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Abstract

Biomarker Discovery from Sparse-Labeled Electrophysiological Datasets
By Mahmoud Zeydabadinezhad

The widespread accessibility of diverse neuroimaging modalities—ranging from
Local Field Potential (LFP) and Electroencephalography (EEG) signals to functional
MRI (fMRI)— and the advances in Artificial Intelligence (AI) and machine learning
(ML) methodologies have opened unprecedented avenues for investigating the neural
patterns underlying sensorimotor and cognitive processes. These patterns of neural
activities that are called physiomarkers or biomarkers are crucial for understanding
the neural mechanisms of diseases, developing novel therapeutic interventions such
as closed-loop neuromodulation, and studying the mechanisms of action of those
treatments. Despite these technological advances, the applicability of contemporary
AI/ML approaches is limited because there are often not enough examples in the
labeled datasets. This sample size limitation arises from various factors such as ethical
considerations in data collection, financial constraints, and the limited size of patient
populations. Concurrently, there is an urgent need for models that not only perform
well but are also explainable, particularly for the identification of neural biomarkers.
While machine learning methodologies for biomarker identification in neural activity
have been extensively studied, the focus has predominantly been on large labeled
datasets. The issue of explainability is often relegated to a secondary concern. Research
in other settings, such as computer vision, has ventured into methods tailored for small
sample sizes, but these approaches seldom offer a balance between performance and
explainability. Moreover, the applicability of these methods to neural activity data
is uncharted territory. Addressing this gap is of paramount importance for several
compelling reasons: The challenge is endemic in neuroscience, affecting a multitude
of studies that operate under the constraints of limited sample sizes. The current
limitations hinder the application of advanced automated data representation learning
methods to neuroscience and have far-reaching implications for clinical applications.
The development of an explainable automated data representation framework, tailored
for limited sample sizes, stands to make a seminal contribution to neuroscience. Such
a framework would not only facilitate biomarker identification but also enrich our
understanding of neural activity. Building on this premise, our research specifically
targets EEG data, intending to develop an automated and explainable data represen-
tation method for the critical task of quantifying the physiological effects of electrical
neuromodulation. We hypothesize that the development of an explainable foundation
model, tailored for EEG data analysis, will significantly enhance the quantification
of physiological effects from small and heterogeneous EEG datasets. This model will
surpass the limitations of current machine learning and deep learning methodologies
by providing a robust, generalizable solution that is capable of interpreting complex
biological signals without the need for extensive labeled data. To test our hypothesis,
we develop analysis pipelines for biomarker identification from small and heteroge-
nous data using manual feature extraction and traditional machine learning models



within the context of electrogastrography (EGG), and electroencephalography (EEG).
Subsequently, we adapt a foundation model to automatically generate EEG data
representations, tailored for a memory classification task.
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Chapter 1

Introduction

Biomarkers are essential components of the rational development of diagnostics and
therapeutics in medicine. In recent years, ML/AI has found applications in the
identification of biomarkers from neural activity data [1-8|. Nonetheless, its clinical
adoption remains limited. Two predominant impediments—Ilack of explainability and
large labeled datasets—hamper the clinical utility of many contemporary ML-based
methodologies [9, 10]. While technological innovations have facilitated the collection
of expansive datasets, particularly in the realm of electroencephalography (EEG), the
labor-intensive and costly nature of manual data labeling continues to pose challenges.
From a therapeutic standpoint, the data that can be collected to identify effective
biomarkers and inform closed-loop interventions are limited in cases such as neural
stimulation therapies. The objective of this dissertation is to critically examine the
limitations inherent in manual feature extraction and conventional machine learning

methodologies for biomarker identification within neuromodulation applications, par-

ticularly in contexts where the available labeled data are limited. Subsequently, this
dissertation aims to adopt a framework based on self-supervised learning strategies
designed to improve automatic EEG data representation.

In the following subsections, we examine prior research focused on addressing the



issue of representation learning with small sample sizes. Although machine learning
models, especially deep learning algorithms, are generally considered to need large
datasets for effective training, various methods have been proposed to handle the
constraints of limited sample sizes. The broad field of Artificial Intelligence and
machine learning research includes a wide range of methods, techniques, and theories,
each designed to address specific problems [11]. The purpose of defining these categories
is to provide a general understanding of the strategies that facilitate AI model training
under the constraint of limited datasets. It is important to note that these categories
are not isolated in practical applications; they are interconnected, and they are neither

mutually exclusive nor collectively exhaustive.

1.1 Regularization/Model Complexity

A significant issue when dealing with small data size or small n, large P problems is
model overfitting. Regularization methods are used to address overfitting by imposing

constraints on the model’s weights and biases during the training phase.

1.1.1 L1 Regularization (LASSO)

Originally introduced by Tibshirani [12], the least absolute shrinkage and selection
operator (LASSO) minimizes the residual sum of squares subject to the sum of the
absolute value of the coefficients being less than a constant. This method can be used

for feature selection as it tends to drive the weights of unimportant features to zero.

N p p
L= Z(YZ — ZXijﬁj)Q + AZ 1351
j=1 J=1

=1



1.1.2 L2 Regularization (Ridge Regression)

Ridge regression adds the squared magnitude of the coefficient as the penalty term to
the loss function. This method prevents the weights from growing too large, which

can lead to overfitting.

N p p
L= Z(Y; — ZXijﬁj)Q + )\ZBJQ
j=1 Jj=1

=1

The key difference between Ridge and Lasso is that Lasso shrinks the less important

feature’s coefficient to zero thus, removing some features altogether.

1.1.3 Dropout regularization

This method was proposed by Hinton et al. [13] to address the overfitting in neural
networks and works by randomly turning off learning neurons. Dropout controls
neural network overfitting by randomly omitting subsets of features at each iteration
of a training procedure [14]. It has been shown that feature dropout can be used as

an adaptive regularization method that can be applied to any learning algorithm [14].

1.2 Lower Complexity Models

A recent study showed that model complexity is critical when only a few samples per
class are available and that using low-complexity models can improve the state-of-
the-art in deep learning with small data [15]. The rationale is that networks with
fewer trainable parameters are less prone to overfitting and generalize better with
small data; however, the results are still very far from the successes of high-capacity
models with big data [15]. A limitation of this study is that the authors only focused
on the image classification tasks on computer vision datasets like MNIST. Hence, it is

unclear how this strategy would work in the case of biomarker identification.



Our preliminary studies showed that with careful feature engineering, we could train
simple and interpretable models like Logistic Regression or Random Forest for seizure
detection from EEG signals or stomach’s state classification from electrogastrography
(EGQG) signals. Nonetheless, it should be noted that the seizure detection task was
comparatively straightforward, and the identical pipeline may not exhibit equivalent
efficacy for more intricate tasks, such as the quantification of neuromodulation in

studies investigating memory enhancement.

1.3 Data Augmentation

Data augmentation is a technique to increase the size and diversity of a training
dataset by generating new samples. Various methods exist for generating new samples,
and selecting an appropriate one depends on the specific application and the inherent

characteristics of the data.

1.3.1 Data Manipulation

Data Manipulation constitutes transforming the input data to create new samples.
Techniques like random cropping and resizing [16], rotation and flipping [17], color
jittering [18], cutout [19], adding different types of noise [20], elastic transformation [21],
and linearly combining pairs of images and their labels during training (mixup) [22] are
examples of transformation for creating new data samples. Some of these techniques
have a limited scope of application and are only helpful in specific fields, such as
computer vision. Data augmentation methods such as flipping, rotating, and scaling

are insufficient to increase diversity and variance in medical data and specifically

EEG [23, 24].



1.3.2 Generative Models

The utilization of generative models for data augmentation in medical datasets is on
the rise [25-27]. Generative models could refer to various ML algorithms, such as
generative adversarial networks (GANs) 28], variational autoencoders (VAEs) [29],
or Generative Pre-trained Transformers (GPT) [30, 31] which are used to generate
synthetic samples that can be added to an existing dataset to increase its size and
diversity. This approach aims to improve the performance of ML models trained
on such augmented datasets, which may lead to better accuracy and generalization.
However, some challenges are associated with this approach. One such challenge is
the lack of explainability of generative models. This means that it can be difficult to
understand how the model generates new data samples, making it harder to validate
the results and ensure that they are accurate. Another challenge is the computational
complexity of generative models. These models are often extensive and require a
lot of computational power to train and run, making them impractical for some
applications|32]. Moreover, generative models often require a substantial amount of
data to capture the underlying distribution effectively. This is particularly true for

complex data types like images or medical data.

1.3.3 Biophysical Modeling

Biophysical modeling involves simulating biological systems using mathematical for-
malizations of their physical properties [33]. It can be used to fill data gaps where
there is knowledge of how the underlying system works. Biophysical modeling has
been applied to various fields, such as neuro-oncology, to characterize better the
molecular, spatial, and temporal heterogeneity of tumors [34]. It also has been used
to study the origins of Local Field Potential (LFP) and EEG [35, 36]. There are
anticipated challenges with using biophysical modeling. The current knowledge of how

a biological system works may not be enough to generate a meaningful representation



of that system. The other challenge arises because most of our biophysical modeling
knowledge stemmed from animal studies, and the inter-species differences may hinder

accurate data generation using this approach [35].

1.3.4 Federated Learning

Federated learning (FL) is not a data augmentation method per se, but how it is
designed may help to mitigate data scarcity problems in some cases [37]. In this
design, decentralized data sources are used to train a central model without sharing
the raw data itself [37]. However, a significant challenge with FL is data heterogeneity
or non-identically distributed data. Researchers have proposed novel FL designs that
use zero-shot data augmentation on under-represented data to mitigate statistical

heterogeneity and improve accuracy performance [38].

Because in this dissertation our focus pivots towards neuromodulation, we looked
into prior research on data augmentation for EEG [24, 39, 40]. A recent study
conducted a review of 27 distinct studies that utilized generative algorithms for EEG
data augmentation [41]. The findings showed an enhancement in classification accuracy,
ranging from 1% to 40%, upon employing synthetic EEG data. This variability implies
that the effectiveness of these DA techniques is not straightforward and depends on
various factors, such as the specific EEG task and dataset being used which also
cast a shadow on their generalizability. The generation of realistic synthetic EEG
data may open up the possibility of data augmentation [42], however, the transition
towards its clinical application, notably in augmenting EEG data for two distinct
cohorts—patients and healthy control subjects—for the training of diagnostic classifiers,
remains tentative [41]. A significant impediment to the widespread incorporation of
EEG data augmentation lies in the lack of robust evaluation metrics and a well-defined

optimal threshold for the number of synthetic data that needs to be generated [41].



1.4 Transfer Learning

Transfer learning is a machine learning technique in which a model that has been
trained on one task is reused as a starting point for a different but related task[43].
Transfer learning can be used to improve the performance of a model on a new task by
leveraging the knowledge that the model has already learned from the original task [44].
It is beneficial when the new task has a limited amount of labeled data, as the pre-
trained model can provide a good starting point that can be fine-tuned with the new
data. There are several different types of transfer learning. One common approach is to
use a pre-trained model as a feature extractor, where the pre-trained model is used to
extract features from the input data, and then a new classifier is trained on top of these
features [45]. Another approach is to use a pre-trained model as an initialization for
the new task, where the pre-trained model is used to initialize the weights of the new
model, and then the new model is trained on the new task [45, 46]. The authors of [47]
used transfer learning to develop object detection capabilities for novel biomarkers
from microscopy imaging using previously trained models with fewer annotated images.
They reduced the number of required annotated images and achieved comparable
or improved detection accuracy, allowing for more efficient and accurate analysis
of biomarkers and smaller datasets. Transfer learning has been used to mitigate
the problem of individual differences in EEG data, which affects the reusability and
generalization of models [48]. A recent study has shown the successful application of
transfer learning in training a model to learn the EEG characteristics of an individual
to achieve personalized and accurate seizure prediction [49]. However, an inherent risk
in employing transfer learning methodologies for EEG signal analysis is the incidence
of negative transfer [49]. This manifests when the incorporation of source domain
knowledge detrimentally impacts the predictive performance within the target domain,
a consequence often stemming from discrepancies between domains or suboptimal

transfer techniques. Consequently, a careful evaluation of task transferability and



domain similarity is imperative before the construction of transfer models.

1.5 Self Supervised Learning

Self-supervised learning (SSL), also known as predictive or pretext learning, is a
category of ML algorithms intended to create data-efficient Al systems [50]. The
idea behind SSL is learning to represent the data without relying on explicit human-
labeled annotations before learning a task[51]. SSL has shown great potential in
some medical applications like EEG classification [52-55]. It outperforms a purely
supervised approach in low data regimes while capturing biomarkers without any
access to labels [56]. SSL approaches can be classified into three main categories based
on the type of task they use for representation learning: predictive, contrastive, and

reconstruction-based methods [57].

1.5.1 Predictive Methods

These models learn to predict future samples or missing parts of the input data.
Temporal sequence prediction, next-frame prediction in videos, and inpainting [58|

are examples of predictive models in self-supervised learning [59].

1.5.2 Contrastive Methods

This approach focuses on learning representations by comparing similar and dissimilar
samples from the input data. The model learns to distinguish between positive (similar)
and negative (dissimilar) sample pairs. In recent developments, a specific category of
contrastive SSL known as instance discrimination has emerged. This category, which
includes methods like DINO [60], BYOL [61], and SimSiam|62], has further advanced

the field by eliminating the requirement for negative samples.



1.5.3 Reconstructive Methods

Reconstructive methods in self-supervised learning are designed to learn meaningful
data representations by reconstructing inputs, often by first corrupting or removing
certain parts and then attempting to recreate the original version. These methods
include various approaches such as autoencoders, denoising autoencoders, and masked
language models, all of which have shown effectiveness in different domains.

Autoencoders form the foundational concept of reconstructive methods by encoding
data into a compact latent representation and subsequently reconstructing it. This
compression process ensures that the encoder extracts only the most relevant features,
facilitating a useful representation for further tasks [63]. Variational Autoencoders
(VAEs), an extension of standard autoencoders, learn a probabilistic distribution over
the latent space, adding a generative capability that allows the model to generate new
data samples [64].

Denoising autoencoders extend this concept by adding random noise to the input
and training the model to reconstruct the noise-free version. This method forces the
network to focus on the underlying structure of the input rather than surface-level
features, thus increasing robustness to noise and improving feature extraction [65].

Another significant approach within reconstructive methods is masked language
modeling (MLM), utilized by BERT [66], where words in a text sequence are ran-
domly masked, and the model is tasked with predicting these masked words. This
technique has proven to be a breakthrough in natural language processing, as it
enables the model to learn bidirectional contextual relationships, ultimately improving
performance across numerous NLP tasks. By predicting the missing content, the
model effectively learns to represent linguistic patterns and dependencies, which are
highly valuable for downstream applications, such as question answering and text

classification.
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There are some challenges associated with the application of SSL in biomarker iden-
tification. When designing a pretext task for a biomarker identification problem,
it is essential to consider the unique properties of medical data to ensure optimal
performance. For example, computer vision and medical image analysis fields both
work with image data. However, medical images differ significantly from natural
images regarding the number of channels, intensity, location, scale, and orientation.
Therefore, using a pretext task designed based on natural images may not be optimal
for medical images. Thus, it is crucial to carefully tailor the pretext task to the
specific characteristics of the medical data to achieve the best possible results. One
potential limitation of SSL in biomarker identification is its transferability to other
tasks. While SSLL may perform effectively in identifying a specific biomarker and

disease, its performance may not generalize to other tasks without modification [57].



Chapter 2

Discovery of Electrogastrography

Biomarkers Under Label Constraints

2.1 Background

Electrical vagus nerve stimulation (VNS) is emerging as a potential therapy for gastric
motility disorders [68]. However, the VNS mechanisms of action on gastric motility
regulation have yet to be fully understood. This understanding is crucial for developing
more effective therapies. Gastric electric activity (GEA) is known to be a physiological
signal that regulates gastric motility and can be recorded using electrogastrography
(EGG) [69, 70]. EGG can be used as a feedback signal for closed-loop adaptive VNS
interventions, however its adoption in clinical practice remains limited. The primary
reasons for this underutilization include the intrinsic properties of GEA and the
absence of standardized protocols for electrode placement, both of which constrain

the clinical applicability when recorded non-invasively [71]. However, it is worth

!Parts of this chapter have been published in [67] under the terms of the Creative Commons
Attribution License.
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noting that recent studies have demonstrated the successful fabrication of high spatial
resolution EGG and Magnetogastrogram systems [72]. These advancements hold the
potential to establish a clinical standard for EGG recording, ultimately facilitating
its widespread adoption in clinical settings. Pre-clinical and human studies have
demonstrated that implanted electrodes can record GI myoelectric activities that
contain significantly more information than skin surface electrodes |73]. Since the
abdominal wall may have a low-pass filtering effect, the higher frequency information is
attenuated in non-invasive EGG recordings [74]. These attenuated signal components
are known to be associated with gastric contractions [75]. While invasive recordings
provide physiological signals that contain more information, compared to non-invasive
recordings, they pose several challenges. In studies with electrodes implanted in
the GI system, the subjects are required to remain sedentary or under anesthesia
during data recording [75]. Most EGG-based studies have been done in a controlled
environment with the subject either instructed not to move or being anesthetized
[76, 77]. Although collecting data in a controlled and sedentary manner is useful
for some studies, it cannot synthesize realistic situations, such as recording data
in ambulatory and non-clinical settings. One potential application of ambulatory
EGG recordings is studying motion sickness [78] and the effectiveness of administered
therapies to prevent emesis [79)].

Our data collection approach was designed to synthesize realistic ambulatory
settings. We opted for a rarely practiced approach that involved implanting the VNS
cuffs and EGG electrodes around the vagus nerve and on the serosal layer of the ferret
stomachs, respectively. To study the physiological effects of VNS on gastric function,
our novel dataset was collected by recording EGG from the serosal layer of the ferret
stomach in two different conditions, i.e., before applying the VNS (baseline) and during
application of the VNS. The recording was done in vivo while the animals were awake

and freely moving in their cage. To our knowledge, this is the first time that EGG



13

signals were recorded in this manner. The artifacts caused by sudden movements of the
ferrets and the relatively small sizes of the recorded data posed unique challenges, in
this experiment design and data collection approach, as compared to that of recordings
in a controlled and static environment. To prepare our dataset for analysis, we devised
specific pre-processing steps. Our EGG recording conditions required pre-processing
steps that may not be necessary when EGG is recorded sedentary. By drawing upon
the knowledge of other biosignal processing fields, we have expanded the set of features
that are conventionally employed for the analysis of EGGs. A voting-based algorithm
was developed for feature selection and dimensionality reduction, aiming to mitigate
the adverse consequences of limited sample size and an extensive set of features on
feature relevance and predictive accuracy. This approach seeks to optimize the model’s
performance while addressing the challenges inherent in small-sample, high-dimensional
datasets. Through cross-validation and statistical methods, we demonstrated that
Random Forest is a powerful yet interpretable model for differentiating baseline state
from VNS states. In this study, we formulated a machine learning approach to quantify
the effects of VNS on GEA using EGG signals that were recorded invasively from the
surface of the stomach. While previous research [80] has demonstrated the impact of
VNS on alterations in gastrointestinal activity, these investigations have not explored
EGG features beyond dominant frequency [69] (DF) and its derivatives. In this
chapter, we have incorporated an expanded array of diverse features, drawing from
those commonly employed in related fields such as electroencephalography (EEG)
and electromyography (EMG), to represent a broad range of physiological properties
beyond the standard DF. Using this approach, we aim to address two main questions:
1- Can we identify the electrophysiological effects of electrical VNS on EGG signals
recorded in an invasive and non-sedentary manner? 2- Do the electrophysiological

effects depend on the electrical VNS parameters?
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2.2 Methods

2.2.1 Data collection

Under isoflurane anesthesia (1 to 3%), seven adult male ferrets were chronically
implanted with vagus nerve cuffs and GI serosal surface electrodes. Surface electrodes
were placed at four locations along the stomach axis (named gastricl to gastric4d) and
two locations at the duodenum (See Figure 4.1). Surgical implantation procedures
were similarly designed to past studies |73, 81]. Leads were subcutaneously connected
to a head connector (See Figure 2.1) and there were at least 10 days of recovery
from surgery before the first data acquisition. All surgical and testing procedures
were approved by the University of Pittsburgh Institutional Animal Care and Use
Committee and were conducted following approved guidelines. All animal studies

reported also followed the recommendations in the ARRIVE guidelines.

3 VNS cuff electrode © stimulation Recording
et yT

71

Figure 2.1: Electrode placements. a) show the structure of the nerve cuff, b) the
position of surface electrodes (only ‘gastric 2’ was used in this study) and nerve cuff.
c) A ferret’s head connection to the vagus nerve stimulator and EGG recording device.

At each data acquisition session, a within-subject design included 10 minutes
of baseline recording (baseline) followed by 10 minutes of VNS. The VNS was a
biphasic/bipolar signal, and its pulse amplitude and pulse width were set at 0.5 mA
and 0.1 ms, respectively. Each animal received VNS at 10 and 30 Hz stimulation

frequency on two different days resulting in a total of 14 data acquisition sessions.



15

EGG was recorded with a 2 KHz sample rate using a Grapevine NIP system (Ripple
Neuro, Salt Lake City, UT USA). VNS was applied using an AM4100 stimulator (A-M
Systems, Carlsborg, WA USA).

2.2.2 Pre-processing

Data were acquired from planar electrodes implanted on the serosal layer of the
stomach in each ferret. Owing to the uncontrolled locomotion of the animals, which
led to sporadic electrode or cable disconnections, the data acquired from each electrode
exhibited varying durations and quality. Consequently, we decided to pick the signal
from the electrode ’gastric2’ that was assumed to be closest to the pacemaker area
of the proximal stomach [82, 83| (See Figure 2.1). Before feature engineering, we
developed an in-house pre-processing pipeline, written in Python, to prepare raw
signals for downstream analysis. Raw signals occasionally contain spikes with large
amplitudes that are not physiologically plausible. This could have been a result of the
animal’s sudden movements or an electrode loose connection. We empirically found

that a threshold level of 1e8 nV can remove all these spikes (See Figure 2.2).
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Figure 2.2: Left panel: Effect of pre-processing steps. a) Raw baseline signal, b) Baseline signal
after thresholding, c¢) Baseline signal after band-pass filtering. Right Panel: Effect of pre-processing
steps. a) Raw VNS at 10 Hz signal, b) VNS signal after thresholding, ¢) VNS signal after band-pass
filtering.

A sampling frequency of 2 kHz is several orders of magnitude greater than the

slow wave and spike potential responses typically observed. Nevertheless, given that
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this domain remains relatively unexplored, we elected to include frequencies up to 1
kHz in our sampling procedure. This decision was made to encompass both known
and potentially novel, higher-frequency signals that may be present within the data.
In addition to this, by using a higher sampling rate, the quantization noise is spread
over a wider frequency range, and then a low-pass filter can be applied to remove
high-frequency noise, resulting in a cleaner signal. Finally, a higher sampling rate can
help mitigate aliasing issues [84| caused by interference from other signals or noise
sources. This can be particularly useful in environments, like the lab where ferrets
were kept, with much electromagnetic interference or other signal disturbances. As
the main frequency of EGG is in a narrow frequency band that is near DC (0.01-
0.5Hz), we decided to use a digital filtering approach called Index Blocked Discrete
Cosine Transform Filtering Method(IB-DCTFM) [85]. This method removes unwanted
frequency range signals on the time domain by blocking specific DCT index on the DCT
domain. Although like IIR filters, IB-DCTFM may cause signal distortion, such as
the Gibbs phenomenon, but in comparison to FIR and IIR counterparts, IB-DCTFM
provides several advantages including superior SNR and correlation coefficient to
clean signal, stability, linear phase, and zero delay. IB-DCTFM has been used as a
filtering method for EGG signals [86]. After bandpass filtering, we applied another
thresholding but this time with the threshold level set to 2000 pV to keep signal
amplitude in a physiologically plausible range. The thresholding procedure was done
by substituting the values surpassing the designated threshold with the mean value of
the signal amplitude. This method ensures that the signal is effectively constrained
within the established bounds while maintaining its overall statistical properties. Our
proposed analysis pipeline is built upon four modules (1) pre-processing and time
and frequency domain feature extraction, (2) Feature selection using our proposed
voting algorithm, (3) training and validating classifiers for two different classification

scenarios, and (4) reporting the feature importance and classification metrics (See



17

Figure 2.3 ).

Pre-Processin Feature Selection _ Classification _ Feature Importance
& V- & - 2 - &
Feature Extraction  Feature Ranking  Validation Predictive Models

Figure 2.3: The analytic pipeline for EGG analysis and biomarker identification.

2.2.3 Feature engineering

For feature engineering, we used windows of 1-minute length with 20 seconds overlap
for each 10-minute segment of our EGG signal. The choice of 1-minute length is to
capture frequencies as low as 3 cycles per minute (CPM). This lower limit of 3 CPM is
the reported bottom range for ferret gastric slow wave signals [87]|. As the EGG signal
is not stationary and has a chaotic nature, we hypothesized that dominant frequency
(DF) and other features that are derived from DF, may not accurately describe the
effects of VNS. Furthermore, existing research demonstrates that under conditions of
dynamic and noisy EGG, particularly during rapid and unexpected movements, the
selection of suitable EGG biomarkers (features) assumes heightened significance for
maintaining the validity of the analysis [88]. Other fields of biosignal analysis, such as
EEG or Electromyography (EMG) analysis [89], have developed features from both
time and frequency domains that could be more suitable to extract information from
non-stationary signals. In the following two sub-sections, we introduce the features
that we adopted from the literature to represent 1-minute segments of the EGG

signals.

Time domain features

Time-domain features (TDFs) are derived from the amplitude of EGG signals, captur-
ing various characteristics that reflect the underlying dynamics of the data. Previous

research has demonstrated that the amplitude of EGG signals is influenced by factors
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such as the ingestion of food or pharmaceutical substances [90], as well as the presence
of nausea [88|. Consequently, we hypothesized that the statistical distributions of EGG
signals during baseline and VNS periods would exhibit differences. We calculated
a group of statistical features including mean, variance, mode, median, skewness
(third moment describing data asymmetry), and kurtosis (fourth-moment determining
tailedness of the distribution). Root mean squared value (RMS) and Line length are
TDFs pertinent to signal amplitudes. Notably, Line length serves as an approxima-
tion of Katz’s fractional dimension, as described in previous literature [91]. RMS
offers insights into a signal’s overall energy [92|, which can facilitate differentiation
between distinct signal classes or detection of particular events. For instance, research
findings presented in [93] demonstrate a higher mean value or RMS during fasting
as opposed to the postprandial state. The application of RMS in EGG analysis,
therefore, may provide an additional perspective for understanding and interpreting
data. Both RMS and Line length have been employed in EEG [94] and EGG studies
[95, 96], attesting to their relevance and applicability in the analysis of such signals.
Fractal dimensions, including PFD [97], have been extensively employed in EEG and
ECG literature [98-101], indicating that they may offer valuable insights into the
complexity and self-similarity of physiological signals. We direct readers with an
interest in comparing various fractal dimension methodologies to consult reference
[102] for a detailed examination and comparative analysis. Entropy is a measure of
the unpredictability, complexity, or randomness of a signal or dataset [103]. Different
entropy measures are related in the sense that they all quantify the complexity or
randomness of a signal. Still, they do so using different approaches and algorithms.
Some measures are more suitable for specific types of signals or applications. For
example, approximate and sample entropy is more suitable for analyzing the regularity
of time-series data, and permutation entropy is particularly useful for non-stationary

signals [104]. Tt can be applied to study the dynamics and interactions of complex
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systems, such as biological systems. Entropy-based measurements serve as valuable
tools for quantifying uncertainty and disorder in time series signals [105], including
EGG signals [88]. Among the various entropy measures, approximate entropy and
sample entropy are particularly useful for assessing the regularity and fluctuation in
a time series [92]. Sample entropy has been demonstrated to be a robust feature for
analyzing noisy EGG signals [88]. In addition to sample entropy, permutation entropy
[104] and Singular Value Decomposition entropy (SVDEn) are employed to evaluate
the local complexity and temporal-spatial complexity of a process [91], respectively.
SVDEn has been employed in the examination of heart rate variability, owing to its
straightforward implementation, and reduced computational complexity, particularly
when analyzing short, nonstationary data series [106]. Signal variance, also known
as the Hjorth activity parameter, is another time-domain feature. It indicates the
surface of the power spectrum in the frequency domain [107]. Mobility and complexity,
the other two Hjorth parameters [108], were also selected as time-domain features for
their unique contributions. The mobility parameter is defined as the square root of
the ratio of the variance of the first derivative of the signal to that of the signal itself.
This parameter offers insights into the signal’s dynamic characteristics. Meanwhile,
the complexity parameter reveals how similar the shape of a signal is to a pure sine
wave, providing information about the signal’s waveform morphology. The value of
Complexity converges to 1 as the shape of the signal becomes more similar to a pure
sine wave [107]. In the context of signal analysis, certain features such as RMS and
entropy measures may not exhibit a direct mathematical relationship. Nevertheless,
these features can be employed in conjunction to provide a comprehensive under-
standing of a signal’s characteristics. For instance, a high RMS value coupled with
elevated entropy may be indicative of a signal characterized by significant noise and
an abundance of random variations. Conversely, a high RMS value accompanied by

diminished entropy could suggest the presence of a robust, periodic signal exhibiting
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a regular pattern.

Frequency domain features

Analysis of frequency domain features (FDFs) is important because FDFs can provide
information regarding the rhythmic patterns of signals. In the field of EGG, DF, or
peak frequency, is an FDF that has been widely used by researchers for EGG-related
analysis [109]. Dominant power (DP) or the power associated with DF is another
feature often used along with DF [88|. Spectral entropy (SE) is a measure of the
random process uncertainty from the frequency distribution. SE has been used to
measure the depth of anesthesia using EEG [110]. A low SE value means the frequency
distribution is intense in some frequency bands. Its calculation is similar to that
used for the Shannon entropy, but it replaces the probability distribution with the
normalized power spectral density [111] (PSD). We calculated the mean value of signal
power for 3-8 CPM, 8-11 CPM, and 11-15 CPM bands equivalent to bradygastria,
normogastria, and tachygastria bands [112|. There is no broad consensus on what
these ranges should be in ferrets, however, we chose these ranges based on methodology
and findings of past studies [112, 113] related to ferrets EGG. In order to calculate the
PSD, we set the desired frequency resolution to 0.1 CPM and used the Welch method.

Table 2.1 lists the time- and frequency domain features used in this chapter.

2.2.4 Feature selection

As the number of features, also known as predictors (p), increases, the domain that they
span increases at rates that the available data become sparse. This, in turn, requires
more samples (n) to provide effective coverage of the domain for a predictive modeling
problem such as classification. This concept is known as the "curse of dimensionality”

[121]. As samples in high dimensional space may become equidistant, machine learning

algorithms that use distance measures or other local models (in feature space) often
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Table 2.1: List of time- and frequency-domain features used for EGG analysis. PMMP:
Percentage of PSD that has higher value than DP /4. BP1-3: Relative band power
between 3-8cpm, 8-11 cpm, and 11-15 cpm respectively.

Time domain Frequency domain

Mean value Dominant frequency (DF)[114]
Variance Dominant Power (PD)|76]
Mode PWMD[76]

Median Spectral Entropy|115]
Skewness BP1[114]

Kurtosis BP2[114]

RMS BP3[114]

Line Length[116] Crest factor of PSD|76|
Approximate Entropy|8§] Median frequency

Sample Entropy|[88] Mean power frequency|76|

Permutation Entropy|[117]

SVD Entropy|91]

Lempel-Ziv Complexity[118]

Hjorth Mobility & Complexity|84]
Petrosian Fractal Dimension (PFD)[119]
Hurst Index|120]

degrade in performance as the number of features is increased [114]. In this study, we
had a total of 223 samples and 29 features. For the first scenario, VNS at 10 Hz, we
had 114 samples (baseline=61, during VNS=53). For the second scenario, VNS at
30 Hz, we had 109 samples (baseline=51, during VNS=58). Drawing upon features
utilized in other fields, such as EEG, ECG, or EMG, the present study incorporated
infrequently employed features, such as PFD 27, into EGG signal analysis. Due to
the lack of prior exploration of these features in the EGG domain, it was challenging
to ascertain their informativeness a priori. Consequently, the inclusion of potentially
redundant or non-informative features may have an adverse effect on the performance
of the classifier [76], necessitating further investigation and potential refinement of
the feature set. To demonstrate the presence of redundancy and correlation among
the features, a three-step process was undertaken. First, the Spearman correlation
coefficient was computed for the features, resulting in a symmetric correlation matrix.

Second, this matrix was transformed into a distance matrix. Finally, hierarchical
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clustering 64 was employed to group and organize the features based on their similarity.
A correlation heatmap, generated using the ordered features, illustrated the extent of
correlation among the engineered features by exhibiting distinct hot and cold clusters

(Figure 2.4).

a baseline vs. VNS at 10 Hz b baseline vs. VNS at 30 Hz
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Figure 2.4: Correlation heatmap of the engineered features (See Table 2.1) a) baseline vs. VNS at 10
Hz b) baseline vs. VNS at 30 Hz. Each cell’s color shows to what extent features are correlated.

As each feature selection method ( Table 2.2 ) may select a different set of features

with different orders (importance) [122], we proposed a voting algorithm to assign a

Table 2.2: List of feature selection methods used in the voting algorithm. Except for
Variance Thresholding that is independent from the target variable and hence was
applied to the whole data, all the other methods were implemented using 5-fold cross
validation.

Feature selection with feature importance

ANOVA F-value Mutual Information[*"]

L1-based Linear Support Vector Classifier (LSVC) [106%]
L2-based LSVC|*0:6%]

Recursive Feature Elimination (RFE) Random Forest [3919]
Backward Sequential Feature Selection (SFS) [**-6]
Forward SFS [10:65

Permutation Importance (PI) Random Forest
Feature selection without feature importance
Variance Threshold [*]

[23,65]
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weight to each feature. These weights are scaled to add up to one. Feature importance
is a by-product of some feature selection methods such as linear regression or decision
trees [123]. Additionally, we used variance thresholding that removes all low-variance
features. In this case, we had no feature importance, so we assigned an equal weight
to each feature, the weight being 1/ (number of selected features). Next, we calculated
the average weights for all features and sorted them based on their normalized rank.
Ultimately, the optimal subset of features was determined by selecting features in
descending order based on their respective normalized rank, with the cumulative sum
of the ranks reaching a threshold of 0.9. A threshold of 0.9 for cumulative feature
importance is based on a heuristic approach to retain a majority of the information

while reducing the overall dimensionality of the dataset 66 (See Figure 2.5).
Result: Empty dataframe with all features as column names

for method in feature selection list do:
Run method
if ranking exists then:
append features with normalized ranking to Result
else
append weight = 1/(features_length) to each feature
append weights and features to Result
end
end

Take the mean of each column in Results

Sort the columns based on the mean value

Normalize the mean value to sum 1

Return the minimum number of columns with sum of weights equal to 0.9

Figure 2.5: Feature selection algorithm.

2.2.5 Model Selection/Training

We calculated all TDFs and FDFs listed in Table 2.1 for each 1-minute of the EGG
signal. Following Algorithm 1, we selected the most important features for classification

scenarios and used them to train the classifiers. The choice of classification method
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depends on the data and the context in which the classifier’s output will be used.
Finding a classification method with the highest predictive accuracy and interpretability
is challenging in practical settings, especially in datasets with small sample sizes.
Moreover, the desired trade-off between interpretability, accuracy, and computational
efficiency also plays a crucial role in determining the appropriate method for a given
task 67. There are advantages and disadvantages to each classification model under
different circumstances. Decision trees are relatively fast and useful if one needs to
share the results with an audience interested in how a conclusion was reached, however,
they tend to overfit [124]. Support vector machines (SVM) are another choice for
binary classification. They often provide high accuracy and tend not to overfit the
data. Linear SVMs, as opposed to their non-linear counterparts, produce a linear
decision boundary that can be easily understood and visualized [125]. However, the
practitioners need to spend time training and tuning SVMs up front. Artificial neural
networks (ANNs) are powerful for modeling nonlinear data with a high number of input
features. However, ANNs can become computationally expensive. As the number
of nodes and layers increases, it is difficult to interpret how an ANN has reached its
solution, and fine-tuning an ANN may involve multiple steps and hyperparameters.
In our case, with a rather small number of observations and a large number of
features, it is crucial to select models that can effectively handle high-dimensional
data and mitigate the risk of overfitting. To identify the best model, we took an
empirical approach to test and discover which classifier achieves the best classification
performance [126]. Considering the limitations of our dataset (small sample size, large
number of features) and the research questions we aimed to answer, we used Random
Forest classifiers [123], SVM [125] (with linear and radial kernel), Naive Bayes classifier
[127], and linear regression classifier for our binary classification tasks. The model
selection procedure was as follows: Data were divided into training and test sets in

a stratified manner to keep the ratio of baseline (class 0) to VNS (class 1) the same
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for both training and test data. 80% of the whole data was used for training, and
the rest was used at the inference step. All models were trained with their default
parameters and evaluated using stratified 5-fold cross-validation (CV). The shuffle
parameter of cross-validation was set to False, to maintain the original sequence of
the samples. After the initial training, we selected the best classifier based on its
performance and tuned its hyperparameters. Tuning was implemented by utilizing
a hyperparameter optimization framework named Optuna [128]. Optuna allows for
dynamic construction of the search space and provides a combination of an efficient

searching and pruning algorithm to speed up optimization.

2.2.6 Model evaluation

We utilized several evaluation metrics, including accuracy, ROC-AUC, fl-score, and 2-
score, to assess the performance of our models. The ROC-AUC has been demonstrated
to be a measure of choice for assessing the performance of a classifier for imbalanced
data [129]. Consequently, we have chosen to highlight AUC as the primary metric
in our results, while providing additional metrics such as accuracy, fl-score, and f2-
score in the supplementary materials for further reference. To prove that our trained
classifier has an ROC-AUC score significantly higher than the chance level (0.5), we
conducted a permutation test [97, 130]. We first trained the classifier on the original
dataset and computed its ROC-AUC scores using a 5-fold CV. Following this, we
performed a permutation test by randomly shuffling the true labels of the dataset,
retrained the classifier on this permuted dataset, and obtained the ROC-AUC scores
of 5-fold CV for each shuffle. This procedure was repeated 1000 times to generate
a distribution of permuted ROC-AUC scores. Next, we compared the ROC-AUC
scores of the trained classifier on the original dataset to the distribution of permuted
ROC-AUC scores by calculating the p-value, using a two-sample Kolmogorov-Smirnov

(KS) test [97]. KS test is a non-parametric test that is sensitive to variations in both
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the location and shape of the empirical cumulative distribution functions pertaining
to the two samples under consideration. If the p-value was found to be below 0.05
significance level, we could reject the null hypothesis and conclude that the trained
classifier exhibited an ROC-AUC score significantly higher than 0.5, indicating its

performance surpasses random guessing.

2.3 Results

In this section, we demonstrate our feature selection and EGG state classification
results. We considered two scenarios, i.e., baseline vs. VNS at 10 Hz and baseline
vs. VNS at 30 Hz. One motivation for feature selection is first to find features that
are correlated with each other and second, to remove those with high correlation
from the analysis. Figure 1 presents the clustered correlation heatmaps of all features
for two distinct scenarios: baseline versus VNS at 10 Hz and VNS at 30 Hz. This
visual representation facilitates a comprehensive understanding of the relationships
among features. In addition to the engineered features, we included 'removed-pct’
which is the percentage of removed signal after applying the pre-processing steps.
We only used samples with 'removed-pct’, less than 30% for model training. From
these heatmaps, it is evident that there are clusters of features that are positively
or negatively correlated with each other. The correlation heatmaps in Figure 2.4
suggest a positive correlation between removed-pct’ and features such as variance
and RMS. This can be an indication of higher error in signal measurements due to
physiologically implausible high signal values or abrupt changes in recorded signals,
reflected in RMS and variance, respectively. Figure 2.6 exhibits the features chosen
for the first scenario, as identified by our feature selection algorithm and organized in
a descending sequence of significance, as established by the Random Forest classifier

(See Methods). The Sample Entropy [88] (SmEn) of the signal emerged as the most
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significant feature, while Root Mean Square (RMS) was identified as the second most
important attribute. RMS is a measure of the signal’s overall energy or amplitude
[92], while Sample Entropy is a measure of the complexity or irregularity of a time
series signal [92]. In the context of the first scenario, the differing Sample Entropy
values between the baseline and VNS at 10 Hz suggest that the underlying dynamics
or patterns of the EGG signals change because of VNS. Also, the variation in RMS
could be indicative of the effect of VNS with 10 Hz frequency on the overall energy of
EGG signals being analyzed. In general, most of the features selected in this scenario

pertain to the signal’s amplitude. (See Figure A.1)
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Figure 2.6: Selected features via our feature selection algorithm for baseline vs. VNS at 10 Hz (first
scenario) and organized in a descending sequence of significance, as established by the Random Forest
classifier. Error bars represent standard deviation.

Utilizing the chosen features, as illustrated in Figure 2.6, a Random Forest classifier
[123] was trained. Figure 2.7 demonstrates the Receiver Operating Characteristic -
Area Under the Curve (ROC-AUC or AUC [131]) of this classifier, encompassing three

distinct cases: training the classifier using the selected features, employing randomly

chosen features for training, and utilizing randomly shuffled labels for the training
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process. We conducted a two-sample Kolmogorov-Smirnov (KS) test [97] to assess
the null hypothesis that the AUC values, derived from 5-fold cross-validation (CV) of
the classifier trained with the selected features from Figure 2.6, originate from the
same distribution as the AUC values for the other two cases presented in Figure 2.7.
The obtained p-values were 0.0 (with test statistic of 1.0 and 0.872, respectively),
enabling us to accept the alternative hypothesis that the AUC values for each case
stem from distinct distributions (See Figure A.2 for metrics other than AUC). These
findings indicate that our feature selection algorithm played an important role in
augmenting the performance of the classifier, thereby demonstrating its effectiveness.

(See Methods for details)
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Figure 2.7: A comparison of the AUC for a Random Forest classifier trained with features from Figure
2.6, randomly chosen features, and randomly shuffled labels, examining the scenario of baseline vs.

VNS at 10 Hz.

Contrary to the first scenario, Figure 2.8 reveals that the majority of the selected
features for the second scenario, baseline vs. VNS at 30 Hz, are entropy and frequency-
based. This observation suggests that, in the case of VNS at 30 Hz, the changes
induced by the VNS are more prominently reflected in the signal’s pattern or frequency

content rather than its amplitude or energy (See Figure A.2 and Figure A.3). This
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distinction highlights the potential differences in the underlying mechanisms and
effects of VNS at various frequencies, which may provide valuable insights into the
physiological responses to stimulation. It is worth mentioning that the most important
feature in the second scenario, Petrosian Fractal Dimension [119] (PFD), was originally
introduced for the quantitative interpretation of epileptic EEG recordings [102, 119]
(See A.1). Additionally, the presence of dominant frequency (DF), Dominant Power
(DP), and normogastric band power (BP2) (See Table 2.1) in Figure 2.8, aligns with
the insights provided by entropy-based features, further emphasizing that VNS at 30
Hz demonstrates a greater impact on signal pattern and frequency shifts, rather than

on signal amplitude or energy.
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Figure 2.8: Selected features via our feature selection algorithm for baseline vs. VNS at 30 Hz (second
scenario) and organized in a descending sequence of significance, as established by the Random Forest
classifier. Error bars represent standard deviation.

Figure 2.9 demonstrates the AUC values for a Random Forest classifier trained for
the second scenario (See Figure A.4 for metrics other than AUC). Similar to the first

scenario, the AUC values derived from a 5-fold CV of the classifier trained with the
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selected features in Figure 2.8 were statistically significantly different from the other
two cases showed in Figure 2.9 (two-sample Kolmogorov-Smirnov test, test statistic:
0.948 and p-value: 0.0) Taken together, the findings from Figure 2.6 to Figure 2.9
indicate that, within the framework of our study, it is feasible to distinguish the effects
of VNS on the EGG signals. Furthermore, the frequency of VNS may modulate the
alterations observed in EGG, manifesting either as changes in signal amplitude and

energy or as shifts in signal complexity and frequency contents.
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Figure 2.9: A comparison of the AUC for a Random Forest classifier trained with features from Figure
2.8, randomly chosen features, and randomly shuffled labels, examining the scenario of baseline vs.
VNS at 30 Hz.

2.4 Conclusion

The main goal of this chapter was to introduce a novel dataset and analysis pipeline to
determine the effect of electrically induced VNS on EGG signals. Characterizing this
effect is essential for better understanding the underlying physiological mechanisms of
VNS for regulating the GI function and inform designing closed-loop GI-VNS systems.

Our study utilized a data acquisition schema that is rarely used due to the difficulties
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associated with surgery, electrode implantation, and long-term data collection. The
advantages of this schema compared to cutaneous EGG were recording data that are
not filtered by the abdominal wall and synthesizing a more realistic ambulatory setting.
Disadvantages of the schema were loose electrode connections or abrupt movements of
the ferrets causing artifacts in the recorded data. These artifacts were successfully
removed by utilizing appropriate preprocessing steps. However, after removing the
corrupted data portions, we were left with a small sample size, whereby 19.2% of the
total collected data was discarded. Although dominant frequency (DF) is known to be
the most widely used feature in EGG-related studies (See Methods), our preliminary
analysis showed that DF alone was not informative enough to classify between baseline
and VNS states in our data. To address this problem, we leveraged a machine learning
approach. We employed a broader range of engineered features beyond DF to extract
more information from our data. In exchange for these added features, we had to
resolve another problem: the ratio between the number of samples (n) and the number
of predictors or features (p). In our study, this ratio was close to 3. This can become
problematic as most machine learning algorithms assume that there are many more
samples than predictors 28 or p << n. In our case, the condition was exacerbated
because the data was noisy, and heterogeneous, and could result in overfitting. There
are multiple approaches such as filter, wrapper, and embedded methods |[76] to handle
datasets with too many features and a small number of observations. However, it is
important to note that no single method is suitable for all datasets and situations 30.
To harness the power of each feature selection method, we devised a voting algorithm
to rank the features selected by each single feature selection method. We made a final
decision based on majority voting. Our experiments demonstrated the efficacy of the
voting algorithm, as evidenced by the enhancement of the AUC value of the trained
classifier. Moreover, the interpretability of the model was improved by reducing the

total number of features utilized for classification and organizing them according to



32

their importance. A model is considered interpretable if a human can comprehend the
rationale behind its predictions [116|. Reducing the number of features and organizing
them according to their importance contributes to interpretability, as it makes it easier
to understand how each feature influences the prediction. Our analysis pipeline helped
to demonstrate that we could programmatically distinguish between EGG signals
recorded during baseline and VNS indicating that the electrophysiological effect of VNS
on EGG signal can be identifiable. This finding is in accordance with previous research
that investigated the effect of VNS on GI function and whether it changes the EGG
signal [132]. To examine the influence of VNS frequency on the alterations observed
in EGG, we employed the selected features for VNS at 10 Hz and 30 Hz. The selected
features revealed that the impact of VNS at 10 Hz was predominantly noticeable
in time domain features associated with signal amplitude and energy. Conversely,
for VNS at 30 Hz, features pertaining to frequency content and entropy of signal
were of greater significance. There are limitations to our study in terms of data and
methodology. The number of discarded samples was 33 and 44 for VNS at 10 Hz and
30 Hz, respectively. This 33% increment in discarded values in VNS at 30 Hz could
be due to more loose electrode connections or a change in ferret movement patterns.
Nevertheless, this difference in the quality of recorded signals during VNS at 10Hz and
VNS at 30Hz could be a confounding factor and should be accounted for in future work.
Another confounding factor is the state-dependency nature of EGG. For instance,
two baseline recordings made of the same animal may differ if recorded in different
sessions, based on how long before the recording session a ferret has ingested food. The
same holds for signals recorded during the application of electrical VNS. A limitation
associated with our methodology was that frequency domain features employed in
this study are based on Fast Fourier Transform (FFT), however one assumption in
FFT is that the input signal is periodic, but EGG is a non-stationary signal with

chaotic properties. The future directions of our research will be focused on addressing
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the limitations of our data acquisition and analysis. The quality of collected data
will be improved by more robust implantation of electrodes and employing wireless
recording equipment. This will lead to a reduction in the number of invalid samples
and more consistency in recording from different sessions. Regarding data analysis,
we will adopt spectral analysis tools better suited for non-stationary signals such as
wavelets and empirical mode decomposition [98] (EMD). These methods may provide a
more accurate representation of EGG spectral information. Modern machine learning
methods designed to generalize to Out-of-Distribution (OOD) data would offer an
avenue to explore the state-dependent character of the recorded EGG and its inter-

and intra-variability.



Chapter 3

Seizure Detection from In-the-Ear

EEG Recordings

3.1 Background

Epilepsy is a neurological disorder characterized by recurrent seizures [134]. Seizures
are distinguished by their temporal variability, wherein the frequency, location, and
manifestation of seizures may fluctuate over time [135]. A notable example of this
temporal variability is the seizure laterality shift, in which an individual’s seizures
transition from originating in one cerebral hemisphere to the other. Further, the timing
of seizures may also be affected by external factors, such as changes in medication,
sleep patterns, stress levels, and hormonal fluctuations [134]. Electroencephalography
(EEG) has long been the standard of care for monitoring cerebral activity, and is
critical in clinical practice for detecting seizures [136]. However, given their paroxysmal

nature, seizures and interictal epileptiform discharges often prove elusive to record

!Parts of this chapter have been published in [133] under the terms of the Creative Commons
Attribution 4.0 license.

34



35

with EEG, even under continuous patient monitoring [137, 138]. Scalp EEG is a
widely used diagnostic tool for epilepsy, allowing for the detection and characterization
of abnormal electrical activity in the brain. Unfortunately, as important as it is,
current outpatient EEG monitoring is limited to approximately three days [139, 140],
as traditional scalp EEG electrodes cannot be maintained for longer intervals. Longer-
term monitoring requires inpatient hospitalization, where EEG technologists can
monitor the EEG tracings and repair electrodes when needed in this setting. However,
inpatient monitoring is expensive, inconvenient for patients and families, and not
readily available outside of major metropolitan areas. Additionally, patients frequently
do not have seizures or interictal activity during inpatient monitoring, prompting
future hospital readmissions [141]. The need to expand our capability for long-term
EEG monitoring is critical not only because seizures are paroxysmal by nature, but
also because the occurrence of seizures with different foci of onset (such as bitemporal
onset) does not follow a normal distribution [142]|. Seizures may occur from a single
focus for several days or even weeks before any are seen from a distinct independent
focus. Increasing the duration of EEG monitoring may identify additional epileptogenic
foci and may thereby contribute to our understanding of why certain patients who are
thought to have clearly delineated seizure foci may at times not obtain seizure freedom
after the resection or ablation of the purported epileptogenic zone. Ambulatory EEG,
which is the use of scalp EEG in a naturalistic, home setting over longer periods
of time, has been shown to be more sensitive in detecting seizures than traditional,
in-office 20-minute recordings, particularly in persons with epilepsy whose seizures
are difficult to predict or occur infrequently [139]. However, this traditional method
has several limitations. The results obtained from traditional EEG tests might not
fully capture or accurately represent the patient’s neurological state during their
normal daily activities [143]. In addition to the unwieldy bundle of wires and data

logger hardware used in scalp recordings, one of the most significant limitations is
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the duration of recording, which is limited by skin breakdown that can occur from
chronically adhered wet electrodes [144]. Recording integrity also reduces over time as
the fidelity of scalp EEG recordings cannot be maintained without frequent, sometimes
daily, repairs. The limitations of scalp EEG have led scientists to pursue lower-profile,
long-wear ambulatory EEG technologies, such as in-ear electrode devices. Prior studies
have successfully shown the effectiveness of capturing in-ear EEG data using a variety
of sensor interfaces. Some examples include sensors pressed into viscoelastic ear plugs
(“foamies”) [145], custom ear shells with embedded sensors worn within the ear canal
and concha made from 3D scanned silicone ear impressions [146], and multiple-night
sleep studies using similar custom shells with embedded sensors [147]. In [148], a
multi-modal system encompassing a behind-the-ear EEG device, along with ECG and
accelerometry, was investigated for its potential in seizure detection. This integrated
approach showed promise and [149] utilized behind-the-ear EEG in addition to ECG
and photoplethysmogram (PPG) to propose a monitoring system for epileptic users,
however, they observed the loss of EEG information in ambulatory settings, a shortfall
further compounded by the absence of seizure detection outcomes. Turning to the
specific realm of behind-the-ear EEG, the study in [150] considered seizure detection
based on behind-the-ear EEG and reported that the obtained sensitivities were too
low for practical use, however, this work illuminated the complementary role of ECG
in enhancing the seizure detection process. Meanwhile, [151| showcased the capacity
of behind-the-ear EEG for visual recognition of ictal EEG patterns as well as being
used in a seizure detection algorithm. However, they reported that the ictal EEG
data used in their study were recorded with the hospital system using Ag/AgCl
electrodes. Further, [152] presented the use of a commercial EEG device to record
behind-the-ear EEG to evaluate seizure detection algorithms in hospitalized patients.
Finally, the authors of [153] conducted a feasibility study to demonstrate the safety

of recording long-term ear-EEG in patients with Alzheimer’s disease, stopping short
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of extending these findings to the development of a seizure detection algorithm. The
above studies show successful capture of EEG data from within the ear or behind
the ear which in some cases compared favorably to scalp EEG monitoring. However,
these studies were built around bench-top electronic prototypes which are not scalable
solutions for personalized long-term ambulatory EEG monitoring. In contrast to these
lab-based in-ear EEG studies, this study demonstrates the design and manufacture of
an ambulatory in-ear EEG monitor using scalable, commercially available 3D scanning,
computer-aided design (CAD) modeling, and 3D printing processes and techniques
used for designing and manufacturing hearing aids and custom high-end in-ear monitors
thus, demonstrating the potential for long-term comfort and wearability needed for
in-ear EEG devices. The Aware hearable is designed to conduct continuous monitoring
of brain activity, record data on the device for long-term analysis, and provide valuable
information pertaining to seizure patterns, triggers, and the efficacy of treatment, all
in a non-invasive, ambulatory form factor. The long-term comfort and wearability of
the device are particularly useful for individuals who experience infrequent or hard-to-
predict seizures. Aware also offers the advantage of being applicable to a wider range of
patients, including those who do not meet the criteria for costly surgically implantable
monitoring and stimulation devices such as Responsive Neurostimulation (RNS) [154].
The Aware in-ear hearable is built using the same methods and practices as hearing
aids and custom in-ear headphones, allowing for a sleek custom pro-consumer product
design. Through discussions with subject matter experts and test subjects, it is
believed that a future integrated system within a small wearable form-factor that
unobtrusively blends into a user’s daily wear and activities, making an EEG recording
device more accessible both physically and in appearance compared to traditional
scalp-worn electrodes, may lead to reduced social stigma of wearing a medical device
and increase user acceptance for long-term data collection. This design approach aligns

with current trends in wearable technology, ensuring the device blends seamlessly
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into the user’s daily life and social roles without attracting unwanted attention [155].
It is worth noting that other wearable devices are used for seizure detection, such
as wearable sensors and smartwatches [156-160]. These technologies leverage the
various sensors found in these devices, such as accelerometers and gyroscopes, to
detect seizures and alert the wearer as well as the caregiver. However, despite their
convenience and non-invasive nature, they are worn at the extremities, making them
prone to motion artifact, and are not as effective as EEG signals in detecting seizures
that do not trigger substantial motor activity [161]. The Aware hearable, due to its
dry electrodes placed within the ear canal with proximity to the brain, has an edge
over these wearable devices in capturing seizures as EEG signals are considered the
most effective signal for seizure detection, providing a direct measure of the electrical
activity of the brain. While EEG is known to be highly susceptible to motion artifacts,
which is a major concern for mobile EEG research, utilizing a 3D stereolithography
(STL) digital model generated from United Sciences’ “eFit” 3D ear scanner allows
placement of the dry electrode sensors at the bony region of the ear canal known as
the second bend, where the auditory canal passes through the skull wall. Utilizing
the second bend allows the Aware hearable to fit and “lock” into place with the
subject’s unique ear anatomy, thereby reducing motion artifact and ensuring the best
possible signal integrity. The primary objective of this study is to advance the field of
chronic EEG recordings by examining the viability and interpretability of EEG data
obtained from sensors within the ear canal, particularly due to their proximity to the
temporal lobes—the most epileptogenic regions of the brain [162]. This is conducted
in a clinical setting using the Aware in-ear hearable with embedded dry electrodes,
manufactured through commercial processes. Supporting this, [163| indicates that
ear-EEG can enhance source localization in temporal brain regions. Furthermore, [164]
demonstrates that ear-EEG is especially sensitive to sources in the temporal cortex,

owing to the proximity of the ear electrodes to these regions. During this study, the
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Aware earbuds were worn by subjects who had just undergone invasive, intracranial
EEG implantation, and had both ictal and interictal EEG patterns observable on
previously obtained scalp EEG. These subjects had an array of up to 20 electrode
probes implanted into various regions of their brains based on their pre-implantation
hypothesis, including the temporal lobe. The subjects were asked to wear the Aware
hearable earbuds beginning 24-48 hours after their implant procedure. For consistency,

the earbuds were inspected daily and placed into the subjects’ ears by a technician.

3.2 Methods

3.2.1 Earbud

To manufacture each set of Aware hearables, a proprietary non-contact eFit 3D ear
scanner was utilized (United Sciences, Atlanta, GA) to 3D scan the unique anatomy of
each subject’s ear canal and concha where the hearable would be inserted. Originally
developed for custom hearing protection and later commercialized into the hearing aid
and custom headphone industries to replace industry-standard silicone impressions,
the eFit scanner utilizes a patented [165] ring-laser scanner to scan the subject’s
ear, creating a near-perfect 3D scan of their ear, without any of the imperfections or
pressure-induced distortion to the ear canal caused by the silicone impression process.
Through stringent testing, the eFit scanner has shown greater volumetric accuracy
and repeatability between ear scans than traditional silicone impression practices, with
volumetric accuracy within 90um, allowing for a comfortable custom-fit with complete
consistent contact with the inner surface of the ear canal, resulting in high-quality data
recordings. Each customized device housing along with dry electrode contact points
were modeled in a CAD software specific for earmold modeling (www.cyfex.com),
3D printed using a biocompatible photo-reactive acrylate thermoset photopolymer

(https://etec.desktopmetal.com/), coated with a hypo-allergenic light-polymerizing
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single-component lacquer (www.otoplastik.dreve.de), and electroless nickel plated with
silver/silver chloride (Ag/AgCl) for the dry electrodes, allowing the device to precisely
and comfortably fit to the individual surfaces of the subject’s ear and optimize the
electrophysiologic signal quality (Figures 3.1 - 3.3). The ear shells were designed with
pass-through vent ports to allow for normal hearing. 3D CAD modeling (traditionally
from a 3D scan of a physical silicone ear-mold impression) and 3D printing have been
utilized for decades for the design and manufacture of custom hearing aids. The new
technique of 3D scanning the ear in its natural state with the non-contact eFit scanner
enables full digital efficiency to this workflow. Novel to this study is the comparison
of in-ear EEG to intracranial recordings, under the premise of demonstrating the use
of 3D scanning and modeling techniques to design the custom fit dry electrode shape
allowing for control of contact pressure for lower artifact with high comfort wearability.
The goal of this research is to verify in-ear EEG as a potential means of capturing
long-term ambulatory EEG data in a non-clinical environment with future use in

consumer and medical devices.
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Figure 3.1: Data logger box with hard-wired earbuds.
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Concha

Anterior Canal 2

Anterior Canal 1 Posterior Canal

Figure 3.2: Detail of outside (on left) and inside (on right) of right earbud showing dry electrode
placement.

Left Right

Figure 3.3: Detail of outside of left earbud showing anterior canal 1 (1) and anterior canal 2 (2)
electrodes (posterior canal and concha electrodes not visible); detail of inside of right earbud showing
posterior canal (3) and concha (4) electrodes (anterior canal 1 & 2 electrodes not visible).

3.2.2 Hardware

The earbuds were hardwired to a small datalogger that was located adjacent to the
subject’s main in-room datalogger, with wires running along the electrode bundle
leading from the subjects’ implant sight. The Aware hearable datalogger was built
with an Arduino-compatible, 8-channel interface utilizing a 32-bit PIC32MX250F128B
microcontroller with ChipKIT UDB32-MX2-DIP bootloader (www.microchip.com),
with an ADS1299 digitizer (www.ti.com), sampling at 250Hz. Battery life was not a
focus of this study. To ensure uninterrupted data collection, a freshly charged external

10,000mAh rechargeable battery pack was swapped daily during the morning skin
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inspection routine Raw data files are collected on a removable microSD card in .TXT
format in 24-hour increments. The TXT files were downloaded to a secure laptop and
converted to European Data Format (EDF) containing one uninterrupted digitized

polygraphic recording for visual analysis using EDFbrowser (www.teuniz.net).

3.2.3 Electrodes

The earbuds feature eight electrodes combined, four in the left ear and four in the

right ear as shown in Table 3.1. Each electrode is connected to an OPA2378 amplifier

Table 3.1: Electrode names and their corresponding locations/descriptions

Electrode name | Electrode location/description

CH1 Left Anterior Canal 1

CH2 Left Anterior Canal 2

CH3 Left Posterior Canal

CH4 Left Concha

BIAS/DRL Right Anterior Canal 1

CH5 Right Anterior Canal 2

CH6/Reference | Right Posterior Canal

CH7 Right Concha

CHS8/TTL Trigger sync between datalogger systems

(www.ti.com) within the ear shell and is hardwired to the inputs on the data logger.
The system is actively grounded using a conventional driven right leg (DRL) contact
to the body with the right posterior canal electrode connected as a reference and the
right anterior canal 1 electrode connected as the non-amplified BIAS input. Similar to
its use in ECG, DRL is sometimes employed in EEG systems to reduce common-mode
interference. By actively driving the right leg electrode, the system aims to create a
common reference point that helps cancel out interference common to both the active
electrodes and the reference electrode. This technique contributes to the overall noise
reduction in the EEG signal, allowing for a more accurate representation of brain
electrical activity. With the seven electrode inputs and one BIAS input, the remaining

open channel was connected to a manual trigger switch used to send a digital signal
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pulse between the Aware data logger and Natus™bedside data logger system. This
pulse served as a timestamp to align the Aware and Intracranial Montage (ICM)
recordings for post-analysis. Fach morning during rounds, the earbuds were removed

for skin inspection, the rechargeable battery was replaced, and the system restarted.

3.2.4 Subjects

In accordance with Emory University institutional review board (IRB) protocols,
informed consent was obtained from all participants in this study, and the study was
conducted in accordance with the guidelines for ethical research. The enrollment
criteria for the use of Aware for seizure detection included subjects 18 years of age
and older who were admitted to the Epilepsy Monitoring Unit at Emory University
Hospital for invasive, iEEG monitoring, and had both ictal and interictal EEG
patterns observable on previously obtained scalp EEG. The study was initially limited
to subjects with temporal lobe epilepsy, and recruitment was later opened to include
those with non-temporal lobe epilepsy. However, there were certain exclusion criteria
that needed to be considered, which included the inability to safely tolerate the use of
Aware due to conditions such as antecedent skin breakdown or recent injury to the ear,
participation in any other device trial that would preclude the use of Aware, and prior
scalp EEG study with sufficient background abnormalities as to prevent observation of
a posterior dominant rhythm or sleep spindles. Subjects were instructed to document
their subjective experience of tolerability in a comfort diary that utilized a visual
face scale, with accompanying descriptions, to report any discomfort or inconvenience
associated with using Aware. Additionally, a daily skin inspection log was meticulously
kept assessing for any adverse skin reactions or breakdowns. The subjects were asked
to wear the Aware device for a minimum of 20 hours per day and were given the
discretion to remove the device at any time, as well as instructed to remove the device

during any participation in other research studies. Seven subjects were enrolled, with
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four undergoing data collection and analysis (Two male, mean age=41.5 years, +
9.47). Subject 101 expressed greater post-op discomfort, and while initially wearing
the hearable for several multi-hour increments at the start of the study, chose to
discontinue the study before any usable seizure data was collected. Subject 103 had
their iEEG cancelled and therefore no data was collected. All seizures necessary for
clinical purposes for subject 105 were captured and the subject was subsequently

explanted before their Aware hearable data collection study could be implemented.

3.2.5 Data Acquisition

The Aware earbuds captured EEG data over 413 hours of wear-time across four
subjects, recorded seizures lasting in duration between 30 seconds to over five minutes,
and several subjects wore the hearable for consecutive 24-hour intervals throughout
the study including during sleep. While the high-quality EEG recordings from Aware
allowed the interpreting epileptologist to detect most electrographic seizures, traditional
visual analysis methods are inadequate for the sheer volume of EEG data generated
by devices such as Aware. This necessitates the implementation of a quantitative
approach to data analysis, specifically machine learning techniques, which have been
demonstrated to be effective in identifying patterns in EEG data indicative of seizures

and sleep states [165-169].

3.2.6 Manual Data Annotation

The EEG signal captured by Aware, in addition to the concordant iEEG signal obtained
via Natus™ equipment, was reviewed by a board-certified Epileptologist. EDFbrowser
was used to review the Aware data. Awake and asleep epochs were identified on iEEG
via visual analysis. A minimum of 30 minutes of awake and 30 minutes of asleep EEG
data was analyzed to determine the presence of epileptiform discharges, as well as

to evaluate the normal sleep architecture. All seizures documented in the electronic
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medical record during the iEEG recording coinciding with Aware use were reviewed by
the Epileptologist to determine if they were detected by the hearable. Seizures analyzed
were anatomically correlated with either a post-operative MRI, post-operative CT or
3D reconstruction utilizing a pre-operative MRI and post-operative CT to explore

differences in detection between the iIEEG and Aware.

3.2.7 Data Analysis

To validate the EEG recordings from the Aware hearable, we developed a machine
learning classification pipeline to classify between different physiological states using
the Aware hearable EEG recordings. We formulated a seizure detection problem where
the classification task was to differentiate between ictal and non-ictal states using
the EEG recordings. We utilized intracranial EEG data obtained from clinical data
acquisition systems (Natus™) to benchmark our classification pipeline. We applied
our pipeline to classify between sleep and awake states for additional validations of
the Aware hearable EEG recordings. The classification pipeline was comprised of 4

stages: Preprocessing, feature extraction, and model training and evaluation.

3.2.8 Pre-processing

The raw hearable data, comprising eight electrodes (as detailed in Table 3.1), was
utilized in the analysis. CH1 — CH7 were EEG data signals, and CH8 was a TTL-sync
signal and was excluded from further processing. Based on the design of the hardware,
CH6 was selected as the reference electrode and subtracted from the other electrodes.
We chose the right posterior canal electrode as the reference electrode because we
found in our experiments that it is less prone to motion artifact potentially due to
its location at the first bend within the ear. The remaining six channels were first
filtered to remove the line noise and its harmonics (at 60 and 120 Hz) and then filtered

by a bandpass filter (0.5- 100 Hz) using a one-pass, zero-phase, non-causal bandpass
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Table 3.2: Aware hearable montage description

Vector type | Comprising electrodes
Long vector | CH1-CH5, CH3-CHb5
Short vector | CH1-CH2, CH1-CH3, CH2-CH3

filter. Following the visual examination of the filtered signals, we saw that one subject
(Subject107) had excessive artifacts present on electrodes CH4 and CH7, likely due
to deformation of the exterior ear pinna caused by pressure from the patient’s head
bandage overwrap. We decided to exclude data from these specific electrodes for all
participants to maintain uniformity and integrity in the data analysis process. To
emphasize the disparities in cerebral activity between various locations, we created
a montage utilizing the remaining electrodes, namely CH1, CH2, CH3, and CH5
(Table 3.2). The idea of short and long vectors is based on unilateral and bilateral
(cross-head) channel derivation, respectively [151, 152|. In prior studies, it has been
observed that in addition to unilateral (short) channels, including bilateral cross-head
(long) channels exhibit a higher significance in detecting epileptic activities. This
observation is attributed to the inherent asymmetry characteristic of focal seizures
[166]. Our neurologist annotated the ictal segments on both the Aware data and the
concurrent iEEG signals (See Manual Data Annotation). For each ictal segment, we
selected a corresponding window of equal duration and one hour preceding the onset
of the seizure as the non-ictal segment. We labeled ictal segments with 1 and non-ictal
segments with 0. Subsequently, we concatenated the non-ictal and ictal segments
and standardized the entire signal. The signals were then segmented into one-second

intervals with no overlap.

3.2.9 Feature Extraction

In the evolving field of seizure detection, the selection of appropriate features for

classification purposes is pivotal. The features listed in Table 3.3 are rooted in the
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Table 3.3: Summary of extracted EEG features

Feature Description
Line Length [116] | A simplification of Katz’s fractal dimension and
a measure of complexity or simplicity in a signal.

delta Signal power in 1-4 Hz range
theta Signal power in 5-8 Hz range
alpha Signal power in 9-12 Hz range
sigma Signal power in 13-16 Hz range
beta Signal power in 17-30 Hz range
low gamma Signal power in 31-45 Hz range
high gamma Signal power in 55-90 Hz range

Complexity [170] | Hjorth complexity, A measure to understand the
complexity and structure of a signal.

historical context of EEG analysis and have been validated by numerous studies for
their effectiveness in distinguishing seizure activity from normal brain activity. The
Line Length (LL), an operational simplification of Katz’s fractal dimension, has been
shown to be an efficient feature for seizure onset detection [116, 171]. Complementing
the time-domain analysis, the frequency-domain features — delta, theta, alpha,
sigma, beta, and gamma — represent power spectral densities within their respective
frequency bands. These bands are integral to EEG interpretation. Delta waves, for
instance, are known to be prominent during deep sleep stages and have been observed
to change during seizure episodes, particularly in temporal seizures [172|. Theta
and alpha waves, associated with drowsiness and relaxed wakefulness respectively,
also exhibit alterations during seizures [173]. Sigma waves, though less commonly
emphasized, can offer additional insights into seizure dynamics, especially considering
their normal presence during sleep spindles [174]. Beta waves, linked with active
cognitive engagement, have been reported to increase phase-amplitude coupling with
gamma waves during seizures, offering a potential biomarker for seizure detection
[175]. Alterations in gamma activity have been correlated with the onset and spread
of seizure activity, making it a potential feature for seizure detection algorithms [176].

Lastly, Hjorth complexity extends the analysis by offering a measure of the signal’s



Table 3.4: Summary of sample size per subject

Subject # ictal | # sleep | Hours worn | # seizures captured
samples | samples
Subject102 665 3100 216 5
Subject104 452 400 98.5 5
Subject106 107 720 29 1
Subject107 170 1740 70 2
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overall volatility and unpredictability, which is inherently higher during seizures. This
parameter adds depth to the feature set by encapsulating the dynamic nature of EEG
signal changes during epileptic events [177]. In this study, we utilized each 1-second

segment to extract time and frequency domain features as outlined in Table 3.3.

3.2.10 Model Training and Evaluation

In this study, the epileptologist conducted a comprehensive review of the Aware
dataset, encompassing the recordings from all four subjects. Each instance of seizure
activity was identified and labeled within the dataset. Subsequently, the validity of
these identified seizure episodes was corroborated by reviewing iEEG data. Table
3.4 summarizes the total recording hours, number of samples in ictal(interictal) and
sleep(awake) states, alongside the seizure counts for each subject. In the process
of preparing our dataset for model training and evaluation, we partitioned it into
two subsets: 80% allocated for training and 20% reserved for testing. To ensure
that the distribution of classes remains consistent across both subsets, we employed
stratified sampling. We used Logistic Regression and Random Forest classification
models in our classification pipeline. Prior to inputting the features into the classifiers,
we performed normalization to ensure the data was of uniform scale. Subsequently,
we utilized the test data to assess the efficacy of the trained models. We employed
accuracy, sensitivity, false positive rate (FPR), and receiver operating characteristic

(ROC) curve as evaluation metrics [178]. Our seizure detection pipeline is depicted in
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figure 3.4.
Raw data Discard 'CH8" and set Bandpass filter
(8 channels) 'CH6' as the reference Notch filter at 60 and 120 Hz at 0.5 - 100 Hz }
g
0
w
H -
v
o
13
o
o
-5

Label ictal data with 1 and
interictal data with 0

% Split ictal data to train and test ]

Split interictal data to train and test }

c
2
E Form short and long vectors
=
% For data in [ictal_train, ictal_test,
P interictal_train, intericatal_test]:
5 Extract features from windows
-
4 of 1-min length
e
32
T £ . < . <
.g € Comblnfa features from |nter|ca.tal_tra|n Train a classifier on the training set
=T and ictal_train to create train set
-

Combln.e features from interictal_test Test the classifier on the dataset
and ictal_test to create test set

Model
Evaluation

Figure 3.4: Flowchart illustrating the seizure detection pipeline, including preprocessing, feature
extraction, model training, and evaluation steps.

3.2.11 Results

We tested the physiological validity of the Aware hearable EEG recordings, in the
context of seizure detection and sleep classification applications. The inclusion of
sleep detection results in our seizure detection study is founded on the premise that
discerning the state of wakefulness or sleep during seizure events can enhance diag-
nostic accuracy and inform tailored treatment strategies. For instance, identifying
whether seizures predominantly occur during sleep can guide more targeted medication
regimens, such as administering doses primarily before bedtime and minimizing unnec-
essary medication exposure during wakefulness [179]. Figure 3.5 provides a detailed
illustration contrasting seizure versus interictal conditions, as well as sleep versus

awake states. In this illustrative example, the signals are derived from Subject106,
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selected randomly for demonstration purposes.
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Figure 3.5: Comparative visualizations of preprocessed EEG data of subject106 captured using
the Aware system. Panels (A) and (B) depict EEG activity during interictal and seizure states,
respectively, while panels (C) and (D) exhibit recordings obtained during periods of wakefulness and
sleep.

This depiction encompasses preprocessed data only from the electrodes used for
the classification tasks. To demonstrate the efficacy of our seizure detection pipeline,
we used the data pertaining to eight patients from the Kaggle seizure detection
competition [180], as a benchmark. This provided us with a rigorous test of the
performance of our approach. The Kaggle seizure competition data consists of training
and testing data for both human and canine subjects. The training data consists
of 1-second clips of EEG recordings labeled as either "ictal" for seizure data or
"interictal" for non-seizure data. Data is described in more detail in [180]. In order
to address the high dimensionality of the Kaggle data, which exceeded 6 channels,
an additional preprocessing step was implemented involving the use of principal
component analysis (PCA) [181]. Specifically, the first 6 components of PCA were

selected for further analysis. We curated a balanced dataset by selecting an equal
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number of samples for ictal and interictal classes. The efficacy of our seizure detection
pipeline is demonstrated by the performance of a trained Random Forest algorithm
on the Kaggle test data, as depicted in figure 3.6. The mean accuracy among all
subjects was found to be 0.79, with a standard deviation of 0.13. This indicates that
the seizure detection accuracy of the studied subjects is consistently above the chance
level [182], with a relatively low level of variance. The area under the ROC curve

(AUC) was determined to be 0.93.
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Figure 3.6: Results of seizure detection on Kaggle iEEG-PCA data. (A) Accuracy: logistic regression
(LR) results were used as the baseline. Random Forest (RF) showed superior results compared to LR
in all cases (B) sensitivity (C) false positive rate (FPR): the trained RF had a lower FPR than the
baseline. (D) ROC curve for aggregated Kaggle iIEEG-PCA data. (for readability only results of RF
model are shown)

Additionally, in order to provide a reliable benchmark for our method, we utilized
the iIEEG data that was collected concurrently with Aware signals. As with the Kaggle
data, we employed principal component analysis to address the high dimensionality of
the iEEG data. The results of seizure detection, including accuracy, sensitivity, the

false positive rate for each recording session, and ROC curve on aggregated data are
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depicted in figure 3.7. On average, the accuracy of our random forest and logistic
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Figure 3.7: Results of seizure detection on iIEEG-PCA data. (A) Accuracy: logistic regression (LR)
results were used as the baseline. Random forest (RF) showed superior results compared to LR, in 4
out of 5 cases. (B) Sensitivity: LR had higher sensitivity than the trained RF in 4 out of 5 cases. (C)
False positive rate (FPR): except for one case, the trained RF had a lower FPR than the baseline.
(D) ROC curve for aggregated iEEG-PCA data. (for readability only results of RF model are shown)

regression models was 0.88 and 0.80, respectively, with standard deviations of 0.1
and 0.17. Similarly, the mean sensitivity of these models was 0.88 and 0.81, with
standard deviations of 0.1 and 0.17. The mean false positive rate of the logistic
regression and random forest models was 0.11 and 0.21, with standard deviations
of 0.12 and 0.18. The ROC curve for the seizure detection results was obtained by
combining data from all sessions, with an AUC of 0.97. The results of our seizure
detection analysis using the Aware hearable data are depicted in figure 3.8, including
accuracy, sensitivity, false positive rate for each recording session, and ROC curve on
combined data. The average accuracy of our random forest and logistic regression
models was found to be 0.86 and 0.80, respectively, with standard deviations of 0.13
and 0.20. The mean sensitivity of these models was 0.91 and 0.83, with standard

deviations of 0.12 and 0.26. The mean false positive rate of the logistic regression
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Figure 3.8: Results of seizure detection on Aware hearable data. (A) Accuracy: logistic regression
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and random forest models was 0.18 and 0.21, with standard deviations of 0.15 and
0.18. The ROC curve for the seizure detection results was obtained by pooling data
from all sessions, with an AUC of 0.99. In addition to the seizure detection test,
we applied our machine learning classification pipeline to classify between sleep and
awake states from the Aware data. Our epileptologist annotated sleep segments using
a combination of iEEG data and video recordings. As with the seizure detection task,
we selected a corresponding window of equal duration from the awake state for each
sleep segment in order to facilitate comparison and analysis. The accuracy of sleep
detection analysis utilizing Aware data is depicted in figure 3.9. Our random forest
model outperforms the logistic regression model, with an average accuracy of 0.96
compared to 0.82. This is further supported by the smaller standard deviation of
0.03 for the random forest model compared to 0.16 for the logistic regression model.
The AUC for sleep detection was 0.99. An independent samples t-test was conducted

to evaluate the statistical distinction in classification accuracies derived from Aware
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Figure 3.9: Sleep detection utilizing Aware hearable data (A) accuracy (B) ROC curve for the trained
random forest.

data and iEEG data. The calculated t-statistic was 0.07, accompanied by a p-value
of 0.93. These results indicate the absence of a statistically significant difference in
the ’accuracy’ metric between the two data sets. Consequently, we fail to reject the
null hypothesis, which postulates equivalence in the performance of the classification
accuracies across the two modalities. Regarding tolerability, most subjects reported
varying degrees of comfort throughout their stay, which was confounded by the subjects
having concurrent indwelling intracranial electrodes in place throughout the study,
which are a universal source of discomfort. The overall mean tolerance was 3.98,
suggesting that, on average, the subjects experienced a degree of discomfort marginally
below the midpoint of the scale. It is imperative to consider that the participants were
implanted with intracranial electrodes, a factor that might have affected the reported
discomfort. The standard deviation was 1.12 which reflects a moderate variation in

the tolerability scores across the subjects.

3.2.12 Conclusion

Previous research has established the potential of ear-EEG as a viable tool for seizure
detection. This technology has demonstrated efficacy both as a standalone modality

and as a component within a multi-modal system. In this study, we sought to determine
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the feasibility of using the Aware hearable manufactured from hearing aid industry
standard materials and practices and equipped with embedded electrodes to record
EEG signals from the ear canals. To this end, we collected EEG data from both
left and right ears and compared it to data obtained using gold standard iEEG. Our
results indicated that the ear canal recordings were suitable for detecting seizures
and discriminating between wakefulness and sleep. The Aware hearable demonstrated
the viability of using a non-invasive long-term electrophysiologic earbud device for
extended periods of time in a clinical setting, thus potentially translating to ambulatory
settings which would significantly reduce costs and burden to patients and families. Of
note, the Aware hearable was not able to detect seizures that were deep and limited
in propagation (Subject 104). This is a known limitation of scalp EEG [183], which
the Aware hearable most closely resembles. A similar comment can be made about
the instance where Aware failed to lateralize the seizure (Subject 102); propagation of
ictal patterns is what is visible on scalp EEG, which can appear as bilateral signals.
In contrast, iEEG electrodes have only limited spatial resolution, and if the implant
does not cover the initiating nodes, it can give falsely lateralizing information; the
discordance regarding lateralization in Subject 106 could be due to this or due to
how the seizure propagated before being seen on the surface. The other limiting
factor in this analysis is that epileptiform discharges observed on iEEG are often not
observable on the scalp (and presumably Aware), however, there were no epileptiform
spikes identified via the hearable despite all enrolled subjects demonstrating interictal
epileptiform discharges on prior scalp studies (same for sleep spindles and posterior
dominant rhythms). It is possible that this discrepancy is due to the limited spatial
sampling of the hearable. Future trials of the Aware study might consider the adoption
of scalp EEG instead of iEEG. This consideration stems from the notion that both
scalp EEG and the Aware system utilize more comparable methods for EEG signal

acquisition. Furthermore, the use of scalp EEG is generally less complex and more
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accessible compared to iEEG. Comfort level is highly personal, and several users
showed no issues wearing the earbuds for 20+ hours a day for the length of their study.
In our analysis of the EEG data obtained using Aware, we employed a combination of
preprocessing, feature extraction, and classical machine learning techniques to classify
the data. Our choice of classical machine learning algorithms was informed by the fact
that they tend to perform better than deep learning algorithms when the available
data is small. This is because classical machine learning algorithms make use of
hand-crafted features and apply simpler models that are designed to be more robust
with smaller datasets. As previously demonstrated in the literature, tree-based models
often outperform deep learning models on tabular data [184]|. There are several reasons
for this phenomenon. For instance, tree-based models are more adept at handling
high-dimensional datasets and interactions between features than deep learning models.
This is because tree-based models can learn simple, interpretable decision rules based
on a few key features, rather than attempting to learn complex, non-linear relationships
across all features as deep learning models do. Additionally, tree-based models tend to
be less sensitive to noise and outliers in the data, which can be problematic for deep
learning models [185]. Furthermore, tree-based models are often easier to train and
tune, particularly when the data is small or imbalanced. Given these considerations,
we chose to employ random forest classifiers in our analysis. These classifiers are a type
of ensemble learning algorithm that combines the predictions of multiple decision trees
to achieve improved performance [186]. In the domain of seizure detection using ear-
EEG, various studies have yielded promising results using machine learning classifiers.
Reference [148| details the use of a Support Vector Machine (SVM) classifier applied
to multi-modal data, achieving a sensitivity spectrum of 84% to 100%. Another study
reported sensitivities between 77% and 82% when utilizing an SVM classifier with
behind-the-ear EEG data [150]. Further research highlighted in [151] has echoed

these findings, with sensitivities ranging from 83% to 100% using similar methods.



57

Diverging from SVM classifiers, [152| achieved a mean sensitivity of 90.4% with an
autoencoder-based model. Our research contributes to this evolving field with a seizure
detection system that not only aligns with the high sensitivity benchmarks previously
reported but, in some instances, surpasses them. With a mean sensitivity of 91%,
our system stands as a testament to the efficacy of using in-ear-EEG for long-term
seizure monitoring. Overall, our clinical results corroborate with prior studies that
ear canals should serve as a potentially viable alternative for recording EEG signals in
ambulatory settings [187|, and that the Aware hearable demonstrates this feasibility
using scalable commercial manufacturing processes, with potential implications for the
fields of neurology and brain-computer interface research. One possible application for
this technology is the detection of sleep and wake states. To improve the detectability
of motor seizures that are not visible as a detectable pattern from any scalp EEG
system, accelerometers may be added to the Aware hearable in future designs. For
future work, we will consider the incorporation of artifact removal algorithms within
our preprocessing framework, with the objective of potentially improving the system’s
overall performance. We hope that using the Aware hearable device will provide
patients with a much more comfortable experience with long-term seizure monitoring
and detection while affording clinicians and researchers far greater amounts of data

than existing non-invasive ambulatory methods allow.



Chapter 4

Neural Biomarkers of Memory: A

Sparse-Label SEEG Analysis

This chapter investigates the predictive capability of feature engineering and classical
machine learning in identifying neural biomarkers associated with memory recall,

specifically focusing on the impact of basolateral amygdala (BLA) stimulation.

4.1 Background

The direct recording and stimulation of the human brain have significantly advanced
our understanding of the physiological mechanisms underlying memory [188]. Stere-
oelectroencephalography (SEEG), with its exceptional temporal resolution, offers a
unique capability to capture dynamic brain patterns in near real time. This technique
allows for detailed observation of neural activity before, during, and after brain stimu-
lation, providing invaluable insights into the temporal dynamics of memory processing.
Recently, our research collaborators leveraged these techniques to determine whether
electrical stimulation of the basolateral amygdala (BLA), a region with known con-
nectivity to the hippocampus [189] and a key role in emotional memory [190], could

affect memory processing. In doing so, we observed that BLA stimulation has the
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capacity to enhance declarative memory without evoking subjective awareness or an
emotional response [191, 192]. Our subsequent work has sought to characterize which
patterns of evoked activity are predictive of the memory-enhancing effects of BLA
stimulation; in particular, we identified evoked slow-gamma (31-55 Hz) activity within
the CA1 region of the hippocampus as a biomarker predictive of whether an image
would subsequently be remembered vs. forgotten [193].

Despite the success of traditional methods such as linear models or manual feature
extraction techniques in identifying key neural biomarkers, they remain inherently
limited by their reliance on the manual selection of features. This approach often
requires domain expertise and may overlook subtle but meaningful patterns in the
data [194]. In the context of SEEG signal analysis, where the high dimensionality
and complexity of brain activity present significant challenges, these limitations may
become more pronounced.

In this chapter, we seek to investigate the efficacy of manual feature engineering
and classical machine learning for predicting whether an image will subsequently be

remembered or forgotten.

4.2 Methods

4.2.1 Study Participants

We recruited a cohort of 16 individuals (n = 31 experimental sessions) with medically
refractory epilepsy undergoing a stereoelectroencephalography procedure for our study:.
A subset of these sessions (n = 17, 56%) were excluded from our analyses because of
poor performance on the memory task (false alarm rate > 44%, a threshold expected
based on our prior work [191]). The mean (£+ SD) age of the included cohort (n
= 8 individuals, 14 experimental sessions) was 36.2 years (+ 6.4 years), and 63%

were female. Each study participant provided written informed consent prior to the
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experiment. No exclusions were made regarding the sex, gender, race, or ethnicity of
participants. Study protocols and procedures were approved by Institutional Review
Boards at Washington University in St. Louis (IRB 202104033) and the University of
Utah (IRB 00144045).

4.2.2 Intracranial Electrophysiology

Intracranial depth electrodes were implanted to localize seizures in regions determined
during a multidisciplinary case conference. Post-operative electrode placements were
localized by co-registering pre- and post-operative images using open-source software
developed by our research group [195]. Neurophysiological recordings were acquired
using a neural signal processor (Blackrock Microsystems, Salt Lake City, UT; Nihon
Koden USA, Irvine, CA) connected to the clinical EEG amplifier. (Cadwell Industries,
Inc., Kennewick, WA). During a recording session, neural signals were sampled at
2 kHz and referenced to an electrode located within white matter, distant from the

stimulation site.

4.2.3 Experimental Design and Stimulation

Patients performed a two-stage (i.e., encoding, retrieval) visual recognition memory
task separated by approximately 24 hours. During the encoding session, patients
were shown a series of 160 images consisting either of single objects (e.g., hammer)
or scenes (e.g., city landscape); the proportion of objects and scenes shown were
equal (50/50). Images were presented on screen for 3s and followed by a fixation
cross for 6.5-7.5s. During half of the encoding trials, we delivered direct electrical
theta-burst stimulation to the basolateral amygdala for the 1s immediately after the
image was removed from the screen, similar to our previous work [191]. Stimulation
was bipolar, charge-balanced, 0.5-1.0 mA, and delivered in 8 equally-spaced bursts of

50 Hz pulses. Memory was subsequently tested during a self-paced retrieval task in
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which patients were asked to identify images that were shown during the encoding

session approximately 24 hours prior.

4.2.4 Signal Processing

We conducted a series of standard offline preprocessing techniques to enhance the
signal-to-noise ratio of our SEEG recordings. Specifically, we implemented the following
steps: (1) bipolar re-referencing of signals between adjacent contacts along the same
lead, (2) use of a zero-phase band-pass filter at 0.1 Hz and 95 Hz, (3) application
of a zero-phase notch filter to eliminate line noise at 60 Hz, (4) down-sampling of
the recordings to 200 Hz, (5) segmentation of the data into 8-second peri-stimulation
epochs, and (6) manual exclusion of electrode contacts and epochs exhibiting significant

noise or epileptiform artifacts upon visual inspection.

4.2.5 Feature Engineering

We utilized multitaper analysis [196] to estimate the power spectral density (PSD) of
the pre-processed SEEG recordings for each channel. Following this, we isolated the
aperiodic (1/f) components of the SEEG power spectra by modeling the aperiodic
signal L as an exponential function in semilog-power space, using linear frequencies

and logarithmic PSD [197], as presented in the equation below.

L =a+log(F")

Here, a represents the intercept, b is the slope, and F' denotes the vector of input
frequencies.

The average band power was computed for the canonical frequency bands and
included as part of the input features. In an effort to enhance the predictive capacity

of our models, we integrated non-linear features, specifically Permutation Entropy
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(PE), Detrended Fluctuation Analysis (DFA), and Phase-Amplitude Coupling (PAC),
into our analytical framework. These features were deliberately selected to capture
complex neural dynamics that conventional band power measures may fail to detect.

A comprehensive list of all input features is presented in Table 4.1.

Table 4.1: List of Features and Descriptions

Feature Description

Canonical Average spectral power of theta, alpha, beta,

Frequency slow-gamma, and high-gamma bands.

Bands ’

PE Permutation Entropy, Measures the complexity of time
series by analyzing the ordinal patterns.

DFA Detrended Fluctuation Analysis, evaluates the
long-term correlation and scaling properties.

PAC Phase-Amplitude Coupling, measures interactions
between phase and amplitude of different frequencies.

PE has been extensively employed to assess the complexity and unpredictability
of neural signals by quantifying the inherent variability and disorder within these
signals [198]. DFA is particularly suited for managing the non-stationary nature of
SEEG signals, allowing the characterization of long-range temporal correlations in
neural processes [198]. PAC is instrumental for understanding the modulation of faster
oscillatory amplitudes by the phase of slower oscillations, a phenomenon linked to
cognitive processes, sensory integration, and motor coordination [199].

We included all electrodes positioned within the hippocampal anatomical region,

specifically those located ipsilateral to the stimulation site.

4.2.6 Predictive Models

We employed Logistic Regression with an Elastic Net regularization (LR-ENR), along
with XGBoost, as our predictive models, utilizing the features outlined in Table 4.1.
The Elastic Net method aims to address both multicollinearity and model sparsity

by combining L1 (Lasso) and L2 (Ridge) penalties [200]. XGBoost is recognized for
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its robust capacity to model complex non-linear relationships within tabular data
[201]. Unlike logistic regression, which assumes that there exists a linear relationship
between each explanatory variable and the logit of the response variable, XGBoost
employs gradient boosting on decision trees, allowing it to model intricate patterns and
interactions among features that may not be apparent through linear methods. This
algorithm can automatically account for feature importance and selection. However,
we employed a permutation-based feature importance method [202] to determine the
most important features for both LR-ENR and XGBoost classifiers. This model-
agnostic approach assesses the significance of each feature by measuring the increase in
prediction error when the feature’s values are randomly shuffled, effectively disrupting
any relationship between the feature and the target variable [202]. Specifically, the
method calculates the baseline error of the model using cross-entropy, which measures
the difference between the true labels and the predicted probabilities produced by the
model. The cross-entropy is computed for the original feature set and then repeatedly
permutes each feature’s values to compute the cross-entropy loss again, with the
difference indicating the feature’s importance. For each feature, the permutation is
repeated multiple times, and the mean and standard deviation of the error increase
are recorded. The significance of each feature’s importance is assessed using a t-
test, comparing the importance score to zero. Pairwise t-tests are also performed
between the most important feature and others to determine whether its importance
is significantly greater. This ensures that we not only capture the feature’s relevance

but also determine if its contribution is statistically significant.

4.2.7 Model Evaluation

To assess the predictive performance of the trained logistic regression and XGBoost,
we employed Leave-One-Subject-Out (LOSO) cross-validation, which involved training

the models on data from all subjects except one, with the left-out subject used for
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testing.

To establish a chance-level baseline, we randomized the labels in the training set
and repeated the aforementioned procedures. This step provided a reference point
against which to compare the models’ performance, ensuring that any predictive power

observed was not due to chance.

4.3 Results

In this section, we present the assessment of the predictive performance of the LR-ENR
and XGBoost models for the memory classification task. This evaluation utilized
the feature set described in Table 4.1. Figure 4.1 illustrates the performance of the
LR-ENR and XGBoost classifiers based on the Receiver Operating Characteristic
- Area Under the Curve (ROC-AUC) metric. The LR-ENR model exhibited no
discernible improvement over random guessing, regardless of whether it employed
canonical frequency band power features alone or in combination with entropy and
fractal features. In contrast, the XGBoost classifier, when leveraging the complete
feature set, yielded a mean AUC of 0.610 (+0.081 SD), significantly outperforming
the permutation chance baseline (AUC = 0.500) as determined by a Mann-Whitney
U test (U = 1247, p = 1.6 x 107%). This finding indicates a robust, albeit modest,
predictive capability.

The feature importance rankings for this model are illustrated in Figure 4.2.
Notably, Phase-Amplitude Coupling (PAC), which reflects the influence of theta
phase modulation on the amplitude of slow-gamma oscillations, emerged as the most
significant feature. This finding suggests that interaction between theta and slow-
gamma rhythms may play a role in hippocampal function concerning processes such

as memory consolidation.
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Figure 4.1: ROC curves demonstrating the performance of LR-ENR and XGBoost classifiers for
memory prediction. (a-b) LR-ENR performance using canonical frequency band power features only
(AUC = 0.514 £ 0.035) and all engineered features (AUC = 0.515 £ 0.035), respectively. (c-d)
XGBoost performance using canonical frequency band power features only (AUC = 0.548 £ 0.049)
and all engineered features (AUC = 0.610 + 0.081), respectively. While LR-ENR shows performance
comparable to random chance regardless of feature set, XGBoost achieves statistically significant
predictive performance when utilizing all features. Blue lines represent mean ROC curves with
shaded regions indicating +1 standard deviation, while red and green lines show random chance and
permutation baselines, respectively.

4.4 Conclusion

Although canonical band powers have been widely utilized in EEG analysis and have
demonstrated significant utility across various contexts [193, 203-205|, our findings
indicate that, for this specific dataset and task, they did not provide sufficient dis-

criminatory power for the LR-ENR and XGBoost classifiers to effectively differentiate
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Figure 4.2: Biomarker importance graph for classification between “remembered” and “forgotten”
trials using the XGBoost classifier. The PAC demonstrates notably higher importance, suggesting its
effectiveness in memory prediction.
between trials where images were remembered versus forgotten. By integrating non-
linear features, we sought to enhance the model’s ability to detect intricate patterns
associated with memory processes, thereby potentially improving the accuracy of our
predictive modeling beyond what could be achieved using canonical band powers alone.
The emergence of phase-amplitude coupling (PAC) as the most important feature in
our analysis is notable. It suggests that stimulation of the amygdala during the encod-
ing of images may enhance memory consolidation by increasing the phase-amplitude
coupling between theta and slow-gamma oscillations in the hippocampus. This finding
aligns with previous research identifying theta-gamma coupling as a key mechanism
in working memory [206-209).

In chapter 5, we will look into the predictive capabilities of EEG foundation models,
an approach grounded in self-supervised learning. The objective of this emerging field
is generalizable, compressed representations of EEG data—those that go beyond the

traditional methods in machine learning.



Chapter 5

Adapting Foundation Models for EEG

Data Representation

5.1 Background

The limitations of manual feature extraction in electrophysiological signal analysis,
particularly for electrogastrography (EGG), have underscored the need for more
sophisticated methodologies, as discussed in Chapters 2 through 4. While classical
machine learning techniques, supported by human-engineered features, produced
encouraging results in analyzing electroencephalography (EEG) data, these same
approaches proved insufficient for EGG data. The complexity, variability, and sparse
labeling of EEG datasets require models capable of capturing nuanced relationships
and representations that manual methods may fail to fully address [210, 211|. This
chapter introduces the potential of foundation models as a transformative tool in
addressing these challenges, specifically focusing on their application to EEG data
representation, despite not yielding optimal results in all scenarios [212].

Foundation models are large-scale deep learning architectures that establish general-

purpose capabilities through pre-training on vast datasets across diverse tasks [213].
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These models offer a new paradigm for representation learning in domains characterized
by data complexity and limited labeled examples. Despite their promise, foundation
models for EEG are still in their infancy. They aim to develop generalizable embeddings
that can be adapted for specific downstream analyses [214-216]. However, in the
context of EEG data, these models are yet to consistently achieve optimal performance
in capturing the intricacies of brain signals, particularly across different individuals,

conditions, and experimental setups [216].

5.2 The Importance of Foundation Models for EEG

Data

The unique attributes of EEG datasets, such as high dimensionality, temporal de-
pendencies, and low signal-to-noise ratio (SNR) [216], present significant challenges
for traditional machine learning approaches. In the case of EEG signals, there is a
critical need to capture both local features, such as specific frequency band activities,
and global temporal patterns that span entire recording sessions. Traditional manual
feature extraction often focuses on predefined metrics, such as power spectral densities
or wavelet coefficients [217], which limits the model’s ability to adapt to the full range
of variability inherent in EEG data. Foundation models address these challenges in

two ways:

1. Generalizable Representations: Pre-training on large-scale EEG data allows
the foundation models to develop generalized embeddings transferable to vast
numbers of downstream tasks with limited labeled data. Further fine-tuning
on domain-specific EEG data allows these models to adapt learned features to
address specific tasks, such as biomarker discovery—supported perhaps in some
contexts by manual feature extraction, though likely benefiting from further

automated and adaptive techniques to improve performance.
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2. Multi-Scale Feature Learning: By employing complex architectures like trans-
formers or deep convolutional networks, foundation models can extract both
low-level temporal features and high-level global patterns, offering a multi-scale

perspective that is essential for comprehensive EEG analysis [218].

These advantages make foundation models particularly suitable for handling the
sparse-labeling issue inherent in many EEG datasets. Unlike conventional methods
that require careful manual labeling, foundation models can be pre-trained on large-
scale, unlabeled datasets, using self-supervised learning techniques to learn meaningful
representations. This capability reduces the need for extensive manual intervention

and may facilitate the discovery of biomarkers with minimal labeled data [219].

5.3 Bridging the Gap: From Manual Extraction to
Automated Representation

The transition of foundation models from manually extracted features to automatically
learned ones indicates a critical turning point in the analysis of EEG data. Manual
methods, most often dependent on domain knowledge in defining the features, are
prone to potential biases and insufficient capability to capture the full complexity of
the underlying physiological processes [220]. By contrast, foundation models provide
an increase in predictive power through data-driven feature discovery, especially in
situations where there is little labeled data and subtle interdependent patterns would
otherwise escape traditional methods. On the flip side, it lacks an explainability tool
to uncover what features really contribute to predictions.

Chapters 2 through 4 highlighted the strengths and limitations of classical machine
learning with manual feature extraction. Although effective for seizure detection from
EEG, these methods fell short when applied to EGG or SEEG, pointing towards

a need for more scalable and robust approaches. FMs bridge this gap by allowing
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features to be learned directly from scarce annotated raw data, eliminating the need
for human-engineered features and enabling the model to discover latent patterns that
may correlate with physiological or pathological conditions.

In the following sections, we will explore two specific foundation models adapted
for EEG data representation, illustrating their architectures, pre-training strategies,

and the benefits they bring to biomarker discovery in sparse-labeled contexts.

5.4 BERT-inspired Neural Data Representations

This framework introduced in [221] represents a pioneering attempt at learning from
massive amounts of unlabeled EEG data using transformer-based architectures and
self-supervised learning techniques developed mainly for natural language processing.
The following is a detailed explanation of this model and how we pre-trained and
fine-tuned it for a classification task.

Model Training: The model is trained on the pretext task using a loss function
that encourages the model to make correct predictions on the pretext task [222]|. For
example, if the pretext task is to predict the rotation of an image, and the model’s
prediction is denoted by ¢, the true rotation by y, and the parameters of the model

by 6, the training process could be formulated as minimizing the following loss function:

1 N
m@m N Z; L(yi, yi)

where L is a suitable loss function (like cross-entropy loss for classification tasks), N
is the number of training examples, and the sum is over all training examples.

Representation Learning: The goal of the training process is to learn a function
f parameterized by 6 that maps the input data = to a useful representation [222].
This function f is typically the part of a model up to the last layer or two. The

learned representation for an input z can be denoted by fa(z). The hope is that this
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representation captures the important features of the data that are relevant for the
pretext task and also for other related tasks.

Fine-tuning: The learned representation fy(x) can be used as a starting point for
training a model on a downstream task. This involves adding a few new layers to the
model, denoted by g4(.), and training these new layers on the downstream task while
keeping the parameters 6 fixed or allowing them to change slowly. The fine-tuning

process can be formulated as minimizing the following loss function:
M
md}n i Z L'(y;, 94(fo(27)))
j=1

where L’ is a suitable loss function for the downstream task, M is the number of exam-
ples for the downstream task, y: and z’; are the labels and inputs for the downstream

task, and the sum is over all examples for the downstream task.

5.4.1 Application to EEG

A significant obstacle in the implementation of SSL for EEG representation learning
lies in the generation of disparate yet semantically coherent views of EEG samples.
As evidenced in existing literature [41, 223|, the efficacy of generating meaningful
views of EEG samples is contingent upon the specific application at hand. In other
words, the success of various EEG augmentation techniques is intrinsically linked
to the objectives of the downstream tasks they serve. This observation serves as a
compelling rationale for transitioning from contrastive approaches to methodologies
that are either predictive or reconstructive in nature. Drawing on the methodology
presented in [221], we aim to adopt a strategy from the realms of Language Modeling
(LM) and speech recognition. Our goal is to explore the potential application of this

strategy to EEG data representation. In Masked Language Modeling (MLM), the
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model learns to reconstruct language token(s) given the surrounding context [224].
The task often used in MLM is as follows:

Consider a sequence composed of N tokens, denoted as ti,...,ty. Also, take into
account a subset of these token indexes, represented as [,,,. For every token index ¢
that is a member of [,,,, a mask, denoted as M, is applied to the tokens. This mask

serves to modify or conceal the tokens in a certain manner so that:

M ifiel,
q; = Vie N

t;  otherwise

In the context of MLM, a sequence model, akin to a transformer [66], undertakes the
task of reconstructing the original arrangement of tokens from a sequence that has
been strategically masked.

Unfortunately, the intertwined nature of adjacent EEG samples does not support
masking and recovering individual points. This would likely result in a model learning
an interpolation method rather than EEG features. In simpler terms, the smoothness
of the data poses a challenge in deriving meaningful features solely by recovering
missing individual samples, as previously discussed in similar SSL studies involving
speech [225]. On the other hand, if we were to mask a continuous range of tokens, we
could avoid solely focusing on interpolating missing samples. However, reconstructing
time-series data proves difficult due to various challenges, one being that it is complex
to capture the amount of error over time within consecutive sequences [225, 226|. The
commonly used loss functions for such reconstruction, such as mean squared error or
mean absolute error, incorrectly assume independence in the error between elements
in the series [227]. One way to avoid degradation to interpolation and issues with time
series reconstruction is to employ contrastive predictive coding (CPC) as the sequence
learning task [228]. CPC facilitates the learning process of acquiring a robust feature

representation and comprehending the sequential structure of data. It accomplishes
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this by accurately tracing the evolution of these representations, all under the guidance
of a singular loss function [228].

Wav2Vec 2.0 [229] is a self-supervised model developed for speech recognition
tasks that employ parts of CPC and MLM. What makes Wav2Vec 2.0 interesting for
EEG representation is that the model begins by processing the raw audio input and
extracting relevant features, similar to how our auditory system focuses on important
aspects of sound to understand speech. It then employs SSL, predicting parts of the
audio based on other parts, akin to how a child learns language by predicting what
comes next in a conversation. After this initial training, the model can be fine-tuned
on a smaller dataset where the audio is paired with the correct transcription, allowing
it to adjust its predictions to match the correct transcriptions [229].

With the fine-tuning capabilities of Wav2Vec 2.0 demonstrated through its refined
speech recognition following initial training, we are keen to explore the analogous
possibilities within EEG data. Transitioning from the domain of auditory processing
to that of EEG signals, we will delineate the specificities of this approach. This will
encompass the dataset employed for initial pre-training, the pre-processing method-
ologies applied, the detailed procedure of pre-training, and the subsequent outcomes
when fine-tuning for a downstream EEG data that was not part of the pre-training
data. The intent is to adapt the underpinnings of Wav2Vec 2.0’s self-supervised
learning framework to extract and learn from the complexities of EEG data, with
the aspiration of achieving enhanced task-specific performance when the size of data
is small. Illustrating this approach, Figure 5.1 depicts the overall schematic of the

pre-train and fine-tune procedures employed in our study.
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Figure 5.1: Schematic Overview of the Pre-training and Fine-tuning Procedures Ap-
plied to EEG Data. This diagram illustrates the initial large-scale self-supervised
learning using the TUEG corpus, followed by the supervised fine-tuning stage employ-
ing a smaller set of labeled EEG examples.

5.4.2 Pre-training Dataset

The efficacy of SSL is closely linked to the variety and extent of the dataset used during
the pre-training phase [230]. To the best of our knowledge, the Temple University EEG
corpus (TUEG) [231] stands as the most expansive EEG dataset currently available to
the public. In our research, we have employed the latest release of this corpus, version
2.0.0, which comprises EEG data spanning from 2002 through 2017. This dataset
contains a vast collection of EEG recordings, with over 26,000 sessions and close
to 15,000 patients represented. This dataset is continually updated and expanded,
making it a rich resource for research in various fields, including neuroscience, and
machine learning. The demographic details pertinent to this corpus are presented in

Table 5.1.
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Table 5.1: TUEG corpus description (version 2.0.0)

Characteristic Detail

Number of Subjects 14987

Gender 51% Female

Age 1-month to 90 yrs old
Number of Sessions 26846

Number of Recordings 69652

Total Duration 27062 hours

Sampling Frequency Between 250Hz and 1024Hz
Electrode Configuration Mostly (95%) 10/20 system

5.4.3 Pre-processing

Pre-processing is designed to be minimal. Most of the recordings adhered to the con-
ventional 10/20 electrode placement standard, thus, in accordance with the guidelines
outlined in [232], a set of 19 channels was chosen to clearly represent the 10/20 system.
In instances where the channel configuration of a recording did not align with the
chosen set of 19 channels, we eliminated any additional channels and compensated
for absent ones by filling them with zeroes. All recordings were scaled to [-1, 1] and
to compensate for the lost amplitude information we added a 20th channel to each

recording that we filled with a constant value derived from the equation below:

max(s;) — min(s;)

- max(Sgs) — min(Sgs)

where s; is a subset of the total set of samples Sy, referring to a single recording. The
reference sampling frequency was standardized to 256Hz, to which all recordings were

resampled for consistency [221].
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Encoder
stage

Raw EEG

Figure 5.2: The overall architecture for the pre-training phase. The encoder stage
compresses the raw EEG to a sequence of latent vectors. Then transformer encoder
attempts to produce ¢; to be more similar to the masked Z; than it is to a random
sampling over the latent vectors Z;, where i # t.

5.4.4 Pre-training Procedure

The architecture of the pre-training phase is schematically illustrated in Figure 5.2.
The architecture of the pre-training algorithm draws parallels to Wav2Vec 2.0, with
two significant modifications [221]: 1- multi-channel inputs as opposed to Wav2Vec
2.0’s single-channel approach, 2- removing the quantization module found in Wav2Vec
2.0. In Wav2vec 2.0 and during the unsupervised pre-training, the quantization
module, specifically a Gumbel softmax operation or a product quantization mechanism,
discretizes the continuous audio features extracted from the raw audio into a finite
set of quantized representations, often referred to as "codebooks" or "quantized
tokens" [229]. The reason for omitting the quantization module here is the lack

of "codebooks" for EEG data. The Pre-training process unfolds in the following
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manner [221, 229|: Initially, a convolutional layer generates a series of compressed
representations from the multi-dimensional input. In order to leverage the entire
sequence for a singular task, such as classification, an initial token is appended to
the start of the sequence. This token is represented by a vector filled with the value
-5. Subsequent segments of this sequence are then masked. This altered sequence is
then fed into the transformer layer [221, 233|, which aims to produce outputs closely
resembling the original, unmasked input at a specific position ¢t. The self-supervised
training involves a contrastive loss function where the model is trained to match the
true representation of the masked segment against a set of incorrect ones (collected
from other segments of the same sequence)|[234]. The outputs of the transformer
encoder, and outputs from the feature extractor (convolutional stage), serve as inputs

to the contrastive loss below [221]:

exp(sim(ct, b)) /K

— 1
- & > bieny, €XD(sim(cr, b)) /K

where ¢; denotes the output of the transformer encoder at position ¢, b; represents
the (original/un-masked) encoded EEG vector at some offset 7, and Bp is a collection

of 20 uniformly chosen distractors/negatives from the same sequence, in addition to

b;. sim stands for cosine similarity function where sim(z,y) = 28 g utilized to

[EIEL
evaluate the degree of similarity between vectors, and its sensitivity is modulated
by a temperature coefficient s, which is assigned a value of 0.1 [230]. This loss
function is designed to refine the output of the transformer at position ¢ to closely
align with the encoded representation at t, notwithstanding the fact that this input
to the transformer is masked. Consequently, the transformer is tasked with learning a
sufficiently comprehensive model of EEG within its latent space, such that the complete
latent sequence can effectively characterize position t. Throughout the training process,

which included both pre-training and fine-tuning stages with downstream data, we

utilized the Adam optimizer, with the weight decay parameter set at 0.01 [221]. In
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addition, we employed a cosine learning rate decay strategy, complemented by a linear
warm-up phase that spanned 5% of the total training steps for pre-training and 10%

for fine-tuning [221]. Some of the used hyperparameters are summarized in Table 5.2.

Table 5.2: Hyperparameters for pre-training BENDR and its downstream tasks

Dataset Batch Size Epochs Learning Rate

TUEG [231] 64 50 5x 1075
MDD [235] 16 10 5x107°

5.4.5 Fine-tunning Procedure

Fine-tunning was done by removing the transformer module and adding a linear layer
on top of the convolutional stage initialized with weights from the pre-training [221].
The architecture of the fine-training phase is schematically illustrated in Figure 5.3.

L Linear layer with Softmax

Pre-trained
Encoder

Raw EEG

Figure 5.3: The overall architecture for fine-tuning phase. Initially, the convolutional
encoder weights are established via pre-training. Subsequently, these weights are
fine-tuned alongside the linear layer weights through supervised learning for each
downstream task (here we assumed the task has 4 distinct classes).
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5.4.6 FEvaluation Procedure

To assess the viability of foundation models in EEG data analysis, we conducted
an evaluation of the BENDR model, which we pre-trained on the TUEG corpus for
50 epochs. Subsequently, the model underwent fine-tuning for a classification task
involving Major Depressive Disorder (MDD), utilizing data that was entirely distinct
from the pre-training dataset [235]. In addition, to provide a comparison of model
performance across different tasks, we incorporated the results from [221] for two
additional classification tasks: Motor Imagery (MI)[236] and Sleep Staging (SS)[237],
as outlined in Table 5.3.

Table 5.3: Performances of downstream tasks

BCI IV | Motor Im- | 250 22 9 4 ACC 0.40

2a [236] agery

SSC [237] Sleep Staging | 100 2 78 5 BAC 0.65

MDD |[235] | Major Depres- | 256 19 52 2 ACC 0.86
sive Disorder

It is worth noting that our validation approach diverges from past research that
concentrated on within-subject classification [238-240]; instead, we implemented
a one-subject-leave-out cross-validation method. This technique presents a more
formidable challenge because it must contend with the variability that exists between
different subjects. The binary classification of MDD dataset [235] showed promising
performance in detecting Major Depressive Disorder with an accuracy of 0.86 among
52 subjects (26 healthy controls). Taken together, these results provide evidence of the
adaptability of a pre-trained foundation model to different task-specific environments
and so suggest that foundation models may be useful for memory classification tasks

and with data described in Chapter 4.
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5.5 Adapting a Foundation Model for SEEG Data
Representation and Analysis

Although BENDR showed promising results for adapting to unseen EEG data and
tasks, it suffers from a major restriction: the channel number and configuration. It
only works with 19 channels of 10/20 standard EEG signal acquisition system. It
would be impractical to adapt this model to the SEEG data from chapter 4 as each
subject has a different number of implanted electrodes and in different brain regions.

Large Brain Model for EEG (LaBraM) introduced in [241] is a foundation model
designed to overcome the limitations of other FMs such as BENDR. LaBraM’s
architecture leverages Transformer models, inspired by the success of LLMs such
as BERT [66] and GPT [242|. These models apply the masked modeling paradigm and
a neural tokenizer to learn from raw EEG signals, offering a more general and flexible
representation of EEG data. Unlike most FMs that are constrained by the diverse
configurations of EEG recording devices [215, 221|, LaBraM introduces a patching

mechanism to efficiently utilize diverse EEG data from approximately 20 datasets.

5.5.1 Pre-training Datasets

To facilitate a comparison between LaBraM [241] and BENDR [221] on the major
depressive disorder (MDD) classification task (refer to 5.4.6), we selected the entire
TUEG corpus [231] for pre-training LaBraM.

Moreover, to assess LaBraM’s performance on the memory classification task
presented in Chapter 4, we retrained the model using SEEG data from the "Delayed
Free Recall of Word Lists" (DFR) dataset [243]. This retraining marks a pioneering
application of SEEG data in the pre-training of a foundation model specifically aimed

at memory prediction tasks. Table 5.4 provides a brief description of the DFR dataset.
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Table 5.4: DFR data description

SR (Hz) #Channels #Subjects Recording Age
(min, max, median) (hours)
1000 26, 224, 120 293 (158 Male) 371 18-65

5.5.2 Pre-processing

we implemented the following pre-processing steps for TUEG and DFR datasets: (1)
use of a zero-phase band-pass filter at 0.1 Hz and 95 Hz, (2) application of a zero-phase
notch filter to eliminate line noise at 60 Hz, and (3) down-sampling of the recordings

to 200 Hz.

5.5.3 EEG Patching

EEG datasets often vary in terms of channel numbers, sampling rates, and experimental
paradigms, which makes it difficult to develop models that utilize them in one setting.
LaBraM'’s approach to segmenting raw EEG signals into channel patches, inspired by
image patch embeddings used in computer vision [244], involves dividing the EEG
signals into fixed-length segments for each channel. These segments, or 'channel
patches’, allow the model to manage varying numbers of channels and different data
lengths effectively.

Formally, given EEG signals represented as a matrix X € R“*? where C is the
number of EEG electrodes (channels) and T is the total number of time samples,
the channel patching process involves segmenting X into non-overlapping segments.
Each EEG channel is divided into patches of a fixed length ¢, resulting in L%J +1
patches per channel. Thus, for each channel ¢;, the corresponding patches z., , € R"
are formed, where w represents the window size for each patch, and k ranges over all

possible patches [241].
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5.5.4 Temporal Encoding

The temporal encoder in the LaBraM model is designed to capture temporal features
from the segmented EEG patches. The key idea is that each EEG patch z. is passed
through a temporal convolution block to extract local temporal patterns. This block
consists of a 1-D convolution layer, followed by a group normalization layer, and then

a GELU activation function [241]. The components are described below:
e 1D Convolution Layer: The convolutional layer extracts temporal features
from the patch. The 1D convolution for a given patch can be represented as:

Yeo = ConvlD(z,x; W, b)

where:

— Y € RY is the output of the convolutional layer (which may have a

different length ', depending on the kernel size and stride).

— W € RF*¥ represents the convolution filter weights, where F' is the number

of filters used.

— b represents the bias term for each filter.

The convolution operation can be mathematically defined as:
tl

Yerln] =Y Wlilzexln — il + b, Vn € [1,¢]
i=1

Here, Wi] represents the weight of the i-th position of the filter, and z.x[n — i

represents the signal value of the (n — ¢)-th position.

e Group Normalization [245]: The output of the convolution layer, y.x, is

passed through a group normalization layer for stable training. The group
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normalization operation is defined as:

where:
— g and o, are the mean and standard deviation computed for a specific
group of channels.
— € is a small constant added to prevent division by zero.
e GELU Activation Function [246]: Finally, a Gaussian Error Linear Unit

(GELU) activation is applied to introduce non-linearity into the temporal repre-

sentation:

Zek = GELU(GN(yer)) = 0.5y, <1 o <y¢§))

where erf(-) represents the error function, which smooths the activation, unlike

the standard ReLU.

After the temporal convolution block, each EEG patch is transformed into an
embedding vector e, € R?, where d is the embedding dimension to be used as the

input to the Transformer encoder. Thus:

€ck = fTemporal Block(xc,k) € Rd

Finally, the embeddings from all patches and channels are concatenated to form the

input sequence for the Transformer encoder [233] to produce the output embeddings.



84

5.5.5 Neural Tokenizer

Similar to BENDR'’s framework, LaBraM implements the masking and prediction
paradigms inherent to Masked Language Modeling (MLM). However, LaBraM distin-
guishes itself through the incorporation of a quantization mechanism that transforms
temporal EEG representations into discrete embeddings, which are systematically
derived from a predetermined codebook architecture [241]. This approach allows EEG
data to be represented as discrete tokens inspired by the Vector Quantized Variational
Autoencoder (VQ-VAE) technique, commonly used in image representation learning

[247]. The methodology begins by defining a neural codebook
V={vl|i=1,...,K} e RF*P,

where K represents the number of discrete neural embeddings and D is the dimension

of each embedding. The EEG signal sample x is segmented into patches, denoted as

p={pi|i=1,...,N},

with N representing the total number of patches, which is computed from the number
of channels and segment length. Each patch p; is quantized by finding the closest
match within the neural codebook V', achieved by minimizing the Euclidean distance

between the f>-normalized patch and embedding, as formulated in:
% = argmin 1€2(ps) — La(w;) %,

where /5 indicates 5 normalization. This helps in maximizing codebook utiliza-
tion, effectively distributing the patch representations among all available neural
embeddings.

Fourier spectrum prediction is used to train the neural tokenizer to capture the
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frequency components of EEG signals [241]|. Due to the noisy, nonstationary nature
of EEG data, reconstructing raw signals directly is impractical. Instead, the approach
focuses on reconstructing the Fourier spectrum of the EEG, which reveals underlying
brain activities. Specifically, the amplitude A,, and phase ¢,, are calculated from
the Discrete Fourier Transform (DFT) of an EEG patch (%), allowing training to

focus on reconstructing these features rather than the raw signal:

Am = \/Re(fm7c7k)2 + Im(fm,c,k)Qa

Im(fm,c,k)) '

m = t =
10} arctan (Re(ﬂfm,c,k)

The neural decoder then regresses the predicted spectrum, optimizing the total loss
using Mean Squared Error (MSE) for both amplitude and phase [241]. The final loss
function includes a codebook loss term to ensure consistency between the embeddings
and their corresponding neural tokens. This total training loss L is defined as follows

[241]:

Lr =Y > (loa, = All3 + llog, = 6ill3 + llsg(€a(p:) — €a(v2)lI3 + [62(p:) = se(la(v:))]3)

zeD =1

where:
e D represents all EEG data samples.
e 04, and oy, are the predicted amplitude and phase values for the i-th patch.

e The notation sg(-) denotes the stop-gradient operation, which acts as an identity

in the forward pass but prevents gradients from flowing during backpropagation.

e The term |[sg(la(p;)) — l2(vs,)

2 encourages the neural codebook embeddings to
match the corresponding tokenized representations, thereby promoting stable

embedding updates.
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e Conversely, ||¢2(p;) —sg(fa(v,,))||3 ensures that the representation for each patch
p; remains close to the nearest codebook embedding, effectively reducing quanti-

zation error.

The codebook loss terms play a significant role in balancing between the encoder
and codebook representations, thereby ensuring that the neural tokenizer can effectively

learn to discretize and reconstruct meaningful patterns from the noisy EEG data [241].

5.5.6 Pre-training Procedure

The process begins by segmenting a given EEG sample z into patch embeddings [241]
e={e|i=1,...,N}.

A random mask M is generated, with each element m; € {0, 1} representing the mask
status for the i-th patch, and a proportion r of m being equal to 1. The masked
patches of = are then replaced by a learnable mask token, resulting in corrupted EEG

M which are then processed using temporal and spatial embeddings, as

patches e
defined in 5.5.4. These embeddings are subsequently fed into a Transformer encoder,
yielding hidden vectors

which are ultimately used to predict the corresponding neural tokens via a linear
classifier:

p(v' | M) = softmax(Linear(h)).

The training loss for the masked EEG modeling is defined as:

Ly ==Y logp(v| M),

zeD m;=1
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where D represents the entire dataset, and m; = 1 indicates the patches to be
reconstructed [241].

To further enhance training efficiency, a symmetric masking strategy is employed.
This involves calculating the inverse of the mask M, denoted as M, and performing
a second masked EEG modeling step using M [241]. This generates an additional
prediction loss, Lgymar. The motivation for symmetric masking is twofold: it reuses the
same discrete representations while reducing computational overhead and it increases
data diversity, which improves downstream performance. The overall pre-training

objective for LaBraM is given by [241]:

L = Ly + Lsymm-

5.5.7 Fine-tuning Procedure

For fine-tuning the pre-trained model, a final classification layer is added to the
architecture and is trained, while the pre-trained Transformer layers remain frozen
[241]. In linear probing, the weights learned during pre-training are retained without
any updates, and only the linear classifier head is adapted to address the specific
downstream task. To execute linear probing, the pre-trained Transformer blocks are
first employed as feature extractors, which means that input EEG data passes through
these layers to generate fixed representations for each input.

Importantly, the parameters of these Transformer layers remain frozen, distinguish-
ing this approach from full fine-tuning, where all model parameters are subject to
updates. By keeping these layers unaltered, it becomes possible to evaluate how well
the features learned during pre-training generalize without further adjustments.

Only the final classification layer, which maps the extracted features to output
classes, undergoes training. The training involves minimizing a task-specific loss

function, such as binary cross-entropy for classification, via gradient descent. In this
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UMAP Embedding of Remembered and Forgotten Data UMAP Embedding of Stimulation and Sham Data

o Stimulation
Sham

UMAP Component 2
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Figure 5.4: UMAP embeddings of EEG features extracted by the pre-trained model, illustrating
neural representations associated with memory and stimulation conditions, with 95% confidence
ellipses shown as dotted lines for each condition. (a) UMAP projection of EEG features derived from
a 2-second window preceding stimulation, where blue data points and ellipse represent instances of
remembered trials and red data points and ellipse indicate forgotten trials. (b) UMAP projection
of EEG features from a 2-second window following stimulation, with blue data points and ellipse
corresponding to sham or non-stimulated instances and red data points and ellipse representing
stimulated instances.

case, only the weights of the classifier are updated. Notably, the weight decay is set to
zero to avoid unnecessary reduction of the classifier’s weights. This approach allows
the classifier to learn the best weights for classification while effectively controlling
model complexity.

The UMAP projection [248] of EEG features extracted by the pre-trained LaBraM
for a 2-second segment of EEG signals prior to stimulation is illustrated in Figure 5.4a.
In this figure, blue markers denote remembered instances, while red markers indicate
forgotten instances. Figure 5.4a displays the corresponding EEG features extracted
from a 2-second segment of signals following stimulation, with blue markers representing
stimulated instances and red markers denoting sham or non-stimulated instances.
Figure 5.4 demonstrates a more pronounced separation between the stimulation (red)
and sham (blue) conditions compared to the memory conditions. The clusters exhibit

clearer boundaries and reduced overlap between the confidence ellipses, indicating

distinct neural patterns associated with stimulation and sham conditions.
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5.5.8 Linear Probing vs. Latent Space Classification

As demonstrated in 5.4.6, the foundation model BENDR, pre-trained on the TUEG
corpus [231], produced promising classification outcomes for the major depressive
disorder (MDD) dataset [235]. Additionally, we pre-trained LaBraM on the TUEG
corpus and fine-tuned it on the MDD dataset. Figure 5.5 presents the performance of
the fine-tuned foundation models in classifying the MDD dataset into healthy and
MDD subject groups, demonstrating the pre-trained model’s adaptability to a smaller
dataset not included in the initial pre-training phase.

Pre-trained BENDR for MDD Pre-trained LaBraM for MDD

\
True Positive Rate
o
o
\

I
>
\

e 02
—— Mean ROC (AUC = 0.922 * 0.219)
// /’ + 1 std. dev.
L —— Mean ROC (AUC = 0.893 * 0.227) L ~-~ Random Chance (AUC = 0.500)
L + 1 std. dev. 0.0 b2
e == Random Chance (AUC = 0.500) B
0.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 .
False Positive Rate False Positive Rate

(a) (b)

Figure 5.5: ROC curves comparing the performance of pre-trained foundation models on MDD
classification. (a) BENDR model achieving a mean AUC of 0.893 + 0.227, and (b) LaBraM model
achieving a mean AUC of 0.922 4+ 0.219. The blue lines represent mean ROC curves, blue shaded
areas indicate +1 standard deviation, and red dashed lines show random chance performance (AUC
= 0.500). Both models demonstrate strong discriminative ability between healthy and MDD subjects
after fine-tuning on the MDD dataset.

To assess LaBraM’s predictive capability for SEEG data of Chapter 4, we pre-
trained it using the TUEG and DFR datasets and fine-tuned it on our SEEG dataset
using the linear probing as suggested in [241]. Figure 5.6a illustrates that linear
probing was ineffective in distinguishing between remembered and forgotten states.
However, it demonstrated moderate predictive capability for classifying stimulation
versus sham conditions, achieving a mean AUC of 0.701 (SD + 0.101).

In addition to linear probing, we employed the latent space representations gener-
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Figure 5.6: Evaluation of the predictive performance of the pre-trained foundation model, fine-
tuned by linear probing. (a) Performance of the pre-trained LaBraM with a linear head added
to the representation layer, showing no significant predictive improvement (Mean ROC AUC =
0.519 + 0.046) for memory classification task. (b) Performance of the same model for classification
of stimulation vs. sham. Blue lines represent mean ROC curves with shaded regions indicating
+1 standard deviation, while red and green lines show random chance and permutation baselines,
respectively.

0.0

ated by the pre-trained LaBraM model to train an XGBoost classifier, following the
approach reported in Chapter 4. Given that XGBoost is more effective on tabular data
[249], similar to the extracted features described in Chapter 4, we also experimented
with an SVM classifier with a non-linear kernel, which in some cases can be better
suited for high-dimensional representations [250]. Indeed, as shown in Figure 5.7, the
SVM with a non-linear kernel achieved higher performance than XGBoost on the
memory classification task. Notably, both classifiers outperformed linear probing in

this context.

5.5.9 Enhancing Linear Probing

Revisiting Figure 5.4, it is apparent that distinct clusters emerge for each neural
state, corresponding to the eight individual subjects in the dataset. Figure 5.8
illustrates the 2D UMAP projection of the latent space, where data points for each
subject are uniquely color-coded. The clear separation in these UMAP projections

indicates substantial inter-subject variability, which likely undermines the predictive
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XGBoost Classifier Using Latent Features from Pretrained Foundation Model SVM Classifier Using Latent Features from Pretrained Foundation Model
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Figure 5.7: Comparison of XGBoost and SVM classifiers on memory classification using latent
features from the pre-trained foundation model. (a) ROC curve for the XGBoost classifier, achieving
a mean AUC of 0.610 £ 0.138. (b) ROC curve for the SVM classifier with a non-linear kernel,
yielding a higher mean AUC of 0.671 £ 0.108, outperforming XGBoost. Both classifiers performed
above chance level (AUC = 0.500), but the SVM model demonstrated an advantage over XGBoost
in distinguishing memory states.

0.0

performance of classifiers trained on this dataset. This variability poses a significant
challenge, affecting both linear probing methods and classifiers trained directly on the
latent space, by limiting their generalization capacity across subjects.

What follows next is the description of our proposed ensemble classifier that has
domain (subject) adaptation capability, which fine-tunes subject-specific models in
order to mitigate the challenge posed by inter-subject variability and limited sample

size. The method is summarized in Algorithm 1.

Base Classifier

The core of the classifier is a streamlined, single-hidden-layer neural network archi-
tecture comprising 256 nodes, designed specifically for binary classification tasks. To
enhance stability across the diverse subject-specific data distributions, batch normal-
ization (BatchNorm1d) is applied. Additionally, an adjustable dropout layer is used
to prevent overfitting, especially given the limited dataset size. The final output layer

produces a single logit for binary classification.
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2D Projection of the Representation Space Generated by the Foundation Model
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Figure 5.8: 2D UMAP Projection of the Representation Space Generated by the pre-trained foundation
model. Each point represents data from a specific subject, with color coding used to distinguish
between the eight individual subjects. The distinct clustering suggests significant inter-subject
variability.

An ensemble of independent classifiers is utilized to minimize variance and enhance
predictive stability. To foster model diversity, each classifier in the ensemble is
trained on a different bootstrap sample. The ensemble prediction is then generated by

averaging the outputs from all the individual models, leading to a more robust and

stable final prediction.

Procedure

The algorithm employs a Leave-One-Subject-Out cross-validation strategy, which
allows systematic evaluation and adaptation of models to each subject in turn. The

procedure consists of four key stages:
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1. Leave-One-Subject-Out Cross-Validation:
Step 1.1 Select one subject as the validation subject, leaving the rest as the training
set.
Step 1.2 Preprocess the data for each subject:
Step 1.2a Apply subject-specific normalization.
Step 1.2b Select optimal features based on performance metrics.

2. Training Ensemble Models:

Step 2.1 Generate multiple classifier instances to create the ensemble.
Step 2.2 Train each classifier independently:

Step 2.2a Train each on a bootstrap sample of the training data.

Step 2.2b Apply early stopping during validation to prevent overfitting.

3. Domain Adaptation:

Step 3.1 Fine-tune each classifier in the ensemble using the data from the validation

subject to adapt the models to individual-specific data.

Step 3.2 Adjust learning parameters, such as reducing the learning rate, to prevent

drastic modifications to the learned features while adapting to new data.

4. Evaluation:

Step 4.1 Evaluate and record metrics to determine the best-performing model.

Feature Selection

Managing the high-dimensional feature space (d = 200) and relatively sparse sample
size (n &~ 1000) requires an effective feature selection strategy to avoid overfitting. We

use mutual information scores to measure the correlation between each feature and
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the target labels. Subsets of features ranging from 20 to 200 are evaluated iteratively,
and the optimal subset is chosen based on balanced accuracy and the Area Under the
Curve (AUC) metric. This approach ensures the selection of features with the highest

discriminative power while reducing dimensionality.

Domain Adaptation Logic

To enhance generalization across different subjects in memory classification tasks, we

combine an ensemble learning framework with a two-phase fine-tuning process.

e Initial Training Phase: The ensemble of base models is trained on data that
includes all training subjects. Each model is trained on bootstrap samples to
encourage diversity within the ensemble, helping to reduce variance and achieve

generalization.

e Fine-Tuning Phase: After initial training, the models undergo fine-tuning on
subject-specific data. In this phase, the learning rate is reduced to 10% of its
original value, allowing the models to adapt to the nuances of the individual
without overfitting. This controlled adaptation retains the general features

learned during initial training while tuning for subject-specific characteristics.

We evaluated the performance of our ensemble classifier on the memory task and
the Stimulation vs. Sham tasks. The ROC curves for these tasks, shown in Figure
5.9, demonstrate the classifier’s effectiveness in distinguishing between classes in both
cases.

In Figure 5.9a, the ROC curve for the memory task achieves a mean AUC of 0.766
+ 0.062, indicating a fair discrimination ability that surpasses linear probing and
classification of representation space. Similarly, Figure 5.9b presents the ROC curve

for the Stimulation vs. Sham task, yielding an even higher mean AUC of 0.868 + 0.055.
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This result highlights the classifier’s strong discriminative capability in identifying
stimulation effects, as reflected in the narrower confidence interval for this task.
These ROC results demonstrate the ensemble classifier’s robustness and adaptability
across diverse tasks, validating the utility of our domain adaptation approach. By
fine-tuning each model to subject-specific data, we were able to effectively mitigate
inter-subject variability, resulting in enhanced predictive performance across both

tasks.

Pretrained Foundation Model + Ensemble Head (memory task) Pretrained Foundation Model + Ensemble Head (Stimulation vs. Sham)
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Figure 5.9: Receiver Operating Characteristic (ROC) curves for the proposed ensemble classifier
with domain adaptation capability, applied to two binary classification tasks. Panel (a) shows the
ROC curve for the memory task, achieving a mean AUC of 0.766 £+ 0.062, indicating reliable model
performance. Panel (b) displays the ROC curve for the Stimulation vs. Sham task, with a higher
mean AUC of 0.868 + 0.055, demonstrating greater discriminative ability. Shaded areas represent +1
standard deviation.



Algorithm 1

Algorithm: Ensemble Classifiers with Domain Adaptation

Input: Encoded EEG, Labels, Subject IDs, Parameters

Output: metrics, best model

Procedure:
1.For each fold in LeaveOneGroupOut:
1.1 Select validation subject
1.2 Perform preprocessing:
a.Apply subject-specific normalization

b.Select optimal features

2. Train Ensemble Models:
2.1 Create multiple classifier instances
2.2 For each model:
a. Train on bootstrap samples

b. Validate and apply early stopping

3.Domain Adaptation:
3.1 Fine-tune ensemble on validation subject data

3.2 Adjust learning parameters

4.Evaluate Performance:

4.1 Record best metrics




Chapter 6

Conclusion and Future Work

Electrophysiological recordings, in particular, modalities like EEG and LFP, have
considerably furthered our understanding of neural mechanisms of sensorimotor and
cognitive processes. These modalities yield physiomarkers or biomarkers important to
understand neural mechanisms of diseases, the development of therapeutic interven-
tions, and the study of treatment mechanisms. Despite progress in Al methodologies,
current approaches are battling the problem of limited labeled data, which is a common
issue in neuroimaging because of practical and ethical considerations. This dissertation
explored the limitation of working with limited sample sizes, especially while analyzing
these signals and their relationship with electrical neuromodulation. The key objective
of this dissertation was to devise tailored automated data representation frameworks
that assist in biomarker identification on small datasets.

The dissertation spans several core contributions. In Chapter 2, we presented a
novel data acquisition schema to determine the effect of electrically induced Vagus
Nerve Stimulation (VNS) on electrogastrography (EGG) signals, a domain that has
been less attended to in comparison with other electrophysiological recordings like
EEG. Characterizing these effects contributed to a better understanding of the GI

regulation mechanisms and designing informed closed-loop VNS systems. The nature

97
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of data acquisition was not trivial, involving complex electrode implantation. For
this and other technical and ethical reasons, a frequent problem with these types
of studies is the extremely small and noisy dataset. We utilized a large set of
engineered features and accounted for the high predictor-to-sample ratio using a
voting algorithm that combined several feature selection methods. Our pipeline
proved effective in improving the classification performance and interpretability to
programmatically distinguish between baseline and VNS states. Feature selection
significantly improved the interpretability of our models by allowing us to draw clear
distinctions between feature importance. This method provided insights into VNS
effects, revealing frequency-specific differences in the impact of 10 Hz and 30 Hz VNS
stimulation.

Chapter 3 focused on leveraging ear-EEG for seizure detection using custom-
designed hardware, the Aware hearable device. Ear-EEG offered a non-invasive
and cost-effective alternative for long-term seizure monitoring. The Aware hearable
captured EEG signals suitable for clinical seizure detection and distinguishing between
wakefulness and sleep. The study demonstrated the feasibility of capturing accurate
signals for real-world ambulatory use. However, certain limitations of scalp EEG,
such as failing to detect deeply localized seizures, also applied to the Aware system.
Nonetheless, by utilizing classical machine learning algorithms, including tree-based
models, the study achieved excellent results for the seizure detection task. The device
offered a promising tool for long-term seizure monitoring and potentially expanded
EEG use cases, such as sleep state detection, through wearable, user-friendly technology.
Future work will include improving artifact removal techniques and incorporating
additional sensors, like accelerometers, to capture motor activity.

Chapter 4 explored non-linear feature integration to enhance SEEG classification
in memory tasks. Traditional band-power features, commonly used for EEG analysis,

failed to offer adequate discriminative power. Phase-Amplitude Coupling (PAC)
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emerged as a prominent feature, suggesting that the stimulation of the amygdala during
encoding enhanced memory consolidation by increasing theta-gamma coupling in the
hippocampus. This observation aligned with existing literature on the mechanisms
underlying working memory, highlighting the importance of coupling between brain
rhythms during memory processes. This chapter underlined the significance of using
advanced features over canonical features, emphasizing the need for non-linear analyses
to unravel complex brain dynamics.

In Chapter 5, we showed the promise of EEG foundation models as general feature
extractors for unseen EEG datasets by pre-training two foundation models and fine-
tuning them on major depressive disorder classification. While fine-tuned models
exhibited excellent discriminative power in this case, they failed in the SEEG memory
classification task. BENDR was not applicable to the SEEG dataset of Chapter 4 and
its associated memory classification task due to its architectural limitation in ingesting
SEEG data with a variable number of channels, and fine-tuning LaBraM via linear
probing failed as the classification performance was at the chance level. The reason
for this failure was the extremely small size of the SEEG dataset (less than 30 minutes
per class). We went further by proposing to classify the latent space of SEEG data
generated by LaBraM with traditional machine learning algorithms (XGBoost and
SVM). In addition, we were able to significantly enhance the classification performance
via our introduced domain adaptation algorithm.

These are the aspects that should be explored further in EEG foundation models:
1) their zero- or few-shot adaptability to very small-size data (A.2), in contrast with
most of the literature testing EEG foundation models on datasets orders of magnitude
larger than our SEEG dataset; and 2) interpretability. While the features extracted in
the form of latent space can provide useful insights, as in our case, they revealed a
significant inter-subject variability, but more work needs to be done to make these

features interpretable for the users compared to the manually engineered ones.
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Future work will focus on advancing foundation model adaptability for broader
neuroimaging applications. These improvements have the potential to substantially
impact the clinical use of neuroimaging biomarkers, paving the way for more effective,

and personalized closed-loop neuromodulation.



Appendix A

Appendix

A.1 Chapter 2

The Petrosian Fractal Dimension (PFD) is a method designed to measure the com-
plexity or irregularity of a signal and is computationally efficient compared to other
traditional fractal dimension estimation techniques. The subsequent equation illus-

trates the computation of the Petrosian Fractal Dimension:

PFD = = 1&?2?@)
where N is the window length, and NJ is the number of sign changes in the signal
derivative.

Figure A.1 demonstrates the histogram plot of bootstrapped RMS values of baseline,
VNS at 10 Hz, and VNS at 30 Hz. RMS values of baseline were statistically significantly
different from VNS at 10 Hz and VNS 30 Hz (p-values = 0.000 and t-statistic =
118.862 and -69.637, respectively). However, the difference between RMS values of
baseline and VNS at 10 Hz was greater than of baseline and VNS at 30 Hz. (52.82
uV vs -33.42 uV)

Figure A.2 demonstrates the accuracy, F1-, and F2-score of the trained Random

Forest for the first scenario (baseline vs. VNS at 10 Hz).
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Figure A.1: Comparison of the RMS values. a) baseline, b) VNS at 10 Hz, ¢) VNS at 30 Hz.
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Figure A.2: Performance of the trained Random Forest for the first scenario. a) Accuracy, b) Fl-score,

¢) F2-score.

Figure A.3 demonstrates the histogram plot of bootstrapped dominant frequency

(DF) values of baseline, VNS at 10 Hz, and VNS at 30 Hz. DF values of baseline were

statistically significantly different from VNS at 10 Hz and VNS 30 Hz (p-values =

0.000 and t-statistic = -106.132 and -198.124, respectively). However, the difference

between DF values of baseline and VNS at 30 Hz was greater than of baseline and

VNS at 10 Hz. (-1.05 cpm vs -0.59 cpm)
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—= 2.5% Quantile: 5.93 cpm
—= 97.5% Quantile: 7.11 cpm
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Figure A.3: Comparison of the DF values.
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i
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a) baseline, b) VNS at 10 Hz, ¢) VNS at 30 Hz.

Figure A.4 demonstrates the accuracy, f1-, and fr2-score of the trained Random

Forest for the second scenario (baseline vs. VNS at 30 Hz).
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Accuracy F2-score

F2-score

Figure A.4: Performance of the trained Random Forest for the second scenario. a) Accuracy, b)
Fl-score, ¢) F2-score.

A.2 Chapter 5

A.2.1 Inference Without Fine-Tuning

In addition to the linear probing and latent space classification, we investigated the
concept of "Inference Without Fine-Tuning" which refers to the ability of machine
learning models to perform tasks on new data without additional training or parameter
adjustments such as in zero- shot learning [251]. One way to perform inference without
fine-tuning is to construct class prototypes [252]. We begin by gathering representative
samples from our SEEG dataset. Specifically, for each class in the memory classification
task ("Forgotten" as Class 0 and "Remembered" as Class 1), a set of representative
samples is extracted from this dataset. These samples are subsequently encoded into
latent space feature vectors using the pre-trained encoder model (LaBraM).

Let the set of encoded vectors for Class 0 be denoted by {VEO)} and for Class
1 by {v§1)}. The class prototype for each category is computed by calculating the
mean vector of the corresponding encoded vectors. To ensure consistency in similarity

measurements, each prototype is normalized to a unit vector:

1 No ©) 1 Ny W
- — L _—
b= N, Zvi PO N, ZV
i=1 i=1
© p©® ) p®

P , P
P el
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where Ny and N; are the number of samples in Class 0 and Class 1, respectively.
To classify a new sample, we proceed by encoding it using the same pre-trained
encoder. Specifically, given a new EEG sample s, we obtain its corresponding encoded

feature vector, denoted by v. The encoded vector is then normalized to a unit vector

to match the format of the class prototypes.

v = Encoder(s)

v
Vi —
vl
The classification decision is made based on cosine similarity. Since all vectors are

normalized, the cosine similarity can be directly computed as the dot product between

v and each class prototype. The class label is assigned to the sample based on the

highest computed similarity value.

Similarity to Class 0 = cosfy = v - p¥)

Similarity to Class 1 = cos; = v - pV)

0, if cosfy > cosb,
Predicted Class =

1, otherwise
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