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Abstract 
 

Genetic Data Integration: 
A Model for Clinical Implementation 

And Intervention Research 
 

By Cynthia Davison 
 
 

 
Opioid addiction is a multifactorial condition for which there is growing evidence 

of a genetic contribution and thus vulnerability to abuse. Concurrent with the growth of 
this epidemic, is significant advancement in genomic sequencing, cloud-based services, 
predictive analytics, big data storage and retrieval, and emerging computing technologies 
- a concomitant growth that is enabling an ever-widening scope of genetic inquiry and 
thus application.  Given this technological landscape, we can construct a model that 
integrates genetic data into a cloud-based platform, facilitates use of next generation and 
emerging applications, and contributes to the growth of evidence-based treatment and 
genomic knowledge.  As a foundation for development, the MeTree study platform, 
developed by Duke University and sponsored by the National Institutes of Health, serves 
as a starting point. 
 

As currently constructed, the IGNITE (Implementing GeNomics In pracTicE) 
MeTree project platform offers elements from which to architect a clinico-genomic 
decision support platform that incorporates modern technologies.  The MeTree platform 
collects family health history (FHH) data, links to a patient electronic health record 
(EHR) database, and provides clinical decision support (CDS) to providers and patients 
using guidelines-based recommendations for individuals at risk of developing common 
chronic diseases. It supports the SMART-on-FHIR standard, an HL7 data access and 
management platform, and, thus, it can employ the SMART-on-FHIR genomic profile for 
incorporating genetic data into an EHR system.  Adoption of that standard creates the 
opportunity for an application-driven, microservices architected model for disease study 
and clinical use, the original concept behind SMART-on-FHIR development.  Since prior 
studies suggest that dopamine receptor genes are prime candidates for the study of 
genetic variants and their effects on opioid dependence vulnerability, the investigation 
and inclusion of specific abuse-related variant information along with EHR, and FHH 
data has the potential to expand the current understanding of genetic addiction 
vulnerabilities, and genotype-phenotype associations.  And, from a public health 
perspective, the inclusion of genetic data and application of predictive analytic techniques 
as presented in this model, can point the way for intervention strategy development for 
many multivariate disease types, and for the future implementation and practice of 
precision medicine. 
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Introduction  

 

Opioid addiction is a multifactorial condition for which there is growing evidence 

of a genetic contribution and thus vulnerability to abuse.1-5  Concurrent with the growth 

of this epidemic, is significant advancement in genomic sequencing, cloud-based 

services, predictive analytics, big data storage and retrieval, and emerging computing 

technologies - a concomitant growth that is enabling an ever widening scope of genetic 

inquiry and thus application.6 These advances have implications for greater 

understanding and identification of our genetic identities and stand poised to shape 

individual health care delivery in a new and revolutionary way.  Given this technological 

landscape, we can construct a model that integrates genetic data into a cloud-based 

platform, facilitates use of next generation and emerging applications, and contributes to 

the growth of evidence-based treatment and genomic knowledge.  As a foundation for 

development, the MeTree study platform, developed by Duke University and sponsored 

by the National Institutes of Health, serves as a starting point.   

As currently constructed, the IGNITE (Implementing GeNomics In pracTicE) 

MeTree project platform offers application elements from which to build a clinico-

genomic decision support platform that incorporates modern technologies.  The MeTree 

platform collects family health history (FHH) data, links to a patient electronic health 

record (EHR) database, and provides clinical decision support (CDS) to providers and 

patients using guidelines-based recommendations for individuals at risk of developing 

common chronic diseases. It supports the SMART-on-FHIR standard,7 an HL7 data 

access and management platform, and, thus, it can employ the SMART-on-FHIR 

genomic profile for incorporating genetic data into an EHR system.  Adoption of that 

standard creates opportunity for an application-driven, microservices architected model 

for disease study and clinical use, the original concept behind SMART-on-FHIR 

development.8  Since prior studies suggest that dopamine receptor genes are “prime 

candidates for the study of genetic polymorphisms and their effects on opioid dependence 

vulnerability,” 5 the investigation and inclusion of specific abuse-related variant 

information along with electronic health record, EHR, and FHH data has the potential to 

expand the current understanding of genetic addiction vulnerabilities, and genotype-
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phenotype associations.  And, from a public health perspective, the inclusion of genetic 

data and application of predictive analytic techniques, can point the way for intervention 

strategy development for many multivariate disease types, and for the future 

implementation and practice of precision medicine.  

 

Background 
 

Opioid substance abuse disorders are complex, multifactorial conditions. 

Beginning in the 1990’s, with the debut of OxyContin and the proliferation of medical 

marketing campaigns, health officials began recording a staggering increase in morbidity 

and mortality associated with prescription opioid use, and morphine and heroin.  Today, 

more than 115 Americans die every day after overdosing on opioids, according to the 

latest figures from the Centers for Disease Control and Prevention (CDC). And, more 

than 630,000 people have died from a drug overdose between 2000 and 2016, a majority 

due to opioid abuse. 9  In 2015, it is estimated that 2 million people in the US  suffered 

from substance abuse disorders related to prescription opioid pain relievers. 10  And, in 

that year alone, costs due to the epidemic were pegged at $504 billion, or 2.8 percent of 

GDP,11 a figure that accounts for healthcare spending, and loss of productivity.  Of 

particular significance to clinical practice, studies show that prescription opioids are a 

pathway to illegal drug use.  It is estimated that about 20 to 29 percent of patients who 

are prescribed opioids abuse them, and, that about 80 percent of heroin users misused 

prescription opioids first. 10 

Compounding this epidemic is a limited, and arguably inadequate, understanding 

of effective treatment and prevention strategies.  Given that opioid medications offer 

health benefits as well as present risks, the prevention and reduction of prescription drug 

misuse presents a major challenge. 12 Prevention strategies are more “restrained,” as a 

result, and less subject to evaluation. 12  The CDC cautions that opioids should be used 

only when the benefits for pain relief and function are expected to outweigh risks.13 Yet, 

the organization’s 2016 Guideline for Prescribing Opioids for Chronic Pain, gives no 

clear guidance on how to measure that tradeoff.  The twelve recommendations in the 

report are voluntary and, sadly, as noted, the clinical scientific evidence informing the 

recommendations is low in qualityS.13  In sum, the report suggests that non-opioid 
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therapy is the preferred strategy, and more research is necessary to fill in critical evidence 

gaps.     

It is worth noting that there are specific risk assessment tools currently in clinical 

use for measuring individual abuse vulnerability, though reception appears mixed.  In 

large part, these are survey tools, designed to assess behavioral patterns based on patient 

responses in order to determine risk.  The most frequently recommended instruments for 

risk assessment screening include: Opioid Risk Tool (ORT), the Structured Clinical 

Interview for DSM-IV (SCID), and the Current Opioid Misuse Measure (COMM), and 

the Screener and Opioid Assessment for Patients with Pain-Revised (SOAPP-R).  

Together, these form a disparate group of questionnaires and patient administered 

surveys.  (The ORT survey, for example, is a six-item questionnaire designed to predict 

the risk of problematic drug-related behaviors. A score of 8 or higher, given that one 

question can have multiple responses, is considered a high risk for opioid misuse).14 The 

CDC finds fault overall with these tools due to a lack of available research to support 

clinical usage, and, specifically with the ORT and SOAPP-R tools, for inconsistency in 

predicting opioid abuse or misuse.  In one study cited; for ORT, sensitivity was 0.58 and 

specificity 0.54 ; for SOAPP-R, sensitivity was 0.53 and specificity 0.62.13  Not 

surprisingly then, their usefulness in determining patient abuse vulnerability, and guiding 

medical prevention and treatment, is characterized at one end of the spectrum as no better 

than 50%, 15 or, the flip of a coin.  

Opioid Abuse Research  

To date, research on opioid abuse underscores its multifactorial nature and 

indicates associations of dependence behavior with a number of factors including; family 

history of substance dependence, socioeconomic status, physical health, and specific 

genetic influences related to pain perception and dopamine receptor interactions. 5,16  The 

relationship is complex and can involve comorbidity with mental health and 

environmental factors,17 the extent of which varies and depends on the individual.  

Overall, these factors in combination invite further scrutiny.   

In studies, opioid abuse research has shown that: 



 

 

4 

 

• In terms of demographics, individuals who are younger, white, male, 

Alaskan/Am. Indian, and live in rural vs. urban settings, are more at risk.18  

People aged 18 to 25 years have the highest rates of chronic nonmedical use of 

analgesic opioids and heroin use. 18  And, opioid analgesic death rates are highest 

among people aged 45-54 years. 18 Interestingly, the rate of heroin abuse is 

highest among 25-34 year-olds. 18  

• Risk factors for opioid abuse include: mental health issues, poor physical health, 

history of substance abuse, family instability, and socio-economic level.19  For 

young adults in particular, studies point to external factors as strong influencers in 

the development of substance abuse.  The presence of a family member with an 

abuse disorder can significantly influence the childhood development and 

likelihood that a young person will struggle into adulthood, with emotional, 

behavioral, or substance use problems. 20  And, the disorder can manifest in young 

adults as early antisocial behavior, depression and anxiety. 21  

• Heritability also appears to be a factor in studies that do not include genomic 

information.  Several studies of twins have indicated that a large fraction, about 

half, of the risk for opioid addiction is genetic in origin. 22,23 In one study, 

relatives of probands, or starting points in a family tree, that have opioid disorders 

were ten times more likely to have opioid abuse disorders themselves. 5,20  

• In genetic studies, dopamine and opioid receptor genes have emerged as “prime 

candidates in the study of genetic polymorphisms” and their effects related to 

opioid abuse and dependency.  5,24  These genes are associated with pain 

perception and reward behavior.  Neurotropic related genes have also been 

implicated.  And, while genetic influences and effects are complicated, variations 

in four genes; DRD2, OPRM1, OPRD1, and BDNF, consistently, have shown 

associations with substance abuse. 5  These genes encode receptors and the 

signaling molecules that play important roles in opioid abuse disorders. 5  

 

In consideration of the multivariate nature of opioid addiction, its human toll, and 

the need for intervention and prevention strategies, a technologically advanced data 

system should enable providers, researchers, and policy makers, to draw on multiple data 
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sources, in conjunction with electronic health records, as inputs for sophisticated analysis 

and development of clinical guidelines in which to assess and treat patients.  

Technological advances, currently in various stages of convergence, adoption and use, 

can make this happen, as envisioned, in a cloud-based EHR database system.  

 

Technological Advance and Convergence 

 

 Today, the convergence of technological advances in cloud services and emerging 

computing technologies, standardized data messaging, and advanced analytic and data 

storage capabilities provide the opportunity for genetic data integration into the clinical 

care setting, and a foundational reset in the delivery of clinical medicine and the 

development of evidence-based guidelines for the prevention and treatment of disease.  

Technological advancements for the proposed model touch on; 1) the utilization of next-

generation sequencing (NGS) for identifying variants and increasing DNA knowledge, 2) 

the inclusion of genomic data into an EHR system through a standardized messaging 

application programming interface (API), in particular, SMART-on-FHIR, 3) advanced, 

scalable data storage methodologies, adaptable to increasing payloads and relational 

structures,  4) the statistical capabilities of advanced software for the investigation and 

evaluation of multiple data sources; genetic, FHH, and EHR data as a basis for a clinical 

support application, 5) cloud computing and storage systems to house, organize and 

operate the above, and finally, 6) the emergence of cloud microservices systems which 

facilitate application-based access to an EHR database system.  In combination, these 

technologies will shape the proposed solution as follows: 

1) Genetic data extraction and processing using next-generation sequencing 

techniques has significantly decreased the cost, time and effort of earlier methods, 

particularly, the Sanger method, considered the progenitor of genetic sequencing and its 

benchmark methodology.6   These technologies, characterized by high throughput and 

massive parallel sequencing capabilities, have led to new gene discoveries and greater 

availability of variant information on a mass scale.  Leveraging this molecular data 

through linkages with EHR and environmental data is building a bridge between genomic 

bioinformatics and clinical informatics. 25  
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2) Advances in health care applications have demonstrated the potential to link 

and facilitate data flow from disparate systems and data sources.  Specifically, SMART-

on-FHIR, an HL7 open-source, standards-based application, presents a cutting-edge, 

interoperable platform designed to standardize data flow and to allow third-party 

applications to operate across different healthcare EHR systems.   Launched in 2010, the 

SMART (Substitutable Medical Applications, Reusable Technologies) application offers 

the functionality through which interchangeable applications can access authorized pieces 

of an EHR. 26 Underneath it, FHIR (Fast Healthcare Interoperability Resources) provides 

the data format and standard, using widely adopted medical terminologies for coding 

data; LOINC, SNOMED, ICD-10, for organizing and storing the data by bits of 

information, or resources.  The application is extensible.  It operates through discrete data 

elements for research and retrieval and is able to accommodate new discoveries.  

SMART-on-FHIR’s use of common internet protocols HTTP RESTful, and JSON or 

XML for data representation, also empowers the platform’s interoperability.  Of note, the 

FHIR genomic resources profile is currently in draft form. 27   

3) Today, advanced data platforms and storage technologies can enable secure 

access and storage for genetic data in massive quantities.  These database tools remove 

many of the previous barriers for Big Data, or genetic information, through provisioning 

clusters of database servers with distribution and replication capabilities.  Characteristic 

of this technology are horizontally scaled servers designed to manage information 

storage, updating, retrieval, and scaling as data needs change.  (Of note, a current trend in 

data storage embraces the notion of “polyglot persistence,” or the use of different data 

storage technologies, SQL or NoSQL, to manage varying data storage needs.  This 

methodology releases APIs calls from having to conform to relational data models and 

enables use of schema-less data format such as Cassandra, or Mongo.) 28  

4) Today, cutting-edge statistical computing software such as R enables 

researchers to apply statistical tools and learning equations to complex and multi-variable 

datasets and generate statistical associations and predictive learnings.  Clustering 

methods, or techniques for datasets without associated response variables, can reveal 

unknown subgroups and hierarchical relationships among large groups of genetic data.  
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And, through stepped up linear regression approaches, modeling validation methods and 

algorithm selection processes, 29 researchers can reveal data associations and potential 

predictive relationships that can point to new treatment insights. 

5) The emergence of cloud-based platforms and services facilitates greater data 

linkage and analytic opportunities for using Big Data; genomic and EHR.  Through 

advanced infrastructure and application software technologies, these off-site server and 

network platforms offer modern computing capabilities and data system scalability for 

large and increasing data inputs.  Plus, they offer backup data services, and data and 

system security.  As they evolve, cloud platforms are being significantly shaped by 

emerging technologies. 30  

6) The development of microservices technology has the potential to upend 

current cloud computing services architecture.  In contrast to monolithic architectural 

structures where software is tied to an EHR database, a microservices environment 

facilitates an applications-based approach to EHR access and simplifies cloud 

architecture through a system of interoperable and interchangeable parts.  Characteristic 

of this technology is deployment of individual, and isolated, containerized application 

units,31 that share a common operating system, and are linked in complex patterns 

relating to business needs. Docker, for example, is an open-source microservices 

application that creates, deploys, and operates self-contained execution environments, or 

software containers, similar in manner to a virtual machine (VM).    Essentially, a 

microservices architectural system moves software manufacture and installation approach 

from a product model to a business services model. 32   

Proposed Solution 

The proposed solution design for this project integrates genetic data information 

relating to opioid addiction into a cloud-based application platform using as a foundation 

the IGNITE study MeTree application platform.  The goal of the project is to further the 

understanding and development of opioid prevention and treatment strategies for 

clinicians and public health policy-makers, and to serve as a platform for broader use in 

investigating diseases from a more modern and multifactorial inclusive perspective.   The 
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development and evolution of this system will serve as a model for the integration of 

genomic information into an EHR system, and for the data’s use in the research and 

development of clinical guidelines.   

As conceived for this project, the genetically integrated IGNITE MeTree platform 

model will address the challenges of implementing genomics into clinical practice and 

developing evidence-based intervention treatment strategies.  These issues include:  

• Point-of-care integration of genetic test results with EHRs and clinical decision 

support tools 

• Standardized genotyping platforms for use in clinical practice  

• Modernized storage of genetic data in analyzable formats 

• Development of CDS capabilities 

• Adaptation of clinical strategies as technology develops 

• Ongoing assessment of outcomes data in relation to scientific disease 

understanding and technological change  

 

The MeTree Platform 
 

The foundation for this proposal is the IGNITE MeTree platform.  Created 

through the Geomedical Connection, a collaboration between Duke University, 

University of North Carolina at Greensboro and the Cone Health System, this platform 

integrates family health history (FHH) information, EHR data, and a clinical decision 

support application, MeTree, into a primary care practice tool. 33  The MeTree risk 

assessment application collects FHH data directly through a patient portal and provides 

guidelines-based recommendations for individuals at risk of developing common chronic 

diseases. Algorithms are used to determine individual risk levels.  At present, the 

application calculates risk scores and provides clinical decision support for breast cancer, 

ovarian cancer, colon cancer, thrombosis, coronary artery disease, aortic aneurysm, 

ischemic cerebrovascular disease, type diabetes, and hereditary liver diseases.7  It is 

based on the HL7 Virtual Medical Record standard and can be integrated with medical 

records that support the SMART-on-FHIR method.  It is also Epic-based. 7 

 
For purposes of this project, the MeTree platform offers these foundational elements; 
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• Alignment  IGNITE Metree study platform is a National Human Genome 

Research Institute (NHGRI) formerly approved project.  Given the mission of 

NHGRI, to improve health of all humans through advances in genomics research, 

the addition of genomic data, it appears, would fit comfortably into its framework.  

In this sense, the proposed model is aligned with the purpose of the NHGRI, and 

presumably its design would meet approval for genetic based study.   

 

• Data Integration  The Metree Network links EHR data, family health history and 

MeTree, a risk assessment application.  Patient identifier linkages are established 

between data types and sources, and the storage framework enables data retrieval 

utilizing SMART-on-FHIR API tools. (Specifically, the MeTree FHH application 

stores family health history data separately from EHR data stores and technically 

can retrieve data on-demand from the EHR database).  In this respect, genetic 

integration using the FHIR genomic profile could be achieved.  

 

• Clinical Integration  MeTree runs algorithms based on current clinical guidelines 

and provides risk-stratification prevention strategies integrated and delivered into 

the clinical workflow.  The application calculates risk scores (Gail, Framingham, 

etc.) and “indicates when new technologies have clinical utility.” 7 From a 

technical point of view, the MeTree application is integrated with the EHR 

database, via patient identifier, rather than acting as a standalone tool. 7  

Guidelines, or metadata, based on opioid abuse related variants in relation to EHR 

and environmental factors could be integrated into the Metree CDS, as data 

analysis evolves.   

 

• Interoperability  MeTree supports SMART-on-FHIR, an HL7 standard that can 

provide integration across data channels and application access.  Prototypes have 

been developed for a clinico-genomic resource application, an API that will be 

required for linking genomic variant sequencing information from a laboratory 

database to an EHR system.  Feasibility of the SMART-on-FHIR Genomics API 
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has been demonstrated and adopted by the HL7 Clinical Genomics Workgroup 34 

and by Duke University, sponsor of the MeTree network.  Duke University has 

successfully developed a SMART-on-FHIR compatible server infrastructure at 

the Duke Health Network that integrates SMART-on-FHIR technologies and 

enables “plug-and-play” API linkages. 35   

 

• Research Utility: The IGNITE MeTree network contains embedded open-source 

applications such as R, SQL server, an Apache HTTP Server, and a Linux 

operating system.  The value in using open-source is that it invites innovation 

versus being trapped in a legacy system, and any upgrades and changes extend 

from open contributions that are evaluated and input on a community level.  As a 

result, the project is untethered from the restrictions and control of a single 

vendor.  As genetic discoveries evolve, software flexibility and adaptability most 

likely will grow in importance. Security issues arising from open-source software, 

however, will need to be managed.  

 

• Security  Given previous project approval, it can be assumed that patient privacy 

and security provisions are in place and in line with HIPAA and other research 

study regulations.  And, presumably, IRB approval was obtained for the initial 

platform use.  As envisioned, this project would be an extension of its 

predecessor.  

 

• Ease of Use The MeTree survey instrument is a patient-facing, web-based, 

interface for standardized collection of FHH data.  Patients submit data on their 

own time thereby streamlining the process of gathering FHH data.  Specifically, 

the MeTree application collects data on: diet, exercise, smoking and other clinical 

data in addition to family health history.  It also supplies clinical decision support 

and patient recommendations on “20 cancers, 14 hereditary cancer and 

cardiovascular syndromes, and 21 other conditions.” 7  The application, as 

conceived for this study, would also deliver risk stratification findings, in 

conjunction with FHH data, on opioid abuse vulnerability.   
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• Quality  Clinical accuracy and validation in programming, output, coding, and 

algorithmic use has been performed by genetic counselor review. 36 

 

Technical Proposal 

 

As envisioned, the proposed design will provide a cloud platform for the investigation 

of associations between behavioral, familial, genetic, and clinical factors in advancing 

disease understanding and intervention strategies.  Specifically, the proposed platform 

will incorporate; API connectivity utilizing SMART-on-FHIR technology, advanced 

statistical analysis tools such as R, and expanded data and storage capabilities in a cloud-

based platform that will provide system security, scalability, availability and reliability.  

Additionally, use of  SMART-on-FHIR technology will enable construction of a 

microservices and systems enterprise architecture conducive to the use of emerging 

“plug-and-play” applications.  The model will consist of these elements and the ability to: 

 

• Integrate genetic data into an EHR system using utilizing a standardized ontology 

and messaging platform  

• Link disparate data elements, including family health history, to expand the 

current understanding of prevention and treatment strategies.   

• Provide the analytical tools i.e.; R software, to build decision support output for 

clinical use that reflects advanced technology and analytic techniques.  

• Provide a platform for ongoing study of preventative and treatment strategies in 

clinical delivery for opioid addiction, and other multifactorial diseases and 

conditions.  

• Provide a data platform which is scalable. 
 

• Provide a platform which is in compliance with security requirements of HIPAA, 

and that adheres to IRB stipulations. 

• Deliver a platform which aligns with the mission of the NHGRI.  
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Information Flow Diagram (IFD) 

 
Figure 1. Information Flow Diagram with Genetic Data Linkage 

 
 

An Information Flow Diagram presents a visual illustration of how data and 

information moves, or flows, through a system.  As envisioned, the IGNITE MeTree 

platform model will incorporate a new data input for patient genetic findings, and thus 

require APIs for linking the sequenced laboratory data to the platform’s electronic health 

record (EHR) database.   The platform will also require additional and scalable data 

storage capacity, and capabilities for retrieval, statistical analysis, and reporting into the 

MeTree clinical decision support (CDS) application.  Business processes that utilize 

genetic data will require on-demand data retrieval, and receipt of the data in a 

standardized format.  The diagram above illustrates data flow between the EHR database, 

the genetic sequencing laboratory, application systems, and direct user stakeholders. 
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Task Flow Diagram 

 

Figure 2. Task Flow Diagram for Genetic Data Transmission Workflow 

 

 

The Task Flow Diagram illustrates specific steps in a process, and, as such, it is a 

representation of the various process tasks and their interrelationships.  The linking and 

inclusion of genetic data to the envisioned MeTree model project system will require new 

processes for data communication and flow. Above is a swim lane diagram that parses 

the tasks for managing the transference of genetic data from the sequencing laboratory to 

the envisioned MeTree and EHR database network upon a physician request.  Prior to 

task development, processes for user authorization and authentication will need to be 

established as well as those for data validation involving data transmission, and data 

storage.  Checksum is one example used for this.  The data also will require HL7 

encryption standards in motion and at rest.  And, use of the data system will also require 

privacy and security provisions in accordance with HIPAA and other regulations.  
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SMART-on-FHIR Genetic Data Transmission 

 

Figure 3. HL7 - SMART on FHIR - Genetics Data Resource  

 
 
Source: Hl7.org, 10.8 Genomic Implementation Guidance, 2017 
https://www.hl7.org/fhir/genomics.html 
 

A major issue in integrating genomic findings into an EHR and clinical decision-

making involves the lack of standard nomenclature for genetic variants and by extension, 

standardized messaging, and thus interoperability from the laboratory to the EHR 

database.  Adoption of a standards-based ontology through which to integrate genetic 

data and clinical systems is a first step in data and clinic-based integration.  Given that, 

the SMART-on-FHIR genomics profile, an open-source, observation-based and 

extensible application designed for next-generation sequencing, conceptually, can be 

employed.  The depiction above illustrates the genetic resource for next-generation 

sequencing and recording of sequence id/string and detected variants, as presented by 

hl7.org. 27   Notably, the modular construction inherent in FHIR (Fast Healthcare 

Interoperability Resources), as seen in the depiction, enables rich payload able to handle 

expressive queries and development of substitute applications. Utilizing this transmission 

system, the proposed solution is capable of linking with genomic tests and any future 
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pharmacogenic testing. Of note, FHIR currently faces some adoption challenges 

stemming from content disagreement, and issues with multiple versions. 27  

 

SMART-on-FHIR API Infrastructure 

 

Figure 4 SMART-on-FHIR API System Infrastructure 

 

SMART-on-FHIR technology is a standardized framework for the development 

of interchangeable healthcare applications in the healthcare arena. 8  In 2014, Duke 

University, sponsor of the IGNITE Metree project, implemented SMART-on-FHIR into 

the University’s EHR Epic-based system. 35 To date, implementation, designed to enable 

seamless data access using applications, is considered a success.  The diagram above 

illustrates how the SMART-On-FHIR resources infrastructure, configured for the Duke 

project, could be utilized for the proposed model.  The infrastructure enables; 1) use of 

interchangeable APIs, such as the envisioned Metree application, (top row), 2) an API 

layer for authorization, auditing, and analytics (middle), and, 3) data coded in FHIR-

compatible format, retrievable by resource (bottom). 35  This configuration serves as an 

illustration of the workability of a standards-based API system, and, in effect, a “plug-

and-play” solution, in which SMART-on-FHIR compatible applications are key enablers 

for database access.  Implementation of the SMART-on-FHIR API would involve 
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mapping laboratory and patient data to FHIR resources, and implementing the API 

authorization scheme supported by SMART - OAuth 2.0 and OpenID Connect.  

Currently, medical services providers, Cerner, Epic, and Allscripts, all provide sandboxes 

for SMART-on-FHIR development. 37  

 

Enterprise Architecture 

 

Figure 5.  Enterprise Architecture – MicroServices Environment 

 
 

Emerging microservices have the potential to radically alter the focus and build of 

cloud-based systems.  In contrast to monolithic architectures, whereby applications are 

specifically tied and coded to a database system, a microservices architecture is an 

evolutionary model that organizes system software around business capabilities, 38 and 

structures applications as units of “loosely coupled” and collaborating services. 38 

Characteristic of this architecture is deployment of containerized, interchangeable 

application units which share a common OS, and specific APIs that define and modulate 

business processes according to set patterns.  An API gateway serves as an authorization 

entry point. Database protocols and ontologies are standardized for API connectivity. 

Notably, Docker, is a premier microservices application for container deployment in this 

arena.  The diagram above illustrates how SMART-on-FHIR technology can enable a 
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“plug-and-play” microservices environment through standardizing database protocols, 

and providing a platform technology for application processing apart from the EHR 

database.  In this respect, SMART-on-FHIR becomes a critical enabler toward adoption 

of a microservices architecture strategy.   

 

Conclusion 

 

This proposal focuses on the development of a clinical research model to fully 

integrate genetic, familial health, behavioral and medical data, and provide a platform for 

the development of evidence-based interventions for clinical use. The proposed model 

utilizes SMART-on-FHIR technology in conjunction with a microservices architecture to 

create a platform that enables integration of genetic data into an EHR system, and 

facilitates data accessibility for FHIR compatible applications.  As such, it provisions the 

clinical decision support application, MeTree, when deployed as a containerized 

application, to pull needed data through an authorized and SMART-on-FHIR access 

capability.  The hope is that as it evolves, the ability of the proposed model to connect 

disparate data sources and empower ongoing predictive analysis can lead to better 

intervention models and guidelines for opioid abuse disorder, and for many other 

diseases.  

Looking ahead, however, implementation of the model will raise multiple 

technical issues.  As conceived, the model addresses barriers to genomic data integration 

into an EHR database, yet it does not identify possible implementation complications, or 

issues surrounding the deployment of microservices and business process patterns.  

Additionally, the SMART-on-FHIR genetics resource, as discussed, is still in draft stage 

though structural integration has been successfully achieved as demonstrated by the Duke 

University API infrastructure project.  

 Further, the harvest and use of genetic information will present important ethical 

and moral considerations - and dilemmas.  These will revolve around privacy issues and 

fears of retaliation from employers, insurance companies, or others, due to exposure of 

genomic information. Issues will also touch on the privacy boundaries of physician-

patient relationships and the information genetic data can yield.  For instance, should 



 

 

18 

 

providers be obligated to inform patient relatives of a positive predictive test? 39 And, by 

extension, what is the responsibility of the patient to inform a relative of an inheritable 

condition?  Currently, genetic data and patient privacy is protected within the confines of 

the medical profession and other HIPAA specified entities.  In the commercial sphere, 

comparatively, it is relatively unregulated – as of yet.   

  In conclusion, it is clear that advances in genetic sequencing and 

computing services have the potential to revolutionize medical care and understanding. 

For public health, leveraging these technologies will lead to greater knowledge of disease 

and intervention strategies.  The solution proposed here offers a cloud-based model that, 

as envisioned, can apply to research and development of evidence-based treatment for 

many different types of illnesses stemming from genetic, environmental and behavioral 

factors, all, or in part.  In this respect, the future is boundless. 
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