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Abstract

Exploring Invariance in Single and Multi-modal Deep Representation Learning
By Rongmei Lin

The recent successes in artificial intelligence have been largely attributed to the pow-
erful and rich representation from deep neural networks. General-purpose repre-
sentation learning has been well studied in the past decade. The ultimate goal of
representation learning is to achieve a certain level of invariance. For example, for
generic image recognition, we aim to learn features that are only sensitive to image
labels and invariant to the intra-class variations such as backgrounds, object poses.
We propose the single-modal / multi-modal generalization to handle different scenar-
ios. Single-modal generalization is the classic setting of supervised learning where the
training and testing data are drawn from the same distribution. Most deep neural
network architectures and generalization techniques are designed towards this end. In
contrast, multi-modal generalization considers the problem where the data are drawn
from different modalities such as image/text or multi-sensor healthcare data. These
variant modalities are differently represented yet complement each other simultane-
ously. It is worth considering the interactions between modalities rather than simply
concatenating the information. My thesis focuses on the topic of learning task-driven
invariant representations and the contributions can be summarized as follows: 1) We
introduce an unified regularizer for invariant representation learning by promoting
the angular diversity of neurons; 2) We propose a framework to fuse multimodal
data homogeneously and learn features that are invariant to specific modality; 3) We
further extend the multimodal framework with pre-training tasks on extensive vision-
language and healthcare tasks, which leads to significant performance improvement.
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Chapter 1

Introduction

1.1 Background

The recent successes in artificial intelligence [39, 99, 116, 126, 127] have been largely

attributed to the powerful and rich representation from deep neural networks. General-

purpose representation learning [67, 39, 117, 40, 16] has been well studied in the past

decade. Neural networks are a powerful class of nonlinear functions that can be

trained end-to-end on various applications. While the over-parametrization nature

in many neural networks renders the ability to fit complex functions and the strong

representation power to handle challenging tasks, it also leads to highly correlated

neurons that can hurt the generalization ability. Such high capacity model usually

performs well on training set but poorly on the held-out validation set. We observe

that deep models are susceptible to overfitting. This issue is further amplified when

corrupted data and noisy labels exist in the training set. The dense model learns

the detail and noise in the training data to the extent that it negatively impacts the

performance of the model on new data. This means that the noise or random fluctu-

ations in the training data is picked up and learned as patterns by the model. As a

result, how to avoid undesired representation learning becomes an important issue.
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This phenomenon motivated us to encourage certain level of invariance in the

deep representation learning. The model should learn diverse and non-redundant

representations that are invariant to other distracting factors. For example, for generic

image recognition, we aim to learn features that are only sensitive to image labels and

invariant to the noise and the intra-class variations (e.g. background, pose, direction).

Such unbiased representation also becomes increasingly important nowadays due to

the fact that many existing data-driven machine learning models are biased towards

certain group of people. Fair representation should be invariant to some protected

attributes such as gender, race, etc.

On the other hand, the world naturally provides us with data of multiple modali-

ties. Each of the modality presents a different view of the same instance. In addition

to the distribution discrepancy between the training data and test data in single-

modal setting, the multi-modal deep representation learning faces many unique chal-

lenges. The multi-source data is collected from diverse perspective and presents het-

erogeneous properties. Although there are many intrinsic associations among modal-

ities, it can still be difficult to directly relate raw pixels from image data to wave

forms from the speech data. The techniques used in single-modal deep representa-

tion learning cannot easily be transferred to multi-modal setting. In order to pursue

the invariance in the multi-modal settings, we need to further explore the exclusive

limitations and challenges in the multi-modal domain and propose specific solutions.

To this end, our research centers around the topic of invariant deep representation

learning both in single and multi-modal settings. Under this unified umbrella, we

consider various applications. The goal in common is to maximize the intra-class

mutual agreement on heterogeneous views of data and improve the quality of latent

representation.

Unified Framework. We first introduce a simple unified framework for invariant

representation learning. We denote S as the set of intrinsic attributes and P as the
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set of invariant attributes. Then we define Dg
s,p (g is some feature transformation) as

the feature distribution of intrinsic attribute s ∈ S and invariant attribute p ∈ P .

The high-level idea of invariant representation learning is to learn a parameterized

feature transformation g : X → Z such that the distribution on the feature space Z

satisfies that d(Dg
s,pi

,Dg
s,pj

) = 0 for any pi, pj ∈ P and any s ∈ S. d denotes some

distance measure of distributions. This unified framework enables us to conduct

invariant representation learning in different tasks.

Single-modal Generalization. Single-modal generalization is the classic setting

of supervised learning where the training and testing data are drawn from the same

distribution. For example, image classification is a typical example of in-domain

generalization. The goal here is to learn features that are only sensitive to labels

and are invariant to intra-class variation such as background, object pose, etc. Most

deep neural network architectures [67, 39, 117] are designed towards this end. In this

sub branch, we address the central question: how to regularize the network to avoid

undesired representation redundancy and achieve certain level of invariance?

Multi-modal Generalization. In contrast to single-modal generalization, multi-

modal generalization considers the problem where the data are drawn from different

modalities such as image/text or multi-sensor healthcare data. These variant modali-

ties are differently represented yet complement each other simultaneously. It is worth

considering the interactions between modalities rather than simply concatenating the

information. We study the following question: How to fuse the multi-modal data and

maintain the desired “invariant” property in the single-modal representation learn-

ing? In other words, the goal here is to learn intrinsic features that are invariant to

heterogeneous modalities and discriminative in terms of labels.
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1.2 Related Works

1.2.1 Generalizations

Diversity regularization. Diversity regularization is shown useful in sparse cod-

ing [92, 104], ensemble learning [75, 68], self-paced learning [57], metric learning [140],

etc. Early studies in sparse coding [92, 104] show that the generalization ability of

codebook can be improved via diversity regularization, where the diversity is often

modeled using the (empirical) covariance matrix. More recently, a series of studies

have featured diversity regularization in neural networks [137, 139, 138, 22, 109, 136],

where regularization is mostly achieved via promoting large angle/orthogonality, or

reducing covariance between bases. However, diversity is formulated on local variable,

the scale and flexibility is somehow limited. Methods other than diversity-promoting

regularization have been widely proposed to improve CNNs [121, 55, 94, 84] and

generative adversarial nets (GANs) [12, 95]. Note that the generalization technique

can be combined together if formulated properly, new techniques can be added and

regarded as a complement that can be applied on top of these methods.

Relational regularizations. There are quite a number of relational regulariza-

tions that have been used in neural networks, such as orthogonality regularization[7,

84, 108, 52, 18], unitary constraint [58, 134, 5], decorrelation [108, 21, 139], spectral

regularization [144], low-rank regularization [123], angular constraint [138, 72], etc.

Most of these relational regularizations are either directly based on orthogonality or

based on some notions related to orthogonality (e.g ., correlation). Such methods

fall in the category of enforcing “hard orthogonality constraints” into optimization,

and have to repeat singular value decomposition (SVD) during training, which is a

computational expensive and time consuming operation.

Model Compression. The over-parametrization property in deep neural net-

work motivated a series of influential works in network compression [36, 1] and
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parameter-efficient network architectures [48, 54, 147]. These works either compress

the network by pruning redundant neurons or directly modify the network architec-

ture, aiming to achieve comparable performance while using fewer parameters. Yet,

it remains an open problem to find a unified and principled theory that guides the

network compression in the context of optimal generalization ability.

1.2.2 Multi-modal Learning

Multi-modal Learning. Information surrounding us usually involves multiple modal-

ities, where we consider environment that are observed using multiple sensors and each

sensor output can be termed as modality associated with a single data set. The un-

derlying motivation to use multimodal data is that complementary information could

be extracted from each of the modalities considered for a given learning task, yielding

a richer representation that could be used to produce much improved performance

compared to using only a single modality. Recently, multimodal application has been

explored with an emphasis on language and vision tasks. One of the most representa-

tive applications is image captioning where the task is to generate a text description

of the input image [45]. This is motivated by the ability of such systems to help

the visually impaired in their daily tasks [9]. The main challenges media description

is evaluation: how to evaluate the quality of the predicted descriptions. The task

of visual question-answering (VQA) was recently proposed to address some of the

evaluation challenges [4], where the goal is to answer a specific question about the

image. Early works in VQA focus on the design of the attention mechanism to merge

information from image and text modality, such as the bilinear attention in [65]. The

importance of words in the image to the VQA task was first recognized in [119] which

proposed a new benchmark TextVQA dataset. Hu, et. al. [49] proposed to use

transformer [126] to express a more general form of attention between image, image

objects, image texts and questions. Recently [142] introduced pre-training tasks to
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this model architecture that boosted the state of the art of TextVQA benchmark

significantly.

Multi-modal Fusion. Most approaches on multimodal fusion for medical sig-

nals can be classified into three categories: (1) early fusion. Signals from different

modalities are pre-processed and concatenated in the early phrase. Features are ex-

tracted from such combined signals and feed into the downstream task like classifica-

tion. Early fusion methods [131, 96, 97] require innovations in sensor synchronization,

buffering, denoising and data normalization. (2) late fusion. Raw signals from each

sensors are featurized separately and then fused for downstream task. Such fusion

method requires feature selection [74] and feature normalization [2] to handle differ-

ent time spans and signal scales. In addition, these separate features can be fused

in different ways, such as naive concatenating before classifier, adding extra classi-

fier for each modality and applying majority voting [111]. (3) gated fusion. LSTM

[44] and GRU [17] have been widely used to process temporal multimodal data and

extract the underlying patterns. A series of of attention-based fusion methods are

proposed to model complex temporal correlations by adding the gated fusion. [145]

considers each modality in isolation to learn view-specific interactions. It then uses

an explicitly designed gated mechanism to find and store cross-view interactions over

time. [47, 98] modified the LSTM cell and apply the gated attention to fuse multi-

modal features. The first and the second fusion category is insufficient in terms of

measuring the inter-modality correlations. The third category lacks flexibility while

handling the gated fusion, only extracted or well aligned features are able to attend

to the attention mechanism.
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1.3 Research Contributions

Representation learning is the key components to ingest and process the original raw

data in machine learning. The performance of subsequent learning task heavily relies

on the quality of representation. Most representation learning problem face a trade-

off between preserving as much information from the training data as possible and

maintaining nice properties, such as Independence and the Invariance we highlighted

in the thesis. This thesis explore different techniques and propose several solutions to

handle the trade-off and learn the invariant representation in both single-modal and

multi-modal scenarios. Our contributions can be grouped into two categories:

Single-modal Generalization. In the case of single-modal representation learn-

ing. We focus on how to regularize the network to avoid undesired representation.

We have observed redundant and highly correlated neurons caused by the over-

parametrization in deep neural networks. To reduce the redundancy and improve

the generalization ability of neural networks, inspired by the Thomson problem in

physics where the distribution of multiple propelling electrons on a unit sphere can

be modeled via minimizing some potential energy, we propose a novel minimum hy-

perspherical energy (MHE) regularization framework, where the diversity of neurons

is promoted by minimizing the hyperspherical energy in each layer. As verified by

comprehensive experiments on multiple tasks, MHE is able to consistently improve

the generalization power of neural networks. This line of work has been published in

NeurIPS 2018, CVPR 2020, AISTATS 2021 and CVPR 2021. The detailed contribu-

tions are summarized as follows:

1. We propose MHE defined on Euclidean distance, as indicated in physics Thom-

son problem. We also consider minimizing hyperspherical energy defined with

respect to angular distance. In addition, we provide theoretical insights of MHE

regularization.
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2. To address the drawbacks of MHE in high dimensional space, we propose com-

pressive minimum hyperspherical energy (CoMHE) as a dynamic regularization

to effectively minimize hyperspherical energy of neurons for better generaliz-

ability.

3. We design a novel over-parameterized training (OPT) framework with strong

flexibility. OPT is the first training framework where the hyperspherical energy

is provably minimized, leading to better empirical generalization. OPT reveals

that learning a proper coordinate system is crucial to generalization, and the

hyperspherical energy is sufficiently expressive to characterize relative neuron

positions.

Multi-modal Generalization. In real world applications, data can be acquired

from single or multiple modalities. In order to handle the multi-modal scenarios,

we further explore the invariant representation learning to achieve high utility per-

formance. In this branch, we focus on the representation learning that fused infor-

mation from heterogeneous modalities. We propose a framework to fuse multimodal

data homogeneously and learn features that are invariant to specific modality. We

further extend the multimodal framework with pre-training tasks on extensive vision-

language and healthcare tasks, which leads to significant performance improvement.

Parts of this work has been published in KDD 2021 and we plan to summarize our

findings and submit to NeurIPS 2022. The contributions are summarized as follows:

1. We propose a transformer-based sequence-to-sequence model to extract at-

tribute values jointly from textual profile, visual information, and texts in im-

ages. To the best of our knowledge, this is the first work for multi-modal

attribute value extraction.

2. We extend our basic solution to a cross-domain extraction model by equipping

the model with an external dynamic vocabulary conditioned on domain priors
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and multi-task training incorporated with our sequence-to sequence model.

3. We conduct extensive experiments to evaluate our solution on a dataset collected

from a public e-commerce website across multiple product categories. Our ap-

proach consistently outperforms state-of-the-art solutions by 15% on recall and

10% on F1 metric.

4. On the healthcare applications, we propose the Multi-Sensor Fusion Framework

along with Pre-training tasks designed for clinical timeseries data. Specifically,

we introduce the attention-based halfway fusion mechanism utilizing the trans-

former layers, which enables modeling both inter- and intra- modality relations

in a homogeneous way. Our framework along with the pre-training task im-

proves the macro AUROC by significant margin. In particular, our method

outperforms baseline models even if the training data is only 10% of baseline’s

training data.
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Chapter 2

Single-modal Generalization on

Hypersphere

2.1 Regularization on Hypersphere

2.1.1 Overview

Current deep networks are able to achieve impressive performance on large-scale prob-

lems. A steam of works seeks to further release the network generalization power by

alleviating redundancy through diversification [139, 138, 22, 109] as rigorously ana-

lyzed by [137]. Most of these works address the redundancy problem by enforcing

relatively large diversity between pairwise projection bases via regularization. Our

work broadly falls into this category by sharing similar high-level target, but the

spirit and motivation behind our proposed models are distinct. In particular, there

is a recent trend of studies that feature the significance of angular learning at both

loss and convolution levels [79, 82, 84, 87], based on the observation that the angles

in deep embeddings learned by CNNs tend to encode semantic difference. The key

intuition is that angles preserve the most abundant and discriminative information

for visual recognition. As a result, hyperspherical geodesic distances between neu-
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rons naturally play a key role in this context, and thus, it is intuitively desired to

impose discrimination by keeping their projections on the hypersphere as far away

from each other as possible. While the concept of imposing large angular diversities

was also considered in [137, 139, 138, 109], they do not consider diversity in terms of

global equidistribution of embeddings on the hypersphere, which fails to achieve the

state-of-the-art performances.

Given the above motivation, we draw inspiration from a well-known physics prob-

lem, called Thomson problem [125, 120]. The goal of Thomson problem is to de-

termine the minimum electrostatic potential energy configuration of N mutually-

repelling electrons on the surface of a unit sphere. We identify the intrinsic resem-

blance between the Thomson problem and our target, in the sense that diversifying

neurons can be seen as searching for an optimal configuration of electron locations.

Similarly, we characterize the diversity for a group of neurons by defining a generic

hyperspherical potential energy using their pairwise relationship. Higher energy im-

plies higher redundancy, while lower energy indicates that these neurons are more

diverse and more uniformly spaced. To reduce the redundancy of neurons and im-

prove the neural networks, we propose a novel minimum hyperspherical energy (MHE)

regularization framework, where the diversity of neurons is promoted by minimizing

the hyperspherical energy in each layer. As verified by comprehensive experiments

on multiple tasks, MHE is able to consistently improve the generalization power of

neural networks.

MHE faces different situations when it is applied to hidden layers and output

layers. For hidden layers, applying MHE straightforwardly may still encourage some

degree of redundancy since it will produce co-linear bases pointing to opposite di-

rections (see Fig. 2.1 middle). In order to avoid such redundancy, we propose the

half-space MHE which constructs a group of virtual neurons and minimize the hyper-

spherical energy of both existing and virtual neurons. For output layers, MHE aims
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Orthonormal MHE Half-space MHE

Figure 2.1: Orthonormal, MHE and half-space MHE regularization. The red dots
denote the neurons optimized by the gradient of the corresponding regularization.
The rightmost pink dots denote the virtual negative neurons. We randomly initialize
the weights of 10 neurons on a 3D Sphere and optimize them with SGD.

to distribute the classifier neurons1 as uniformly as possible to improve the inter-class

feature separability. Different from MHE in hidden layers, classifier neurons should

be distributed in the full space for the best classification performance [79, 82]. An

intuitive comparison among the widely used orthonormal regularization, the proposed

MHE and half-space MHE is provided in Fig. 2.1. One can observe that both MHE

and half-space MHE are able to uniformly distribute the neurons over the hypersphere

and half-space hypersphere, respectively. In contrast, conventional orthonormal reg-

ularization tends to group neurons closer, especially when the number of neurons is

greater than the dimension.

MHE is originally defined on Euclidean distance, as indicated in Thomson prob-

lem. However, we further consider minimizing hyperspherical energy defined with

respect to angular distance, which we will refer to as angular-MHE (A-MHE) in the

following chapters. In addition, we give some theoretical insights of MHE regular-

ization, by discussing the asymptotic behavior and generalization error. Last, we

apply MHE regularization to multiple vision tasks, including generic object recog-

nition, class-imbalance learning, and face recognition. In the experiments, we show

1Classifier neurons are the projection bases of the last layer (i.e., output layer) before input to
softmax.
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that MHE is architecture-agnostic and can considerably improve the generalization

ability.

Although minimizing hyperspherical energy has already been empirically shown

useful in a number of applications [85], two fundamental questions remain unan-

swered: (1) what is the role that hyperspherical energy plays in training a well-

performing neural network? and (2) How can the hyperspherical energy be effectively

minimized? To study the first question, we plot the training dynamics of hyper-

spherical energy (on CIFAR-100) in Fig. 2.2(c) for a baseline convolutional neural

network (CNN) without any MHE variant, a CNN regularized by MHE [85] its vari-

ant. From the empirical results in Fig. 2.2(c), we find that MHE can achieve much

lower hyperspherical energy and testing error than the baseline, showing the effective-

ness of minimizing hyperspherical energy. It also implies that lower hyperspherical

energy typically leads to better generalization. We empirically observe that a trained

neural network with lower hyperspherical energy often generalizes better (i.e., higher

hyperspherical diversity leads to better generalization), and therefore we argue that

hyperspherical energy is closely related to the generalization power of neural networks.

By adopting the definition of hyperspherical energy as the regularization objec-

tive and naively minimizing it with back-propagation, MHE suffers from a few critical

problems which limit it to further unleash its potential. First, the original MHE ob-

jective has a huge number of local minima and stationary points due to its highly

non-convex and non-linear objective function. The problem can get even worse when

the space dimension gets higher and the number of neurons becomes larger [8, 13].

Second, the gradient of the original MHE objective w.r.t the neuron weight is de-

terministic. Unlike the weight decay whose objective is convex, MHE has a complex

and non-convex regularization term. Therefore, deterministic gradients may make

the solution quickly fall into one of the bad local minima and get stuck there. Third,

MHE defines an ill-posed problem in general. When the number of neurons is smaller
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Figure 2.2: Comparison of original MHE and compressive MHE. In (c), the top figure
shows the hyperspherical energy, and the bottom one shows the testing error (CIFAR-
100).

than the dimension of the space (it is often the case in neural networks), it will be

less meaningful to encourage the hyperspherical diversity since the neurons can not

fully occupy the space. Last, in high-dimensional spaces, randomly initialized neu-

rons are likely to be orthogonal to each other. Therefore, these high-dimensional

neurons can be trivially “diverse”, leading to small gradients in original MHE that

cause optimization difficulties.

In order to address these problems and effectively minimize hyperspherical en-

ergy, we propose the compressive minimum hyperspherical energy (CoMHE) as a

generic regularization for neural networks. The high-level intuition behind CoMHE

is to project neurons to some suitable subspaces such that the hyperspherical en-

ergy can get minimized more effectively. Specifically, CoMHE first maps the neurons

from a high-dimensional space to a low-dimensional one and then minimizes the hy-

perspherical energy of these neurons. Therefore, how to map these neurons to a

low-dimensional space while preserving the desirable information in high-dimensional

space is our major concern. Since we aim to regularize the directions of neurons, what
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we care most is the angular similarity between different neurons. To this end, we ex-

plore multiple novel methods to perform the projection and heavily study two main

approaches: random projection and angle-preserving projection, which can reduce the

dimensionality of neurons while still partially preserving the pairwise angles.

2.1.2 Proposed Method

(a) Standard MHE. MHE characterizes the diversity of N neurons (WN ={w1, · · · ,wN ∈

Rd+1}) on a unit hypersphere using hyperspherical energy which is defined as

Es,d(ŵi|Ni=1) =
N∑
i=1

N∑
j=1,j ̸=i

fs
(
∥ŵi − ŵj∥

)

=


∑

i ̸=j ∥ŵi − ŵj∥−s , s > 0∑
i ̸=j log

(
∥ŵi − ŵj∥−1 ), s = 0

(2.1)

where ∥·∥ denotes ℓ2 norm, fs(·) is a decreasing real-valued function (we use fs(z)=

z−s, s>0, i.e., Riesz s-kernels), and ŵi =
wi

∥wi∥ is the i-th neuron weight projected

onto the unit hypersphere Sd ={v∈Rd+1| ∥v∥=1}. For convenience, we denote ŴN =

{ŵ1, · · · , ŵN ∈Sd}, and Es =Es,d(ŵi|Ni=1). Note that, each neuron is a convolution

kernel in CNNs. MHE minimizes the hyperspherical energy of neurons using gradient

descent during back-propagation, and MHE is typically applied to the neural network

in a layer-wise fashion. We first write down the gradient of E2 w.r.t ŵi and make

the gradient to be zero:

∇ŵi
E2 =

N∑
j=1,j ̸=i

−2(ŵi − ŵj)

∥ŵi − ŵj∥4
= 0 ⇒ ŵi =

∑N
j=1,j ̸=i αjŵj∑N
j=1,j ̸=i αj

(2.2)

where αj =∥ŵi−ŵj∥−4. We use toy and informal examples to show that high

dimensional space (i.e., d is large) leads to much more stationary points than low-

dimensional one. Assume there are K=K1 +K2 stationary points in total for ŴN

to satisfy Eq. 2.2, where K1 denotes the number of stationary points in which every
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element in the solution is distinct and K2 denotes the number of the rest stationary

points. We give two examples: (i) For (d+2)-dimensional space, we can extend

the solutions in (d+1)-dimensional space by introducing a new dimension with zero

value. The new solutions satisfy Eq. 2.2. Because there are d+2 ways to insert the

zero, we have at least (d+2)K stationary points in (d+2)-dimensional space. (ii)

We denote K ′
1 = K1

(d+1)!
as the number of unordered sets that construct the stationary

points. In (2d+2)-dimensional space, we can construct ŵE
j = 1√

2
{ŵj; ŵj}∈S2d+1,∀j

that satisfies Eq. 2.2. Therefore, there are at least (2d+2)!
2d+1 K ′

1 +K2 stationary points

for ŴN in (2d+2)-dimensional space, and besides this construction, there are much

more stationary points. Therefore, MHE have far more stationary points in higher

dimensions.

(b) MHE as Regularization for Neural Networks. Now that we have introduced

the formulation of MHE, we propose MHE regularization for neural networks. In

supervised neural network learning, the entire objective function is shown as follows:

L =
1

m

m∑
j=1

ℓ(⟨wout
i ,xj⟩ci=1,yj)︸ ︷︷ ︸

training data fitting

+ λh ·
L−1∑
j=1

1

Nj(Nj − 1)
{Es}j︸ ︷︷ ︸

Th: hyperspherical energy for hidden layers

+ λo ·
1

NL(NL − 1)
Es(ŵ

out
i |ci=1)︸ ︷︷ ︸

To: hyperspherical energy for output layer

(2.3)

where xi is the feature of the i-th training sample entering the output layer,

wout
i is the classifier neuron for the i-th class in the output fully-connected layer and

ŵout
i denotes its normalized version. {Es}i denotes the hyperspherical energy for the

neurons in the i-th layer. c is the number of classes, m is the batch size, L is the

number of layers of the neural network, and Ni is the number of neurons in the i-th

layer. Es(ŵ
out
i |ci=1) denotes the hyperspherical energy of neurons {ŵout

1 , · · · , ŵout
c }.

The ℓ2 weight decay is omitted here for simplicity, but we will use it in practice.

MHE has different effects and interpretations in regularizing hidden layers and output

layers.
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Figure 2.3: Half-space MHE.

MHE for hidden layers. To make neurons in the hidden layers more discrimi-

native and less redundant, we propose to use MHE as a form of regularization. MHE

encourages the normalized neurons to be uniformly distributed on a unit hypersphere,

which is partially inspired by the observation in [84] that angular difference in neurons

preserves semantic (label-related) information. To some extent, MHE maximizes the

average angular difference between neurons (specifically, the hyperspherical energy of

neurons in every hidden layer). For instance, in CNNs we minimize the hyperspher-

ical energy of kernels in convolutional and fully-connected layers except the output

layer.

MHE for output layers. For the output layer, we propose to enhance the

inter-class feature separability with MHE to learn discriminative and well-separated

features. For classification tasks, MHE regularization is complementary to the soft-

max cross-entropy loss in CNNs. The softmax loss focuses more on the intra-class

compactness, while MHE encourages the inter-class separability. Therefore, MHE on

output layers can induce features with better generalization power.

MHE in half space. Directly applying the MHE formulation may still encounter

some redundancy. An example in Fig. 2.3, with two neurons in a 2-dimensional

space, illustrates this potential issue. Directly imposing the original MHE regulariza-

tion leads to a solution that two neurons are collinear but with opposite directions.

To avoid such redundancy, we propose the half-space MHE regularization which con-
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structs some virtual neurons and minimizes the hyperspherical energy of both original

and virtual neurons together. Specifically, half-space MHE constructs a collinear vir-

tual neuron with opposite direction for every existing neuron. Therefore, we end up

with minimizing the hyperspherical energy with 2Ni neurons in the i-th layer (i.e.,

minimizing Es({ŵk,−ŵk}|2Ni
k=1)). This half-space variant will encourage the neurons

to be less correlated and less redundant, as illustrated in Fig. 2.3. Note that, half-

space MHE can only be used in hidden layers, because the collinear neurons do not

constitute redundancy in output layers, as shown in [79]. Nevertheless, collinearity is

usually not likely to happen in high-dimensional spaces, especially when the neurons

are optimized to fit training data. This may be the reason that the original MHE

regularization still consistently improves the baselines.

(c) General Framework of CoMHE. To overcome MHE’s drawbacks in high

dimensional space, we propose the compressive MHE that projects the neurons to a

low-dimensional space and then minimizes the hyperspherical energy of the projected

neurons. In general, CoMHE minimizes the following form of energy:

EC
s (ŴN) :=

N∑
i=1

N∑
j=1,j ̸=i

fs
(
∥g(ŵi) − g(ŵj)∥

)
(2.4)

where g :Sd→Sk takes a normalized (d+1)-dimensional input and outputs a nor-

malized (k+1)-dimensional vector. g(·) can be either linear or nonlinear mapping.

We only consider the linear case here. Using multi-layer perceptrons as g(·) is one of

the simplest nonlinear cases. Similar to MHE, CoMHE also serves as a regularization

in neural networks.

(d) Random Projection for CoMHE. Random projection is in fact one of the

most straightforward way to reduce dimensionality while partially preserving the

angular information. More specifically, we use a random mapping g(v)= Pv
∥Pv∥ where



19

P ∈R(k+1)×(d+1) is a Gaussian distributed random matrix (each entry follows i.i.d.

normal distribution). In order to reduce the variance, we use C random projection

matrices to project the neurons and compute the hyperspherical energy separately:

ER
s (ŴN) :=

1

C

C∑
c=1

N∑
i=1

N∑
j=1,j ̸=i

fs
( ∥∥∥∥ Pcŵi

∥Pcŵi∥
− Pcŵj

∥Pcŵj∥

∥∥∥∥ ) (2.5)

where Pc, ∀c is a random matrix with each entry following the normal distribution

N (0, 1). According to the properties of normal distribution [23], every normalized

row of the random matrix P is uniformly distributed on a hypersphere Sd, which

indicates that the projection matrix P is able to cover all the possible subspaces.

Multiple projection matrices can also be interpreted as multi-view projection, because

we are making use of information from multiple projection views. In fact, we do not

necessarily need to average the energy for multiple projections, and instead we can

use maximum operation (or some other meaningful aggregation operations). Then

the objective becomes maxc

∑N
i=1

∑N
j=1,j ̸=i fs(∥

Pcŵi

∥Pcŵi∥ −
Pcŵj

∥Pcŵj∥∥). Considering that

we aim to minimize this objective, the problem is in fact a min-max optimization.

Note that, we will typically re-initialize the random projection matrices every certain

number of iterations to avoid trivial solutions. Most importantly, using RP can

provably preserve the angular similarity.

(e) Angle-preserving Projection for CoMHE. Recall that we aim to find a

projection to project the neurons to a low-dimensional space that best preserves

angular information. We transform the goal to an optimization:

P ⋆ = arg min
P

LP :=
∑
i ̸=j

(θ(ŵi,ŵj) − θ(Pŵi,Pŵj))
2 (2.6)

where P ∈R(k+1)×(d+1) is the projection matrix and θ(v1,v2) denotes the angle be-

tween v1 and v2. For implementation convenience, we can replace the angle with the

cosine value (e.g ., use cos(θ(ŵi,ŵj)) to replace θ(ŵi,ŵj)), so that we can directly use
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the inner product of normalized vectors to measure the angular similarity. With P̂

obtained in Eq. 2.6, we use a nested loss function:

EA
s (ŴN ,P

⋆) :=
N∑
i=1

N∑
j=1,j ̸=i

fs
( ∥∥∥∥ P ⋆ŵi

∥P ⋆ŵi∥
− P ⋆ŵj

∥P ⋆ŵj∥

∥∥∥∥ )
s.t. P ⋆ = arg min

P

∑
i ̸=j

(θ(ŵi,ŵj) − θ(Pŵi,Pŵj))
2

(2.7)

for which we propose two different ways to optimize the projection matrix P . We

can approximate P ⋆ using a few gradient descent updates. Specifically, we use two

different ways to perform the optimization. Naively, we use a few gradient descent

steps to update P in order to approximate P ⋆ and then update WN , which proceeds

alternately. The number of iteration steps that we use to update P is a hyperparam-

eter and needs to be determined by cross-validation. Besides the naive alternate one,

we also use a different optimization of WN by unrolling the gradient update of P .

Alternating optimization. The alternating optimization is to optimize P al-

ternately with the network parameters WN . Specifically, in each iteration of updating

the network parameters, we update P every number of inner iterations and use it as

an approximation to P ⋆ (the error depends on the number of gradient steps we take).

Essentially, we are alternately solving two separate optimization problems for P and

WN with gradient descent.

Unrolled optimization. Instead of naively updating WN with approximate P ⋆

in the alternating optimization, the unrolled optimization further unrolls the update

rule of P and embed it within the optimization of network parameters WN . If we

denote the CoMHE loss with a given projection matrix P as EA
s (WN ,P ) which

takes WN and P as input, then the unrolled optimization is essentially optimizing

EA
s (WN ,P −η · ∂LP

∂P
). It can also be viewed as minimizing the CoMHE loss after

a single step of gradient descent w.r.t. the projection matrix. This optimization

includes the computation of second-order partial derivatives. Note that, it is also
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Method Error (%)

Baseline 28.03
Orthogonal 27.01

SRIP [7] 25.80
MHE 26.75

HS-MHE 25.96

G-CoMHE 25.08
Adv-CoMHE 25.09
RP-CoMHE 24.39

RP-CoMHE (max) 24.77
AP-CoMHE (alter.) 24.95
AP-CoMHE (unroll) 24.33

Table 2.1: MHE variants on CIFAR-100.

possible to unroll multiple gradient descent steps as in [29, 78, 24].

2.1.3 Experiments and Results

(a) Image Recognition. We perform image recognition to show the improvement

of regularizing CNNs with MHE and CoMHE. The goal is to show the superiority of

our proposed method rather than achieving state-of-the-art accuracies on particular

tasks. For all the experiments on CIFAR-10 and CIFAR-100 in this section, we use

the same data augmentation as [38, 87]. For ImageNet-2012, we use the same data

augmentation in [84]. We train all the networks using SGD with momentum 0.9. All

the networks use BN [55] and ReLU if not otherwise specified. By default, all CoMHE

variants are built upon half-space MHE.

Variants of MHE. We compare different variants of MHE and CoMHE with

the same plain CNN-9. Specifically, we evaluate the baseline CNN without any reg-

ularization, half-space MHE (HS-MHE) which is the best MHE variant from [85],

random projection CoMHE (RP-CoMHE), RP-CoMHE (max) that uses max instead

of average for loss aggregation, angle-preserving projection CoMHE (AP-CoMHE),

adversarial projection CoMHE (Adv-CoMHE) and group CoMHE (G-CoMHE) on

CIFAR-100. For RP, we set the projection dimension to 30 (i.e., k=29) and the
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Figure 2.4: Hyperspherical energy during training. All networks are initialized with
the same random weights, so the hyperspherical energy is the same before the training
starts.

number of projection to 5 (i.e., C=5). For AP, the number of projection is 1 and

the projection dimension is set to 30. For AP, we evaluate both alternating optimiza-

tion and unrolled optimization. In alternating optimization, we update the projection

matrix every 10 steps of network update. In unrolled optimization, we only unroll one-

step gradient in the optimization. For G-CoMHE, we construct a group with every

8 consecutive channels. All these design choices are obtained using cross-validation.

We will also study how these hyperparameters affect the performance in the follow-

ing experiments. The results in Table 2.1 show that all of our proposed CoMHE

variants can outperform the original half-space MHE by a large margin. The un-

rolled optimization in AP-CoMHE shows the significant advantage over alternating

one and achieves the best accuracy. Both Adv-CoMHE and G-CoMHE achieve decent

performance gain over HS-MHE, but not as good as RP-CoMHE and AP-CoMHE.

Therefore, we will mostly focus on RP-CoMHE and AP-CoMHE in the remaining

experiments.

Effectiveness of optimization. To verify that our CoMHE can better mini-

mize the hyperspherical energy, we compute the hyperspherical energy E2 (Eq. 2.1)
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Method Res-18 Res-34 Res-50

baseline 32.95 30.04 25.30
Orthogonal [109] 32.65 29.74 25.19
Orthnormal [84] 32.61 29.75 25.21

SRIP [7] 32.53 29.55 24.91
MHE 32.50 29.60 25.02

HS-MHE 32.45 29.50 24.98

RP-CoMHE 31.90 29.38 24.51
AP-CoMHE 31.80 29.32 24.53

Table 2.2: Top-1 center crop error on ImageNet.

for baseline CNN and CNN regularized by orthogonal regularization, HS-MHE, RP-

CoMHE and AP-CoMHE during training. Note that, we compute the original hyper-

spherical energy rather than the energy after projection. All the networks use exactly

the same initialization (the initial hyperspherical energy is the same). The results are

averaged over five independent runs. We show the hyperspherical energy after the

20000-th iteration, because at the beginning of the training, hyperspherical energy

fluctuates dramatically and is unstable. From Fig. 2.4, one can observe that both

RP-CoMHE and AP-CoMHE can better minimize the hyperspherical energy. RP-

CoMHE can achieve the lowest energy with smallest standard deviation. From the

absolute scale, the optimization gain is also very significant. In the high-dimensional

space, the variance of hyperspherical energy is usually small (already close to the

smallest energy value) and is already difficult to minimize.

Large-scale recognition on ImageNet-2012. We evaluate our method for

image recognition on ImageNet-2012 [110]. We perform the experiment using ResNet-

18, ResNet-34 and ResNet-50, and then report the top-1 validation error in Table 2.2.

Our results show consistent and significant performance gain in all ResNet variants.

Compared to the baselines, MHE and its variants can reduce the top-1 error for more

than 1%. Since the computational overhead is almost neglectable, the performance

gain is obtained without many efforts. Most importantly, as a plug-in regularization,

MHE is shown to be architecture-agnostic and produces considerable accuracy gain.
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Baseline CoMHE

Figure 2.5: Visualized first-layer filters.

Besides the accuracy improvement, we also visualize in Fig. 2.5 the 64 filters in

the first-layer learned by the baseline ResNet and the proposed CoMHE-regularized

ResNet. The filters look quite different after we regularize the network using CoMHE.

Each filter learned by baseline focuses on a particular local pattern (e.g ., edge, color

and shape) and each one has a clear local semantic meaning. In contrast, filters

learned by CoMHE focuses more on edges, textures and global patterns which do

not necessarily have a clear local semantic meaning. However, from a representation

basis perspective, having such global patterns may be beneficial to the recognition

accuracy. We also observe that filters learned by CoMHE pay less attention to color.

(b) Point Cloud Recognition. We evaluate CoMHE on point cloud recognition.

Our goal is to validate the effectiveness of CoMHE on a totally different network

architecture with a different form of input data structure, rather than achieving

state-of-the-art performance on point cloud recognition. To this end, we conduct ex-

periments on widely used neural networks that handles point clouds: PointNet [101]

(PN) and PointNet++ [102] (PN++). We combine half-space MHE, RP-CoMHE

and AP-CoMHE into PN (without T-Net), PN (with T-Net) and PN++. We test

the performance on ModelNet-40 [135]. Specifically, since PN can be viewed as 1×1

convolutions before the max pooling layer, we can apply all these MHE variants simi-
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Method PN PN (T) PN++

Original 87.1 89.20 90.07
MHE 87.31 89.33 90.25

HS-MHE 87.44 89.41 90.31
RP-CoMHE 87.82 89.69 90.52
AP-CoMHE 87.85 89.70 90.56

Table 2.3: Accuracy (%) on ModelNet-40.

Method LFW MegaFace

Softmax Loss 97.88 54.86
Softmax+Contrastive [122] 98.78 65.22

Triplet Loss [112] 98.70 64.80
L-Softmax Loss [79] 99.10 67.13

Softmax+Center Loss [132] 99.05 65.49
CosineFace [129, 128] 99.10 75.10

SphereFace 99.42 72.72
SphereFace+ (ours) 99.47 73.03

Table 2.4: Comparison to state-of-the-art face recognition methods.

larly to CNN. After the max pooling layer, there is a standard fully connected network

where we can still apply the MHE variants. We compare the performance of regu-

larizing PN and PN++ with half-space MHE, RP-CoMHE or AP-CoMHE. Table 2.3

shows that all MHE variants consistently improve PN and PN++, while RP-CoMHE

and AP-CoMHE again perform the best among all. We demonstrate that CoMHE is

generally useful for different types of input data (not limit to images) and different

types of neural networks. CoMHE is also useful in graph neural networks.

(c) Face Recognition.

We have shown that full-space MHE for output layers can encourage classifier

neurons to distribute more evenly on hypersphere and therefore improve inter-class

feature separability. Intuitively, the classifier neurons serve as the approximate center

for features from each class, and can therefore guide the feature learning. We also

observe that open-set face recognition (e.g ., face verification) requires the feature

centers to be as separable as possible [82]. This connection inspires us to apply



26

MHE to face recognition. Specifically, we propose SphereFace+ by applying MHE

to SphereFace [82]. The objective of SphereFace, angular softmax loss (ℓSF) that

encourages intra-class feature compactness, is naturally complementary to that of

MHE. The objective function of SphereFace+ is defined as:

LSF+ =
1

m

m∑
j=1

ℓSF(⟨wout
i ,xj⟩ci=1,yj ,mSF)︸ ︷︷ ︸

softmax: promoting intra-class compactness

+λM · 1

m(N − 1)

m∑
i=1

N∑
j=1,j ̸=yi

fs(
∥∥ŵout

yi
− ŵout

j

∥∥)︸ ︷︷ ︸
MHE: promoting inter-class separability

(2.8)

where c is the number of classes, m is the mini-batch size, N is the number of classifier

neurons, xi the deep feature of the i-th face (yi is its groundtruth label), and wout
i is

the i-th classifier neuron. mSF is a hyperparameter for SphereFace, controlling the de-

gree of intra-class feature compactness (i.e., the size of the angular margin). Because

face datesets usually have thousands of identities, we will use the data-dependent

mini-batch approximation MHE as shown in Eq. 2.8 in the output layer to reduce

computational cost. MHE completes a missing piece for SphereFace by promoting

the inter-class separability. SphereFace+ consistently outperforms SphereFace, and

achieves state-of-the-art performance on both LFW [50] and MegaFace [62] datasets.

We compare our methods with some widely used loss functions. All these compared

methods use SphereFace-64 network that are trained with CASIA dataset. All the

results are given in Table 2.4 computed without model ensemble and PCA. Com-

pared to the other state-of-the-art methods, SphereFace+ achieves the best accuracy

on LFW dataset, while being comparable to the best accuracy on MegaFace dataset.

Current state-of-the-art face recognition methods [128, 82, 129, 25, 89] usually only

focus on compressing the intra-class features, which makes MHE a potentially useful

tool in order to further improve these face recognition methods.
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Random initialized neurons 
in the same layer

Hyperspherical energy 
characterizes relative positions

Learnable 
orthogonal R
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in the same layer

{v1,...,vn} {Rv1,...,Rvn}

{v1,...,vn}
stay fixed 

Input Output

Figure 2.6: Overview of the orthogonal over-parameterized training framework. OPT
learns an orthogonal transformation for each layer in the neural network, while keeping
the randomly initialized neuron weights fixed.

2.2 Orthogonal Training on Hypersphere

2.2.1 Overview

The inductive bias encoded in a neural network is generally determined by two major

aspects: how the neural network is structured (i.e., network architecture) and how

the neural network is optimized (i.e., training algorithm). For the same network ar-

chitecture, using different training algorithms could lead to a dramatic difference in

generalization performance [63, 105] even if the training loss is close to zero, implying

that different training procedures lead to different inductive biases. Therefore, how

to effectively train a neural network that generalize well remains an open challenge.

Recent theories [33, 34, 61, 76] suggest the importance of over-parameterization in

linear neural networks. There is also strong empirical evidence [26, 88] that over-

parameterzing the convolutional filters under some regularity is beneficial to gener-

alization. Our work aims to leverage the power of over-parameterization and explore

more intrinsic structural priors in order to train a well-performing neural network.

Motivated by this goal, we propose a generic orthogonal over-parameterized train-

ing (OPT) framework for neural networks. Different from conventional neural train-
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ing, OPT over-parameterizes a neuron w∈Rd with the multiplication of a learnable

layer-shared orthogonal matrix R∈Rd×d and a fixed randomly-initialized weight vec-

tor v∈Rd, and it follows that the equivalent weight for the neuron is w=Rv. Once

each element of the neuron weight v has been randomly initialized by a zero-mean

Gaussian distribution [37, 31], we fix them throughout the entire training process.

Then OPT learns a layer-shared orthogonal transformation R that is applied to all

the neurons (in the same layer). An illustration of OPT is given in Fig. 2.6. In

contrast to standard neural training, OPT decomposes the neuron into an orthogonal

transformation R that learns a proper coordinate system, and a weight vector v that

controls the specific position of the neuron. Essentially, the weights {v1, · · · ,vn∈Rd}

of different neurons determine the relative positions, while the layer-shared orthog-

onal matrix R specifies the coordinate system. Such a decoupled parameterization

enables strong modeling flexibility.

Another motivation of OPT comes from an empirical observation that neural net-

works with lower hyperspherical energy generalize better [86]. Hyperspherical energy

quantifies the diversity of neurons on a hypersphere, and essentially characterizes the

relative positions among neurons via this form of diversity. [86] introduces hyper-

spherical energy as a regularization in the network but do not guarantee that the

hyperspherical energy can be effectively minimized (due to the existence of data fit-

ting loss). To address this issue, we leverage the property of hyperspherical energy

that it is independent of the coordinate system in which the neurons live and only de-

pends on their relative positions. Specifically, we prove that, if we randomly initialize

the neuron weight v with certain distributions, these neurons are guaranteed to attain

minimum hyperspherical energy in expectation. It follows that OPT maintains the

minimum energy during training by learning a coordinate system (i.e., layer-shared

orthogonal matrix) for the neurons. Therefore, OPT is able to provably minimize the

hyperspherical energy.
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2.2.2 Proposed Method

(a) General Framework. OPT parameterizes the neuron as the multiplication of

an orthogonal matrix R∈Rd×d and a neuron weight vector v∈Rd, and the equivalent

neuron weight becomes w=Rv. The output ŷ of this neuron can be represented by

ŷ=(Rv)⊤x where x∈Rd is the input vector. In OPT, we typically fix the randomly

initialized neuron weight v and only learn the orthogonal matrix R. In contrast,

the standard neuron is directly formulated as ŷ=v⊤x, where the weight vector v is

learned via back-propagation in training.

As an illustrative example, we consider a linear MLP with a loss function L (e.g .,

the least squares loss: L(e1, e2)=(e1−e2)
2). Specifically, the learning objective of the

standard training is min{vi,ui,∀i}
∑m

j=1 L
(
y,
∑n

i=1 uiv
⊤
i xj

)
, while differently, our OPT

is formulated as:

min
{R,ui,∀i}

m∑
j=1

L
(
y,

n∑
i=1

ui(Rvi)
⊤xj

)
s.t. R⊤R = RR⊤ = I (2.9)

where vi∈Rd is the i-th neuron in the first layer, and u={u1, · · · , un}∈Rn is the

output neuron in the second layer. In OPT, each element of vi is usually sampled

from a zero-mean Gaussian distribution (e.g ., both Xavier [31] and Kaiming [37]

initializations belong to this class), and is fixed throughout the entire training process.

In general, OPT learns an orthogonal matrix that is applied to all the neurons instead

of learning the individual neuron weight. Note that, we usually do not apply OPT

to neurons in the output layer (e.g ., u in this MLP example, and the final linear

classifiers in CNNs), since it makes little sense to fix a set of random linear classifiers.

Therefore, the central problem is how to learn these layer-shared orthogonal matrices.

(b) Hyperspherical Energy Perspective. One of the most important prop-

erties of OPT is its invariance to hyperspherical energy. Based on [86], the hy-

perspherical energy of n neurons is defined as E(v̂i|ni=1)=
∑n

i=1

∑n
j=1,j ̸=i ∥v̂i− v̂j∥−1
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in which v̂i =
vi

∥vi∥ is the i-th neuron weight projected onto the unit hypersphere

Sd−1 ={v∈Rd| ∥v∥=1}. Hyperspherical energy is used to characterize the diversity

of n neurons on a unit hypersphere. Assume that we have n neurons in one layer,

and we have learned an orthogonal matrix R for these neurons. The hyperspherical

energy of these n OPT-trained neurons is:

E(R̂v̂i|ni=1) =
n∑

i=1

n∑
j=1,j ̸=i

∥Rv̂i −Rv̂j∥−1

(
since ∥R∥−1 = 1

)
=

n∑
i=1

n∑
j=1,j ̸=i

∥v̂i − v̂j∥−1 = E(v̂i|ni=1)

(2.10)

which verifies that the hyperspherical energy does not change in OPT. Moreover, [86]

proves that minimum hyperspherical energy corresponds to the uniform distribution

over the hypersphere. As a result, if the initialization of the neurons in the same

layer follows the uniform distribution over the hypersphere, then we can guarantee

that the hyperspherical energy is minimal in a probabilistic sense.

Theorem 2.2.1. For the neuron h={h1, · · · , hd} where hi,∀i are initialized i.i.d.

following a zero-mean Gaussian distribution (i.e., hi∼N(0, σ2)), the projections onto

a unit hypersphere ĥ=h/∥h∥ where ∥h∥=(
∑d

i=1 h
2
i )

1/2 are uniformly distributed on

the unit hypersphere Sd−1. The neurons with minimum hyperspherical energy attained

asymptotically approach the uniform distribution on Sd−1.

Theorem 2.2.1 proves that, as long as we initialize the neurons in the same layer

with zero-mean Gaussian distribution, the resulting hyperspherical energy is guaran-

teed to be small (i.e., the expected energy is minimal). It is because the neurons are

uniformly distributed on the unit hypersphere and hyperspherical energy quantifies

the uniformity on the hypersphere in some sense. More importantly, prevailing neuron

initializations such as [31] and [37] are zero-mean Gaussian distribution. Therefore,

our neurons naturally have low hyperspherical energy from the beginning.
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Orthogonalization: 
R← Orth(P)

Trainable 
matrix: P

Untrainable neuron weight:
{v1,v2,…,vn}

Final neuron weight:
{Rv1,Rv2,…,Rvn}

Forward
Pass

Backward
Gradient

Figure 2.7: Unrolled orthogonalization.

(c) Unrolling Orthogonalization Algorithms. In order to learn the orthogonal

transformation, we unroll classic orthogonalization algorithms and embed them into

the neural network such that the training can be performed in an end-to-end fashion.

We need to make every step of the orthogonalization algorithm differentiable, as

shown in Fig. 2.7.

Gram-Schmidt process. This method takes a linearly independent set and

eventually produces an orthogonal set based on it. The Gram-Schmidt Process (GS)

usually takes the following steps to orthogonalize a set of vectors {u1, · · · ,un}∈Rn×n

and obtain an orthonormal set {e1, · · · , ei, · · · , en}∈Rn×n. First, when i=1, we

have e1 = ẽ1
∥ẽ1∥ where ẽ1 =u1. Then, when n≥ i≥2, we have ei =

ẽi
∥ẽi∥ where ẽi=ui−∑i−1

j=1 Projej(ui). Note that, Projb(a)= ⟨a,b⟩
⟨b,b⟩b is defined as the projection operator.

Householder Reflection. A Householder reflector is defined as H =I−2uu⊤

∥u∥2

where u is perpendicular to the reflection hyperplane. In QR factorization, House-

holder reflection (HR) is used to transform a (non-singular) square matrix into an or-

thogonal matrix and an upper triangular matrix. Given a matrix U ={u1, · · · ,un}∈

Rn×n, we consider the first column vector u1. We use Householder reflector to trans-

form u1 to e1 ={1, 0, · · · , 0}. Specifically, we construct an orthogonal matrix H1 with

H1 =I−2 (u1−∥u1∥e1)(u1−∥u1∥e1)⊤
∥u1−∥u1∥e1∥2

. The first column of H1U becomes {∥u1∥, 0, · · · , 0}.

At the k-th step, we can view the sub-matrix U(k:n,k:n) as a new U , and use the

same procedure to construct the Householder transformation H̃k∈R(n−k)×(n−k). We

construct the final Householder transformation as Hk =Diag(Ik, H̃k). Now we can
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gradually transform U to an upper triangular matrix with n Householder reflections.

Therefore, we have that Hn · · ·H2H1U =Rup where Rup is an upper triangular ma-

trix and the obtained orthogonal set is Q⊤ =Hn · · ·H2H1.

Löwdin’s Symmetric Orthogonalization. Let the matrix U ={u1, · · · ,un}∈

Rn×n be a given set of linearly independent vectors in an n-dimensional space. A non-

singular linear transformation A can transform the basis U to an orthogonal basis

R: R=UA. The matrix R will be orthogonal if R⊤R=(UA)⊤UA=A⊤MA=I

where M =U⊤U is the Gram matrix of the given set U . We obtain a general solu-

tion to the orthogonalization problem via the substitution: A=M− 1
2B where B is

an arbitrary unitary matrix. The specific choice B=I gives the Löwdin’s symmetric

orthogonalization (LS): R=UM− 1
2 . We can analytically obtain the symmetric or-

thogonalization from the singular value decomposition: U =WΣV ⊤. Then LS gives

R=WV ⊤ as the orthogonal set for U . LS has a unique property which the other

orthogonalizations do not have. The orthogonal set resembles the original set in a

nearest-neighbour sense. More specifically, LS guarantees that
∑

i ∥Ri−Ui∥2 (where

Ri and Ui are the i-th column of R and U , respectively) is minimized. Intuitively,

LS indicates the gentlest pushing of the directions of the vectors in order to get them

orthogonal to each other.

(d) Orthogonal Parameterization. A convenient way to ensure orthogonality

while learning the matrix R is to use a special parameterization that inherently

guarantees orthogonality. The exponential parameterization use R=exp(W ) (where

exp(·) denotes the matrix exponential) to represent an orthogonal matrix from a skew-

symmetric matrix W . The Cayley parameterization (CP) is a Padé approximation of

the exponential parameterization, and is a more natural choice due to its simplicity.

CP uses the following transform to construct an orthogonal matrix R from a skew-

symmetric matrix W : R = (I +W )(I−W )−1 where W =−W⊤. We note that CP

only produces the orthogonal matrices with determinant 1, which belong to the special
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orthogonal group and thus R∈SO(n). Specifically, it suffices to learn the upper or

lower triangular of the matrix W with unconstrained optimization to obtain a desired

orthogonal matrix R. Cayley parameterization does not cover the entire orthogonal

group and is less flexible in terms of representation power, which serves as an explicit

regularization for the neurons.

(e) Orthogonality-Preserving Gradient Descent. An alternative way to guar-

antee orthogonality is to modify the gradient update for the matrix R. The idea is

to initialize R with an arbitrary orthogonal matrix and then ensure each gradient

update is to apply an orthogonal transformation to R. It is essentially conducting

gradient descent on the Stiefel manifold [73, 133, 134, 70, 5, 41, 58]. Given a ma-

trix U(0)∈Rn×n that is initialized as an orthogonal matrix, we aim to construct an

orthogonal transformation as the gradient update. We use the Cayley transform to

compute a parametric curve on the Stiefel manifold Ms ={U ∈Rn×n :U⊤U =I} with

a specific metric via a skew-symmetric matrix W and use it as the update rule:

Y (λ) = (I − λ

2
W )−1(I +

λ

2
W )U(i), U(i+1) = Y (λ) (2.11)

where Ŵ =∇f(U(i))U
⊤
(i)−

1
2
U(i)(U

⊤
(i)∇f(U(i)U

⊤
(i)) and W =Ŵ −Ŵ⊤. U(i) denotes

the orthogonal matrix in the i-th iteration. ∇f(U(i)) denotes the original gradient of

the loss function w.r.t. U(i). We term this gradient update as orthogonal-preserving

gradient descent (OGD). To reduce the computational cost of the matrix inverse

in Eq. 2.11, we use an iterative method [73] to approximate the Cayley transform

without matrix inverse. We arrive at the fixed-point iteration:

Y (λ) = U(i) +
λ

2
W

(
U(i) + Y (λ)

)
(2.12)

which converges to the closed-form Cayley transform with a rate of o(λ2+n) (n is the

iteration number). In practice, two iterations suffice for a reasonable approximation
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accuracy.

(f) Relaxation to Orthogonal Regularization. Alternatively, we also consider

relaxing the original optimization with an orthogonality constraint to an uncon-

strained optimization with orthogonality regularization (OR). Specifically, we remove

the orthogonality constraint, and adopt an orthogonality regularization for R, i.e.,

∥R⊤R−I∥2F . However, OR cannot guarantee the energy stays unchanged. Taking

Eq. 2.9 as an example, the objective becomes

min
R,ui,∀i

m∑
j=1

L
(
y,

n∑
i=1

ui(Rvi)
⊤xj

)
+ β∥R⊤R− I∥2F (2.13)

where β is a hyperparameter. This serves as an relaxation of the original OPT

objective. Note that, OR is imposed to R instead of neurons and is quite different

from the existing orthogonality regularization on neurons [83, 7, 52, 136, 11].

(g) Towards Better Scalablity for OPT.

If the dimension of neurons becomes extremely large, then the orthogonal matrix

to transform the neurons will also be large. Therefore, it may take large GPU mem-

ory and time to train the neural networks with the original OPT. To address this, we

propose a scalable variant – stochastic OPT (S-OPT). The key idea of S-OPT is to

randomly select some dimensions from the neurons in the same layer and construct

a small orthogonal matrix to transform these dimensions together. The selection

of dimensions is stochastic in each outer iteration, so a small orthogonal matrix is

sufficient to cover all the neuron dimensions. S-OPT aims to approximate a large

orthogonal transformation for all the neuron dimensions with many small orthogonal

transformations for random subsets of these dimensions, which shares similar spirits

with Givens rotation. The approximation will be more accurate when the procedure

is randomized over many times. Fig. 2.8 compares the size of the orthogonal matrix
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Figure 2.8: Illustration of S-OPT.

in OPT and S-OPT. The orthogonal matrix in OPT is of size d × d, while the or-

thogonal matrix in S-OPT is of size p × p where p is usually much smaller than d.

Most importantly, S-OPT can still preserve the low hyperspherical energy of neurons

because of the following result.

Theorem 2.2.2. For n d-dimensional neurons, selecting any p (p≤d) dimensions

and applying an shared orthogonal transformation (p×p orthogonal matrix) to these

p dimensions of all neurons will not change the hyperspherical energy.

A description of S-OPT is given in Algorithm 1. S-OPT has outer and inner

iterations. In each inner iteration, the training is almost the same as OPT, except

that the orthogonal matrix transforms a subset of the dimensions and the learnable

orthogonal matrix has to be re-initialized to an identity matrix. The selection of neu-

ron dimension is randomized in every outer iteration such that all neuron dimensions

can be sufficiently covered as the number of outer iterations increases. Therefore,

given sufficient number of iterations, S-OPT will perform comparably to OPT, as

empirically verified in Section 2.2.3. This OPT variant explores structure priors in R

to improve parameter efficiency.
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Algorithm 1: Stochastic OPT

1 for i = 1, 2, · · · , Nout do
2 for j = 1, 2, · · · , Nin do
3 1. Randomly select p dimensions from d-dimensional neurons in the same layer.;
4 2. Construct an orthogonal matrix Rp ∈ Rp×p and initialize it as identity matrix.;
5 3. Update Rp by applying OPT with one iteration.;
6 end
7 4. Multiply Rp back to the p-dim sub-vectors from the d-dim neurons to transform

these neurons.;
8 end

Standard training OPT

Figure 2.9: Training loss landscapes.

(h) Local Landscape.

We follow [71] to visualize the loss landscapes of both standard training and OPT

in Fig. 2.9. For standard training, we perturb the parameter space of all the neurons

(i.e., filters). For OPT, we perturb the parameter space of all the trainable matrices

(i.e., P in Fig. 2.7), because OPT does not directly learn neuron weights. The

general idea is to use two random vectors (e.g ., normal distribution) to perturb the

parameter space and obtain the loss value with the perturbed network parameters.

The loss landscape of standard training has extremely sharp minima. The red region

is very flat, leading to small gradients. In contrast, the loss landscape of OPT is
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much more smooth and convex with flatter minima, well matching the finding that

flat minimizers generalize well [43, 14, 56].

2.2.3 Experiments Results

(a) Ablation Study on Orthogonality. We evaluate whether orthogonality in

OPT is necessary. We use 6-layer and 9-layer CNN on CIFAR-100. Then we com-

pare OPT with unconstrained over-parameterized training (UPT) which learns an

unconstrained matrix R (with weight decay) using the same network. In Table 2.5,

“FN” denotes whether the randomly initialized neuron weights are fixed in training.

“LR” denotes whether the learnable matrix R is unconstrained (“U”) or orthogonal

(“GS” for Gram-Schmidt process). Table 2.5 shows that without orthogonality, UPT

performs much worse than OPT. From Table 2.5, we can see that using fixed neuron

weights is consistently better than learnable neuron weights in both UPT and OPT. It

indicates that fixing the neuron weights can well maintain low hyperspherical energy

and is beneficial to empirical generalization.

Method FN LR CNN-6 CNN-9

Baseline - - 37.59 33.55
UPT ✗ U 48.47 46.72
UPT ✓ U 42.61 39.38
OPT ✗ GS 37.24 32.95
OPT ✓ GS 33.02 31.03

Table 2.5: Error (%) on CIFAR-100.

(b) Empirical Evaluation on OPT.

Multi-layer perceptrons. We evaluate OPT on MNIST with a 3-layer MLP.

Table 2.6 shows the testing error with normal initialization (MLP-N) or Xavier initial-

ization [31] (MLP-X). GS/HR/LS denote different orthogonalization unrolling. CP

denotes Cayley parameterization. OGD denotes orthogonal-preserving gradient de-

scent. OR denotes relaxed orthogonal regularization. All OPT variants outperform
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Method
MNIST CIFAR-100

MLP-N MLP-X CNN-6 CNN-9 ResNet-20 ResNet-32

Baseline 6.05 2.14 37.59 33.55 31.11 30.16
Orthogonal [11] 5.78 1.93 36.32 33.24 31.06 30.05

SRIP [7] - - 34.82 32.72 30.89 29.70
HS-MHE 5.57 1.88 34.97 32.87 30.98 29.76

OPT (GS) 5.11 1.45 33.02 31.03 30.49 29.34
OPT (HR) 5.31 1.60 35.67 32.75 30.73 29.56
OPT (LS) 5.32 1.54 34.48 31.22 30.51 29.42
OPT (CP) 5.14 1.49 33.53 31.28 30.47 29.31

OPT (OGD) 5.38 1.56 33.33 31.47 30.50 29.39
OPT (OR) 5.41 1.78 34.70 32.63 30.66 29.47

Table 2.6: Testing error (%) of OPT for MLPs and CNNs.

the others by a large margin.

Convolutional networks. We evaluate OPT with 6/9-layer plain CNNs and

ResNet-20/32 [39] on CIFAR-100. All neurons (i.e., convolution kernels) are initial-

ized by [37]. BatchNorm is used by default. Table 2.6 shows that all OPT variants

outperform both baseline and HS-MHE by a large margin. HS-MHE puts the hyper-

spherical energy into the loss function and naively minimizes it along with the CNN.

We observe that OPT (HR) performs the worse among all OPT variants partially

because of its intensive unrolling computation. OPT (GS) achieves the best testing

error on CNN-6/9, while OPT (CP) achieves the best testing error on ResNet-20/34,

implying that different OPT encodes different inductive bias.

Training dynamics. We look into how hyperspherical energy and testing error

changes in OPT. Fig. 2.10 shows that the energy of the baseline will increase dramat-

ically at the beginning and then gradually go down, but it still stays in a high value

in the end. HS-MHE well reduces the energy at the end of the training. In contrast,

OPT variants always maintain very small energy in training. OPT with GS, CP and

OGD keep exactly the same energy as the random initialization, while OPT (OR)

slightly increases the energy due to relaxation. All OPT variants converge efficiently

and stably.
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Figure 2.10: Training dynamics on CIFAR-100. Left: Hyperspherical energy vs.
iteration. Right: Testing error vs. iteration.

Method
GCN PointNet

Cora Pubmed MN-40

Baseline 81.3 79.0 87.1
OPT (GS) 81.9 79.4 87.23
OPT (CP) 82.0 79.4 87.81

OPT (OGD) 82.3 79.5 87.86

Table 2.7: Geometric networks.

Geometric learning. We apply OPT to graph convolution network (GCN) [66]

and point cloud network (PointNet) [101] for graph node and point cloud classifi-

cation, respectively. The training of GCN and PointNet is conceptually similar to

MLP. For GCN, we evaluate OPT on Cora and Pubmed datsets [113]. For PointNet,

we conduct experiments on ModelNet-40 dataset [135]. Table 2.7 shows that OPT

effectively improves both GCN and PointNet.

(c) Empirical Evaluation on S-OPT. S-OPT is a scalable OPT variant, and we

evaluate its performance in terms of number of trainable parameters and testing er-

ror. Training parameters are learnable variables in training, and are different from

model parameters in testing. In testing, all methods have the same number of model

parameters. We perform classification on CIFAR-100 with CNN-6 and wide CNN-9.

We also evaluate S-OPT with standard ResNet-18 on ImageNet. For S-OPT, we set

the sampling dimension as 25% of the original neuron dimension in each layer. Ta-
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Method
CIFAR-100 ImageNet

CNN-6 Params Wide CNN-9 Params ResNet-18 Params

Baseline 37.59 258K 28.03 2.99M 32.95 11.7M
HS-MHE [86] 34.97 258K 25.96 2.99M 32.50 11.7M

OPT (GS) 33.02 1.36M OOM 16.2M OOM 46.5M
S-OPT (GS) 33.70 90.9K 25.59 1.04M 32.26 3.39M

Table 2.8: OPT vs. S-OPT on CIFAR-100 & ImageNet.

p = Error (%) Params

d OOM 16.2M
d/4 25.59 1.04M
d/8 28.61 278K
d/16 32.52 88.7K
16 33.03 27.0K
3 45.22 26.0K
0 60.64 25.6K

Table 2.9: Sampling dim.

ble 2.8 shows that S-OPT achieves a good trade-off between accuracy and scalability.

More importantly, S-OPT can be applied to large neural networks, making OPT more

useful in practice.

We study how the sampling dimension p affect the performance by performing

classification with wide CNN-9 on CIFAR-100. In Table 2.9, p=d/4 means that we

randomly sample 1/4 of the original neuron dimension in each layer, so p may vary in

different layer. p=16 means that we sample 16 dimensions in each layer. Note that

there are 25.6K parameters used for the final classification layer, which can not be

saved in S-OPT. Table 2.9 shows that S-OPT can achieve highly competitive accuracy

with a reasonably large p.

(d) Large Categorical Training. Previously, OPT is not applied to the final

classification layer, since it makes little sense to fix random classifiers and learn an

orthogonal matrix to transform them. However, learning the classification layer can

be costly with large number of classes. The number of trainable parameters of the

classification layer grows linearly with the number of classes. To address this, OPT
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Oracle CLS-OPT
Figure 2.11: Feature visualization.

can be used to learn the classification layer, because its number of trainable param-

eters only depends on the classifier dimension. To be fair, we only learn the last

classification layer with OPT and the other layers are normally learned (CLS-OPT).

The oracle learns the entire network normally.

We intuitively compare the oracle and CLS-OPT by visualizing the deep MNIST

features following [80]. The features are the direct outputs of CNN by setting the

output dimension as 3. Figure 2.11 shows that even if CLS-OPT fixes randomly

initialized classifiers, it can still learn discriminative and separable deep features.

We evaluate its performance on ImageNet with 1K classes. We use ResNet-18

with different output dimensions (A:128, B:512). Table 2.10 gives the top-5 test error

(%) and “Params” denotes the number of trainable parameters in the classification

layer. CLS-OPT performs well with far less trainable parameters.

Since face datasets usually contain large number of identities [35], it is natural to

apply CLS-OPT to learn face embeddings. We train on CASIA [143] which has 0.5M

face images of 10,572 identities, and test on LFW [51]. Since the training and testing

sets do not overlap, the task well evaluates the generalizability of learned features.

All methods use CNN-20 [81] and standard softmax loss. We set the output feature

dimension as 512 or 1024. Table 2.11 validates CLS-OPT’s effectiveness.
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Method
ResNet-18A ResNet-18B

Error Params Error Params

Oracle 18.08 64.0K 12.12 512K
CLS-OPT 21.12 8.13K 12.05 131K

Table 2.10: CLS-OPT on ImageNet.

Method
512 Dim. 1024 Dim.

Error Params Error Params

Oracle 95.7 5.41M 96.4 10.83M
CLS-OPT 94.9 131K 95.8 524K

Table 2.11: Verification (%) on LFW.
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Chapter 3

Multi-modal Learning on

Vision-and-Language Tasks

3.1 Problem Definition and Challenges

3.1.1 Overview

Multi-modal learning on Vision-and-Language task requires invariant representation

of visual concepts and language semantics, and most importantly, the alignment and

fusion between modalities. We propose a co-learning framework that fuse cross-modal

knowledge and provide an industry-level application on large-scale e-commerce plat-

form. Product attributes, such as brand, color and size, are critical product features

that customers typically use to differentiate one product from another. Detailed

and accurate attribute values can make it easier for customers to find the products

that suit their needs and give them a better online shopping experience. It may

also increase the customer base and revenue for e-commerce platforms. Therefore,

accurate product attributes are essential for e-commerce applications such as prod-

uct search and recommendation. Due to the manual and tedious nature of entering

product information [27], the product attributes acquired from a massive number of
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“Heavy Duty Hand Cleaner Bar Soap, 5.75 oz, 1ct, 8 pk”Title:

Image:

“Ownest 2 Colors Highlighter Stick, Shimmer Cream 
Powder Waterproof Light Face Cosmetics”Title:

Image:

Attribute Value

Item Form Stick

OCR Tokens:  Stick

Visual Feature

Textual Features

(a) Additional modalities provide critical information

Attribute Value

Item Form Powder

(b) Different modalities cross-validates retrieved information

Attribute Value

Brand Bar Soap

Attribute Value

Brand Lava

Results:

Visual Features

OCR Tokens:  Lava

Textual Features

Results:

Our method:

Previous methods:

Our method:

Previous methods:

Figure 3.1: Compared to existing attribute value extraction works which focused on
text-only input features, our approach is able to take extra multi-modal information
(Visual Features and OCR Tokens) from product image as input.

retailers and manufacturers on e-commerce platforms are usually incomplete, noisy

and prone to errors. To address this challenge, there has been a surge of inter-

est in automatically extracting attribute values from readily available product pro-

files [148, 141, 60, 130, 27, 146]. Most of the existing works rely only on the textural

cues obtained from the text descriptions in the product profiles, which is often far

from sufficient to capture the target attributes.

In this work, we propose to leverage the product images in the attribute value

extraction task. Besides the commonly used textural features from product descrip-

tions, our approach simultaneously utilizes the generic visual features and the tex-

tual content hidden in the images, which are extracted through Optical Character
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Recognition (OCR). We studied 30 popular product attributes applicable to different

product categories, including electronics, home innovation, clothes, shoes, grocery,

and health. We observed that over 20% of the attribute values that are missing from

the corresponding Amazon web pages can only be identified from the product images.

We illustrate this with an intuitive example in Figure 3.1. In general, we identified

two main areas where the product images can be particularly useful:

• Additional information: Important cues are sometimes absent in the product

text descriptions. In Figure 3.1(a), the brand of the product is “Lava”, which is

prominently displayed in the product image but not mentioned in the product

title. In this case, OCR could perfectly recover the missing brand from the

product image.

• Cross validation: The product title is likely to contain multiple possible values

for one target attribute and the product image could help in disambiguating the

correct value. In Figure 3.1(b), for the attribute “Item Form”, the product title

contains the word “Stick”, “Cream” and “Powder”. However, both the product

shape and the word “Stick” in the image strongly indicate the correct value

should be “Stick”.

3.1.2 Challenges

Despite the potential, leveraging product images for attribute value extraction re-

mains a difficult problem and faces three main challenges:

• C1: Cross-modality connections: There are many intrinsic associations

between product titles and images. An effective model needs to seamlessly and

effectively make use of information from three modalities, including product

images, texts in the images, and texts from product profiles.
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• C2: Domain-specific expressions: The texts in the product images and

product profiles are usually packed with certain phrases that are unique to a

specific retail domain. For example, “cleaning ripples” in the category of toilet

paper is a special wavy pattern to help with cleaning. “free and clear” in the

category of detergent means that it is scent-free. In general, language models or

word embeddings pre-trained on public corpora are unable to accurately capture

and ground these domain-specific phrases.

• C3: Multiple categories: For the same attribute, there may be little overlap

between the attribute values for different product categories. For example, the

vocabulary for the attribute “size” in T-shirts (i.e., small, median, large, x-

large) is completely different from baby diapers (i.e., newborn, 1, 2, 3, etc.).

Therefore, a model trained on one product category may generalize poorly to

other categories.

Existing solutions for multi-modal information extraction [4, 65, 90, 124, 119] fall

short in the e-commerce domain, as it cannot address challenges C2 and C3. On the

other hand, text extraction solutions that manage to extract attribute values across

multiple product categories [60] are text focused, and the techniques cannot easily be

transferred to image information extraction. A comparison between these models are

summarized in Table 3.1. In this work, we address the central question: how can we

perform multi-modal product attribute extraction across various product categories?

Methods
C1 C2 C3

Text Image OCR Domain Category

BAN[65]
√ √

LXMERT[124]
√ √

LoRRA[119]
√ √ √

OpenTag[148]
√ √

TXtract[60]
√ √ √

Ours
√ √ √ √ √

Table 3.1: Comparison between Different Methods
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3.1.3 Problem Definition

Text

Attributes

Product Category

Text

Figure 3.2: Example of product profiles.

A product profile displayed on an e-commerce website usually looks like Figure 3.2.

A navigation bar (top in Figure 3.2) describes the category that the product belongs

to. Left side is product image and right side are product texts, including a title

and several bullet points. We consider products in a set of N product categories

C = {c1, · · · , cN}; a category can be coffee, skincare, as shown in Table 3.2. We

formally define the problem as follows:

Problem definition: We take as input a target attribute attr and a product with

the following information:

1. a phrase describing the product category;

2. the text in the product profile (i.e., title, bullet points), denoted by a sequence

of M words T = {wtext
1 , · · · , wtext

M };

3. the product image 1.

1we use the first image shown on the website. For certain attributes such as nutrition information,
later images such as nutrition label are used instead.
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Our goal is to predict the value for the target attribute attr. Figure 3.2 displayed a

few such attribute values for a sunscreen product. Specifically, considering the target

attribute “Item Form” shown in Figure 3.2, our objective is to extract the attribute

value “Spray”. If the target attribute is “Brand”, the objective is to extract the

attribute value ’Alba Botanica’.

3.2 Domain-Aware Attribute Extraction Model

3.2.1 Proposed Method
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Figure 3.3: Overview of the proposed framework. 1) Input modalities: Product title
and product image. 2) Token selection: Tokens could be selected from product title,
OCR tokens identified in product image and a dynamic vocabulary conditioned on
the product category. We consider edit distance between candidates and existing
attribute values while selecting the next token. 3) Target sequence: We ask the
decoder to first decode product category, and then decode attribute value.

(a) Overall Architecture. As shown in Figure 3.3, the overall model architecture is

a sequence-to-sequence generation model. The encoder and decoder are implemented

with one transformer, denoted as ”Multi-Model Transformer” in Figure 3.3, where

attention masks are used to separate the encoder and decoder computations from each

other internally. The input from the different modalities and the previously decoded

tokens are each converted into vector representations, the details can be found in
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next section about input representation. These representations are transformed into

vectors of the same dimension, then concatenated as a single sequence of embeddings

that is fed to the transformer. Therefore, an input position in each input modality is

free to attend to other positions within the same modality, or positions from a different

modality. The decoder operates recursively and outputs a vector representation zdect

at the tth step. The decoder output is based on the intermediate representations of

the different encoder layers, along with the embeddings of the previously decoded

tokens zdect−1 at step 0 · · · t − 1, denoted by ”Previous Embeddings” in Figure 3.3. A

token selection module then chooses the token to output at step t based on zdect from

a candidate token set.

(b) Input Representation. The product profile texts are fed into the first three

layers of a BERT model. The outputs of the pre-processing steps are then converted

into three embeddings with the same dimension. The input image is pre-processed

with object detection and OCR recognition. For object detection, the product image

is fed into the Faster R-CNN object detection model [106], which returns bounding

boxes of detected objects, denoted as ”Location” in Figure 2.6, and fixed length vector

representation extracted through RoI-Pooling among each detected region. The OCR

engine provides the detected texts, along with their bounding boxes. We also extract

visual features over each OCR token’s region using the same Faster R-CNN detector.

We experimented with two different OCR solutions: 1) Public Amazon OCR API. 2

2) Mask TextSpotter [77] which is more capable of detecting texts that are organized

in unconventional shapes (such as a circle).

(c) Output Selection. The traditional sequence-to-sequence generation model is

known to suffer from text degeneration [46], in which the decoder outputs repetitive

word sequences that are not well formed linguistically. To fix this problem, the output

2https://aws.amazon.com/rekognition



50

of the decoder in our model is constrained to a set of candidate words. At the tth

decoding step, the decoder can return a token from the product text profile, the

OCR engine, or from an external pre-defined vocabulary. The external vocabulary

is composed of the words from the set of target attribute values, obtained from the

training dataset. It is useful in the cases where 1) the true attribute value is not

mentioned in the product profile or image, 2) the words in the image are not properly

captured by the OCR algorithm, or 3) the true attribute value is implied by the

different inputs (from the product profile and images), but not explicitly mentioned.

An example for the third case is predicting the target age of a “hair clips for young

girl” product, where the target values include “kid”, “teenage”, or “adult” only.

Dynamic vocabulary. The vocabulary of target attribute values could contain

very different words for different product categories. For example, it is unlikely for

sunscreen brands to share common words with coffee brands except for words “com-

pany” or “inc”. Hence for each (product category, attribute type) pair, we pre-identify

a specific vocabulary of frequent attribute value words, denoted by Vi,j for the ith

product category and jth attribute type. We also added the words that appear in

the product category name to the vocabulary. In addition, the word “unknown” is

added to the vocabulary, so the model can output “unknown” when the input product

profile does not contain a value for this attribute. The goal is to capture patterns

for products where the attribute value is not usually conveyed. During the training

process, the model will query the vocabulary Vi,j according to the input product cat-

egory i, which provides a more precise prior knowledge. The vector representation

for each word in Vi,j is obtained with pre-trained fastText [10] embedding. This is

because there are not enough training data in some product categories to compute a

good word representation during the learning process.

Scoring function. The lack of domain-specific embedding hurts the accuracy

of the output token selection module. We therefore utilize the edit distance between
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the candidates and existing attribute values as a supplemental feature. We denote

the edit distance based similarity ratio 3 for specific word token w compared with the

vocabulary Vi,j = {v1, · · · , vL} with L words as:

f e(w) = max
l∈L

similarity ratio(w, vl) (3.1)

With the decoded embedding zdect and the edit distance function f e, we calculate

the final score for candidates from the different modalities as follows, where (3.2),

(3.3), and (3.4) are for tokens in the dynamic vocabulary Vi,j, OCR tokens, and

tokens from product profile texts, respectively.

yvoct,l = (W voczvocl + bvoc)T (W deczdect + bdec) (3.2)

yocrt,n = (W ocrzocrn + bocr)T (W deczdect + bdec) + λf e(wocr
n ) (3.3)

ytextt,m = (W textztextm + btext)T (W deczdect + bdec) + λf e(wtext
m ) (3.4)

If d denotes the dimension of the encoder’s output embedding, then W text, W ocr

and W dec are d×d projection matrices, W voc is a d×300 matrix (300 is the dimension

of the fastText embeddings). ztextm , zocrn are the output embeddings for text tokens and

OCR tokens computed by the encoder, respectively. zvocl is the fastText embedding of

the frequent vocabulary words. btext, bocr, bvoc, bdec are all d-dimensional bias vectors

and λ is the hyper-parameter to balance the score. Finally, the auto-regressive decoder

will choose the candidate tokens with the highest score from the concatenated list

[ytextt,m , yocrt,n , yvoct,l ] at each time step t.

(d) Multi-Task Training. We use the multi-task learning setup to incorporate

the product categories in the overall model. We experiment with two methods of

multi-task training.

3The FuzzyWuzzy ratio implemented in https://github.com/seatgeek/fuzzywuzzy
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Embed the Product Category in Target Sequence. The first multi-task

training method is based on prefixing the target sequence the decoder is expected to

generate during training with the product category name. For example, the target

sequence of product shown in Figure 3.2 would be “sunscreen spray” for attribute

“Item Form” and “sunscreen alba botanica” for attribute “Brand”. The category

name prefix serves as an auxiliary task that encourages the model to learn the cor-

relation between the product category and attribute value. At inference time, the

decoder output at the tth step depends on its previous outputs. But since the ground

truth value of the product category is known, there is no need to depend on product

category estimated by the decoder. We simply replace it with the true product cat-

egory value. We have seen empirically that this modification improves the precision

of the model. Let the target label during the tth decoding step be [ytextt,m , yocrt,n , yvoct,l ],

which takes the value 1 if the token from text, OCR, or external vocabulary is the

correct token and 0 otherwise. More than one token could have label 1 if they are

identical but from different sources. We use the multi label cross entropy loss between

the target label list [ytextt,m , yocrt,n , yvoct,l ] and the predicted score list [ŷtextt,m , ŷocrt,n , ŷvoct,l ]

given by (3.2)-(3.4). The loss function hence contains two term: the loss contributed

by the category name prefix, and the loss contributed by the attribute value in the

target sequence:

Loss = Lossattribute value + λcatLosscategory name prefix (3.5)

where λcat is the tunable hyper-parameter to balance between these two losses.

Auxiliary Task of Category Prediction. The target sequence method is

by no means the only possible design of multi-task training. It is also possible to

introduce a separate classifier f cat(z) to predict the product category. A specific

classification token <CLS> is inserted as the first entity in the input to the encoder.
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Category # Samples # Attr1 # Attr2

cereal 3056 7 631
dishwasher detergent 741 8 114
face shaping makeup 6077 16 926

fish 2517 11 391
herb 6592 19 1220

honey 1526 20 472
insect repellent 994 20 373

jerky 3482 9 475
sauce 4218 10 878

skin cleaning agent 10904 22 3016
skin foundation concealer 8564 17 744

sugar 1438 10 347
sunscreen 5480 26 1295

tea 5719 14 1204

Table 3.2: Dataset Statistics

After concatenating and fusing with the other multimodal contexts in the transformer

encoding layer, the enriched representation zcls corresponding to the classification

token <CLS> will be passed to the feed-forward neural network f cat(z) to predict the

product category.

f cat(z) = softmax(W catzcls + bcat) (3.6)

where W cat and bcat are trainable parameters.

The training of the end-to-end model is jointly supervised by the sequence gener-

ation task and product category prediction tasks as described in (3.7).

Loss = Lossattribute value + λcatLosscat (3.7)

where Losscat is the loss for product category prediction task.

3.2.2 Experiments Results

(a) Dataset. We evaluate our approach on 61,308 samples that cover 14 product

categories. For each product category, we randomly collect the product texts, at-
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tribute values and images from the amazon.com web pages. We split the dataset into

56,843 samples as training/validation set and 4,465 samples as held-out testing set.

The attribute values shown on the web page are used as training label after basic pre

processing, which handle the symbol and morphology issues. The attribute values

labeled by annotators are used as benchmark testing label. Assuming the attribute

type is applicable to the products, if the attribute value information can not be ob-

served from the given product profile (text description, image, OCR tokens), we will

assign “unknown” as the corresponding value. In terms of the target attribute, we

focus on two different types of attribute in the experiments. One of the criteria to

determine the attribute type is the size of the value space. We consider attribute

1 “Item Form” with around 20 values as an attribute with closed vocabulary, and

attribute 2 “Brand” with more than 100 values as an attribute with open vocabulary.

Table 3.2 summarizes the statistics of our dataset, where “# Samples” denotes the

number of samples, “# Attr1” denotes the number of unique values for attribute 1

“Item Form” and “# Attr2” denotes the number of unique values for attribute 2

“Brand”.

(b) Evaluation Metrics. We use Precision, Recall and F1 score as the evaluation

metrics. We compute Precision (denoted as P ) as percentage of “match” value gen-

erated by our framework; Recall (denoted as R) as percentage of ground truth value

retrieved by our framework; F1 score (denoted as F1) as harmonic mean of Precision

and Recall. We determine whether the extraction result is a “match” using the exact

match criteria, in which the full sequence of words are required to be correct.

(c) Baselines. To evaluate our proposed framework, we choose the following models

as baselines: BiLSTM-CRF [53], OpenTag [148], BUTD [3] and M4C [49]. Our

attribute value extraction task is highly related to the visual question answering

tasks. Thus, among the four baselines, BiLSTM-CRF and OpenTag are attribute
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value extraction models, BUTD and M4C are visual question answering models. Some

variants of our model and baselines are also included to make fair comparison on input

sources. The details of baselines are listed below:

• BiLSTM-CRF [53]: the hidden states generated by the BiLSTM model are

fed into the CRF as input features, the CRF will capture dependency between

output tags. Text modality is used in this model.

• OpenTag [148]: on top of the BiLSTM-CRF, attention mechanism is introduced

to highlight important information. Text modality is used in this model.

• BUTD [3]: Bottom-Up and Top-Down (BUTD) attention encodes question with

GRU [20], then attends to object region of interest (ROI) features to predict

answer. Text and Image modalities are used in this model.

• M4C [49]: cross-modality relationships are captured using multimodal trans-

former, the model will then generate the answer by iterative sequence decoding.

Text, image and OCR modalities are used in this model. The answer could be

selected from OCR tokens and frequent vocabulary.

• M4C full: to accommodate to the attribute value extraction task in e-commerce

applications, extra input source of product title are added directly in the de-

coding process. Text, image and OCR modalities are used in this model. The

answer could be selected from product title, OCR tokens and frequent vocabu-

lary.

• PAM text-only: the text-only variant of our framework, image visual features

and OCR tokens extracted from the product image are excluded from the input

embeddings. Text modality is used in this model.

(d) Comparison between Model Architectures. We first show the performance

comparisons between our approach, baselines and some variants on two different
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attributes “Item Form” and “Brand” in Table 3.3. As can be seen from these com-

parison results, PAM could consistently outperform the other baseline methods on

Recall and F1 score. For example, for the “Item Form” attribute, the Recall of

PAM increases by 15% compared with the text-only variant of PAM and increases

by 22% compared with the M4C model. For the “Brand” attribute, the Recall of

PAM increases by 5% compared with the text-only variant of PAM and increases by

15% compared with the M4C model. Note that PAM could achieve higher score on

all metrics compared with the M4C full variant (full access to all modalities in the

decoding process), which demonstrate the effectiveness of our task-specific designs on

the framework. There are two main reasons contribute to these improvements: 1)

PAM utilizes rich information from naturally fused text, image and OCR modalities

that could significantly improve Recall. These three modalities could help each other

by providing important cues while information might be missing in specific modality.

2) PAM utilizes product category inputs in the decoding process. Attribute value

is highly related to product category. By considering such crucial information, our

model is able to learn enriched embeddings that could discriminate targeted attribute

values from distracting values that belong to other product categories.

(e) Ablation Study. In order to quantify the impact of each modality, we further

conduct ablation study on the input sources. We evaluate following variants of PAM:

• PAM w/o text is the variant that removes product texts modality from inputs.

• PAM w/o image is the variant where features of detected objects are removed

from inputs.

• PAM w/o OCR is the variant that removes the OCR tokens from inputs.

From Table 3.4 we can see that all the metrics on the attribute ‘Item Form’ degrade by

removing any modality from the PAM framework, which demonstrates the necessity
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Attributes Models P(%) R(%) F1(%)

Item Form

BiLSTM-CRF 90.8 60.2 72.3
OpenTag 95.5 59.8 73.5
BUTD 83.3 53.7 65.3
M4C 89.4 52.6 66.2
M4C full 90.9 63.4 74.6
PAM (ours) text-only 94.5 60.1 73.4
PAM (ours) 91.3 75.3 82.5

Brand

BiLSTM-CRF 81.8 71.0 76.1
OpenTag 82.3 72.9 77.3
BUTD 79.7 62.6 70.1
M4C 72.0 67.8 69.8
M4C full 83.1 74.5 78.6
PAM (ours) text-only 81.2 78.4 79.8
PAM (ours) 86.6 83.5 85.1

Table 3.3: Comparison between proposed framework PAM and baselines

of combining all the modalities in our attribute extraction task. Closer inspection on

the table shows that the text modality plays the most important role in this task. On

the other hand, the image modality which represents the appearance of the product

might be less effective compared to the other two modalities. The first possible

reason is that the image could contain noisy information. In addition, similar shape

of product might have different semantic meanings among various product categories.

Finally, different attribute types also affect the performance, image modality could

contributes more if the attribute type is related to color or obvious shape.

We also conduct experiments by removing each individual model design compo-

nent from our framework to evaluate its effectiveness. The variants are listed below:

• PAM w/o target sequence is the variant that will generate attribute value with-

out first generating the product category name.

• PAM w/o dynamic vocabulary is the variant that uses a large vocabulary of

words shared by multiple categories instead of a dynamic vocabulary condi-

tioned on product category.
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Models P(%) R(%) F1(%)

PAM w/o text 79.9 63.4 70.7
PAM w/o image 88.7 72.1 79.5
PAM w/o OCR 82.0 69.4 75.1

PAM 91.3 75.3 82.5

Table 3.4: Usefulness of Image, text, OCR inputs

Models P(%) R(%) F1(%)

PAM w/o target sequence 88.5 72.9 80.0
PAM w/o dynamic vocabulary 89.1 69.5 78.1

PAM 91.3 75.3 82.5

Table 3.5: Impact of different components in the model

Table 3.5 presents the extraction results on the “Item Form” attribute. Without the

category specific vocabulary set, the model has to search on a much larger space for

possible attribute values. The target sequence could enforce the category information

via back-propagation loss. It is apparent from the results that these two category

modules contribute to the final gains on Recall/F1 score.

Our approach is able to accommodate various product categories in one model. In

order to verify such generalization ability on single category, we perform the category-

level individual training tasks using the following baselines:

• OpenTag[148]: the setting is the same as described in Section 3.2.2 (c), except

the training and evaluation are performed on single product category.

• Word Matching (WM): this is a brute-force matching baseline. 1) all the pos-

sible attribute values will be collected as attribute value dictionary ({“value” :

count}), the count represents the popularity of corresponding attribute value;

2) manually exclude some distracting words like “tea” from the dictionary of

the “tea” product category; 3) extract title tokens and OCR tokens for each

sample; 4) compare the extracted tokens with attribute value dictionary in a

popularity ascending sequence; 5) identify the attribute value if exact match is
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OCR Detectors average # OCR tokens extracted F1(%)

Mask TextSpotter 13 71.1
Amazon Rekognition 42 80.3

Table 3.6: Impact of OCR component on model performance
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Figure 3.4: Comparison between different methods on a single product category.

found in the attribute value dictionary. This baseline method does not require

training, it is evaluated on the testing data directly.

For the purpose of performing category-level individual training, we choose three

categories that contain enough number of samples: skin cleaning agent, sunscreen

and tea. Figure 3.4 demonstrates the comparison of two baselines and our model on

single category. Our method consistently improves the extraction metric. Although

the WM baseline could also produce a good F1 score for “skin cleaning agent”, it

requires manual efforts to create a good list to exclude words that are impossible to

appear in attribute values, which is expensive to scale up to many product categories.

Under the single category settings, we also implement experiments to evaluate the
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impact of the external OCR components on end-to-end performance. As introduced

in Section 3.2.1, we use Amazon Rekognition and Mask TextSpotter to extract OCR

tokens from the product image. F1(%) is the extraction performance on attribute

Item Form and category Sunscreen of using corresponding detectors. It can be seen

from Table 3.6 that Rekognition is more suitable for our task. This is because Mask

TextSpotter is trained on a public dataset that is different from the product image

dataset. Therefore, Rekognition on average identifies more OCR tokens and hence

lead to better end-to-end F1 scores.

3.2.3 Conclusions

To sum up, we explored a multimodal learning task that involves textual, visual and

image text collected from product profiles. We presented a unified framework for the

multimodal attribute value extraction task in the e-commerce domain. Multimodal

transformer based encoder and decoder are used in the framework. The model is

trained to simultaneously predict product category and attribute value and its output

vocabulary is conditioned on the product category as well, resulting in a model capable

of extracting attributes across different product categories. Extensive experiments

are implemented on a multi categories/multi attributes dataset collected from public

web page. The experimental results demonstrate both the rich information contained

within the image/OCR modality and the effectiveness of our product category aware

multimodal framework.

For future works, pre-training task from [142] could be useful in our attribute

value extraction scenario. It is also valuable to scale from 14 product categories

to thousands of product categories and model the complex tree structure of product

categories properly [60]. The dynamic selection of vocabulary in this framework could

be incorporated into the training process as in the RAG architecture [69]. Finally, it

is useful to design a model that extracts different attributes with one model in which
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case the attribute generation order could be part of the learning process too [28].
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Chapter 4

Multi-modal Learning with

Pre-training Tasks on Healthcare

Data

4.1 Introduction

Deep neural networks have made tremendous success in solving increasingly complex

real-life problems, which often involve different modalities. Due to the powerful repre-

sentation learning ability and high performance computing resources, deep learning-

based multimodal representation learning has attracted much attention. Such learn-

ing method needs to be able to integrate and fuse multimodal signals together and

narrow the heterogeneity gap among various modalities.

In recent years, with the advancement of the efficient monitoring wearable devices

and the adoptions of electronic health record (EHR) in hospitals, there has been an

increased focus on developing multimodal representation learning for processing the

medical signals. Comprehensively utilizing these rich and diverse signals will benefit

the medical services in many ways, application scenarios in the healthcare system

include real-time monitoring and surveillance on specific symptom, early detection
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for certain disease and providing timely suggestions on necessary medication and

measurement.

Despite the potentials, multimodal representation learning on medical signals

presents several challenges. Symptoms and diseases are usually complicated and

multi-factorial. Multiple overlapping diseases might affect different signals simul-

taneously. Thus, fusing information from multimodal signals is especially crucial

for healthcare applications due to the underlying causal correlations between EHR

data, sensor signals and other structured data, including the vital signals, laboratory

values, demographic information, medications and clinical notes. In addition, such

multimodal signals conveys different aspects of human physiology and might have dif-

ferent features, format and frequency. For example, the wearable electronic sensors

provides high-frequency measurement on user’s heart rate, while some important lab

results related to serum creatinine are measured on much lower frequency since it

requires blood samples from patients. Appropriate representation tailored for each

single modality are required to accurately combine multimodal information. The final

challenge is the alignment between multiple modalities. It is very usual that specific

modality has worse resources compares to others. Common issues include unreliable

labels, sparse and noisy input, and lack of annotated data. By exploiting and learning

knowledge from other modalities belong to same instance during the training process,

it is possible to bridge modalities and improve overall performance.

Most approaches on multimodal fusion for medical signals can be classified into

two categories: (1) early fusion. Signals from different modalities are pre-processed

and concatenated in the early phrase. Features are extracted from such combined

signals and feed into the downstream task like classification. This method requires

innovations in sensor synchronization, buffering, denoising and data normalization.

(2) late fusion. Raw signals from each sensors are featurized separately and then

fused for downstream task. Such fusion method requires feature selection and feature
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normalization to handle different time spans and signal scales. In addition, these

separate features can be fused in different ways, such as naive concatenating before

classifier, adding extra classifier for each modality and applying majority voting.

In this work, we propose a new framework that can intelligently fuses multi-

sensor and multi-source data in an attention-based halfway manner. Specifically, we

investigate the transformer encoder-decoder network with attention mechanisms for

more powerful intra-modality modeling. Features are first extracted from raw sensor

data using corresponding model (e.g. Gated Recurrent Unit (GRU) [19] for temporal

signals) and projected into a common embedding space. The list of projected features

is fused halfway using a stack of multi-modal transformer layers. Unlike existing

works on multi-modal fusion, through the multi-head self-attention mechanism in our

transformer layers, each entity is able to freely attend to all other entities, regardless

of whether they are from the same sensor or not. This property enables modeling

both inter- and intra- modality relations in a homogeneous way through the same set

of transformer parameters.

4.2 Proposed Method

4.2.1 Problem Formulation

We formulate the proposed framework with clinical multi-sensor application in the

multimodal representation learning settings. Assuming we have temporal sensor

data in our data cohorts and data instances have medical signals with various time

length. A maximum length T is pre-defined for all modalities. Instances with shorter

length will get zero-pad up to the maximum length T . Corresponding data mask

Mpad = {m0,m1, · · · ,mT} is set to 1 for timestamps with real values and 0 for

timestamps with paddings. We initially have multiple raw data with time length

T from N different sensors: X0 = {x0
0, x

0
1, · · · , x0

T}, X1 = {x1
0, x

1
1, · · · , x1

T} and
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Figure 4.1: An overview of the Multi-Sensor Fusion Framework

XN = {xN
0 , x

N
1 , · · · , xN

T }.

We consider the following two types of clinical prediction applications. The pre-

diction here refers to classification task or real-value regression task. In this work, we

mainly focus on classification task. (1) one-time classification. Given the entire multi-

modal trajectory of instance, the model is required to make the one-time final predic-

tion. We consider 1 label y for each instance. Such label could be [positive, negative]

as the event indicator for certain disease / symptom. (2) real-time classification. To

fulfill the needs on applications like real-time monitoring and healthcare surveillance.

The model should be able to make real-time prediction given consecutive window

(window size varies from 1 to T ) of multi-sensor signals. For each instance, we con-

sider T labels Y = {y0, y1, · · · , yT} corresponds to event on each timestamp. We

further consider a prediction horizon with time interval τ . The label at time t is set

to positive if disease / symptom occurs within the next time interval τ and set to

negative otherwise.

4.2.2 Multi-Sensor Fusion Framework

Most existing fusion methods simply concatenate features in the early fusion manner

or generate ensemble prediction results in the late fusion manner. We propose a more
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flexible fusion framework for healthcare applications with multisensor data. Figure

4.1 shows the overview of our framework. As we mentioned earlier, there are three

major challenges while ingesting the multi-sensor multi-source clinical EHR data:

representation, fusion and alignment.

In order to get appropriate representation from the multi-sensor raw data, we

construct the embeddings in the following two steps: (1) Construct input sequence.

To capture the underlying temporal pattern for each modality that contains timeseries

data, we use the GRU model to extract embeddings with hidden size d from the raw

data collected by sensors. On the other hand, the structured data are projected into

the same d-dimensional space using learned linear layers. These extracted multi-

sensor features are grouped in modality and concatenated as the “input sequence”

we denoted in Figure 4.1 (2) Add various heads. The first steps could also be viewed

as the construction of extraction head. To incorporate our downstream task, in

addition to the “input sequence”, we add the classification head at the begin and

decoder head at the end. The classification head contains the <CLS> token, the final

embedding correspond to this position can be used in classification task. The decoder

head consumes concatenated information from all modalities. The rich information

is denoted as x̂t = [x0
t , x

1
t , · · · , xN

t ]. The GRU model is again used here to extract

embeddings for entities in decoder.

To handle the second challenge fusion, we utilize the Multi-Sensor Transformer as

the attention-based fusion module. For our setting that contains N modalities and

each modality has maximum sequence T , the Multi-Sensor Transformer is a stack of L

transformer layers [126] with hidden size d and input length 1+T ∗(N+1). In this way,

all entities will be fused halfway in the self-attention layers. By adopting appropriate

masking pattern, such attention mechanism provides a much flexible inter- and intra-

fusion. Specifically, before feeding the embeddings into the transformer stacks, we

apply a shared positional embedding on each modality and the decoder with T as
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embedding number and d as embedding dimension. The positional embedding is

important as it provides the time signal for each entity in our framework. Layer

normalization (LN) [6] is added to ensure the same scale of original and positional

embeddings. To enhance the alignment among multiple sensors, we propose several

Pre-training tasks illustrated in Section 4.3.

Depends on the downstream task, our framework has two variants: one-time classi-

fication and real-time classification. The overall settings are similar. For the one-time

variant, the downstream classification task will take the pooled output corresponds

to the <CLS> token as the input feature. We use feed forward neural network (FFNN)

and binary cross entropy (BCE) loss to perform the classification task. While the

real-time variant will use fused embedding generated by decoder head as the input

feature, and perform classification task on each timestamp. Another important dif-

ference between these two variants is the masking pattern, which determines the

attention-based fusion mechanism in the Multi-Sensor Transformer. The details are

illustrated in Section 4.2.3.

4.2.3 Fully-Visible vs. Causal-Prefix Masking Pattern

By comparing the one-time classification and real-time classification variants, the

“mask” applied in the self-attention mechanisms is the major distinguishing factor in

our framework. As illustrated in [126], the self-attention in our multi-sensor trans-

former can be described as mapping a query and a set of key-value pairs to an output.

The output is computed as a weighted sum of the values, where the weight assigned to

each value is computed by a compatibility function of the query with the correspond-

ing key. The entire process takes a sequence as input and outputs a new sequence

of the same length. We use our notation introduced in Section 4.2.1 to denote the

input entities and zt to denote the output entities. In addition to our data mask Mpad

for unified sequence length, the attention mask Matt built upon it is used to zero
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out certain weights assigned on corresponding positions to constraint the interactions

with other entities in the input.

Most of the encoder architecture considers Fully-Visible mask, which allows every

entity to attend over all positions in the input. While making a one-time prediction,

our model and especially the <CLS> token appended before the input sequence should

have the access to all the information within the time interval. Thus, the Fully-Visible

masking pattern is applied in our one-time classification setting.

In terms of the decoder architecture, when producing the entities of the out-

put sequence, the causal masking pattern is adopted in the training process to

prevent the information leakage from the future. Specifically, causal masking pat-

tern generates triangle mask minput index,output index where the mask is set to zero if

input index > output index. Recall that our encoder and decoder are concatenated

and share the same multi-sensor transformer layers, so we need to further combine

the prefix masking pattern proposed in [103] to ensure causality in decoding. To

summarize, in our real-time classification setting, we apply the Causal-Prefix mask-

ing pattern. As shown in Figure 4.2, we take input entities with two modalities as the

example to illustrate the attention mask. For inter- and intra- modality attention, we

apply the causal mask on blocks to ensure the outputs on timestamp t cannot attend

to any entity in future timestamps. For encoder and decoder separation, we apply the

prefix mask to ensure the multimodal signals cannot attend to any decoding steps,

and the decoding steps at timestamps t can only attend to previous decoding steps

in addition to previous multimodal signals. The visibility in the self-attention layer

among input entities is further visualized in Figure 4.3.
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Figure 4.2: Causal-Prefix masking pattern. Black cell represents 1 in the mask,
m0,0 = 1 means the attention mechanism is allowed to attend to the input entity x0

0

while producing the output entity z00 . White cell represents 0 in the mask, m0,1 = 0
indicates the attention is not allowed to attend to the future input entity x0

1 for z00 .

4.3 Multimodal Pre-training Tasks

4.3.1 Masked Imputation on Each Modality (MIM)

Missing and sparse values are very common in the clinical data due to intentional and

unintentional reasons. Such missingness could result in biased prediction and quality

degradation on the model. To handling missing data, the simple approach sample-

and-hold is applied on the data cohort as the common pre-processing technique. We

aim to recover the missing information through the first Pre-training task Masked

Imputation on Each Modality (MIM). We randomly mask each entity in the input

sequence before feed into the multi-sensor transformer with a probability of 15%.

Specifically, the masked entities are replaced with pre-defined <MASK> tokens, other



70

𝑥!! 𝑥"! 𝑥#! 𝑥!" 𝑥"" 𝑥#" 𝑦! 𝑦" 𝑦#

𝑧!! 𝑧"! 𝑧#! 𝑧!" 𝑧"" 𝑧#" 𝑧! 𝑧" 𝑧#

Figure 4.3: Visibility in the self-attention layer among input entities. The cells
grouped with same color represents same modality, while the last group represents
the decoding part. Dark lines correspond to intra modality visibility and grey lines
correspond to inter modality visibility.

random entities and remain unchanged for the probability of 80%, 10% and 10%

respectively. The MIM takes the fused feature after multi-sensor transformer at these

masked positions as the input, and aims to recover the original value with continuous

regression task using two fully-connected layers and mean squared error.

4.3.2 Contrastive Matching through Modality Replacement

(MMR)

In order to build connections among multiple modalities in a group-wise manner, we

propose the second Pre-training task Contrastive Matching through Modality Re-

placement (MMR). MMR first randomly select one target modality for each instance,

with the probability of 50%, the entire modality is replaced with corresponding modal-

ity from a randomly-selected instance in the training dataset. The polluted modality

is thus not paired with the rest modalities. The MMR takes the entire output se-

quence from multi-sensor transformer as the input features and aims to predict if the
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Figure 4.4: Illustration of the data augmentation in Pre-training task MDA

sequence has been polluted or not with binary classification task.

4.3.3 Unsupervised Matching through Data Augmentation

(MDA)

Inspired by the contrastive learning framework [16], we design the third Pre-training

task Unsupervised Matching through Data Augmentation (MDA) to group similar

instances. The basic idea of contrastive learning is to pulling together positive pairs

and pushing away negative pairs. For each randomly sampled mini-batch B with

batch size N during the training phase. As shown in Figure 4.4, we take the first

instance xi = B[0] as our base sample. The rest instances within this batch xj ∈ B[1 :]

are considered as negative samples compares to base sample. We duplicate the base

sample as the extra positive sample x̄i that can be appended to the batch later. In

order to further construct the positive and negative pairs in an unsupervised manner.

We add two kinds of data augmentation as follows.

Input-level Masking. The model should be robust to the sparse and noisy clinical

data. Assuming there are errors, missing values on parts of the temporal data, the

extracted underlying temporal patterns should be consistent. We simulate this sce-

nario by applying <MASK> tokens on the extracted temporal feature before feeding it

into the multi-sensor transformer. With the probability of 10%, we randomly replace

entities with <MASK> tokens among the input sequence of positive samples x̄i.

Feature-level Dropout. We append the positive sample x̄i to the current mini-
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batch during the training process. Through the dropout modules in the multi-sensor

transformer, even the identical instance would generate augmented views of input

data. The representation would be slightly different due to the default dropout lay-

ers. We leverage this property and encourage the positive pairs f(xi), f(x̄i) to obtain

similar embeddings compares to the negative pairs f(xi), f(xj) by applying the fol-

lowing cross-entropy objective [15, 42, 30] for N pairs within this mini-batch.

L = −log
exp(sim(f(xi), f(x̄i))/τ)∑N
j=1 exp(sim(f(xi), f(xj))/τ)

(4.1)

where sim(. , .) denotes the cosine similarity and τ denotes the temperature

parameter.

4.4 Applications and Experiments

4.4.1 Clinical Applications and Data Cohorts

We evaluate our framework on two challenging clinical datasets. Both datasets con-

tain multi-source EHR timeseries data and structured data. The pre-processing steps

are similar. The datasets are standardized (subtracted by mean and divided by

standard deviation, both measured on training set) to specified granularity and rep-

resented as numerical timeseries. Structured data are duplicated and appended to

each hour of the series. For handling missing data, sample-and-hold approach is used

in all the datasets. We consider specific applications for each dataset. Real-time and

one-time classification tasks are incorporated accordingly.

Physionet Sepsis Dataset. Sepsis is a potentially life-threatening condition that

occurs when the body’s response to an infection damages its own tissues. We use

the public “Early Prediction of Sepsis from Clinical Data” [107] on PhysioNet [32] as

the first dataset. The Physionet Sepsis dataset is obtained from three geographically
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distinct U.S. hospital systems with three different electronic medical record systems:

Beth Israel Deaconess Medical Center, Emory University Hospital and unidentified

hospital system. The public dataset contains 40,336 Patients with hourly sepsis la-

bel determined by Sepsis-3 clinical criteria [114, 118, 115]. In particular, the data

contained 40 clinical variables: 8 vital sign variables, 26 laboratory variables, and 6

demographic variables. Altogether, these data included over 2.5 million hourly time

windows and 15 million data points. Specifically, we have the following details related

to our framework:

• Statistics: Sepsis prevalence is 7.26%. The patients have minimum stay of 8

hours and maximum stay of 336 hours. 85% of patients have length of stay less

than 50 hours. Thus, we set the maximum length T = 50 and truncate the data

with the latest 50 hours.

• Modalities: We consider the 8 vital signs as separate modality, the laboratory

variables are grouped as one modality, and finally the structured demographic

serves as the last modality.

• Task: We aim to predict the binary Sepsis label at each timestamp for the

patients. The real-time classification variant of our framework is adopted in

this dataset.

Girasoles Sensor Dataset. The health effects of environmental heat exposure, the

most significant cause of weather-related mortality in the U.S. [91], are critical public

health issues. Heat-related illness (HRI) is entirely preventable and is also treatable

provided it is detected in a timely manner. Heat exposure invokes multiple modes of

physiological response, and thus multiple sensors are necessary to better understand

these acute health effects. In addition, a growing body of evidence indicates that

repeated instances of these health effects resulting in acute kidney injury (AKI) may

lead to longer term effects on kidney function. Emory University has launched pilot
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study examining the physiological response to heat exposure in agricultural workers

using multiple sensors. The Girasoles Sensor dataset captured 4,000 hours of core

body temperature (using the CorTemp pill and receiver), heart rate (using the Polar

belt sensor), motion activity (using the Actigraph), and occurrence of AKI and dehy-

dration among 254 agricultural workers. The AKI is measured by serum creatinine in

blood sample and urine sample using KDIGO guideline [64]. The severe dehydration

is measured by the urine sample if urine specific gravity (USG) is greater than 1.030.

The related details are listed below:

• Statistics: AKI ratio is 9.71%. severe dehydration ratio is 9.84%. Due to

the limited number of agriculture workers in the dataset and the high fre-

quency property (per minute) of each worker’s data. After splitting workers

for train/test purpose, we randomly sampled consecutive windows of 50 min-

utes duration and generated 21,361 training data and 5,371 testing data. The

maximum length T is set to 50.

• Modalities: We consider the “core temperature”, “heart rate”, “vector mag-

nitude” and “steps” as 4 separate modality with timeseries data. The demo-

graphics is also considered as separate modality with structured data.

• Tasks: We aim to perform the one-time classification to predict the occurrence

of AKI and dehydration (denoted as USG). In addition, in order to announce

the high temperature warning in a timely manner, we design an extra task to

predict whether the individual’s core body temperature will exceed 38.0◦C in

the next 10 minutes. The real-time classification is applied in the last task.

4.4.2 Experiment Settings

Baseline Models. We evaluate the performance of our framework by comparing

against two baseline models: (1) early fusion baseline, multi-sensor data are con-
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catenated together and features are then extracted by the GRU model. (2) late

fusion baseline, features from each sensor are extracted by exclusive GRU model sep-

arately and then concatenated before feed into classifier. These two baseline adopt

the FFNN+softmax module used in our framework as classifier. Depends on the type

of downstream task, the final hidden state or the packed sequence output features

from last layer of the GRU will be used accordingly.

Model Architecture. We use unidirectional GRU to avoid leaking information

from future timestamps. The hidden size of GRU and the linear layer in the feature

extraction phase is determined by the embedding space of Multi-Sensor Transformer.

We use L = 4 stacks of transformer layers. We explore the BERT miniatures of Mini,

Small, Medium and Base. Since the gains on larger model is very limited, we decide

to follow the transformer settings as in BERT-Mini. Specifically, we set d = 256

as the dimensionality of the joint embedding space, the transformer has 4 attention

heads.

Configurations. We use batch size of 64 during training. The model is trained using

the Adam optimizer with initial learning rate 1e− 4. Since we have class imbalance

issues in our dataset. We use accuracy, macro AUROC and micro AUROC as our

evaluation metric.

4.4.3 Experiment Results

In this section, we show the experiment results of our model on different tasks in

Table 4.1-4.4. Note that we add a setting of partial data to simulate the common

pre-training scenario, where the pre-training task have access to large data corpus.

Specifically, the model is pre-trained on full size dataset and fine-tuned on downstream

task with partial dataset.

Compares to baseline. Our framework perform significantly better than the base-

line models in terms of the most important metric macro AUROC on all the down-
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Dataset Size Models Accuracy macro AUC micro AUC

Full Size

early fusion 0.9579 0.8368 0.9938
late fusion 0.9575 0.8229 0.9933
Train from Scratch 0.9631 0.8582 0.9945
MIM + fine tune 0.9654 0.8666 0.9949
MMR + fine tune 0.9663 0.8519 0.9943
MDA + fine tune 0.9651 0.8558 0.9943

10% Size

early fusion 0.9489 0.7570 0.9905
late fusion 0.9543 0.7403 0.9904
Train from Scratch 0.9512 0.7645 0.9912
MIM + fine tune 0.9542 0.8059 0.9927
MMR + fine tune 0.9484 0.7649 0.9910
MDA + fine tune 0.9551 0.7745 0.9915

1% Size

early fusion 0.9537 0.6524 0.9827
late fusion 0.9494 0.6627 0.9875
Train from Scratch 0.9531 0.7340 0.9901
MIM + fine tune 0.9435 0.7823 0.9917
MMR + fine tune 0.9549 0.7367 0.9902
MDA + fine tune 0.9540 0.7494 0.9907

Table 4.1: Results on the PhysioNet Sepsis prediction task.

stream tasks. Especially for the 1% partial data setting in the PhysioNet Sepsis

prediction task, by applying our pre-training task MIM, the framework achieves 0.13

improvement on the AUROC compares to early fusion baseline. More interestingly,

our method could outperform baseline models even if the training data is only 10%

of baseline’s training data.

Pre-training vs. Train from Scratch on full dataset. We observe that the pre-

training task provides relatively low improvement on macro AUROC on most tasks

with full size. Moreover, the MMR sometimes will even hurt the performance. This

result suggests that our pre-training task is more suitable for the large pre-training

corpus and limited fine-tuning data scenario. When the MMR is pre-trained and fine-

tuned on same data size, the pre-training might be a distraction to the downstream

task. This observation coincides with [93].
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Dataset Size Models Accuracy macro AUC micro AUC

Full Size

early fusion 0.9205 0.6177 0.9360
late fusion 0.9169 0.6230 0.9349
Train from Scratch 0.8304 0.7073 0.8940
MIM + fine tune 0.8354 0.7296 0.8954
MMR + fine tune 0.8270 0.6926 0.9226
MDA + fine tune 0.8458 0.7122 0.9209

10% Size

early fusion 0.9177 0.5745 0.9275
late fusion 0.9207 0.5956 0.9313
Train from Scratch 0.7497 0.6489 0.8422
MIM + fine tune 0.9035 0.6989 0.9407
MMR + fine tune 0.8095 0.6532 0.8854
MDA + fine tune 0.8704 0.6634 0.9206

1% Size

early fusion 0.8601 0.5711 0.9222
late fusion 0.8931 0.5710 0.9188
Train from Scratch 0.8588 0.6083 0.9251
MIM + fine tune 0.7940 0.6624 0.8973
MMR + fine tune 0.8892 0.6294 0.9357
MDA + fine tune 0.8637 0.6573 0.8840

Table 4.2: Results on the Girasoles Sensor AKI prediction task.

4.4.4 Conclusions

Unlike most existing works on multi-sensor representation learning for the clinical

temporal data. We propose a novel multi-sensor framework that could fuse infor-

mation in an attention-based halfway manner. We further provide pre-training task

specifically designed for healthcare applications. Extensive experiment results vali-

date the effectiveness of our framework and the necessity of the pre-training tasks.

We observe the potential of the pre-training tasks on large data corpus, it is valuable

to extend our work to public MIMIC-III [59] and eICU [100], as well as the validation

on new fine-tuning tasks from these two datasets.
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Dataset Size Models Accuracy macro AUC micro AUC

Full Size

early fusion 0.9035 0.6737 0.9336
late fusion 0.9032 0.6614 0.9314
Train from Scratch 0.8823 0.7444 0.941
MIM + fine tune 0.8987 0.7540 0.9472
MMR + fine tune 0.8901 0.7228 0.9408
MDA + fine tune 0.8857 0.7260 0.9398

10% Size

early fusion 0.9032 0.6486 0.9257
late fusion 0.9032 0.6516 0.9297
Train from Scratch 0.9032 0.6631 0.9317
MIM + fine tune 0.8927 0.6875 0.9338
MMR + fine tune 0.8866 0.6683 0.9297
MDA + fine tune 0.8790 0.6828 0.9319

1% Size

early fusion 0.9020 0.5817 0.9175
late fusion 0.9032 0.5740 0.9161
Train from Scratch 0.9002 0.5908 0.9190
MIM + fine tune 0.8929 0.6125 0.9224
MMR + fine tune 0.8663 0.5997 0.9134
MDA + fine tune 0.9026 0.6046 0.9215

Table 4.3: Results on the Girasoles Sensor USG prediction task.

Dataset Size Models Accuracy macro AUC micro AUC

Full Size

early fusion 0.9258 0.9740 0.9909
late fusion 0.9444 0.9774 0.9922
Train from Scratch 0.9489 0.9812 0.9936
MIM + fine tune 0.9503 0.9822 0.9938
MMR + fine tune 0.9453 0.9772 0.9922
MDA + fine tune 0.9431 0.9804 0.9931

10% Size

early fusion 0.9082 0.9466 0.9788
late fusion 0.9246 0.9609 0.9864
Train from Scratch 0.9198 0.9617 0.9863
MIM + fine tune 0.9329 0.9752 0.9905
MMR + fine tune 0.9292 0.9693 0.9890
MDA + fine tune 0.9321 0.9725 0.9897

1% Size

early fusion 0.8147 0.8548 0.9502
late fusion 0.8160 0.8636 0.9522
Train from Scratch 0.8689 0.9070 0.9678
MIM + fine tune 0.9147 0.9509 0.9830
MMR + fine tune 0.8374 0.9109 0.9648
MDA + fine tune 0.8716 0.9296 0.9732

Table 4.4: Results on the Girasoles Sensor Core Temperature prediction task.
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Chapter 5

Conclusions and Future Works

The concept of representation learning ties many domains of deep learning, including

convolutional neural network, recurrent network, encoder-decoder network and trans-

former based network, all exploring and exploiting the learned representations. To

summarize, in this thesis we explore the deep representation learning in both single

and multiple modalities.

For the single-modal representation learning, we draw inspiration from a well-

known problem in physics – Thomson problem, where one seeks to find a state that

distributes N electrons on a unit sphere as evenly as possible with minimum po-

tential energy. In light of this intuition, we reduce the redundancy regularization

problem to generic energy minimization, and propose a minimum hyperspherical en-

ergy (MHE) objective as generic regularization for neural networks. We also propose

a few novel variants of MHE, and provide some insights from a theoretical point of

view. Finally, we apply neural networks with MHE regularization to several chal-

lenging tasks. Extensive experiments demonstrate the effectiveness of our intuition,

by showing the superior performance with MHE regularization. In addition, how

to effectively train a neural network is of great importance. We further propose a

novel orthogonal over-parameterized training (OPT) framework that can provably
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minimize the hyperspherical energy which characterizes the diversity of neurons on

a hypersphere. By maintaining the minimum hyperspherical energy during training,

OPT can greatly improve the empirical generalization. Interestingly, OPT reveals

that learning a appropriate coordinate system for neurons is crucial to generalization.

Extensive experiments validate the superiority of OPT over the standard training.

For the multi-modal representation learning, we propose a new use of attention

over different modalities. We explore the multimodal learning framework that involves

visual and textual data, structured data, as well as the timeseries data. We conduct

comprehensive experiments to demonstrate the effectiveness of our framework. Learn-

ing the best possible representation from multi-modal data remains challenging and

requires a lot of future works. We propose the Multi-Sensor Fusion Framework in

Chapter 4, which processes and fuses multi-sensor multi-source directly. In addition,

we design three pre-training task for clinical data and subsequent tasks. The pre-

training method is the key component for many successful machine learning models.

It would also be particularly useful for many healthcare applications where task-

specific data is limited. However, the gain we observed on the pre-training task is

limited in some settings of our experiments. In particular, while the model has the

access to full size dataset, the pre-training task would even hurt the performance.

One limitation we suspect is the size of data corpus we used, large-scale corpus is

extremely helpful for the pre-training task. We plan to leverage larger public dataset

for pre-training and incorporate more challenging tasks in our experiments.
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