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Abstract 

The Evaluation of Distance Metrics for Generating Adversarial Perturbations from Univariate 

Time Series Data 

By Jack Wessell 

Recent research has shown that data can be manipulated so that when a machine learning 

model analyzes the data it will almost certainly classify the input incorrectly. To produce these 

inputs, an attacker adds a small amount of noise to the original example that forces the model 

to incorrectly classify the input. The goal when creating these examples is to cause the input to 

be incorrectly classified by the machine learning algorithm while being nearly imperceptibly 

different from their benign counterparts. In the context of image processing, the amount of 

noise added is typically calculated using a Euclidean or infinity norm regardless of the task 

performed by the target model such as image classification or image segmentation. However, 

despite the success of such distance metrics in the image processing domain, there has been 

little investigation into the efficacy of these measures in the domain of time series data, where 

these metrics are often applied by default. In this paper, I compare the effectiveness of 

generating adversarial examples with a variety of distance functions targeting deep learning 

models to determine which are the strongest approximations for human perception. I also 

utilize a reader study to provide statistical evidence for the superiority of one metric over 

another. 
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Chapter 1

Introduction

Adversarial Machine Learning
Machine learning models are playing an ever-growing role in the software that we

frequently use. Such systems are at the heart of software such as voice recognition systems,

automated fraud detection, and facial recognition. Additionally, with OpenAI’s recent tool

ChatGPT boasting the fastest growing user base in history, society’s reliance on and

interactions with machine learning models will continue to increase.

However, like much of our society’s existing software and hardware, machine

learning models are often vulnerable to attacks. Szegedy et. al [31] first noted machine

learning models’ vulnerability to artificially produced examples in the domain of image

processing. They demonstrated that by adding generated noise to an image that was

previously classified correctly by a model they could force the target model to classify the

resulting input incorrectly. This noise can be so small that it is visually undetectable, as

demonstrated in Figure 1.1. Since their paper was published in 2013, the domain of

adversarial machine learning has matured considerably with researchers proposing a variety

of attack methods and defenses for models trained on all forms of data. Recent work has

produced attacks that can cause machine learning models to misclassify examples nearly

100% of the time [4], attacks against models performing different tasks such as image

segmentation or malware detection [35] [13], and a variety of defense techniques [28].

1
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Figure 1.1: An example of an adversarial machine learning attack from [12]. Here, the added
perturbation is so small it is undetectable by a human.

Regardless of the attack method used, the goal when attacking a machine learning

system is always the same: take data that is correctly classified by the target model and

add noise so that the resulting example, while imperceptibly different from the original, is

classified incorrectly. For example, a malicious individual may deface a stop sign so that an

autonomous vehicle’s image processing system believes it to be a yield sign. Such an attack

is not just theoretical. In fact, Eykholt et. al [8] showed that real-world stop signs can be

defaced in such a way that is not suspicious to humans but are nonetheless classified

incorrectly by machine learning models.

As our reliance on machine learning algorithms to make intelligent decisions for us

grows, so does the potential damage that malicious attackers can cause by targeting such

systems. Thus, it is of the utmost importance that we understand the vulnerabilities of the

machine learning systems. By creating and testing adversarial machine learning techniques,

we can develop algorithms that can defend against such attacks. In this way, we can better

ensure the safety and security of the users of machine learning systems.

Gaps in Existing Works
For an attack against a machine learning model to be effective, it must be difficult for a

human to detect. This is because examples that have been blatantly manipulated can

easily be detected by humans. Much of the research regarding the similarity between
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natural data and their artificially produced counterparts has been in the image processing

domain where, as similarity defined by either the L∞ or L2 distance metric, has become the

standard [4]. Additionally, the use of the L∞ distance to measure similarity has been

extended by default to adversarial machine learning research on models trained on other

forms of data such as audio [5]. Thus, there has been little focus on determining which

metrics are most suitable for measuring the size of the perturbation added to the data to

produce adversarial counterparts in less-studied domains such as time series data.

Data in many domains can be represented as univariate time series data. Audio

data or electrocardiogram (ECG) data are just two examples. Like image data, univariate

time series data can be visualized (eg. ECG data) or listened to (eg. audio data) by an

individual, which makes it useful for determining how similar the adversarial and benign

examples are to each other from a human’s perspective. However, univariate time series

data has a form that is very different from that of image data, and thus definitions of

distance that may be useful in the image processing domain may be ineffective in the

domain of univariate time series data.

Finally, despite the importance of the imperceptibility of the perturbations to the

efficacy of the attack, very few papers have employed studies to determine which distance

metrics and adversarial techniques produce the least detectable perturbations. Therefore,

there is little statistical evidence to support the superiority of one definition of distance

over another, especially in the domain of univariate time series data.

Contributions
In this thesis, I seek to determine the efficacy of a variety of distance metrics for attacking

machine learning models trained on time series data. In particular, I introduce the

Wasserstein distance [32] as a superior metric by which to create more natural and less

easily detectable perturbations for time series data. I utilize Electrocardiogram (ECG)

time series data due to its following desirable properties:
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1. ECG data is univariate in nature, allowing for the exact computation of the

Wasserstein distance and its derivative while acting as a baseline for future

research in multivariate time series data.

2. ECG data can be visually interpreted from its plot by a human, which allows us

to draw conclusions about which distance metrics produce less detectable

adversarial examples.

3. There is an inherent importance of and emphasis on security in ECG data due

to it belonging to the medical field.

I also experiment with producing adversarial perturbations with commonly used metrics in

addition to the Wasserstein-based distance functions. Using the resulting perturbations

and a reader study, I attempt to determine which definition of distance produces the least

detectable perturbations using a reader study consisting of medical professionals. The

contributions to the field of adversarial machine learning in this thesis are summarized as

the following:

1. I propose to use the Wasserstein distance to better capture the similarity

between perturbed and clean examples in the context of univariate time series

data.

2. I extend an optimal state-of-the-art attack to incorporate the Wasserstein

distance for the first time.

3. I experimentally compare the approach to standard distance metrics such as the

L2 and L∞ functions using real-world ECG datasets.

4. I employ a reader study to determine which methods produce the least

detectable perturbations.

5. I perform additional studies on audio data to test the generalizability of the

approach.



Chapter 2

Background

In this section, I start by introducing the mathematical underpinnings of the

machine learning models utilized throughout this research as well as the general notation

used to describe the techniques utilized throughout. Next, I briefly describe the distance

metrics used, as they are the focus of the research. After that, I provide a short overview of

some of the important results from the field of adversarial machine learning with which the

reader should be familiar.

Neural Networks
Neural networks are a subset of machine learning models that have proven to be incredibly

powerful tools for solving problems such as image classification [33], image segmentation

[23], text classification [24], and text generation [10] just to name a few. All neural

networks, regardless of their structure or the task they are designed to perform, consist of

layers of a linear transformations followed by a nonlinear activation function such as the

following ubiquitous Sigmoid function:

σ(x) =
1

1 + e−x
(2.1)

5
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As neural networks become increasingly complex, they also tend to gain more layers, which

is referred to as the model becoming deeper. Thus, many neural networks are often termed

deep learning models. For the remainder of the paper, I will use the terms deep learning

and machine learning interchangeably.

The task that a model is designed to perform is determined by the architecture of

its layers. The following layer architectures are utilized extensively in our models:

1. Fully-Connected Layer:

A fully-connected layer simply consists a collection of matrices that

linearly transform the entire input vector into a vector of the target shape. This

transformation is then followed by a non-linear transformation such as (2.1).

Thus, in the context of time series data, a fully-connected layer processes a time

series by weighting each individual time step and then combining all weighted

time steps together to create a resulting feature vector.

2. Convolutional Layer:

A convolutional layer consists of a much smaller matrix that slides over

the input data and combines the value of only neighboring features into a single

element in the feature vector. Thus, convolutional layers can learn

location-invariant features such as edges in an image. Therefore, networks that

include convolutional layers are well suited to handling data with local spacial or

temporal dependencies. [20]

While there are a variety of other layers architectures commonly used for a variety

of machine learning tasks such as recurrent units, long-short term memory cells, and

transformers, the fully-connected and convolutional layers are the only ones utilized in the

development of the models in this project.

Notation and Definitions
I will now briefly overview the notation utilized extensively throughout the paper:
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1. Definition 1: A time series X = [x1, x2, ..., xn] is an ordered set of values with a

length of n.

2. Definition 2: A dataset D = {(X1, Y1), (X2, Y2), ..., (Xm, Ym)} is a collection of

ordered pairs of values where Xi is a time series and Yi is its corresponding label.

3. Definition 3: A classifier C is a machine learning model trained to take as input

a time series Xi and predict its corresponding label C(Xi) = Ŷi.

4. Definition 4: The logits of a trained classifier C when evaluated on Xi are

denoted by Z(Xi) and represent the output of the model before being

transformed into a probability distribution of potential class labels.

5. Definition 5: An adversarial time series produced from Xi will be denoted X ′
i.

Distance Metrics
Now I will formally define the distance metrics utilized throughout the paper, starting with

the Lp norms. The Lp distance between two vectors is denoted by ∥x− x′∥p and is defined

as the following:

∥x− x′∥p = (
n∑

i=1

|xi − x′
i|p)1/p (2.2)

This project makes use of two Lp norms: the L2 norm and the L∞ norm. We will now

explain these distance metrics in more detail:

1. The L2 norm:

The L2 norm is calculated by setting p = 2 in (2.2) and is thus given by:

∥x− x′∥2 = (
n∑

i=1

(xi − x′
i)
2)1/2 (2.3)

The L2 distance is the generalization of Euclidean distance in two dimensions to

higher dimesions. In L2 metric space, the distance between a natural and

adversarial example is small if the difference between the individual elements xi

and x′
i is small.
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2. The L∞ norm:

The L∞ norm of a vector X can be calculated by the following formula:

L∞ = max(x1, x2, ..., xn) (2.4)

Thus, in the context of adversarial examples, the L∞ distance between the

natural and adversarial time series is simply the largest difference between any

corresponding time step. While this may seem overly simplistic, the L∞ norm

has proven incredibly successful in the image processing domain and has even

been argued to be the optimal choice for measuring similarity in that domain [4].

Both the L2 and L∞ norms are utilized throughout this project as a baseline for generating

adversarial examples.

The Wasserstein distance is a metric that defines the similarity between two

probability distributions P and Q as opposed to two vectors. In many ways, the

Wasserstein metric captures ideas about similarity that more conventional distance metrics

like the Lp norms do not. For example, in Figure 2.1, the Wasserstein distance between the

two curves is very small, while the values of the Lp norms are much larger.

The value of the Wasserstein distance is the numerical cost of the optimal transport

problem. In particular, its formula is given by the following, where J(P,Q) is the set of all

joint distributions of P and Q and X ∼ P and Y ∼ Q:

Wp(P,Q) = ( inf
J∈J(P,Q)

∫
∥x− y∥p dJ(x, y))

1
p (2.5)

The above formula does not reveal the intuition behind the Wasserstein metric, so the

following analogy is often paired with it: imagine you have a mound of dirt with a shape of

A and a hole in the ground of shape B. The value of the Wasserstein distance is the
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Figure 2.1: For these two visually similar curves the Wasserstein distance is small (0.25).
However, the L1 distance is 100 times larger at 24.0. The L2 distance is better, but still 10
times larger at 2.45

amount of work required to ensure that all dirt from A fills in the holes of B. Thus, the

Wasserstein distance is often referred to as the Earth Mover’s distance.1

The formula in (2.3) cannot be calculated in general, let alone have the computable

derivative that is required for producing adversarial examples. Fortunately, in the one

dimensional discrete case, in which ECG data is included, (2.3) reduces the following

computable, differentiable, and much more intuitive form:

W (u, v) =
n∑

i=1

|
i∑

j=1

uj −
i∑

j=1

vj| (2.6)

1. Technically, the Wasserstein distance is undefined for two vectors in general due to them not
both having the same sum (i.e, both the pile of dirt and the hole have the same volume). However, the
Wasserstein distance has proven empirically to be an incredibly effective measure of similarity in a variety
of fields in machine learning [1][34]
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Thus, by utilizing the differentiability of the one-dimensional discrete case for the

Wasserstein distance, I can utilize optimization techniques to produce adversarial examples

using this metric.

Throughout the experiments I also utilize a handful of other metrics while collecting

data, namely the L1 distance, Frechet distance, and Dynamic-Time warping. However,

these are simply used as benchmarks and not are used to produce adversarial examples.

Thus, further discussion of their formulation is unnecessary. I refer the reader to [9] and

[29] for their definitions.

Threat Models
Researchers in academia and industry alike are working on applying machine learning to

many security-critical domains such as self-driving cars [14], automated speech recognition

and detection of voice commands [36], and malware detection [6]. Thus, our ability to

apply deep learning techniques safely and successfully to such tasks is dependent on our

knowledge of the threats to which these models are vulnerable.

Almost all adversarial machine learning research operates under one of the following

two threat models:

1. Black-box attack:

Under the black-box model, it is assumed that the attacker has no access

to any information about the model other than its output. The architecture,

model weights, gradients, and training data are entirely unknown to the

attackers.

2. White-box attack:

The white-box threat model is the opposite of the black-box model.

Under this set of assumptions, it is assumed that the attacker has access to all

information about the model such as its parameters and the value of its

gradients.



11

In this paper, all attacks and experiments will be performed under a white-box model.

This is for two main reasons. First, building defenses under the assumption that a skilled

hacker will be unable to access certain sensitive data can leave the software or hardware

vulnerable when that assumption is broken. Second, black box attacks often reduce to

white box attacks in practice. Recent work has shown that a programmer can often train a

model locally (potentially with a different architecture) that is meant to replicate the

target model. The programmer can then fine-tune the local model using the outputs of the

target model as training labels, and by generating adversarial examples against the local

model the attack can often fool the target model [26].

These threat models can be used to produce adversarial examples, which are data

produced by combining data from a natural source with a perturbation so that the original

and resulting data are perceptibly similar while being classified incorrectly by a target

model. While the definition of similarity varies from domain to domain, models trained on

a variety of data are vulnerable to adversarial examples.

In the realm of speech recognition, early research showed that it is possible to

generate sounds that, while unintelligible to humans, can trigger voice commands on their

devices [3]. This research focused on simple, short commands such as "Ok Google," or

"Call 911" and mainly targeted more traditional learning algorithms such as Hidden

Markov Models, but the security threats that such attacks pose should not be understated.

More recent research has shown that by utilizing modern adversarial machine learning

techniques attackers can add small perturbations to audio and cause accurate deep learning

models such as Mozilla’s DeepSpeech speech-to-text model to transcribe the audio into any

arbitrary phrase [5]. Thus, studying the capabilities of adversarial machine learning and

potential defenses is crucial to the security of this ever-growing field.

In the field of automated malware detection, recent research has shown results

similar to other fields: only slight modifications to the malicious file can cause a highly

accurate machine learning model to wrongly classify it as benign [13]. Such methods are
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not only dangerous to automated malware detection software but make it entirely useless if

defenses are not developed to protect against such attacks.

Given the plethora of threats our current deep learning models face, there has been

an arms race to develop increasingly powerful attacks and defenses for such deep learning

models. While there are a variety of novel and fascinating defense techniques such as

defensive distillation [27], MagNet [22], and Defense-GAN [28], most defense techniques

such as defensive distillation and MagNet are incapable of defending against the most

powerful attack algorithms in a white-box setting [4][28].Unfortunately, training a GAN

that is powerful enough to successfully defend a model from attacks is incredibly time

consuming, resource intensive, and difficult to measure [28]. Thus, our paper is focused

primarily on attack methods against undefended models. In the following section, I will

briefly introduce a handful of the most common attack algorithms and then introduce the

methods and experiments performed in this research project.



Chapter 3

Adversarial Machine Learning Attack

Algorithms

L-BFGS
This attack algorithm is the original formulation presented by Szegedy et. al in their

groundbreaking adversarial machine learning paper [31]. The optimization problem

presented in the paper, which is focused on generating adversarial examples in the image

processing domain, had the following formulation:

Minimize ∥δ∥2

Such that C(X + δ) = t

and X + δ ∈ [0, 1]m

(3.1)

Where X is an image unrolled into a vector of dimension m, δ represents the perturbation

added to X to achieve the desired result, and t is the target class of X’. In practice, this

optimization problem can be incredibly difficult to solve. So, Szegedy et. al use an

optimization technique known as box-constrained L-BFGS to find an approximate solution

13
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to the problem above by solving:

Minimize c ∗ ∥δ∥2 + lossC(X + δ, t)

Such that X + δ ∈ [0, 1]mt

(3.2)

In this formulation, lossC represents a loss function that measures whether the classifier C

has produced the desired output. The authors then repeatedly solve this problem using

many values of c, choosing the minimum value of c for which C(X + δ) = t.

Fast Gradient Sign
The fast gradient sign method is an attack algorithm developed shortly after Szegedy et. al

introduced their L-BFGS algorithm described above. Unlike the L-BFGS algorithm, the

fast gradient sign method attempts to bound the perturbation introduced by δ with the

L∞ metric and is designed to be incredibly fast while forgoing optimal performance [12] .

Thus, perturbations produced by the fast gradient sign method are not attempting to

approximate the optimal perturbation. The problem solved by the fast gradient sign

method has the following formulation:

X ′ = X − ϵ ∗ sign(∇lossC(X, t)) (3.3)

In this formulation, ϵ represents a small constant controlling by how much the values of X

are updated. So, to produce the adversarial examples, the gradient of the loss function

with respect to the input is calculated and the values of X are simply updated by epsilon in

the direction of the gradient.

It is worth noting that Kurakin et. al introduced an iterative version of the fast

gradient sign method [18]. The formulation is very similar to the original fast gradient sign

method so I will not go over it here, but it was shown that the iterative fast gradient sign

produces much better adversarial examples than its non-iterative counterpart.
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The Carlini-Wagner Attack
The Carlini-Wagner (CW) attack is an optimization-based method of creating adversarial

examples [4]. Furthermore, Carlini-Wagner is also a targeted attack like L-BFGS, meaning

that the adversary is able to choose which class the model predicts for the adversarial

example. The objective of the attack is the following constrained optimization problem:

Minimize D(X,X + δ)

Such that C(X + δ) = t

(3.4)

Here, D is a distance function such as an Lp norm. This formulation is the same as that

used for the L-BFGS algorithm except for the fact that here a general distance function is

used in place of L2 distance. However, where the CW attack distinguishes itself from

L-BFGS is in how it reformulates the problem to make finding an approximate solution

much more tractable. Instead of using box constrained L-BFGS to find a solution, Carlini

and Wagner aimed to utilize an optimizer such as Adam, a gradient-based optimization

algorithm, to produce adversarial examples. However, due to the nonlinear nature of neural

networks, the constraint C(x+ δ) is incredibly difficult to optimize over. Thus, Carlini and

Wagner replace this constraint with a function f where f(X + δ) ≤ 0 if and only if

C(X + δ) = t. This reduces the above formulation to the following optimization problem:

Minimize loss(X) = D(X,X + δ) + c ∗ f(X + δ) (3.5)

In this formulation, f(x) replaces the misclassification constraint as an objective function.

Thus, by varying the parameter c the adversary can vary the relative weight of the

similarity between the benign and adversarial examples and the misclassification of the

model. Once this loss is calculated, the gradients with respect to the perturbation on X can

be calculated and an optimizer such as Adam can be applied to minimize the loss function.

This process allows for the creation of small perturbations that can fool the target model.
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In the CW attack, the programmer has a variety of choices regarding both the

distance metric and the objective function. I experiment with a wide variety of distance

functions in this paper; however I use the following objective function exclusively:

f(x) = max(max
i ̸=t

(Z(x)i)− Z(x)t,−κ) (3.6)

In this objective function, κ is a hyperparameter that the adversary is in control of

alongside c. By increasing kappa we can effectively increase the required confidence level of

our model when classifying the example as the target class. However, I found success

sticking with very low values for kappa and seldom found it necessary to increase kappa

beyond 2. Carlini and Wagner experiment with many objective functions in their original

paper, however they find the most success with this formulation [4]. Thus, we will utilize

this objective function throughout our experiments as well.

Due to its optimization-based approach as well as the introduction of the objective

function, the CW attack is stronger than other attacks such as those introduced previously

in this manuscript [28]. It is common for the CW attack to successfully cause the target

model to misclassify the adversarial example 100% of the time, and the CW attack was

also designed to break defensive distillation, which was the strongest defense against

adversarial attacks at the time [4]. For these reasons, we will be utilizing the

Carlini-Wagner attack exclusively in our experiments. It is worth noting, however, that the

CW attack is slower than other attack formulations due to it being optimization based.
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Methods and Experiments

In this section, I will introduce our contributions and the structure of our

algorithms, datasets, models, and experiments. Finally, I will introduce the structure of our

reader study.

Carlini-Wagner attack formulation
As mentioned in previous sections, this work is primarily focused on determining which

distance functions are the best metrics to optimize for when producing adversarial

perturbations. The L∞ metric acts as a baseline formulation against which the other

metrics will be compared. I will be utilizing a Carlini-Wagner style attack to create

adversarial examples with (3.2) as our objective function. I will be comparing the resulting

adversarial examples produced using four different distance metrics.

L∞ based perturbations

The first distance metric used to produce perturbations is the L∞ distance as introduced in

(2.4). However, the standard formulation for the L∞ metric does not perform well under

optimization. Since it only penalizes the term with the greatest absolute value,

optimization algorithms often oscillate between two sub-optimal solutions. Thus, I utilize a

common technique similar to that employed by Carlini and Wagner where instead of only

penalizing the term that is largest in absolute value, all terms greater than a constant τ are

17
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penalized [4]. Additionally, if all terms are smaller than τ , τ is multiplied by .9 and the

algorithms continues. Thus, the minimization problem becomes the following when using

the L∞ norm as the distance metric:

Minimize
∑
i

[(δi − τ)+] + c ∗ f(X + δ) (4.1)

This formulation makes using an efficient gradient-based optimizer such as Adam more

effective when optimizing with respect to the L∞ norm.

L2 and Wasserstein based perturbations

Because the L2 metric is fully differentiable, no additional steps are necessary to ensure

that the optimizer can find a viable solution. Thus, loss function becomes:

Minimize L2(X,X + δ) + c ∗ f(X + δ) (4.2)

Since the Wasserstein distance is also fully differentiable in the one-dimensional discrete

case, it behaves similarly to the L2 distance. Thus, the following formulation for the

minimization problem works successfully:

Minimize W (X,X + δ) + c ∗ f(X + δ) (4.3)

Mixed loss function

The final distance function consists of a weighted combination of the L2 and Wasserstein

metrics. Since L2 and Wasserstein both capture important but different aspects of

similarity between curves, I was curious to see how the optimization problem behaved

when both distance functions were present in the loss function. Thus, the minimization
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problem becomes:

Minimize D(X,X + δ) + c ∗ f(X + δ)

Where D(X,X + δ) = (1− α) ∗ L2(X,X + δ)

+α ∗W (X,X + δ)

(4.4)

Here, alpha is a real number that is between 0 and 1 inclusive.

Now that I have defined each of the loss functions utilized throughout the paper,

the algorithm used to perform the Carlini-Wagner attack can be constructed. The

pseudocode is show in algorithm 1.

Algorithm 1 Carlini-Wagner Attack Algorithm
Input: original data X, distance metric D, optimizer O, target class t, target

model C, iterations l, weight c, confidence κ
Output: Adversarial Example X’

1: perturbation← N (0, 1)
2: i← 0
3: while i ̸= l do
4: Z = Logits(C(X + perturbation))
5: f = max(maxi ̸=t(Zi)− Zt,−κ)
6: Distance = D(X,X + perturbation)
7: loss = Distance+ c ∗ f
8: O.minimize(loss, perturbation)
9: i+ = 1

10: end while
11: X ′ ← X + perturbation

Datasets and Models
All experiments are based on three datasets from the well-studied and publicly available

University of California-Riverside time series classification (UCR) archive [7]. The three

datasets are all selected from the ECG data category. I will now briefly introduce the three

datasets: 1). ECG200 is a binary classification task in which the model is tasked with

distinguishing between a normal heartbeat and Mydocardial Infarction. It contains 35

half-hour records sampled at a rate of 125 Hz. 2) ECG5000 is a mulit-class classification

task with data collected from the BIDMC Congestive Heart Failure Database. The data
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are collected from 20-hour long ECG readings sampled at 250 Hz from patients with severe

congestive heart failure, and the class labels represent the severity of the heart failure for a

total of five total classes. To create the dataset, the ECG reading was split into individual

heartbeats and interpolated so that each heartbeat has constant length. 3). ECGFiveDays

is also a binary classification task like ECG200. The data are all collected from the same

67-year old-male, and the classification task is to determine whether the ECG reading was

collected on the first or last day of a five day period. The description of each dataset can

be found in Table 4.1, where TrainSize is the number of time series examples in the

training dataset, while TestSize is the number of time series examples in the test dataset.

Dataset Description
Dataset TrainSize TestSize Classes SeqLen
ECG200 100 100 2 96
ECG5000 500 4500 5 160

ECGFiveDays 23 861 2 136

Table 4.1: Description of each dataset.

For our models, I adopt the well-studied model architectures from [15] as they are

well reviewed and boast a wide variety of structures. The four model architectures we

study are the Multi-Layer Perceptron (mlp) [11], Convolutional Neural Network (cnn) [25],

Fully-convolutional network (fcn) [21], and a Residual Network (ResNet) [16]. The

performance of each of these models on our target datasets can be found in table 4.2, while

the model architectures can be found in table 4.3 1.

Model Accuracy on Test datasets
Dataset MLP FCN CNN ResNet
ECG200 0.916 0.9 0.83 0.89
ECG5000 0.931 0.939 0.928 0.934

ECGFiveDays 0.979 0.987 0.885 0.993

Table 4.2: Performance of each model on each dataset.

1. The ResNet architecture is included in the appendix
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Model Architectures
CNN MLP FCN

Conv1D(6, 7, 1) Flatten Conv1D(128, 8, 1)
Sigmoid Dropout(0.1) BatchNorm()

Avg. Pooling(3x3) FC(500) + ReLU ReLU
Conv1D(12, 7, 1) Dropout(.2) Conv1D(256, 5, 1)

Sigmoid FC(500) + ReLU BatchNorm()
Avg. Pooling(3x3) Dropout(.2) ReLU

Flatten FC(500) + ReLU Conv1D(128, 3, 1)
FC(10) + sigmoid Dropout(.3) BatchNorm()

FC(10) + Softmax ReLU
GlobalAvgPooling()
FC(10) + Softmax

Table 4.3: Model architectures for CNN, MLP, and FCN.

Experimental Setup
After the training and evaluation of the models, I began performing our experiments. For

each dataset and model, I ran an experiment on each of the four distance function defined

above (i.e L2, L∞, Wasserstein, and mixed). Thus, I ran a total of 48 experiments (3

datasets, 4 models, 4 loss functions). For all experiments I utilize (3.2) as our objective

function.

All experiments were based on the Algorithm shown in Algorithm 1. For each

experiment an Adam optimizer was utilized due to its well-documented empirical

performance with a learning rate of 0.01. In early experiments I varied the value of the

learning rate used, but found it had little effect on the resulting adversarial examples

provided a sensible value was used. Finally, each perturbation underwent 50 iterations of

optimization.

For the experiments with the L2, L∞, and Wasserstein distance functions I

performed the above procedure while varying the values of c and κ. For early experiments I

varied κ from 0 up to 20, however I found that for κ > 2 little performance gain was

realized. Thus, in most experiments κ was set to either 0, 1, or 2. However, the value of c is
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crucial in successfully creating adversarial examples that could feasibly fool a human. With

a value of c too low, the optimizer will take very small steps in the direction of the target

class and will be unable to force the model to classify the input incorrectly. With a value of

c that is too high, the optimizer will take steps in an overly greedy manner and likely

overstep a value close to the true minimum. Furthermore, the proper value of c varies with

the dataset, model, and distance function used. Thus, I varied c from values as low as 5e−4

up to 20 depending on the experiment. For each set of parameters in an experiment, 100

random examples are taken from the target dataset’s test set and used as the starting point

for our adversarial experiments (in the case of ECG200, this is simply the entire test set).

The experiments utilizing the mixed loss function are very similar to those described

above but contain one key difference. For our mixed function, κ is set to 0 for all

experiments. Then, I ran an experiment using the procedure and parameters for c

described above with the values for α being [0, 0.1, 0.25, 0.5, 0.75, 0.9, 1]. Other than this

difference, the experiments were identical to the standard loss functions.

For all the experiments described above, the examples that successfully fooled the

target models were saved along with the dataset they came from, the target model, the

distance metric used, and the parameter settings. These adversarial examples were then

used to create visualizations for use in the reader study.

Evaluation Metrics
For each adversarial example produced I measured the following 1). Whether or not it

fooled the target model and 2). Its distance from the natural input using the L2, L1,

Wasserstein, Dynamic Time Warping, and Frechet distance functions. Using these

measures, we can calculate the following evaluation metrics:

1. The Attack Success Rate (ASR) is the number of examples that successfully

trick the target model divided by the total number of examples.



23

2. Similarity is the average L2, L1, Wasserstein, Frechet distance [9], and Dynamic

Time Warping distance [29]. We can use these values as approximations for the

perceptibility of a perturbation.

Reader Study
There are two main ways by which one can show that a given distance metric is superior

for generating adversarial examples. First, one could show that at the same ASR

perturbations produced using one distance metric are less perceptible than those produced

using another function. Or, second, one could show that one distance metric is more

successful at evading defenses than another. As I do not consider defenses in this paper, I

will be comparing the efficacy of the various distance metrics via visual similarity to their

benign counterparts through a reader study.

For the reader study, I collected a group of 6 medical professionals from Emory

University Hospital with experience in analyzing ECG data. Then, after all experiments

had been completed and data had been recorded, I analyzed the results of the experiments

using all four loss functions against the FCN, MLP, and ResNet models trained on the

ECG5000 and ECG200 datasets. To limit the study to a reasonable length, I did not

consider the CNN model due to its similarity to the FCN model, and dropped the

ECGFiveDays dataset as I already included a binary classification task and felt that the

classification problem it posed (i.e day ECG reading was taken) was not particularly

relevant to the security of ECG data.

The study contained adversarial examples produced by the following loss functions:

L2, Wasserstein, L∞, mixed α = .1, mixed α = .25, mixed α = .75, and mixed α = .9. For

each combination of dataset, model, and loss function I chose 4-5 produced adversarial

examples at random plus 13 randomly selected natural examples, giving a total of 218

examples in the study. To select the adversarial examples, I found the smallest value of c
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for each model, dataset, and loss function for which the ASR fell into the range of .9-.95.2 I

chose this range as it is a high enough ASR to be considered a powerful attack. At ASR

values of 100%, increasing the value of c will not change the ASR but will continue to

increase the size of the perturbation. Thus, by limiting the experiment to this slightly

lower range of ASR I can ensure a fairer comparison between the various distance metrics.

With the adversarial examples collected, each time series was plotted using

Python’s Matplotlib package with as a black line plot as shown in Figure 4.1. Then, each

image was put into a Google form and the readers were simply asked to score the image as

natural or computer generated.

Figure 4.1: An example of one of the images shown to the subjects in the reader study. A
plain black line is used so as to avoid any subconscious implications that a blue or red curve
might suggest.

2. It is worth noting that for all loss functions the attack struggled to reach high attack success
rates against the MLP model trained on the ECG5000 dataset. For this model, the examples were chosen
at an ASR of .7.
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Results and Analysis

Non-Mixed Attacks
The standard loss functions analyzed in this paper include the L2, Linf, and Wasserstein

distance functions. Figures 5.1, 5.2, and 5.3 demonstrate the effect that the parameter c in

(3.5) has on the attack success rate given the various loss functions, models, and datasets

under attack. Each figure considers only a single dataset but includes results for all

non-mixed distance metrics and all models.

The general trend regardless of model, loss function, or dataset attacked is that as c

increases the attack success rate increases as well, as was expected. Additionally, for most

models, datasets, and loss functions I was able to find a value of c for which the ASR

reached 100%. This highlights the effectiveness of the Carlini-Wagner attack and why I feel

it represents the gold standard of adversarial attack techniques.

The first notable trend that can be gathered from Figures 5.1, 5.2, and 5.3 is that

for all datasets and loss functions the mlp model is always the most difficult to attack. This

can be seen most clearly in the graphs for the attack success rates of the L∞ and L2 attacks

using the ECG5000 dataset in Figure 5.2.1 This was surprising, as the mlp model did not

1. It should be noted that both of these attacks did reach a much ASR, namely around .7 for the
L∞ and .8 for the L2 attacks. We did not include these values on the graph as it took roughly c = 20 for
these attack success rates to be achieved, thus throwing off the scaling of the graphs

25
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Figure 5.1: The ASR vs. c against the models trained on ECG200 data for the three standard
distance metrics.

have any form of defenses that should make it more difficult to attack. One potential

explanation for these results is the presence of the dropout layers in the mlp model that the

other models lack. These layers set the outputs of randomly selected neurons in the layer

to zero during the training process, thereby limiting the amount of information that later
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Figure 5.2: The ASR vs. c against the models trained on ECG5000 data for the three
standard distance metrics.

layers have access to. This has been empirically shown to increase the robustness of the

model and reduce overfitting, and perhaps it makes models more difficult to fool as well.
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Figure 5.3: The ASR vs. c against the models trained on ECGFiveDays data for the three
standard distance metrics.

One final trend worth noting that is visible from Figures 5.1, 5.2, and 5.3 is that the

attacks performed using the Wasserstein distance reach 100% ASR with a comparatively

much lower value of c. This can be seen across all datasets and models, and most notably
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with the ECG5000 mlp model where the Wasserstein attack achieves an ASR of .9, which is

the highest of all three attacks considered in this section. I have no reasonable explanation

for why this is the case, but it could prove to be useful in real-world attacks where searching

for a suitable value of c may not be feasible due to time or computation constraints.

Finally, in Figure 5.4 I have displayed the varying perturbations of the same

instance of ECG200 data produced by different loss functions at the same attack success

rate. From this figure, we can see that the L∞ metric produces the most visible

perturbation, while the L2 adversarial example is the most similar to its benign

counterpart. However, such visualizations are limited in that they provide only a small

sample of the total results. This is why I relied on the results of the reader study to better

determine which loss functions are the best proxies for how humans perceive similarity.

Figure 5.4: Perturbations produced with different attack methods at the same ASR on the
same instance of ECG200 data.

Mixed Attacks
In the mixed attack, I produce adversarial examples while varying both the parameter α

and the parameter c. My hypothesis was that, given the proper weight of α and c, the

mixed loss function would combine the desirable aspects of both the L2 and Wasserstein
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distance functions, thus creating adversarial examples that are more similar to their

natural counterparts than those created with other techniques.

Figure 5.5 displays the attack success rate of the mixed attack as the value of α

increases. The rows correspond to the dataset used, while the columns correspond to

ranges of values of c. The first column represents a low value of c, while the second column

is a high c value. All four models are displayed in each graph. Similar to the non-mixed

attack, the mixed attack can achieve a 100% attack success rate against nearly all models

and datasets at certain values of c and α, with the mlp model trained on ECG5000 being

the sole exception. The first notable trend seen here is that as the parameter α increases,

Figure 5.5: How the ASR of the mixed attack changes as the parameter alpha varies at a
constant c. Row 1 represents ECG200, Row 2 ECG5000, and Row 3 ECGFiveDays.
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the ASR of the attack also tends to increase. This is most visible in comparing the first

column of Figure 5.5 to the second column, as at higher values of c the curves tend to

flatten out due to the ability of the L2 attack to achieve a 100% attack success rate as well.

Additionally, as was the case with the non-mixed attacks the mlp model is notably more

difficult to attack than the other models. It is also the only model for which the attack was

unable to achieve a 100% attack success rate. Given the results of the of the non-mixed

attack these results, while notable, are unsurprising.

Figure 5.6 displays perturbations produced using the mixed attack at varying levels

of α and at similar attack success rates. All perturbations are plotted at the same scale.

From these visualizations, we can see similar results to the perturbations shown in the

section on the non-mixed attacks: the CW attack using the L2 norm produces smaller

perturbations than when using the Wasserstein distance. Interestingly, there does not seem

to be a linear relationship between the value of α and the size of the perturbation. For

example, the perturbations produced by the CW attack with α = .5 and α = .9 are much

smaller than those produced when α = .75 and α = .25 and are arguably smaller than the

perturbation produced when using purely the L2 metric. As mentioned previously, these

Figure 5.6: Perturbations produced with varying values of α at a similar ASR on the same
instance of ECG200 data.
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results provide little evidence to support the superiority of one value of α over another or

for the mixed CW attack over using a standard loss function. For example, the superiority

of perturbation produced when α = .5 over α = .75 in figure 5.6 could be a result of a lucky

random initialization of the perturbation before gradient descent is performed. Therefore,

while the visualizations are promising, we must rely on the results of the reader study to

make claims about the produced perturbations

Evaluation Metrics
Table 5.1 displays a subset of the results of the experiments targeting each model trained

on the ECG200 dataset (the results for the ECG5000 and ECGFiveDays experiments will

be relegated to the appendix to avoid clutter in this section as the results were largely

similar). I selected data from experiments with an ASR that fell in the range of .89-.95. I

chose to not select for 100% ASR for the same reasons as described in the reader study

design section. If there were multiple experiments that achieved the same selected ASR,

the one with the smallest distances was chosen. Then, I calculated the average

perturbation size using only the adversarial examples that successfully tricked the target

model. Therefore, the examples that don’t successfully trick the model are not included, so

the bias as a result of differing ASRs has largely been accounted for. From Table 5.1 we

can see the following:

1. For the FCN and ResNet models, a mixed attack formulation achieves the

smallest average L2, L1, and DTW distance.

2. For all model architectures the Wasserstein based attack achieves the smallest

average Wasserstein distance, while for all architectures the L∞ experiments

achieve the smallest average Frechet distance.

3. When the L2 metric outperforms the mixed attacks, it is by a very small margin

as shown by the α = .5 experiment for the MLP and CNN models.
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ECG200 CNN model results
Loss function Average L2 Average L1 Average Wass. Average DTW Average Frechet

L2 0.012 0.064 0.039 4.414 0.214
Linf 0.029 0.147 0.079 10.286 0.203

Wasserstein 0.079 0.197 0.006 12.386 0.566
Mixed .1 0.026 0.080 0.046 5.201 0.272
Mixed .25 0.033 0.090 0.048 5.731 0.302
Mixed .5 0.022 0.074 0.040 5.001 0.251
Mixed .75 0.047 0.120 0.046 7.389 0.357
Mixed .9 0.028 0.097 0.024 6.542 0.280

ECG200 FCN model results
L2 0.079 0.185 0.066 12.484 0.465
Linf 0.080 0.256 0.096 17.236 0.337

Wasserstein 0.079 0.189 0.006 13.823 0.664
Mixed .1 0.043 0.145 0.063 10.708 0.438
Mixed .25 0.043 0.142 0.059 10.436 0.438
Mixed .5 0.087 0.210 0.066 14.125 0.541
Mixed .75 0.042 0.146 0.039 10.687 0.465
Mixed .9 0.091 0.222 0.033 14.490 0.533

ECG200 MLP model results
L2 0.005 0.044 0.026 4.028 0.209
Linf 0.015 0.108 0.051 9.119 0.168

Wasserstein 0.028 0.120 0.005 9.343 0.422
Mixed .1 0.023 0.095 0.045 7.972 0.350
Mixed .25 0.032 0.116 0.051 9.564 0.386
Mixed .5 0.006 0.048 0.025 4.279 0.238
Mixed .75 0.020 0.090 0.033 7.491 0.328
Mixed .9 0.008 0.059 0.019 5.171 0.239

ECG200 ResNet model results
L2 0.023 0.088 0.043 7.123 0.366
Linf 0.019 0.120 0.059 9.671 0.178

Wasserstein 0.027 0.117 0.005 9.138 0.418
Mixed .1 0.008 0.050 0.028 4.380 0.277
Mixed .25 0.011 0.057 0.030 4.813 0.289
Mixed .5 0.020 0.081 0.036 6.716 0.365
Mixed .75 0.006 0.047 0.021 4.050 0.251
Mixed .9 0.008 0.057 0.018 4.997 0.263

Table 5.1: Evaluation metrics for each loss function and model on the ECG200 dataset.

It is important to remember that while attacking the mlp model the L2 and L∞ attacks

were unable to achieve a 100% attack success rate, while the formulations that included the

Wasserstein distance were. Therefore, these results suggest that the mixed distance
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functions are the most effective at both achieving a high ASR while also producing small

perturbations.

These results provide preliminary evidence for the superiority of the mixed attacks

over the other formulations in most cases. Because the mixed distance functions often

achieve lower average L1, L2, and DTW distances as well as the second lowest average

Wasserstein distance, it may be the case that adversarial perturbations created using the

mixed distance functions are the most similar to their benign counterparts. However, it is

important to note that each of these distance metrics only approximate similarity from a

human’s perspective. It is possible that some of these metrics may be unrelated to how

humans perceive similarity between curves. Therefore, while these results should not be

discredited, it is important to consider them alongside the results of the reader study.

Applications to Audio Data: Preliminary Studies
In addition to my experiments with ECG data, I had originally planned to run a similar

albeit smaller scale experiment with audio data to broaden the scope of our study. While

this portion of the study never made it to fruition, I will include my progress here as a

baseline for future work.

I utilized the AudioMNIST [2] dataset for the source of the audio data.

AudioMNIST consists of 30000 audio samples of people of varying nationality, age, and

gender saying the digits 0-9. The classification task is therefore to determine which digit

the speaker reads in the audio clip. To create the training data, I randomly selected 10500

of the audio clips at a sampling rate of 6500 Hz due to memory constraints. Each audio

clip was represented as a vector of 16-bit signed integers. I then split the data into a

training, validation, and test dataset for model training, fine-tuning, and testing.

For the classifier, I utilized a cnn model like that in the ECG data but with a

slightly different structure as shown in Table 5.2. The model achieved an accuracy of

96.6% on the test dataset. Once the model was trained, I began to run similar experiments
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AudioMNIST CNN Structure
Conv1D(25, 30, 1)

ReLU
Avg. Pooling(3x3)
Conv1D(50, 30, 1)

ReLU
Global Avg. Pooling

FC(10)
SoftMax

Table 5.2: Model architecture for the AudioMNIST classifier.

to those described above using algorithm 1. The one difference between the audio and

ECG experiments is that after the creating the adversarial audio sample I clipped the

values of data to respect the integrality constraints. While this is a naive approach, it had

little effect on the ability of the examples to fool the target model.

The preliminary experiments consisted of creating adversarial examples using the

L2, Wasserstein, and mixed distance metrics. The highest ASR achieved using the L2

metric was 69%, while the highest achieved using both the Wasserstein and mixed loss

function was 77%. However, in [19] the researchers successfully fool Mozilla’s DeepSpeech

100% of the time, so the results should be taken with a grain of salt. It is possible that the

CW attack against models trained on audio data require more tuning for c, κ, and the

learning rate. In addition, it is possible that the integer representation of the audio data

resulted in scaling issues when the loss was calculated. Nonetheless, Figure 5.7 depicts

comparisons between the waveforms of the natural audio examples and their corresponding

adversarial examples. While hard to determine from the images, much of the noise added

was in the background. While I did not make much progress with the audio experiment,

there are many directions that future work can take. Recent research has experimented

with loss functions that more closely approximate how humans distinguish sounds such as

measuring the loudness of the perturbation in decibels [5] or by disguising the perturbation

as natural background noise such as a coffee shop or a train stop [19]. Additionally,
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Figure 5.7: Waveforms of an audio sample in blue and their corresponding adversarial ex-
ample in red. All are produced using the Wasserstein distance.

defenses such as WaveGuard [17] have been developed to specifically protect models that

are trained on audio data.

Reader Study Results and Discussion
As mentioned previously, the reader study consisted of 13 natural examples of ECG data

and 206 adversarial examples created from the fcn, mlp, and ResNet models trained on the

ECG200 and ECG5000 datasets using the loss functions shown in Table 5.3. These

examples were evaluated independently by a group of 6 medical professionals, who were

asked to predict whether a given example was natural or artificial.

Table 5.3 displays the results of the reader study grouped by the distance function

that was used to create the example. For each loss function, 5.3 displays the number of

readers who guessed that the example was natural, the total number of predictions, and

the sample standard deviation calculated from the data. From the table, we can see that

the examples that were the most effective at fooling the readers were those created using

the Wasserstein distance, while the worst performing were the examples created using the

L2 metric. Additionally, there was an increasing trend in the percentage of reader fooled as

the parameter α increased in the mixed examples.

After collecting the data shown in Table 5.3, a two-sample t-test was performed on

many of the pairs of loss functions to determine if the differences shown in the table were

statistically significant. However, performing the statistical tests revealed that the results
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Reader Study Results
Loss Function L2 L∞ Wasserstein α = .1 α = .25 α = .75 α = .9 Natural

Number Predicted Natural 72 75 77 76 77 78 81 40
Total Predictions 180 174 168 180 174 180 180 78
Percent Natural 0.400 0.431 0.458 0.422 0.443 0.433 0.450 0.513

S.S.D of Percentage Natural 0.189 0.164 0.141 0.174 0.232 0.184 0.170 0.159
Table 5.3: Reader study results for each group of adversarial images, which shows how many
readers predicted the adversarial examples to be natural.

in the table are not statistically significant at the 95% confidence level. For example, the

confidence level that the L2 and Wasserstein experiments produced different results is only

.2. Meanwhile, the confidence level for the L2 and mixed experiment with α = .9 is only

.29. Therefore, while the results may point to the Wasserstein metric more accurately

approximating human perception, the evidence is limited at best. Thus, more research is

necessary in order to determine which distance metric is the most likely to fool a discerning

reader.

Figure 5.8 depicts two bar charts that show the number of adversarial examples that

fall into the following categories: no readers fooled, one reader fooled, two readers fooled,

and so on. In the top chart the examples created using the L2 and L∞ metric skew farther

to the left than those created using the Wasserstein distance. Thus, readers may be more

likely to correctly predict that such examples are artificial. Furthermore, the bottom chart

provides similar evidence as the distributions skew farther right as α increases.

However, like the conclusions gathered from Table 5.2, the evidence provided by

Figure 5.8 for the superiority over the Wasserstein or mixed distance functions over

standard loss functions is very limited. Ideally, a Chi-Squared test would be performed to

determine if the observed distributions are significantly different from a baseline, which

would likely be chosen as the L∞ metric due to its ubiquity in adversarial machine learning

attacks. However, the Chi-Squared test is unreliable unless there are counts of at least 5 in

each category for the base line distribution, so this test would provide little additional

evidence for whether one distance metric is superior to another. Thus, more research is
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Figure 5.8: A comparison of the distributions for the many loss functions used. Each category
is the number of readers fooled for an individual example.

necessary in order to make a mathematically justifiable claim. For example, future work

could provide the users with the natural example in addition to the adversarial examples

and ask them to grade the amount of manipulation that was required to produce the

adversarial data. This design would remove any guesswork from the study that was likely

present in our design.



Chapter 6

Conclusions, Limitations, and Future

Work

Recent work has demonstrated that deep learning models can be vulnerable to

maliciously produced inputs that are designed to be misclassified by the target model. The

threat of adversarial attacks thus severely limits the domains in which deep learning can

safely be deployed. This fact necessitates research into attack strategies in order to discover

the most powerful and hard-to-detect attacks so that our construction of defenses for deep

learning models can be properly informed.

In this thesis, I explore the vulnerability of models trained on univariate time series

data to adversarial attacks. I focus primarily on ECG data due to its ability to be

visualized and interpreted by humans as well as the sensitive nature inherent to medical

data. In particular, I utilized a Carlini-Wagner style attack using a variety of different

distance functions in order to determine which produces the most visually similar

adversarial examples. I compared the L∞, L2, Wasserstein, and a novel distance function

consisting of a weighted linear combination of the L2 and Wasserstein distances. I ran a

plethora of experiments targeting four different models trained on three different datasets

with a CW attack utilizing these four distance functions. From these experiments, I
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collected adversarial ECG plots produced by each of these methods. A cohort of medical

professionals was used to determine which looked the most natural to trained physicians.

While the reader study did not produce statistically significant results, there was

preliminary evidence that distance functions that included a Wasserstein term produced

less detectable adversarial examples. These preliminary results in conjunction with the

quantitative results of the experiments suggest that the novel mixed distance function may

produce minimal adversarial perturbations while achieving a high attack success rate.

However, future work should expand on the user study performed in this thesis in order to

create an experiment that would allow for more dfinitive conclusions. First, the readers

should be shown a larger collection of adversarial examples than those used in our study.

This would allow for a larger sample size and give the study greater statistical power.

Additionally, and likely more importantly, after completing the study one of the readers

informed us that physicians have very little experience analyzing single-heartbeat ECG

readings. Thus, the data may have been too unfamiliar to the physicians for them to make

informed decisions, which is supported by the 51% accuracy of the physicians on the

natural data (Table 5.3). Thus, future work utilizing ECG data should make use of a larger

collection of examples taken from ECG readings consisting of more than one heartbeat.

For future work that expands on this project, I have the following suggestions:

1. Compare the results of attacks against models when defenses are in place.

2. Expand to other forms of univariate time series data. For example, audio data

and stock prices, which are both interpretable by humans, and also have

inherent security risks.

3. Explore the defensive potential of dropout layers in deep neural networks. While

they alone cannot prevent attacks as shown, they may prove valuable as part of

a larger defensive ecosystem.
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4. Experiment with multivariate time series data and similarity when using

dimensionality reduction techniques such as principal component analysis

(PCA).

5. Experiment with a variety of loss functions using different attack styles that

prioritize speed over optimal performance such as the Fast-Gradient Sign

Method (FGSM).

Perhaps the most important direction for future work is to determine whether a

Carlini-Wagner style attack utilizing the loss functions and method described in this paper

could be deployed in real life against a classifier. While the CW attack using the mixed loss

function is very powerful and can cause a model to misclassify 100% of the time, this

means nothing if the attack is too slow to be deployed on a real-world system without

raising human suspicion. Thus, future experiments should determine whether or not such

attacks are viable in a real-world scenario.



Appendix A

ResNet Architecture

ResNets are a common neural network architecture for a variety of deep learning

tasks and have achieved high levels of performance on both image and time series

processing tasks [16]. Their defining feature is the residual connection, also known as skip

connections, which allow data to be fed into layers deep in the network without passing

through the earlier layers. Skip connections have been found to reduce training time while

increasing performance especially on problems where fine-grained details are incredibly

important such as segmentation [30].

For the experiments, I utilized a ResNet architecture consisting of 3 blocks. The

structure of these blocks is shown in Table A.1, with the only difference between the 1st

block and the 2nd and 3rd blocks is the number of feature maps in the convolutional layers.

At the beginning of each block, the input data is copied. The first copy goes through the

block in a sequential fashion, while the second copy skips to the end of the block. Once the

block produces its output, the output and the original input are added together

element-wise. This feature vector then has a ReLU function applied to it and is fed in

similar fashion to the next residual block. This repeats until after the 3rd residual block,

where a standard fully connected layer is applied in the same fashion as the previously

described models. Figure A.1 depicts this architecture in a slightly larger ResNet model.

While this is not the exact same as the model used throughout our experiments, the core

structure is the same.
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Residual Block Architecture
Conv1D(64, 8, 1)

Batch Normalization
Relu

Conv1D(64, 5, 1)
Batch Normalization

ReLU
Conv1D(64, 3, 1)

Batch Normalization
Table A.1: Architecture for a singular residual block. The model contains 3 in total

Figure A.1: A visualization of a commonly used pretrained ResNet model known as ResNet-
12.



Appendix B

ECGFiveDays and ECG5000 Evaluation Metrics

In this section I will be displaying tables like Table 5.1 containing the measurements

for the ECG5000 and ECGFiveDays datasets. The procedure used to generate these tables

is the same as for Table 5.1 and the conclusions that can be drawn are largely the same.

They are relegated to the appendix simply to improve the readability and flow of the

thesis. It is worth noting that for the mlp model trained on the ECGFiveDays dataset, the

mixed attack with α = .1 did not achieve an ASR in the range of .89-.95, so a lower value

was taken. Additionally, the mixed experiment with α = .75 was taken at 100% ASR as its

next highest ASR was far lower than the .89-.95 ASR range. Additionally, for the mlp

model trained on the ECG5000 dataset the L2 and L∞ based attacks only reached a 70%

ASR. Thus, to make a fair comparison, all examples were sampled from near this ASR for

all attacks.
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ECGFiveDays CNN model results
Loss function Average L2 Average L1 Average Wass. Average DTW Average Frechet

L2 0.005 0.040 0.024 3.652 0.158
Linf 0.014 0.101 0.052 9.867 0.156

Wasserstein 0.025 0.115 0.005 12.183 0.356
Mixed .1 0.005 0.042 0.026 3.833 0.170
Mixed .25 0.008 0.052 0.028 4.745 0.208
Mixed .5 0.004 0.037 0.019 3.438 0.145
Mixed .75 0.004 0.039 0.016 3.624 0.150
Mixed .9 0.003 0.034 0.008 3.204 0.121

ECGFiveDays FCN model results
L2 0.042 0.128 0.087 13.383 0.324
Linf 0.046 0.193 0.116 20.664 0.248

Wasserstein 0.070 0.183 0.007 18.771 0.664
Mixed .1 0.024 0.105 0.069 10.682 0.260
Mixed .25 0.024 0.104 0.068 10.710 0.269
Mixed .5 0.056 0.158 0.100 16.551 0.369
Mixed .75 0.085 0.205 0.117 21.437 0.432
Mixed .9 0.026 0.106 0.032 10.752 0.321

ECGFiveDays MLP model results
L2 0.003 0.036 0.022 4.101 0.208
Linf 0.010 0.086 0.041 9.664 0.144

Wasserstein 0.026 0.115 0.005 12.567 0.432
Mixed .1* 0.004 0.045 0.026 5.086 0.253
Mixed .25 0.005 0.049 0.027 5.445 0.270
Mixed .5 0.004 0.042 0.023 4.719 0.242

Mixed .75* 0.003 0.040 0.019 4.507 0.236
Mixed .9 0.004 0.042 0.015 4.668 0.239

ECGFiveDays ResNet model results
L2 0.003 0.032 0.023 3.533 0.194
Linf 0.014 0.106 0.054 11.264 0.164

Wasserstein 0.025 0.114 0.005 12.409 0.433
Mixed .1 0.004 0.034 0.024 3.728 0.216
Mixed .25 0.002 0.027 0.019 2.986 0.164
Mixed .5 0.003 0.032 0.021 3.530 0.200
Mixed .75 0.003 0.032 0.018 3.519 0.188
Mixed .9 0.003 0.036 0.014 4.003 0.202

Table A.2: Evaluation metrics for each loss function and model on the ECGFiveDays dataset.
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ECG5000 CNN model results
Loss function Average L2 Average L1 Average Wass. Average DTW Average Frechet

L2 0.032 0.113 0.054 8.647 0.279
Linf 0.058 0.215 0.096 19.478 0.298

Wasserstein 0.098 0.219 0.005 20.705 0.616
Mixed .1 0.061 0.153 0.071 12.649 0.386
Mixed .25 0.083 0.186 0.080 15.504 0.458
Mixed .5 0.061 0.157 0.063 12.669 0.391
Mixed .75 0.110 0.233 0.082 19.723 0.533
Mixed .9 0.138 0.275 0.060 23.659 0.577

ECG5000 FCN model results
L2 0.221 0.360 0.144 34.724 0.785
Linf 0.190 0.391 0.147 37.036 0.665

Wasserstein 0.356 0.446 0.011 42.628 1.289
Mixed .1 0.217 0.365 0.139 35.422 0.749
Mixed .25 0.289 0.422 0.152 40.739 0.848
Mixed .5 0.436 0.557 0.197 53.907 1.004
Mixed .75 0.550 0.660 0.242 61.867 1.032
Mixed .9 0.371 0.502 0.098 46.449 0.959

ECG5000 MLP model results*
L2 0.114 0.238 0.104 27.836 0.720
Linf 0.085 0.256 0.109 29.439 0.464

Wasserstein 0.149 0.287 0.023 32.422 0.922
Mixed .1 0.062 0.159 0.076 18.589 0.569
Mixed .25 0.072 0.171 0.076 20.030 0.609
Mixed .5 0.103 0.222 0.096 25.739 0.667
Mixed .75 0.101 0.221 0.084 25.483 0.691
Mixed .9 0.168 0.318 0.099 37.132 0.782

ECG5000 ResNet model results
L2 0.039 0.136 0.072 14.708 0.479
Linf 0.042 0.178 0.085 19.195 0.281

Wasserstein 0.113 0.247 0.012 26.161 0.827
Mixed .1 0.027 0.108 0.056 11.525 0.387
Mixed .25 0.024 0.108 0.055 11.685 0.403
Mixed .5 0.041 0.137 0.068 14.625 0.478
Mixed .75 0.040 0.138 0.057 14.818 0.486
Mixed .9 0.053 0.163 0.049 17.142 0.554

Table A.3: Evaluation metrics for each loss function and model on the ECG5000 dataset.
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