve confidence in correct 

hypotheses because the frequency of co-occurrence between a word and any given 

distractor is low enough that the simulated learner will never wrongly commit to an 

incorrect hypothesis. In contrast, simulated learners in the lower contextual 
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diversity conditions will sometimes commit to incorrect hypotheses because words 

and distractors in these conditions occur multiple times. These mismappings are 

what account for the model’s observed contextual diversity effect.   

 In contrast to the success of at least one variant hypothesis testing model in 

explaining the contextual diversity effect, all variants of the associative learning 

model failed to account for the effect. The most obvious answer to why associative 

learners did not show the contextual diversity effect is that on test trials, associative 

learners considered only the relative associative strength between words and the 

objects present on the test trial. Because the test trials contained only foils that had 

never co-occurred with the target word, associative learners always accurately 

selected the target object, resulting in a ceiling effect. Later in this chapter I return 

to this issue, considering whether there are modifications to the associative model 

that would yield the contextual diversity effect. First, however, I examine whether 

this basic associative model, as well as the hypothesis testing model can account for 

a second pattern exhibited in children’s performance, namely, the item selection 

effects observed in children (Chapter 4).   

5.4 Simulation 2: Item selection as a function of cross-situational 

co-occurrence statistics 

5.4.1 Method  

In this simulation, learners completed the same learning phase as children 

did in the experiment reported in Chapter 4 (learning with moderate contextual 

diversity), and then completed a series of 4AFC trials that included the target word, 

that word’s referent (or the “4-item”, the item that co-occurred four times with the 
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target word during learning) and three foils, two of which had co-occurred with the 

target word during learning (2-item, which co-occurred twice with the target word; 

1-item, which co-occurred once with the target word; 0-item, which never co-

occurred with the target word). The proportion of trials on which  simulated 

learners selected each answer type (i.e., 4-item, 2-item, 1-item, and 0-item) was 

computed. Then, a mean proportion for answer type was derived across simulated 

learners. Of interest is the extent to which simulated learners show the same item 

selection effect observed in children: the finding that the higher the item’s co-

occurrence frequency with the target word, the higher the probability of selecting 

that item in the 4AFC trial.  

As in Simulation 1, four variants of HT models (ω = 1, 2, 3, 4) and four 

variants of AL models (α = .25, .5, .75, 1) were conducted at 30,000 simulation runs 

per variant. Pearson’s correlation coefficients were again used for comparing model 

performance to children’s performance.   

5.4.2 Results 

5.4.2.1 HT models results 

As Figure 13 illustrates, the pattern of findings across hypothesis testing 

variants in this simulation is reminiscent of Simulation 1. That is, although all model 

variants show an overall decline in likelihood of selecting objects with lower co-

occurrence frequencies with the target word, only the HT model with a moderately 

low threshold (ω = 2) shows the graded downward trend that is most similar to that 
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of children. 

 

Figure 13. Performance of HT models varying in word knowledge (ω) threshold in Simulation 

2: Distribution of answers to objects differing in co-occurrence frequency with target word. 

5.4.2.2 AL model results 

All AL model variants tested revealed an identical graded selection pattern as 

a function of object co-occurrence frequency with the target word (see Figure 14). 

Selection patterns of these models were similar to the patterns exhibited by 

children, as an object’s co-occurrence frequency decreases, the likelihood of 

selecting that object also decreases.  
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 Figure 14. Performance of AL models varying in learning rates (α) in Simulation 2: 

Distribution of answers to objects differing in co-occurrence frequency with the target word. 

5.4.2.3 Correlations between models and children’s performance 

Correlations between simulated learners’ performance and human children’s 

performance is displayed in Table 5. In contrast to the results of Simulation 1, the 

results of Simulation 2 suggest that both models, and especially the AL models, can 

account moderately well for the children’s selection patterns. Consistent with what 

can be gleaned from Figure 13, HT model success appears dependent on the 

hypothesis threshold. Only the HT model with the moderately low threshold (ω = 2) 

correlates significantly with children’s performance, though the other model 

variants do show a trend towards displaying children’s performance. These trends 

are likely the result of all HT model variants showing an overall downward slope 
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despite differences across model variants in the predicted outcomes for the two 

middle frequency items (see Figure 13). 

Table 5. Correlation results between models and children’s performance in Chapter 4. Note:  

*p < .05, ^p < .10   

Models Tested 
Correlation Statistics 

r p 

HT Models varying in hypothesis threshold (ω)   

HT Model 1 (ω = 1) .772 .11 

HT Model 2 (ω = 2) .927 .03* 

HT Model 3 (ω = 3) .793 .10^ 

HT Model 4 (ω = 4) .781 .11 

AL Models varying in learning rate (α)   

AL Model 1 (α = .25) .979 .01* 

AL Model 2 (α = .5) .978 .01* 

AL Model 3 (α = .75) .979 .01* 

AL Model 4 (α = 1) .979 .01* 

  

As done in Simulation 1, I also conducted a series of simulated experiments 

to examine the likelihood of obtaining results similar to that of children under 

different assumptions (i.e., the model variants) of the population. For each model 

variant, correlations between children’s item selection effects and item selection 

effects observed in 1,000 simulated experiments (28 simulated learners each) were 

classified as strong, moderate, or weak. Using these criteria, all variants of both 

models displayed strong correlations with children’s results (see Figure 15).  
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Figure 15. Proportion of simulated experiments of HT and AL models whose item selection 

effects correlated strongly, moderately, and weakly with children’s item selection effects.  

These results suggest that the lack of statistical significance in some variants 

of the HT models in the first set of simulations may indeed have been due to the lack 

of statistical power. These results also point to the limitation of the correlation 

analyses, particularly the simulated experiments, which used more liberal criteria of 

fit. A strong correlation between models and children can be driven by the overall 

gestalt of performance despite some differences in the learning pattern specifics. 

Further, even in cases where models fit using the more strict overall correlation 

analysis, fit in the current simulation is approximate. Because the data points in this 

task were dependent on one another, that the simulated learners across all variants 

of both models (MHT = .60, MAL = .57) outperformed children (M = .33), meant that 
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the proportion of simulated learner’s answers that included the less-frequently co-

occurring objects is necessarily smaller than that of children. As a result, the slopes 

of models’ item selection functions are naturally steeper than children’s functions. 

Thus, relative fit between models and children’s performance in this task strictly 

refers to the fact that both models and children exhibit a negative slope, rather than 

that they show a similar degree of steepness in the slope.  

5.4.3 Discussion 

The results of Simulation 2 suggest that both learning accounts predict the 

item selection effects observed in children. Graded item selection patterns, observed 

both in models and in children, are often considered to be a marker of learners 

keeping track of multiple word-to-object links per word (Vouloumanos, 2008). 

Further, since links between one word and multiple objects is a key feature that 

distinguishes associative learning accounts from hypothesis testing accounts, 

graded item selection patterns could be interpreted as evidence for associative 

learning accounts of cross-situational word learning. However, the simulations of 

the Hypothesis Testing models here illustrate that one need not maintain 

representations of both highly frequent and less frequent candidate referents. 

Instead, the graded item-selection effect, under a hypothesis testing account, 

emerges from the fact that the probability with which a word-object mapping is 

hypothesized is proportional to the frequency of that word-object mapping in the 

environment. 

That the associative learning model succeeds at accounting for children’s 

behavior in Simulation 2 is important in part because it demonstrates that the 
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simple associative model developed in this chapter can account for at least some 

patterns of behavior. That is, the failure of the associative model at accounting for 

the contextual diversity effects in Simulation 1 is not the result of an overly simple 

learning algorithm unable to predict any human learning patterns. The question 

remains however as to whether there are any conditions under which an associative 

learning model can account for both contextual diversity and item selection effects.   

5.5 Simulations 3 and 4: A Modified Associative Learning Model 

In this section, I describe two modifications to the above AL model’s 

algorithm hypothesized to improve its fit with the contextual diversity patterns of 

children’s learning. Then, I describe and discuss the results of simulating this 

Modified Associative Learning (MAL) model in the experiments of Chapters 3 and 4.  

As alluded to in the discussion of Simulation 1, one major reason that the 

basic associative model fails to account for the contextual diversity effect is that the 

models’ selection strategy at test considers only the relative association strength 

between the test options and the target word. Given that across conditions of 

contextual diversity only one item present at test had co-occurred with the target 

word during learning, all simulated learners, regardless of condition, selected the 

same target referent 100% of the time. Thus, the first modification to the basic 

associative model is that at test, the model considers more than just the associations 

between the target word and other objects present on the test trial. That is, the 

model is affected by associations between the target word and all objects during 

learning. In other words, the MAL model incorporates a greater amount of 
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competition in its learning algorithm (see also the models in Merriman, 1999; 

Regier, 2005). The decision process of the MAL model can be written as follows: 

 

Where p(O1) is the probability of selecting Object 1 on a test trial, M(wj,oi) is the 

strength of the association between word j and object i,  and N refers to the number 

of objects in the learner’s lexicon.  

Although the greater amount of competition in this modified model is likely 

to bring performance off ceiling, the addition of the competition term by itself is 

unlikely to explain children’s contextual diversity effect. That is, although different 

conditions of contextual diversity differ in the strength of the highest co-occurring 

foil, they do not differ in the total number of target word to foil co-occurrences. 

Thus, the denominator in Equation 3 will be equivalent across conditions. An 

additional process then must be added for the MAL model to induce the contextual 

diversity effect.  

I propose to introduce one such process, a familiarity bias in updating 

associative strengths. With a familiarity effect, which has been proposed in other 

models of word learning (e.g., Kachergis et al., 2012a; Yurovsky et al., 2010), the 

model adds extra strength to co-occurrences in learning trials that have been 

observed on previous learning trials. In the present model, this familiarization bias 

is set to the negative natural logarithm of that word-object’s conditional probability 
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of co-occurrence8. The updating rule employed when the model observes a 

previously co-occurring word-object pair can be expressed as:  

 

Under this formulation, α is the constant learning rate, and λ is a scaling parameter, 

determining the strength of model’s familiarity bias in adding to its association 

strength.  

5.5.1 Method 

As with the previous models, I conducted simulations of the MAL model 

performing the experiments of Chapters 3 and 4. Because the MAL model possesses 

two free parameters (α and λ), I conducted a total of 16 variants of the MAL model, 

testing the same four variants of learning rate tested in the basic associative models 

(α = .25, .5, .75, 1), crossed with four variants of the familiarity scaling parameter (λ 

= .25, .5, .75, 1). Model variants with a greater scaling parameter show a greater 

familiarity bias. Thus, the larger the scaling parameter, the greater the difference in 

the associative strength added to familiar relative to unfamiliar word-object pairs in 

a given trial. All other aspects of the simulation details (i.e., task procedures, data 

                                                        
8 The result of employing the logarithmic function is that the familiarity bias early in 
learning is greater than the familiarity bias later in learning. Although algorithms using this 
function showed the best fit, other functions (e.g., linear, exponential) also fit children’s 
learning patterns, but to a somewhat lesser extent.  
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processing, and metrics for comparison) were the same as those in the simulations 

outlined above. 

5.5.2 Results  

5.5.2.1 Contextual diversity effects in MAL models 

 

Figure 16. Contextual diversity effects in MAL models differing in learning rates (α) and 

familiarity bias scaling parameters (λ). Note: x-axes are conditions of contextual diversity, y-

axes represent mean proportion correct.  

Figure 16 depicts the performance of different MAL model variants across 

conditions of contextual diversity. As the figure illustrates, unlike the basic AL model 

tested earlier, the MAL models demonstrate a contextual diversity effect on 

performance: the greater the diversity of learning contexts, the better the 

performance. An inspection of these graphs also underscores the importance of the 
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familiarity bias in accounting for contextual diversity effects. That is, across learning 

rate levels, the greater the familiarity bias, the greater the contextual diversity effect 

the model exhibits.  

5.5.2.2 Item selection effects in MAL models 

 

 Figure 17. Item selection effects in MAL models differing in learning rates (α) and familiarity 

bias scaling parameters (λ). Note: x-axes are object co-occurrence frequency with the target 

object, y-axes represent mean proportion selections. 

Figure 17 illustrates that the MAL models also readily account for graded 

item selection effects. Across all MAL variants, the greater the co-occurrence 

frequency between an object and the target word, the greater the likelihood the 

simulated learner selects that object. Relative to the effect the scaling parameter had 

on contextual diversity effects in learning, the scaling parameter and the learning 
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rate had less of an effect on whether models exhibited the item selection effect. 

These item selection effects appear to be a property shared across all MAL models 

tested. 

5.5.2.3 Correlations between MAL models’ and children’s performance  

Correlation analyses between MAL models’ and children’s performance point 

to similar conclusions. That is, all MAL model variants appear to predict the patterns 

of performance observed in children, correlating significantly, marginally significant 

or strongly trending with children’s performance (Pearson correlation coefficients 

between MAL models and children’s contextual diversity effects ranged from .93 to 

.99, ps between .02 and .12; Pearson correlation coefficients for item selection 

effects ranged from .96 to .99, smallest p =.02).  

Further, simulated experiments of the MAL model also revealed similar 

patterns. Specifically, the majority of all variants demonstrated either a strong or a 

moderately strong correlation with children’s contextual diversity effect (see Figure 

18). Additionally, as suggested by the patterns in Figure 16, across MAL models 

varying in learning rate, models with a greater familiarity bias had a greater 

likelihood of correlating strongly with children’s contextual diversity effects. All 

variants of the MAL exhibited a strong correlation with children’s item selection 

effects (all MAL variants correlated strongly 100% of the time with children’s item 

selection effects). 
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Figure 18. Proportion of simulated experiments across MAL models whose results correlated 

strongly, moderately, and weakly with children’s contextual diversity effects.  

5.5.3 Discussion 

Thus, as hypothesized, a variant of associative learning can account for both 

children’s contextual diversity and item selection effects. The variant proposed here 

involves incorporating greater competition (Merriman, 1999; Regier, 2005) and a 

familiarity bias (Kachergis et al., 2012a; Yurovsky et al., 2010) into the associative 

learning framework. Together with the results from the Hypothesis Testing model, 

this finding demonstrates that two different learning mechanisms that differ in 

learning algorithm, information intake, and information retained, can both readily 

fit behavior. The results of this endeavor demonstrate, however, that models 

constructed based on these properties alone are insufficient to account for 
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children’s behavior. Instead, additional parameters (hypothesis threshold in 

hypothesis testing models, familiarity and competitive processes in associative 

learning models) are needed to make the models’ learning resemble children’s 

learning. I argue that the role additional parameters like these play are often 

ignored in debates of hypothesis testing and associative learning accounts but they 

are nonetheless critical and must be incorporated in debates and discussions of 

cross-situational word learning mechanisms. I return to this issue in the General 

Discussion for this chapter.  

5.6 Simulation 5: Accounting for other empirical data 

The models described above were specifically constructed and selected to fit 

the learning patterns of human children in Chapters 3 and 4. To what extent do 

these same model architectures, properties and parameters also predict other 

empirical findings in the study of cross-situational word learning? In this section, I 

investigate the ability of one successful variant of each HT and MAL model to 

account for a learning pattern observed in Yu and Smith (2007)’s initial study of 

cross-situational word learning (see also K. Smith, et al., 2009; Vlach & Sandhofer, 

2010).  

In addition to providing the initial demonstration that adult learners were 

capable of rapid word learning through tracking of cross-situational statistics, Yu 

and Smith observed that learning varied depending on the level of referential 

uncertainty present on each learning trial. Each subject in Yu and Smith’s study 

completed three learning conditions differing in within-trial referential uncertainty. 

In each condition, subjects attempted to learn 18 word-to-referent pairs from 
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ambiguous naming events. In one condition, each naming event involved two words 

and two pictures (low ambiguity). In a second condition, each naming event 

involved three words and three pictures (moderate ambiguity). In a third condition, 

each naming event involved four words and four pictures (high ambiguity). Across 

all conditions, word knowledge was tested in a series of 4AFC trials. Yu and Smith 

found, perhaps not surprisingly, that as within-trial referential ambiguity increased, 

learning decreased. Of interest in the present set of simulations is whether the 

successful hypothesis testing models and associative learning models that 

accounted for the contextual diversity effects and item-selection effects in children, 

also exhibit Yu and Smith’s effects of ambiguity on learning.    

5.6.1 Method 

Following the constraints employed by Yu and Smith (see Yu & Smith, 2007, 

Experiment 1), I first created two randomized training lists for each condition of 

ambiguity, differing on which word and picture pairings appeared together on each 

trial. I also created two randomized testing lists, differing on the order in which 

words were tested and which pictures served as foils on each trial. There were no 

alterations made to the HT and MAL models’ learning algorithms. However, slight 

adjustments were made to ensure the models could accommodate task differences 

between Yu and Smith’s study, and the studies in Chapters 3 and 4 (i.e., larger 

hypothesis lists and association matrices to accommodate the larger to-be-learned 

lexicons, and increased within-trial information intake capacities to account for the 

greater number of words and objects present on each trial in some of Yu and Smith’s 

conditions).    
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In the current simulations, I tested the single variant of each of the HT Model 

(ω = 2) and the MAL Model (α = .5, λ = 1) that most successfully accounted for 

children’s contextual diversity and item selection effects. As with all previous 

simulations, 30,000 simulation runs were completed for each condition, with an 

equal number of simulation runs per training-testing list permutation. For each 

simulation, the proportion of trials learners answered correctly was tallied and a 

mean proportion correct for each condition was derived. 

5.6.2 Results and Discussion 

 

Figure 19. Comparison of human adult learner performance reported in Yu & Smith (2007) to 

simulations of an HT and MAL model.  

Figure 19 depicts a side-by-side comparison of the performance patterns of 

adult learners, the HT model, and the MAL model. As the figure illustrates, although 
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the precise learning rates differed between humans and models, both models show 

the effect of referential ambiguity on learning: as within-trial ambiguity increased, 

performance decreased. These findings suggest that the particular model 

assumptions and components that accounted well for children’s data are not simply 

a set of processes that have been tweaked to uniquely fit a single data set comprised 

of children’s performance within a particular experimental context but instead are 

processes that might simulate a wider range of behavioral phenomena.  

5.7 General Discussion 

The goal of the simulations presented in this chapter was to investigate the 

nature of children’s cross-situational learning mechanisms, testing the efficacy of 

both hypothesis testing and associative learning frameworks. To distinguish 

between the accounts, the hypothesis testing and associative learning models were 

constructed to differ on three core learning properties: learning algorithm, 

information selection, and information retention. Consistent with prior research, 

comparisons between model performance and children’s performance suggests that 

the core learning properties of both hypothesis testing and associative learning 

frameworks can be consistent with empirical evidence. However, the results also 

suggest that although the learning dynamics instantiated in these models were 

sufficient to mimic some aspects of children’s learning patterns (item-selection 

effects), only when these core properties were supplemented with additional 

parameters were they sufficient in accounting for the full set of findings (item-

selection effects + contextual diversity effects) as well as other published results (Yu 

& Smith, 2007). In this section, I first describe some empirical evidence in support of 
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the plausibility of the current models. I then end with a discussion of the 

implications of the current findings for the hypothesis testing – associative learning 

debate.  

5.7.1 Empirical evidence for the proposed parameters that improve 

model fit 

The proposed parameters that improve fit in the current instantiations of 

hypothesis testing and associative learning models are probably not the only ones 

that could explain children’s learning patterns. There are likely other processes that 

could have accounted for the data as well. However, the benefit of conceptualizing 

the processes as competition effects, familiarity biases (in the case of associative 

learning), and threshold effects (in the case of hypothesis testing) is that there is 

some prior support for them. Both competitive and familiarity processes have been 

invoked in a number of previous models of word learning (Fazly et al., 2010; 

Kachergis et al., 2012a; Merriman, 1999; Regier, 2005; Yurovsky et al., 2010). 

Further, the notion that competition and familiarity play a role in word learning has 

been observed empirically. For example, in one study of early word learning, Horst 

and colleagues (2010) presented toddlers with an array of 2, 3, or 4 objects, labeling 

one of these objects with a novel name. Following a short delay, toddlers in each 

condition were tested for their ability to select the referent of that novel name from 

a new array of objects, which included the labeled object and 4 previously unseen 

objects. Horst and colleagues found that only children in the 2-object condition 

remembered the word-object mapping, a finding consistent with the notion that 

learning was influenced by the greater competition present in the 3-object and 4-
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object conditions. In a different study, Kucker and Samuelson (2012) found that 24-

month-old infants’ ability to learn novel word – novel object mappings was boosted 

when those infants were first familiarized with the novel object (without labeling it). 

Although this effect is different from the familiarity effect observed in the current 

study, it nonetheless is consistent with the notion that there are benefits of 

familiarity in word learning.     

The key component to the success of the current hypothesis testing models 

was the model’s hypothesis threshold, the point at which a learner accepts a 

hypothesized referent of a word as the word’s “true” referent. That a hypothesis 

threshold existed in the current models meant that in this instantiation of 

hypothesis testing, learners tracked the relative strength of a hypothesis. This 

assumption may be considered a departure from the purist notions of hypothesis 

testing that does not accommodate any sensitivity to the relative strengths of 

hypotheses. Thus, there is less empirical work validating the existence of the 

hypothesis threshold, though the notion that one exists is intuitive. In the early 

stages of learning a particular word, exposure to the word and its referent may be 

important evidence for children’s learning. However, once a child has observed that 

word-referent pairing numerous times, any additional naming event might 

contribute very little additional word knowledge (for a brief discussion on this 

point, see also Merriman, 1999). Some behavioral evidence from adult learning is 

consistent with a threshold effect in word learning. In a recent investigation of 

cross-situational word learning, Suanda and Namy (2012) examined adult subjects’ 

error patterns in a 4AFC testing regimen. Specifically, we examined the objects 
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participants erroneously selected as a function of the co-occurrence frequency 

between the object and the target word. Error patterns suggested that the likelihood 

of learners erroneously selecting a high frequency co-occurring foil was significantly 

greater than the likelihood of selecting either a moderate, a moderately low, or a low 

frequency foil. However, there was no difference in the participants’ likelihood of 

selecting the moderate, the moderately low, and the low frequency foil (Suanda & 

Namy, 2012), consistent with the notion that only foils that surpassed a high 

threshold of co-occurrence lured participants. 

Despite some empirical support for these processes, the validity of the 

proposed models as possible mechanistic accounts of children’s cross-situational 

word learning in this experimental paradigm still awaits future empirical 

substantiation, an important next step in the current research endeavor. A number 

of possible experimental adjustments could potentially be suitable to investigate the 

extent to which familiarity, competitive and threshold effects are operating in 

children’s learning. For example, eye-tracking measures that provide moment-by-

moment measurements of where children are looking while listening to a particular 

word might reveal whether children show a familiar bias during learning, fixating 

longer to an object that had previously co-occurred with that word than to one that 

had not. Further, perhaps the use of reaction time as a dependent measure might 

shed light onto the amount of competition that occurs during referent selection, 

though establishing a reliable reaction time paradigm can be challenging in children. 

Finally, a learning paradigm that intermittently tested children during learning 
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could potentially reveal whether indeed there is a learning threshold, and what that 

threshold is, in this task.  

5.7.2 Implications for the hypothesis testing vs. associative learning 

debate 

The current findings suggest that the learning dynamics created by the core 

learning properties of both hypothesis testing and associative learning accounts can 

be consistent with the empirical evidence. The critical finding from the current set 

of simulations is that what appears central to the current models’ success in 

accounting for human behavior are parameters that are added to those core 

learning properties of learning algorithm, information selection, and information 

retention, that have received the bulk of attention in debates on hypothesis testing 

and associative learning accounts (e.g., see Nicol Medina et al., 2011). These 

parameters need to be considered part of the theoretical debate as well.  

One could argue that the particular parameters proposed here are only valid 

if we accept the current assumptions of the core learning properties. That is, if we 

relax the differences between hypothesis testing and associative learning accounts, 

parameters such as competition, familiarity, or hypothesis threshold might not be 

needed. For example, we could create associative learners that can maintain 

associations between multiple words and multiple objects but only select a single 

word-object association to strengthen on any given learning trial. Likewise, we 

could create a hypothesis tester that can maintain two hypothesized referents per 

word (as opposed to only one). What might performance in these learners look like? 

Would such models exhibit contextual diversity effects and item selection effects in 
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learning? These are interesting questions worthy of future investigation, though 

such endeavors blur the lines between what counts as a hypothesis testing model 

and what counts as an associative learning model. Of course, such blurring may be 

one way in which the hypothesis testing – associative learning debate could be 

advanced, namely by accepting that the two mechanisms are in fact polar extremes 

of a single learning process (for discussion see Yu & Smith, 2012, K. Smith et al. 

2010).   

The implication of the current findings is in part that we do not need to relax 

our definitions of hypothesis testing and associative learning in order to account for 

children’s learning patterns. Even under conditions in which the two accounts are 

maximally different on the core learning properties, they can both still be consistent 

with the data. That both models of learning readily account for the current data, as 

well as a wealth of other findings (see Table 6), despite their disparate properties, 

raises a second, and non-mutually exclusive, way in which the debate may be 

advanced. That is, perhaps the two mechanisms are in fact separate but human 

learners have access to both. One possible manifestation of this view is a 

developmental one; which mechanism a learner employs depends on developmental 

stage. A number of developmental scholars of children’s word learning have argued 

for important differences between the underlying processes of early word learning 

and that of later word learning (e.g., Namy, 2009; 2012; Nazzi & Bertoncini, 2003). 

Consistent with these previous accounts, perhaps early cross-situational word 

learning is best characterized by associative processes, whereas later word learning 
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is best described as hypothesis testing (see also Smith & Yu, 2008; Yu & Smith, 2007; 

2011).  

Table 6. The equipotentiality of hypothesis testing and associative learning in accounting for 

word learning phenomena. 

Word Learning Phenomenon 
Model Reference 

Hypothesis Testing Associative Learning 

Cross-Situational Word Learning I: learning 

words across referentially ambiguous naming 

events (observational findings) 

Siskind (1996); 

Frank et al. (2009) 

Fazly et al. (2010); 

Yu (2008); Yu & 

Ballard (2007) 

Cross-Situational Word Learning II: learning 

words across referentially ambiguous naming 

events (experimental findings) 

Frank et al. (2009); 

Ichinco et al. 

(2009); Yu et al. 

(2007); Yu & Smith 

(2012) 

Kachergis et al. 

(2012a); Yu et al. 

(2007); Yu & Smith 

(2012); Yurovsky et 

al. (2010)  

Disambiguation Effect: Selecting a novel object 

as opposed to a familiar object as a referent 

for a novel word 

Frank et al. (2009); 

Regier (2003) 

Merriman (1999) 

Vocabulary Spurt: a slow period of vocabulary 

growth followed by an accelerated one 

Siskind (1996) McMurray (2007) 

Shape Bias: a tendency to generalize a novel 

noun based on the referent’s shape 

Kemp et al. (2007) Samuelson (2002); 

Colunga & Smith 

(2005) 

It is also possible that rather than, or in addition to, learners relying on one 

mechanism early in development and another one later in development, learners 

might readily utilize both. A number of scholars have recently argued that word 

learning consists of processes occurring over at least two different time scales, one 

that involves referent selection and one that involves long-term word retention 

(McMurray, Horst, Toscano, & Samuelson, 2009; see also Carey, 2010; Swingley, 

2010). Thus, another possibility is that hypothesis testing may underlie the in-the-
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moment referent selection aspect of learning whereas associative learning underlies 

the long-term consolidation of word knowledge in memory. Finally, that both 

models can be consistent with actual human learning patterns may also suggest that 

learners can deploy both learning mechanisms at any given point in development, 

depending on learning context. For example, perhaps when there are relatively few 

candidate referents, learners employ an associative learning strategy, linking 

multiple referents to each word. However, when there are many candidate 

referents, given the attentional and memory demands of encoding and maintaining 

associative links between words and all potential candidate referents, learners 

might employ a hypothesis testing strategy (see K. Smith et al., 2010, for some 

evidence that adult learners may indeed behave in this way). 

5.7.3 Conclusion 

Many mechanistic discussions of word learning more generally, and cross-

situational word learning specifically, center on the distinction between associative 

learning and hypothesis testing accounts. The attention to these two accounts as 

potential learning mechanisms is well placed. Both models have accounted for a 

wide range of word learning phenomena, and the findings in Chapters 3 and 4 are 

no exception. The main conclusion from the current simulation study is that when 

the workings of each model were examined in detail, the features of these models 

that were critical to simulating the data are not the processes typically central to 

hypothesis testing – associative learning debates. As a result, advancing our 

mechanistic understanding of cross-situational word learning will involve going 

beyond asking whether hypothesis testing or associative learning accounts better 
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model cross-situational word learning. Instead, it will involve addressing the many 

components that make each account work as well as assessing their psychological 

validity. 
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Chapter 6. General Discussion 

How children acquire such impressively large vocabularies in such a short 

amount of time has long captured the interests of scholars across a range of fields. 

As reviewed in Chapter 2, a large body of literature suggests that part of the answer 

to this question is fast mapping -that to learn a word, children only need a single or 

a few exposures to it. A single exposure is sufficient because children can use a 

range of cues that allow them to infer reference at the moment a new word is 

encountered. As many have recently argued (Carey, 2010; Horst & Samuelson, 2008; 

Swingley, 2010; Yu & Smith, 2007), this fast mapping solution is likely only part of 

the answer to how children acquire their vocabularies. In addition to learning words 

from a single naming event via impressive inferential capabilities, children also 

learn words across multiple naming events via tracking the co-occurrence patterns 

between words and their referents.  

Although the notion of cross-situational word learning is neither novel nor 

unintuitive, research into this type of word learning is a relatively recent 

development in lexical acquisition research. The studies presented herein are thus 

part of a larger endeavor (e.g., Blythe et al., 2010; Fitneva & Christiansen, 2011; 

Frank et al., 2009; Kachergis et al., 2012a; Monaghan & Mattock, 2012; Nicol Medina 

et al., 2011; Scott & Fisher, 2012; K. Smith et al., 2010; Smith & Yu, 2008, in press; 

Suanda & Namy, 2012; Vogt, 2012; Vouloumanos, 2008; Vouloumanos & Werker, 

2009; Yoshida et al., 2012; Yu & Smith, 2007, 2011, 2012) to better document 

human learners’ cross-situational word learning capacities, investigate their 

underlying mechanisms, and understand their role in vocabulary growth. I 
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conducted the studies described here with two specific goals in mind. The first was 

to extend the research on cross-situational word learning, most of which has been 

conducted with adults as model word learners, to a developmental population, and 

to examine the extent to which children demonstrate some of the behavioral 

signatures previously observed in adult populations. The results of the studies 

presented in Chapters 3 and 4 demonstrated that like adults, children can rapidly 

acquire word-to-referent mappings across ambiguous naming events, when the only 

clue to reference was the cross-situational word-to-referent co-occurrence 

statistics.  The findings also revealed that children’s learning, like adults’ learning 

(see Kachergis et al., 2009; Suanda & Namy, 2012), is affected by the contextual 

diversity of the learning environment. Further, children, also like adults (see Suanda 

& Namy, 2012; Vouloumanos, 2008), exhibited learning patterns that reflected the 

co-occurrence statistics of the learning environment.  

The second goal of these studies was to go beyond examinations of children’s 

learning behavior and to begin investigations of the candidate mechanisms 

underlying children’s learning. The results of the computational simulations 

presented in Chapter 5 suggest that both a hypothesis testing and associative 

learning account of cross-situational word learning are consistent with children’s 

learning patterns. Although these studies do not definitively arbitrate between the 

two accounts as a mechanistic account of children’s data, the simulations do offer 

some conditions under which each account is compatible with the data.   

In this last chapter, I reflect on some of the contributions the broad cross-

situational word learning endeavor and the studies conducted for this thesis make 
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in accounts of word learning. I then raise some limitations of current approaches to 

understanding cross-situational word learning research and suggest some logical 

next steps in advancing cross-situational word learning research.   

6.1 Contributions of a Cross-Situational Approach   

There are at least four important contributions a cross-situational learning 

approach makes to the study of word learning, each of which I discuss in turn. These 

include, first, that research on cross-situational word learning offers an additional 

cue to which children are attuned in learning words. Second, a cross-situational 

approach to word learning may not only help explain how children solve the 

problem of referential ambiguity, it may also help explain how children discover 

other cues to word learning. Third, a cross-situational learning approach may help 

researchers make a connection between early word learning and later vocabulary 

acquisition. And finally, a cross-situational learning approach is an important 

contribution because it meshes well with findings across other language learning 

tasks and thus may contribute to a unified account of children’s language 

acquisition.  

6.1.1 Cross-situational co-occurrence statistics as an additional cue 

to learning 

The predominant approach to studying children’s word learning has been to 

document the range of cues children use to map words onto their referents. 

Previously well-documented cues to reference include a range of perceptual-

attentional cues (e.g., Landau, Smith, & Jones, 1988; Samuelson & Smith, 1998; 

Pruden et al., 2006), social cues (Akhtar et al., 1996; Baldwin, 1993b; Diesendruck et 



 110 

al., 2004), linguistic cues (Brown, 1957; Katz et al., 1974; Yuan & Fisher, 2009) and 

conceptual cues (Markman & Hutchinson, 1984; Markman & Wachtel, 1988). In 

recent years, this list has continued to grow. For example in one recent study, Kidd 

and colleagues revealed that two-year-olds used a speaker’s disfluencies (i.e., filled 

pauses such as ‘uh’ and ‘um’) to disambiguate reference (Kidd, White, & Aslin, 

2011). That is, when presented with two pictures, one novel and the other familiar, 

hearing a novel label embedded in a disfluent sentence (“Look at thee…uh…dax!”) 

led two-year-olds to gaze to the novel object more quickly than when the novel label 

was embedded in a fluent sentence (“Look at the dax!”). In another recent study, 

Herold and colleagues reported that children were able to use speaker prosody to 

infer the meaning of a novel word (Herold, Nygaard, Chicos, & Namy, 2011). That is, 

Herold and colleagues found that 5-year-old children were able to infer that a novel 

word (e.g., “blicket”) spoken in a deep, slow, and loud voice referred to a large object 

but the same novel word spoken in a high, fast, and quiet voice referred to a small 

object.    

The recent findings suggesting that infants (e.g., Smith & Yu, 2008), children 

(Chapters 3 and 4), and adults (e.g., Yu & Smith, 2007) learn words cross-

situationally indicate that cross-situational statistics are yet another cue that word 

learners can exploit to infer meaning. Thus, when a young learner hears his parent 

say “can you get the train”, in addition to using the social cues parents may provide 

(e.g., what the mother is pointing at), the linguistic properties of the target word 

(e.g., that the word “train” is followed by the determiner “the”), the conceptual 

biases children may possess (e.g., the word likely refers to a whole object rather 
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than an object part), the young learner might also weight the word’s co-occurrence 

statistics: the range of objects that have previously co-occurred whenever the word 

“train” has been uttered.  

That cross-situational statistics is only one of many cues children employ in 

the service of word learning raises the question of the weighting children place on 

these statistics relative to other cues to word learning, and whether this might 

change over development. To address this question, future studies could pit cross-

situational statistics against other learning cues (e.g., eye gaze) to examine which 

cue children of different ages favor. One potential outcome is that co-occurrence 

statistics may be favored earlier in development whereas non-statistical cues may 

be preferred later in development (see Thiessen & Saffran, 2003 for an example of 

this pattern in the domain of speech segmentation). Such a shift in cue-preference 

could contribute to the observed slow pace of early word learning (co-occurrence 

statistics after all require multiple exposures to accumulate), followed by the more 

rapid pace of later learning (other cues such as eye-gaze could allow learners to map 

new words at the moment those words are first encountered). If this shift in 

emphasis on statistical cues does indeed exist in word learning, as it does in speech 

segmentation, it in turn raises the question through what process does the shift 

occur? Importantly, it underscores the likely possibility that children do not begin 

word learning sensitive to the many fast mapping cues; instead, they acquire these 

cues over the course of word learning. I consider this issue in more detail in the 

following section.    
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6.1.2 The role of cross-situational learning in the discovery of fast 

mapping cues  

A second contribution of the work on cross-situational word learning is that 

it may add to our accounts of how fast mapping cues are acquired. Although the idea 

that word learners use cues to fast map words to their referents provides an elegant 

solution to the problem of referential ambiguity, it introduces a different, more 

rudimentary problem that developing word learners must solve, namely how to 

determine which of the host of possible cues is relevant to or diagnostic of word 

meaning. For example, it is logical and appropriate for word learners to utilize the 

familiar sentential frame, “this is a ____”, to figure out that the speaker is referring to 

an object. However, learners could not use such a cue at the onset of lexical 

development because the mapping between the cue to meaning (sentential frame) 

and the item to-be-learned (mapping between word and object) must also be 

acquired. That the reliability of many cues to mapping is language- or culturally-

specific, further underscores the importance of the discovery process of the 

diagnostic cues to word meaning. Surprisingly little work has focused on 

understanding cue discovery in the context of word learning.  

Important exceptions to the neglect of this question do exist. For example, in 

her seminal work on the shape bias in children’s word learning, Linda Smith has 

argued and provided empirical support that word learning constraints such as the 

shape bias emerge through the dynamics of basic cognitive processes such as 

attention, memory, and associative learning. In support of this account, Smith and 

her colleagues have shown the following. First, young word learners (i.e., children 
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under the age of two) do not show the shape bias (Samuelson & Smith, 1999), 

highlighting that the bias is not present at the onset of word learning. Second, 

children’s adherence to the shape bias is positively correlated with their vocabulary 

size (Smith, 2001). Third, there exist statistical regularities in how the early nouns 

children typically learn are organized; namely, that the majority of them label 

shape-based categories (Samuelson & Smith, 1999). Fourth, a training regimen that 

highlights shape-based regularities for young word learners can both speed up the 

emergence of the shape bias in artificial lab tasks, and boost children’s object label 

acquisition outside the lab (Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 

2002). Taken together, these four pieces of evidence persuasively imply that 

children discover the shape bias over the course of development as a result of 

acquiring a set of labels for categories of objects well organized by shape.  

Although Smith and colleagues have convincingly demonstrated that the 

shape bias develops over the course of word learning, Smith herself has suggested 

that attention to shape may be present pre-linguistically (Smith, 2003). Thus, rather 

than being a bias learned entirely over the course of word learning, the shape bias 

may instead reflect a small initial attentional bias that is carried over from pre-

linguistic categorization processes and further tuned through the process of 

learning words. Thus, whether Smith’s attentional learning theory also accounts for 

the acquisition of the social or linguistic cues to word learning that are likely to be 

more cultural- and language-specific than a human infant’s attention to shape is an 

open question.    
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A separate series of studies that has begun to address the issue of how 

children determine the reliability of a wider range of cues to word meaning comes 

from the work of Namy and her colleagues (Namy, Knight-Schwartz, & Smith, 2011; 

Namy & Waxman, 2000; see Namy, 2012, for review). For example, Namy and 

Waxman (2000) asked whether 18-month-olds could be taught a novel cue to word 

learning. Namy and Waxman paired a novel sentence frame (i.e., “Shalem bosher 

______”) with a familiar word and its referent. For example, an experimenter would 

hold up a spoon while saying, “Shalem bosher spoon!” Following a brief 

familiarization period with the novel sentential cue, 18-month-olds were able to use 

this naming phrase to infer the referent of novel words. For example, after hearing 

“Shalem bosher blicket” paired with an object, infants interpreted the word “blicket” 

as that object’s label. This finding suggests that word learners discovered the 

reliability of this novel sentence frame as a cue to learning, which was, in turn, 

recruited in the service of subsequent learning a novel word.  

Namy and colleagues’ work thus demonstrates how children can use the 

predictive nature of a novel cue to determine its reliability in indicating word 

meaning. Although their work suggests how word learners can detect the reliability 

of a single cue to meaning (i.e., a particular sentential context), the question still 

remains how it is that word learners determine which among many candidate cues 

are reliable predictors of word learning. That is, the task children face consists not 

only of deciding whether a specific cue to reference, such as a speaker’s eye gaze is a 

reliable one to attend. Rather, children must somehow also discover that a speaker’s 

eye gaze is a more reliable cue than a speaker’s touching of a referent (Booth, 
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McGregor, & Rohlfing, 2008), and that a speaker’s eye gaze is a less reliable cue than 

a speaker’s pointing behavior (Frank, Tenenbaum, & Fernald, in press).  

Thus, how it is that children discover which among many cues is diagnostic 

of word meaning is an important extension of Smith and Namy’s previous work. 

Building off of their work, one possibility is that children solve this problem of cue 

ambiguity much the same way they solve the problem of referential ambiguity, by 

tracking cross-situational statistics. That is, much like solving referential ambiguity 

is argued here to involve a process of detecting predictable patterns between words 

and their referents, solving the problem of cue ambiguity involves a process of 

detecting predictable patterns between cues to naming and reliable word-to-

referent mappings.  

Whether this is indeed the right characterization of cue discovery and what 

the precise nature of the process awaits empirical investigations. For example, 

would learners have to learn a stock of word-to-referent mappings before they 

begin to track the cues to mapping, or might learning word-to-referent mappings 

and cues to mapping take place simultaneously? Further, are all cues to naming 

acquired in roughly the same way or are some cues acquired through a different 

(e.g., more strategic) process? Finally, how might the process of acquiring cues to 

word learning be similar to or different than acquiring the cues to other language 

learning tasks such as speech segmentation which have also been shown to rely in 

part on statistical regularities? Answers to these questions will help fill an important 

gap in the work on children’s word learning.    
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6.1.3 Cross-situational learning as a common theme underlying 

vocabulary acquisition research programs 

Unlike many components of language that are thought to be fully developed 

by the end of childhood (e.g., speech perception, grammatical development), 

vocabulary acquisition continues into adulthood (e.g., Zechmeister, Chronis, Cull, 

D’Anna, & Healy, 1995). Thus, the study of how words are learned has been of 

interest not only to scholars of early language development, but also to education 

and reading scientists (Wagner, Muse, & Tannenbaum, 2007), scholars of second 

language acquisition (e.g., Laufer, 2009), and even educational gerontologists (e.g., 

Laumann, Long, & Shaw, 2000). Despite this common topic of interest, there has 

been little work connecting the findings across these fields. This may, in part, be due 

to the fact that studies of early fast mapping capacities are not applicable to the 

study of later vocabulary growth. That is, that toddlers can fast-map words by 

attending to his parent’s social cues has little to do with how third-graders learn the 

name of a scientific phenomenon from a text book.  

Interestingly, although research on cross-situational word learning is 

relatively new in the study of early word learning, the proposal that words are 

learned incrementally over multiple exposures is a relatively old topic of study in 

educational research, commonly studied under the term incidental word learning 

(e.g., Nagy & Herman, 1987). In fact, a comparison of the recent cross-situational 

word learning work in the cognitive and developmental sciences and the incidental 

word learning work in educational research reveals a number of shared topics of 

inquiry. For example, researchers across both fields are interested in the nature of 
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partial word meaning and its role in learning (see Yu, 2008; Yurovsky et al., 2010; 

and Frishkoff, Collins-Thompson, Perfetti, & Callan, 2008; Schwanenflugel et al., 

1997). Researchers in the two fields are also interested in the relative success of 

active attempts to acquire word meaning compared to more passive experiences of 

accumulating word knowledge (see Akhtar, 2004; Kachergis, Yu, & Shiffrin, 2012b; 

and Swanborn & De Glopper, 2002). Further, researchers across fields have 

examined the effects of frequency of exposure on word learning (see Kachergis et 

al., 2009; and Rott, 1999). Finally, researchers in both fields have also examined 

how the diversity of learning contexts impacts learning (see Kachergis et al., 2009; 

Suanda & Namy, 2012; and Bolger et al., 2008; Wilkinson & Houston-Price, in press).  

Of course the extent to which these similarities are a manifestation of a 

deeper common learning mechanism is a matter to be determined through future 

investigations. Nonetheless, these similarities open the door for a potentially 

productive dialogue between researchers of early word learning and those of later 

vocabulary acquisition. For example, cognitive and developmental researchers could 

draw on the larger set of findings in the incidental vocabulary acquisition literature 

to help guide hypotheses in studying the nature of cross-situational word learning. 

In turn, the findings from early cross-situational learning research may have 

implications for educational research on vocabulary acquisition.      

6.1.4 Cross-situational learning as statistical learning: Toward a 

unified account of language acquisition 

The finding that infants, children and adults can learn words by tracking 

cross-situational co-occurrence statistics strikes a chord with the growing body of 
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evidence on statistical learning in other areas of language acquisition research (for 

recent reviews, see Aslin & Newport, 2008, 2012; Romberg & Saffran, 2010; Saffran, 

2009, 2010; Thiessen, 2009). That is, researchers in the fields of speech perception 

(Maye et al., 2002; Maye, Weiss, & Aslin, 2008), speech segmentation (Aslin et al., 

1998; Saffran et al., 1996), and grammatical acquisition (Gomez & Gerken, 1999; 

Thompson & Newport, 2007) have also discovered that human learners show a 

striking sensitivity to the statistical properties of their language environment and 

that they can use this sensitivity in the service of learning.  

One of the upshots of this common statistical learning theme across aspects 

of acquisition is that it provides a common lens through which phenomena from 

disparate fields can be viewed. For example, in the study of early word learning, 

Baldwin (1991; 1993a) has revealed that 18-month-olds can learn object names 

even when there is a lag in the timing between the infants’ attention to the object 

and the speakers’ production of the word. Further, Tomasello and Krueger (1992) 

have found that the majority of verbs parents utter occurs before an action is 

performed, rather than during the event. That word learning occurs when words 

and their referents occur in a temporally non-contiguous fashion is often 

interpreted as evidence against statistical or associative accounts of word learning 

(see P. Bloom, 2000; Sabbagh & Baldwin, 2005; Tomasello & Akhtar, 2000). 

However, such learning could also be interpreted as a case of non-adjacent 

dependency learning, a form of statistical learning that has been demonstrated in 

speech segmentation (Newport & Aslin, 2004), tone segmentation (Creel, Newport, 

& Aslin, 2004) and visual sequence learning (Turk-Browne, Junge, & Scholl, 2005). 
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Interestingly, findings in these domains suggest that non-adjacent dependency 

learning is more difficult than adjacent dependencies (Creel et al., 2004; Newport & 

Aslin, 2004), which is consistent with findings in the word learning domain that the 

learning of object names is more difficult when object and word presentation are 

non-contiguous (Whitehurst, Kedesdy, & White, 1982) and that verb learning 

generally lags behind noun learning (see Snedeker & Gleitman, 2004). These 

observations suggest the possibility that more findings across disparate aspects of 

language acquisition may also be understood through a unified statistical learning 

approach.  

Studies of statistical language learning have received a great deal of attention 

in recent years in part because it is considered to be a theoretical departure from 

traditional notions that the child’s linguistic input is too impoverished and that 

general learning processes are insufficient to account for the linguistic competence 

language users display (see Bates & Elman, 1996, for discussion). That is, the many 

observations of statistical learning across areas of language research suggest that 

perhaps general learning processes play a greater role in language acquisition than 

held by the prevailing view. Indeed, statistical learning is not limited to the domain 

of language but instead is demonstrated in tasks such as tone sequence learning 

(Saffran, Johnson, Aslin, & Newport, 1999; Creel et al. 2004), visual sequence 

learning (Kirkham, Slemmer, & Johnson, 2002; Turk-Browne et al., 2005), visual 

scene parsing (Fiser & Aslin, 2001, 2002), tactile sequence learning (Conway & 

Christiansen, 2005) and event segmentation (Baldwin, Anderson, Saffran, & Meyer, 

2008; Meyer & Baldwin, 2011). Also consistent with the domain-generality of 
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statistical learning is the observation that individuals with certain language 

disorders are impaired not only in linguistic statistical learning tasks, but in non-

linguistic ones as well (Christiansen, Louise Kelly, Shillcock, & Greenfield, 2010; 

Evans, Saffran, & Tore-Robes, 2009; Tomblin, Mainela-Arnold, & Zhang, 2007).  

Although the findings of statistical learning research are generally consistent 

with the notion that domain-general learning capacities play an important role in 

language acquisition, the findings should not be taken as evidence that there is no 

role for domain-specific processes. In fact, a number of findings have indicated that 

both general and specific mechanisms play a role in the learning process. For 

example, Saffran and Thiessen (2003) found that statistical learning in speech 

segmentation is constrained by phonotactic knowledge (i.e., knowledge of the 

acceptable and unacceptable sound patterns within a language). That is, they found 

that infants computed transitional probabilities only between syllabic units that 

were consistent with the phonotactic patterns of the language. Thus, Saffran and 

Thiessen’s work illustrates one case of domain-specific knowledge (i.e., phonotactic 

awareness) constraining domain-general statistical computations (i.e., tracking 

transitional probabilities). Other researchers have found that some statistical 

computations themselves may be domain-specific. For example, Meyer and Baldwin 

(2011) found that human learners could not compute conditional probabilities 

between segments in a task of action segmentation. In contrast, researchers in both 

speech segmentation (Aslin et al., 1998) and word learning (Klein & Yu, 2009) have 

found that learners readily compute conditional probabilities between units. Thus, 

there are multiple ways in which domain-generality and domain-specificity jointly 
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contribute to children’s language acquisition. The challenge for future work will be 

to go beyond the traditional notion that a learning process is either domain-general 

or domain-specific and to understand the myriad of ways in which domain-general 

and domain-specific mechanisms interact to produce behavior.  

6.2 Limitations to the Cross-Situational Approach 

Although cross-situational word learning research contributes to accounts of 

word learning and language acquisition in numerous ways, there also exist a 

number of limitations to this research. In this final section, I discuss some of these 

limitations, which include limitations to the current methodological approaches to 

cross-situational learning, limitations in the explanatory scope of the proposed 

process, and limitations in an understanding of the broader impacts of the research. 

Throughout this section, I also propose ways in which future research might begin 

to address these limitations.  

6.2.1 Can cross-situational learning scale up to real-world learning 

environments?  

The picture painted here of cross-situational word learning is that it is a 

statistical learning process. The empirical evidence presented in Chapters 3 and 4, 

and elsewhere (Smith & Yu, 2008; Suanda & Namy, 2012; Yu & Smith, 2007), that 

demonstrate human learners’ ability to acquire word-to-referent mappings via 

sensitivity to co-occurrence statistics is central to this picture. Other lines of 

research also support this account. A number of observational studies for example, 

have documented that statistical properties of children’s inputs, such as the 

frequency of words (Goodman, Dale, & Li, 2008; Huttenlocher, Haight, Bryk, Seltzer, 
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& Lyons, 1991), the contextual diversity with which words occur (Hills et al., 2010; 

Hoff & Naigles, 2002), and the density of particular words (Weizman & Snow, 2001) 

tends to correlate with better word learning. Additionally, computational 

investigations of word learning have revealed that models whose algorithms make 

use of distributional patterns in the input mimic the patterns of learning observed in 

children (Frank et al., 2009; Siskind, 1996; Yu, 2008).  

 When viewed from a distance, the experimental, observational, and 

computational findings provide compelling evidence for a statistical learning basis 

for vocabulary acquisition. However, a closer inspection of these approaches reveals 

few links among them other than their common theoretical underpinning. For 

example, computational modelers often use artificially generated inputs that are 

only loosely motivated by the observational data (for notable exceptions, see Frank 

et al., 2009; Yu, 2008; Yu & Ballard, 2007). Similarly, researchers who examine 

cross-situational word learning in artificial laboratory tasks employ task parameters 

that are not well motivated by the observational data either. This raises the question 

of whether the capacities driving learning in the laboratory tasks are the same as 

those underlying real-world learning. I argue that a tighter coupling between the 

observational, computational, and experimental methods is needed and is an 

important next step in testing the statistical learning account of children’s word 

learning.    

As a first step towards a more coupled approach, better estimates are needed 

not only of the language children hear but also of the corresponding visual input 

children see. Using infant head-mounted video cameras and eye trackers, 
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researchers have begun to develop ways to capture a first-person visual of the 

infants’ experience (Aslin, 2009; Franchak, Kretch, Soska, & Adolph, 2012; Yoshida 

& Smith, 2008). Combining this recently developed technology with the recordings 

of infants language environment provides one way in which we can begin to 

estimate at least part of the rich real-world co-occurrence statistics that 

characterize children’s learning input. Once these statistics have been estimated, we 

can then use them to guide the learning parameters in experimental paradigms (see 

Gillette et al., 1999). Of interest is whether infants, children, and adult learners could 

acquire word-to-referent mappings from the co-occurrence statistics characteristic 

of those to which language learners are actually exposed. Finally, computational 

models can then be used as a window into the mechanism underlying learning from 

these real-world co-occurrence statistics.  

6.2.2 Is cross-situational learning applicable to the acquisition of non-

object labels?  

A second limitation in cross-situational word learning research is that we 

know little about the explanatory scope of the proposed learning process. That is, as 

is the case with the majority of work on children’s word learning, much of the 

existing cross-situational learning research (e.g., K. Smith et al., 2010; Suanda & 

Namy, 2012; Vouloumanos, 2008; Yu & Smith, 2007) focuses on the acquisition of 

object labels (but see Childers, 2011; Childers & Paik, 2009; Scott & Fisher, 2012 for 

a few notable exceptions). However even from the onset of lexical development, 

children also learn action words (e.g., “throw”), personal-social words (e.g. “bye-

bye”), modifiers (“cold”), and functors (e.g., “and”). Although there is good reason to 
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start the study of word learning by examining object names (e.g., relative to other 

lexical categories, object names, or nouns, are the single largest category in 

children’s developing lexicons, see L. Bloom, 2000), a complete account of how 

children learn words must also be able to explain the acquisition of other lexical 

categories as well.  

There are at least three reasons that a cross-situational word learning 

account based on object name learning might not easily translate to the acquisition 

of other lexical categories. First, the candidate referents for lexical categories such 

as verbs are often less obvious than those for nouns (see Gentner & Boroditsky, 

2001; Snedeker & Gleitman, 2004). For example, consider a child who sees a ball 

kicked by a boy and hears the sentence, “the boy kicked the ball”. Whereas the 

candidate object referents are relatively obvious (the boy and the ball), the 

candidate action referent is less so. What is the action to which the word “kick” 

refers? Does it refer to causing the ball to move, causing the ball to move with one’s 

foot, causing the ball to spin, causing the ball to fly, intending to harm the ball, etc (see 

Gentner & Boroditsky, 2001)? In an influential set of studies, Gleitman and 

colleagues showed adults muted video clips of mothers talking to their children with 

beeps inserted when certain words were uttered, and then asked the adults to guess 

the word uttered. What Gleitman and her colleagues have found is that relative to 

nouns, adult learners do a very poor job at picking out verbs (e.g., “throw”, Gillette et 

al., 1999; Snedeker & Gleitman, 2004) and mental-content words (e.g., “believe”, 

Pappafragou et al., 2007), as well as abstract nouns (e.g., “thing” Kako, 2005). Thus 

as Gleitman, Gentner and their colleagues (Gentner, 1982; Gentner & Boroditsky, 



 125 

2001; Gleitman, 1990; Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005) 

have argued, there may be more to learning lexical categories such as verbs besides 

simply tracking the cross-situational observations in which these words occur.         

A second reason that tracking co-occurrence statistics of non-nouns may be 

difficult is that their referents have limited temporal availability (Gentner & 

Boroditsky, 2001; Merriman & Tomasello, 2005). That is, in the example above, 

unlike the boy and the ball that remain visible throughout the event, the kick is a 

fleeting action. Thus, analyses of the candidate referents of “kick” must rely less on 

direct perception and thus likely result in less precise representations than object 

representations.  

A final potential limit to extending cross-situational learning accounts to the 

acquisition of non-noun categories touches on what Merriman and Tomasello 

describe as the self-other distinction (Merriman & Tomasello, 1995). That is, because 

actions can be performed either by oneself or by another individual, the actions may 

yield very different information depending on the actor. For example, in the case of 

a self-performed action, the learner may have insight into the intention and goal of 

the action. In contrast in the case of another’s actions, the learner will have much 

less of these internal insights but might instead have a visual of the actors full body 

performing the action, something that is missing when viewing one’s own actions. 

Thus relative to comparing instances of an object across situations, which are 

similar regardless of actor, comparing instances of an action across situations may 

be more problematic.     
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Thus there are a number of issues to consider in extending the cross-

situational word learning account to the acquisition of non-noun lexical categories. 

Although a number of studies stemming from the comparison and categorization 

literatures point to the general benefit of cross-situational information in the 

learning of action words (Childers, 2011; Childers & Paik, 2009) and object property 

terms (e.g., Waxman & Klibanoff, 2000), additional work is still needed to address 

the implications of the above issues for the nature and relative role of cross-

situational word learning in the acquisition of different lexical categories.   

6.2.3 Is cross-situational learning ability related to real-world 

vocabulary growth? 

A final limitation to the current research, and cross-situational word learning 

research more generally, is that there is little direct evidence that implicates cross-

situational and statistical learning abilities in word learning beyond the laboratory 

setting. This is particularly surprising given the large amounts of variance to-be-

accounted for in children and adults’ vocabulary sizes (Anglin, 1993; Fenson et al., 

1994; Stanovich & Cunningham, 1992). Existing individual differences research has 

suggested a multitude of factors that account for some portion of this variance, 

including socio-economic and early experiential factors (Arriaga, Fenson, Cronan, & 

Pethick, 1998; Huttenlocher et al., 1991; Hoff, 2003; Hoff & Naigles, 2002; Pan, 

Rowe, Singer, & Snow, 2005; Rowe, Levine, Fisher, & Goldin-Meadow, 2009), social 

learning competence (Gliga et al., 2012; Morales, et al., 2000; Morales, Mundy, & 

Rojas, 1998; Mundy, Fox, & Card, 2003; Parish-Morris, Hennon, Hirsh-Pasek, 

Golinkoff, & Tager-Flusberg, 2007), cognitive and memory capacities (Bowey, 2001; 
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Gathercole & Baddeley, 1989; Gathercole, Willis, Emslie, & Baddeley, 1992; Gupta, 

2003), literacy and reading achievement (Cunningham & Stanovich, 1991; Perfetti, 

Wlotko, & Hart, 2005; Stanovich & Cunningham, 1992) and meta-linguistic skills 

(McBride-Chang et al., 2005, 2008; Metsala, 1999; Smith & Tager-Flusberg, 1982). 

To the extent that vocabulary acquisition is a statistical learning process, as is 

proposed here, then we should expect that statistical learning capacities should also 

correlate with measures of vocabulary size and other metrics of word learning.  

Studies of statistical learning in other domains provide some evidence that 

performance in statistical learning tasks correlates with language competence. First, 

a number of researchers have examined statistical language learning in individuals 

with language-related disabilities, such as specific language impairment (Evans, et 

al., 2009; Tomblin et al., 2007), agrammatic aphasia (Christiansen et al., 2010), 

dyslexia (Howard, Howard, Japikse, & Eden, 2006), and other language learning 

disabilities (Grunow, Spaulding, Gomez, & Plante, 2006; Plante, Gomez, & Gerken, 

2002), and have found that, compared to non-impaired and typically developing 

controls, these individuals have impaired statistical learning capacities in addition 

to impaired language functioning.  More recently, scholars have examined variability 

in the statistical learning of typically developing adult populations and have found 

that performance on these tasks is correlated with a number of measures of 

language comprehension and processing (Conway, Bauernschmidt, Huand, & Pisoni, 

2010; Kidd, 2012; Misyak & Christiansen, 2012; Misyak, Christiansen, & Tomblin, 

2010), as well reading skills (Arciuli & Simpson, 2012), even after individual 

differences in other capacities, such as working memory, have been accounted for.  
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Thus, it is reasonable to hypothesize that performance on cross-situational 

word learning would correlate with vocabulary skills. Of course even if it did, such 

data would not illuminate the precise causal relation between statistical word 

learning and vocabulary acquisition. Nonetheless, such an approach would be a 

valuable first step in mapping out the role of statistical learning in natural 

vocabulary growth. Perhaps subsequent longitudinal research that examines 

whether pre-linguistic statistical learning capacities predict early vocabulary size or 

training studies that examine the impact of promoting cross-situational learning on 

vocabulary growth could provide better insight into the causal relation underlying 

any link between statistical learning and real-world word learning.  

6.3 Conclusions 

How do children learn so many words so quickly despite the inherently 

ambiguous nature of reference? One way this paradox can be resolved is to posit 

that children have at their disposal powerful mechanisms that allow them to infer 

reference at the moment new words are encountered. Forty years of empirical 

investigations into this issue leaves no doubt that at least older word learners do 

have access to such processes. However, children’s word learning capacity may 

include additional solutions to solving the problem of referential ambiguity.  

A growing body of evidence over the past 5 years suggests that cross-

situational word learning may be once such candidate process. As demonstrated in 

the studies herein, children can acquire novel word-to-referent mappings across a 

handful of ambiguous naming events, even when the only cue to mapping is the 

cross-situational co-occurrence statistics. Investigation into children’s cross-
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situational learning capacities is still in its infancy and lags far behind investigation 

of children’s fast mapping capacities. Thus, many questions remain regarding the 

scope of this learning process and its role at different points in development. 

Further, little is known about the underlying mechanisms that give rise to such 

learning. As the current simulation studies underscore, multiple existing theoretical 

accounts can be sculpted to be consistent with the empirical data. These findings 

suggest that a combination of theory and model development may be needed, in 

addition to empirical investigations, to advance our understanding of the nature of 

cross-situational word learning. I argue that this work has great promise and 

potential. Notions of cross-situational word learning are reminiscent of recent 

documentations of statistical learning across many aspects of language learning. 

This suggests that the current cross-situational learning work may contribute not 

only to a more complete account of vocabulary growth, but also to a more unified 

account of language acquisition.  
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