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Abstract

The Artin-Schreier Theorem in Galois Theory

By Yining Cheng

We first list and state some basic definitions and theorems of the Galois theory of
finite extensions, as well as state and prove the Kummer theory and the Artin-Schreier
extensions as prerequisites. The main part of this thesis is the proof of the Artin-
Schreier Theorem, which states that an algebraic closed field having finite extension
with its subfield F has degree at most two and F must have characteristic 0. After the
proof, we will discuss the applications for the Artin-Schreier Theorem.



The Artin-Schreier Theorem in Galois Theory

By

Yining Cheng

Suresh Venapally, Ph.D.
Advisor

A thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment

of the requirements of the degree of

Bachelor of Sciences with Honors

Department of Mathematics and Computer Science

2017



Acknowledgements

I would like to thank Dr. Venapally for his supports and guidance as well as his time

and patience on helping me write this paper. I also appreciate the help of Dr. Parimala

and Dr. Liu for attending my thesis defense. Lastly, I want to thank my parents for

supporting my college study that assists me to the completion of this thesis.



Contents

1 Introduction 1

2 Basic Definitions, Theorems, And Some Lemmas 2
2.1 Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Galois Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Artin-Schreier Extension 21

4 Kummer Theory 26

5 The Artin-Schreier Theorem 28

6 Applications 33



1

1 Introduction

Since elementary schools we start to solve quadratic polynomials, and as we approach

high school and college, the polynomials become more and more complex and the roots

of a polynomial change from simple integers to complex numbers. In field theory, we

say that a field C is an algebraic closure of a field F if C is algebraic over F and every

polynomial f(x) ∈ F [x] splits over C. Simply, it can be seen as that C contains all roots

of every polynomial whose coefficients are in field F. If we look at the fields R and C,

R is not algebraic closed since there are polynomials which do not have any root in

R ; whereas C is the algebraic closure of R, for that every polynomial f(x) ∈ R has

all its roots in C . Moreover, the characteristics of R and C are 0, meaning that none

of their elements have multiples equal to 0 (i.e.,nx 6= 0, for all x ∈ R). The degree

of [C : R] = 2 because we can write C = {a + bi |a, b ∈ R, i2 = −1}. In general, is

there any other example of such relationship between a non-algebraic closed field and

its algebraic closure that is a finite extension? The Artin-Schreier Theorem will answer

this question, demonstrating that if F is not algebraic closed, and C is its algebraic

closure which is its finite extension, then F must have characteristic 0 and C is of the

form F (i).

In section 2, we will recall basic definitions, state and prove important theorems in field

theory and Galois theory following [2] and [1] as well as some significant lemmas toward

the proof of the Artin Schreier theorem. In section 3 and 4, we will state and prove the

Artin Schreier extension theorem and Kummer theory. In section 5, we will reproduce

the Artin-Schreier Theorem following the proof of Keith Conrad in [3] by adding more

detailed explanations from section 2, 3 and 4. In section 6, we will state and prove

three simple corollaries as consequences of the Artin-Schreier Theorem.
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2 Basic Definitions, Theorems, And Some Lemmas

2.1 Field Theory

Definition 2.1. The characteristic of a ring R is the least positive integer n such that

nx = 0 for all x in R. If no such integer exists, we say that R has characteristic 0.

The characteristic of R is denoted by char R.

Theorem 2.2. The characteristic of a field is 0 or a prime.

Proof. Let F be a field with identity 1. If 1 has infinite order, then by definition there

is no positive integer n such that n · 1 = 0. Otherwise, suppose 1 has additive order n,

then n · 1 = 0 , and n is the least positive integer with such property. So for any x ∈ R

n · x = (1 + 1 + · · ·+ 1) · x (n summands)

= (n · 1) · x

= 0x

= 0

Thus, to show char F is a prime, it suffices to show that the additive order of 1 is finite

and is a prime. Suppose 1 has additive order n and write n = s · t. Then

0 = n · 1 = (s · t) · 1 = (s · 1) · (t · 1)

So either s · 1 = 0 or t · 1 = 0 . But by assumption n is the least positive integer with

n · 1 = 0 , so we must have either s = n or t = n . Thus, n is a prime.

Definition 2.3. If K is a field containing a subfield F, then K is said to be an extension

field (or simply an extension) of F, denoted as K|F .
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Definition 2.4. A principal ideal domain is an integral domain R in which every ideal

has the form 〈a〉 = {ra | r ∈ R} for some a ∈ R.

Definition 2.5. An integral domain D is a unique factorization domain if

1. every nonzero element of D that is not a unit can be written as a product of irre-

ducibles of D; and

2. the factorization into irreducibles is unique up to associates and the order in which

the factors appear.

Theorem 2.6. Let F be a field. Then F[x] is a principal ideal domain.

Theorem 2.7. Let F be a field and p(x) be an irreducible polynomial. Then F [x]
<p(x)>

is

a field.

Theorem 2.8 (PID implies UFD). Every principal ideal domain is a unique factoriza-

tion domain.

Lemma 2.9. Let p be a prime, then xp
n − ypn = (x− y)p

n
.

Proof. Proof by induction on n.

Base step: show xp − yp = (x− y)p. Consider the following two cases:

Case 1: p = 2.

(x− y)2 = x2 − 2xy + y2

= x2 + y2

= x2 − y2 ( since y2 = −y2 in a field of characteristic 2)

Case 2: p 6= 2 implies p is odd.

(x− y)p =

p∑
k=1

(
p

k

)
xkyp−k(−1)k,
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where
(
p
k

)
= p!

k!(p−k)! . Therefore, for k 6= 1 or p, the coefficient of each term is a multiple

of p and thus 0 in a characteristic p field. Hence, (x− y)p = xp − yp.

Induction step: Suppose the induction hypothesis is true for n− 1. Then

(x− y)p
n−1

= xp
n−1 − ypn−1

.

So

(x− y)p
n

= [(x− y)p
n−1

]p = (xp
n−1 − ypn−1

)p = xp
n − ypn .

Therefore, by induction, we have shown that xp
n − ypn = (x− y)p

n
.

Lemma 2.10. Let F be a field of char p > 0 and a ∈ F . If a /∈ F p, then xp
n − a is

irreducible in F[x] for every n ≥ 1.

Proof. Proof by contrapositive.

Suppose xp
n − a is reducible in F[x] for some n ≥ 1, show that a ∈ F p.

First, note that by 2.1, since F is a field and p is positive, then p must be a prime.

Let p(x) = xp
n − a = f(x)g(x) for some monic polynomials f(x), g(x) ∈ F [x]. Let E

be an extension field of F containing a root α in p(x). So αp
n

= a. By 2.9, we have

xp
n − a = xp

n −αpn = (x−α)p
n
. Since E is a field, by 2.6, we know that E[x] is a PID,

and by 2.8, we have E[x] a UFD. Since f(x) and g(x) are monic, and by 2.5, we can

write f(x) = (x− α)r, where 0 < r < pn.

Let r = pts, where s is a non-zero integer, p - s and t < n.

Thus, f(x) = (xp
t − αpt)s = xp

ts − sαptxpts−1 + lower order terms. Since f(x) ∈ F [x],

so −sαpt ∈ F . Hence, αp
t ∈ F , which implies a = (αp

t
)p
n−t ∈ F pn−t ⊆ F p.

Lemma 2.11. Let F be a field in which -1 is not a square, and every element of F(i) is

a square in F(i), where i2 = −1. Then any finite sum of squares in F is again a square
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in F and F has characteristic 0.

Proof. This is enough to prove that the sum of two squares is a square. Let a, b ∈ F .

Since every element in F(i) is a square, there exists c, d ∈ F such that a+ bi = (c+di)2.

Then a+ bi = c2 − d2 + 2cdi. This implies that a = c2 − d2, d = 2cd. So

a2 + b2 = (c2 − d2)2 + 4c2d2

= c4 − 2c2d2 + d4 + 4c2d2

= c4 + 2c2d2 + d4

= (c2 + d2)2

Therefore, we have shown that the sum of two square is again a square.

If char F = p > 0, then −1 =
∑n

i=1 1, if 1 + 1 + 1 + · · · + 1 = 0 (p summands), then

1 + 1 + 1 + · · ·+ 1 = −1 (p− 1 summands). Since 1 is a square in F, then the sum -1

is a square in F, which is a contradiction. Therefore, char F = 0.

Definition 2.12. The degree(or relative degree or index) of a field extension K|F ,

denoted [K:F], is the dimension of K as a vector space of F. The extension is said to

be finite if [K:F] is finite and is said to be infinite otherwise.

Theorem 2.13. Let F ⊂ K ⊂ E be fields, then

[E : F ] = [E : K][K : F ].

Proof. First, note that extension degrees are multiplicative, so if one side of the equation

is infinite, then the other side is also infinite. Suppose [E : F ] < ∞, then [F : K] <

∞ and [E : K] <∞.
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Now, we can assume [E : K] = m < ∞, [K : F ] = n < ∞. Since [E : K] = m, then E

is a vector space of K with dimension m. So ∃ {β1, β2, · · · , βm} ⊂ E a basis of E|K.

Similarly, ∃ {α1, α2, · · · , αn} ⊂ K a basis of K|F . We claim that

{αiβj |1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of E|F.

Suppose ∑
i,j

aijαiβj = 0 for some aij ∈ F.

Then
m∑
j=1

(
n∑
i=1

aijαi)βj = 0, and
n∑
i=1

aijαi ∈ K.

Therefore, because {β1, β2, · · · , βm} is a basis of E|K and thus linearly independent,

we have that
n∑
i=1

aijαi = 0,∀j = 1, 2, · · · ,m.

Since {α1, α2, · · · , αn} is a basis of K|F , and so is linearly independent. Also, since

aij ∈ F , we have that

aij = 0,∀i, j.

Therefore, {αiβj} is linearly independent over F.

Let x ∈ E. Since {β1, β2, · · · , βm} is a basis of E|K, we can write x =
∑n

j=1 λjβj

for some λj ∈ K. Since {α1, α2, · · · , αn} is a basis of K|F , λj =
∑n

i=1 aijαi for some

aij ∈ F . Thus, we can write

x =
m∑
j=1

(
n∑
i=1

aijαi)βj =
∑
i,j

aijαiβj.

Hence,{αiβj} spans E. Therefore, {αiβj |1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of E|F .

Thus, [E : F ] = mn = [E : K][K : F ].
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Definition 2.14. If a field K is generated by a single element α over F, K = F (α),

then K is said to be a simple extension of F and the element α is called a primitive

element for the extension.

Definition 2.15. The element α ∈ K is said to be algebraic over F if α is a root of

some nonzero polynomial f(x) ∈ F [x]. If α is not algebraic over F (i.e., is not the root

of any nonzero polynomial with coefficients in F) then α is said to be transcendental

over F. The extension K|F is said to be algebraic if every element of K is algebraic

over F.

Proposition 2.16. If K|F is a finite extension, then K|F is algebraic.

Proof. Suppose [K : F ] = n, Let α ∈ K, then {1, α, α2, · · · , αn} are linearly dependent

(since the dimension is n, but the set has n+1 elements). Therefore,

b0 + b1α + · · ·+ bnα
n = 0,

with b′is ∈ F not all 0. Thus, α is a root of the polynomial b0 + b1x+ · · ·+ bnx
n. So α

is algebraic over F.

Definition 2.17. Let α be algebraic over F. Then there is a unique monic irreducible

polynomial mα,F (x) ∈ F [x] which has α as a root, and this polynomial is called the

minimal polynomial for α over F.

Definition 2.18. The extension field K of F is called a splitting field for the polynomial

f(x) ∈ F [x] factors completely into linear factors (or splits completely) in K[x] and f(x)

does not factor completely into linear factors over any proper subfield of K containing

F.

Theorem 2.19. Let φ : F ' F ′ be isomorphisms of fields. Let f(x) ∈ F [x] be a poly-

nomial and let f ′(x) ∈ F ′[x] be the polynomial obtained by applying φ to the coefficients
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of f(x). Let E be the splitting field for f(x) over F and E’ be the splitting field of f ′(x)

over F’. Then there exists an extension of φ isomorphism σ : E −→ E ′. In diagram

E

F F ′

E ′

φ

∃ σ

Proof. We will proceed the proof by induction on the degree n of f(x).

Base step: n=1. Then E = F,E ′ = F ′, so σ = φ.

Induction step: Suppose the induction hypothesis is true for degree n-1. Let p(x) be an

irreducible factor of f(x) in F [x] of degree at least 2, and p′(x) be the corresponding

irreducible factor of f ′(x) in F ′[x] of degree at least 2.

If α ∈ E is a root to p(x), and β ∈ E ′ is a root to p′(x), then we claim that F (α) ' F [x]
<p(x)>

and F (β) ' F ′[x]
<p′(x)>

. Without loss of Generality, we will show F (α) ' F [x]
<p(x)>

.

First, note that F [x]
<p(x)>

is a field since p(x) is irreducible, by 2.7. Let γ : F [x] −→ F (α).

Since p(α) = 0, then p(x) ∈ ker(γ). Then by the First Theorem of Isomorphism,

∃ ψ : F [x]
<p(x)>

−→ F (α) a homomorphism. Furthermore, we know that F [x]
<p(x)>

is a field

and ψ 6= 0, then ψ is an isomorphism since F (α) contains α and F implies that ψ is

also surjective. Therefore, ψ is an isomorphism and F (α) ' F [x]
<p(x)>

.

Once we have F (α) ' F [x]
<p(x)>

and F (β) ' F ′[x]
<p′(x)>

, since φ induces a natural isomorphism

from F [x] to F ′[x] which maps < p(x) >−→< p′(x) >. Then we have the following

diagram

F [x]
<p(x)>

F (α) F (β)

F ′[x]
<p′(x)>

∃ σ′

φ
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Therefore, ∃ an isomorphism σ′ such that σ′ : F (α) ' F (β).

Let F1 = F (α) and F ′1 = F (β), so that we have the isomorphism σ′ : F1 −→ F ′1. By

factoring, we have that f(x) = (x−α)f1(x) over F1 and similarly f ′(x) = (x− β)f ′1(x)

over F ′1, where f1(x), f ′1(x) have degree n − 1. Then E is a splitting field of f1(x) and

similarly E’ is also the splitting field of f ′1(x). By induction hypothesis, there exists a

map σ : E −→ E ′ extending the isomorphism σ′ : F1 −→ F ′1. This gives the following

diagram

E E ′

F1

F F ′

F ′1

φ

σ′

σ

Theorem 2.20 (Uniqueness of Splitting Fields). Any two splitting fields for a polyno-

mial f(x) ∈ F [x] over a field F are isomorphic.

Proof. By previous theorem, let F maps to itself and E, E ′ be two splitting fields of

f(x) ∈ F [x] will do the proof.

Definition 2.21. An algebraic extension K|F is called a normal extension if an irre-

ducible polynomial f(x) ∈ F [x] has a root in K and f(x) splits completely over K.

Lemma 2.22. Let F be a field of characteristic not equal to 2. Let K|F be a quadratic

extension (i.e. [K : F ] = 2). Then K = F (
√
a) for some a ∈ F , which is not a square

in F.

Proof. Since [K : F ] = 2, by 2.16, the field extension K|F is algebraic. So we can let

α ∈ K\F . By 2.17, ∃ a minimal polynomial mα(x) = x2 + bx + c. Using quadratic
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formula, we obtain the roots α = −b±
√
b2−4c
2

. Note that b2 − 4c is not a square in

F since α /∈ F . Then α ∈ F (
√
b2 − 4c) implies that F (α) ⊆ F (

√
b2 − 4c). Also,

since
√
b2 − 4c = ∓(b + 2α), we have that F (

√
b2 − 4c) ⊆ F (α). Therefore, F (α) =

F (
√
b2 − 4c). Choose a = b2 − 4c, we reach the conclusion.

Definition 2.23. A field K is called algebraically closed if every non-constant polyno-

mial with coefficients in K has a root in K.

Definition 2.24. A polynomial over F is called separable if it does not have multiple

roots (i.e. all its roots are distinct). A polynomial which is not separable is called

inseparable.

Definition 2.25. A root α of f(x) ∈ K is called a simple root if (x− α)2 - f(x).

Lemma 2.26. Let K be a field and let f(x) ∈ K[x], α ∈ K, then α is a simple root of

f(x) if and only if f(α) = 0, f ′(α) 6= 0.

Proof. Let α ∈ K and f(α) = 0.

Suppose α is not a simple root of f(x), then (x− α)2|f(x), so we can write

f(x) = (x− α)2g(x),

for some g(x) ∈ F [x], Thus, f ′(x) = (x− α)2g′(x) + 2(x− α)g(x). so f ′(α) = 0.

Conversely, suppose α is a root of both f(x) and f ′(x). Then we can write

f(x) = (x− α)h(x),

for some h(x) ∈ F [x]. Take the derivative of f(x):

f ′(x) = h(x) + (x− α)h′(x).
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Since α is a root to f ′(x), the equation above implies that h(α) = 0, so we can write

h(x) = (x− α)k(x),

for some k(x) ∈ F [x]. Thus,

f(x) = (x− α)2k(x).

Therefore, α is not a simple root of f(x).

Definition 2.27. A field K of characteristic p is called perfect if every element of K is

a pth power in K, i.e. K = Kp. Any field of characteristic 0 is also called perfect.

Proposition 2.28. Every finite extension of a perfect field is separable.

Proof. Let F be a finite field of char p > 0, and E be a finite extension of F with

[E : F ] = n. Then |E| = pn. Therefore, |E∗| = pn − 1, which implies that E is cyclic.

Thus, for any nonzero element α ∈ E, we have

αp
n−1 = 1,−→ αp

n

= α,−→ αp
n − α = 0.

Hence, any element in E is a root of the polynomial f(x) = xp
n − x. Finally, to show

f(x) is separable, note that f ′(x) = pnxp
n−1 − 1 = −1 6= 0 (i.e. By 2.26 f ′(x) has no

roots at all so it has no multiple roots). Therefore, E|F is separable.

2.2 Galois Theory

Definition 2.29. Let K/F be a field extension. Let Aut(K/F) denote the set of all F-

automorphisms of K, that is, Aut(K|F ) = {φ ∈ Aut(K) : φ|F = idF}. Then Aut(K|F )

is called the automorphism group of K|F or the Galois group of K|F .

Definition 2.30. A finite extension K|F is called Galois if it is normal and separable.
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Definition 2.31. If H is a subgroup of the automorphism group of K, the subfield of

K fixed by all elements of H is called the fixed field of H, and is denoted as KH (i.e.

KH = {α ∈ K|σ(α) = α}).

Proposition 2.32. Let K|F be a finite extension, then there exists a finite normal

extension N |F such that K ⊂ N .

Proof. Since K|F is finite, we can write K = F (α1, α2, · · · , αn) for some αi ∈ K. Let

fi(x) ∈ F [x] be the minimal polynomial of αi over F. Let f(x) =
∏n

i=1 fi(x) ∈ F [x] and

let N |F be the splitting field of this f(x) over F. Then α1, · · · , αn ∈ N implies that

K = F (α1, · · · , αn) ⊂ N , and N |F is the normal extension.

Theorem 2.33. Let N |F be a finite and normal extension, and let L|F be a finite

extension, then

|{τ : K −→ N | τF = id}| ∗ |{σ : L −→ N | σK = id}| = |{ψ : L −→ N | ψF = id}|,

denoted as the following:

|HomF (K,N)| ∗ |HomK(L,N)| = |HomF (L,N)|.

We can see more clearly by a diagram:

N

L

K

F

normal,finite

finite
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Proof. Since N |F is finite, we have that N |L and N |K both finite. Then we suppose

HomF (K,N) = {τ1, · · · , τm} for some m ∈ N, and HomK(L,N) = {σ1, · · · , σn} for

some n ∈ N. We divide the proof into two parts.

Part (1): We show that ∀ τi : K −→ N an F-isomorphism, ∃ τ ′i : N −→ N such

that τ ′i |K = τi.

SinceN |F is normal and finite, then by 2.21, N |F is a splitting field of some f(x) ∈ F [x].

Since F ⊂ K ⊂ N , the same polynomial f(x) is also in K[x], which implies that N |K

is a splitting field of f(x). Then we denote K ′ = τi(K). Since τi(f(x)) = f(x) (note

that τi is an F-isomorphism), then N |K ′ is also a splitting field of f(x). By uniqueness

of splitting fields, ∃ τ ′i : N −→ N an isomorphism such that τ ′i |K = τi.

N

K τi(K) = K ′

N
∃ τ ′i

Part (2): Let φ : HomF (K,N) ∗ HomK(L,N) −→ HomF (L,N) be a map such that

φ(τi, σj) = τ ′i ◦ σj for some τi ∈ HomF (K,N) and some σj ∈ HomK(L,N). We claim

that φ is a bijection.

First, we show that φ is one to one. Suppose φ(τi, σj) = φ(τs, σk) for some τi, τs ∈

HomF (K,N) and some σj, σk ∈ HomK(L,N), then τ ′i ◦ σj = τ ′s ◦ σk. Let α ∈ K, then
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since σj|K = σk|K = id, we have that σj(α) = σk(α) = α. Then

⇒ (τ ′i ◦ σj)(α) = (τ ′s ◦ σk)(α) (1)

⇒ τ ′i(α) = τ ′s(α) (2)

⇒ τi(α) = τs(α) (since τ ′i |K = τi) (3)

⇒ τi = τs (4)

⇒ τ ′i = τ ′s (5)

⇒ σj = σk (6)

Therefore, φ is one to one.

Now we will show that φ is surjective. Let θ ∈ HomF (L,N), then θ|K ∈ HomF (K,N).

This implies that θ|K = τi for some i. Consider the element τ ′−1i ◦ θ, then we will show

that this element is in HomK(L,N). Let α ∈ K, then

(τ ′−1i ◦ θ)(α) = τ ′−1i (θ(α)) = τ ′−1i (τi(α)) = α.

Therefore, τ ′−1i ◦ θ fixes any element in K, and thus τ ′−1i ◦ θ ∈ HomK(L,N). So

τ ′−1i ◦ θ = σj for some σj ∈ HomK(L,N).

Hence, φ is bijective and therefore

|HomF (K,N)| ∗ |HomK(L,N)| = |HomF (L,N)|.

Theorem 2.34. Let φ : F ' F ′ be isomorphisms of fields. Let E be a splitting field

of f(x) over F and E’ be a splitting field of f ′(x) = φ(f(x)). Then the number of
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extensions satisfying that there exists an isomorphism between E and E’ is at most

[E : F ], with equality if f(x) is separable over F.

Proof. By 2.19, we know that ∃ an isomorphism σ : E −→ E ′. So we will proceed by

induction on n = [E : F ].

Base step: n = 1. Then E = F,E ′ = F ′, σ = φ and the number of such extension is 1.

Induction step: Suppose n > 1, then f(x) has at least an irreducible factor p(x) with

degree at least 1 with corresponding irreducible factor p′(x) ∈ F ′[x] with degree at least

1. Then, by the proof of 2.19, if α is a root to p(x), then ∃ τ : F (α) ' F ′(β) with

τ(α) = β. Then we have a diagram

E E ′

F (α)

F F ′

F ′(β)

φ

τ

σ

Then we need only to count the number of such diagrams. The number of φ to τ is equal

to the number of distinct roots of p(x). Thus, since deg(p(x)) = deg(p′(x)) = [F (α) : F ],

we see that the number of such extensions is at most [F (α) : F ], with equality if p(x)

is separable.

Since E is a splitting field of f(x) over F (α) and E’ is also a splitting field of f ′(x)

over F ′(β). Then [E : F (α)] < [E : F ] and by induction hypothesis, the number

of such extensions is ≤ [E : F (α)], with equality if f(x) has distinct roots. Since

[E : F ] = [E : F (α)][F (α) : F ], the number of such extensions is ≤ [E : F ], with

equality if f(x) has distinct roots.

Theorem 2.35. Let K|F be a finite extension and N |F be a normal finite extension

with K ⊂ N , then |HomF (K,N)| = [K : F ] if and only if K|F is separable.
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Proof. ⇐= Suppose K|F is separable. We will proceed by induction on the degree

[K : F ] = n.

Base step: n=1. Then K = F and |HomF (F,N)| = 1 = [F : F ].

Induction step: Suppose the hypothesis is true for n − 1, where n ≥ 2. Let α ∈ K\F.

Let mα(x) be the minimal polynomial of α over F. Since N |F is normal and finite, by

2.16, N |F is also algebraic. Thus, since α ∈ K ⊂ N , mα(x) ∈ F [x] is irreducible and

mα(α) = 0, we have that mα(x) splits completely in N. Therefore, by 2.34,

|HomF (F (α), N)| = number of distinct roots in mα(x)

Since α is separable over F, then

number of distinct roots in mα(x) = deg(mα(x)) = [F (α) : F ].

Therefore, |HomF (F (α), N)| = [F (α) : F ]. Since [K : F (α)] ≤ [K : F ], by induction

hypothesis,

|HomF (α)(K,N)| = [K : F (α)].

By 2.33,

|HomF (F (α), N)| ∗ |HomF (α)(K,N)| = |HomF (K,N)|.

Since |HomF (F (α), N)| = [F (α) : F ], and |HomF (α)(K,N)| = [K : F (α)]. then

[F (α) : F ] ∗ [K : F (α)] = |HomF (K,N)| = [K : F ].
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=⇒ Now suppose |HomF (K,N)| = [K : F ]. Let α ∈ K\F . By 2.33,

|HomF (F (α), N)| ∗ |HomF (α)(K,N)| = |HomF (K,N)| = [K : F ].

Then

[K : F ] = |HomF (F (α), N)| ∗ |HomF (α)(K,N)| ≤ [F (α) : F ][K : F (α)] = [K : F ].

Therefore, α is separable over F.

Theorem 2.36 (Existence of Primitive Element). Let K|F be a finite separable exten-

sion. Then K = F (α) for some α ∈ K.

Proof. Let N |K be an extension such that N |F is normal (We know such extension

exists from 2.32). Since K|F is separable, by 2.35, we have that |HomF (K,N) = [K :

F ].

Let [K : F ] = n and HomF (K,N) = {σ1, · · · , σn} such that σi 6= σj for i 6= j. Let

Vij = {α ∈ K |σi(α) = σj(α)}. Since σi 6= σj, then Vij is a proper subset of K. Since F

is infinite,

∪i 6=jVij ⊂ K.

Let α ∈ K\ ∪i 6=j Vij. We claim that K = F (α).

Letmα(x) be the minimal polynomial of α over F, thenmα(σi(α)) = 0,∀ i ∈ {1, 2, · · · , n}

(since σi only permutes the roots of mα(x)). Since α /∈ ∪i 6=jVij, then ∀i 6= j, σi(α) 6=

σj(α). Therefore, mα(x) has distinct roots, this implies that deg(mα(x)) ≥ n. But

[K : F ] = n and α ∈ K implies that deg(mα(x)) ≤ n. Hence, deg(mα(x)) = n. So

[K : F ] = [F (α) : F ], and thus K = F (α).
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Theorem 2.37. If G ⊆ Aut(K) is a finite subgroup, then K|KG is a Galois extension

with Gal(K|KG) = G

Proof. First note that by 2.31, KG = {α ∈ K |σ(α) = α , ∀σ ∈ G}. Let G = {σ1 =

id, σ2, · · · , σn} and denote F = KG ⊆ K. Let α ∈ K. We can write

{σi(α) |σi ∈ G} = {β1 = α, · · · , βd},

where βi 6= βj, ∀i 6= j. Let f(x) =
∏d

i=1(x − βj) ∈ K[x]. We claim that f(x) ∈ F [x]

and is irreducible.

Let τ ∈ G, then the elements {τ, τσ, · · · , τσn} are the same elements of {σ1, σ2, · · · , σn}.

Then it follows that applying τ to {β1, · · · , βd} simply permutes them. Therefore, f(x)

has coefficients which are fixed by all elements in G, so they are all in KG = F .

Hence, f(x) ∈ F [x]. Since f(α) = 0, then α is algebraic over F. So we can let mα(x)

be the minimal polynomial of α over F. Therefore, mα(α) = mα(σ(α)) = mα(βi) =

0, ∀ 1 ≤ i ≤ d. Thus, deg(mα(x)) ≥ d, implying that mα(x) = f(x). Therefore, f(x)

is irreducible in F [x]. Since f(x) =
∏d

i=1(x − βj) where βi 6= βj, ∀ i 6= j. Hence, α is

separable over F.

Now let g(x) ∈ F [x] be an irreducible polynomial, and suppose ∃ α ∈ K such that

g(α) = 0, then g(x) = λf(x) = λ
∏d

i=1(x − βj). Therefore, f(x) splits completely in

K[x]. By 2.21, K|F is normal.

We know that for all β ∈ K, degFβ ≤ |G|. Let α ∈ K be such that degFα is maximal

among all degFβ, ∀ β ∈ K. We claim that K = F (α).

Suppose in contrary that K 6= F (α), then ∃ β ∈ K\F (α). Hence, F (α, β) is a finite

separable extension. By 2.36,

F (α, β) = F (γ)
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for some γ ∈ K. By 2.13,

degFγ = [F (γ) : F ] = [F (α, β) : F (α)][F (α) : F ].

Since β /∈ F (α), we have that [F (α, β) : F (α)] ≥ 2. Therefore, degFγ ≥ 2[F (α) : F ] =

2degF (α) > degF (α), which is a contradiction to degFα being maximal. So K = F (α).

Hence, we have that K|F is finite, separable and normal, so is Galois. Moreover,

[K : F ] = [F (α) : F ] = degFα ≤ |G|. Since G ⊆ Gal(K|F ), we have that

|G| ≤ |Gal(K|F )| = [K : F ] ≤ |G|.

Therefore, |G| = |Gal(K|F )|, then G = Gal(K|F ).

Theorem 2.38 (Fundamental Theorem of Galois Theory). Let K|F be a Galois ex-

tension, and let G = Gal(K|F ). Define S(G) = set of subgroups of G, and I(K|F ) =

set of intermediate fields (i.e. I(K|F ) = {L |F ⊂ L ⊂ K}). Then there is a bijection

K

L

F

L ∈ I(K|F )

1

H

G

H ∈ S(G)
bijection

given by the correspondence

L =⇒ {the elements of G fixing L}

KH ⇐= H

which are inverses of each other. Under this correspondence:
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(1) (inclusion reversing) If L1, L2 corresponds to H1, H2, respectively, then L1 ⊂ L2

if and only if H2 ≤ H1.

(2)Let H ∈ S(G), then H is a normal group in G if and only if KH |F is Galois (nor-

mal).

(3) If F ⊂ L ⊂ K and L|F is normal, then the natural map Gal(K|F ) −→ Gal(L|F )

is onto with kernel Gal(K|L).

Gal(K|F )

Gal(K|L)
∼= Gal(L|F ).

Proof. For the purpose of this thesis, we will only prove that there is a bijection between

the subfields L of K containing F and the subgroups H of G.

Define the map φ : S(G) −→ I(K|F ) and ψ : I(K|F ) −→ S(G). To show there is a

bijection, it is enough to show that φ ◦ ψ = idI(K|F ) and ψ ◦ φ = idS(G). Since H ≤ G,

we have that H ≤ G = Gal(K|F ) ⊂ Aut(K). Therefore, by 2.37, we have that K|KH

is Galois with H = Gal(K|KH). Displaying an explicit diagram below,

K

KH

F

H ≤ G Gal(K|KH)

H

hence, ψ(φ(H)) = H ⇒ ψ ◦ φ = idS(G).

Now let L ∈ I(K|F ), then F ⊂ L ⊂ K. By 2.30, K is a splitting field of the sep-

arable polynomial f(x) ∈ F [x], then we may also view f(x) as an element of L(x).

Then K is also a splitting field of f(x) over L, and thus the extension K|L is also

Galois. Let H = Gal(K|L), then L ⊂ KH ⊂ K and [K : L] = |H|. Thus, K|KH
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is Galois with Gal(K|KH) = H. So [K : KH ] = |H| = [K : L], which implies

[KH : L] = 1, and thus KH = L. Displaying an explicit diagram below,

K

L

F

Gal(K|L) = H ≤ G

KH = L

therefore, φ ◦ ψ = idI(K|F ).

Definition 2.39. The extension K|F is said to be cyclic if it is Galois with a cyclic

Galois group.

3 The Artin-Schreier Extension

Definition 3.1. Let K|F be a Galois extension and let α ∈ K, define the trace of α

from K to F to be TrK|F (α) =
∑

σ∈Gal(K|F ) σ(α).

Lemma 3.2. Tr : K −→ F is an F-linear map.

Proof. To show Tr : K −→ F is an F-linear map, we need to show its additive and

scalar multiplicative properties hold.
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Let α, β ∈ K, then we need to show that TrK|F (α + β) = TrK|F (α) + TrK|F (β)

TrK|F (α + β) =
∑

σ∈Gal(K|F )

σ(α + β)

=
∑

σ∈Gal(K|F )

(σ(α) + σ(β))

=
∑

σ∈Gal(K|F )

σ(α) +
∑

σ∈Gal(K|F )

σ(β)

= TrK|F (α) + TrK|F (β)

Let a ∈ F , then

TrK|F (aα) =
∑

σ∈Gal(K|F )

σ(aα)

= a
∑

σ∈Gal(K|F )

σ(α)

= aTrK|F (α)

Definition 3.3. A character χ of a group G with values in a field L is a homomorphism

from G to the multiplicative group of L:

χ : G→ Lx

i.e., χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G and χ(g) is a nonzero element of L for all

g ∈ G.

Theorem 3.4 (Dedekind Theorem). Let χ1, χ2, · · · , χn be distinct characters of a group

G with values in a field L. If a1χ1 + a2χ2 + · · · + anχn = 0, where a1, a2, · · · an ∈ L,

then ai = 0 for all i.

Proof. We will prove by induction on n.
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Base step: n = 1, then a1 = 0. The statement is true.

Induction step: Suppose the theorem is true for n− 1, n ≥ 2. Suppose a1χ1 + a2χ2 +

· · ·+ anχn = 0, Since χ′is are all distinct. So ∃ g0 ∈ G such that χ1(g0) 6= χn(g0). Then

a1χ1(g) + a2χ2(g) + · · ·+ anχn(g) = 0 (7)

Multiply g by g0, we have:

a1χ1(gg0) + a2χ2(gg0) + · · ·+ anχn(gg0) = 0 (8)

Since χi is a homomorphism, we have:

a1χ1(g0)χ1(g) + a2χ2(g0)χ2(g) + · · ·+ anχn(g0)χn(g) = 0 (9)

Multiply equation (7) by χ1(g0) on the left, we have:

a1χ1(g0)χ1(g) + a2χ1(g0)χ2(g) + · · ·+ anχ1(g0)χn(g) = 0 (10)

Then equation (9) - equation (10), we have:

a2χ2(g)(χ2(g0)− χ1(g0)) + · · ·+ anχn(g)(χn(g0)− χ1(g0)) = 0 (11)

By induction hypothesis, a2(χ2(g0) − χ1(g0)), · · · , an(χn(g0) − χ1(g0)) = 0. Since

χ1(g0)− χn(g0) 6= 0, then an = 0. Therefore,

a1χ1 + a2χ2 + · · ·+ an−1χn−1 = 0
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By induction hypothesis, a1 = a2 = · · · = an−1 = an = 0.

Theorem 3.5 (Additive Hilbert’s Theorem 90). Let K|F be a cyclic extension of degree

n with Galois group G = Gal(K|F ) =< σ >. Then for β ∈ K

Tr(β) = 0 if and only if β = α− σ(α) for some α ∈ K.

Proof. ⇐= Let β = α− σ(α), then

Tr(β) = Tr(α− σ(α))

= Tr(α)− Tr(σ(α))

=
∑
σ

σ(α)−
∑
σ

σ(σ(α))

= 0

=⇒ Let Tr(β) = 0. By Dedekind Theorem, Tr : K −→ F is a nonzero map, since

Tr = id + σ + σ2 + · · · + σn−1 is nonzero (with coefficients of each term being 1).

Therefore, ∃ θ ∈ K∗ such that Tr(θ) 6= 0.

Consider the function

χ = β + (β + σ(β))σ + · · ·+ (
n−2∑
i=0

σi(β))σn−2

Let α = χ(θ)
Tr(θ)

, then

α =
1

Tr(θ)
(βθ + (β + σ(β))σ(θ) + · · ·+ (β + σ(β) + · · ·+ σn−2(β))σn−2(θ) (12)

σ(α) =
1

σ(Tr(θ))
(σ(β)σ(θ)+(σ(β)+σ2(β))σ2(θ)+· · ·+(σ(β)+σ2(β)+· · ·+σn−1(β))σn−1(θ)

(13)
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Note that 1
σ(Tr(θ))

= 1
Tr(θ)

. Then equation (12) - equation (13), we have

α− σ(α) =
1

Tr(θ)
[βθ + βσ(θ) + · · ·+ βσn−2(θ)− (β + · · ·+ σn−1(β))σn−1(θ) + βσn−1(θ)]

=
1

Tr(θ)
(βθ + βσ(θ) + · · ·+ βσn−1(θ)− Tr(β)σn−1(θ))

=
1

Tr(θ)
βTr(θ) ( since Tr(β) = 0 by assumption)

= β

Lemma 3.6. Let K|F be a cyclic extension of degree n. Let α ∈ K, and mα(x) =

xd+αd−1x
d−1 + · · ·+α1x+α0 be the minimal polynomial of α over F, then TrK|F (α) =

−n
d
ad−1.

Proof. Let G = Gal(K|F ) =< σ >, consider:

∏
σ∈G

(x− σ(α)) = xn − (
∑
σ∈G

σ(α))xn−1 + · · ·

= xn − TrK|F (α) + · · ·

Also,

mα(x)
n
d = (xd + αd−1x

d−1 + · · ·+ α1x+ α0)
n
d

= xn +
n

d
ad−1x

n−1 + · · ·

Since we know that
∏

σ∈G(x − σ(α)) = mα(x)
n
d , by equating the coefficients of xn−1,

we have that TrK|F (α) = −n
d
ad−1.

Theorem 3.7 (Artin-Schreier Extension). Let F be a field with characteristic p > 0

and let K be a cyclic extension of F of degree p. Then K = F (α), where α is a root of

the polynomial xp − x− a for some a ∈ F .
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Proof. Let K|F be a cyclic extension of degree p, and let G = Gal(K|F ) =< σ > for

some σ ∈ G∗. Then by 3.6, Tr(−1) = −p(1) = 0 since char F = p. From Additive

Hilbert’s Theorem 90, we have that −1 = α − σ(α), so σ(α) = α + 1. Moreover,

σ2(α) = σ(σ(α)) = σ(α + 1) = α + 2. Hence, generally we have that σi = α + i, for

i = 1, 2, · · · , p. Since char F = p, the elements α, α + 1, · · · , α + p− 1 are all distinct

conjugates. Hence, [F (α) : F ] = p = [K : F ]. So K = F (α). Furthermore, consider the

element αp − α ∈ K,

σ(αp − α) = σp(α)− σ(α) = (α + 1)p − α− 1 = αp + 1− α− 1 = αp − α.

Thus, the element αp − α is fixed by σ, which implies that αp − α ∈ F . Hence, let

a = αp − α ∈ F , then α is a root to the polynomial xp − x− a.

4 Kummer Theory

Theorem 4.1 (Kummer). Let K|F be a cyclic field extension of degree n, where char F

does not divide n and F contains the nth roots of unity, then K = F ( n
√
a), for some

a ∈ F .

Proof. Let K|F be a cyclic field extension of degree n and let ρ ∈ F be the nth

root of unity. Since (n, char(F )) = 1, the elements 1, ρ, ρ2, · · · , ρn−1 are all distinct.

Suppose G = Gal(K|F ) =< σ >, for some σ ∈ G, then |G| = n. Then for any

σi ∈ G, i ∈ {1, 2, · · · , n}, σi : K∗ −→ K∗ is a homomorphism since σi : K −→ K is a

field automorphism. Therefore, σi is a characteristic of K∗ with values in K. Hence,

{id, σ, · · · , σn−1} are distinct characters of K∗ with values in K. By Dedekind Theorem,

1 · id+ ρσ + · · ·+ ρn−1σn−1 6= 0.
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Hence, ∃ θ ∈ K∗ such that θ+ ρσ(θ) + · · ·+ ρn−1σn−1(θ) 6= 0. Let β = θ+ ρσ(θ) + · · ·+

ρn−1σn−1(θ). Then,

σ(β) = σ(θ) + ρσ2(θ) + · · ·+ ρn−1σn−1(θ). (14)

Multiply equation(14) by ρ, we have:

ρσ(β) = ρσ(β) + ρ2σ2(θ) + · · ·+ ρn−1σn−1(θ) + ρnσn(θ). (15)

Since ρn = 1, and σn = id, then ρnσn(θ) = θ. Therefore, we have that ρσ(β) = β.

Hence, σ(β) = ρ−1β. Then

σ(βn) = σn(β) = ρ−nβn = βn.

Therefore, σi(βn) = βn, for all i ∈ {1, 2, · · · , n}, which implies that βn is fixed by all

elements of G. So βn ∈ F ∗. Write a = βn ∈ F ∗. We claim that K = F ( n
√
a) = F (β).

Consider the diagram below:

K

F (β)

F

n

We know that [K : F ] = n, we need to show that [F (β) : F ] = n. Since σ(β) = ρ−i(β),

and ρ−i are distinct for i = 1, 2, · · · , n, then β, σ(β), ..., σn−1(β) are all conjugates of β

and are distinct. Therefore,

[F (β) : F ] ≥ n = [K : F ] ≥ [F (β) : F ],
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=⇒ [F (β) : F ] = n = [K : F ].

Hence, K = F (β) = F ( n
√
a).

5 The Artin-Schreier Theorem

Theorem 5.1 (The Artin-Schreier Theorem). Let C be algebraically closed with F a

subfield such that 1 < [C : F ] < ∞. Then C = F (i) where i2 = −1, and F has

characteristic 0. Moreover, for a ∈ F , exactly one of a or −a is a square in F, and any

finite sum of nonzero squares in F is again a nonzero square in F.

Proof. We will divide the proof of the theorem to three steps.

Step I: Show that C|F is Galois.

By 2.29, since we already have [C : F ] < ∞, it is enough to show that C|F is normal

and separable. Since C is algebraic closed, by 2.21, we know that every nonconstant

polynomial in C[x] has a root in C. Since every polynomial can be factored into irre-

ducible factors and each factor has a root in C, this implies that every polynomial in

C[x] has all roots in C. Therefore, every polynomial in C[x] splits completely in C and

is normal.

To show that C|F is separable, suppose char F = p > 0. It is suffices to show that F

is perfect (i.e., F = F p). If so, by 2.28, C|F is separable. Suppose in contrary that

F 6= F p, then ∃ α ∈ F\F p. By 2.10, we know that f(x) = xp
n −α is irreducible in F[x]

for any n ≥ 1, this implies that f(x) has a very large degree and thus has a very large

algebraic extension, call it Fn such that Fn ⊆ C, which contradicts to that [C : F ] <∞.

Step II: Show [C:F]=2

Let G = Gal(C|F ), then |G| = [C : F ]. Suppose in contrary that |G| > 2, then |G|



29

is divisible by 4 or by an odd prime. If |G| is divisible by an odd prime, by Cauchy’s

theorem, G has a subgroup whose size is an odd prime; otherwise, if |G| is not divisible

by an odd prime, then G = 2r where r ≥ 2, and thus is a p-group which has a subgroup

of size 4. By Fundamental Theorem of Galois Theory, C has a subfield K containing

F such that [C:K] is equal to 4 or an odd prime. Now replace K with F, we will show

that [C:F] cannot be equal to 4 or an odd prime. Let’s consider the following 2 cases:

Case 1: Suppose [C:F]=p, then C|F is cyclic and so G is cyclic of order p. Let

G =< σ > for some σ ∈ G∗. So for any a ∈ F , σ(a) = a. Our goal is to show

that p=2.

First, we will show that char F 6= p. Suppose in contrary that char F = p. By assump-

tion C|F is cyclic of order p and F has characteristic equal to p. Thus, by Artin-Schreier

extension, C = F (α), where α is a root to the polynomial xp − x − a ∈ F [x]. Since

C is a simple extension of F, C has an F-basis {1, α, α2, · · · , αp−1}. Therefore, for any

element b ∈ C, we can write

b = b0 + b1α + b2α
2 + · · ·+ bp−1α

p−1,

where b′is ∈ F . Then

bp − b =

p−1∑
i=0

(biα
i)p −

p−1∑
i=0

biα
i

=

p−1∑
i=0

bpi (α + a)i − biαi (Since α is a root to xp − x− a, αp = α + a)

= (bpp−1 − bp−1)αp−1 + lower degree terms

Since C is algebraically closed, every nonconstant polynomial has a root in C.

Consider the polynomial xp − x − aαp−1, then it has a root b so that bp − b = aαp−1.
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Compare the right side of this equation to the equation above, the coefficients of αp−1

implies that

bpp−1 − bp−1 = a,⇒ bpp−1 − bp−1 − a = 0,⇒ bp−1 is a root of xp − x− a.

But bp−1 ∈ F and xp − x− a is the minimal polynomial of α, and thus irreducible. So

this is a contradiction. Therefore, char F 6= p.

Since char F 6= p, and C is an extension of F, char C 6= p. And since C is algebraically

closed, C contains a primitive pth root of unity, call it ρ. We will show that [F (ρ) :

F ] ≤ p− 1. First, note that we have the factorization

xp − 1 = (x− 1)(xp−1 + · · ·+ x+ 1).

Since ρ 6= 1, it follows that ρ is a root of the polynomial:

Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ 1

So

[F (ρ) : F ] ≤ p− 1.

Since [C : F ] = p, and [C : F ] = [C : F (ρ)][F (ρ) : F ], so p ≤ [C : F (ρ)](p− 1). Since p

is a prime so either [C : F (ρ)] = p or p− 1 = p, and the latter is clearly impossible. So

[C : F (ρ)] = p and [F (ρ) : F ] = 1. Therefore, ρ ∈ F . Thus, we have that C|F a cyclic

extension of degree p and F contains a primitive pth root of unity. By Kummer theory,

we can write C = F (γ), where γp ∈ F .

Let η ∈ C be such that ηp = γ. So ηp
2

= γp ∈ F . Therefore, σ(ηp
2
) = σ(η)p

2
= ηp

2
,

which implies σ(η) = θη, where θp
2

= 1. Then, θp is either a primitive pth root of unity
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or θp = 1. First, let’s consider the case when θp = 1. Then

σ(η)p = ηp,⇒ σ(ηp) = ηp,⇒ ηp = γ ∈ F

However, by assumption we have γ /∈ F , which is a contradiction. Therefore, θp 6= 1.

Hence, θp has to be the primitive pth root of unity and we have that θp ∈ F . Therefore,

σ(θp) = θp = (σ(θ))p. Since θ ∈ C and char C 6= p, we have

(σ(θ))p = θp,

σ(θ) = (θp)k · θ = θ1+pk

for some k ∈ Z. Since G =< σ >, we have that σp = id. Then

η = σp(η)

= σp−1(σ(η))

= σp−1(θη)

= σp−1(θ)σp−1(η)

= σp−1σp−2(σ(η))

= σp−1σp−2(θ) · · · σ(θ)σ(η)

= σp−1σp−2(θ) · · · σ(θ)θη

= θσ(θ) · · ·σp−1(θ)η

= θ1+(1+pk)+···+(1+pk)p−1

η (since σ(θ) = θpk+1)

Since θp
2

= 1, we have the following sequence of congruence:
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1 + (1 + pk) + · · ·+ (1 + pk)p−1 ≡ 0 mod p2

p−1∑
j=0

(1 + pk)j ≡ 0 mod p2

p+

p−1∑
j=0

jpk + ( terms divisible by p2) ≡ 0 mod p2

p+

p−1∑
j=0

jpk ≡ 0 mod p2

p+ pk
(p− 1)p

2
≡ 0 mod p2

1 + k
(p− 1)p

2
≡ 0 mod p.

Now we discuss the parity of p. Suppose p is odd, then 1 + pkn ≡ 0 mod p, for some

n ∈ N, which is impossible. Therefore, p is even (i.e., p = 2), and k is odd.

Hence, the order of θ is 22 = 4. So θ4 = 1 and σ(θ) = θ1+2k 6= θ. Thus, θ /∈ F , and

we can write θ = i. We then reach a conclusion that if [C : F ] = p, then [C : F ] = 2,

char F 6= 2, char C 6= 2, and C = F (i).

Case 2: Suppose [C : F ] = 4, then |G| = 4. By Cauchy’s Theorem, G has a sub-

group of order 2. From the Fundamental Theorem of Galois Theory, there exists a

subfield K of C such that [C : K] = 2. From above arguments we know that i /∈ K.

However, F (i) is a subfield of C with [C : F (i)] = 2, and i ∈ F (i), which is a contra-

diction to i not belong to a subfield of C. Therefore, [C : F ] 6= 4.

Therefore, the above two cases have reached the following conclusion: If C is an al-

gebraic closed field with F a subfield such that the extension degree is finite, then
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[C : F ] = 2, F and C do not have characteristic 2 and i /∈ F . Hence, C = F (i). By

2.11, we have that char F = 0.

Step III: Show that for a ∈ F , exactly one of a or −a is a square in F, and any fi-

nite sum of nonzero squares in F is again a nonzero square in F.

We will prove by contradiction. Suppose that neither a nor −a is a square in F, then

C|F (
√
a) and C|F (

√
−a) are quadratic extensions by 2.22. Therefore, C = F (

√
a) =

F (
√
−a). Hence, the ratio a

−a = −1 must be a square, otherwise F (
√
a) 6= F (

√
−a). As

a consequence, i ∈ F , which contradicts to the previous conclusion in Step II. There-

fore, exactly one of a or −a is a square in F.

Let b1, b2, · · · , bn be nonzero elements in F. Then by 2.11, b21 + b22 + · · · + b2n is again a

square in F. Suppose in contrary that the sum is zero. Then

b21 + b22 + · · ·+ b2n = 0.

Divide each side by b21 and rearrange the terms, we have

−1 =
b22
b21

+ · · ·+ b2n
b21

This implies that -1 is the sum of squares and thus again is a square in F, which is a

contradiction. So the sum of finite nonzero squares in F is a nonzero square.

6 Applications

The Artin-Schreier theorem tells us that for an algebraic closed field C with a proper

subfield F whose field extension is finite, the degree of such finite extension must be 2

and C is of the form F (i) and F must have characteristic 0. We have seen a very common
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example of C|R, where we write C = {a + bi |a, b ∈ R, i2 = −1}. For this example,

[C : R] = 2 and char R = 0, satisfying the main part of the Artin-Schreier theorem.

Is there another example other than C|R? Yes, and in order to show another example,

we will first state and prove two simple corollaries of the Artin-Schreier Theorem.

Corollary 6.1. Let C be an algebraically closed field, and let G ⊆ Aut(C) be a finite

subgroup, then |G| = 1 or 2.

Proof. Let F = CG, then by theorem 2.37, C|F is Galois and G = Gal(C|F ). By

Artin-Schreier theorem, |G| = [C : F ] = 2.

Corollary 6.2. Let C be an algebraically closed field, and let σ ∈ Aut(C) and σ has

finite order. Then o(σ) = 1 or 2.

Proof. Let G =< σ >, then the result follows from Corollary 1.

Now we can consider the following example. Consider the field Q̄ = {α ∈ C |α algebraic over Q}.

Then Q̄ is algebraically closed. Consider the automorphism σ : Q̄ −→ Q̄ givien by

σ(a+ ib) = a− ib. Then o(σ) = 2, by Corollary 2. Now we let C = Q̄ and F = Q̄<σ>.

Then [C : F ] = 2.

Let’s consider the last application of the Artin-Schreier Theorem.

Corollary 6.3. Let C be an algebraically closed field. Let σ1, σ2 ∈ Aut(C) be finite

order elements such that σ1, σ2 6= id and σ1σ2 6= σ2σ1. Then o(σ1σ2) =∞.

Proof. Since σ1, σ2 6= id and has finite order, by Corollary 2, we know that o(σ1) =

o(σ2) = 2. Suppose in contrary that o(σ1σ2) <∞, then o(σ1σ2) ≤ 2. Let’s consider the

following two cases:
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Case 1: o(σ1σ2) = 1.

Then σ1 = σ−12 . But since o(σ1) = o(σ2) = 2,

σ1 = σ−11 , σ2 = σ−12 .

Hence, σ1 = σ2, which implies σ1σ2 = σ2σ1, contradicting to the assumption.

Case 2: o(σ1σ2) = 2. Then

σ1σ2 = (σ1σ2)
−1 =⇒ σ1σ2 = σ−12 σ−11 =⇒ σ1σ2 = σ2σ1.

Thus, both cases imply that σ1σ2 = σ2σ1, which is a contradiction. So o(σ1σ2) =∞.
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