Distribution Agreement:

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submissions of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature

Development of a Novel Cascade Cyclization Reaction and its Application Towards the Total Synthesis of Malagashanine: A Chloroquine Efflux Inhibitor

By

Ricardo Delgado
Doctor of Philosophy
Chemistry

Simon B. Blakey, Ph. D.
Advisor
\qquad
Frank E. McDonald, Ph. D.
Committee Member
\qquad
Albert Padwa, Ph. D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph. D.
Dean of the James T. Laney School of Graduate Studies

Date

Development of a Novel Cascade Cyclization Reaction and its Application Towards the

 Total Synthesis of Malagashanine: A Chloroquine Efflux InhibitorBy

Ricardo Delgado
B.S., Barry University, 2004

Advisor: Simon B. Blakey, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Chemistry
2010

Abstract
 Development of a Novel Cascade Cyclization Reaction and its Application Towards the Total Synthesis of Malagashanine: A Chloroquine Efflux Inhibitor

By

Ricardo Delgado

A cascade cyclization reaction was developed to access the core of the malagashanine alkaloids with the necessary stereochemistry at $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(7)$. The transformation employed stable N-tosyl- O-TMS-aminols to generate highly reactive β, γ-unsaturated iminium ion intermediates, and the method was amenable to both electron rich and electron poor tryptamine substituents, as well as furans and tryptophol nucleophiles. Additionally, the sequence was successfully employed with intermolecular indole nucleophiles. For the synthesis of malagashanine, the use of a tri-substituted β, γ-unsaturated acid permitted the installation of the fourth requisite stereocenter at $\mathrm{C}(16)$. Additionally, the E ring was constructed via a formal olefin hydroacylation reaction, and $\mathrm{C}(19)-\mathrm{C}(20)$-dehydro-malagashanine was subsequently synthesized.

Development of a Novel Cascade Cyclization Reaction and its Application Towards the

 Total Synthesis of Malagashanine: A Chloroquine Efflux InhibitorBy

Ricardo Delgado

B.S., Barry University, 2004

Advisor: Simon B. Blakey, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry

2010

Table of Contents

1. Chapter One: Introduction to the Monoterpene Indole Alkaloids 1
1.1. Total Synthesis of Strychnos Alkaloids and Related Natural Products 1
1.2. The Malagashanine Alkaloids: Isolation, Structure and Stereochemistry 2
1.3. Biological Activity 4
1.4. Biosynthesis and Related Natural Products 6
1.5. Van Tamelen, Harley-Mason, and Waterfield: An Ingenious Approach to the Strychnos and Aspidosperma Alkaloids 8
1.6. Application of Büchi's Approach to Vindorisone, Vindoline and Other Targets. 11
1.7. The Corey Approach to Aspidophytine 15
1.8. Our Strategy to Access the Core of the Malagashanine Alkaloids 19
2. Chapter Two: Development of a Cascade Cyclization Reaction to Access the Core of the Malagashanine Alkaloids 24
2.1. Early Attempts: Synthesis of β, γ-Unsaturated Imine $\mathbf{8 0}$ via Condensation of Aldehyde 86 and Tryptamine 36 24
2.1.1. Synthesis of β, γ-Unsaturated Aldehyde $\mathbf{8 6}$ 24
2.1.2. Attempted Condensation of β, γ-Unsaturated Aldehyde $\mathbf{8 6}$ with Tryptamine
36 26
2.2. Accessing the Key Iminium Ion Intermediate by Reduction of a Stable Amide Precursor 27
2.2.1. $\quad \mathrm{N}$-Cbz- O -TMS-Aminols are Iminium Ion Precursors 27
2.2.2. Synthesis of N -Cbz- O -TMS-Aminol $\mathbf{1 1 0}$ 30
2.2.3. Cyclization of N -Cbz- O -TMS-Aminol 110: Preliminary Results 32
2.3. Effect of N_{a} and N_{b} Susbtituents on the Key Cyclization Reaction 36
2.3.1. The Substituents on the Nitrogen Atoms Can Have Significant Effects on Product Distribution 36
2.3.2. Exploring the Effect of N_{a} Substitution: Synthesis and Cyclization of N_{a}-Benzyl- N_{b}-Cbz- O-TMS-Aminol 148 39
2.3.3. Exploring the Effect of N_{a} Substitution: Synthesis and Cyclization of N_{a}-H- N_{b}-Cbz- O-TMS-Aminol 156 42
2.3.4. Exploring the Effect of N_{a} Substitution: Synthesis and Cyclization of N_{a}-Tosyl- N_{b}-Cbz- O-TMS-Aminol 168 45
2.3.5. Exploring the Effect of N_{b} Substitution: Synthesis and Cyclization of N_{a}-Benzyl- N_{b}-Carbomethoxy- and N_{a}-Benzyl- N_{b}-Boc- O-TMS-Aminols 180 and 18148
2.3.6. Exploring the Effect of N_{b} Substitution: Synthesis and Cyclization of N_{a}-Benzyl- N_{b}-Piv- O-TMS-Aminol 186 49
2.3.7. Exploring the Effect of N_{b} Substitution: Synthesis and Cyclization of N_{a}-Benzyl- N_{b}-Tosyl- and N_{a}-Benzyl- N_{b}-Nosyl-O-TMS-Aminols 192 and 193 50
2.4. Optimization of the Synthesis of N-Tosyl- O-TMS-Aminol 192 55
2.5. Removal of Benzyl and Tosyl Protecting Groups From Tetracyclic Core 195 59
2.6. Extending the Substrate Scope of the Cascade Annulation Reaction 60
2.6.1. Synthesis and Cyclization of Substrates with Substituted Indoles 60
2.6.2. Application of Our Cascade Annulation Strategy to Tryptophol-Based System 262 67
2.6.3. Application of Our Cascade Annulation Strategy to Furan-Based System 268 70
2.6.4. Development of an Intermolecular Cascade Annulation Reaction 74
2.7. Conclusions 77
2.8. Experimental Procedures 79
2.9. NMR Spectra 190
2.10. X-Ray Structures. 211
3. Chapter Three: Efforts Towards the Total Synthesis of Malagashanine Using Our Cascade Cyclization Reaction Sequence. 263
3.1. First Generation Approach: Accessing Malagashanine via a Knoevenagel Condensation and a Tandem Hydrogenation Reaction 263
3.1.1. Retrosynthetic Analysis 263
3.1.2. Initial Approach to Incorporate a Suitable C(16)-Substituent 265
3.1.3. Revised Approach to Incorporate a Suitable C(16)-Substituent: Synthesis of E-Olefin Isomer N-Tosyl- O-TMS-Aminol 304 267
3.1.4. Cyclization of N-Tosyl- O-TMS-Aminol 304 268
3.1.5. Synthesis of N-Tosyl- O-TMS-Aminols $\mathbf{3 1 6}$ and $\mathbf{3 1 7}$ Containing the Benzyl and TBDPS Protecting Groups Respectively 270
3.1.6. Synthesis of Malagashanine Cores $\mathbf{3 4 0}$ and $\mathbf{3 4 1}$ via Cyclization of N-Tosyl- O-TMS-Aminols 316 and 317 Respectively 275
3.1.7. Synthesis of Ketone $\mathbf{3 4 2}$ for Knoevenagel Condensation 276
3.1.8. Knoevonagel Condensation of Ketone $\mathbf{3 4 2}$ and Ketoester 296 277
3.2. Second Generation Approach: Accessing Malagashanine via a Key Negishi Cross-Coupling and a Tandem Hydrogenation Reaction 280
3.2.1. Retrosynthetic Analysis 280
3.2.2. Synthesis of Kinetic Enol Triflate $\mathbf{3 5 5}$ for Key Negishi Cross-Coupling with
356 281
3.2.3. Synthesis of the More Hindered β-tert-Butyldiphenylsiloxy Ketone $\mathbf{3 6 8}$ 285
3.2.4. Synthesis of Kinetic Enol Triflate $\mathbf{3 7 2}$ and Key Negishi Cross-Coupling with 356 286
3.3. Third Generation Approach: Accessing Malagashanine via a Formal Olefin Hydroacylation Reaction and a Late-Stage Hydrogenation 288
3.3.1. Retrosynthetic Analysis 288
3.3.2. Synthesis of Pyran 377 289
3.3.3. Synthesis of Ester $\mathbf{3 7 6}$ for Key Hydrogenation Reaction 292
3.3.4. Attempts to Synthesize Malagashanine by Hydrogenation of the C(19)-$\mathrm{C}(20)$ Olefin and Removal of the N_{b} Tosyl Auxilliary.296
3.4. Conclusions 300
3.5. Experimental Procedures 302
3.6. NMR Spectra. 350
4. References 359

Table of Schemes

Scheme 1.1 Proposed biosynthetic pathway for malagashanine. 7
Scheme 1.2 Synthetic attempt to access malagashanine in a biomimetic fashion. 8
Scheme 1.3 Van Tamelen's approach to the core of strychnine. 9
Scheme 1.4 Novel rearrangement of tetrahydrocarbolines to indoline compounds. 10
Scheme 1.5 Buchi's approach to vindorosine (33). 11
Scheme 1.6 The Büchi ketone (34) is the thermodynamic product. 12
Scheme 1.7 Effect of indole substituents on product ratios. 13
Scheme 1.8 Marko's approach to the core of the manzamine alkaloids. 14
Scheme 1.9 Marko's approach to the Buchi ketone (34). 15
Scheme 1.10 Corey's approach to aspidophytine (63) 16
Scheme 1.11 Plausible mechanism for the formation of pentacycle 66. 16
Scheme 1.12 Possible explanation for the observed facial selectivity of the cascade cyclization. 18
Scheme 1.13 The size of the acid \mathbf{A} could determine the product distribution. 20
Scheme 1.14 Our general approach to the malagashanine core. 21
Scheme 1.15 Chiral thiourea catalayzed enantioselective Pictet-Spengler reactions. 22
Scheme 1.16 Chiral Binol phosphoric acids are versatile Brönsted acid catalysts. 22
Scheme 2.1 Synthesis of β, γ-unsaturated aldehyde 86. 25
Scheme 2.2 Synthetic approach to β, γ-unsaturated imine $\mathbf{8 0}$ 27
Scheme 2.3 N -acyl- O -TMS-aminols are versatile N -acyliminium ion precursors. 28
Scheme 2.4 New synthetic approach for the synthesis of core $\mathbf{1 1 3}$ 28
Scheme 2.5 Terada's work with chiral Binol phosphoric acids. 29
Scheme 2.6 Jacobsen's chiral thiourea catalyst $\mathbf{1 2 2}$ promotes the enatioselective Pictet- Spengler cyclization of hydroxylactams. 30
Scheme 2.7 Synthesis of N-Cbz-amide 111. 31
Scheme 2.8 Synthesis of N -Cbz- O -TMS-aminol 110. 31
Scheme 2.9 Cyclization of N -Cbz- O -TMS-aminol $\mathbf{1 1 0}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ 33
Scheme 2.10 Cyclization of N -Cbz- O -TMS aminol 110 with protic acid. 34
Scheme 2.11 Mechanistic rationale for the isomerization of N -acyliminium ion 112. 35
Scheme 2.12 Bosch's observations concerning 1,2-migrations in N_{a}-tosyl substituted spiroindolium ions. 37
Scheme 2.13 Mechanistic hypothesis for the formation of compounds 143 and 144. 39
Scheme 2.14 Synthesis of N-Cbz- O-TMS-aminol 148. 40
Scheme 2.15 Cyclization N-Cbz- O-TMS-aminol 110 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. 40
Scheme 2.16 Cyclization N-Cbz- O-TMS-aminol 148 with protic acids. 42
Scheme 2.17 Early attempts to synthesize N-Cbz-amide 158. 43
Scheme 2.18 Synthesis of N-Cbz- O-TMS-aminol 156. 44
Scheme 2.19 Cyclization of N -Cbz- O -TMS-aminol 156. 45
Scheme 2.20 Synthesis and cyclization of N -Cbz- O -TMS-aminol 168 46
Scheme 2.21 Mechanistic rationale for the formation of compound 172. 47
Scheme 2.22 Cyclization of N -Cbz- O -TMS-aminol 168 with protic acid 47
Scheme 2.23 Cyclization of N -Cbz- O -TMS-aminol 161 with protic acid. 48
Scheme 2.24 Synthesis and cyclization of N -Cbz- O -TMS-aminols $\mathbf{1 8 0 , 1 8 1}$ and 186. 49
Scheme 2.25 Synthesis and cyclization of N-tosyl- O-TMS-aminol 192. 51
Scheme 2.26 Synthesis and cyclization of N-nosyl- O-TMS-aminol 193. 52
Scheme 2.27 Cyclization of N -tosyl- O -TMS-aminol 192 with protic acid. 54
Scheme 2.28 Early attempts to install a tosyl group at the amide nitrogen 56
Scheme 2.29 Further attempts to install a tosyl group at the amide nitrogen 56
Scheme 2.30 Attempts to synthesize 196 via amide coupling methods. 57
Scheme 2.31 Possible mechanism for the isomerization of acid segment 213. 57
Scheme 2.32 Improved synthesis of N-tosyl-amide 196 from 211 58
Scheme 2.33 Improved synthesis of N-tosyl- O-TMS-aminol 192 from 196. 59
Scheme 2.34 Protecting group removal following cascade annulation reaction. 60
Scheme 2.35 Synthesis of N-tosyl- O-TMS-aminols 219-222. 61
Scheme 2.36 Synthesis of N-tosyl- O-TMS-aminol 223 61
Scheme 2.37 Mechanistic rationale for the formation of compounds 247, 248 and 251.. 63
Scheme 2.38 Synthesis of N -tosyl- O -TMS-aminol 254. 64
Scheme 2.39 Cyclization of N-tosyl- O-TMS-aminol 254 65
Scheme 2.40 Alternate explanation to Bosch's observations. 66
Scheme 2.41 Preliminarycyclization results with acetoxy-acetal 263 67
Scheme 2.42 Improved procedure for the formation of tetracyclic ethers 265 and $\mathbf{2 6 6}$... 68
Scheme 2.43 Possible products from the cyclization of N-tosyl- O-TMS-aminol 268. 71
Scheme 2.44 Synthesis and cyclization of N-tosyl- O-TMS-aminol 268. 72
Scheme 2.45 Synthesis and cyclization of N-tosyl- O-TMS-aminol 277. 74
Scheme 2.46 Synthesis of N-tosyl- O-TMS-aminol 280. 75
Scheme 2.47 Possible mechanism regarding the formation of compound 284. 76
Scheme 2.48 Possible application of the intermolecular annulation sequence to access the core of the aspidosperma alkaloids 287 77
Scheme 3.1 Overall synthetic strategy for the construction of malagashanine. 263
Scheme 3.2 Proposed tandem reaction to access malagashanine from α, β-unsaturated
ketoester 290 264
Scheme 3.3 Cyclization of Z-isomer 298 and structural assignment of the product $\mathbf{3 0 0}$. 265
Scheme 3.4 Rationale for the observed stereochemical outcome 266
Scheme 3.5 Synthesis of N -tosyl, O -TMS-aminol 304 267
Scheme 3.6 Cyclization of N -tosyl, O -TMS-aminol 304 to tetracyclic amine $\mathbf{3 0 2}$. 268
Scheme 3.7 Mechanistic rationale for the formation of tetrahydrocarboline 314 270
Scheme 3.8 Second generation synthesis of iodo-alcohol 318 270
Scheme 3.9 Synthesis of β, γ-unsaturated acid 323 272
Scheme 3.10 Initial attempts to couple acid $\mathbf{3 2 3}$ and tosylamide 211 272
Scheme 3.11 Improved procedure for the synthesis of N -tosylamide 326 273
Scheme 3.12 Synthesis of N-tosyl, O-TMS-aminol 316. 274
Scheme 3.13 Synthesis of N-tosyl- O-TMS-aminol 317. 274
Scheme 3.14 Cyclization of N-Tosyl- O-TMS-Aminols 316 and 317. 275
Scheme 3.15 Synthesis of ketone $\mathbf{3 4 2}$. 276
Scheme 3.16 Improved synthesis of ketone $\mathbf{3 4 2}$ 277
Scheme 3.17 Early attempts to condense ketone 342 and β-ketoester 296 277
Scheme 3.18 Possible mechanism for the formation of pyridine 347 278
Scheme 3.19 Attempts to condense ketone $\mathbf{3 4 2}$ and β-ketoester $\mathbf{2 9 6}$ under Lehnert conditions 279
Scheme 3.20 Second generation approach to malagashanine. 281
Scheme 3.21 Early attempts to synthesize kinetic enol triflate $\mathbf{3 5 5}$ using NaHMDS. 282
Scheme 3.22 Early attempts to synthesize kinetic enol triflate $\mathbf{3 5 5}$ using lithium bases. 282
Scheme 3.23 Mechanistic rationale for the formation of $C(3) / C(16)$ epimers of ketone342.
Scheme 3.24 Possible rationale for the formation of thermodynamic enolate $\mathbf{3 6 5}$ 284
Scheme 3.25 Initial attempts to synthesize ketone $\mathbf{3 6 8}$ 285
Scheme 3.26 Improved synthesis of ketone 368 286
Scheme 3.27 Attempts to synthesize kinetic enol triflate $\mathbf{3 7 2}$ using lithium bases 286
Scheme 3.28 Synthesis of $\mathbf{3 7 2}$ using KHMDS and Comins' reagent (361). 287
Scheme 3.29 Negishi cross-coupling of triflate $\mathbf{3 7 2}$ and vinyliodide $\mathbf{3 5 6}$. 287
Scheme 3.30 Third generation approach to malagashanine. 289
Scheme 3.31 Formal hydroacylation of olefin 341. 290
Scheme 3.32 Hydrogenolysis of N -benzyl indoline $\mathbf{3 8 0}$. 290
Scheme 3.33 Hydrolysis of silyl ether 383. 291
Scheme 3.34 Conversion of tetracyclic amine 340 to hemiacetal 384. 291
Scheme 3.35 Synthesis and structural assignment of pyran 377. 292
Scheme 3.36 Initial attempts to synthesize aldehyde 387. 292
Scheme 3.37 Mechanistic rationale for the formation of side product 389 293
Scheme 3.38 Synthesis of aldehyde $\mathbf{3 8 7}$ from pyran $\mathbf{3 7 7}$. 294
Scheme 3.39 Oxidation of aldehyde $\mathbf{3 8 7}$ via a radical-based protocol. 295
Scheme 3.40 Synthesis of ester 376 295
Scheme 3.41 Hydrogenation of the $C(19)-C(20)$ olefin in ester 376 296
Scheme 3.42 Synthesis of acid 401 298
Scheme 3.43 Synthesis of C(19)-C(20)dehydro-malagashanine 402 and N_{b}-desmethyl- C(19)-C(20)dehydro-malagashanine 403 299

Table of Figures

Figure 1.1.Strychnine and other related monoterpene indole alkaloids. 1
Figure 1.2 The malagashanine alkaloids and related compounds. 2
Figure 1.3 NOE studies on the malagashanine alkaloids 4
Figure 1.4 Explanation for the observed diastereoselectivity 19
Figure 2.1 Structural assignment of tetracyclic amine 151 41
Figure 2.2 Structural assignment of tetracyclic amine 195. 51
Figure 2.3 Yamamoto's chiral Binol N-triflylphosphoramide catalyst. 55
Figure 2.4 Structural assignment of isomeric tetracyclic tosylamine 257. 65
Figure 2.5 Possible solutions to address the limitations of our method concerning the cyclization of 6-methoxy- N -tosyl- O -TMS-aminol 223 67
Figure 2.6 Structural assignment of ethers 265 and 266. 69
Figure 2.7 Structural assignment of ether 270. 72
Figure 3.1 Structural assignment of tetracyclic amine $\mathbf{3 0 2}$. 269
Figure 3.2 NOE experiments with $\mathbf{3 4 2}$ suggest that the carbonyl D-ring exists in a half-chair conformation. 280
Figure 3.3 NOESY correlations of triflates $\mathbf{3 5 5}$ and $\mathbf{3 5 9}$ 284
Figure 3.4 Compound $\mathbf{3 8 7}$ is a vinylogous formate ester. 294

Table of Tables

Table 1.1 Chloroquine potentiating activity of malagashanine on CQR strain of
Plasmodium falciparum FCM 29/Cameroon.. 5
Table 2.1 Summary of the cascade annulation optimization... 53
Table 2.2 Cascade cyclization of substituted indoles.. 62
Table 2.3 Optimization of the intermolecular cascade cyclization reaction. 75

	Abbreviations
Ac	acetyl
AcOH	acetic acid
9-BBN	9-borabicyclo[3.3.1]nonene
Boc	tert-butoxycarbonyl
Bn	benzyl
br	broad
$n-\mathrm{BuLi}$	n-butyllithium
t - BuOOH	tert-butylhydroperoxide
Cbz	benzyloxycarbonyl
d	doublet
dba	dibenzylideneacetone
DCE	1,2-dichloroethane
DCM	dichloromethane
DIBAL-H	diisobutylaluminum hydride
DMAP	N, N -dimethylaminopyridine
DME	1,2-dimethoxyethane
DMF	N, N -dimethylformamide
DMP	Dess-Martin periodinane
DMPU	N, N^{\prime}-dimethyl- N, N^{\prime}-propylene urea
DMS	dimethylsulfide
DMSO	dimethylsulfoxide

EDCI	1-ethyl-3-(3-dimethylaminopropylcarbodiimide)
equiv.	equivalent
ESI	electrospray ionization
EtOAc	ethyl acetate
HMPA	hexamethylphosphoric triamide
HOBt	1-hydroxybenzotriazole
HRMS	high resolution mass spectroscopy
IBX	2-iodoxybenzoic acid
KHMDS	potassium bis(trimethylsilyl)amide
LA	Lewis acid
LAH	lithium aluminum hydride
LDA	lithium diisopropylamide
LiHMDS	lithium bis(trimethylsilyl)amide
LiTMP	lithium 2,2,6,6-tetramethylpiperidide
m	multiplet
mmol	millimole
NaHMDS	sodium bis(trimethylsilyl)amide
Naph	naphtyl
NIS	N -iodosuccinimide
NMO	N -methylmorpholine N -oxide
NMR	nuclear magnetic resonance
Ns	4-nitrobenzenesulfonyl
Ph	phenyl

PMP	para-methoxyphenyl
ppm	parts per million
PTSA	para-toluenesulfonic acid
q	quartet
quint	quintet
rt	room temperature
s	singlet
t	triplet
TBAHS	tetrabutylammonium hydrogen sulfate
TBME	tert-butyl methyl ether
TBDMS	tert-butyldimethylsilyl
TBDPS	tert-butyldiphenylsilyl
TCBoc	2,2,2-trichloro-tert-butyloxycarbonyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
TFP	tris(2-furyl)phosphine
THF	tetrahydrofuran
THP	tetrahydropyran
TMS	trimethylsilyl
TPAP	tetrapropylammonium perruthenate
Ts	para-toluenesulfonyl
w	weak

1. Chapter One: Introduction to the Monoterpene Indole Alkaloids

1.1. Total Synthesis of Strychnos Alkaloids and Related Natural Products

More than 60 years after the first total synthesis of strychnine (1) was reported by R. B. Woodward, ${ }^{1}$ the synthetic community continues to show great interest in strychnine and other related monoterpene indole alkaloids (Figure 1.1). ${ }^{2}$ With the discovery of new compounds over the last decades, the ranks of the strychnos alkaloids have provided a myriad of new synthetic targets. ${ }^{3}$ Along with their biosynthetic relatives, including aspidosperma alkaloids such as aspidospermidine (2) and vindoline (3), they remain an inspiration to the minds of chemists. As intriguing structural features are identified in newly isolated compounds, synthetic chemists continue to push the limits of the field and as a result develop new transformations.

Strychnine (1)

(-)-Aspidospermidine (2)

Vindoline (3)

Malagashanine (4)

Figure 1.1 Strychnine and other related monoterpene indole alkaloids.

Many strychnos alkaloids display potent biological activity against a wide array of illnesses. ${ }^{4}$ For example, malagashanine (4) holds great promise as an adjuvant in the treatment of malaria. ${ }^{5}$ The need to procure useful quantities of this compound for
biological testing is of utmost importance, as this and other alkaloids are usually found in nature in minute amounts. Equally important is the need to develop efficient methods for the synthesis of analogs, which not only are useful tools in the elucidation of the biological mode of action, but in many instances may surpass the parent compound in potency.

1.2. The Malagashanine Alkaloids: Isolation, Structure and Stereochemistry

In 1991 Rasoanaivo and coworkers reported the isolation of malagashanine (4) from the stem bark of Strychnos mostueoides in the eastern forest of Madagascar (Figure 1.2). ${ }^{5 \mathrm{a}}$ Malagashanine was isolated using countercurrent distribution (CCD) that afforded $8.0 \times 10^{-4} \%$ yield based on dry weight. Subsequently it has also been isolated from the bark of Strychnos myrtoides ${ }^{5 c}$ and Strychnos diplotricha, ${ }^{6}$ as well as from the leaves of Strychnos myrtoides. ${ }^{6}$ Other related compounds isolated from the same plant extract include 12-hydroxymalagashanine (5), myrtoidine (6) and 11-demethoxymyrtoidine (7). ${ }^{7}$ Additionally, minor $\mathrm{C}(3)$ epimers of myrtoidine have also been isolated. ${ }^{6}$

$\mathrm{R}=\mathrm{H}$, Malagashanine (4) $\mathrm{R}=\mathrm{OH}, 12-\mathrm{Hydroxymalagashanine} \mathrm{(5)}$

$\mathrm{R}=\mathrm{OCH}_{3}$, Myrtoidine (6)
$R=H, \quad$ 11-Demethoxymyrtoidine (7)

Misassigned Structure of Malagashanine (8)

Aspidosperma Core (9)

Figure 1.2 The malagashanine alkaloids and related compounds.

The molecular formula of malagashanine was established to be $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ by EI-MS. ${ }^{5 \mathrm{a}}$ The structure was originally assigned as $\mathrm{N}_{\mathrm{b}}, \mathrm{C}(3)$ secocuran alkaloid $\mathbf{8}$ having a N_{b}-methyl, 14-methoxy and $\mathrm{C}(21)$ carbonyl substituents. The assignment was based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ selective decoupling and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiments, as well as comparisons to other secocuran alkaloids. However shortly after this original disclosure, the authors subsequently revised their assignment using X-ray crystallographic data and unequivocally assigned the structure as 4. ${ }^{8}$ Malagashanine presents an interesting pentacyclic structure with seven contiguous stereocenters in a stereochemically unique arrangement. In contrast to all other known strychnos and aspidosperma alkaloids, which display the $\mathrm{C}(2)-\mathrm{H}, \mathrm{C}(7)-\mathrm{C}(6)$, and $\mathrm{C}(3)-\mathrm{N}_{\mathrm{b}}$ bonds all in syn relationship to each other as shown in Figure 2 (aspidosperma core 9), malagashanine possesses inverted relative stereochemistry at $\mathrm{C}(3)$. NOESY studies also support the revised structure and show cross peaks between $\mathrm{H}-5 \mathrm{a}$ and $\mathrm{H}-9$ that are only explainable if the $\mathrm{C}(3)$ stereocenter is inverted (Figure 1.3). ${ }^{7}$ Additionally, 3-epi-myrtoidine (10), which possesses the usual aspidosperma stereochemistry, shows cross peaks between H-3 and H-9 that are not observed in malagashanine.

Interestingly, only one conformer of malagashanine is detectable by NMR at 300 K despite the presence of an N-methylacetamide moiety. This is in contrast to the usual mixture of rotamers observed with most members of the malagashanine family. NOE between $\mathrm{H}-2$ and $\mathrm{CH}_{3}(24)$ indicate that the Z-isomer is the predominant conformer in malagashanine.

Malagashanine (4)

\equiv

\equiv

Figure 1.3 NOE studies on the malagashanine alkaloids.

1.3. Biological Activity

Malaria is the major parasitic infection in many tropical and subtropical regions, leading to over one million deaths out of 400-500 million cases each year. ${ }^{9}$ The spread of drug resistant strains of Plasmodium falciparum is one of the leading causes of the rising rate of malarial infections.

The Malagasy population usually treats malaria via self-medication with chloroquine (CQ) taken along with a tonic made from local plants, including Strychnos myrtoides and Strychnos mostueoides. ${ }^{5 \mathrm{a}}$ This herbal decoction is claimed to work as an adjuvant to treat malaria, and is used with seeming success even with low doses of CQ (100-200 mg). A series of studies conducted by Rasoanaivo and coworkers beginning in 1991 identified malagashanine 4 as one of the main components of the extract of Strychnos myrtoides and Strychnos mostueoides. In vitro studies using a chloroquine resistant (CQR) strain of Plasmodium falciparum FCM 29/Cameroon revealed that
malagashanine exhibited marked CQ enhancement activity (Table 1.1). ${ }^{5 \mathrm{c}}$ Subsequent in vitro biological testing showed that malagashanine acted by preventing CQ efflux in drug resistant Plasmodium falciparum strains. ${ }^{5 b}$ There is evidence suggesting that it stimulates CQ influx as well.

Malagashanine Dose ($\mu \mathrm{g} / \mathrm{ml}$)
Chloroquine Activity (nM)

		$\mathbf{I C}_{\mathbf{5 0}}$	$\mathbf{I C}_{\mathbf{9 0}}$
$\mathbf{A E I}^{\mathrm{a}}$			
0^{b}	$226.0+/-4.7$	$522.7+/-9.4$	
5	$90.6+/-5.5$	$207.0+/-6.7$	2.5
10	$52.9+/-4.6$	$142.8+/-6.3$	3.7
15	$38.5+/-3.6$	$116.9+/-5.1$	4.5
20	$33.2+/-3.2$	$95.6+/-5.4$	5.5
25	$25.5+/-2.7$	$76.6+/-5.2$	6.3

${ }^{\mathrm{a}} \mathrm{AEI}$ or activity enhancement index is calculated by dividing the IC_{90} of CQ by the IC_{90} of CQ combined with malagashanine.
${ }^{\mathrm{b}}$ Control plate with CQ alone.

Table 1.1 Chloroquine potentiating activity of malagashanine on CQR strain of Plasmodium falciparum FCM 29/Cameroon.

In vivo studies using the crude alkaloid extracts from S. myrtoides were carried out on Swiss mice infected with a line of Plasmodium yoelii subsp. nigeriensis N67 resistant to CQ and supsceptible to pyrimethamine and mepacrine. These studies revealed an 81.10% suppression of parasitaemia by the fifth day of the experiment in mice receiving $0.75 \mathrm{mg} / \mathrm{Kg}$ dosages of CQ and $100 \mathrm{mg} / \mathrm{Kg}$ of crude alkaloid extract. No toxicity was detected against the extract at oral dosages of $100 \mathrm{mg} / \mathrm{Kg}$.

The mechanism through which chloroquine resistance operates still is a topic of debate. ${ }^{10}$ There is some evidence suggesting that it is caused by Pgh-1, an ortholog of one of the P-glycoproteins expressed in multi-drug resistant human cancer cells (ABC transporter). ${ }^{11}$ Additionally, some research suggests that a PfCRT protein might be responsible for the increased resistance either by changing the vacuolar pH (which would result in reduced CQ uptake or lower binding affinity for ferriprotoporphyrin IX) or by
facilitating the efflux of CQ itself. ${ }^{12}$ The ability of malagashanine to negate drug resistance in CQR Pf strains provides an excellent opportunity to probe the biological mechanisms controlling these processes. Moreover, such studies could well impact the field of cancer research provided that the parallels of chloroquine resistance and multidrug resistance in human cancer cells proved accurate. Consequently, useful quantities of malagashanine and synthetic analogs are required. This dissertation describes our efforts to develop a reliable and efficient synthesis of malagashanine, which will allow us to generate a useful amount of material for these biological evaluations.

1.4. Biosynthesis and Related Natural Products

The monoterpene indole alkaloids are a family of several hundred compounds all sharing a common set of building blocks comprised of tryptamine (11) and secologanin (12), as well as a common biosynthetic intermediate, strictosidine (13) (Scheme 1.1). ${ }^{2-3}$ Malagashanine is a recent addition to this growing family.

The proposed biosynthetic pathway suggests that malagashanine arises from strychnosbrasiline (14), which is biosynthetically related to strychnine (1) and is found in large quantities in the bark of S. myrtoides. ${ }^{7}$ Starting with compound 14, the process could involve scission of the $\mathrm{N}_{\mathrm{b}}-\mathrm{C}(21)$ bond through protic acid activation via iminium ion 15 to afford secondary amine $\mathbf{1 6}$, followed by condensation with the $\mathrm{C}(3)$ carbonyl. Hydride reduction of the resulting iminium ion 17 would generate malagashanine precursor 18 with the novel β-configuration at $\mathrm{C}(3)$.

11

Strictosidine (13)
$\downarrow \downarrow$

16
$\xlongequal[H]{+\mathrm{H}^{+}} \begin{array}{r}-\mathrm{H}_{2} \mathrm{O}\end{array}$

17

18

Malagashanine (4)

Scheme 1.1 Proposed biosynthetic pathway for malagashanine.

There is one reported biomimetic approach to malagashanine as illustrated in Scheme 1.2. ${ }^{13}$ Strychnobrasiline (14) was converted to compound 19 in nine steps, and then the reduction of the enamine moeity was attempted in order to install the $C(3)$ stereocenter with the requisite configuration. However, only 3-epi-malagashanine (20) was obtained. This result is in line with the nucleophile attacking preferentially from the bottom face of enamine 19 to avoid the highly concave upper face.

Scheme 1.2 Synthetic attempt to access malagashanine in a biomimetic fashion.

At the onset of our study, there were no reported synthetic methods that addressed the construction of the $\mathrm{C}(2), \mathrm{C}(7)$ and $\mathrm{C}(3)$ stereocenters with the syn-anti stereochemical pattern found in the malagashanine alkaloids. In contrast, a number of approaches have been developed for the generation of the core of the aspidosperma alkaloids with high diastereoselectivity. In considering a synthetic approach for malagashanine, it is first important to review the evolution of successful strategies that employ cascade cyclization reactions to set three or more of these key stereocenters in a single chemical step. By understanding the factors that control the stereoselectivity of these transformations, a successful strategy for the stereoselective synthesis of the core of the malagashanine can be developed.

1.5. Van Tamelen, Harley-Mason, and Waterfield: An Ingenious Approach to the Strychnos and Aspidosperma Alkaloids

In 1960, Van Tamelen and coworkers published a paper detailing the rapid construction of strychnine-like derivative 21 from basic starting materials $\mathbf{2 2}$ and $\mathbf{2 3}$ in three chemical steps (Scheme 1.3). ${ }^{14}$ This constituted the first laboratory example that applied the principles put forth by Woodward for the biosynthesis of the strychnos
alkaloids. The authors stirred the sensitive amido aminol 24 in aqueous acetate buffer, which presumably generated acyl iminium ion $\mathbf{2 5}$, followed by $\mathrm{C}(3)$ nucleophilic attack to form spiroindolium ion 26, and nucleophilic attack at $C(2)$ by the enol tautomer of the tethered aldehyde, to generate two new rings and four new stereocenters. However, the yield for this transformation was not reported.

Scheme 1.3 Van Tamelen's approach to the core of strychnine.

The product structure was determined by elemental analysis and by comparison of the ultraviolet spectrum of Wieland-Gumlich aldehyde (27) with a derivative of 21 in which the formyl carbonyl was reduced to the corresponding primary alcohol. However, no stereochemical assignments were made.

Scheme 1.4 Novel rearrangement of tetrahydrocarbolines to indoline compounds.

In the same year, Harley-Mason and Waterfield reported a novel skeletal rearrangement of tetrahydrocarboline $\mathbf{2 8}$, which upon treatment with boiling concentrated hydrochloric acid generated indoline 29 (Scheme 1.4). ${ }^{15}$ The authors proposed that under the highly acidic reaction conditions, protonation at $\mathrm{C}(2)$ afforded compound $\mathbf{3 0}$ which rearomatized to the indole moeity via carbon-carbon bond scission and generated iminium ion 31. At this stage, $C(3)$ nucleophilic attack produced a new indolium ion 32 which was subsequently trapped through an intramolecular Friedel-Crafts reaction to afford indoline 29. The product was characterized by NMR and ultraviolet spectroscopy, but no stereochemical information was provided. Although the authors commented on the high efficiency of the transformation, the yield was not reported.

These experimental contributions along with the valuable synthetic and mechanistic studies provided by other groups helped advance the understanding of the factors controlling $C(2)$ and $C(3)$ attack in the context of tryptamine chemistry.

1.6. Application of Büchi's Approach to Vindorisone, Vindoline and Other Targets.

In 1971, Büchi and coworkers achieved the first total synthesis of the aspidosperma alkaloid vindorosine (33) (Scheme 1.5). ${ }^{16}$ The synthetic strategy to access tetracyclic core 34 relied on a tandem double cyclization reaction to set the necessary $C(2), C(3)$ and $C(7)$ stereocenters, as well as generate a carbonyl moeity at $C(15)$ to serve as a functional handle for later transformations. Preliminary attempts to cyclize vinylogous amide 35 , available from the condensation of N_{a}-methyl tryptamine 36 with α, β-unsaturated ketone 37, were not fruitful. However, installing an electron withdrawing group at N_{b} and treating $\mathbf{3 8}$ with boron trifluoride etherate at $90^{\circ} \mathrm{C}$ afforded the desired cascade cylization product 34 in 38% yield.

Scheme 1.5 Büchi's approach to Vindorosine (33).

The mechanism of this transformation presumably involved activation of the vinylogous amide carbonyl by boron trifluoride followed by conjugate addition via $\mathrm{C}(3)$ nucleophilic attack to afford spiroindolium 39. Fluoride mediated tautomerizations ultimately generated ketone enolate $\mathbf{4 0}$, which cyclized to afford spiroindoline $\mathbf{3 4}$. The minor carboline side product 41 in this reaction was also isolated in 20% yield. Resubjecting 41 to the same reaction conditions afforded 8% of compound 34 and suggested that a similar mechanism to that described by Mason and Waterfield was involved (Scheme 1.6).

Scheme 1.6 The Büchi ketone (34) is the thermodynamic product.

The authors hydrolyzed the N_{b}-acetyl group using hot aqueous 10% hydrochloric acid without observing any isomerization of the product 42, despite the presence of the highly labile β, β '-diamino ketone functionality (Scheme 1.6). This observation, as well as the conclusions drawn from molecular modeling studies both suggested that the Büchi ketone (34) was the thermodynamic product of the cascade cylization reaction.

Büchi and co-workers were also interested in vindoline (3), another aspidosperma alkaloid with a similar structure to that of vindorisine (Scheme 1.7). ${ }^{17}$ The synthesis required the installation of a 6-methoxy substituent in the indole starting material 43.

However, treatment of $\mathbf{4 3}$ with boron trifluoride etherate at $90^{\circ} \mathrm{C}$ produced only 9% of the desired compound 44 and large amounts of tetrahydrocarboline 45 . Resubjecting 45 to the reaction conditions did not afford any 44 either. The authors hypothesized that the high electron density of the indole ring conferred by the methoxy substituent was facilitating the Wagner-Meerwein rearrangement of the initially formed spiroindolium ion 46, favoring the formation of $\mathbf{4 5}$. Consequently, replacing the methyl substituent with an electron withdrawing tosyl group at the 6-hydroxyl position tuned the selectivity in favor of tetracycle 48 and almost completely suppressed the formation of side product 49. Vindoline was accessed in nine steps from compound 48.

Scheme 1.7 Effect of indole substituents on product ratios.

Throughout the years the Büchi ketone (34) has proven to be a very versatile intermediate for the synthesis of a wide range of aspidosperma alkaloids. It has also served as a source of inspiration for the development of methods to access analogous synthons. For example, in their efforts to access the core of the manzamine alkaloids, the Marko group planned to generate a six-membered analog of the Büchi ketone, compound

51, through an anionic polycyclization cascade reaction from α, β-unsaturated ketone 52 (Scheme 1.8). ${ }^{18}$ However, treatment of $\mathbf{5 2}$ with catalytic amounts of potassium tert-butoxide in THF did not generate the desired product. Instead, product compound 53, which displayed a stereochemical pattern reminiscent to that found in the malagashanine alkaloids was isolated as a single diastereomer, presumably through the mechanism shown in Scheme 1.8.

51

54

56

Scheme 1.8 Marko's approach to the core of the manzamine alkaloids.

In 2005, the Marko group accessed compound $\mathbf{5 8}$ using a similar base catalyzed polycyclization reaction, this time using a tryptamine derivative starting material (59) (Scheme 1.9). ${ }^{19}$ Compound 58 was later converted to the Büchi ketone (34) through a seven step sequence, that involved the construction of pyrrolidine $\mathbf{6 0}$ through an
oxidative decarboxylation of compound $\mathbf{6 1}$, followed by Michael addition of the tethered carbamate into the resulting α, β-unsaturated ketone 62 under basic conditions. Pyrrolidine 60 displayed the same stereochemical pattern found in the aspidosperma alkaloids. This observation is in line with Büchi's hypothesis that the higher stability of the cis-fused C-D ring junction ultimately favors the formation of $\mathrm{C}(2), \mathrm{C}(7)$, and $\mathrm{C}(3)$ with all syn relative stereochemistry.

59

58
60%

50% from 61

Scheme 1.9 Marko's approach to the Büchi ketone (34).

1.7. The Corey Approach to Aspidophytine

In 1999, Corey and coworkers achieved the first enantioselective total synthesis of the aspidosperma alkaloid aspidophytine (63) (Scheme 1.10). ${ }^{20}$ Their strategy revolved around an elegant condensation/cascade reaction between tryptamine $\mathbf{6 4}$ and chiral nonracemic aldehyde $\mathbf{6 5}$ to generate pentacycle $\mathbf{6 6}$ in one step. Aspidophytine was obtained from compound 66 in six steps.

Scheme 1.10 Corey's approach to aspidophytine (63).

A plausible mechanism involves condensation of tryptamine $\mathbf{6 4}$ and the less hindered aldehyde at 65 to generate aminol 67, which can subsequently undergo elimination to Z-enamine 68, followed by intramolecular nucleophilic attack at the tethered tertiary aldehyde to generate the corresponding aminol 69 (Scheme 1.11).

Scheme 1.11 Plausible machanism for the formation of pentacycle 66.

Dehydration of the aminol with trifluoroacetic anhydride affords a highly reactive N-vinyl iminium ion intermediate 70, which undergoes a spirocyclization to generate indolium ion 71. Intramolecular allylation affords pentacycle 72, followed by in situ reduction of the enamine moiety with sodium cyanoborohydride to produce compound $\mathbf{6 6}$ in 66% yield.

Regarding the first steps of this mechanism, it is plausible that the diastereomeric spiroindolium ion 75 is initially formed along with 71 (Scheme 1.12). Due to the similarities in size between the α-carbon substituents on iminium 70, the nucleophilic trapping by the tethered indole would be expected to take place with low facial selectivity. At this stage, the allysilane pendant on intermediate 71 is perfectly aligned with the indolium ion and effects the requisite carbon-carbon bond formation to generate the desired tetracycle 72. On the other hand, the allylsilane pendant on diastereomeric spiroindolium 75 is located on the inaccessible face of the iminium ion (that which is opposite to the indolium ion) and thus is unable to react and complete the cascade sequence. At this stage, spiroindolium 75 can either undergo a 1,2-alkyl migration to produce cation 76 and ultimately produce Pictet-Spengler byproducts (not reported), or it can regenerate iminium ion 70. It is reasonable to assume that the 1,2-migration would be disfavored because of the non-bonding repulsions that would result between the α-carbon substituents and the methyl group at N_{b} in intermediate 76. Consequently, the formation of $\mathbf{7 2}$ would consume the available amount of $\mathbf{7 1}$, thus driving the conversion of $\mathbf{7 5}$ to intermediate 70. Central to this argument is the structure of cyclic iminium ion 70. As a consequence of being internal to a six membered ring, iminium ion 70 is configurationally locked into a single geometric isomer, which prevents rotation around
the $\mathrm{N}_{\mathrm{b}}-\mathrm{C}$ bond that would otherwise result in the formation of undesired diastereomers. Ultimately, the configurational rigidity of 70 is responsible for the observed facial selectivity.

Scheme 1.12 Possible explanation for the observed facial selectivity of the cascade cyclization.

The inflexible nature of iminium ion 70 also simplifies the issue of diastereoselectivity, which is now solely determined by sterics (Figure 1.4). A comparison of transitions states 77 and 78 shows that the former maximizes to a higher degree the distance between the allyl silane moeity and the bulky indole ring, leading to the formation of the only reported diastereomer 72.

Favored (77)

Disfavored (78)

Figure 1.4 Explanation for the observed diastereoselectivity.

1.8. Our Strategy to Access the Core of the Malagashanine

Alkaloids

Throughout the last decades the synthetic community has witnessed numerous ingenious approaches to the total synthesis of several aspidosperma and strychnos alkaloids. These methods continue to offer valuable inspiration as well as insight to the synthetic challenges surrounding these molecules. Generally, these approaches rely on the inherent preference of these systems to form the $\mathrm{C}(2)-\mathrm{C}(7)$ syn and $\mathrm{C}(7)-\mathrm{C}(3)$ syn relative stereochemistries with almost exclusive selectivity. On the other hand, as illustrated by the synthesis of aspidophytine by Corey and coworkers, effective stereocontrol can also be achieved when a conformationally restricted iminium ion is utilized.

We recognized that the latter case was particularly relevant to the development of a general strategy for the construction of malagashanine. The key to selectively access the requisite core 79 would be to employ an acyclic imine $\mathbf{8 0}$ and a suitable acid A (Scheme 1.13). The size of the acid \mathbf{A} could determine the relative ratio of iminium ion/acid complexes $\mathbf{8 1} / \mathbf{8 2}$, thus allowing for the selective formation of either alkaloid core $\mathbf{8 3}$ or 79, respectively. A bulky acid would coordinate to imine $\mathbf{8 0}$ via complex $\mathbf{8 2}$ in order to
maximize its distance from the allylsilane moeity. On the other hand, small acids would coordinate via complex 81, in which the larger allylsilane and N-alkyl substituents would be positioned trans to each other.

Scheme 1.13 The size of the acid \mathbf{A} could determine the product distribution.

Imine $\mathbf{8 0}$ could be accessed easily from tryptamine $\mathbf{8 5}$ and aldehyde 86 (Scheme 1.14). Additionally, working with imine $\mathbf{8 0}$ would also present the opportunity to eventually carry out the transformation under chiral protic acid catalysis. The stereoinduction of the initial spirocyclization could be controlled by a chiral protic acid via close ion pairing between iminium ion 87 and chiral counterion \mathbf{B}^{*}, to afford tetracycle $\mathbf{8 8}$ in an enantio- and diastereoselective fashion.

85

86

80
$\mathrm{HB}^{*}=$ Chiral acid catalyst

\longrightarrow

89

Malagashanine Core (88)
HB*

Close-Ion Pairing

Malagashanine (4)

Scheme 1.14 Our general approach to the malagashanine core.

Although our immediate objectives were to develop an efficient method to access the core of malagashanine, and elaborate this into a viable synthetic route to malagashanine itself, the long-range goal of accessing the molecule in an enantioselective fashion played a major role in our investigation. Whenever possible, our model systems were designed to be amenable to the use of chiral thioureas and/or chiral Binol phosphoric acids.

We were especially interested in the precedent established by the Jacobsen group concerning the use of thiourea-based chiral hydrogen-bond donors to promote the reaction of simple alkyl imines $\mathbf{9 0}$ with tethered indole nucleophiles (Scheme 1.15). ${ }^{21}$ In contrast to the relatively acidic Binol phosphoric acids (which react via protonation of the substrate to afford ion-pairs), thioureas are relatively weak acids that operate solely through hydrogen bonding interactions. Consequently, the imine substrates are first activated in-situ via acylation. The role of catalyst $\mathbf{9 1}$ is then to interact with the chloride ion to form a chiral complex that affords the corresponding Pictet-Spengler product $\mathbf{9 2}$ in good yields and high to excellent enantioselectivities.

Scheme 1.15 Chiral thiourea catalayzed enantioselective Pictet-Spengler reaction.

We were also interested in the work of Akiyama, who had showed that N -aromatic aldimines $\mathbf{9 3 - 9 5}$ could be activated by catalysts $\mathbf{9 6 - 9 8}$ to undergo a variety of transformations, including hydrophosphonylation reactions as well as normal and inverse-electron demand Diels-Alder reactions, respectively (Scheme 1.16). ${ }^{22}$ The yields for these reactions were usually high and the enantioselectivities were excellent.

Hydrophosphonylation reactions:

Scheme 1.16 Chiral Binol phosphoric acids are versatile Brönsted acid catalysts.

The following chapters detail our efforts to develop a diastereoselective double cyclization cascade reaction to access the core of the malagashanine alkaloids, and its application to the total synthesis of malagashanine.

2. Chapter Two: Development of a Cascade Cyclization Reaction to Access the Core of the Malagashanine Alkaloids

2.1. Early Attempts: Synthesis of β, γ-Unsaturated Imine 80 via Condensation of Aldehyde 86 and Tryptamine 36

2.1.1. \quad Synthesis of $\boldsymbol{\beta}, \boldsymbol{\gamma}$-Unsaturated Aldehyde 86

We envisioned the construction of β, γ-unsaturated imine $\mathbf{8 0}$ through the condensation of tryptamine 36 and known aldehyde 86 (Scheme 2.1). ${ }^{23}$ Although the sensitivity of β, γ-unsaturated aldehyde 86 was a concern to us, we reasoned that the possibility of creating high molecular complexity from such a simple starting material merited the effort. Acid 99 was synthesized using a Kumada cross-coupling of commercially available diketene (100) and (trimethylsilyl)-methylmagnesium chloride in the presence of catalytic amounts of NiCl_{2}, using conditions developed by Itoh and coworkers (Scheme 2.1). ${ }^{23 c, 24}$ However, early attempts to reproduce the authors' reported 95% yield were met with disappointing results, with our highest yields never surpassing 40%. Using freshly prepared (trimethylsilyl)-methylmagnesium chloride did not improve the yields. ${ }^{25}$ Moreover, changing the order of addition from that reported (which originally called for treating the Grignard reagent with NiCl_{2} prior to the slow addition of diketene) was equally unsuccessful. However, during the course of our studies we noticed a steady decrease in reaction performance over time, despite using our best conditions. Given the known susceptibility of diketene (100) to undergo polymerization side reactions, we suspected that our starting material was slowly decomposing despite being
stored at $0{ }^{\circ} \mathrm{C}$ over CuSO_{4} stabilizer. Ultimately, purifying diketene (100) by sublimation increased the average reaction yield to 80%. Pure diketene (100) was stored under argon at $-20^{\circ} \mathrm{C}$ for 16 months without any noticeable decomposition.

Scheme 2.1 Synthesis of β, γ-unsaturated aldehyde 86.

With acid 99 in hand, treatment with LAH at $-78{ }^{\circ} \mathrm{C}$ afforded known homoallylic alcohol 101. The oxidation of compound 101 using bipyridyl chromium chlorochromate (BPCC) $)^{26}$ as indicated by Taylor and coworkers did not generate any of the desired β, γ-unsaturated aldehyde 86 in our hands. No starting material was recovered either. Other milder oxidation methods were also employed, including TPAP, ${ }^{27}$ which afforded various unidentified side products and trace quantity of the desired aldehyde. Using IBX ${ }^{28}$ generated compound $\mathbf{8 6}$ as the only product (as assessed by crude ${ }^{1} \mathrm{H}$ NMR), but only in trace amounts. Dess-Martin periodinane (DMP) ${ }^{29}$ was the most successful oxidation method employed and produced aldehyde 86 without generating significant amounts of side products. The highest yield attained for this reaction was 36%, but the average yields were well below this number. Compound 86 was inherently difficult to isolate because of its high volatility and tendency to decompose on silica. Moreover,
upon standing for two hours it underwent isomerization to the more stable α, β unsaturated aldehyde 102.

2.1.2. Attempted Condensation of β, γ-Unsaturated Aldehyde 86 with Tryptamine 36

Our attempts to synthesize imine $\mathbf{8 0}$ were mostly carried out under neutral conditions in order to minimize the decomposition of the delicate β, γ-unsaturated aldehyde 86. However, subjecting the crude compound $\mathbf{8 6}$ to tryptamine $\mathbf{3 6}$ in the presence of $4 \AA$ molecular sieves only generated large amounts of unidentified side products (Scheme 2.2). Unfortunately, the decomposition of $\mathbf{8 6}$ was fairly general under neutral (and acidic) conditions. It seemed that the high lability of aldehyde 86 was inherently incompatible with the basicity of the tryptamine reaction partner. We could also envision the observed decomposition as arising from side reactions via imine/enamine tautomerizations of compound $\mathbf{8 0}$. We employed the known methoxyacetal $^{30} 103$ as an aldehyde equivalent, but the results were equally disappointing.

Taking into account all of the difficulties we experienced generating and isolating compound 86, we recognized that the current method would not provide a practical route to the desired tetracyclic core of malagashanine. A better approach would be to in-situ generate a β, γ-unsaturated iminium ion, but avoid altogether the use of labile precursors such as β, γ-unsaturated imine $\mathbf{8 0}$.

Scheme 2.2 Synthetic approach to β, γ-unsaturated imine 80.

2.2. Accessing the Key Iminium Ion Intermediate by Reduction of a Stable Amide Precursor

2.2.1. $\quad \mathrm{N}$-Cbz- O -TMS-Aminols are Iminium Ion Precursors

Inspired by Rychnovsky's elegant entry into oxonium ion chemistry initiated by DIBAL-H reduction of esters, ${ }^{31}$ we envisioned an analogous amide reduction could deliver our key iminium ion intermediate. A literature search revealed that the Suh group had recently established that N-acylamide $\mathbf{1 0 5}$ could be reduced by DIBAL-H, generating the corresponding aluminium hemiacetal 106 (Scheme 2.3). ${ }^{32}$ Subsequent addition of pyridine facilitated the decomplexation of the aminol oxygen from the dialkyl aluminum species, and allowed trapping with trimethylsilyl triflate to afford the corresponding N-acyl- O-TMS-aminol 107. These species could then be activated with Lewis and protic acids to afford highly reactive N-acyliminium ions capable of undergoing additions with a range of nucleophiles.

Scheme 2.3 N -acyl- O -TMS-aminols are versatile N -acyliminium ion precursors.

We reasoned that the incorporation of N -acyl- O -TMS-aminols to our method would circumvent the use of sensitive iminium ion precursors. Moreover, this new approach would require only minor modifications to our original route. The coupling of tryptamine $\mathbf{8 5}$ with acid 99 would generate a stable amide $\mathbf{1 0 9}$ that would then be functionalized with a suitable acyl group and converted to N -acyl- O -TMS-aminol $\mathbf{1 1 0}$ (Scheme 2.4).

Scheme 2.4 New synthetic approach for the synthesis of core 113.

This improved approach also remains amenable to protic acid catalysis. Both general classes of chiral protic acids discussed in chapter one can catalyze transformations involving N-acyliminium ion intermediates. For example, Terada has utilized N-Boc and N-acyl aromatic aldimines in the presence of catalysts $\mathbf{1 1 4 - 1 1 6}$ to
effect various carbon nucleophiles additions, including Mannich reactions with 2,4-pentandione (117), ${ }^{33}$ Friedel-Crafts reactions with electron rich furans such as 2-methylfuran 118, ${ }^{34}$ and aza-ene reactions with N-acyl enamine 119 (Scheme 2.5). ${ }^{35}$ The yields and selectivity are also comparable to those reported by Akiyama. A similar process could be envisioned using acyl-iminium ion 112.

Mannich reactions

$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { rt }]{2 \mathrm{~mol} \% \text { cat. } 114}$

Friedel-Craft reactions

Scheme 2.5 Terada's work with chiral Binol phosphoric acids.

During the course of our research, the Jacobsen group reported a variant of their original protocol for the enantioselective Pictet-Spengler reaction (Scheme 2.6). ${ }^{36}$ This new method allows for the conversion of β-indolyl ethyl hydroxylactams (e.g. 120) to the corresponding indolizidinones (e.g. 121) in good yields and excellent enantioselectivities. Activation of hydroxylactam with trimethylsilyl choride (or with combination of HCl and $3 \AA$ sieves) generates an acyliminium ion intermediate, in which the chloride ion presumably interacts with the catalyst $\mathbf{1 2 2}$ through hydrogen-bonding interactions to form
a chiral complex capable of inducing high levels of stereocontrol. This protocol was also investigated in the context of our chemistry (vide infra).

120
$R=H$, alkyl

97% e.e., 90% yield

Scheme 2.6 Jacobsen's chiral thiourea catalyst $\mathbf{1 2 2}$ promotes the enatioselective PictetSpengler cyclization of hydroxylactams.

2.2.2. \quad Synthesis of N -Cbz- O -TMS-Aminol 110

The synthesis of N-Cbz- O-TMS-aminol 110 began with the construction of amide 109 (Scheme 2.7). Tryptamine $\mathbf{3 6}$ and acid 99 were coupled using EDCI in the presence of DMAP to afford compound 109 in 61% yield. Our initial efforts to install the Cbz group at N_{b} entailed low temperature deprotonations with 1.05 equivalents of n - BuLi in THF followed by addition of CbzCl to the resulting anion. This led to the isolation of the desired compound 111 and its α, β-unsaturated isomer 123 (single isomer of undetermined geometry) as an inseparable mixture in a 1:2 ratio. Additionally, trace amounts of the α, β-unsaturated isomer 124 (single isomer of undetermined geometry) were also isolated. The ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2 4}$ displayed a vinyl proton signal H_{a} at 4.72 ppm , while that of compound $\mathbf{1 2 3}$ displayed a vinyl proton signal H_{a} at 6.41 ppm due to the presence of a more electron deficient carbonyl.

Scheme 2.7 Synthesis of N-Cbz-amide 111.

To prevent isomerization the reaction was carried out using LiHMDS, ${ }^{37}$ which conferred higher chemoselectivity in the deprotonation step (presumably by virtue of its lower basicity in comparison to $n-\mathrm{BuLi})$. The reaction was also carried out using substoichiometric amounts of base (0.95 equivalents) as a precaution to avoid the formation of the corresponding dianion, which could also lead to isomerization. After optimization, the desired N-Cbz-amide 111 was obtained in quantitative yield (based on equivalents of base).

Scheme 2.8 Synthesis of N -Cbz- O -TMS-aminol 110.

With N-Cbz-amide 111 in hand, we turned our attention to the synthesis of N-Cbz- O-TMS-aminol 110 (Scheme 2.8). The reduction of compound 111 was first carried out under identical conditions to those reported by Suh et al. (1.2 equivalents of DIBAL-H at $-78^{\circ} \mathrm{C}$ for one hour followed by addition of pyridine and TMSOTf), which afforded $\mathbf{1 1 0}$ in 23% yield, along with significant amounts of recovered starting material and trace amounts of carbamate $\mathbf{1 2 5}$ (obtained through the hydrolysis of the intermediate aluminum acetal). N-Cbz- O-TMS-aminol 110 was isolated as a 1:0.6 mixture of rotamers with aminol methine H_{a} signals at 5.95 and 5.79 by ${ }^{1} \mathrm{H}$ NMR, respectively. The isolation of starting material suggested that the initial reduction to the intermediate aluminum hemiacetal was not reaching completion, but any attempts to improve the yield by prolonging the reaction time generated large amounts of carbamate $\mathbf{1 2 5}$. In an effort to minimize the amount of $\mathbf{1 2 5}$ produced, the number of equivalents of DIBAL-H was increased to 2.0 . In the event that compound $\mathbf{1 1 1}$ was not consumed after one hour, 0.5 equivalents were added every 30 minutes until the reduction reached completion as assessed by TLC (reagent freshness might be partly responsible for the variation in reaction time). This improved protocol afforded compound $\mathbf{1 1 0}$ in 78\% yield.

2.2.3. Cyclization of N -Cbz- O -TMS-Aminol 110: Preliminary Results

With N -Cbz- O-TMS-aminol $\mathbf{1 1 0}$ in hand, an initial investigation of the double cyclization reaction was undertaken. Treatment of compound 110 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ afforded the desired tetracyclic amine $\mathbf{1 1 3}$ in trace amounts as a 2:1 mixture of rotamers (Scheme 2.9). The general structure of compound 113 was tentatively assigned as an indoline derivative based on the upfield shift of two aromatic
proton signals to 6.62 and 6.36 ppm . This is indicative of an increase in electron density provided by the $s p^{3}$ hybridized nitrogen substituent through donation of its lone pairs into the aromatic ring. Subsequently, the structure of $\mathbf{1 1 3}$ was also supported by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum to that of compound its N_{a}-benzyl analog, whose structure was corroborated by variable temperature 2D NMR experiments and 1D NOE experiments (vide infra). While 113 was only obtained in 5% yield, the majority of the starting material underwent the common Pictet-Spengler reaction to afford tetrahydrocarboline $\mathbf{1 2 6}$ in 90% yield as a 1:0.9 mixture of rotamers. The structural assignment of compound 126 was simplified by reduction of the Cbz group with LAH in refluxing THF to afford the corresponding N-methylamine 127. The ${ }^{1} \mathrm{H}$ NMR analysis showed an allylic methyl signal at 1.89 ppm and a methine H_{a} proton at 3.86 ppm coupled to the neighboring allylic methylene protons $(J=9.8 \mathrm{~Hz}, 3.8 \mathrm{~Hz})$.

110

113
$+$

126
90\%

$\xrightarrow[\text { THF, reflux }]{\text { LAH }}$

126

127
100 \%

Scheme 2.9 Cyclization of N -Cbz- O -TMS-aminol 110 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Having identified the desired product, we then proceeded to carry out the reaction under protic acid conditions using racemic Binol phosphoric acid 128 (Scheme 2.10).

Treating N-Cbz- O-TMS-aminol 110 with 1 equivalent of 128 at $0^{\circ} \mathrm{C}$ generated 7% of tetracyclic amine $\mathbf{1 1 3}$ and a mixture of tetrahydrocarboline side products $\mathbf{1 2 6}, \mathbf{1 2 9}$ and 130 in $18 \%, 5 \%$, and 22% yield respectively. Compound 125, the product of hydrolysis of the N -Cbz- O-TMS-aminol 110, was also isolated in 22% yield. The structure of compound 129 was assigned by comparison of its ${ }^{1} \mathrm{H}$ NMR data to that of tetrahydrocarboline 126, in which the rotameric allylic methyl signals observed in $\mathbf{1 2 6}$ were replaced in $\mathbf{1 2 9}$ by rotameric allylic methylene signals and the corresponding rotameric trimethylsilyl singlets.

110

129
5\%

113
7%
$+$

125
22\%

Scheme 2.10 Cyclization of N -Cbz- O -TMS aminol 110 with protic acid.

Compound $\mathbf{1 3 0}$ is most likely produced through the isomerization of the intermediate iminium ion 112, which presumably undergoes protodesilylation via α, β-unsaturated iminium ion 131 (Scheme 2.11). Protonation at the β-carbon of α, β-unsaturated enamine 132 generates 133 , which is the trapped by the tethered indole to ultimately afford 130. This is supported by control experiments that indicate that tetrahydrocarboline $\mathbf{1 2 6}$ does not produce $\mathbf{1 3 0}$ under the reaction conditions. Compound

130 was converted to the corresponding N_{b}-methyl derivative $\mathbf{1 3 4}$ using LAH in refluxing THF, and its structure was assigned by comparison of its ${ }^{1} \mathrm{H}$ NMR data to that of compound 127. The analysis showed that the H_{a} methine proton signal in $\mathbf{1 2 7}$ had shifted downfield by 0.5 ppm from that observed for the equivalent proton in $\mathbf{1 3 4}$ at 3.86 ppm , which indicated that the allyl group had been replaced by a vinyl substituent.

Scheme 2.11 Mechanistic rationale for the isomerization of N -acyliminium ion 112.

Lowering the temperature to $-78{ }^{\circ} \mathrm{C}$ favored formation of the iminium ion hydrolysis product $\mathbf{1 2 5}$ almost exclusively, while reactions at room temperature produced no discernible differences from those carried out at $0^{\circ} \mathrm{C}$. We also investigated the effect of solvent on the product ratio and found that all those examined (DMF, acetonitrile THF, toluene, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) led to the formation of Pictet-Spengler products 126, 129, and 130, as well carbamate $\mathbf{1 2 5}$. We also noticed that compound $\mathbf{1 2 5}$ was the major product when high polarity solvents like DMF and acetonitrile were used. Lastly, the use of stronger
acids such as trifluoroacetic acid (TFA) increased slightly the ratio of cascade product/Pictet-Spengler products (1:4), but not sufficiently enough to merit further investigation.

2.3. Effect of N_{a} and N_{b} Susbtituents on the Key Cyclization Reaction

2.3.1. The Substituents on the Nitrogen Atoms Can Have Significant Effects on Product Distribution

The prevalence of Pictet-Spengler side products in the cascade cyclization reaction suggested that subsequent to the $C(3)$ nucleophilic attack at iminium ion 112, the classical 1,2-migration was occurring faster than the intended intramolecular trapping by the tethered allysilane moiety. This prompted us to carry out an in-depth study to determine what structural features in our system had the most significant effect on the product distribution.

First, we wanted to examine how the steric and electronic nature of the indole nitrogen substituent affected the transformation. To investigate the role of sterics, a large benzyl substituent would be introduced, which should have a similar electronic effect to that of methyl on N_{a}. Additionally, we wanted to assess whether free indole nitrogens were tolerated in the transformation because this could potentially simplify the functionalization of N_{a} post cyclization. Lastly, given our interest in suppressing the formation of tetrahydrocarboline products, we were interested in an experiment reported by Bosch and coworkers in which they observed a decrease in the rate of $\mathrm{C}(3)$ to $\mathrm{C}(2)$
migration of spiroindolium ion 136 when the N_{a} was substituted with an electron withdrawing group (Scheme 2.12). ${ }^{38}$ The original intention of the authors had been to suppress the formation of tetrahydrocarboline 137 during the reductive cleavage of the oxazolidine ring of lactam $\mathbf{1 3 8}$ with TiCl_{4} and $\mathrm{Et}_{3} \mathrm{SiH}$. It seemed that intermediate $\mathbf{1 3 6}$ was forming and rapidly rearranging to tetrahydrocarboline 137 through a classical 1,2-alkyl migration followed by rearomatization. By installing a tosyl group at N_{a} the authors hoped to deactivate the indole moiety towards nucleophilic attack. However, this did not prevent the initial C(3) attack from taking place, but instead produced 138 in 74% yield. The authors reasoned that the tosyl group was retarding the rate of 1,2 -alkyl migration of spiroindolium ion $\mathbf{1 3 9}$, to allow trapping with $\mathrm{Et}_{3} \mathrm{SiH}$ instead.

Scheme 2.12 Bosch's observations concerning 1,2-migrations in N_{a}-tosyl substituted spiroindoliums.

Bosch and coworkers had shown that N -acyl-iminium ions were reactive enough to engage even electron deficient indoles. By analogy, our system should also react via initial $\mathrm{C}(3)$ attack to afford the corresponding spiroindolium ion. At this stage, a decrease in the rate of 1,2-alkyl migration should favor trapping by the tethered allylsilane to afford the desired product.

Once an optimal N_{a} substituent was found, we also wanted to determine how the product distribution was affected by the nature of the N_{b} substituent. To examine the effect of sterics, we planned to vary the size of the acyl moiety by replacing the Cbz substituent with the bulkier Boc group, as well as the smaller carbomethoxy substituent. On the other hand, the electronic effect of the N_{b} substituent would be studied by employing auxiliaries with different electron densities. In this respect, we argued that the undesired rearrangement pathway (B) could be disfavored via use of highly electron deficient substituents (PG) at the iminium ion nitrogen (Scheme 2.13). This should destabilize the three-membered transition state $\mathbf{1 4 2}$, which in turn would decrease the rate of 1,2-migration and favor the intramolecular trapping by the pendant allylsilane (Path A). To this end, we planned to install amide and tosyl substituents at N_{b}.

Scheme 2.13 Mechanistic hypothesis for the formation of compounds 143 and 144.

2.3.2. Exploring the Effect of \mathbf{N}_{a} Substitution: Synthesis and Cyclization of N_{a}-Benzyl- \boldsymbol{N}_{b}-Cbz-O-TMS-Aminol 148

The synthesis of N -Cbz- O -TMS-aminol 148 was carried out in an analogous manner to that of compound $\mathbf{1 1 0}$ (Scheme 1.14). Amide $\mathbf{1 4 9}$ was obtained by subjecting tryptamine ${ }^{39} \mathbf{1 5 0}$ to 4 M HCl in dioxane to afford the corresponding crude primary amine, followed by treatment with acid 99 and EDCI in the presence of HOBt. ${ }^{40}$ We found that HOBt was superior to DMAP both at producing higher overall yields and suppressing minor isomerization side reactions that had previously been observed. Amide 149 was acylated with LiHMDS and CbzCl in 89% yield, and converted to the corresponding N -Cbz- O -TMS-aminol 148 under standard conditions.

Scheme 2.14 Synthesis of N-Cbz- O-TMS-aminol 148.

Treatment of compound 148 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ afforded the desired tetracyclic amine $\mathbf{1 5 1}$ in 36% yield and compound $\mathbf{1 5 2} 43 \%$ yield respectively (Scheme 1.15). Although not optimal, the results were superior to those obtained during the cyclization N-Cbz- O-TMS-aminol 110.

148
$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}]{\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}}$

Scheme 2.15 Cyclization N-Cbz- O-TMS-aminol 110 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

The structure of compound 151 was established through 1D and 2D NMR techniques (CYCLENOE, COSY and HMQC). Given that compound 151 existed as a 3:2 mixture of rotamers at room temperature, all experiments were conducted at $70^{\circ} \mathrm{C}$ in d_{6}-DMSO, conditions under which the two sets of proton NMR signals coalesced into one. The stereochemical assignment was based on the irradiation of H_{i}, which produced key NOE's with $\mathrm{H}_{\mathrm{a}}(6.1 \%)$ and $\mathrm{H}_{\mathrm{b}}(6.8 \%)$, thus indicating that H_{a} and H_{b} were located on the same face of the D ring (Figure 2.1).

Figure 2.1 Structural assignment of tetracyclic amine 151.

The transformation was also carried out under protic acid conditions using 128, but the combined amount of isolated Pictet-Spengler products 152, 153, and 154 far surpassed that of the desired tetracylic amine 151 (the usual ratios were between 7:1 and 5:1), regardless of the temperature of the reaction or the polarity of the solvent (Scheme 2.16). We also examined other organic acids of higher and lower acidity to that of Binol phosphoric acid (pka ~ 2 in $\mathrm{H}_{2} \mathrm{O}$), including trifluoroacetic acid (pka: -0.25 in $\mathrm{H}_{2} \mathrm{O}$) and acetic acid (pka: 4.76 in $\mathrm{H}_{2} \mathrm{O}$), but no improvement was observed. Additionally, N-Cbz- O-TMS-aminol 148 was treated with chiral thiourea catalysts $\mathbf{1 2 2}$ in tert-butyl methyl ether at $-60{ }^{\circ} \mathrm{C}$ with either TMSCl or HCl and $3 \AA$ sieves. ${ }^{36 a}$ However, PictetSpengler side products were predominant under both sets of conditions. Carbamate $\mathbf{1 5 5}$ was also isolated, but the desired tetracycle 151 was never observed. Carrying out the reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced similar results.

Scheme 2.16 Cyclization N-Cbz- O-TMS-aminol 148 with protic acids.

2.3.3. Exploring the Effect of \mathbf{N}_{a} Substitution: Synthesis and Cyclization of N_{a}-H- N_{b}-Cbz- O-TMS-Aminol 156

Tryptamine (11) was treated with DCC and catalytic DMAP in the presence of acid 99 to afford amide 157 in 63% yield (Scheme 2.17). At this stage we carried out a quick study to determine the inherent selectivity of the system towards acylation at the amide nitrogen in the presence of the free indole nitrogen. We wanted to exploit the subtle difference in acidity between the N_{a} proton and the N_{b} proton (pka's of 20.95 and ~ 25.0 in DMSO, respectively). However, attempts to install the acyl group with 1.0 equivalent of CbzCl after treatment with LiHMDS generated a complex mixture of mono- and bis-acylation products.

Scheme 2.17 Early attempts to synthesize N -Cbz-amide 158.

Given this, a more traditional approach was taken toward the synthesis of N -Cbz- O -TMS-aminol 156 by first protecting the indole nitrogen of known tryptamine 159 with 2,2,2-trichloro-tert-butyloxychloroformate (TCBoc) ${ }^{41}$ under standard phase transfer conditions to afford compound 160 in 81% yield (Scheme 2.18). The TCBoc group was deliberately chosen because it would endure the subsequent acidic hydrolysis of the Boc group at N_{b}, as well as provide a convenient set of neutral conditions to chose from once we needed to remove it. Removal of the Boc group from $\mathbf{1 6 0}$ with 4 M HCl and amide formation with EDCI generated the corresponding amide in 64% yield over two steps. Acylation of N_{b} with CbzCl afforded 161 in almost quantitative yield. With 161 in hand, our initial attempts to remove the TCBoc group under standard reducing conditions with activated zinc dust in $10: 1$ methanol/acetic acid at $0^{\circ} \mathrm{C}$ generated the desired compound $\mathbf{1 6 2}$ in only 10% yield, along with 15% of the desilylated product $\mathbf{1 6 3}$ and large amounts of recovered starting material. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 162 displayed a broad singlet signal at 8.01 ppm corresponding to the indole nitrogen proton.

Given the propensity of compound $\mathbf{1 6 2}$ to undergo protodesilylation under acidic conditions, a milder system was required. The problem was solved using conditions developed by Ciufolini ${ }^{41 \mathrm{la}}$ for the removal of TCBoc groups at $\mathrm{pH}=7$ by buffering with
aqueous $\mathrm{NH}_{4} \mathrm{OAc}$ in THF in the presence of a $10 \% \mathrm{~Pb} / \mathrm{Cd}$ couple. The reaction proceeded smoothly to afford compound $\mathbf{1 6 2}$ in 87% yield. Reduction with DIBAL-H under standard conditions afforded the sensitive N-Cbz- O-TMS-aminol 156 that was used without further purification given its propensity to hydrolyze on silica.

Scheme 2.18 Synthesis of N-Cbz- O-TMS-aminol 156.

Subjecting N-Cbz- O-TMS-aminol 156 to standard reaction conditions using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ generated a combined 73% of Pictet-Spengler products $\mathbf{1 6 4}$ and $\mathbf{1 6 5}$, with only traces of tetracyclic amine $\mathbf{1 6 6}$ isolated (Scheme 2.19). Carrying out the reaction under protic conditions, either using trifluoroacetic acid or HCl and catalyst $\mathbf{1 2 2}$ produced only large amounts of tetrahydrocarboline 164 and carbamate 167.

Scheme 2.19 Cyclization of N-Cbz- O-TMS-aminol 156.

2.3.4. Exploring the Effect of \mathbf{N}_{a} Substitution: Synthesis and Cyclization of N_{a}-Tosyl- N_{b}-Cbz-O-TMS-Aminol 168

The synthesis of N-Cbz- O-TMS-aminol 168 started with Boc deprotection of known tryptamine ${ }^{42} \mathbf{1 6 9}$ under acidic conditions followed by EDCI coupling with acid 99 and HOBt to generate amide $\mathbf{1 7 0}$ in 60% over two steps (Scheme 2.20). Compound $\mathbf{1 7 6}$ was deprotonated with LiHMDS and treated with $\mathrm{Cbz}-\mathrm{Cl}$ to afford the corresponding N-Cbz-amide, which then was subjected to DIBAL-H and trimethylsilyltriflate to generate N-Cbz- O-TMS-aminol 168 in 75% yield. However, upon treatment with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, compound $\mathbf{1 6 8}$ did not afford the desired tetracyclic tosylamine $\mathbf{1 7 1}$ and instead produced an interesting caged-tetracyclic compound $\mathbf{1 7 2}$ and small amounts of tetrahydrocarboline $\mathbf{1 7 3}$ in a $4: 1$ ratio. The structure of compound $\mathbf{1 7 2}$ was established based on comparisons of its ${ }^{1} \mathrm{H}$ NMR spectrum to that of compound 257, the structure of which was unequivocally established by 2D NMR and X-ray crystallography (vide infra, section 2.6.1). A large number of unidentified minor sideproducts were also observed.

$\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EDCI}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to it

60% over two steps

173
9%

Scheme 2.20 Synthesis and cyclization of N-Cbz- O-TMS-aminol 168.

The formation of compound $\mathbf{1 7 2}$ can be explained by a mechanism involving 1,2-alkyl migration of spirodindolium ion $\mathbf{1 7 4}$ to generate a benzylic cation intermediate $\mathbf{1 7 5}$ (Scheme 2.21). It is reasonable to assume that the inductive effect of the neighboring N-tosyl group might enhance the electrophilicity at $\mathrm{C}(3)$, thus facilitating nucleophilic trapping by the tethered allylsilane moeity to generate 172. In sharp contrast to the observations of Bosch and coworkers that indicate that tosyl substituted indole nitrogens retard the rate of 1,2-alkyl migration of spiroindolium intermediates, installing a tosyl group at N_{a} in our system seems to have favored the migration. This is also supported by the isolation of Pictet-Spengler byproduct $\mathbf{1 7 3}$ and the absence of the desired tetracycle 171 from the reaction mixture.

Scheme 2.21 Mechanistic rationale for the formation of compound 172.

Treating N-Cbz- O-TMS-aminol 168 with trifuoroacetic acid at $0{ }^{\circ} \mathrm{C}$ afforded tetrahydrocarboline $\mathbf{1 7 3}$ in 40% and substantial amounts of carbamate $\mathbf{1 7 6}$ (Scheme 2.22). On the other hand, when Jacobsen conditions were utilized only iminium ion hydrolysis product $\mathbf{1 7 6}$ was isolated. The data suggests that under protic conditions less electron rich systems are susceptible to hydrolysis pathways that compete with the initial formation of the spiroindolium ion 174.

173

176
40\%
37\%

Scheme 2.22 Cyclization of N -Cbz- O-TMS-aminol 168 with protic acid.

In order to confirm that our observations with the tosyl group were representative of other electron-withdrawing groups as well, we repeated our experiment with compound 177 (Scheme 2.23). Subjecting N-Cbz- O-TMS-aminol 177 (synthesized from N-Cbz-amide 161 in one step using standard procedures) to trifluoroacetic acid at $0{ }^{\circ} \mathrm{C}$ only produced significant amounts of tetrahydrocarboline 178 and carbamate $\mathbf{1 7 9}$, and did not afford any of the cascade annulation product.

Scheme 2.23 Cyclization of N -Cbz- O-TMS-aminol 161 with protic acid.

Overall, our investigations showed that using a benzyl substituent at N_{a} afforded the best yields and relative ratios of the cascade annulation product. On the other hand, the unprotected indole nitrogen afforded mainly Pictet Spengler products. Additionally, electron-withdrawing groups also favored the formation of tetrehydorcarbolines, as well as regioisomeric tetracyclic products when the substituent was a tosyl group. Consequently, we employed the benzyl group at N_{a} in all the remaining optimization studies.

2.3.5. Exploring the Effect of $\mathbf{N}_{\mathbf{b}}$ Substitution: Synthesis and Cyclization of N_{a}-Benzyl- N_{b}-Carbomethoxy- and N_{a}-Benzyl- \boldsymbol{N}_{b}-Boc- O-TMS-Aminols 180 and 181

N-Acyl- O-TMS-aminols $\mathbf{1 8 0}$ and $\mathbf{1 8 1}$ were generated as outlined in Scheme 2.24 using our standard conditions. Subjecting $\mathbf{1 8 0}$ to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ afforded tetrahydrocarboline $\mathbf{1 8 2}$ in 69% yield along with 24% yield of the desired tetracycle 183 . The ratio of $\mathbf{1 8 3}$ to $\mathbf{1 8 2}$ was slightly lower than that observed in the cyclization of N-Cbz- O-TMS-aminol 148. On the other hand, treating N-Boc- O-TMS-aminol 181 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ produced compounds $\mathbf{1 8 4}$ and $\mathbf{1 8 5}$ in 33% and 53% yield, respectively. This
result was comparable but not superior to that obtained with N -Cbz- O -TMS-aminol 148 . Overall, the large Cbz and Boc auxiliaries performed marginally better than the methoxycarbonyl group. These results indicated that sterics had a measurable but minor effect on the transformation.

149

180, R: $\mathrm{CH}_{3} \mathrm{O}(\mathrm{C}=\mathrm{O}), 66 \%$
181: R: Boc, 58\%
186: R: Piv, 66\%
 $\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}]{\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}}$

190, R: $\mathrm{CH}_{3} \mathrm{O}(\mathrm{C}=\mathrm{O}), 76 \%$
191: R: Boc, 55%
187: R: Piv, 48\%

183, R: $\mathrm{CH}_{3} \mathrm{O}(\mathrm{C}=\mathrm{O}), 24 \%$
184: R: Boc, 33%
188: R: Piv, 34\%
$+$

$$
\xrightarrow{\substack{\text { i. }{ }^{\text {Di. TMSOTf, Pyridine }} \\ \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}}}
$$

182, $\mathrm{R}: \mathrm{CH}_{3} \mathrm{O}(\mathrm{C}=\mathrm{O}), 69 \%$ 185: R: Boc, 53% 189: R: Piv, 5\%

Scheme 2.24 Synthesis and cyclization of N-Cbz- O-TMS-aminols 180,181 and 186.

2.3.6. Exploring the Effect of $\mathbf{N}_{\mathbf{b}}$ Substitution: Synthesis and Cyclization of N_{a}-Benzyl- N_{b}-Piv-O-TMS-Aminol 186

At this stage we proceeded to install the more electron withdrawing pivaloate functionality. Imide 187 was synthesized using our standard acylation conditions, followed by regioselective reduction of the least hindered amide carbonyl with DIBAL-H and trapping with trimethylsilyl triflate to generate N-Piv- O-TMS-aminol 186 in 66% yield (Scheme 2.24). Subjecting compound 186 to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ afforded the desired tetracycle $\mathbf{1 8 8}$ in 34% and minor amounts of tetrahydrocarboline $\mathbf{1 8 9}$ (5\%). Although the yield was modest, the ratio of cascade product/Pictet Spengler product was
promising (\sim 6:1). Compound 186 was also treated with thiourea catalysts $\mathbf{1 2 2}$ in combination with HCl and molecular sieves at $-78^{\circ} \mathrm{C}$, but these conditions led mainly to the hydrolysis of the starting material.
2.3.7. Exploring the Effect of $\mathbf{N}_{\mathbf{b}}$ Substitution: Synthesis and Cyclization of N_{a}-Benzyl- N_{b}-Tosyl- and N_{a}-Benzyl- N_{b}-Nosyl- O-TMS-Aminols 192 and 193

At this stage, we expected the more electron-withdrawing tosyl group to improve further the ratio of tetracyclic amine/tetrahydrocarboline. To synthesize 192, we turned to our standard acylation conditions and treated amide $\mathbf{1 4 9}$ with LiHMDS at $-78^{\circ} \mathrm{C}$ and tosyl chloride (Scheme 2.25). To our surprise, the yields for this reaction were low (around 20% on average), but we were able to synthesize sufficient material to continue our study. The subsequent reduction with DIBAL-H at $-78^{\circ} \mathrm{C}$ was also problematic and afforded N-Tosyl- O-TMS-aminol 192 in modest yields (30-50\%). More specifically, we noticed that the trapping of the aluminum hemiacetal intermediate with trimethylsilyl triflate caused partial in situ cyclization to afford tetrahydrocarboline 194. Despite difficulties in suppressing this side reaction, we managed to synthesize enough material to investigate the key cyclization step. Subjecting compound 192 to $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ afforded 52\% of tetracyclic amine 195 and only 15% of Pictet-Spengler side product 194.

149

192
30-50\%

195
52\%

194
15\%

Scheme 2.25 Synthesis and cyclization of N-tosyl- O-TMS-aminol 192.

The structure of compound 195 was established through 1D and 2D NMR experiments (CYCLENOE, DEPT, COSY and HMQC). Irradiation of H_{j} produced NOE's with $H_{c}(7.0 \%)$ and $H_{e}(6.9 \%)$, which indicated that H_{c} and H_{e} were located on the same face of the D ring (Figure 2.2). This was also supported by the irradiation of H_{c}, which produced a 3.5% NOE on H_{e}. Moreover, an enhancement of the aromatic proton H_{4} signal (11.0\%) was observed upon irradiation of H_{a}, just as reported for malagashanine by Rasoanaivo and coworkers. Nevertheless, as a measure of extra precaution, the structure of the methoxy-substituted analog 247 (vide infra, section 2.6 .1) was secured by X-ray crystallography. Compound 247 displayed similar NOEs to those indicated for 195.

Structure secured by X-ray crystallography)

Figure 2.2 Structural assignment of tetracyclic amine 195.

The cyclization of N-tosyl- O-TMS-aminol 192 produced synthetically useful yields of compound 195, which encouraged us to further remove electron density from N_{b} in an effort to completely suppress the formation of tetrahydrocarboline side products. For this task, the nosyl auxiliary seemed like an obvious choice.

The synthesis of N-nosyl- O-TMS-aminol 193 was slightly more problematic than that of compound 192 (Scheme 2.26). In both the tosylation step and the subsequent reduction/trapping step, only low yields of the desired product were obtained and a number of side products were generated. Additionally, the isolation of isomerized compound 196 suggested that that the high electron-withdrawing ability of the nosyl group lowered the pka of the amide α-protons sufficiently to promote side reactions. However, useful quantities of N-nosyl- O-TMS-aminol 193 were synthesized which allowed us to explore the key transformation. Treating compound 193 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ afforded a disappointing ratio of $\sim 1.5: 1$ of compounds 197 and 198, which did not fulfill our expectations.

Scheme 2.26 Synthesis and cyclization of N-nosyl- O-TMS-aminol 193.

Despite the failure of system 193 to produce higher yields and selectivity towards the desired product, the overall results of this study were very positive (Table 2.1). Installing a tosyl substituent at N_{b} decreased the formation of tetrahydrocarboline side product $\mathbf{2 0 0}$ while increasing the overall yield of the transformation. Additionally, after some optimization we found that carrying the cyclization of N-tsoyl- O-TMS-aminol 201 at $0{ }^{\circ} \mathrm{C}$ with 5 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (entry 9) increased the yield of compound $\mathbf{2 0 2}$ to 82% and nearly completely suppressed the formation of Pictet-Spengler side products.

		$\frac{\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}}{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$	202		 200	
entry	R	R'	Temp (${ }^{\circ} \mathrm{C}$)	Time (h)	\% yield 202	\% yield 200
1	Bn	Cbz	-78	0.25	36	43
2	H	Cbz	-78	0.25	<5	51
3	Ts	Cbz	-78	43	0	5
4	Bn	Boc	-78	0.25	33	53
5	Bn	$\mathrm{C}(\mathrm{O}) \mathrm{OMe}$	-78	0.25	32	48
6	Bn	$\mathrm{C}(\mathrm{O})^{t} \mathrm{Bu}$	-78	6	34	<5
7	Bn	Ts	-78	1	52	15
8	Bn	Ns	-78	1	31	19
9	Bn	Ts	0	1	82	<5

Table 2.1 Summary of the cascade annulation optimization.

We also treated N-tosyl- O-TMS-aminol 192 with chiral thiourea catalyst $\mathbf{1 2 2}$ in combination with $\mathrm{HCl} /$ sieves at various temperatures (Scheme 2.27). After 36 hours at $-78{ }^{\circ} \mathrm{C}$, only recovered starting material and iminium ion hydrolysis product 203 were isolated, while at $0{ }^{\circ} \mathrm{C}$ the starting material was consumed within 3 hours to afford the usual mixtures of Pictet-Spengler side products 204 and 205. The desired tetracycle 195 was never observed. Additionally, using chiral Binol phosphoric acid 206 produced only trace amounts of $\mathbf{1 9 5}$ and large amounts of previously mentioned side products.

Scheme 2.27 Cyclization of N -tosyl- O -TMS-aminol 192 with protic acid.

The isolation of compound 204 was indicative that the isomerization of iminium ion 207 was competing with the formation of the spiroindolium intermediate (Scheme 2.27). One possibility could be that the acidity of the α-protons was high enough as to facilitate deprotonation by even weak conjugate bases like chloride. We argued that using an acid such as triflic acid, which has an even weaker conjugate base, might disfavor the deprotonation/isomerization pathway. Treating N-tosyl- O-TMS-aminol 192 with triflic acid in the presence of $4 \AA$ molecular sieves in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ indeed produced 36% of the desired tetracyclic amine 195, and 18% of tetrahydrocarboline 205. As expected, compound 204 was not observed, indicating that very weak conjugate bases like triflate were suitable to use in our chemistry. This promising result suggests that our future research in this area should focus on the use of more acidic species, like the chiral Binol
N-triflylphosphoramides (e.g. 208) developed by Yamamoto and co-workers (Figure 2.3). ${ }^{43}$

Figure 2.3 Yamamoto's chiral Binol N-triflylphosphoramide catalyst.

2.4. Optimization of the Synthesis of N -Tosyl- O -TMS-Aminol 192

With our success in developing a cascade annulation sequence to access core 195, we needed to optimize the synthesis of N-Tosyl- O-TMS-aminol 192 in order to make this method truly synthetically useful. Our first priority was to find an efficient way of introducing the tosyl group at N_{b}, however, all attempts to do so via deprotonation of amide 149 with LiHMDS failed to produce high yields of 196. The results were surprising given that the same general approach had worked well for the construction of N-acyl-amides. We started by investigating a wide range of conditions including solvent, base, counterion, additive, temperature, and electrophile (Scheme 2.28). Unfortunately, the best yield obtained for compound 196 did not surpass 30%. Additionally, the starting material was usually recovered along with small amounts of isomerized starting material.

Scheme 2.28 Early attempts to install a tosyl group at the amide nitrogen.

Additionally, phase transfer conditions were employed using tetrabutylammonium hydrosulfate (TBAHS) with NaOH in 1,2-dichloroethane, but only decomposition of the starting material was observed. ${ }^{44}$ On the other hand, when weaker bases $\left(\mathrm{Et}_{3} \mathrm{~N}\right.$ and DBU$)$ were employed in the presence of tosyl chloride activated by DMAP, only starting material was recovered. At higher temperatures $\left(60{ }^{\circ} \mathrm{C}\right)$ the sole product was α, β unsaturated isomer 209 (for information on the synthesis of compound 210 refer to experimental section) (Scheme 2.29).

Scheme 2.29 Attempts to install a tosyl group at the amide nitrogen.

At this stage we also envisioned an alternate disconnection by way of tosylamine 211 and acid 99 (Scheme 2.30). However, we were concerned that the relatively low nucleophilicity of tosylamine 211 might render it unreactive to common amide coupling
reagents such as EDCI. While this was initially the case when HOBt was used as an additive, using DMAP ${ }^{45}$ afforded the amide coupling product 212.

211

196
Not observed

212

Scheme 2.30 Attempts to synthesize 196 via amide coupling methods.

The isolation of isomerized product was not a surprise given that we had observed similar outcomes when EDCI was employed in the presence of DMAP to couple acid 99 and tryptamine 36. The assumption was that the intermediate $\mathbf{2 1 3}$ (Scheme 2.31) was prone to isomerization by virtue of its highly acidic α-protons (due to the inductive effect of the 4-dimethylamine pyridinium group). ${ }^{46}$

Scheme 2.31 Possible mechanism for the isomerization of acid segment 213.

In order to avoid the isomerization of the activated complex and still promote the reaction, we realized that we had to use a less reactive electrophile. We decided to use mixed anhydride 215 because its α-protons were not nearly as acidic as those of intermediate 213, and thus should afford the desired product 196 without promoting
isomerization (Scheme 2.32). Additionally, the tosylamine nucleophile 211 could be activated via its anion by deprotonation with strong base. Treatment of acid 99 with isobutyl chloroformate in the presence of N-methylmorpholine afforded the corresponding mixed anhydride 215, which was followed by addition of the lithium anion of tosylamine 211. ${ }^{47}$ Gratifyingly, the protocol produced 48% of N-tosyl-amine 196. We also isolated compound $\mathbf{2 1 6}$ generated by nucleophilic attack at the carbonate carbonyl. Although the yields were modest, this new procedure represented a significant improvement over the previous method and afforded useful quantities of $\mathbf{1 9 6}$ in a reproducible manner.

Scheme 2.32 Improved synthesis of N-tosyl-amide 196 from 211.

Our next objective was to optimize the transformation of compound 196 into N-Tosyl- O-TMS-aminol 192, which as noted earlier, was difficult to control because the trapping reagent (trimethylsilyltriflate) was promoting the in situ cyclization of $\mathbf{1 9 2}$ to Pictet-Spengler products. The issue was addressed by switching to a less reactive trapping reagent such as trimethylsilylimidazole, ${ }^{48}$ which after some optimization afforded the desired product in yields as high as 80% (Scheme 2.33).

192
76%

Scheme 2.33 Improved synthesis of N-tosyl- O-TMS-aminol 192 from 196.

2.5. Removal of Benzyl and Tosyl Protecting Groups From Tetracyclic Core 195

To demonstrate the synthetic utility of core $\mathbf{1 9 5}$, it was first necessary to find efficient conditions to deprotect the nitrogen indole and to remove the tosyl auxiliary. Our main concern was the chemoselective deprotection of N_{b}, given that tosylamines are robust functionalities that in some instances prove difficult to cleave under mild conditions. However, we were pleasantly surprised to find that the tosyl functionality was easily removed at $-60{ }^{\circ} \mathrm{C}$ with sodium naphthalide in 1,2-dimethoxyethane (DME) to afford monoamine 217 in 65% (Scheme 2.34). ${ }^{49}$ Additionally, both the benzyl and the tosyl could be removed by treatment of $\mathbf{1 9 5}$ with sodium in liquid ammonia to provide diamine 218 in 68\% yield.

Scheme 2.34 Protecting group removal following cascade annulation reaction.

2.6. Extending the Substrate Scope of the Cascade Annulation Reaction

2.6.1. \quad Synthesis and Cyclization of Substrates with Substituted Indoles

With an efficient and reliable protocol in hand, it was possible to explore the substrate scope of the transformation. More specifically, we were interested in utilizing indoles with either electron donating or electron withdrawing substituents (4-Br, $5-\mathrm{Br}, 6-$ $\mathrm{F}, 5-\mathrm{OCH}_{3}, 6-\mathrm{OCH}_{3}$). To this end, the syntheses of N-Tosyl- O-TMS-aminols 219-223 were accomplished using standard conditions as indicated in Schemes 2.35 and 2.36, starting from compounds 224-228.

Scheme 2.35 Synthesis of N-tosyl- O-TMS-aminols 219-222.

It is important to mention that the syntheses of N-tosyl-amides 229-232 were carried out before the optimized conditions described in the previous section had been developed, therefore the yields are not optimized. However, the synthesis of compound 233 incorporates the improved protocol (Scheme 2.36).

228

$\xrightarrow[\text { ii. TMS-imidazole }]{\substack{\text { i. } \\ \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}}}$

233
223
52%
66\%

Scheme 2.36 Synthesis of N-tosyl- O-TMS-aminol 223.
N-Tosyl- O-TMS-aminols 219-223 were subjected to the standard cyclization condition with 5.0 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ to afford the corresponding tetracyclic products 243-247 as shown in Table 2.2 (6-fluoro-substituted N-Tosyl- O-TMS-aminol 222 was cyclized with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in refluxing 1,2-dichloroethane because the yield was generally higher under these conditions).

195
82\%

245
80%

243
44\%

246
$61 \%^{a}$

244
68\%

247
23%
${ }^{\mathrm{a}}$ Cyclized at $85^{\circ} \mathrm{C}$ in 1,2-dichlororethane.

Table 2.2 Cascade cyclization of substituted indoles.

The transformation is amenable to electron-withdrawing substituents at the 4-, 5and 6-positions as well as electron donating groups at the 5-position and 6-position. In most cases the use of a tosyl auxiliary on the iminium ion nitrogen and a benzyl group on the indole nitrogen provided exquisite selectivity for the desired cascade product. However, for the 6-methoxyindole substrate 223, this auxiliary pattern resulted in only
23% of the desired product 247 , with competitive Pictet-Spengler rearrangement dominating the reaction profile (38% yield). The regioisomeric tetracyclic amine $\mathbf{2 4 8}$ was also isolated in 23% yield (Scheme 2.37), and its structure was assigned by comparison of its ${ }^{1} \mathrm{H}$ NMR data to that of compound 257 (vide infra, section 2.6.1).

This observation can be accounted for in our mechanistic hypothesis, with the electron-donating 6-methoxy group stabilizing the three-membered transition state 249 leading to the undesired rearrangement intermediate 250 (Path B). Additionally, the high electron-density of the aromatic system could also extend the lifetime of the resulting benzylic carbocation sufficiently enough to be intercepted by the internal nucleophile (path B_{2}).

Scheme 2.37 Mechanistic rationale for the formation of compounds 247, 248 and 251.

In order to overcome this side reaction, we attempted to tune the electronics of the substrate by placing an electron withdrawing tosyl group on the indole nitrogen atom. Although this latter functional group strategy had led to the formation of regioisomeric tetracyclic product 172 when it was employed in electron deficient compound 168, we reasoned that the combined effect of the N_{a}-tosyl group and a 6-methoxy indole substituent might tune the reactivity of $\mathbf{2 5 4}$ to resemble that of N_{a}-benzyl- N_{b}-tosyl- O -TMS-aminol 148 (Scheme 2.38). Therefore, compound 254 was synthesized using standard conditions.

254
33%

Scheme 2.38 Synthesis of N-tosyl- O-TMS-aminol 254.

This simple change however resulted in a dramatic shift in the reaction profile, with the isomeric tetracyclic amine 257 (Scheme 2.39) now being the major component of the mixture (62% yield). Minor amounts of Pictet-Spengler product $\mathbf{2 5 8}$ were isolated, but the desired cascade product $\mathbf{2 5 9}$ was not observed.

Scheme 2.39 Cyclization of N-tosyl- O-TMS-aminol 254.

The structure of compound 257 was initially assigned based on by ${ }^{1} \mathrm{H}$ COSY and HMQC NMR experiments, which indicated the presence of two adjacent methine protons H_{a} and $\mathrm{H}_{\mathrm{d}}(J=3.0 \mathrm{~Hz})$ (Figure 2.4). Moreover, the COSY data suggested an 8-proton spin system consisting of a relatively isolated 2-proton- $\left(\mathrm{H}_{\mathrm{f}}-\mathrm{C}-\mathrm{H}_{\mathrm{g}}\right)$ and 4-proton spin system $\left(\mathrm{H}_{\mathrm{d}}-\mathrm{C}-\mathrm{C}\left[\mathrm{H}_{\mathrm{a}}\right]-\mathrm{C}\left[\mathrm{H}_{\mathrm{e}}, \mathrm{H}_{\mathrm{h}}\right]\right)$ which shared common correlations with the exocyclic olefin protons $\left(\mathrm{H}_{\mathrm{A}}-\mathrm{C}-\mathrm{H}_{\mathrm{B}}\right)$. Additionally, irradiation of H_{j} produced signal enhancements on H_{d} and H_{3} as would be expected in a compound of such structure. Subsequently, X-ray crystallography data supported our assignment.

Figure 2.4 Structural assignment of isomeric tetracyclic tosylamine 257.

The outcome of this experiment in conjunction with our earlier observations strongly suggested that the 1,2 -alkyl migration was indeed reinforced by electronwithdrawing groups at N_{a}. In considering the experiment by Bosch and co-workers that reported a retardation of the rate of 1,2-alkyl migration in N_{a}-tosyl substituted
spiroindolium intermediates, we recognized that an alternate explanation to the apparent decrease in migration rate was also possible (Scheme 2.40). We hypothesized that the increased electrophilicity of N_{a}-tosyl-spiroindolium 139 promotes a rapid reaction with $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{TiCl}_{4}$ and thus precludes the classical 1,2-rearrangement $\left(\mathrm{k}_{2} \gg \mathrm{k}_{1}\right)$, overall leading to the preferential formation of $\mathbf{1 3 8}$ as reported by Bosch. On the other hand, by virtue of its lower electrophilicity N_{a}-H-spiroindolium 136 undergoes 1,2-alkyl migration faster than intermolecular trapping by $\mathrm{Et}_{3} \mathrm{SiH}$ and generates the classical Pictet-Spengler product $137\left(\mathrm{k}_{1} \gg \mathrm{k}_{2}\right)$.

Scheme 2.40 Alternate explanation to Bosch's observations.

While the failure of N-tosyl- O-TMS-aminol 223 to produce tetracyclic compound 247 in high yield outlines the current limitation of our methodology, we have not exhausted all the potential solutions to this problem. The most obvious strategy would be to exchange the methyl substituent at the 6-hydroxylindole position for a tosyl group (260, Figure 2.5) in similar manner to that employed by Buchi and co-workers to solve an analogous issue. ${ }^{17}$ Additionally, the problem could be circumvented by using an electronwithdrawing group at the 6 -position (261), which could then be converted to the corresponding hydroxyl group post-cyclization.

Figure 2.5 Possible solutions to address the limitations of our method concerning the cyclization of 6-methoxy- N-tosyl- O-TMS-aminol 223.

2.6.2. Application of Our Cascade Annulation Strategy to Tryptophol-Based

System 262

Our interest in the synthesis of indoline base natural products led us to apply the cascade annulation sequence to tryptophol-based system 263. This initial investigation, carried out by Dr. Hussaini in our lab (Scheme 2.41), had revealed that upon treating acetoxy-acetal 263 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in hexanes at $0{ }^{\circ} \mathrm{C}$, the resulting oxonium ion 264 cyclized to a 1.2:1 mixture of $\mathrm{C}(3)$-epimeric tetracyclic ethers 265 and 266 in 34% overall yield. Despite these promising results, the transformation had not been fully realized due to the significant technical challenge associated with the synthesis and handling of the highly sensitive acetoxy-acetal 263.

267

Pyridine, DMAP, $\mathrm{Ac}_{2} \mathrm{O}$

263
$\xrightarrow[\text { Hexanes, } 0{ }^{\circ} \mathrm{C}]{\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}}$

266
15%

Scheme 2.41 Preliminary results with acetoxy-acetal 263.

Encouraged by our recent success in developing an efficient cascade annulation sequence for tryptamine-based systems, we revisited the analogous transformation of tryptophol-based system 263. Our goal was to circumvent the synthesis of acetoxy-acetal 263 altogether, by utilizing instead a more stable oxonium ion precursor 262. Additionally, we wanted to improve the yield of the overall transformation and unambiguously assign the relative stereochemistry of the tetracylic ether products $\mathbf{2 6 5}$ and 266.

267

267
Hexanes
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$

265
30%
19%

266
25\%
45\%

Scheme 2.42 Improved procedure for the formation of tetracyclic ethers 265 and 266.

Ester 267 was subjected to DIBAL-H reduction at $-78^{\circ} \mathrm{C}$ and then treated with the mild trapping reagent trimethysilylimidazole. The reaction proceeded smoothly and the carbinol signal at 4.89 ppm observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture, clearly indicated that trimethylsilyloxy-acetal 262 was the main product. However, compound 262 was never isolated in higher than 30% yield after purification by column chromatography using silica gel (treated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) or neutral alumina. Nevertheless, we found that washing the crude reaction mixture with saturated aqueous
CuSO_{4} removed the imidazole impurity and afforded compound 262 in almost quantitative yield. The crude product was then treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in hexanes at $0{ }^{\circ} \mathrm{C}$ to generate a 1.2:1 mixture of $\mathbf{2 6 5}$ and $\mathbf{2 6 6}$ in 55% yield over two steps. This result was a considerable improvement over the yields previously reported (overall 23% for the conversion of $\mathbf{2 6 7}$ to compounds 265 and 266). When $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as the solvent the reaction sequence proceeded in 64% overall yield, and the ratio of $\mathrm{C}(3)$-epimers switched in favor of compound 266 (1:2.3).

The structure of compound $\mathbf{2 6 6}$ was established by 1D and 2D NMR experiments, in which the assignment of methine protons H_{b} and H_{c} was based on chemical shift analysis (3.90 and 3.74 ppm , respectively) and COSY data (Figure 2.6). Additionally, NOE between the methylene proton H_{f} and the aromatic proton H_{4} permitted the indirect assignment of H_{b} as the neighboring ethereal methine signal. Irradiation of H_{g} produced enhancements of 5.5% and 5.0% for H_{b} and H_{c}, respectively, thus indicating that both protons were located on the same face of the D ring.

266

265
\equiv

\equiv

Figure 2.6 Structural assignment of ethers 265 and 266.

The initial assignment of compound 265 was difficult because of signal overlap in its ${ }^{1} \mathrm{H}$ NMR spectrum. However, the insight gained from the structural characterization of the $\mathrm{C}(3)$-epimer 266 was helpful in the assignment of key protons signals at 3.89 and 3.26 ppm in 265 as H_{a} and H_{d}, respectively. At this stage, irradiation of H_{a} produced a 3.4% enhancement in the signal of the aromatic H_{4}, which was indicative of the aspidosperma-like stereochemistry as described in section 1.2.

2.6.3. Application of Our Cascade Annulation Strategy to Furan-Based System 268

We were also interested in extending our methodology beyond the construction of indoline-based heterocycles. By exchanging the indole moeity in our starting material for another aromatic group such as furan, we could develop a variant of our cascade annulation reaction to construct new interesting and highly complex structures. Although we did not expect for the system to display the same reactivity profile of compound $\mathbf{1 9 2}$ (as it is well known that 3 -substituted furans react preferentially at the 2-position thus precluding the intermediacy of a spirocylic intermediate 269), ${ }^{50}$ the cyclization of compound 192 could generate one of three possible products 270, 271 and 272 (Scheme 2.43).

268
$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}]{\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}}$

271

Scheme 2.43 Possible products from the cyclization of N-tosyl- O-TMS-aminol 268.

After the initial formation of intermediate 273, compound $\mathbf{2 7 0}$ could arise via 1,2-nucleophilic attack of the tethered allylsilane onto the least hindered carbon of the oxonium ion moeity, to afford a new seven membered ring in the process. On the other hand, the formation of compound 271 would entail 1,4-addition onto the more hindered electrophilic carbon of oxonium ion $\mathbf{2 7 3}$, but would afford the kinetically preferred six membered ring. Lastly, compound 272 could be generated if rearomatization to the furan ocurred more rapidly than the desired intramolecular nucleophilic attack. In order to answer these questions regarding the reactivity profile of furans in the context of our cascade annulation reaction, we undertook the synthesis of compound 268 as shown in Scheme 2.44.

Scheme 2.44 Synthesis and cyclization of N-tosyl- O-TMS-aminol 268.

The known furan $\mathbf{2 7 4}{ }^{50}$ was condensed with acid $\mathbf{9 9}$ in the presence of EDCI and HOBt to afford amide 275 in 56% yield, which under standard tosylation conditions only generated 18% yield of the desired N-tosylamide 276. Reduction with DIBAL-H and trimethylsilylimidazole produced compound 268 in 83% yield. Subjecting N-tosyl- O-TMS-aminol 268 to our optimized cyclization conditions afforded 37% yield of caged-ether $\mathbf{2 7 0}$ along with 15% of furan 272.

Figure 2.7 Structural assignment of ether 270.

The number of vinyl proton signals in $\mathbf{2 7 0}\left(\mathrm{H}_{\mathrm{a}}\right.$ at 5.49 ppm and the exocyclic methylene protons at 5.02 and 4.78 ppm) allowed us to identify its general structure from among the three possible product structures listed in Scheme 2.43. Subsquent COSY and HMQC experiments supported our initial assignment, but the lack of a measurable ${ }^{3} J$ value between protons H_{a} and H_{b} prompted us to carry out CYCLENOE experiments to confirm their supposed proximity (Figure 2.7). Irradiation of H_{a} produced signal enhancements of $2.4 \%, 0.8 \%$, and 0.6% on $\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{j}}$, and H_{h} respectively, which indicated that H_{a} and H_{b} were indeed attached to neighboring carbons. The NMR data gathered in combination with the study of molecular models suggested that the dihedral angle between H_{a} and H_{b} was close to 90° (the Karplus equation predicts an insignificant coupling constant value at 90°), which would explain our observations. Additionally, conformational analysis via molecular models also explains the lack of NOE at H_{c} upon irradiation of H_{b}, which predict that the ethereal protons H_{b} and H_{c} are arranged in an almost orthogonal manner to each other. Our structural assignment was subsequently corroborated via X-ray crystallography.

N -Cbz- O -TMS-aminol 277 was also synthesized in order to assess the effect of the acyl auxiliary on product distribution (Scheme 2.45). Compound 277 was constructed using our standard conditions. However, treating N-Cbz- O-TMS-aminol 277 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ either at -78 or $0^{\circ} \mathrm{C}$ produced furan 278 as the major product.

Scheme 2.45 Synthesis and cyclization of N-tosyl- O-TMS-aminol 277.

Although the transformation was not fully optimized at this stage, we recognized that we had successfully shown that furans could be implemented in our cascade annulation sequence. Given that our main focus remained on the synthesis of malagashanine, no further attempts were made to improve the yield of compound $\mathbf{2 7 0}$.

2.6.4. Development of an Intermolecular Cascade Annulation Reaction

Having established the utility of our intramolecular cascade annulation reaction for the construction of the core of the malagashanine alkaloids, we embarked on the development of an intramolecular variant, which would expand the range of synthetic targets attainable through our methodology. As a model system, we chose the reaction of N-tosyl- O-TMS-aminol 280 (Scheme 2.46) with N-benzyl indole (281) because it closely resembled the intramolecular parent system 148. Compound 280 was constructed by treating acid 99 with isobutylchloroformate and N-methylmorpholine to generate the corresponding mixed anhydride, followed by treatment with the lithium anion of
N-benzyl, N-tosyalmine at $-78{ }^{\circ} \mathrm{C}$, which generated N-tosylamide 282 in 20%. The low yield of compound $\mathbf{2 8 2}$ was surprising given how well the same protocol had worked for our tryptamine derived systems. Compound 282 was then converted to $\mathbf{2 8 0}$ under standard conditions in 71% yield.

Scheme 2.46 Synthesis of N-tosyl- O-TMS-aminol 280.

Treatment of three equivalents of $\mathbf{2 8 0}$ and one equivalent of N -benzylindole (281) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $0{ }^{\circ} \mathrm{C}$ afforded the desired intramolecular product $\mathbf{2 8 3}$ in 52% yield (Table 2.3, entry 1) along with minor amounts of uncyclized byproduct 284. The structure of $\mathbf{2 8 3}$ was unambiguously established by X-ray crystallography.

280

283
$+$

284 \% yield 28

Entry	$\mathbf{2 8 0}$ (equiv)	$\mathbf{2 8 1}$ (equiv)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Conc. (M)	\% yield $\mathbf{2 8 3}$	\% yield $\mathbf{2 8 4}$
1	3	1	0	0.1	62	Minor
2	1	3	0	0.1	31	29
3	1	1.05	0	0.6	46	53
4	1	4	-78	0.1	85	Minor
5	1	1.05	-78		Trace	

Table 2.3 Optimization of the intermolecular cascade cyclization reaction.

Compound 284 was most likely generated by the protodesilylation of the intermediate iminium ion $\mathbf{2 8 5}$ as shown in Scheme 2.47.

285

286

Scheme 2.47 Possible mechanism regarding the formation of compound 284.

Reversing the proportion of the starting materials (entry 2) produced $\mathrm{a} \sim 1: 1$ ratio of cyclization product $\mathbf{2 8 3}$ and byproduct 284. Recognizing that low concentrations of N-tosyl- O-TMS-aminol 280 led to the formation of compound 284, the effective concentrations of both starting materials were increased by carrying out the reaction at 0.6 M. This suppressed the formation of $\mathbf{2 8 4}$ but lowered the overall yield to 46% (entry 3). In an effort to minimize the decomposition of iminium ion $\mathbf{2 8 5}$ while keeping the concentration of starting material below 0.6 M , the reaction was carried out at $-78{ }^{\circ} \mathrm{C}$ (entries 4). After some optimization we found that at this temperature and a concentration of 0.2 M the reaction could be carried out using nearly equimolar amounts of the starting materials to afford 85% yield of compound 283 (entry 5).

Compound $\mathbf{2 8 3}$ displays complementary stereochemistry to that obtained via our intramolecular cascade annulation reaction and therefore represents a potential entry into the core of the aspidosperma alkaloids (287) (Scheme 2.48). A direct extension of our newly developed intermolecular annulation sequence would be to employ O-tosyltryptophol 288 and N-tosyl- O-TMS-aminol 280 to access tricyclic amine 289, which could then be easily converted to 287 .

280

Scheme 2.48 Possible application of the intermolecular annulation sequence to access the core of the aspidosperma alkaloids 287.

2.7. Conclusions

During this phase of our studies towards the total synthesis of malagashanine, we have developed an efficient cascade annulation sequence to build the core of the molecule and install the $C(2), C(3)$ and $C(7)$ stereocenters with the necessary relative stereochemistry. We have shown that the use of N -acyl- and N -tosyl- O -TMS-aminols as iminium ion precursors circumvents the problems associated with the condensation of primary amine $\mathbf{3 6}$ with sensitive β, γ-unsaturated aldehyde 86 . Additionally, the use of a tosyl auxiliary on the iminium ion nitrogen and a benzyl group on the indole nitrogen provides exquisite selectivity for the desired cascade product 195 . The efficiency of this transformation is nothing short of remarkable considering the large number of side products that are accessible via the highly reactive β, γ unsaturated iminium ion intermediate 207.

The cascade annulation sequence is amenable to both electron-withdrawing and electron-donating substituents on the indole moiety. However, the failure of 6-methoxy-substituted N-tosyl- O-TMS-aminol 223 to cyclize in high yield outlines a
minor current limitation to our methodology. We also demonstrated that furans are useful substrates for the annulation sequence and can produce interesting caged structures such as 270. Additionally, our methodology can be extended to tryptophol-based system 262, which reacts via an oxonium ion (264) to afford oxygen analogs of the aspidoesperma and malagashanine cores 265 and 266, respectively. Moreover, an intermolecular cascade annulation sequence has been developed that affords tricyclic amine product $\mathbf{2 8 3}$, which possess aspidosperma-like stereochemistry and might allow entry to this class of molecules in the future. Lastly, preliminary attempts to cyclize N-tosyl- O-TMS-aminols in the presence of protic acid catalysts suggest that the use of acids with particularly weak conjugate bases is essential in order to suppress the isomerization of the key iminium ion intermediates.

2.8. Experimentals

General Information. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Inova 600 spectrometer ($600 \mathrm{MHz}{ }^{1} \mathrm{H}, 150 \mathrm{MHz}{ }^{13} \mathrm{C}$), a Varian Unity plus 600 spectrometer (600 $\mathrm{MHz}{ }^{1} \mathrm{H}, 150 \mathrm{MHz}{ }^{13} \mathrm{C}$), and a Varian Inova 400 spectrometer ($400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ ${ }^{13} \mathrm{C}$) at room temperature in CDCl_{3} with internal CHCl_{3} as the reference (7.27 ppm for ${ }^{1} \mathrm{H}$ and 77.23 ppm for ${ }^{13} \mathrm{C}$), unless otherwise stated. Chemical shifts (δ values) were reported in parts per million (ppm) and coupling constants (J values) in Hz. Infrared (IR) spectra were recorded using Thermo Electron Corporation Nicolet 380 FT-IR spectrometer. High resolution mass spectra were obtained using a Thermo Electron Corporation Finigan LTQFTMS (at the Mass Spectrometry Facility, Emory University). We acknowledge the use of shared instrumentation provided by grants from the NIH and the NSF. Melting points (m.p.) were measured using a Fisher-Johns melting point apparatus and are not corrected. Analytical thin layer chromatography (TLC) was performed on precoated glass backed EMD 0.25 mm silica gel 60 plates. Visualization was accomplished with UV light or ethanolic anisaldehyde. Flash column chromatography was carried out using EMD Geduran ${ }^{\circledR}$ silica gel $60(40-63 \mu \mathrm{~m})$ or Fluka basic alumina ($0.05-0.15 \mathrm{~mm}, \mathrm{pH} 9.5$).

All reactions were conducted with anhydrous solvents in oven dried or flame-dried and argon-charged glassware. Anhydrous solvents were purified by passage through activated alumina using a Glass Contours solvent purification system unless otherwise noted. Solvents used in workup, extraction and column chromatography were used as received
from commercial suppliers without prior purification. All reagents were purchased from Sigma-Aldrich and used as received unless otherwise noted. Hexamethyldisilazane, triethylamine, N-methylmorpholine, pyridine, and boron trifluoride diethyletherate were purified by distillation from calcium hydride.

Synthesis of 3-((trimethylsilyl)methyl)but-3-en-1-ol (101):

A solution of acid $99(5.84 \mathrm{~g}, 33.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(94.0 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C} . \mathrm{LAH}$ (2.0 M in $\mathrm{THF}, 19.0 \mathrm{~mL}, 38.0 \mathrm{mmol}$) was added over 15 minutes, and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 12 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and quenched by slow addition of saturated Rochelle's salt solution (100 mL). The mixture was stirred vigorously at r.t. for 8 h . The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic extracts were combined, washed with brine (100 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded homoallylic alcohol 101 as a yellow oil ($3.92 \mathrm{~g}, 73 \%$); $\mathbf{R}_{\mathbf{f}} 0.27$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $4.70(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.24(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.56(\mathrm{~s}, 2 \mathrm{H})$, 0.04 ($\mathrm{s}, 9 \mathrm{H}$); IR (thin film, cm^{-1}) 3344.10 (br m), 3075.3 (w), 2953.8 (s), 1633.0 (w), 1417.8 (w), 1249.1 (m), 1156.8 (w), 1047.5 (m), 852.0 (s).

Synthesis of 3-((trimethylsilyl)methyl)but-3-enal (86):

A solution of Dess-Martin periodinane ($0.528 \mathrm{~g}, 1.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.0 \mathrm{~mL})$ was added to a stirring solution of homoallylic $101(0.066 \mathrm{~g}, 0.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14.0 mL), and the resulting suspension was stirred for 1 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1: 1,30 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic extracts were combined, washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford crude aldehyde $\mathbf{8 6}$ as a brown oil $(0.024 \mathrm{~g}, 37 \%) ; \mathbf{R}_{\mathbf{f}} 0.65$ (in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.64(\mathrm{t}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}$, $1 \mathrm{H}), 3.02(\mathrm{t}, 2 \mathrm{H}, J=2.6 \mathrm{~Hz}), 1.59(\mathrm{~s}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2954.7(\mathrm{w})$, 1725.5 (s), 1632.1 (w), 1248.5 (s), 839.4 (s).

Synthesis of amide 109:

A solution of tryptamine $36(0.986 \mathrm{~g}, 5.66 \mathrm{mmol})$ and DMAP $(0.206 \mathrm{~g}, 1.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(53.0 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Carboxylic acid $99(0.967 \mathrm{~g}, 5.61 \mathrm{mmol})$ was added, followed by dropwise addition of EDCI ($1.49 \mathrm{~mL}, 8.42 \mathrm{mmol}$) over 20 minutes. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(100$
mL) was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.1 M aqueous $\mathrm{HCl}(2 \times 100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, and brine (100 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (1:1 hexanes/EtOAc) afforded amide $\mathbf{1 0 9}$ as a crystalline white solid ($1.34 \mathrm{~g}, 72 \%$); $\mathbf{R}_{\mathbf{f}} 0.40$ ($1: 1$ hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.25(\mathrm{dt}, 1 \mathrm{H}, J=$ 8.4, 1.2 Hz), $7.12(\mathrm{dt}, 1 \mathrm{H}, J=7.4,1.2 \mathrm{~Hz}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{br} \mathrm{s}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.96(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 1.58(\mathrm{~s}$, 2H), $0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.4,142.5,137.2,127.9,127.0$, $121.9,119.1,119.0,112.7,111.6,109.4,47.1,40.1,32.8,26.9,25.3,-1.35$.

Synthesis of \boldsymbol{N}-Cbz-amide 111:

A solution of amide $\mathbf{1 0 9}(1.13 \mathrm{~g}, 3.43 \mathrm{mmol})$ in THF $(10.4 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.31 M in THF, $10.4 \mathrm{~mL}, 3.23 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the staring material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Benzyl chloroformate $(0.68 \mathrm{~mL}, 4.8 \mathrm{mmol})$ was added and the mixture was stirred for 12 h for $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5$ $\mathrm{mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 15 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(20 \mathrm{~mL})$, dried over
anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (17:1 hexanes/EtOAc) afforded N-Cbz amide 111 as a colorless oil ($1.44 \mathrm{~g}, 95 \%$); $\mathbf{R}_{\mathbf{f}} 0.41$ ($4: 1$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.53(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, $7.51-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}$, $2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.10-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.07-2.99$ $(\mathrm{m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 2 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.8,154.5,141.7$, $137.0,135.2,128.9,128.9,128.7,127.9,127.1,121.7,119.2,119.0,111.3,111.1,109.3$, $68.7,47.3,45.6,32.7,27.5,24.7,-1.20$.
N-Cbz-amide 123 was obtained during our initial attempts to install the Cbz group in compound 111 using 1.05 equivalents of n - BuLi in place of KHMDS as described in the previous procedure.

$\mathrm{R}_{\mathrm{f}} 0.41$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.53(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 7.51-7.28 (m, 6H), $7.24(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}), 5.19-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~d}, 3 \mathrm{H}$, $J=3.0 \mathrm{~Hz}), 1.81(\mathrm{~s}, 2 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})$

Amide 124 was obtained during our initial attempts to install the Cbz group in compound 111 using 1.05 equivalents of $n-\mathrm{BuLi}$ in place of KHMDS as described in the previous procedure.

$\mathbf{R}_{\mathbf{f}} 0.45$ ($1: 1$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.61(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $7.31(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.43(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $5.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.96(\mathrm{t}$, $2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.48(\mathrm{~s}, 2 \mathrm{H}), 1.79(\mathrm{~d}, 3 \mathrm{H}, J=4.8 \mathrm{~Hz}), 0.07(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of N -Cbz- O -TMS-aminol 110:

A solution of $N-\mathrm{Cbz}$ amide $111(0.681 \mathrm{~g}, 1.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.7 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.1 \mathrm{~mL}, 3.1 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 2 h , then pyridine $(0.38 \mathrm{~mL}, 4.6 \mathrm{mmol})$ was added dropwise and the reaction was stirred for 20 minutes. Trimethylsilyl triflate (0.70 $\mathrm{mL}, 3.9 \mathrm{mmol}$) was added dropwise and the mixture was stirred for 20 minutes at $-78{ }^{\circ} \mathrm{C}$. The reaction was warmed to $0^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution (5 mL). The biphasic mixture was transferred to a 25 mL

Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (20 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N -Cbz- O -TMS-aminol 110 as a colorless oil ($0.633 \mathrm{~g}, 76 \%$); $\mathbf{R}_{\mathbf{f}} 0.50$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1.0: 0.6$ mixture of rotamers) $\delta 7.79(\mathrm{~d}$, $0.6 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.47-7.19(\mathrm{~m}, 12.2 \mathrm{H}), 7.14(\mathrm{t}, 0.6 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.98(\mathrm{t}, 1.0 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 6.92(\mathrm{~s}, 0.6 \mathrm{H}), 6.79(\mathrm{~s}, 1.0 \mathrm{H}) 5.95(\mathrm{t}, 1.0 \mathrm{H}, J=6.3 \mathrm{~Hz}), 5.79(\mathrm{t}, 0.6 \mathrm{H}, J=6.3 \mathrm{~Hz})$, 5.29-5.16 (m, 3.2H), 3.78 ($\mathrm{s}, 1.8 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.33(\mathrm{~m}, 3.2 \mathrm{H}), 3.12-3.07(\mathrm{~m}$, $2.2 \mathrm{H}), 2.95(\mathrm{dt}, 1.0 \mathrm{H}, J=12.6,5.4 \mathrm{~Hz}), 2.35-2.23(\mathrm{~m}, 3.2 \mathrm{H}), 1.64(\mathrm{~d}, 1.0 \mathrm{H}, J=13.2 \mathrm{~Hz})$, $1.54(\mathrm{~d}, 1.0 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.50(\mathrm{~d}, 0.6 \mathrm{H}, J=13.5 \mathrm{~Hz}), 1.39(\mathrm{~d}, 0.6 \mathrm{H}, 13.5 \mathrm{~Hz}), 0.13(\mathrm{~s}$, $9.0 \mathrm{H}), 0.08(\mathrm{~s}, 5.4 \mathrm{H}), 0.04(\mathrm{~s}, 9.0 \mathrm{H}),-0.03(\mathrm{~s}, 5.4 \mathrm{H}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}_{2} 537.2969$, found $537.2960[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tetracyclic amine 113:

A solution of N -Cbz- O -TMS-aminol $110(0.081 \mathrm{~g}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(21 \mu \mathrm{~L}, 0.17 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , warmed to room temperature and stirred for 12 hours. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution (2 mL). The
resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded tetracyclic amine $\mathbf{1 1 3}$ as a colorless oil ($2.8 \mathrm{mg}, 5 \%$); $\mathbf{R}_{\mathbf{f}} 0.23$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $(\mathrm{CDCl} 3,300 \mathrm{MHz})(0.7: 0.3$ mixture of rotamers) δ 7.45-7.32 $(\mathrm{m}, 5 \mathrm{H}), 7.11(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.0 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.62(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $6.36(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.30-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.47(\mathrm{~m} 2 \mathrm{H}), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=12.3,5.4$ $\mathrm{Hz}), 3.75-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.46-3.24(\mathrm{~m}, 0.7 \mathrm{H}), 3.24-3.01(\mathrm{~m}, 0.3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.21$ $(\mathrm{m}, 2 \mathrm{H}), 2.15(\mathrm{dd}, 1 \mathrm{H}, J=14.1,3.9 \mathrm{~Hz}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}) ;$ HRMS $(+\mathrm{ESI})$ calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} 375.2073$, found $375.2061[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydro- β-carboline $\mathbf{1 2 6}$ as a colorless oil ($0.051 \mathrm{~g}, 90 \%$); $\mathbf{R}_{\mathbf{f}} 0.40$ ($4: 1$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ (1.0:0.9 mixture of rotamers) $\delta 7.51(\mathrm{~d}, 0.9 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1.0 \mathrm{H}, J=8.0 \mathrm{~Hz})$, 7.43-7.28 (m, 11.4H), 7.26-7.20 (m, 1.9H), 7.17-7.09 (m, 1.9H), $5.65(\mathrm{dd}, 1.0 \mathrm{H}, J=10.6$, $3.4 \mathrm{~Hz}), 5.41(\mathrm{dd}, 0.9 \mathrm{H}, J=10.6,3.0 \mathrm{~Hz}), 5.20(\mathrm{~d}, 0.9 \mathrm{H}, J=12.4 \mathrm{~Hz}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.09$ $(\mathrm{d}, 0.9 \mathrm{H}, J=12.4 \mathrm{~Hz}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.84-4.67(\mathrm{~m}, 1.9 \mathrm{H}), 4.76(\mathrm{~s}, 0.9 \mathrm{H}), 4.67(\mathrm{dd}, 0.9 \mathrm{H}, J$ $=13.6,6.0 \mathrm{~Hz}), 4.42(\mathrm{dd}, 1.0 \mathrm{H}, J=13.4,5.4 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2.7 \mathrm{H}), 3.33(\mathrm{dt}$, $1.9 \mathrm{H}, J=12.0,4.8 \mathrm{~Hz}), 2.99-2.83(\mathrm{~m}, 1.9 \mathrm{H}), 2.76(\mathrm{dt}, 1.9 \mathrm{H}, J=16.0,4.4 \mathrm{~Hz}), 2.62-2.53$ $(\mathrm{m}, 1.9 \mathrm{H}), 2.48(\mathrm{dd}, 1.0 \mathrm{H}, J=14.2,3.0 \mathrm{~Hz}), 2.36(\mathrm{dd}, 0.9 \mathrm{H}, J=14.2,2.6 \mathrm{~Hz}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2} 375.2073$, found $375.2062[\mathrm{M}+\mathrm{H}]^{+}$.

Tetrahydro- β-carboline $\mathbf{1 2 9}$ was obtained during our attempts to cyclize compound $\mathbf{1 1 0}$ using Binol phosphoric acid (128) at $0{ }^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ as described in the previous procedure.

129
$\mathbf{R}_{\mathbf{f}} 0.60$ (4:1 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ (01.0:0.8 mixture of rotamers) $\delta 7.50(\mathrm{~d}, 0.8 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.47(\mathrm{~d}, 1.0 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.41-7.26(\mathrm{~m}, 10.8)$, 7.24-7.19 (m, 1.8), 7.14-7.09 (m, 1.8), $5.64(\mathrm{dd}, 1.0 \mathrm{H}, J=10.5,3.9 \mathrm{~Hz}), 5.42(\mathrm{dd}, 0.8 \mathrm{H}, J$ $=10.8,3.0 \mathrm{~Hz}), 5.21(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.73(\mathrm{~s}$, $1.0 \mathrm{H}), 4.66(\mathrm{~s}, 0.8 \mathrm{H}), 4.64(\mathrm{~s}, 1.0 \mathrm{H}), 4.60-4.55(\mathrm{~m}, 1.6 \mathrm{H}), 4.41(\mathrm{dd}, 1.0 \mathrm{H}, J=13.8,6.0$ $\mathrm{Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2.4 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 1.8 \mathrm{H}), 2.98-2.83(\mathrm{~m}, 1.8 \mathrm{H}), 2.78(\mathrm{dd}$, $0.8 \mathrm{H}, J=15.6,4.2 \mathrm{~Hz}), 2.74(\mathrm{dd}, 1.0 \mathrm{H}, J=15.6,4.2 \mathrm{~Hz}), 2.52-2.45(\mathrm{~m}, 1.8 \mathrm{H}), 2.43$ (dd, $1.0 \mathrm{H}, J=14.7,3.9 \mathrm{~Hz}), 2.32(\mathrm{dd}, 0.8 \mathrm{H}, J=14.1,3.3 \mathrm{~Hz}), 1.76(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.72$ $(\mathrm{d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.46(\mathrm{~d}, 1.0 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.41(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 0.07(\mathrm{~s}, 9 \mathrm{H})$, 0 (s, 7.2H); HRMS (+ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si} 447.2468$, found 447.2461 $[\mathrm{M}+\mathrm{H}]^{+}$.

Tetrahydro- β-carboline $\mathbf{1 3 0}$ was obtained during our attempts to cyclize compound $\mathbf{1 1 0}$ using Binol phosphoric acid (128) at $0{ }^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78^{\circ} \mathrm{C}$ as described in the previous procedure.

$\mathbf{R}_{\mathbf{f}} 0.45$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)(01.0: 0.8$ mixture of rotamers) $\delta 7.55-7.46(\mathrm{~m}, 1.8 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 9.2 \mathrm{H}), 7.21(\mathrm{dt}, 1.8 \mathrm{H}, J=7.6,0.8 \mathrm{~Hz})$, $7.11(\mathrm{t}, 1.8 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.10(\mathrm{~d}, 1.0 \mathrm{H}, J=9.5 \mathrm{~Hz}), 5.87(\mathrm{~d}, 0.8 \mathrm{H}, J=9.4 \mathrm{~Hz}), 5.45-$ $5.34(\mathrm{~m}, 1.8 \mathrm{H}), 5.25(\mathrm{~d}, 1.0 \mathrm{H}, J=12.1 \mathrm{~Hz}), 5.16(\mathrm{~d}, 1.0 \mathrm{H}, J=12.1 \mathrm{~Hz}), 4.55(\mathrm{~d}, 0.8 \mathrm{H}, J$ $=7.9 \mathrm{~Hz}), 4.41(\mathrm{~d}, 1.0 \mathrm{H}, J=8.3 \mathrm{~Hz}), 3.61-3.47(\mathrm{~m}, 5.4 \mathrm{H}), 3.24(\mathrm{~m}, 2.6 \mathrm{H}), 2.96-2.72(\mathrm{~m}$, $4.6 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.63(\mathrm{~m}, 7.8 \mathrm{H}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$ 375.2073, found $375.2082[\mathrm{M}+\mathrm{H}]^{+}$.

Carbamate 125 was obtained during our attempts to cyclize compound $\mathbf{1 1 0}$ using Binol phosphoric acid (128) at $0{ }^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ as described in the previous procedure.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.60(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.42-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.25(\mathrm{t}, 1 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $3.54(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.98(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz})$.

Synthesis of tetrahydro- β-carboline 127:

A solution of $\mathbf{1 2 6}(0.014 \mathrm{~g}, 0.037 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. LAH (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$) was added over 15 minutes and the resulting solution was heated to $70^{\circ} \mathrm{C}$ and stirred for 1 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by slow addition of saturated Rochelle's salt solution (1 mL). The resulting biphasic mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (1:1 hexanes/EtOAc) afforded amine 127 as a crystalline white solid $(8.9 \mathrm{mg}, 99 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.52(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.21(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 7.11(\mathrm{dt}, 1 \mathrm{H} J=$ $7.4,0.8 \mathrm{~Hz}), 4.93(\mathrm{~s}), 4.86(\mathrm{~s}), 3.86(\mathrm{dd}, 1 \mathrm{H} J=9.8,3.8 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.04-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.45(\mathrm{~m}, 5 \mathrm{H}), 2.39(\mathrm{dd}, 1 \mathrm{H}, J=15.4,3.8 \mathrm{~Hz}), 1.89(\mathrm{~s}, 3 \mathrm{H})$.

Synthesis of tetrahydro- $\boldsymbol{\beta}$-carboline 134:

A solution of $\mathbf{1 3 0}(0.010 \mathrm{~g}, 0.026 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. LAH (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 0.13 \mathrm{~mL}, 0.13 \mathrm{mmol}$) was added over 15 minutes and the resulting solution
was heated to $70^{\circ} \mathrm{C}$ and stirred for 1 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by slow addition of saturated Rochelle's salt solution (1 mL). The resulting biphasic mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (1:1 hexanes/EtOAc) afforded amine 134 as crystalline yellow solid $(6.2 \mathrm{mg}, 92 \%) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.51(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.26(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.18(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 7.09(\mathrm{dt}, 1 \mathrm{H}, J=$ $7.6,1.0), 5.23(\mathrm{dt}, 1 \mathrm{H}, J=10.0,1.4 \mathrm{~Hz}), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.15-$ $3.07(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, 3 \mathrm{H}, J=1.2$ $\mathrm{Hz}), 1.82(\mathrm{~d}, 3 \mathrm{H}, J=1.6 \mathrm{~Hz})$.

Synthesis of amide 149:

A solution of tryptamine $\mathbf{1 5 0}(1.72 \mathrm{~g}, 4.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.0 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 25.0 mL) was added dropwise, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 6 hours. The mixture was concentrated in vacuo. The crude hydrochloride salt was added to a stirring solution of $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(0.662 \mathrm{~g}, 4.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(49.0 \mathrm{~mL})$. The resulting mixture was stirred at r.t. for 5 minutes and then cooled to $0^{\circ} \mathrm{C}$. Carboxylic acid $99(0.83 \mathrm{~mL}$, $4.66 \mathrm{mmol})$ was added dropwise, followed by dropwise addition of EDCI ($0.87 \mathrm{~mL}, 4.90$
mmol) over 20 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.1 M aqueous $\mathrm{HCl}(2 \mathrm{x} 100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, and brine (100 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 \rightarrow 3:1 hexanes/EtOAc) afforded amide 149 as a crystalline white solid ($1.53 \mathrm{~g}, 77 \%$ over two steps); $\mathbf{R}_{\mathbf{f}} 0.44$ (1:1 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.63(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{dt}, 1 \mathrm{H}, J=7.6,5.2 \mathrm{~Hz}), 7.15-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.98$ $(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 170.4,142.6,137.7,137.0,129.0,128.2,127.9,127.0,126.3,122.2,119.4,119.2$, $112.8,112.4,109.9,50.1,47.2,40.0,26.9,25.4,-1.3$; IR (thin film, cm^{-1}) 3294.2 (br, w), 3065.6 (br, w), 2950.8 (w), 1645.3 (m), 1540.5 (w), 1246.4 (m), 1172.7 (w), 839.1 (s), 736.3 (s), 697.0 (s); m.p. $68-69{ }^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{1} \mathrm{~N}_{2} \mathrm{Si}_{1}$ 405.2362, found $405.2357[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N -Cbz amide 404:

A solution of amide $149(0.509 \mathrm{~g}, 1.26 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $3.7 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the staring material solution via cannula. The reaction was stirred for

1 h at $-78^{\circ} \mathrm{C}$. Benzyl chloroformate $(0.21 \mathrm{~mL}, 1.5 \mathrm{mmol})$ was added and the mixture was stirred for 12 h for $-78^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0$ $\mathrm{mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 4 \mathrm{~mL})$. The organic extracts were combined, washed with brine (12 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded N-Cbz amide 404 as a colorless oil ($0.605 \mathrm{~g}, 89 \%$); $\mathbf{R}_{\mathbf{f}} 0.52$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.49(\mathrm{dd}, 1 \mathrm{H}, J=7.8,0.6$ $\mathrm{Hz}), 7.41-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 7.11(\mathrm{dd}, 2 \mathrm{H}, J$ $=7.8,1.2 \mathrm{~Hz}), 7.00(\mathrm{td}, 1 \mathrm{H}, J=7.2,0.6 \mathrm{~Hz}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.72$ $(\mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.97-2.95(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 2 \mathrm{H})$, $0.04(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.6,154.3,141.6,137.6,136.6,135.1$, $128.8,128.8,128.7,128.6,128.2,127.6,126.9,126.4,121.8,119.2,119.2,111.9,111.0$, 109.7, 68.6, 49.9, 47.2, 45.4, 27.4, 24.7, -1.2; IR (thin film, cm^{-1}) 3031.5 (w), 2952.8 (w), 1732.2 (s), 1692.6 (m), $1351.4(\mathrm{~m}), 1331.9(\mathrm{w}), 1278.6(\mathrm{~m}), 1247.0(\mathrm{~m}), 1152.8(\mathrm{~s})$, 839.6 (s), 731.1 (s), 694.9m (s); HRMS (+ESI) calculated for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$ 539.2730, found $539.2715[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N -Cbz- O -TMS-aminol 148:

A solution of $\mathrm{N}-\mathrm{Cbz}$ amide $404(0.605 \mathrm{~g}, 1.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.6 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL- $\mathrm{H}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.3 \mathrm{~mL}, 2.3 \mathrm{mmol}\right)$ was added dropwise over 10
minutes. The reaction mixture was stirred for 20 minutes, then pyridine $(0.27 \mathrm{~mL}, 3.4$ mmol) was added dropwise and the reaction was stirred for 10 minutes. Trimethylsilyl triflate $(0.51 \mathrm{~mL}, 2.8 \mathrm{mmole})$ was added dropwise and the mixture was stirred for 45 minutes at $-78^{\circ} \mathrm{C}$. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution (5 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (15 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (15:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N -Cbz- $\mathrm{O}-\mathrm{TMS}-\mathrm{aminol} 148$ as a colorless oil ($0.524 \mathrm{~g}, 76 \%$); $\mathbf{R}_{\mathbf{f}} 0.57$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ (1.0: 0.6 mixture of rotamers) $\delta 7.83(\mathrm{~d}, 0.6 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.48-7.25(\mathrm{~m}, 14.0 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 5.0 \mathrm{H}), 7.05-6.98(\mathrm{~m}$, $1.6 \mathrm{H}), 6.89(\mathrm{~s}, 1.0 \mathrm{H}), 5.98(\mathrm{t}, 1.0 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.82(\mathrm{t}, 0.6 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.24(\mathrm{~m}$, $6.4 \mathrm{H}), 4.69(\mathrm{~s}, 1.0 \mathrm{H}), 4.62(\mathrm{~m}, 1.6 \mathrm{H}), 4.58(\mathrm{~s}, 0.6 \mathrm{H}), 3.61-3.38(\mathrm{~m}, 3.2), 3.10(\mathrm{~m}, 2.2 \mathrm{H})$, $2.99(\mathrm{~m}, 1.0 \mathrm{H}), 2.33(\mathrm{~m}, 3.2 \mathrm{H}), 1.67(\mathrm{~d}, 1.0 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.57(\mathrm{~d}, 1.0 \mathrm{H}, J=13.8 \mathrm{~Hz})$, $1.52(\mathrm{~d}, 0.6 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.41(\mathrm{~d}, 0.6 \mathrm{H}, J=13.2 \mathrm{~Hz}), 0.15(\mathrm{~s}, 9.0 \mathrm{H}), 0.10(\mathrm{~s}, 5.4 \mathrm{H})$, $0.06(\mathrm{~s}, 9.0 \mathrm{H}),-0.00(\mathrm{~s}, 5.4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 155.8,154.9,142.9$, $141.9,137.8,137.8,136.9,136.8,136.8,136.7,128.9,128.7,128.7,128.5,128.3,128.3$, $127.8,127.7,127.1,127.0,126.2,126.1,121.9,119.7,119.5,119.4,119.3,119.2,113.4$, $113.2,111.0,110.9,109.8,109.8,79.4,79.3,67.4,67.4,50.1,50.1,45.4,45.1,42.9,42.5$, 27.2, 27.1, 26.8, 25.7, 0, 0, -1.1, -1.2; IR (thin film, cm^{-1}) 2955.8 (w), 1689.9 (m), 1466.6
(w), 1454.1 (w), 1416.9 (w), 1250.5 (w), 905.3 (s), 841.7 (s), 725.3 (s), 696.3 (m), 647.8 (m); HRMS (+ESI) calculated for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}_{2} 613.3282$, found $613.3284[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tetracyclic amine 151:

A solution of N -Cbz- O -TMS-aminol $148(0.089 \mathrm{~g}, 0.146 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(27 \mu \mathrm{~L}, 0.22 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution (1 mL). The resulting biphasic mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded tetracyclic amine $\mathbf{1 5 1}$ as a colorless oil ($0.024 \mathrm{~g}, 36 \%$); $\mathbf{R}_{\mathbf{f}} 0.68$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(0.3: 0.2$ mixture of rotamers) $\delta 7.46-7.32(\mathrm{~m}, 9 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H})$, $7.06(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.64(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.34(\mathrm{~d}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.26-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.23(\mathrm{~d}$, $1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.76(\mathrm{dd}, 1 \mathrm{H}, J=12.6,5.4 \mathrm{~Hz}), 3.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.65(\mathrm{t}, 1 \mathrm{H} . J=5.4 \mathrm{~Hz})$, $3.43-3.35(\mathrm{~m}, 0.6 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 0.4 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{dd}, 1 \mathrm{H}, J=14.4,4.2$ $\mathrm{Hz}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.86(\mathrm{q}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}) ;{ }^{1} \mathbf{H}$ NMR $\left(d_{6}-\mathrm{DMSO}, 70{ }^{\circ} \mathrm{C}\right.$, $600 \mathrm{MHz}) 7.42-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.26(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.93(\mathrm{dt}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 6.83$
$(\mathrm{d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.51(\mathrm{dt}, 1 \mathrm{H}, J=7.8,0.6 \mathrm{~Hz}), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.15(\mathrm{q}, 2 \mathrm{H}, J$ $=12.0 \mathrm{~Hz}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=15.6)$, $3.86(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.0 \mathrm{~Hz}), 3.74(\mathrm{dd}, 1 \mathrm{H}, J=6.0,3.0 \mathrm{~Hz}), 3.64(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, $3.55(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 3.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.36(\mathrm{dd}, 1 \mathrm{H}, J=14.4,5.4 \mathrm{~Hz}), 2.18(\mathrm{dd}$, $1 \mathrm{H}, J=14.4,13.2 \mathrm{~Hz}), 2.12(\mathrm{dd}, 1 \mathrm{H}, J=14.4,3.0 \mathrm{~Hz}), 1.98(\mathrm{dt}, 1 \mathrm{H}, J=11.4,9.6 \mathrm{~Hz})$, $1.80(\mathrm{dd}, 1 \mathrm{H}, J=12.0,7.2 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(d_{6}\right.$-DMSO, $\left.70^{\circ} \mathrm{C}, 150 \mathrm{MHz}\right) \delta 154.8,150.4$, $142.0,138.4,136.8,130.8,128.0,128.0,127.6,127.4,127.2,126.9,126.5,123.2,116.1$, $111.5,105.6,65.8,65.6,57.8,54.3,47.6,45.7,35.3,33.6,33.0$; IR (thin film, cm^{-1}) 3030.4 (w), 2946 (w), 2894.5 (w), 1701.1 (s), 1600.5 (m), 1414.9 (m), 1348.3 (m), 1327.3 (m), $1119.5(\mathrm{~m}), 737.4(\mathrm{~m}), 697.7(\mathrm{~m})$; HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}$ 451.2386, found $451.2380[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydro- β-carboline 152 as a crystalline white solid ($0.033 \mathrm{~g}, 43 \%$); $\mathbf{R}_{\mathbf{f}} 0.78$ ($7: 3$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz})(1.0: 0.9$ mixture of rotamers) $\delta 7.53(\mathrm{dd}, 1.0 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 7.50-7.48(\mathrm{~m}$, $0.9 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 11 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 5.5 \mathrm{H}), 6.99(\mathrm{~d}, 1.9 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 6.90(\mathrm{~d}, 1.9 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.63(\mathrm{dd}, 0.9 \mathrm{H}, J=10.8,3.0 \mathrm{~Hz}), 5.36(\mathrm{~d}, 1.0 \mathrm{H}, J=17.4$ $\mathrm{Hz}), 5.34-5.29(\mathrm{~s}, 2.8 \mathrm{H}), 5.22(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 5.18(\mathrm{~d}, 0.9 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.13(\mathrm{~d}$, $0.9 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.08(\mathrm{~d}, 1.0 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.96(\mathrm{~d}, 1.0 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.62(\mathrm{~s}$, $0.9 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 2.7 \mathrm{H}), 4.48(\mathrm{~s}, 1.0 \mathrm{H}), 4.41(\mathrm{dd}, 0.9 \mathrm{H}, J=13.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}), 3.37-$ $3.29(\mathrm{~m}, 1.9 \mathrm{H}), 3.01-2.89(\mathrm{~m}, 1.9 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 1.9 \mathrm{H}), 2.47-2.41(\mathrm{q}, 1.9 \mathrm{H}, J=12.0$ $\mathrm{Hz}), 2.20(\mathrm{ddd}, 1.9 \mathrm{~Hz}, J=22.2,14.4,3.0 \mathrm{~Hz}), 1.63(\mathrm{~d}, 0.9 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.56(\mathrm{~d}, 0.9 \mathrm{H}$, $J=13.8 \mathrm{~Hz}), 1.27(\mathrm{q}, 2.0 \mathrm{H}, J=13.2 \mathrm{~Hz}),-0.14(\mathrm{~s}, 8.1 \mathrm{H}),-0.16(\mathrm{~s}, 9.0 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(1.0: 0.9$ mixture of rotamers) $\delta 155.9,155.7,143.3,142.8,137.3$, $137.2,136.6,136.1,135.5,129.0,128.6,128.5,128.4,128.1,128.1,127.8,127.7,127.6$,
127.1, 127.0, 126.0, 125.9, 122.1, 121.9, 119.8, 119.7, 118.5, 118.3, 111.4, 110.8, 110.2, $109.9,108.9,108.0,67.4,67.3,49.4,49.2,47.2,47.0,43.2,43.0,37.6,37.1,26.4,21.8$, 21.2, -1.4, -1.5; IR (thin film, cm^{-1}) 3030.6 (w), 2950.4 (w), 1696.8 (s), 1419.2 (m), 1306.8 (w), 1247.2 (w), 1223.7 (w), 1194.0 (m), 1100.4 (m), 842.2 (m), 736.1 (s), 696.7 (m); m.p. $86-87{ }^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ 523.2781, found $523.2774[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of carbamate 160:

Powdered $\mathrm{NaOH}(0.039 \mathrm{~g}, 0.96 \mathrm{mmol})$ and TBAHS $(0.007 \mathrm{~g}, 0.019 \mathrm{mmol})$ were added to a solution of tryptamine $159(0.100 \mathrm{~g}, 0.384 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{~mL})$, and the resulting suspension was stirred for 10 minutes. A solution of β, β, β-trichloro-tert-butyl chloroformate $(0.276 \mathrm{~g}, 1.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added via cannula, and the mixture was stirred for $3 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added, and the reaction was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 4 mL). The organic extracts were combined, washed with brine (10 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (10:1 $\rightarrow 4: 1$ hexanes/EtOAc) afforded carbamate $\mathbf{1 6 0}$ as an amorphous white solid $(0.145 \mathrm{~g}, 81 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.25(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.57$ $(\mathrm{d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{dt}, 1 \mathrm{H}, J=8.0,1.2 \mathrm{~Hz}), 7.28(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.2$ $\mathrm{Hz}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.11(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.0,145.2,135.9,130.6,125.1,123.3,123.0$,
$119.3,119.3,115.5,105.9,91.0,79.5,40.4,28.6,25.8,21.8$; IR (thin film, cm^{-1}) 3358.8 (br, w), 2976.5 (w), 1737.8 (m), 1699.2 (m), 1506.9 (w), 1454.4 (m), 1381.0 (s), 1363.5 (m), 1252.7 (m), $1151.5(\mathrm{~s}), 799.0(\mathrm{~m}), 735.4(\mathrm{~s}) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} 462.0880$, found $462.0881[\mathrm{M}]^{+}$.

Synthesis of amide 405:

A solution of carbamate $\mathbf{1 6 0}(2.32 \mathrm{~g}, 5.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 25.0 mL) was added dropwise, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 6 h . The mixture was concentrated in vacuo. The crude hydrochloride salt was added to a stirring solution of $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(0.676 \mathrm{~g}, 5.00 \mathrm{mmol})$. The resulting mixture was stirred at r.t. for 5 minutes and then cooled to $0^{\circ} \mathrm{C}$. Carboxylic acid $7(0.81 \mathrm{~mL}, 4.55 \mathrm{mmol})$ was added dropwise, followed by dropwise addition of EDCI ($0.89 \mathrm{~mL}, 5.00 \mathrm{mmol}$) over 20 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $16 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.1 M aqueous $\mathrm{HCl}(2 \times 100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, and brine (100 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $(9: 1 \rightarrow 7: 3$ hexanes/EtOAc) afforded amide 405 as a yellow oil ($1.67 \mathrm{~g}, 64 \%$, over two steps); $\mathbf{R}_{\mathbf{f}} 0.35$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.25(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz})$,
$7.58(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.44-7.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.37(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 6.15(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.93(\mathrm{t}, 2 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 2 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (d_{6}-DMSO, $100 \mathrm{MHz}) \delta 169.5,147.4,142.1,134.8,130.3,124.7,123.0,122.4,119.4,119.4,114.7$, $110.1,105.3,90.4,45.4,38.3,26.1,24.6,21.2,-1.4$; IR (thin film, cm^{-1}) 3290.3 (br, w), 3074.9 (w), 2952.7 (w), 1740.9 (s), 1646.6 (m), 1546.7 (w), 1455.4 (m), 1382.2 (s), 1360.4 (m), 1255.1 (s), 1209.0 (w), 1155.9 (s), 1090.9 (m), 848.0 (m), 800.7 (m), 754.9 (m); HRMS (+APCI) calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$ 517.1248, found 517.1246 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N -Cbz-amide 161:

A solution of amide $405(3.02 \mathrm{~g}, 5.84 \mathrm{mmol})$ in THF $(18.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $16.8 \mathrm{~mL}, 5.55 \mathrm{mmol}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ and added to the starting material solution via cannula. The reaction was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. Benzyl chloroformate ($1.09 \mathrm{~mL}, 7.76 \mathrm{mmol}$) was added, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and warmed to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 14 \mathrm{~mL})$. The organic extracts were combined, washed with brine (20 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on
silica gel (10:1 hexanes/EtOAc) afforded N-Cbz-amide 161 as a crystalline white solid $(3.52 \mathrm{~g}, 92 \%) ; \mathbf{R}_{\mathbf{f}} 0.70(7: 3$ hexanes $/ \mathrm{EtOAc}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.23(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.44-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{dt}, 1 \mathrm{H}, J=8.0,0.8 \mathrm{~Hz})$, $7.18(\mathrm{dt}, 1 \mathrm{H}, J=8.0,0.8 \mathrm{~Hz}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 2 \mathrm{H})$, $3.65(\mathrm{~s}, 2 \mathrm{H}), 2.97-291(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($d_{6^{-}}$ DMSO, 100 MHz$) \delta 172.5,153.5,147.3,141.2,135.1,134.9,130.0,128.5,128.5,128.3$, 124.8, 123.1, 122.6, 119.2, 118.4, 114.7, 110.4, 105.3, 90.4, 68.2, 46.3, 43.5, 26.8, 23.7, 21.2, -1.5; IR (thin film, cm^{-1}) 2953.4 (w), 1733.9 (s), 1697.3 (m), 1454.7 (m), 1380.5 (m), $1355.0(\mathrm{~m}), 1276.9(\mathrm{w}), 1248.3(\mathrm{~m}), 1148.1(\mathrm{~s}), 1084.5(\mathrm{~m}), 1043.1(\mathrm{~m}), 844.6(\mathrm{~m})$, $800.0(\mathrm{~m}), 752.8(\mathrm{~m}), 696.7(\mathrm{~m}) ;$ m.p. $62.5-63.5^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$ 651.1616, found $651.1620[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis Na -H-Nb-Cbz-amide 162:

$\mathrm{NH}_{4} \mathrm{OAc}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 6.2 \mathrm{~mL}\right)$ was added to a solution of N -Cbz-amide $161(1.00 \mathrm{~g}$, $1.53 \mathrm{mmol})$ in THF (6.2 mL). $10 \% \mathrm{~Pb} / \mathrm{Cd}$ couple $^{2}(0.861 \mathrm{~g}, 7.66 \mathrm{mmol})$ was added slowly, and the resulting suspension was stirred vigorously for 4 h . The mixture was filtered through celite. The filtered cake was washed with THF ($3 \times 6 \mathrm{~mL}$). The filtrate was washed with brine (15 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/ $\mathrm{Et}_{2} \mathrm{O}$) afforded compound 162 as a crystalline white solid ($0.598 \mathrm{~g}, 87 \%$); $\mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc);
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.42-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.19(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.03(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{t}$, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.67(\mathrm{~s}, 2 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) 173.9,154.6$, 141.7, 136.4, 135.2, 128.9, 128.9, 128.8, 127.6, 122.4, 122.2, 119.6, 119.1, 112.9, 111.2, 111.1, 68.8, 47.3, 45.5, 27.5, 24.8, -1.17; IR (thin film, cm^{-1}) 3403.1 (br, w), 2953.1 (w), 1736.1 (m), 1686.2 (w), 1456.5 (w), 1389.2 (w), 1353.7 (w), 1280.1 (w), 1247.5 (w), 1170.4 (s), 849.7 (m), 741.7 (m); m.p. $92-93.5^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si} 471.2080$, found $471.2071[\mathrm{M}+\mathrm{Na}]^{+}$.

Protodesilylation byproduct 163 was obtained during our initial attempts to remove the TCBoc group in compound $\mathbf{1 6 1}$ using activated zinc in methanol:acetic acid (10:1).

163
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.43-7.32(\mathrm{~m}, 6 \mathrm{H})$, $7.18(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 5.12(\mathrm{~s}, 2 \mathrm{H})$, $4.93(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.13-2.96(\mathrm{~m}, 2 \mathrm{H}),, 1.80(\mathrm{~s}$, $3 \mathrm{H})$; HRMS (+ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{3} 399.1685$, found $399.1674[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of N -Cbz- O -TMS-aminol 166:

A solution of compound $162(0.150 \mathrm{~g}, 0.335 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.67 \mathrm{~mL}, 0.67 \mathrm{mmol}\right)$ was added dropwise over 10 minutes. The reaction mixture was stirred for 40 minutes, then pyridine $(0.11 \mathrm{~mL}, 1.34$ mmol) was added dropwise and the reaction was stirred for 10 minutes. Trimethylsilyl triflate $(0.21 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added dropwise and the mixture was stirred for 75 minutes at $-78^{\circ} \mathrm{C}$. The reaction was warmed to $0^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution (1 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with saturated aqueous $\mathrm{Cu}_{2} \mathrm{SO}_{4}(2 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, brine $(10 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The crude N -Cbz- O -TMS-aminol 156 was obtained as a colorless oil ($0.171 \mathrm{~g}, 98 \%$) and was used without further purification; $\mathbf{R}_{\mathbf{f}} 0.71$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1: 0.6$ mixture of rotamers) $\delta 8.16-8.06(\mathrm{~m}, 1.6 \mathrm{H}), 7.84(\mathrm{~d}, 0.6 \mathrm{H}, J=7.8 \mathrm{~Hz}) 7.55-7.34(\mathrm{~m}, 10.6 \mathrm{H})$, 7.26-7.14 (m, 2.2H), 7.07-7.01 (m, 1.6H), $6.97(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.85(\mathrm{t}$, $0.6 \mathrm{H}, J=6.0 \mathrm{~Hz}), 5.35-5.21(\mathrm{~m}, 3.2 \mathrm{H}), 4.7(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 0.6 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}$, $0.6 \mathrm{H}), 3.67-3.39(\mathrm{~m}, 3.2 \mathrm{H}), 3.20-2.97(\mathrm{~m}, 3.2 \mathrm{H}), 2.44-2.29(\mathrm{~m}, 3.2 \mathrm{H}), 1.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $13.2 \mathrm{~Hz}), 1.58(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.54(\mathrm{~d}, 0.6 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.43(\mathrm{~d}, 0.6 \mathrm{H}, J=13.2$
$\mathrm{Hz}), 0.17$ ($\mathrm{s}, 9 \mathrm{H}$), $0.12(\mathrm{~s}, 5.4 \mathrm{~Hz}), 0.07$ (s, 9H), 0.01 (s, 5.4 Hz); HRMS (+ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si}_{2} 545.2632$, found $545.2631[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of tetracyclic amine 166:

N -Cbz- O -TMS-aminol $156(0.171 \mathrm{~g}, 0.327 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$, and the resulting clear solution was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(61 \mu \mathrm{~L}, 0.490 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution $(2 \mathrm{~mL})$. The resulting biphasic mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (8 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 \rightarrow 7:3 hexanes/EtOAc) afforded tetracyclic amine 166 as a crystalline white solid (1.8 g , $2 \%) ; \mathbf{R}_{\mathbf{f}} 0.43\left(7: 3\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(2: 1$ mixture of rotamers) $\delta 7.48-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.70(\mathrm{t}$, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.28-5.13(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.56(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{dd}$, $1 \mathrm{H}, J=12.0,5.4 \mathrm{~Hz}), 3.79-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.43-3.32(\mathrm{~m}, 0.6 \mathrm{H}), 3.17-3.06(\mathrm{~m}, 0.3 \mathrm{H}), 2.64-$ $2.55(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H})$; and tetrahydro- β-carboline 165 as an amorphous white solid ($0.103 \mathrm{~g}, 73 \%$); $\mathbf{R}_{\mathbf{f}} 0.43$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz})(1: 1$ mixture of rotamers) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.40-$
$7.30(\mathrm{~m}, 10 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.51-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.35(\mathrm{~m}$, $1 \mathrm{H}), 5.24-5.18(\mathrm{~m}, 4 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{dd}$, $1 \mathrm{H}, J=12.9,5.1 \mathrm{~Hz}), 4.46(\mathrm{dd}, 1 \mathrm{H}, J=13.2,4.8 \mathrm{~Hz}), 3.26-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.73(\mathrm{~m}$, $4 \mathrm{H}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=12.3,4.5 \mathrm{~Hz}), 2.52(\mathrm{dd}, 1 \mathrm{H}, J=12.3,4.5 \mathrm{~Hz}), 2.47(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.0), 2.44(\mathrm{~d}, 1 \mathrm{H}, J=9.6), 1.83(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 1.67(\mathrm{~d}, 1 \mathrm{H}, J=13.3), 1.60(\mathrm{~d}, 1 \mathrm{H}, J$ $=13.2 \mathrm{~Hz}), 1.55(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 0.06(\mathrm{~s}, 69 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;$ IR (thin film, $\left.\mathrm{cm}^{-1}\right)$ 3319.8 (br, w), 3032.1 (br, w), 2951.6 (br, w), 2847.5 (br, w), 1680.1 (s), 1424.4 (m), 1248.3 (m), 1223.9 (m), 1098.4 (m), 853.4 (m), 740.2 (m), $696.5(\mathrm{w}) ;$ m.p. 169.0-170.5 ${ }^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si} 433.2311$, found $433.2303[\mathrm{M}+\mathrm{H}]^{+}$.

Tetrahydro- β-carboline 164 was obtained during our attempts to cyclize compound 156 using trifluoroacetic acid at $0^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78^{\circ} \mathrm{C}$ as described in the previous procedure.

164
Amorphous white solid; $\mathbf{R}_{\mathbf{f}} 0.38$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1: 1$ mixture of rotamers) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.8 \mathrm{~Hz}), 7.44-7.31(\mathrm{~m}, 12 \mathrm{H}), 7.19(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.53(\mathrm{t}, 1 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}), 5.36(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.28-5.23(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.98(\mathrm{~s}$, $1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{dd}, 1 \mathrm{H}, J=13.0,5.0 \mathrm{~Hz}), 4.47(\mathrm{dd}$, $1 \mathrm{H}, J=13.8,4.8 \mathrm{~Hz}), 3.30-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.64-$ $2.54(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(1: 1$ mixture of rotamers) $\delta 155.6,155.5,142.7,142.4,136.9,136.6,136.1,136.0,134.5,134.0,128.7$,
128.4, 128.3, 128.2, 127.9, 126.7, 122.1, 121.9, 119.7, 119.6, 118.4, 118.2, 114.7, 114.7, $114.3,111.1,110.0,109.1,108.5,67.7,67.4,50.0,49.9,43.4,43.0,38.9,38.6,22.8,22.7$, 21.9, 21.4; IR (thin film, cm^{-1}) 3306.9 (br w), 3032.6 (w), 2914.2 (w), 2846.4 (w), 1670.3 (s), 1421.8 (s), $1265.2(\mathrm{w}), 1218.0(\mathrm{~m}), 1191.5(\mathrm{w}), 1097.0(\mathrm{~m}), 733.6(\mathrm{~s}), 696.3(\mathrm{~s}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} 361.1916$, found $361.1910[\mathrm{M}+\mathrm{H}]^{+}$.

Carbamate 167 was obtained during our attempts to cyclize compound 156 using trifluoroacetic acid at $0^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78^{\circ} \mathrm{C}$ as described in the previous procedure.

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.42-7.29(\mathrm{~m}$, $6 \mathrm{H}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 3.56(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.00(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ 295.1447, found $295.1440[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of amide 170:

A solution of trypyamine $169(0.660 \mathrm{~g}, 1.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 5.0 mL) was added dropwise, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 5 hours. The
mixture was concentrated in vacuo. The crude hydrochloride salt was added to a stirring solution of $\mathrm{HOBT} \cdot \mathrm{H}_{2} \mathrm{O}(0.236 \mathrm{~g}, 1.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.0 \mathrm{~mL})$. The resulting mixture was stirred at r.t. for 5 minutes and then cooled to $0^{\circ} \mathrm{C}$. Carboxylic acid $99(0.30 \mathrm{~mL}$, $1.67 \mathrm{mmol})$ was added dropwise, followed by dropwise addition of EDCI ($0.31 \mathrm{~mL}, 1.75$ mmol) over 20 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.1 M aqueous $\mathrm{HCl}(2 \times 20 \mathrm{~mL})$, saturated aqueous NaHCO_{3} (2 x 20 mL), and brine (20 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 3:2 hexanes/EtOAc) afforded amide 170 as a yellow oil ($0.450 \mathrm{~g}, 60 \%$ over two steps); $\mathbf{R}_{\mathbf{f}} 0.16$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.99(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.76-7.75(\mathrm{dd}, 2 \mathrm{H}, J=8.4,1.2 \mathrm{~Hz}), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, 1 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{q}, 2 \mathrm{H}, J=6.6$ $\mathrm{Hz}), 2.93-2.88(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 2 \mathrm{H}), 0.03(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 170.6,145.0,142.4,135.4,135.3,130.8,130.0,126.9,125.0,123.4,123.3$, $119.8,119.6,113.8,112.8,47.0,39.1,26.8,25.2,21.7,-1.4$; IR (thin film, cm^{-1}) 3303.2 (br, w), 3074.8 (w), 2952.4 (w), 1646.9 (m), 1528.8 (m), 1447.2 (m), 1366.7 (m), 1170.7 (s), $1131.8(\mathrm{~m}), 1120.2(\mathrm{~m}), 847.9(\mathrm{~s}), 745.2(\mathrm{~m}), 668.2(\mathrm{~s})$; HRMS (+APCI) calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi} 469.1981$, found $469.1974[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-Cbz-amide 406:

A solution of amide $\mathbf{1 7 0}(0.560 \mathrm{~g}, 1.19 \mathrm{mmol})$ in THF (3.6 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $3.42 \mathrm{~mL}, 1.13 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the starting material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Benzyl chloroformate $(0.24 \mathrm{~mL}, 1.67 \mathrm{mmol})$ was added and the mixture was stirred for 12 h for $-78^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(0.5 \mathrm{~mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 5 \mathrm{~mL}$). The organic extracts were combined, washed with brine (12 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $(9: 1 \rightarrow 4: 1$ hexanes/EtOAc) afforded N-Cbz amide 406 as a colorless oil (0.623 g , $87 \%) ; \mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.96(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.43-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{t}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}$, $1 \mathrm{H}), 3.98-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 2 \mathrm{H})$, 0.05 (s, 9H) ; ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 173.6, 154.1, 144.9, 141.5, 135.3, 135.2, $134.9,130.8,129.9,128.9,128.9,128.6,126.9,124.8,123.7,123.3,119.7,119.4,113.7$, $110.0,68.7,47.2,44.4,27.5,24.4,21.6,-1.2$; IR (thin film, cm^{-1}) 2953.4 (w), 1735.5 (m), 1692.9 (m), 1634.6 (w), 1597.3 (w), 1447.5 (w), 1353.9 (m), 1168.4 (s), 846.1 (m), 730.5 (m); HRMS (+APCI) calculated for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi} 603.2349$, found $603.2344[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N -Cbz- O -TMS aminol 168:

A solution of $N-\mathrm{Cbz}$ amide $406(0.623 \mathrm{~g}, 1.03 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.07 \mathrm{~mL}, 2.07 \mathrm{mmol}\right)$ was added dropwise over 10 minutes. The reaction mixture was stirred for 20 minutes, then pyridine $(0.25 \mathrm{~mL}, 3.10$ mmol) was added dropwise and the reaction was stirred for a further 10 minutes. Trimethylsilyl triflate $(0.47 \mathrm{~mL}, 2.6 \mathrm{mmol})$ was added dropwise and the mixture was stirred for 45 minutes at $-78^{\circ} \mathrm{C}$, warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 hr . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (4 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (15 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (15:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N -Cbz- O -TMS aminol 168 as a colorless oil ($0.526 \mathrm{~g}, 75 \%$); $\mathbf{R}_{\mathbf{f}} 0.57$ ($7: 3$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz})(1.0: 0.6$ mixture of rotamers) $7.99(\mathrm{~d}, 0.6 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.96(\mathrm{~d}, 1.0 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.81-7.71(\mathrm{~m}, 3.8 \mathrm{H}), 7.47-7.21(\mathrm{~m}, 16.0 \mathrm{H}), 7.08(\mathrm{t}, 1.0 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.96(\mathrm{t}, 1.0 \mathrm{H}$, $J=6.6 \mathrm{~Hz}), 5.80(\mathrm{t}, 0.6 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.26(\mathrm{~d}, 0.6 \mathrm{H}, J=12.6 \mathrm{~Hz}), 5.21-5.14(\mathrm{~m}, 2.6 \mathrm{H})$, $4.65(\mathrm{~s}, 1.0 \mathrm{H}), 4.61(\mathrm{~s}, 1.0 \mathrm{H}), 4.60(\mathrm{~s}, 0.6 \mathrm{H}), 4.56(\mathrm{~s}, 0.6 \mathrm{H}), 3.58-3.29(\mathrm{~m}, 3.2 \mathrm{H}), 3.08-$
$2.85(\mathrm{~m}, 3.2 \mathrm{H}), 2.33(\mathrm{~s}, 4.8 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 3.2 \mathrm{H}), 1.64(\mathrm{~d}, 1.0 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.54(\mathrm{~d}$, $1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.48(\mathrm{~d}, 0.6 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.37(\mathrm{~d}, 0.6 \mathrm{H}, J=13.2), 0.14(\mathrm{~s}, 9.0 \mathrm{H})$, $0.08(\mathrm{~s}, 5.4 \mathrm{H}), 0.04(\mathrm{~s}, 9.0 \mathrm{H}),-0.02(\mathrm{~s}, 5.4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)(1.0: 0.6$ mixture of rotamers) $155.6,154.8,145.0,144.9,142.7,142.5,136.7,136.5,135.5,135.5$, $135.4,135.3,131.2,130.9,130.0,128.8,128.7,128.5,128.5,128.4,127.0,124.8,123.3$, 123.2, 120.7, 120.4, 120.1, 119.8, 113.8, 111.1, 111.0, 79.3, 79.3, 67.5, 45.3, 45.0, 41.6, $41.3,29.9,27.1,27.1,26.5,25.4,21.8,0,-1.1,-1.2$; IR (thin film, cm^{-1}) 2954.1 (w), $1698.4(\mathrm{~m}), 1446.6(\mathrm{w}), 1414.8(\mathrm{w}), 1371.4(\mathrm{w}), 1249.0(\mathrm{~m}), 1171.7(\mathrm{~s}), 839.2(\mathrm{~s}), 745.7$ (m), $667.7(\mathrm{~m}), 576.1(\mathrm{~m}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{36} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi}_{2}$ 677.2901, found $677.2908[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of regioisomeric tetracyclic amine 172:

168

172

173

A solution of N -Cbz- O -TMS aminol $168(0.052 \mathrm{~g}, 0.077 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(14 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 43 hours. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The resulting biphasic mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded regioisomeric tetracyclic
amine $\mathbf{1 7 2}$ as a colorless oil $(0.016 \mathrm{~g}, 41 \%) ; \mathbf{R}_{\mathbf{f}} 0.35$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(d_{6}\right.$-DMSO, $\left.70{ }^{\circ} \mathrm{C}, 600 \mathrm{MHz}\right) \delta 7.69-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.35-7.21$ $(\mathrm{m}, 7 \mathrm{H}), 7.19(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=7.4,1.2 \mathrm{~Hz}), 6.99(\mathrm{t}, 1 \mathrm{H}, J=7.4$ $\mathrm{Hz}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 5.28-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.73(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz})$, $3.84(\mathrm{dd}, 1 \mathrm{H}, J=13.8,6.6 \mathrm{~Hz}), 3.72-3.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.88(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 2.77(\mathrm{dd}$, $1 \mathrm{H}, J=12.6,2.4 \mathrm{~Hz}), 2.53(\mathrm{dd}, 1 \mathrm{H}, J=15.0,1.2 \mathrm{~Hz}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 4 \mathrm{H})$, $2.03(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 1.66(\mathrm{dt}, 1 \mathrm{H}, J=12.0,7.2 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(d_{6}-\mathrm{DMSO}, 22{ }^{\circ} \mathrm{C}\right.$, $150 \mathrm{MHz})(1: 1$ mixture of rotamers) $\delta 155.3,154.5,145.1,145.0,143.7,141.0,140.9$, 139.4, 139.2, 136.9, 136.8, 130.5, 130.1, 128.6, 128.4, 128.1, 127.9, 127.8, 127.7, 127.5, $124.3,124.3,121.7,114.8,110.0,109.9,68.7,68.5,66.7,50.5,50.4,42.4,42.0,32.7$, 32.4, 32.1, 32.0, 21.0; IR (thin film, cm^{-1}) 2927.1 (w), 1693.3 (s), 1598.7 (w), 1414.2 (m), $1353.8(\mathrm{~m}), 1309.2(\mathrm{~m}), 1255.6(\mathrm{w}), 1233.4(\mathrm{w}), 1170.7(\mathrm{~s}), 754.5(\mathrm{~m}), 581.6(\mathrm{~s}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ 515.2005, found $515.2006[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydro- β-carboline $\mathbf{1 7 3}$ as a white crystalline solid ($4.1 \mathrm{mg}, 9 \%$); $\mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)(1: 0.7$ mixture of rotamers) $\delta 8.17(\mathrm{~d}$, $1.7 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.73(\mathrm{~d}, 1.7 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.25-7.19(\mathrm{~m}, 16 \mathrm{H}), 7.01(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 6.82(\mathrm{~d}, 1.7 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.26(\mathrm{~d}, 0.7 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.02(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz})$, 5.26-5.14 (m, 3.4H), 4.70-4.64 (m, 1.7H), $4.60(\mathrm{~s}, 1.7 \mathrm{H}), 4.50(\mathrm{dd}, 1 \mathrm{H}, J=14.0,6.8 \mathrm{~Hz})$, $4.34(\mathrm{dd}, 1 \mathrm{H}, J=14.0,6.0 \mathrm{~Hz}), 3.33-3.20(\mathrm{~m}, 1.7 \mathrm{H}), 2.98(\mathrm{dd}, 0.7 \mathrm{H}, J=14.0,2.6 \mathrm{~Hz})$, $2.88(\mathrm{dd}, 1 \mathrm{H}, J=13.4,2.6 \mathrm{~Hz}), 2.81-2.56(\mathrm{~m}, 3.4 \mathrm{H}), 2.44-2.32(\mathrm{~m}, 1.7 \mathrm{H}), 2.28(\mathrm{~s}, 2.1 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, 0.7 \mathrm{H}, J=13.6 \mathrm{~Hz}), 1.86(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.65(\mathrm{~d}, 0.7 \mathrm{H}, J=$ $13.6 \mathrm{~Hz}), 1.47(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 0.9(\mathrm{~s}, 6.3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.

Tetrahydro- β-carboline $\mathbf{1 7 3}$ was obtained during our attempts to cyclize compund $\mathbf{1 6 8}$ using trifluoroacetic acid at $0{ }^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ as described in the previous procedure.

$\mathbf{R}_{\mathbf{f}} 0.44$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (d_{6}-DMSO, $22{ }^{\circ} \mathrm{C}, 600 \mathrm{MHz}$) ($1: 1$ mixture of rotamers) $\delta 8.05(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.66(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $7.47(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.44-7.23(\mathrm{~m}, 16 \mathrm{H}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.07(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 6.16(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 5.93(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 5.21-5.11(\mathrm{~m}, 4 \mathrm{H}), 4.83-$ $4.74(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=13.8,6.6 \mathrm{~Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=14.4,6.0 \mathrm{~Hz}), 3.40-3.27$ $(\mathrm{m}, 2 \mathrm{H}), 2.78-2.56(\mathrm{~m}, 8 \mathrm{H}), 2.25(\mathrm{~m}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (d_{6}-DMSO, $22{ }^{\circ} \mathrm{C}, 150 \mathrm{MHz}$) (1:1 mixture of rotamers) $\delta 155.5,154.6,145.5$, $145.5,145.4,141.9,141.7,136.9,136.6,136.0,135.8,135.1,133.3,133.1,130.0,129.5$, $128.5,128.4,128.1,128.0,127.9,127.4,126.3,125.9,125.2,125.1,124.3,124.3,119.1$, $119.0,118.8,114.9,114.9,113.9,113.4,66.9,66.6,50.2,50.2,42.0,41.7,35.4,34.8$, 21.5, 20.9, 20.8, 20.3; IR (thin film, cm^{-1}) 3067.8 (w), 2921.9 (w), 1697.0 (s), 1597.2 (w), 1451.3 (w), 1422.3 (m), 1367.1 (m), 1316.4 (w), $1211.6(\mathrm{~m}), 1172.7(\mathrm{~s}), 1146.1(\mathrm{~m})$, 755.1 (m); m.p. $158.5-159.5^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 515.2005$, found $515.2003[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-Cbz- \boldsymbol{O}-TMS-aminol 177:

A solution of N-Acyl-amide $161(0.102 \mathrm{~g}, 0.157 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.31 \mathrm{~mL}, 0.31 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 45 minutes, then pyridine ($38 \mu \mathrm{~L}, 0.47$ mmol) was added dropwise and the reaction was stirred for a further 10 minutes. Trimethylsilyl triflate ($71 \mu \mathrm{~L}, 0.39 \mathrm{mmole}$) was added dropwise and the mixture was stirred for 45 minutes at $-78{ }^{\circ} \mathrm{C}$. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution (1 mL). The biphasic mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(5 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (15:1: hexanes/ $\mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded aminol 177 as a colorless oil $(0.087 \mathrm{~g}, 76 \%) ; \mathbf{R}_{\mathbf{f}} 0.78$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz})(1.0: 0.7$ mixture of rotamers) $\delta 8.28-8.20(\mathrm{~m}, 1.7 \mathrm{H}), 7.80(\mathrm{~d}, 0.7 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.47-7.28(\mathrm{~m}, 13.6 \mathrm{H}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.97(\mathrm{t}, 1.0 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.81(\mathrm{t}$, $0.7 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.30-5.16(\mathrm{~m}, 3.4 \mathrm{H}), 4.66(\mathrm{~s}, 1.0 \mathrm{H}), 4.62(\mathrm{~s}, 1.7 \mathrm{H}), 4.56(\mathrm{~s}, 0.7 \mathrm{H})$, 3.64-3.33 (m, 3.4H), 3.14-2.86 (m, 3.4H), 2.36-2.24 (m, 3.4H), $2.12(\mathrm{~s}, 10.2 \mathrm{H}), 1.66(\mathrm{~d}$, $1.0 \mathrm{H}, J=16.0 \mathrm{~Hz}), 1.56(\mathrm{~d}, 1.0 \mathrm{H}, J=16.0 \mathrm{~Hz}), 1.50(\mathrm{~d}, 0.7 \mathrm{H}, J=16.0 \mathrm{~Hz}), 1.40(\mathrm{~d}$, $0.7 \mathrm{H}, J=16.0 \mathrm{~Hz}), 0.14(\mathrm{~s}, 9.0 \mathrm{H}), 0.09(\mathrm{~s}, 6.3 \mathrm{H}), 0.04(\mathrm{~s}, 9.0 \mathrm{H}),-0.02(\mathrm{~s}, 6.3 \mathrm{H})$.

Synthesis of tetrahydro- β-carboline 178:

A solution of TFA $(9 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added via cannula to a solution of N -Cbz- O -TMS-aminol $177(0.087 \mathrm{~g}, 0.119 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes, and was quenched by addition of saturated aqueous NaHCO_{3} solution (2 mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel ($9: 1 \rightarrow 4: 1$ hexanes/EtOAc) afforded tetrahydro- β-carboline 178 as an amorphous white solid ($0.055 \mathrm{~g}, 72 \%$); $\mathbf{R}_{\mathbf{f}} 0.57$ (4:1 hexanes/EtOAc).

Synthesis of N-Carbomethoxy-amide 190:

A solution of amide $149(0.135 \mathrm{~g}, 0.334 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in $\mathrm{THF}, 1.0 \mathrm{~mL}, 0.33 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the staring material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Methyl chloroformate ($77 \mu \mathrm{~L} \mathrm{~g}, 1.0 \mathrm{mmol}$) was added, and the mixture was
stirred for 12 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1$ $\mathrm{mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 2 mL). The organic extracts were combined, washed with brine (6 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded N-Cbz-amide 190 as a colorless oil ($0.117 \mathrm{~g}, 76 \%$); $\mathbf{R}_{\mathbf{f}} 0.56$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.74(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, 7.32-7.29 (m, 2H), 7.28-7.25 (m, 2H), 7.18 (dt, 1H, $J=7.8,1.2 \mathrm{~Hz}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{dd}, 2 \mathrm{H}, J=9.0,6.6 \mathrm{~Hz}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.01(\mathrm{dd}, 2 \mathrm{H}, J=9.0,6.6 \mathrm{~Hz}), 1.66(\mathrm{~s}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 173.6,155.0,141.7,137.7,136.7,128.8,128.3,127.6,126.9,126.4$, $121.9,119.3,119.2,112.0,110.9,109.7,53.5,49.9,47.2,45.2,27.5,24.7,-1.2$; IR (thin film, cm^{-1}) 2954.2 (w), 1736.1 (m), 1689.9 (w), 1467.1 (w), 1451.6 (w), 1356.5 (w), $1165.2(\mathrm{~m}), 906.9(\mathrm{~m}), 839.7(\mathrm{~m}), 726.1(\mathrm{~s}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$ 463.2417, found $463.2406[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N -Cbz- O -TMS aminol 180:

A solution of N-Acyl-amide $190(0.107 \mathrm{~g}, 0.230 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.28 \mathrm{~mL}, 0.28 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 1.5 h , then pyridine ($56 \mu \mathrm{~L}, 0.69 \mathrm{mmol}$)
was added dropwise and the reaction was stirred for a further 10 minutes. Trimethylsilyl triflate $(104 \mu \mathrm{~L}, 0.575 \mathrm{mmole})$ was added dropwise and the mixture was stirred for 45 minutes at $-78^{\circ} \mathrm{C}$. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution $(0.5 \mathrm{~mL})$. The biphasic mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 1 mL). The organic extracts were combined, washed with brine (5 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1: hexanes/ $\mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded aminol $\mathbf{1 8 0}$ as a colorless oil ($0.081 \mathrm{~g}, 66 \%$); $\mathbf{R}_{\mathbf{f}} 0.65$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ (1.0: 0.7 mixture of rotamers) $\delta 7.81(\mathrm{~d}, 0.7 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.71(\mathrm{~m}, 1.0 \mathrm{H}, J=7.8 \mathrm{~Hz}$), $7.35-7.25(\mathrm{~m}, 7.0 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 6.6 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 1.7 \mathrm{H}), 5.94(\mathrm{t}, 1.0 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $5.74(\mathrm{t}, 0.7 \mathrm{H}, J=5.4 \mathrm{~Hz}), 5.30(\mathrm{~m}, 3.4 \mathrm{H}), 4.70-4.63(\mathrm{~m}, 1.7 \mathrm{H}), 4.61(\mathrm{~s}, 1.7 \mathrm{H}), 3.79(\mathrm{~s}$, $5.1 \mathrm{H}), 3.56-3.36(\mathrm{~m}, 3.4 \mathrm{H}), 3.12-2.95(\mathrm{~m}, 3.4 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 3.4 \mathrm{H}), 1.66-1.50(\mathrm{~m}$, $3.4 \mathrm{H}), 0.18-0.12(\mathrm{~m}, 15.3 \mathrm{H}), 0.04(\mathrm{~s}, 15.3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 156.3$, 155.6, 143.0, 142.9, 137.8, 136.9, 136.8, 128.9, 128.4, 128.3, 127.8, 127.7, 127.0, 126.2, $126.0,122.0,121.9,119.7,119.4,119.2,113.4,113.3,110.8,109.9,109.8,79.5,79.3$, $52.7,52.6,50.1,50.0,45.3,45.1,42.9,42.2,27.3,27.2,26.7,25.7,-0.04,-1.14$; IR (thin film, cm^{-1}) 2954.0 (w), 1695.6 (m), 1466.4 (w), 1452.6 (w), 1345.3 (w), $1249.0(\mathrm{~m})$, 1076.9 (w), 1030.6 (w), 837.9 (s), 728.9 (s), 695.2 (m); HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}_{2} 537.2969$, found $537.2966[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tetracyclic amine 183:

A solution of aminol $\mathbf{1 8 0}(0.048 \mathrm{~g}, 0.089 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(12 \mu \mathrm{~L}, 0.13 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution $(1 \mathrm{~mL})$. The resulting biphasic mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded tetracyclic amine $\mathbf{1 8 3}$ as a colorless oil (8.2 g, 24\%); $\mathbf{R}_{\mathbf{f}} 0.40$ ($4: 1$ hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR (d_{6}-DMSO, $70{ }^{\circ} \mathrm{C}$, $600 \mathrm{MHz}) \delta 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.84$ $(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 6.52(\mathrm{dt}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.63(\mathrm{~s}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.83(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.0,5.4 \mathrm{~Hz}), 3.74(\mathrm{dd}, 1 \mathrm{H}, J=6.0,3.6 \mathrm{~Hz}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.51$ (dt, $1 \mathrm{H}, J=10.8,6.6 \mathrm{~Hz}$), $3.17-3.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.37(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.0 \mathrm{~Hz}), 2.16(\mathrm{dt}$, $1 \mathrm{H}, J=13.2,1.2 \mathrm{~Hz}), 2.13(\mathrm{dd}, 1 \mathrm{H}, J=14.4,2.4 \mathrm{~Hz}), 1.96(\mathrm{dt}, 1 \mathrm{H}, J=11.4,9.6 \mathrm{~Hz})$, $1.79(\mathrm{dd}, 1 \mathrm{H}, J=12.0,7.2 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR (d_{6}-DMSO, $\left.70^{\circ} \mathrm{C}, 150 \mathrm{MHz}\right) \delta 155.5,150.4$, $142.0,138.4,130.9,128.0,127.6,126.9,126.5,123.3,116.1,111.5,105.6,65.8,57.7$, 54.2, 51.5, 47.6, 45.7, 35.4, 33.5, 33.0; IR (thin film, cm^{-1}) 3028.3 (w), 2950.2 (w), 1704.2 (s), 1600.6 (m), 1486.4 (w), 1473.5 (w), 1450.9 (m), $1391.0(\mathrm{w}), 1355.1(\mathrm{~m})$,
1126.1 (m), 739.1 (m); HRMS (+APCI) calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$ 375.2073, found $375.2070[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydro- β-carboline 182 as a colorless oil $(0.027 \mathrm{~g}, 69 \%)$; $\mathbf{R}_{\mathbf{f}} 0.52$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)(1: 1$ mixture of rotamers) δ 7.57-7.49 (m, 2H), 7.33-7.21 (m, 6H), 7.16-7.07 (m, 6H), 7.03-6.94 (m, 4H), 5.61 (dd, $1 \mathrm{H}, J=11.2,3.2 \mathrm{~Hz}), 5.41-5.25(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.57(\mathrm{~m}, 3 \mathrm{H}), 4.54(\mathrm{dd}, 1 \mathrm{H}, J$ $=11.2,3.2 \mathrm{~Hz}), 4.33(\mathrm{dd}, 1 \mathrm{H}, J=14.0,6.0 \mathrm{~Hz}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.28(\mathrm{~m}$, $2 \mathrm{H}), 3.04-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.66$ $(\mathrm{d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}),-0.09(\mathrm{~s}, 9 \mathrm{H}),-0.12(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)(1: 1 \mathrm{mixture}$ of rotamers) $\delta 156.6,156.5,143.4$, $143.0,137.3,137.3,137.2,137.1,136.2,135.5,129.1,129.0,127.6,127.6,127.1,127.0$, 126.1, 126.0, 122.0, 121.9, 119.8, 119.7, 118.5, 118.3, 111.2, 110.7, 110.2, 100.0, 108.7, $108.0,53.0,52.5,49.3,49.1,47.2,47.1,43.2,43.0,37.5,37.0,26.3,26.3,21.6,21.2$, -1.4, -1.4; IR (thin film, cm^{-1}) 2951.1 (w), 1697.2 (s$), 1451.3$ (m), 1406.8 (w), 1308.1 (w), 1245.9 (w), 1195.6 (m), 1110.5 (m), 840.9 (s), 735.2 (s); HRMS (+APCI) calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si} 447.2468$, found $447.2462[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-Boc-amide 191:

A solution of amide $149(0.427 \mathrm{~g}, 1.06 \mathrm{mmol})$ in THF (3.2 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $3.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the staring material solution via cannula. The reaction was stirred for

1 h at $-78{ }^{\circ} \mathrm{C}$. In a separate flask, a solution of di-tert-butyl dicarbonate $(0.322 \mathrm{~g}, 1.48$ $\mathrm{mmol})$ in THF (1.0 mL) was cooled to $-78^{\circ} \mathrm{C}$ and added into the reaction mixture via cannula. The mixture was stirred for 12 h at $-78{ }^{\circ} \mathrm{C}$, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (12 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 \rightarrow 9:1 hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) afforded N-Boc amide 191 as a colorless oil (0.293 $\mathrm{g}, 55 \%) ; \mathbf{R}_{\mathbf{f}} 0.5\left(4: 1\right.$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.77(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 7.32-7.08(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{dd}$, $2 \mathrm{H}, J=8.4,6.8 \mathrm{~Hz}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{dd}, 2 \mathrm{H}, J=8.4,7.2 \mathrm{~Hz}), 1.69(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~m}$, 9H), $0.08(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.9,153.2,141.9,137.7,136.7$, $128.8,128.3,127.6,127.0,126.4,121.9,119.4,119.2,112.3,111.1,109.8,82.9,50.0$, 47.3, 45.7, 28.0, 27.4, 24.6, -1.2; IR (thin film, cm^{-1}) 2953.8 (w), 1730.9 (m), 1685.3 (m), $1467.4(\mathrm{w}), 1453.4(\mathrm{w}), 1355.5(\mathrm{~m}), 1247.8(\mathrm{~m}), 1143.6(\mathrm{~s}), 850.1(\mathrm{~m}), 738.3(\mathrm{~m})$; HRMS (+ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si} 505.2886$, found $505.2881[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-Boc- O-TMS-aminol 181:

A solution of N-Boc amide $191(0.293 \mathrm{~g}, 0.580 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.16 \mathrm{~mL}, 1.16 \mathrm{mmol}$) was added dropwise over 10
minutes. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then pyridine $(0.14 \mathrm{~mL}, 1.74$ mmol) was added dropwise and the reaction was stirred for 5 minutes. Trimethylsilyl triflate $(0.26 \mathrm{~mL}, 1.45 \mathrm{mmol})$ was added dropwise and the mixture was stirred for 20 minutes. The reaction was warmed to $0{ }^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution (3 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (10 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel ($7: 3$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-Boc- O-TMS-aminol 181 as a colorless oil ($0.196 \mathrm{~g}, 58 \%$); $\mathbf{R}_{\mathrm{f}} 0.64$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1.0: 0.8$ mixture of rotamers) $\delta 7.78(\mathrm{~d}$, $0.8 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.73(\mathrm{~d}, 1.0 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.36-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 7 \mathrm{H}), 6.99$ $(\mathrm{s}, 0.8 \mathrm{H}), 6.96(\mathrm{~s}, 1.0 \mathrm{H}), 5.93(\mathrm{t}, 1.0 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.78(\mathrm{t}, 0.8 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.30(\mathrm{~s}$, $2.0 \mathrm{H}), 5.27(\mathrm{~s}, 1.6 \mathrm{H}), 4.67(\mathrm{~s}, 1.0 \mathrm{H}), 4.64(\mathrm{~s}, 0.9 \mathrm{H}), 4.60(\mathrm{~s}, 1.8 \mathrm{H}), 3.51-3.34(\mathrm{~m}, 3.6 \mathrm{H})$, $3.11-3.06(\mathrm{~m}, 2.6 \mathrm{H}), 3.01-2.98(\mathrm{~m}, 1.0 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 3.6 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 19.8 \mathrm{H})$, 0.20-0.11 (m, 16.2H), $0.04(\mathrm{~m}, 16.2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 155.1,154.0$, $143.2,142.9,137.9,136.8,136.8,128.9,128.6,128.4,127.7,127.7,127.1,126.9,126.2$, $126.0,122.0,121.8,119.7,119.5,119.1,113.6,113.6,110.8,110.6,109.9,109.7,80.0$, $79.9,79.4,78.6,50.1,50.0,45.4,45.1,42.6,42.4,28.8,27.3,27.2,26.7,25.7,0.1,0$, -1.1; IR (thin film, cm^{-1}) 2954.5 (w), 1691.4 (m), 1466.7 (w), 1453.7 (w), 1248.5 (m), 1151.7 (m), 1028.7 (m), 837.6 (s), 736.5 (m), $696.3(\mathrm{w})$; HRMS (+APCI) calculated for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}_{2} 579.3438$, found $579.3433[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of Tetracyclic amine 184:

A solution of N-Boc- O-TMS-aminol $181(0.097 \mathrm{~g}, 0.167 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(31 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ was added dropwise, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution $(1 \mathrm{~mL})$. The resulting biphasic mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded tetracyclic amine 184 as a colorless oil ($0.023 \mathrm{~g}, 33 \%$); $\mathbf{R}_{\mathbf{f}} 0.43$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(d_{6}\right.$-DMSO, $\left.70{ }^{\circ} \mathrm{C}, 600 \mathrm{MHz}\right) \delta 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.27-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.83(\mathrm{dd}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.53(\mathrm{td}, 1 \mathrm{H}, J$ $=7.2,1.2 \mathrm{~Hz}), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=15.6$ $\mathrm{Hz}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.78(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.0 \mathrm{~Hz}), 3.73(\mathrm{dd}, 1 \mathrm{H}, J=6.0,3.0$ $\mathrm{Hz}), 3.54(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 3.45(\mathrm{td}, 1 \mathrm{H}, J=10.8,6.6 \mathrm{~Hz}), 3.17-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.35$ $(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.0 \mathrm{~Hz}), 2.16(\mathrm{t}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 2.12(\mathrm{dd}, 1 \mathrm{H}, J=15.0,3.6 \mathrm{~Hz}), 1.93$ $(\mathrm{td}, 1 \mathrm{H}, J=14.4,9.6 \mathrm{~Hz}), 1.76(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.0 \mathrm{~Hz}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(d_{6^{-}}\right.$ DMSO, $\left.70^{\circ} \mathrm{C}, 150 \mathrm{MHz}\right) \delta 154.4,150.5,142.2,138.4,131.0,128.0,127.6,126.9,126.5$, 123.2, 116.0, 111.3, 105.6, 78.4, 65.9, 57.5, 54.4, 47.6, 45.7, 35.2, 33.9, 33.0, 27.9; IR (thin film, cm^{-1}) 2973.8 (w), 2925.9 (w), 1687.5 (s), 1600.6 (m), 1474.2 (w) 1452.2 (w),
1401.4 (w), 1352.6 (m), 1168.8 (w), 1122.7 (s$), 906.4$ (m), 731.3 (s$), 698.7$ (w); HRMS (+APCI) calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} 417.2542$, found $417.2536[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydro-$\beta$-carboline 185 as a crystalline white solid ($0.043 \mathrm{~g}, 53 \%$); $\mathbf{R}_{\mathbf{f}} 0.54$ (4:1 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1.0: 0.6$ mixture of rotamers) $\delta 7.56(\mathrm{~d}, 1.0 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 7.55-7.52 (m, 0.6H), 7.30-7.21 (m, 6H), 7.19-7.05 (m, 4H), $7.02(\mathrm{~d}, 1.0 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $6.96(\mathrm{~d}, 1.9 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.64(\mathrm{dd}, 0.6 \mathrm{H}, J=10.8,2.4 \mathrm{~Hz}), 5.43(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz})$, $5.34(\mathrm{~s}, 1.2 \mathrm{H}), 5.31-5.26(\mathrm{~m}, 1.6 \mathrm{H}), 5.25(\mathrm{~s}, 0.4 \mathrm{H}), 4.68(\mathrm{~s}, 1.0 \mathrm{H}), 4.63(\mathrm{~s}, 0.6 \mathrm{H}), 4.62(\mathrm{~s}$, $1.0 \mathrm{H}), 4.58(\mathrm{~s}, 0.6 \mathrm{H}), 4.53(\mathrm{dd}, 1.0 \mathrm{H}, J=13.8,6.0 \mathrm{~Hz}), 4.33(\mathrm{dd}, 0.6 \mathrm{H}, J=13.8,6.0 \mathrm{~Hz})$, $3.32(\mathrm{dt}, 0.6 \mathrm{H}, J=12.6,4.2 \mathrm{~Hz}), 3.26(\mathrm{td}, 1 \mathrm{H}, J=12.6,4.2 \mathrm{~Hz}), 3.02-2.90(\mathrm{~m}, 1.6 \mathrm{H})$, $2.80(\mathrm{~d}, 1.0 \mathrm{H}, J=3.6 \mathrm{~Hz}), 2.77(\mathrm{~d}, 0.6 \mathrm{H}, J=4.0 \mathrm{~Hz}), 2.50(\mathrm{dd}, 1.0 \mathrm{H}, J=13.8,10.8 \mathrm{~Hz})$, $2.43(\mathrm{dd}, 0.6 \mathrm{H}, J=14.4 \mathrm{~Hz}, 11.4 \mathrm{~Hz}), 2.26(\mathrm{dd}, 1 \mathrm{H}, J=14.4,2.4 \mathrm{~Hz}), 2.20(\mathrm{dd}, 0.6 \mathrm{H}, J=$ $14.4,2.4 \mathrm{~Hz}), 1.69(\mathrm{~d}, 0.6 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.65(\mathrm{~d}, 1.0 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.61(\mathrm{~d}, 0.6 \mathrm{H}, J=$ $13.8 \mathrm{~Hz}), 1.52(\mathrm{~d}, 1.0 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.46(\mathrm{~s}, 5.4 \mathrm{H}), 1.37(\mathrm{~s}, 9.0 \mathrm{H}),-0.01(\mathrm{~s}, 9.0 \mathrm{H}),-0.11$ $(\mathrm{s}, 5.4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(1.0: 0.6$ mixture of rotamers) $\delta 155.1,154.8$, $143.6,142.9,137.5,137.4,137.3,137.2,136.7,136.0,129.1,129.0,127.7,127.5,127.2$, 127.1, 126.1, 126.0, 122.0, 121.8, 119.8, 119.6, 118.5, 118.2, 111.3, 110.6, 110.2, 109.7, $109.1,108.1,79.9,79.7,49.5,48.4,47.1,47.0,43.0,43.0,37.8,36.2,28.6,28.4,27.1$, 26.4, 21.7, 21.2, -1.3, -1.4; IR (thin film, cm^{-1}) 2951.4 (w), 1686.6 (s), 1411.4 (m), 1246.3 (m), 1162.7 (s), 1105.8 (m), 838.4 (s), 729.8 (s), 695.3 (m); m.p. $122-123{ }^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si} 489.2937$, found $489.2931[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-pivaloyl-amide 187:

149

187

A solution of amide $149(0.229 \mathrm{~g}, 0.567 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in $\mathrm{THF}, 1.6 \mathrm{~mL}, 0.54 \mathrm{mmol}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ and added to the starting material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Pivaloyl chloride ($77 \mu \mathrm{~L}, 0.62 \mathrm{mmol}$) was added, and the mixture was stirred for 12 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(10 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 \rightarrow 9:1 pentane $/ \mathrm{Et}_{2} \mathrm{O}$) afforded N -pivaloyl amide 187 as a colorless oil ($0.133 \mathrm{~g}, 48 \%$); $\mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz})$, 7.33-7.26 (m, 4H), $7.19(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}$, $2 \mathrm{H}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=0.4 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 3.90-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H})$, 3.05-3.01 (m, 2H), $1.60(\mathrm{~s}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 187.2,174.0,141.1,137.6,136.7,128.9,128.0,127.7,127.0,126.4,122.1,119.5$, $119.2,112.2,111.7,109.9,50.0,46.7,45.8,43.0,28.5,26.9,25.4,-1.2$; IR (thin film, cm^{-1}) 2955.1 (w), 1676.6 (m), 1466.6 (w), 1332.8 (w), 1247.5 (m), 1132.9 (w), 1003.9 (w), 838.9 (s), 735.4 (s), 697.0 (m); HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ 489.2937, found $489.2927[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-pivaloyl- O-TMS-aminol 186:

A solution of N -pivaloyl amide $187(0.106 \mathrm{~g}, 0.187 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.80 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.23 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 2 h , then pyridine $(46 \mu \mathrm{~L}, 0.56$ mmol) was added dropwise and the reaction was stirred for 5 minutes. Trimethylsilyl triflate ($85 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) was added dropwise and the mixture was stirred for 45 minutes at $-78{ }^{\circ} \mathrm{C}$. The reaction was warmed to $0^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution $(0.5 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added, and the biphasic mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (5 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 pentane $/ \mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded the N -pivaloyl- O-TMSaminol 186 as a colorless oil $(0.069 \mathrm{~g}, 66 \%) ; \mathbf{R}_{\mathbf{f}} 0.63$ ($7: 3$ hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.75(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 7.16-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.07-5.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.64$ $(\mathrm{s}, 1 \mathrm{H}), 3.78-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dt}, 1 \mathrm{H}, J=12.6$, $4.8 \mathrm{~Hz}), 2.40(\mathrm{dd}, 1 \mathrm{H}, J=13.8,8.4 \mathrm{~Hz}), 2.36-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz})$, $1.58(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 177.0,143.3,137.8,136.8,128.9,128.4,127.8,127.0,125.9,122.0,119.6$,
$119.3,113.5,110.8,109.9,80.5,50.1,45.5,44.0,39.9,29.1,28.9,27.3,0.5,-1.2$; IR (thin film, cm^{-1}) 2956.3 (br, w), 1621.4 (m), 1250.3 (m), 906.1 (m), $840.2(\mathrm{~m}), 726.0(\mathrm{~s})$, $646.8(\mathrm{w}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$ 563.3489, found 563.3491 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tetracyclic amine 188:

186

A solution of N-pivaloyl- O-TMS-aminol $186(0.044 \mathrm{~g}, 0.078 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(14 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 6 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The resulting biphasic mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded tetracyclic amine $\mathbf{1 8 8}$ as a colorless oil ($0.011 \mathrm{~g}, 34 \%)$; $\mathbf{R}_{\mathbf{f}} 0.48$ ($7: 3$ hexanes $\left./ E t O A c\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta 7.41-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=6.6$ $\mathrm{Hz}), 6.64(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}$, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.25(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.91-3.83(\mathrm{~m}, 3 \mathrm{H}), 3.67(\mathrm{dd}, 1 \mathrm{H}, J=6.6,3.6$ $\mathrm{Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=14.4,4.8 \mathrm{~Hz}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.6 \mathrm{~Hz}), 2.19(\mathrm{dd}, 1 \mathrm{H}, J=$ $14.4,3.6 \mathrm{~Hz}), 2.16(\mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.04(\mathrm{dd}, 1 \mathrm{H}, J=11.4,5.4 \mathrm{~Hz}), 1.90(\mathrm{dt}, 1 \mathrm{H}, J=$
11.4, 9.0 Hz$), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 180.7,151.3,143.1,138.6$, $131.9,128.8,128.4,127.6,127.3,124.4,117.1,112.1,106.9,67.4,61.5,53.6,48.9,47.6$, 40.1, 37.2, 35.0, 34.0, 28.1; IR (thin film, cm^{-1}) 3028.8 (w), 2966.5 (w), 2930.2 (w), 1631.4 (s), 1600.7 (m) 1477.5 (m), 1452.5 (w), 1400.5 (w), 1341.9 (m), 738.1 (m); HRMS (+APCI) calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O} 401.2593$, found $401.2592[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-Tosylamide 196:

A solution of tosylamine $211(0.200 \mathrm{~g}, 0.494 \mathrm{mmol})$ in THF:DMPU ($12: 1,5.0 \mathrm{~mL}$) was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.32 \mathrm{~mL}, 0.519 \mathrm{mmol})$ was added over 15 minutes, and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . In a separate flask, a solution of carboxylic acid $99(0.10 \mathrm{~mL}, 0.57 \mathrm{mmol})$ in THF (5.0 mL) was cooled to $0{ }^{\circ} \mathrm{C} . N$-methyl-morpholine $(62 \mu \mathrm{~L}, 0.57 \mathrm{mmol})$ was added to the carboxylic acid solution, followed by addition of isobutyl chloroformate ($74 \mu \mathrm{~L}, 0.57 \mathrm{mmol}$) over 10 minutes. The resulting mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$. Stirring was discontinued, and the suspension was allowed to settle for 30 minutes. The yellow supernatant was separated from the white precipitate, and was filtered through celite into a flask pre-cooled to $0^{\circ} \mathrm{C}$. The filtered cake was washed with dry THF ($2 \times 2 \mathrm{~mL}$). The mixed anhydride solution was cooled to $-40^{\circ} \mathrm{C}$ and stirred for 5 minutes. The lithiate solution was added to the mixed anhydride solution via cannula, and the resulting orange solution was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(4$
mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 4 mL). The organic extracts were combined, washed with brine (15 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $(20: 1 \rightarrow 9: 1$ hexanes/EtOAc) afforded tosylamide 196 as a colorless oil $(0.307 \mathrm{~g}$, 49%); $\mathbf{R}_{\mathbf{f}} 0.45$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.85(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.34-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 7.18(\mathrm{dt}$, $1 \mathrm{H}, J=7.8,0.6 \mathrm{~Hz}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H})$, $4.49(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 4.08-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $1.48(\mathrm{~s}, 2 \mathrm{H}),-0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.0,144.8,140.2,137.5$, $136.9,136.7,129.7,128.8,128.0,127.9,127.7,126.9,126.8,122.1,119.5,119.2,111.9$, 111.2, 109.9, 50.0, 48.1, 45.6, 27.1, 26.4, 21.7, -1.4; IR (thin film, cm^{-1}) 3030.4 (w), 2952.7 (w), 1693.5 (m), 1467.2 (w), 1453.3 (w), 1350.6 (s), 1247.8 (w), 1162.1 (s), 847.0 (s), 739.1 (s); HRMS (+ESI) calculated for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi} 559.2451$, found 559.2448 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-tosyl- O-TMS-aminol 192:

A solution of N-tosylamide $196(0.072 \mathrm{~g}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was cooled to $78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.26 \mathrm{~mL}, 0.26 \mathrm{mmol}$) was added dropwise over 30 minutes. The reaction mixture was stirred for 20 minutes, then trimethylsilyl imidazole $(60 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred
for 20 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (1 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (5 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $\left(20: 1 \rightarrow 9: 1\right.$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N -tosyl- O -TMS-aminol 192 as a colorless oil (0.062 g, 76\%); $\mathbf{R}_{\mathbf{f}} 0.50(7: 3$ hexanes $/ E t O A c) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.75(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.72(\mathrm{dd}, 1 \mathrm{H}, J=7.8,0.6 \mathrm{~Hz}), 7.32-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{dt}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz})$, 7.14-7.11 (m, 3H), $6.96(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{dd}, 1 \mathrm{H}, J=8.4,3.6 \mathrm{~Hz}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H})$, $4.60(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,12.0,5.4 \mathrm{~Hz}), 3.39(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,12.0,4.8$ $\mathrm{Hz}), 3.23(\mathrm{dt}, 1 \mathrm{H}, J=13.2,4.8 \mathrm{~Hz}), 3.10(\mathrm{dt}, 1 \mathrm{H}, 13.2,4.8 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}$, $1 \mathrm{H}, J=13.2,8.4 \mathrm{~Hz}), 1.97(\mathrm{dd}, 1 \mathrm{H}, J=13.2,3.6 \mathrm{~Hz}), 1.59(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.40(\mathrm{~d}$, $1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 0.15(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.2$, $142.5,138.6,137.8,136.8,129.8,129.0,128.2,127.8,127.3,127.0,126.2,122.0,119.5$, $119.3,113.0,111.3,109.9,81.9,50.1,45.7,44.0,27.8,27.1,21.7,0.3,-1.3$; IR (thin film, cm^{-1}) 2953.5 (w), 1466.8 (w), 1453.3 (w), 1332.0 (m), 1248.6 (m), $1157.8(\mathrm{~m})$, $838.2(\mathrm{~s}), 730.5(\mathrm{~s}), 658.0(\mathrm{~m}), 548.5(\mathrm{~m}) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSi}$ 543.2502 , found 543.2497 [M-OTMS] ${ }^{+}$.

Synthesis of tetracyclic amine 195:

A solution of N-tosyl- O-TMS-aminol $192(0.093 \mathrm{~g}, 0.147 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(91 \mathrm{uL}, 0.74 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2.5 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel ($7: 3$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) afforded tetracyclic amine $\mathbf{1 9 5}$ as a crystalline white solid $(0.057 \mathrm{~g}, 82 \%) ; \mathbf{R}_{\mathbf{f}} 0.40$ (7:3: hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.45(\mathrm{dd}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H})$, 7.28-7.24 (m, 1H), $7.10(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.73(\mathrm{dt}, 1 \mathrm{H}, 7.8,1.2 \mathrm{~Hz}), 6.40(\mathrm{~d}, 1 \mathrm{H}$, $7.8 \mathrm{~Hz}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.09(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz})$, $3.67(\mathrm{dt}, 1 \mathrm{H}, J=10.8,6.6 \mathrm{~Hz}), 3.43(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.36(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.08$ (dd, $1 \mathrm{H}, J=13.8,4.8 \mathrm{~Hz}), 2.99(\mathrm{dd}, 1 \mathrm{H}, J=12.6,4.8 \mathrm{~Hz}), 2.49(\mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.45$ (s, 3H), $2.27(\mathrm{dd}, 1 \mathrm{H}, J=14.4,5.4 \mathrm{~Hz}), 2.04(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.0 \mathrm{~Hz}), 1.89(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.4,6.6 \mathrm{~Hz}), 1.46(\mathrm{q}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 150.5,143.9$, $142.5,138.2,132.5,131.3,129.9,128.7,128.5,127.9,127.7,127.3,125.2,118.0,112.8$, $107.6,67.1,62.4,54.9,48.8,47.8,35.8,35.6,33.8,21.7$; IR (thin film, cm^{-1}) 3029.6 (w), 2922.2 (w), 1599.7 (m), 1492.3 (w), 1473.7 (w), 1452.0 (w), 1349.4 (m), 1161.5 (s),
1097.0 (w), 737.1 (m), 665.3 (s), 603.5 (w), 565.8 (w), 550.1 (m); m.p. $65.5-67.0^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 471.2106$, found $471.2096[\mathrm{M}+\mathrm{H}]^{+}$.

Tetrahydro- β-carboline 194 was obtained during our attempts to cyclize compound 192 using catalyst $\mathbf{1 2 2}$ (in the presence of HCl and $3 \AA$ molecular sieves) at $-78^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $0{ }^{\circ} \mathrm{C}$ as described in the previous procedure.

194
$\mathbf{R}_{\mathbf{f}} 0.42$ (7:3: hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.4), 7.35$ $(\mathrm{d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.8(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.13(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $7.07(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.41(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.24(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{dd}, 1 \mathrm{H}, J=15.0,6.2$ $\mathrm{Hz}), 3.52(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,12.0,4.8 \mathrm{~Hz}), 2.57(\mathrm{dd}, 1 \mathrm{H}, J=15.6,4.8 \mathrm{~Hz}), 2.51(\mathrm{dd}, 1 \mathrm{H}$, $J=12.0,6.0 \mathrm{~Hz}), 2.46(\mathrm{dd}, 1 \mathrm{H}, J=14.1,9.9 \mathrm{~Hz}), 2.32(\mathrm{dd}, 1 \mathrm{H}, J=14.2,3.4 \mathrm{~Hz}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 1.67(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 1.52(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSi} 543.2502$, found $543.2496[\mathrm{M}+\mathrm{H}]^{+}$.

Tetrahydro- β-carboline 204 was obtained during our attempts to cyclize compound 192 using catalyst $\mathbf{1 2 2}$ (in the presence of HCl and $3 \AA$ molecular sieves) at $-78^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $0{ }^{\circ} \mathrm{C}$ as described in the previous procedure.

204
Amorphous white solid; $\mathbf{R}_{\mathbf{f}} 0.40$ (7:3 hexanes/EtOAc); 7.52 (d, 2H, $J=7.8 \mathrm{~Hz}$), 7.45 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 5.75(\mathrm{~d}$, $1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 5.23-5.14(\mathrm{~m}, 3 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.71(\mathrm{~m}$, $2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$.

Tetrahydro- $\boldsymbol{\beta}$-carboline 205 was obtained during our attempts to cyclize compound $\mathbf{1 9 2}$ using catalyst $\mathbf{1 2 2}$ (in the presence of HCl and $3 \AA$ molecular sieves) at $-78^{\circ} \mathrm{C}$ in place of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $0{ }^{\circ} \mathrm{C}$ as described in the previous procedure.

205
White amorphous solid; $\mathbf{R}_{\mathbf{f}} 0.42$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $7.38(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.16(\mathrm{t}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 5.42(\mathrm{~d}$, $1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 5.27-5.24(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{dd}, 1 \mathrm{H}$, $J=15.0,6.6 \mathrm{~Hz}), 3.54-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.4(\mathrm{dd}, 1 \mathrm{H}$,
$J=14.4,3.0 \mathrm{~Hz}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) 143.2,141.2$, $138.1,137.5,137.3,134.6,129.4,129.2,128.0,127.1,126.9,126.4,122.2,119.6,118.5$, $115.0,109.8,107.9,50.9,47.1,43.9,38.4,22.2,21.6,19.8$; IR (thin film, cm^{-1}) 3029.5 (w), 2922.8 (w), 1463.6 (m), 1453.5 (m), 1343.9 (m), 1157.0 (s), 738.2 (m), 719.2 (m); HRMS (+APCI) calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 471.2106$, found $471.2100[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-nosyl-amide 199:

A solution of amide $149(0.537 \mathrm{~g}, 1.33 \mathrm{mmol})$ in THF $(6.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. Freshly prepared LiHMDS solution (0.33 M in $\mathrm{THF}, 3.93 \mathrm{~mL}, 1.30 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the staring material solution via cannula. The reaction was stirred for 1 h at $78{ }^{\circ} \mathrm{C}$. In a separate flask, a solution of nosyl chloride ($\left.0.411 \mathrm{~g}, 1.86 \mathrm{mmol}\right)$ in THF $(4.0 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and added into the reaction mixture via cannula. The mixture was stirred for 16 h . The reaction was quenched with saturated aqueous NaHCO_{3} (2 mL) and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 x 6 mL). The organic extracts were combined, washed with brine $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 to $9: 1$ hexanes:EtOAc) afforded compound 199 as a crystalline yellow oil $(0.216 \mathrm{~g}, 27 \%) ; \mathbf{R}_{\mathbf{f}} 0.59$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.32(\mathrm{~d}$, $2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 8.15(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8.0,0.4 \mathrm{~Hz}), 7.33-7.26(\mathrm{~m}$,
$4 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{t}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 3.26(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.85(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 2 \mathrm{H}),-0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2,150.6,145.2,139.7,137.4,136.9,129.9,129.0,128.0,127.9$, $127.1,127.1,124.1,122.5,119.9,118.9,111.8,110.6,110.3,50.3,48.5,45.4,27.3,26.9$, -1.3; IR (thin film, cm^{-1}) 2953.7 (br, w), 1694.5 (w), 1607.0 (w), 1531.0 (m), 1348.6 (m), 1169.1 (m), 907.0 (m), 850.1 (m), 726.0 (s); m.p. 92.5-93.5 ${ }^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SSi} 590.2145$, found $590.2142[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-nosyl- O-TMS-aminol 193:

A solution of tosylamide $199(0.034 \mathrm{~g}, 0.058 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was cooled to $78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}$) was added dropwise over 30 minutes. The reaction mixture was stirred for 20 minutes, then trimethylsilyl imidazole $(50 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (1 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (5 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc, silica gel
deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N -tosyl- O -TMS-aminol 193 as a yellow oil (7.7 mg , $20 \%) ; \mathbf{R}_{\mathbf{f}} 0.58$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.29(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.36-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{t}, 1 \mathrm{H}, J$ $=7.6 \mathrm{~Hz}), 7.18-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{dd}, 1 \mathrm{H}, J=7.2,5.0 \mathrm{~Hz}), 5.28(\mathrm{~s}, 2 \mathrm{H})$, $4.65(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,11.6,5.2 \mathrm{~Hz}), 3.42(\mathrm{ddd}, 1 \mathrm{H}, J=14.8$, $11.6,5.2$), $3.25(\mathrm{dt}, 1 \mathrm{H}, J=12.6,4.8), 3.12(\mathrm{dt}, 1 \mathrm{H}, J=12.6,4.8 \mathrm{~Hz}), 2.37(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.6,7.2 \mathrm{~Hz}), 2.14(\mathrm{dd}, 1 \mathrm{H}, J=13.6,5.0 \mathrm{~Hz}), 1.59(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.2 \mathrm{~Hz}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 149.9,147.1,142.1$, 137.7, 136.9, 129.0, 128.6, 128.0, 127.9, 127.1, 126.3, 124.3, 122.2, 119.5, 119.2, 112.4, $111.7,110.1,82.4,50.1,45.8,44.5,27.7,27.4,0.39,-1.20$; IR (thin film, cm^{-1}) 2954.2 (br, w). 1530.5 (s), $1467.0(\mathrm{w}), 1453.7(\mathrm{w}), 1347.8(\mathrm{~s}), 1250.0(\mathrm{~m}), 1164.0(\mathrm{~s}), 933.4(\mathrm{~m})$, 846.9 (s), 739.2 (s); HRMS (+APCI) calculated for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SSi}_{2}$ 663.2618, found $663.2616[\mathrm{M}]^{+}$.

Synthesis tetracyclic amine 197:

193

197

198

A solution of N-nosyl- O-TMS-aminol $193(0.042 \mathrm{~g}, 0.064 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(39 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The resulting biphasic mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded tetracyclic amine 197 as a yellow oil ($0.010 \mathrm{~g}, 31 \%$); $\mathbf{R}_{\mathbf{f}} 0.53$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $8.43(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.04(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 6.73(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~d}$, $1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.74(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 3.44(\mathrm{t}, 1 \mathrm{H}, J$ $=10.2 \mathrm{~Hz}), 3.40(\mathrm{t}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.09-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dd}, 1 \mathrm{H}$, $J=14.1,5.7 \mathrm{~Hz}), 2.06(\mathrm{dd}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}, 6.0 \mathrm{~Hz}), 1.96(\mathrm{dd}, 1 \mathrm{H}, J=12.3,6.9 \mathrm{~Hz})$, $1.52\left(\mathrm{q}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}\right.$); IR (thin film, cm^{-1}) $2921.8(\mathrm{~m}), 2851.0(\mathrm{w}), 1699.4(\mathrm{w})$, 1604.0 (w), 1529.2 (s), 1463.9 (w), 1350.0 (m), 1166.7 (s$), 736.69 \mathrm{~m}$), 621.6 (m); HRMS (+APCI) calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ 502.1801, found $502.1800[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydro- β-carboline 198 as a amorphous yellow solid ($6.7 \mathrm{mg}, 19 \%$); $\mathbf{R}_{\mathbf{f}} 0.55$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.00(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.61(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.18(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.08(\mathrm{t}, 1 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), 7.00-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.24(\mathrm{dd}, 1 \mathrm{H}, J=10.0,3.6 \mathrm{~Hz})$, $5.21(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{dd}, 1 \mathrm{H}, J=15.1,6.5 \mathrm{~Hz}), 3.58$ $(\mathrm{ddd}, 1 \mathrm{H}, J=14.9,12.2,5.1 \mathrm{~Hz}), 2.65(\mathrm{dd}, 1 \mathrm{H}, J=15.8,5.1 \mathrm{~Hz}), 2.52-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.38$ $(\mathrm{dd}, 1 \mathrm{H}, J=14.4,3.5 \mathrm{~Hz}), 1.69(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.01(\mathrm{~s}$, 9H); IR (thin film, cm^{-1}) 2922.2 (w), 2852.1 (w), 1634.0 (w), 1605.6 (w), 1528.5 (m), 1463.5 (w), 1453.3 (w), 1346.4 (s), 1247.6 (w), 1161.1 (s), 853.3 (s$), 737.3$ (s$)$; HRMS (+APCI) calculated for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SSi} 574.2196$, found 574.2197 [M] .

Synthesis of Monoamine 217:

DME (4.4 mL) was added to a flask charged with naphthalene $(0.728 \mathrm{~g}, 5.68 \mathrm{mmol})$ and sodium metal $(0.106 \mathrm{~g}, 4.61 \mathrm{mmol})$. The resuling dark green mixture was stirred at r.t. for 1 h . In a separate flask, a solution of tetracyclic amine $195(0.017 \mathrm{~g}, 0.035 \mathrm{mmol})$ in DME (1.7 mL) was cooled to $-60{ }^{\circ} \mathrm{C}$. The sodium napthalide solution $(0.9 \mathrm{~mL})$ was added slowly by syringe until the clear starting material solution turned green. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(0.3 \mathrm{~mL})$. The resulting mixture was warmed to r.t. and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (17:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol) afforded monoamine 217 as a pale yellow oil ($7.3 \mathrm{mg}, 65 \%$); $\mathbf{R}_{\mathbf{f}} 0.35$ (17:3 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $) ;{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.40-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{dt}, 1 \mathrm{H}, J=8.0,1.2 \mathrm{~Hz}), 6.73(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 3.61$ $(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.52-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{dd}, 1 \mathrm{H}, J=12.8,4.8 \mathrm{~Hz}), 2.70(\mathrm{dd}, 1 \mathrm{H}, J=$ 13.2, 4.4 Hz), 2.47-2.34 (m, 2H), 2.13-1.97 (m, 3H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $150.8,142.2,138.4,131.4,128.8,128.5,127.7,127.4,124.8,118.1,113.0,107.7,67.6$, 61.2, 54.7, 49.2, 43.5, 43.5, 38.3, 34.2, 34.0; IR (thin film, cm^{-1}) 3400.0 (br, w), 3027.8 (w), 2924.2 (m), $1600.0(\mathrm{~s}), 1492.3(\mathrm{~m}), 1475.0(\mathrm{~m}), 1451.79(\mathrm{w}), 1352.8(\mathrm{w}), 906.8(\mathrm{~m})$, 732.8 (s); HRMS (+APCI) calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} 317.2018$, found $317.2014[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of diamine 218:

Sodium was added slowly to liquid ammonia $(5.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ until the color of the mixture remained dark blue. A solution of tetracyclic amine $195(0.034 \mathrm{~g}, 0.072 \mathrm{mmol})$ in THF (0.8 mL) was added slowly to the sodium/liquid ammonia mixture. The reaction was stirred for 2.0 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~g})$, and the flask was allowed to reach r.t. in order to allow the ammonia to fully evaporate. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was added to the residue, and the suspension was filtrated through a fritted funnel. The filtered cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The organic filtrate was concentrated in vacuo. Purification by chromatography on silica gel (90:10:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol $/ \mathrm{NH}_{4} \mathrm{OH}$) afforded diamine 218 as a colorless oil ($0.011 \mathrm{~g}, 68 \%$); $\mathbf{R}_{\mathbf{f}} 0.18\left(90: 10: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol $\left./ \mathrm{NH}_{4} \mathrm{OH}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.27(\mathrm{~d}, 1 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 7.05(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 6.74(\mathrm{dt}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 6.64(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.6,0.4 \mathrm{~Hz}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.53-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.36-$ $3.20(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.00-1.91(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 150.6,143.2,132.3,128.0,125.5,119.2,111.6,110.4,63.4,61.6$, 55.4, 43.8, 40.5, 39.1, 34.6; IR (thin film, cm^{-1}) 3269.4 (br, w), 3069.6 (w), 2921.8 (m), 2867.6 (m), 1645.8 (w), 1603.5 (m), 1480.7 (m), 1462.4 (s), 1309.5 (w), 1265.3 (w), $889.0(\mathrm{~m}), 745.5$ (s); HRMS (+APCI) calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} 227.1548$, found 227.1542 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of carbamate 224

224
TFA (1.4 mL) was added slowly to a stirring suspension of 4-bromoindole $(0.592 \mathrm{~g}, 3.02$ $\mathrm{mmol})$ and 2-dimethylamino-nitroethylene $(0.351 \mathrm{~g}, 3.02 \mathrm{mmol})$. The resulting dark red suspension was stirred for 3.5 h . The reaction was quenched by slow addition into a stirring solution of saturated $\mathrm{NaHCO}_{3}(18 \mathrm{~mL})$ pre-cooled to $0{ }^{\circ} \mathrm{C}$. The orange suspension was stirred at r.t. for 15 minutes, then it was extracted with EtOAc (3×25 mL), washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude reaction mixture was dissolved in THF (20 mL) and cooled to $0^{\circ} \mathrm{C}$. LAH (2.0 M in THF, $9.05 \mathrm{~mL}, 18.1 \mathrm{mmol}$) was added over 30 minutes, and the dark red suspension was refluxed for 16 hours. The resulting orange suspension was cooled to $0^{\circ} \mathrm{C}$, and was quenched with saturated Rochelle's salt solution (8.0 mL). The mixture was filtrated through celite, and the filtered cake was washed with EtOAc ($3 \times 35 \mathrm{~mL}$). The organic layer was separated, washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude 4-bromotryptamine was dissolved in THF (8.0 mL). Triethylamine (0.63 $\mathrm{mL}, 4.53 \mathrm{mmol}$) was added, and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. A solution of di-tert-butyl carbonate $(0.657 \mathrm{~g}, 3.02 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added via cannula, and the mixture was stirred at r.t for 12 h . Aqueous $0.1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (20 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo.

Purification by chromatography on silica gel $(9: 1 \rightarrow 3: 2$ hexanes/EtOAc) afforded carbamate 224 as a brown oil $\left(0.514 \mathrm{~g}, 50 \%\right.$, over three steps); $\mathbf{R}_{\mathbf{f}} 0.13$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=7.8,0.6$ $\mathrm{Hz}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.53-$ $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.18(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 156.4, 138.0, 125.4, 124.4, 123.8, 122.8, 114.2, 113.5, 110.9, 79.5, 42.4, 28.6, 26.7; IR (thin film, cm^{-1}) 3420.3 (br, w), 3293.9 (br, w), 2976.4 (w), 2930.5 (w), 1686.0 (s), 1507.7 (m), 1365.4 (w), 1333.9 (w), 1246.0 (m), 1161.8 (s$), 907.0$ (m), 729.0 (s); HRMS (+APCI) calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O} 264.9977$, found $264.9971\left[\mathrm{M}-\mathrm{O}^{t} \mathrm{Bu}\right]^{+}$.

Synthesis of tryptamine 234:

Powdered $\mathrm{NaOH}(0.152 \mathrm{~g}, 3.80 \mathrm{mmol})$ and TBAHS $(0.026 \mathrm{~g}, 0.076 \mathrm{mmol})$ were added to a solution of carbamate $224(0.514 \mathrm{~g}, 1.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$, and the resulting suspension was stirred for 10 minutes. Benzyl bromide ($0.200 \mathrm{~mL}, 1.67 \mathrm{mmol}$) was added dropwise and the reaction was vigorously stirred for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added, and the mixture was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The organic extracts were combined, washed with brine (40 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel ($9: 1 \rightarrow 4: 1$ hexanes/EtOAc) afforded tryptamine 234 as a brown oil ($0.571 \mathrm{~g}, 87 \%$); $\mathbf{R}_{\mathbf{f}} 0.38$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.10-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.02$ $(\mathrm{s}, 1 \mathrm{H}), 7.00(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.50(\mathrm{q}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 3.20(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.2,138.2$, 137.1, 129.0, 128.5, 128.0, 126.9, 126.1, 123.9, 122.7, 114.6, 113.3, 109.3, 79.2, 50.3, 42.2, 28.6, 26.6; IR (thin film, cm^{-1}) 3350.0 (br, w), 2974.9 (w), 2929.4 (w), 1696.8 (s), 1496.6 (m), 1451.3 (w), 1433.6 (w), 1391.3 (w), 1364.8 (w), 1326.9 (w), 1248.3 (m), 1169.7 (s), 733.7 (m); HRMS (+APCI) calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 428.1099, found $428.1095[\mathrm{M}]^{+}$.

Synthesis of amide 235:

A solution of compound tryptamine $234(0.571 \mathrm{~g}, 1.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 9.0 mL) was added dropwise, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 3 hours. The mixture was concentrated in vacuo. The crude hydrochloride salt was added to a stirring solution of $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(0.183 \mathrm{~g}, 1.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13.6 \mathrm{~mL})$. The resulting mixture was stirred at r.t. for 5 minutes and then cooled to $0^{\circ} \mathrm{C}$. Carboxylic acid $\mathbf{9 9}(0.23$ $\mathrm{mL}, 1.29 \mathrm{mmol})$ was added dropwise, followed by dropwise addition of EDCI (0.24 mL , 1.36 mmol) over 20 minutes. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(27 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.1 M aqueous $\mathrm{HCl}(2 \times 20 \mathrm{~mL})$, saturated aqueous
$\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$, and brine (20 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 \rightarrow 7:3 hexanes/EtOAc) afforded amide 235 as a crystalline white solid ($0.448 \mathrm{~g}, 70 \%$ over two steps); $\mathbf{R}_{\mathbf{f}} 0.33$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.27$ (m, $4 \mathrm{H}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.09(\mathrm{dd}, 2 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 7.04-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{t}$, $1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 3.66(\mathrm{q}$, $2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.91(\mathrm{~s}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.3,142.4,138.0,136.9,128.9,128.3,127.9,126.8,126.0$, $123.8,122.7,114.5,113.0,112.6,109.3,50.1,47.0,41.0,26.8,25.9,-1.4$; IR (thin film, cm^{-1}) 3292.5 (br, w), 3066.9 (w), 2951.2 (w), 1645.1 (m), 1548.1 (m), 1432.7 (m), 1327.5 (w), 1246.5 (m), 1171.8 (m), 838.4 (s), 731 (s), 696.7 (m); m.p. 80-81 ${ }^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{OSi} 483.1467$, found $483.1459[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of amide 229:

A solution of amide $235(0.448 \mathrm{~g}, 0.927 \mathrm{mmol})$ in THF (2.6 mL) was cooled to $-78^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $2.7 \mathrm{~mL}, 0.881 \mathrm{mmol}$) was cooled to $-70^{\circ} \mathrm{C}$ and added to the starting material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. In a separate flask, a solution of tosyl chloride ($\left.0.248 \mathrm{~g}, 1.30 \mathrm{mmol}\right)$ in THF (1 mL) was cooled to $0^{\circ} \mathrm{C}$ and added into the reaction mixture via cannula. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with saturated aqueous
$\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (6.0 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 \rightarrow 7:3 hexanes/EtOAc) afforded tosylamide $\mathbf{2 2 9}$ as a colorless oil ($0.193 \mathrm{~g}, 33 \%$); $\mathbf{R}_{\mathbf{f}} 0.44$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.90(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.34-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{dd}, 1 \mathrm{H}, J=8.0,0.4 \mathrm{~Hz}), 7.10-7.07$ $(\mathrm{m}, 3 \mathrm{H}), 6.98(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{t}, 2 \mathrm{H}, J=$ $6.4 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 2 \mathrm{H}),-0.14(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2,144.6,139.9,137.8,136.8,136.8,130.0,129.5$, $129.0,128.5,127.9,126.8,126.0,124.0,122.8,114.2,111.6,111.4,109.6,50.4,49.3$, 45.4, 27.2, 27.0, 21.7, -1.5; IR (thin film, cm^{-1}) 2952.1 (w), 1689.9 (m), 1635.0 (w), 1596.9 (w), 1451.3 (w), 1433.7 (w), 1349.6 (m), 1247.5 (m), 1161.4 (s), 842.5 (s), 730.9 (s), 681.2 (m); HRMS (+ESI) calculated for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SSi}$ 637.1556, found $637.1566[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-tosyl- O-TMS-aminol 219:

229

219

A solution of tosylamide $229(0.193 \mathrm{~g}, 0.305 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was cooled to $78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.61 \mathrm{~mL}, 0.61 \mathrm{mmol}$) was added dropwise over 30 minutes. The reaction mixture was stirred for 20 minutes, then trimethylsilyl imidazole
$(0.13 \mathrm{~mL}, 0.914 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 hrs . The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (3 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (5 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 $\rightarrow 7: 3$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 219 as a colorless oil $(0.137 \mathrm{~g}, 63 \%) ; \mathbf{R}_{\mathbf{f}} 0.69$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.36-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.13-7.07$ $(\mathrm{m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.55(\mathrm{dd}, 1 \mathrm{H}, J=8.4,4.0 \mathrm{~Hz}), 5.27(\mathrm{~s}$, $2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 3 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{dd}, 1 \mathrm{H}, J$ $=13.2,4.0 \mathrm{~Hz}), 1.58(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 1.4(\mathrm{~d}, 1 \mathrm{H}, 13.6 \mathrm{~Hz}), 0.15(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.1,142.7,138.6,137.9,137.1,129.7,129.0$, $128.5,127.9,127.3,126.9,126.3,123.8,122.7,114.4,113.9,111.1,109.3,82.1,50.3$, 45.6, 28.2, 27.1, 21.6, 0.3, -1.3; IR (thin film, cm^{-1}) 2954 (w), 1635.3 (w), 1604.7 (w), 1495.7 (w), 1474.8 (w), 1451.7 (w), 1434.2 (w), 1337.8 (m), 1249.3 (m), 1160.7 (m), 845.5 (s); HRMS (+ESI) calculated for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{SSi} 621.1607$, found 621.1669 [MOTMS] ${ }^{+}$.

Synthesis of tetracyclic amine 243:

A soluton of N-tosyl- O-TMS-aminol $219(0.071 \mathrm{~g}, 0.109 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(19 \mathrm{uL}, 0.16 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3$ mL). The organic extracts were combined, washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded the tetracyclic amine 243 as a crystalline white solid $(0.026 \mathrm{~g}, 44 \%) ; \mathbf{R}_{\mathbf{f}} 0.54\left(7: 3\right.$ hexanes $/ \mathrm{EtOAc}$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.71(\mathrm{~d}$, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.38-7.26(\mathrm{~m}, 7 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.87(\mathrm{~s}$, $1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.03(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.80(\mathrm{dt}, 1 \mathrm{H}, J=$ $11.4,6.6 \mathrm{~Hz}), 3.50(\mathrm{t}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 3.22(\mathrm{dd}, J=13.2,3.6 \mathrm{~Hz}), 3.19(\mathrm{t}, 1 \mathrm{H}, J=6.6$ $\mathrm{Hz}), 3.09(\mathrm{dd}, J=13.2,3.6 \mathrm{~Hz}), 2.82(\mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, 1 \mathrm{H}, J=$ $14.4,5.4 \mathrm{~Hz}), 2.03(\mathrm{dd}, 1 \mathrm{H}, J=12.6,6.6 \mathrm{~Hz}), 1.98(\mathrm{dd}, 1 \mathrm{H}, J=14.4,7.8 \mathrm{~Hz}) 1.56(\mathrm{q}, 1 \mathrm{H}$, $J=10.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 153.1,143.6,143.3,137.7,133.6,131.5$, 129.9, 129.8, 128.9, 127.8, 127.7, 127.6, 124.5, 118.9, 112.7, 107.4, 69.7, 62.7, 58.6, 49.3, 49.3, 38.4, 36.2, 33.9, 21.8; IR (thin film, cm^{-1}) 3029.2 (w), 2925.1 (w), 1591.6 (m), 1562.7 (w), $1448.0(\mathrm{~m}), 1433.0(\mathrm{~m}), 1346.6(\mathrm{~m}), 1333.3(\mathrm{~m}), 1158.3(\mathrm{~s}), 907.5(\mathrm{~m})$,
729.1 (s), 664.5 (s); m.p. 204.0-206.0 ${ }^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$ 549.1211, found $549.1204[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of carbamate 225:

A solution of 5-bromotryptamine hydrochloride $(0.227 \mathrm{~g}, 0.823 \mathrm{mmol})$ and triethylamine $(0.30 \mathrm{~mL}, 2.17 \mathrm{mmol})$ in THF (13.6 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of di-tert-butyl dicarbonate $(0.135 \mathrm{~g}, 0.823 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added to the starting material mixture via cannula. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes, warmed to r.t. and stirred for 12 h . The mixture was concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded carbamate 225 as a colorless oil (0.278 g , 99%); $\mathbf{R}_{\mathbf{f}} 0.36$ (3:2 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.72$ $(\mathrm{d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.28(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $4.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.44(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.3,135.1,129.3,124.8,123.6,121.4,112.9,112.7,112.6,79.6$, 41.2, 28.6, 25.8; IR (thin film, cm^{-1}) 3422.3 (br, w), 3304.2 (br, w), 2976.3 (w), 2930.4 (w), $1685.5(\mathrm{~s}), 1507.4(\mathrm{~m}), 1456.6(\mathrm{~m}), 1365.3(\mathrm{~m}), 1248.2(\mathrm{~m}), 1161.0(\mathrm{~s}), 907.2(\mathrm{w})$, 793.2 (m), 730.0 (s); HRMS (+APCI) calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}$ 338.0630, found $338.0629[\mathrm{M}]^{+}$.

Synthesis of tryptamine 236:

Powdered $\mathrm{NaOH}(0.260 \mathrm{~g}, 6.50 \mathrm{mmol})$ and TBAHS $(0.044 \mathrm{~g}, 0.13 \mathrm{mmol})$ were added to a solution of carbamate $225(0.831 \mathrm{~g}, 2.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26.0 \mathrm{~mL})$, and the resulting suspension was stirred for 10 minutes. Benzyl bromide ($0.34 \mathrm{~mL}, 2.9 \mathrm{mmol}$) was added dropwise and the reaction was vigorously stirred for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, and the mixture was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 10 \mathrm{~mL})$. The organic extracts were combined, washed with brine (30 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $(9: 1 \rightarrow 4: 1$ hexanes/EtOAc) afforded tryptamine $\mathbf{2 3 6}$ as a crystalline white solid $(0.987 \mathrm{~g}, 81 \%) ; \mathbf{R}_{\mathbf{f}} 0.40$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72(\mathrm{dd}, 1 \mathrm{H}, J=2.0,0.4 \mathrm{~Hz}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.10-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 5.26$ $(\mathrm{s}, 2 \mathrm{H}), 4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.43(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.45(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.0,137.2,135.4,130.0,128.9,127.9,127.5,126.8$, $124.8,121.8,112.7,112.3,111.4,79.3,50.2,41.2,28.6,25.8$; IR (thin film, cm^{-1}) 3351.7 (br, w), 2975.1 (w), 2928.6 (w), 1697.1 (s), 1507.6 (m), 1469.4 (m), 1453.4 (w), 1364.9 (m), 1249.2 (m), 1169.4 (s), 789.6 (w); m.p. $89.5-90.5^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{2} 428.1099$, found $428.1094[\mathrm{M}]^{+}$.

Synthesis of amide 236:

A solution of tryptamine $\mathbf{2 3 6}(0.987 \mathrm{~g}, 2.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 16.0 mL) was added dropwise, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 3 h . The mixture was concentrated in vacuo. The crude hydrochloride salt was added to a stirring solution of $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(0.311 \mathrm{~g}, 2.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22.0 \mathrm{~mL})$. The resulting mixture was stirred at r.t. for 5 minutes and then cooled to $0^{\circ} \mathrm{C}$. Carboxylic acid $99(0.39 \mathrm{~mL}, 2.19$ mmole) was added dropwise, followed by dropwise addition of EDCI ($0.41 \mathrm{~mL}, 2.30$ mmole) over 20 minutes. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.10 M aqueous $\mathrm{HCl}(2 \times 50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$, and brine (50 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 \rightarrow 7:3 hexanes/EtOAc) afforded amide 237 as a crystalline white solid ($0.742 \mathrm{~g}, 67 \%$ over two steps); $\mathbf{R}_{\mathbf{f}} 0.16$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $2.0 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.10-$ $7.06(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{q}$, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.92(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.88(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.4,142.5,137.1,135.4,129.9,129.0,128.0,127.4,126.8$, $124.9,121.6,112.8,112.7,112.1,111.4,50.2,47.0,40.0,26.8,25.1,-1.4$; IR (thin film,
cm^{-1}) 3294.9 (br, w), 3074.0 (w), 2951.7 (w), 1646.4 (s), 1522.3 (m), 1469.3 (m), 1247.4 (m), 1172.6 (w), 849.3 (s), 789.4 (w), 698.7 (m); m.p. 81.0-82. $5^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrN}_{2} \mathrm{OSi} 483.1467$, found $483.1453[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tosylamide 230:

A solution of amide $237(0.742 \mathrm{~g}, 1.53 \mathrm{mmol})$ in THF $(4.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $4.4 \mathrm{~mL}, 1.45 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the starting material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. In a separate flask, a solution of tosyl chloride $(0.321 \mathrm{~g}, 1.68 \mathrm{mmol})$ in THF (3.0 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and added to the reaction mixture via cannula. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (6 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $(9: 1 \rightarrow 4: 1$ hexanes/EtOAc) afforded tosylamide 230 as a colorless oil ($0.293 \mathrm{~g}, 30 \%$); $\mathbf{R}_{\mathbf{f}} 0.46$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.86-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.03-$ $3.97(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 2 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.1,145.0,140.3,137.1,136.9,135.4,129.9,129.9$, $129.0,128.2,128.0,128.0,127.0,125.0,121.8,113.0,111.9,111.6,111.1,50.4,48.0$, 45.8, 27.3, 26.1, 21.8, -1.3; IR (thin film, cm^{-1}) 2953.3 (w), 1692,7 (m), 1469.7 (m), 1453.1 (w), 1353.2 (s), 1248.2 (w), 1162.3 (s), 1088.3 (w), 848.4 (s), 670.0 (m); HRMS (+APCI) calculated for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SSi} 637.1556$, found $637.1554[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N -tosyl- O -TMS-aminol 220:

A solution of tosylamide $230(0.105 \mathrm{~g}, 0.165 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.23 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 1 h , then trimethylsilyl imidazole ($73 \mu \mathrm{~L}$, 0.50 mmol) was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 hours. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hours. The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (2 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (6 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 \rightarrow 4:1 pentane $/ \mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 220 as a colorless oil $(0.76 \mathrm{~g}, 65 \%) ; \mathbf{R}_{\mathbf{f}} 0.57$ (7:3 hexanes/EtOAc, silica gel deactivated with
$\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.89(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{dd}, 1 \mathrm{H}, J=9.0,1.2 \mathrm{~Hz}), 7.10-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$, $5.54(\mathrm{dd}, 1 \mathrm{H}, J=8.4,4.2 \mathrm{~Hz}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{ddd}, 1 \mathrm{H}, J=$ $15.0,11.4,5.4 \mathrm{~Hz}), 3.32$ (ddd, $1 \mathrm{H}, J=15.0,11.4,4.8 \mathrm{~Hz}), 3.13(\mathrm{td}, 1 \mathrm{H}, J=12.6,4.8 \mathrm{~Hz})$, $3.06(\mathrm{td}, 1 \mathrm{H}, J=12.6,5.4 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, 1 \mathrm{H}, J=13.8,8.4 \mathrm{~Hz}), 1.97(\mathrm{dd}, 1 \mathrm{H}$, $J=13.8,4.2 \mathrm{~Hz}), 1.58(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.39(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 0.14(\mathrm{~s}, 9 \mathrm{H}),-0.04$ (s, 9H) $)^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) 143.3,142.5,138.4,137.3,135.5,130.0,129.8$, $129.0,128.0,127.4,127.4,127.0,124.9,122.1,112.8,112.7,111.4,111.4,81.9,50.4$, 45.8, 43.8, 27.6, 27.2, 21.7, 0.4, -1.3; IR (thin film, cm^{-1}) 2953.1 (w), 1632.9 (w), 1598.5 (w), 1337.8 (w), 1249.2 (m), 1159.1 (m), 934.5 (w), 841.5 (s), 733.4 (w), 699.7 (w), 660.0 (w), 549.4 (m); HRMS (+APCI) calculated for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SSi}_{2} 710.2029$, found $710.2026[\mathrm{M}]^{+}$.

Synthesis of tetracyclic amine 244:

A solution of N-tosyl- O-TMS-aminol $220(0.050 \mathrm{~g}, 0.070 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(13 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1.5 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2$ mL). The organic extracts were combined, washed with brine (4 mL), dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on basic alumina (4:1 hexanes/EtOAc) afforded tetracyclic amine $\mathbf{2 4 4}$ as a crystalline white solid (0.026 g, 68\%); $\mathbf{R}_{\mathbf{f}} 0.43$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.71(\mathrm{~d}$, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.31-7.22(\mathrm{~m}, 5 \mathrm{H})$, $7.13(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.8 \mathrm{~Hz}), 6.20(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.36$ $(\mathrm{d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.06(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.61(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 3.44(\mathrm{t}$, $1 \mathrm{H}, 10.8 \mathrm{~Hz}), 3.36(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 3.06(\mathrm{dd}, 1 \mathrm{H}, J=13.8,5.4 \mathrm{~Hz}), 3.00(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.0,4.8 \mathrm{~Hz}), 2.45-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.0 \mathrm{~Hz}), 2.00(\mathrm{dd}, 1 \mathrm{H}, J=14.4$, $6.0 \mathrm{~Hz}), 1.86(\mathrm{dd}, 1 \mathrm{H}, J=12.0,7.2 \mathrm{~Hz}), 1.46(\mathrm{q}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 149.6,144.1,141.8,137.7,133.6,131.4,130.1,128.8,128.0,127.8,127.7$, $127.6,113.4,109.6,108.9,67.3,62.1,55.1,48.9,47.7,35.8,35.4,33.8,21.8$; IR (thin film, cm^{-1}) 3029.1 (w), 2950.0 (w), 1693.0 (w), 1596.5 (w), 1486.6 (m), 1452.6 (w), 1350.6 (m), 1161.9 (s), 665.8 (m); m.p. $138.5-140.0^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} 549.1211$, found $549.1195[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of carbamate 226:

$\xrightarrow[\substack{\text { THF }, 0^{\circ} \mathrm{C} \text { to r.t. }}]{(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}}$
226

A solution of 5-methoxytryptamine $(0.224 \mathrm{~g}, 1.18 \mathrm{mmol})$ and triethylamine $(0.25 \mathrm{~mL}$, $1.77 \mathrm{mmol})$ in THF (12.0 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of di-tert-butyl carbonate $(0.257 \mathrm{~g}, 1.18 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added to the starting material mixture via cannula. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes, warmed to r.t. and stirred for 12 h . The mixture was concentrated in vacuo. Purification by chromatography on silica
gel (7:3 hexanes/EtOAc) afforded carbamate 226 as a green oil ($0.337 \mathrm{~g}, 99 \%$); $\mathbf{R}_{\mathbf{f}} 0.28$ (3:2 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.4 \mathrm{~Hz}), 4.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 156.2,154.0,131.7,127.8,123.1,112.7,112.3,112.2,100.6,79.3,56.0$, 41.0, 28.6, 25.9; IR (thin film, cm^{-1}) 3331.8 (br w), 2976.2 (w), 2933.8 (w), 1687.7 (s), 1624.1 (w), 1584.0 (w), 1508.5 (m), 1484.7 (m), 1365.4 (m), 1214.7 (w), 1164.0 (s), 1031.6 (m), 907.7 (m), 795.3 (w), 728.1 (s); HRMS (+APCI) calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$ 291.1709, found $291.1704[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tryptamine 238:

Powdered $\mathrm{NaOH}(0.640 \mathrm{~g}, 16.0 \mathrm{mmol})$ and TBAHS $(0.108 \mathrm{~g}, 0.319 \mathrm{mmol})$ were added to a solution of $226(1.85 \mathrm{~g}, 6.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60.0 \mathrm{~mL})$, and the resulting suspension was stirred for 10 minutes. Benzyl bromide ($0.83 \mathrm{~mL}, 7.01 \mathrm{mmol}$) was added dropwise and the reaction was vigorously stirred for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the mixture was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The organic extracts were combined, washed with brine (60 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 $\rightarrow 4: 1$ hexanes/EtOAc) afforded tryptamine $\mathbf{2 3 8}$ as a yellow oil ($2.31 \mathrm{~g}, 95 \%$); $\mathbf{R}_{\mathbf{f}} 0.42$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.95$
$(\mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.4 \mathrm{~Hz}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}$, $2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.93(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $156.1,154.0,137.8,132.1,128.8,128.5,127.7,126.9,126.8,112.2,111.9,110.7,101.0$, 79.1, 56.0, 50.2, 41.0, 28.6, 25.9; IR (thin film, cm^{-1}) 3357.1 (br, w), 1974.9 (w), 2931.2 (w), 1693.6 (s$), 1485.9$ (s$), 1451.5(\mathrm{~m}), 1364.4(\mathrm{~m}), 1227.7(\mathrm{~m}), 1164.8(\mathrm{~s}), 1040.9(\mathrm{~m})$, $732.0(\mathrm{~m}), 703.4(\mathrm{~m}) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} 380.2100$, found $380.2094[\mathrm{M}]^{+}$.

Synthesis of amide 239:

A solution of tryptamine $238(2.31 \mathrm{~g}, 6.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 30.0 mL) was added dropwise, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 6 h . The mixture was concentrated in vacuo. The crude hydrochloride salt was added to a stirring solution of $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(0.821 \mathrm{~g}, 6.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60.0 \mathrm{~mL})$. The resulting mixture was stirred at r.t. for 5 minutes and then cooled to $0^{\circ} \mathrm{C}$. Carboxylic acid $99(1.03$ $\mathrm{mL}, 5.79 \mathrm{mmol}$) was added dropwise, followed by dropwise addition of EDCI (1.08 mL , 6.08 mmol) over 20 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.10 M aqueous $\mathrm{HCl}(2 \times 100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, and brine (100 mL). The organic layer was dried over anhydrous
MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded amide 239 as a crystalline white solid ($1.79 \mathrm{~g}, 71 \%$ over two steps); $\mathbf{R}_{\mathbf{f}} 0.17$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.25(\mathrm{~m}, 3 \mathrm{H})$, $7.16(\mathrm{dd}, 1 \mathrm{H}, J=8.8, J=2.0 \mathrm{~Hz}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.93(\mathrm{~s}$, $1 \mathrm{H}), 6.86(\mathrm{dt}, 1 \mathrm{H}, J=8.8,2.4 \mathrm{~Hz}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz})$, $4.63(\mathrm{~d}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{q}, 2 \mathrm{H}, J=6.8), 2.95(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.88$ (s, 2H), $1.46(\mathrm{~s}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.4,154.1,142.5$, $137.8,132.2,128.9,128.5,127.8,126.9,126.8,112.7,112.3,111.7,110.7,100.8,56.0$, 50.2, 47.1, 39.8, 26.8, 25.3, -1.4; IR (thin film, cm^{-1}) 3295.5 (br, w), 3066.8 (w), 2950.0 (w), 1646.4 (m,), 1629.8 (m), 1486.1 (m), 1451.7 (w), 1436.4 (w), 1228.1 (m), 1039.7 (w), 839.4 (s), $701.6(\mathrm{~m}) ;$ m.p. $64.5-65.5^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ 435.2468, found $435.2456[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-tosylamide 231:

A solution of amide $239(0.973 \mathrm{~g}, 2.24 \mathrm{mmol})$ in THF $(9.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $6.45 \mathrm{~mL}, 2.13 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the staring material solution via cannula. The reaction was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. In a separate flask, a solution of tosyl chloride $(0.470 \mathrm{~g}, 2.46 \mathrm{mmol})$ in THF (4.0 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and added to the reaction mixture via cannula. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with saturated aqueous
$\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (12 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 \rightarrow 9:1 hexanes/EtOAc) afforded tosylamide 231 as a colorless oil ($0.305 \mathrm{~g}, 23 \%$); $\mathbf{R}_{\mathbf{f}} 0.50$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta 7.83(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.32-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{dd}, 1 \mathrm{H}, J=9.0,0.6 \mathrm{~Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{ddd}, 1 \mathrm{H}, J=9.0,2.4,0.6 \mathrm{~Hz}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H})$, $4.46(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.09(\mathrm{~s}, 2 \mathrm{H})$, $2.43(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 2 \mathrm{H}),-0.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 171.1,154.3$, $144.9,140.3,137.7,137.0,132.0,129.8,128.9,128.5,128.0,127.8,127.4,127.0,112.5$, $111.9,110.9,110.8,100.8,56.0,50.3,48.1,45.7,27.2,26.5,21.8,-1.3$; IR (thin film, cm^{-} ${ }^{1}$) $2951.3(\mathrm{w}), 1693.5(\mathrm{~m}), 1487.2(\mathrm{~m}), 1452.5(\mathrm{~m}), 1350.9(\mathrm{~s}), 1233.0(\mathrm{~m}), 1161.4(\mathrm{~s})$, $845.3(\mathrm{~s}), 669.9(\mathrm{~m}), 542.2(\mathrm{~m})$; HRMS (+ESI) calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}$ 589.2556, found $589.2537[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-tosyl- O-TMS-aminol 221:

A solution of tosylamide $231(0.215 \mathrm{~g}, 0.366 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ was cooled to $78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.73 \mathrm{~mL}, 0.73 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 45 minutes, then trimethylsilyl imidazole
$(0.22 \mathrm{~mL}, 1.46 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 hours. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 5 hours. The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (3 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (7 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 pentane $/ \mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N -tosyl- O -TMS-aminol 221 as a colorless oil ($0.181 \mathrm{~g}, 74 \%$); $\mathbf{R}_{\mathbf{f}} 0.52\left(7: 3\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600\right.$ MHz) $\delta 7.75$ (d, 2H, $J=8.4 \mathrm{~Hz}), 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.14(\mathrm{~d}$, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.4 \mathrm{~Hz}), 5.54(\mathrm{dd}$, $1 \mathrm{H}, J=8.4,3.6 \mathrm{~Hz}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{ddd}, 1 \mathrm{H}$, $J=14.4,12.6,5.4 \mathrm{~Hz}), 3.38(\mathrm{ddd}, 1 \mathrm{H}, J=14.4,12.6,4.8 \mathrm{~Hz}), 3.20(\mathrm{dt}, 1 \mathrm{H}, J=12.6,4.8$ $\mathrm{Hz}), 3.10(\mathrm{dt}, 1 \mathrm{H}, J=12.6,5.4 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, 1 \mathrm{H}, J=13.2,8.4 \mathrm{~Hz}), 1.96$ $(\mathrm{dd}, 1 \mathrm{H}, J=13.2,4.2 \mathrm{~Hz}), 1.57(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 1.37(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 0.15(\mathrm{~s}, 9 \mathrm{H}),-$ $0.0 .3(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) 154.2,143.2,142.4,138.6,137.9,132.1$, $129.8,128.9,128.5,127.8,127.3,127.0,126.8,112.4,112.4,111.3,110.8,101.0,81.8$, $56.0,50.3,45.8,43.9,28.0,27.0,21.7,0.3,-1.3$; IR (thin film, cm^{-1}) 2952.8 (w), 1622.2 (w), 1580.9 (w), 1487.9 (m), 1452.8 (w), 1339.5 (w), 1249.6 (m), 1160.7 (m), 934.1 (w), 845.4 (s); HRMS (+APCI) calculated for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}_{2}$ 662.3030, found 662.3030 $[\mathrm{M}]^{+}$.

Synthetic tetracyclic amine 245:

A solution of N -tosyl- O -TMS-aminol $221(0.180 \mathrm{~g}, 0.272 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.8 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(50 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 4 \mathrm{~mL})$. The organic extracts were combined, washed with brine (6 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on basic alumina (4:1 hexanes/EtOAc) afforded tetracyclic amine $\mathbf{2 4 5}$ as a crystalline white solid ($0.109 \mathrm{~g}, 80 \%$); $\mathbf{R}_{\mathbf{f}} 0.36$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=9.6 \mathrm{~Hz}), 7.40-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 6.67$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.4 \mathrm{~Hz}), 6.30(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, 1 \mathrm{H}$, $J=15.0 \mathrm{~Hz}), 4.02(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 3.43$ $(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.30(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.07(\mathrm{dd}, 1 \mathrm{H}, J=13.8,4.2 \mathrm{~Hz}), 2.93(\mathrm{dd}$, $1 \mathrm{H}, J=12.6,4.2), 2.48(\mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.6 \mathrm{~Hz})$, $2.03(\mathrm{dd}, 1 \mathrm{H}, J=14.4,7.2 \mathrm{~Hz}), 1.89(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.6 \mathrm{~Hz}), 1.47(\mathrm{q}, 1 \mathrm{H}, J=10.2)$; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 153.1,144.7,143.9,143.0,138.4,133.2,132.7,130.0$, 128.7, 128.0, 127.9, 127.4, 112.9, 112.7, 112.7, 108.4, 67.6, 62.8, 56.3, 55.1, 49.7, 47.9, 35.9, 35.6, 33.6, 21.8; IR (thin film, cm^{-1}) 3029.3 (w), 2936.2 (br, w), 2830.6 (w), 1646.7 (w), 1595.9 (w), 1480.1 (m), 1349.1 (m), 1273.2 (w), 1217.4 (w), 1160.4 (s), $665.5(\mathrm{~m})$;
m.p. 152.5-154.0 ${ }^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 501.2212, found $501.2211[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of carbamate 227:

A solution of 6-fluorotryptamine hydrochloride $(0.197 \mathrm{~g}, 0.920 \mathrm{mmol})$ and triethylamine $(0.33 \mathrm{~mL}, 2.39 \mathrm{mmol})$ in THF $(9.0 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of di-tert-butyl carbonate $(0.200 \mathrm{~g}, 0.920 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added to the starting material mixture via cannula. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes, warmed to r.t. and stirred for 12 h . The mixture was concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded carbamate 227 as a crystalline white solid $(0.242 \mathrm{~g}, 95 \%) ; \mathbf{R}_{\mathbf{f}} 0.32$ ($3: 2$ hexanes $/ E t O A c$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.05(\mathrm{~s}$, $1 \mathrm{H}), 7.52(\mathrm{dd}, 1 \mathrm{H}, J=8.8,5.2 \mathrm{~Hz}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=9.6,2.4 \mathrm{~Hz}), 7.04-7.01(\mathrm{~m}, 1 \mathrm{H})$, $6.90(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,8.8,2.4 \mathrm{~Hz}),, 4.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{t}, 2 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 1.45(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 160.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=237.34 \mathrm{~Hz}\right)$, $156.2,136.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.4 \mathrm{~Hz}\right), 124.2,122.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=1.18 \mathrm{~Hz}\right), 119.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.4\right.$ $\mathrm{Hz}), 113.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}} 1.2 \mathrm{~Hz}\right), 108.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.6 \mathrm{~Hz}\right), 97.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25.7 \mathrm{~Hz}\right), 79.5$, 41.1, 28.6, 25.9; IR (thin film, cm^{-1}) 3310.4 (br, m), 2976.9 (w), 2931.2 (w), 1688.2 (s), $1627.5(\mathrm{~m}), 1500.4(\mathrm{~m}), 1456.7(\mathrm{~m}), 1366.1$ (w), 1341.4 (w), 1251.5 (m), 1165.7 (m), 1140.1 (m), 951.3 (w), 800.9 (m); m.p. $105.0-105.5^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}_{2} 278.1431$, found $278.1425[\mathrm{M}]^{+}$.

Synthesis of tryptamine 240:

Powdered $\mathrm{NaOH}(0.824 \mathrm{~g}, 20.6 \mathrm{mmol})$ and TBAHS $(0.140 \mathrm{~g}, 0.412 \mathrm{mmol})$ were added to a solution of carbamate $227(2.29 \mathrm{~g}, 8.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(82.0 \mathrm{~mL})$, and the resulting suspension was stirred for 10 minutes. Benzyl bromide ($1.07 \mathrm{~mL}, 0.906 \mathrm{mmol}$) was added dropwise and the reaction was vigorously stirred for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added, and the mixture was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The organic extracts were combined, washed with brine (100 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 \rightarrow 9:1 hexanes/EtOAc) afforded tryptamine 240 as a yellow oil ($2.66 \mathrm{~g}, 88 \%$); $\mathbf{R}_{\mathbf{f}} 0.50$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.54(\mathrm{dd}, 1 \mathrm{H}, J=8.4,5.4 \mathrm{~Hz}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}$, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.96-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{dt}, 1 \mathrm{H}, J=9.0,1.8 \mathrm{~Hz}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}$, $1 \mathrm{H}), 3.46(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.95(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 160.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=238.4 \mathrm{~Hz}\right), 156.1,137.3,137.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.4 \mathrm{~Hz}\right), 129.1$, $128.0,127.0,126.6,124.9,120.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.9 \mathrm{~Hz}\right), 112.9,108.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.6 \mathrm{~Hz}\right)$, $96.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.5 \mathrm{~Hz}\right.$), 79.3, 50.3, 41.2, 28.7, 26.0; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3433.1$ (br, w), 2976.4 (w), 2930.0 (w), 1696.9 (m), 1620.9 (w), 1487.6 (m), 1470.1 (w), 1453.2 (w), $1365.0(\mathrm{w}), 1332.6$ (w), 1249.8 (m), 1164.3 (s$), 906.8$ (m), 727.9 (s), 705.6 (m); HRMS (+APCI) calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{2} 368.1900$, found $368.1895[\mathrm{M}]^{+}$.

Synthesis of amide 241:

A solution of tryptamine $240(1.45 \mathrm{~g}, 3.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$ was cooled to 0 ${ }^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 20.0 mL) was added dropwise, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to $\mathrm{r} . \mathrm{t}$. and stirred for 8 h . The mixture was concentrated in vacuo. The crude hydrochloride salt was added to a stirring solution of $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(0.559 \mathrm{~g}, 4.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The resulting mixture was stirred at r.t. for 5 minutes and then cooled to $0^{\circ} \mathrm{C}$. Carboxylic acid $7(0.74 \mathrm{~mL}, 4.1 \mathrm{mmole})$ was added dropwise, followed by dropwise addition of EDCI ($0.73 \mathrm{~mL}, 4.1 \mathrm{mmole}$) over 20 minutes. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ $(80 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.10 M aqueous $\mathrm{HCl}(2 \times 100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, and brine (100 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 $\rightarrow 7: 3$ hexanes/EtOAc) afforded amide 241 as a crystalline white solid (1.14 g, 68% over two steps); $\mathbf{R}_{\mathbf{f}} 0.26$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.52(\mathrm{dd}, 1 \mathrm{H}, J=8.8,5.2 \mathrm{~Hz}), 7.35-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,8.8,2.0 \mathrm{~Hz}), 5.96$ $(\mathrm{s}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.94(\mathrm{t}, 2 \mathrm{H}, J=$ $6.4 \mathrm{~Hz}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 2 \mathrm{H}), 0(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.3,160.0$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=237.8 \mathrm{~Hz}\right), 142.3,137.0,136.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.1 \mathrm{~Hz}\right), 128.8,127.7,126.7,126.3$ $\left(\mathrm{d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 124.6,119.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.3 \mathrm{~Hz}\right), 112.5,112.4,107.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.6\right.$
$\mathrm{Hz}), 96.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.2 \mathrm{~Hz}\right), 49.9,46.8,39.8,26.6,25.1,-1.5$; IR (thin film, cm^{-1}) 3306.1 (br, w), 3076.4 (w), 2952.6 (w), 1648.9 (m), 1622.5 (m), 1470.0 (w), 1332.7 (w), $1248.0(\mathrm{~m}), 1168.1$ (m), 907.9 (w), 838.5 (s), 728.4 (s$), 705.3(\mathrm{~m}) ;$ m.p. $54.5-55.5^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{FN}_{2} \mathrm{OSi} 423.2268$, found $423.2269[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-tosylamide 232:

A solution of amide $241(0.837 \mathrm{~g}, 1.98 \mathrm{mmol})$ in THF $(6.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.33 M in THF, $5.70 \mathrm{~mL}, 1.88 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the starting material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. In a separate flask, a solution of tosyl chloride $(0.415 \mathrm{~g}, 2.18 \mathrm{mmol})$ in THF (3.0 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and added to the reaction mixture via cannula. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 4 \mathrm{~mL})$. The organic extracts were combined, washed with brine (6 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $\left(9: 1 \rightarrow 4: 1\right.$ pentane $/ \mathrm{Et}_{2} \mathrm{O}$) afforded N-tosylamide 232 as a colorless oil ($0.371 \mathrm{~g}, 33 \%$); $\mathbf{R}_{\mathbf{f}} 0.48$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.83(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.68(\mathrm{dd}, 1 \mathrm{H}, J=8.8,5.2 \mathrm{~Hz}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.07-$
$4.00(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 2 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2,160.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=236.6 \mathrm{~Hz}\right), 145.0,140.3,137.1$, $137.0,136.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=11.8 \mathrm{~Hz}\right), 129.9,129.1,128.0,127.9,127.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right)$, $127.0,124.7,120.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 112.1,111.7,108.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.4 \mathrm{~Hz}\right), 96.4(\mathrm{~d}$, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.1 \mathrm{~Hz}$), 50.4, 48.2, 45.8, 27.2, 26.4, 21.8, -1.33; IR (thin film, cm^{-1}) 3031.7 (w), 2953.2 (w), 1694.1 (m), 1621.8 (w), 1352.3 (m), 1334.6 (m), 1248.5 (m), 1160.3 (s), 845.5 (s); HRMS (+ESI) calculated for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{FN}_{2} \mathrm{NaO}_{3} \mathrm{SSi} 599.2176$, found 599.2180 $[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of \boldsymbol{N}-tosyl- O -TMS-aminol 222:

A solution of tosylamide $232(0.321 \mathrm{~g}, 0.557 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.6 \mathrm{~mL})$ was cooled to $78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.11 \mathrm{~mL}, 1.11 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 30 minutes, then trimethylsilyl imidazole $(0.33 \mathrm{~mL}, 2.23 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 24 hours. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 5 hours. The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (4 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (7 mL), dried over anhydrous
MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 \rightarrow 9:1 pentane $/ \mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 222 as a colorless oil ($0.255 \mathrm{~g}, 70 \%$); $\mathbf{R}_{\mathbf{f}} 0.66$ (7:3 hexanes/EtOAc, silica gel deactivated with $\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=$ $8.4,5.6 \mathrm{~Hz}), 7.35-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.53$ (dd, $1 \mathrm{H}, J=8.8,3.6 \mathrm{~Hz}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.63(1 \mathrm{H}), 4.60(1 \mathrm{H}), 3.52(\mathrm{ddd}, 1 \mathrm{H}, J=14.8$, $12.0,5.6 \mathrm{~Hz}), 3.36(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,11.6,5.2 \mathrm{~Hz}), 3.20(\mathrm{dt}, 1 \mathrm{H}, J=13.6,4.8 \mathrm{~Hz}), 3.09$ (ddd, $1 \mathrm{H}, J=13.6,11.6,5.2 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{dd}, 1 \mathrm{H}, J=13.2,8.8 \mathrm{~Hz}), 1.95(\mathrm{dd}$, $1 \mathrm{H}, J=13.2,3.6 \mathrm{~Hz}), 1.58(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 1.38(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 0.14(\mathrm{~s}, 9 \mathrm{H}),-$ $0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 160.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=237.8 \mathrm{~Hz}\right), 143.3,142.4$, $138.5,137.3,136.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.1 \mathrm{~Hz}\right), 129.8,129.0,127.9,127.3,127.0,126.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}\right.$ $=4.0 \mathrm{~Hz}), 124.8,120.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 113.2,111.3,108.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.6 \mathrm{~Hz}\right), 96.3$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.3 \mathrm{~Hz}\right), 81.8,50.2,45.7,43.9,27.8,27.0,21.6,0.3,-1.3$; IR (thin film, cm^{-1}) 2954.3 (w), 1621.7 (w), 1333.1 (m), 1249.7 (m), 1159.9 (m), 933.0 (m), 843.2 (s); HRMS (+APCI) calculated for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{SSi}_{2} 651.2908$, found $651.2942[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tetracyclic amine 246:

A solution of N -tosyl- O -TMS-aminol $222(0.056 \mathrm{~g}, 0.087 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(2.2$ mL) was placed in an oil bath preheated to $90^{\circ} \mathrm{C}$ and stirred for 5 minutes. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(32$ $\mu \mathrm{L}, 0.26 \mathrm{mmol}$) was added dropwise, and the resulting mixture was stirred for 15
minutes. The reaction was cooled to r.t., placed in an ice bath and quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (4 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded tetracyclic amine 246 as a crystalline white solid ($0.026 \mathrm{~g}, 61 \%$); $\mathbf{R}_{\mathbf{f}} 0.53$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 7.73(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.35-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.36$ $(\mathrm{dt}, 1 \mathrm{H}, J=9.0,2.4 \mathrm{~Hz}), 6.07(\mathrm{dd}, 1 \mathrm{H}, J=10.2,2.4 \mathrm{~Hz}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.39$ $(\mathrm{d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.64(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 3.44-3.41$ (m, 2H), 3.07 (dd, 1H, $J=14.4,4.8 \mathrm{~Hz}), 3.01(\mathrm{dd}, 1 \mathrm{H}, J=12.0,4.8 \mathrm{~Hz}), 2.49-2.45(\mathrm{~m}$, $4 \mathrm{H}), 2.27(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.0 \mathrm{~Hz}), 2.06(\mathrm{dd}, 1 \mathrm{H}, J=14.4,5.4 \mathrm{~Hz}), 1.88(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.0,6.6 \mathrm{~Hz}), 1.46(\mathrm{q}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 164.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $242.7 \mathrm{~Hz}), 152.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=12.4 \mathrm{~Hz}\right), 144.0,141.8,137.7,132.6,130.0,128.7,128.0$, 127.7, 127.6, 126.7, $125.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 113.3,103.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.8 \mathrm{~Hz}\right), 95.5(\mathrm{~d}$, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=27.1 \mathrm{~Hz}$), 67.6, 61.9, 54.4, 48.7, 47.8, 36.0, 35.3, 33.9, 21.8; IR (thin film, cm^{-1}) 2923.2 (br, w), 1610.4 (m), 1598.8 (m), 1493.0 (m), 1483.3 (m), 1451.6 (w), 1349.3 (m), 1162.7 (s), $1093.0(\mathrm{~m}), 665.3$ (m), $598.8(\mathrm{~m})$; m.p. $155.0-157.0^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S} 489.2012$, found $489.2014[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of carbamate 228:

A solution of 6-methoxytryptamine $(0.500 \mathrm{~g}, 2.63 \mathrm{mmol})$ and triethylamine $(0.55 \mathrm{~mL}$, $3.94 \mathrm{mmol})$ in THF $(9.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. A solution of di-butyl carbonate $(0.573 \mathrm{~g}, 2.63 \mathrm{mmol})$ in THF (4.0 mL) was added to the starting material mixture via cannula. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes, warmed to r.t. and stirred for 12 h. The mixture was concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded carbamate 228 as a crystalline white solid ($0.735 \mathrm{~g}, 96 \%$); $\mathbf{R}_{\mathbf{f}} 0.30\left(3: 2\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J$ $=9.0 \mathrm{~Hz}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.81(\mathrm{dd}, 1 \mathrm{H}, J=9.0,1.8 \mathrm{~Hz}), 4.62(\mathrm{~s}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.93(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 156.7,156.2,137.3,122.0,121.0,119.6,113.1,109.5,94.9$, 79.3, 55.9, 41.1, 28.6, 26.0; IR (thin film, cm^{-1}) 3328.9 (br, w), 2975.6 (w), 2931.8 (w), 1686.7 (s), $1628.0(\mathrm{~m}), 1501.5(\mathrm{~m}), 1455.2(\mathrm{~m}), 1253.4(\mathrm{~m}), 1156.8(\mathrm{~s}), 1083.7(\mathrm{w})$, $1026.9(\mathrm{~m}), 800.6(\mathrm{~m}), 730.9(\mathrm{~m})$; m.p. $116.0-117.0^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} 290.1630$, found $290.1626[\mathrm{M}]^{+}$.

Synthesis of tryptamine 407:

Powdered $\mathrm{NaOH}(0.100 \mathrm{~g}, 2.50 \mathrm{mmol})$ and TBAHS $(0.034 \mathrm{~g}, 0.101 \mathrm{mmol})$ were added to a solution of carbamate $238(0.293 \mathrm{~g}, 1.01 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$, and the resulting
suspension was stirred for 10 minutes. Benzyl bromide ($0.13 \mathrm{~mL}, 1.06 \mathrm{mmol}$) was added dropwise and the reaction was vigorously stirred for $18 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the mixture was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 10 \mathrm{~mL})$. The organic extracts were combined, washed with brine (30 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel ($9: 1 \rightarrow 4: 1$ hexanes/EtOAc) afforded tryptamine 407 as a crystalline grey solid $(0.343 \mathrm{~g}, 89 \%) ; \mathbf{R}_{\mathbf{f}} 0.42$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.49(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J$ $=7.2 \mathrm{~Hz}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{dd}, 1 \mathrm{H}, J=9.0,1.8 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 5.23(\mathrm{~s}$, $2 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.44(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 156.7,156.1,137.7,137.7,129.0,127.8,127.0,125.2$, $122.7,119.9,112.6,109.1,93.7,79.3,55.9,50.1,41.1,28.6,26.0$; IR (thin film, cm^{-1}) 3359.4 (br, w), 2974.2 (w), 2931.8 (w), 1696.9 (m), 1621.8 (w), 1491.4 (m), 1452.9 (w), 1364.4 (w), 1262.9 (m), 1249.8 (m), 1166.4 (s); m.p. $92.5-93.0^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} 381.2178$, found $381.2175[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tosylamine 242:

A solution of tryptamine $407(0.323 \mathrm{~g}, 0.861 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 4.5 mL) was added dropwise, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 45 minutes. The mixture was concentrated in vacuo. The crude hydrochloride salt was
dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$, and the resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine ($0.50 \mathrm{~mL}, 3.44 \mathrm{mmol}$) was added, followed by addition of a solution of tosyl chloride $(0.172 \mathrm{~g}, 0.904 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 12 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (15 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (3:2 hexanes/EtOAc) afforded tosylamine 242 as an amorphous white solid ($0.342 \mathrm{~g}, 91 \%$, over two steps); $\mathbf{R}_{\mathbf{f}} 0.15$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.63(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.35-7.26(\mathrm{~m}$, $4 \mathrm{H}), 7.20(\mathrm{dd}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.12(\mathrm{dd}, 2 \mathrm{H}, J=8.0,1.6 \mathrm{~Hz}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}$, $2 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.89(\mathrm{dd}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 156.6, 143.3, 137.6, 137.5, 136.9, 129.7, 128.8, $127.7,127.1,126.9,125.5,122.1,119.5,110.9,109.1,93.5,55.7,49.9,43.3,25.5,21.6$; IR (thin film, cm^{-1}) 3280.3 (br, w), 3029.9 (w), 2937.2 (w), 1622.1 (w), 1558.0 (w), 1491.4, (w), 1453.0 (w), 1325.8 (m), 1156.4 (s), 1093.5 (w), 813.0 (m), 706.2 (m); HRMS (+APCI) calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 435.1742$, found $435.1733[\mathrm{M}+\mathrm{H}]^{+}$. Synthesis of \boldsymbol{N}-tosylamide 223:

A solution of tosylamine $242(0.251 \mathrm{~g}, 0.578 \mathrm{mmol})$ in THF:DMPU $(12: 1,5.7 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.38 \mathrm{~mL}, 0.61 \mathrm{mmol})$ was added over 15
minutes, and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . In a separate flask, a solution of carboxylic acid $99(0.15 \mathrm{~mL}, 0.87 \mathrm{mmol})$ in THF $(8.7 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. N-methyl-morpholine $(0.10 \mathrm{~mL}, 0.93 \mathrm{mmol})$ was added to the carboxylic acid solution, followed by addition of isobutyl chloroformate ($0.11 \mathrm{~mL}, 0.87 \mathrm{mmol}$) over 10 minutes. The resulting mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$. Stirring was discontinued, and the suspension was allowed to settle for 30 minutes. The yellow supernatant was separated from the white precipitate, and was filtered through celite into a flask pre-cooled to $-50^{\circ} \mathrm{C}$. The filtered cake was washed with dry THF ($2 \times 5 \mathrm{~mL}$). The lithiate solution was added to the mixed anhydride solution via cannula, and the resulting orange solution was allowed to reach $0^{\circ} \mathrm{C}$ over 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ $(8 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 8 \mathrm{~mL}$). The organic extracts were combined, washed with brine $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel ($9: 1$ hexanes/EtOAc) afforded N-tosylamide 233 as a colorless oil ($0.177 \mathrm{~g}, 52 \%$); $\mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.83(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.63(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.32-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.81$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.6,2.1 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H})$, $4.03(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $1.46(\mathrm{~s}, 2 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.2,156.8,145.0,140.3$, $137.6,137.0,129.9,129.0,128.1,127.8,127.1,125.8,122.6,120.0,112.0,111.5,109.3$, $93.8,55.9,50.2,48.3,45.8,27.2,26.6,21.8,-1.3$; IR (thin film, cm^{-1}) 2952.0 (w), 1694.1 (m), 1623.0 (w), 1491.8 (w), 1453.6 (w), 1352.3 (m), 1162.8 (s), $846.4(\mathrm{~m}), 705.3(\mathrm{w})$,
670.1 (m); HRMS (+APCI) calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi} 589.2556$, found 589.2544 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N -tosyl- O -TMS-aminol 223:

A solution of tosylamide $233(0.044 \mathrm{~g}, 0.074 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.15 \mathrm{~mL}, 0.15 \mathrm{mmol}$) was added dropwise over 10 minutes. The reaction mixture was stirred for 45 minutes, then trimethylsilyl imidazole ($44 \mathrm{uL}, 0.22 \mathrm{mmol}$) was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (1 mL). $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added, and the mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (4 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica (20:1 \rightarrow 9:1 pentane $/ \mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 223 as a colorless oil $(0.032 \mathrm{~g}, 66 \%) ; \mathbf{R}_{\mathbf{f}} 0.54\left(7: 3\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta$ 7.76-7.73 (d, 2H, $J=8.4 \mathrm{~Hz}), 7.58(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.13$ $(\mathrm{dd}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{dd}, 1 \mathrm{H}, J=8.6,2.0 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 5.54(\mathrm{dd}, 1 \mathrm{H}, J=8.4,3.8 \mathrm{~Hz}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.52(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,12.0,5.2 \mathrm{~Hz}), 3.37(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,12.0,4.8 \mathrm{~Hz}), 3.19$
(dt, 1H, $J=12.8,4.8 \mathrm{~Hz}), 3.07(\mathrm{ddd}, 1 \mathrm{H}, J=13.6,12.0,5.2 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}$, $1 \mathrm{H}, J=13.6,8.4 \mathrm{~Hz}), 1.97(\mathrm{dd}, 1 \mathrm{H}, J=13.6,3.8 \mathrm{~Hz}), 1.59(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 1.41-$ $1.38(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 0.15(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 156.7, 143.2, 142.6, 138.6, 137.8, 137.6, 129.8, 129.0, 127.8, 127.4, 127.0, 125.1, 122.7, $120.1,113.0,111.3,109.1,93.7,81.9,55.9,50.1,45.8,44.1,27.9,27.1,21.7,0.3,-1.3$; IR (thin film, cm^{-1}) 2953.6 (w), 1623.6 (w), 1491.7 (w), 1453.8 (w), 1334.9 (m), 1249.4 (m), $1229.3(\mathrm{w}), 1160.5(\mathrm{~m}), 844.7(\mathrm{~s}) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$ 573.2607 , found $573.2594[\mathrm{M}+\mathrm{OTMS}]^{+}$.

Synthesis of tetracyclic amine 247:

A solution of N-tosyl- O-TMS-aminol $223(0.031 \mathrm{~g}, 0.047 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(88 \mu \mathrm{~L}, 0.71 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1.5 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1.5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (4 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel ($4: 1$ hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow 100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded tetracyclic amine $\mathbf{2 4 7}$ as a colorless oil ($4.5 \mathrm{mg}, \mathbf{2 3 \%}$); $\mathbf{R}_{\mathbf{f}} 0.54$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.33-7.25(\mathrm{~m}$,
$6 \mathrm{H}), 6.23(\mathrm{dd}, 1 \mathrm{H}, J=8.1,2.2 \mathrm{~Hz}), 5.98(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H})$, $4.41(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz}), 4.08(\mathrm{~d}, 1 \mathrm{H}, J=15.1 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dt}, 1 \mathrm{H}, J=10.8$, $6.6 \mathrm{~Hz}), 3.42(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 3.37(\mathrm{t}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 3.06(\mathrm{dd}, 1 \mathrm{H}, J=14.1,4.6$ $\mathrm{Hz}), 2.97(\mathrm{dd}, 1 \mathrm{H}, J=12.0,4.8 \mathrm{~Hz}), 2.48(\mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, 1 \mathrm{H}$, $J=14.4,6.0 \mathrm{~Hz}), 2.05(\mathrm{dd}, 1 \mathrm{H}, J=14.1,5.7 \mathrm{~Hz}), 1.86(\mathrm{dd}, 1 \mathrm{H}, J=11.7,6.9 \mathrm{~Hz}), 1.42(\mathrm{q}$, $1 \mathrm{H}, J=10.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 161.0,152.0,143.9,142.4,138.1$, $132.7,130.0,128.8,128.0,127.8,127.4,125.5,124.0,112.9,101.4,95.4,67.4,62.3$, 55.4, 54.4, 48.8, 47.9, 36.0, 35.5, 34.0, 21.8; IR (thin film, cm^{-1}) 2923.4 (w), 1615.6 (m), 1494.1 (m), 1452.4 (w), $1348.5(\mathrm{~m}), 1163.1$ (s), 1095.7 (w), 1029.6 (w), $665.3(\mathrm{~m})$; HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 501.2212$, found $501.2212[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydro- β-carboline $\mathbf{2 5 1}$ as a colorless oil ($9.1 \mathrm{mg}, 38 \%$); $\mathbf{R}_{\mathbf{f}} 0.63$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.41(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.33-7.27(\mathrm{~m}$, $3 \mathrm{H}), 7.21(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.72(\mathrm{dd}$, $1 \mathrm{H}, J=8.7,2.2 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 5.22-5.17(\mathrm{~m}$, 2H), $4.71(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=15.0,6.0 \mathrm{~Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.48$ (ddd, $1 \mathrm{H}, J=15.0,12.0,4.8 \mathrm{~Hz}), 2.51(\mathrm{~d}, 1 \mathrm{H}, J=15.6,4.8 \mathrm{~Hz}), 2.47-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.28$ $(\mathrm{m}, 4 \mathrm{H}), 1.66(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 1.51(\mathrm{~d}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 156.6,143.1,142.8,138.2,138.0,137.3,133.6,129.3,129.2,127.9$, $127.2,126.3,121.4,119.0,112.0,108.9,107.8,94.1,55.9,51.3,47.1,44.4,38.5,26.3$, 21.6, 20.0, -1.2; IR (thin film, cm^{-1}) 2922.0 (w), 2850.3 (w), 1625.1 (w), 1492.8 (w), 1452.7 (w), 1334.5 (w), 1153.7 (s), 840.3 (m); HRMS (+APCI) calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi} 573.2607$, found $573.2593[\mathrm{M}+\mathrm{H}]^{+}$; and regioisomeric tetracyclic amine 248 as colorless oil ($4.6 \mathrm{mg}, 23 \%$); $\mathbf{R}_{\mathbf{f}} 0.54$ ($7: 3$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600\right.$
$\mathrm{MHz}) \delta 7.63(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.36-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.27(\mathrm{dd}$, $1 \mathrm{H}, J=7.8,2.4 \mathrm{~Hz}), 6.15(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.47(\mathrm{q}, 1 \mathrm{H}, J=$ $3.0 \mathrm{~Hz}), 4.32(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.17(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz})$, $3.91(\mathrm{dt}, 1 \mathrm{H}, J=13.2,4.6 \mathrm{~Hz}), 3.74(\mathrm{dd}, 1 \mathrm{H}, J=13.2,6.6 \mathrm{~Hz}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~d}, 1 \mathrm{H}$, $J=3.6 \mathrm{~Hz}), 2.43-2.41(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{dd}, 1 \mathrm{H}, J=12.9,3.9 \mathrm{~Hz}), 1.94$ $(\mathrm{dt}, 1 \mathrm{H}, J=13.2,7.2 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 160.2,153.1,144.9,143.3$, 138.1, 138.0, 131.4, 129.8, 128.9, 127.8, 127.5, 127.1, 120.9, 109.5, 103.2, 98.5, 72.4, 55.5, 52.6, 52.5, 42.8, 42.3, 41.5, 33.8, 33.3, 21.7; IR (thin film, cm^{-1}) 2924.0 (w), 1621.5 (w), 1594.4 (w), 1491.3 (m), 1452.7 (w), 1333.7 (m), 1158.2 (s), 1127.0 (m), 1093.3 (m), 939.1 (m); HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 501.2212, found 501.2211 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tryptamine 408:

Powdered $\mathrm{NaOH}(0.253 \mathrm{~g}, 6.32 \mathrm{mmol})$ and TBAHS $(0.086 \mathrm{~g}, 0.253 \mathrm{mmol})$ were added to a solution of carbamate $228(0.735 \mathrm{~g}, 2.53 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$, and the resulting suspension was stirred for 10 minutes. A solution of tosyl chloride ($0.506 \mathrm{~g}, 2.66 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added to the starting material suspension via cannula, and the reaction was stirred vigorously for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the mixture was stirred for 10 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic extracts were combined, washed with brine (30 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by
chromatography on silica gel (7:3 hexanes/EtOAc) afforded tryptamine 408 as a crystalline white solid ($0.956 \mathrm{~g}, 88 \%$); $\mathbf{R}_{\mathbf{f}} 0.35$ ($7: 3$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.86(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.4 \mathrm{~Hz}), 4.59-4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.82(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.5(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 158.0,155.9,144.8,136.2,134.9,129.7,126.6,124.6$, $122.0,120.1,120.0,112.0,98.1,79.1,55.6,39.9,28.3,25.5,21.4$; IR (thin film, cm^{-1}) 3432.8 (br, w), 2976.7 (w), 1698.1 (m), 1615.1 (w), 1488.8 (m), 1364.6 (m), 1167.8 (s), 1110.8 (m), 906.9 (s), 727.0 (s), 670.0 (s), 583.9 (s), 540.7 (m), m.p. $104.0-105.0^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 444.1719$, found $444.1714[\mathrm{M}]^{+}$.

Synthesis of tosylamine 255

A solution of tryptamine $\mathbf{4 0 8}(0.956 \mathrm{~g}, 2.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Hydrochloric acid (4.0 M in dioxane, 11.0 mL) was added dropwise, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 2 h . The mixture was concentrated in vacuo. The crude hydrochloride salt was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18.0 \mathrm{~mL})$, and the resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine (1.23 $\mathrm{mL}, 8.86 \mathrm{mmol}$) was added, followed by addition of a solution of tosyl chloride $(0.423 \mathrm{~g}$, $2.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to r.t. and stirred for 12 h . The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ (10 $\mathrm{mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(2 \times 10 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(20 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (3:2 hexanes/EtOAc) afforded tosylamine 255 as a crystalline white solid (0.965 g , 87%, over two steps); $\mathbf{R}_{\mathbf{f}} 0.15$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.74$ $(\mathrm{d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.50(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.27-7.21(\mathrm{~m}, 4 \mathrm{H})$, $7.18(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.4 \mathrm{~Hz}), 4.31-4.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.80(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 158.3,145.2,143.7,136.8,136.5,135.2,130.2,129.9$, 127.1, 126.9, 124.2, 122.7, 119.9, 119.0, 112.5, 98.3, 56.0, 42.5, 25.7, 21.8, 21.7; IR (thin film, cm^{-1}) 3278.4 (br, w), 2935.3 (w), 1616.2 (w), 1596.9 (w), 1488.6 (w), 1436.3 (w), 1363.2 (m), 1158.4 (s), 1114.7 (m), 1092.4 (m), $671.0(\mathrm{~s}), 585.2(\mathrm{~m})$; m.p. 166.5$167{ }^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ 499.1361, found 499.1357 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-tosylamide 256:

A solution of tosylamine $\mathbf{2 5 5}(0.195 \mathrm{~g}, 0.391 \mathrm{mmol})$ in THF:DMPU (12:1, 4.0 mL$)$ was cooled to $-78{ }^{\circ} \mathrm{C}$. n-BuLi (1.6 M in hexanes, $0.26 \mathrm{~mL}, 0.41 \mathrm{mmol}$) was added over 15 minutes, and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . In a separate flask, a solution of carboxylic acid $99(91 \mu \mathrm{~L}, 0.51 \mathrm{mmol})$ in THF (5.0 mL) was cooled to $0^{\circ} \mathrm{C}$. N-methyl-morpholine ($58 \mu \mathrm{~L}, 0.53 \mathrm{mmol}$) was added to the carboxylic acid solution,
followed by addition of isobutyl chloroformate ($63 \mu \mathrm{~L}, 0.51 \mathrm{mmol}$) over 10 minutes. The resulting mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$. Stirring was discontinued, and the suspension was allowed to settle for 30 minutes. The yellow supernatant was separated from the white precipitate, and was filtered through celite into a flask pre-cooled to $-50^{\circ} \mathrm{C}$. The filtered cake was washed with dry THF ($2 \times 3 \mathrm{~mL}$). The lithiate solution was added to the mixed anhydride solution via cannula, and the resulting orange solution was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 4 \mathrm{~mL})$. The organic extracts were combined, washed with brine (15 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded N-tosylamide 256 as a colorless oil $(0.117 \mathrm{~g}, 46 \%) ; \mathbf{R}_{\mathbf{f}} 0.31$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.73(\mathrm{~d}$, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.89(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.4 \mathrm{~Hz}), 4.69(\mathrm{~s}, 1 \mathrm{H})$, $4.52(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{t}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 2.44$ $(\mathrm{s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 2 \mathrm{H}),-0.05(\mathrm{~m}, 9 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 171.1, $158.4,145.3,145.1,140.3,136.8,136.4,135.4,130.1,130.1,127.8,127.0,124.5,122.7$, $120.4,119.0,112.6,112.3,98.3,56.0,47.1,45.8,27.2,26.1,21.9,21.8,-1.3$; IR (thin film, cm^{-1}) 2953.9 (w), 1695.2 (w), 1615.1 (w), 1596.7 (w), 1489.3 (w), 1438.2 (w), $1355.6(\mathrm{~m}), 1170.1(\mathrm{~s}), 1112.5(\mathrm{~m}), 1088.2(\mathrm{w}), 843.6(\mathrm{~m}), 812.5(\mathrm{w}), 670.2(\mathrm{~s}), 584.0$ (m), 541.6 (m); HRMS (+APCI) calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}$ 653.2175, found $653.2170[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-tosyl- O-TMS-aminol 254:

A solution of tosylamide $256(0.101 \mathrm{~g}, 0.155 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.45 \mathrm{~mL}, 0.45 \mathrm{mmol}$) was added dropwise over 30 minutes. The reaction mixture was stirred for 2 h , then trimethylsilyl imidazole (0.123 $\mathrm{mL}, 0.620 \mathrm{mmol}$) was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 h . The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (1 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (4 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica (9:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 254 as a colorless oil $(0.037 \mathrm{~g}, 33 \%) ; \mathbf{R}_{\mathbf{f}} 0.35(7: 3$ hexanes $/ E t O A c) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.75(\mathrm{~d}$, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.72(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.48(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ Hz,$), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.24(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{dd}, 1 \mathrm{H}, J=$ 8.4, 2.4 Hz), $5.52(\mathrm{dd}, 1 \mathrm{H}, J=8.2,4.2 \mathrm{~Hz}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.45$ (ddd, $1 \mathrm{H}, J=15.0,12.0,5.4 \mathrm{~Hz}), 3.30(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,12.0,4.8 \mathrm{~Hz}), 3.10(\mathrm{dt}, 1 \mathrm{H}, J=$ $12.9,4.8 \mathrm{~Hz}), 3.01(\mathrm{dt}, 1 \mathrm{H}, J=12.9,5.4 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.2,8.2 \mathrm{~Hz}), 1.92(\mathrm{dd}, 1 \mathrm{H}, J=13.2,4.2 \mathrm{~Hz}), 1.56(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.36(\mathrm{~d}, 1 \mathrm{H}, J=$
$13.2 \mathrm{~Hz}), 0.14(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 158.3,145.0,143.5$, $142.3,138.2,136.4,135.5,130.1,129.9,127.3,127.0,124.7,122.0,120.4,120.3,112.4$, $111.4,98.3,81.8,56.0,45.7,42.8,27.7,27.0,21.8,21.7,0.3,-1.3$; IR (thin film, cm^{-1}) 2953.8 (w), 1615.6 (w), 1597.3 (w), 1489.29 (w), 1368.7 (w), 1336.9 (w), 1248.6 (w), 1220.1 (w), 1160.2 (m), 1109.7 (m), 1085.3 (w), 933.3 (w), 838.7 (s), 669.6 (m), 542.1 (m); HRMS (+APCI) calculated for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}_{2} 726.2649$, found $726.2644[\mathrm{M}]^{+}$.

Synthesis of regioisomeric tetracyclic amine 257:

254

257

A solution of N-tosyl- O-TMS-aminol $254(0.037 \mathrm{~g}, 0.051 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(31 \mu \mathrm{~L}, 0.254 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded regioisomeric tetracyclic amine 257 as a crystalline white solid ($0.018 \mathrm{~g}, 62 \%$); $\mathbf{R}_{\mathbf{f}} 0.23$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.82(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.78(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.45(\mathrm{~d}$, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.89(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 6.54(\mathrm{dd}, 1 \mathrm{H}, J=8.4,2.4 \mathrm{~Hz}), 5.20(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H})$,
$3.93(\mathrm{dt}, 1 \mathrm{H}, J=13.2,4.2 \mathrm{~Hz}), 3.87-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 2.82(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.0 \mathrm{~Hz}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 160.1,145.0,144.1,143.5,143.0,138.1,131.7,131.5,130.2,130.0$, $128.4,127.2,121.4,109.7,109.1,102.9,69.8,55.9,53.1,43.1,42.3,40.7,33.9,32.0$, 21.8, 21.8; IR (thin film, cm^{-1}) 2923.7 (w), 1853.3 (w), 1610.7 (w), 1596.5 (w), 1353.9 (m), 1334.3 (w), 1282.5 (w), 1168.2 (s), 1157.5 (s), 1120.7 (w), 1092.0 (m), 814.2 (m), $666.5(\mathrm{~s}), 657.2(\mathrm{~s}), 621.3(\mathrm{~m}), 547.6(\mathrm{~s}) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$ 565.1831, found $565.1831[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of ester 267:

A solution of tryptophol $(0.779 \mathrm{~g}, 4.83 \mathrm{mmol})$ and carboxylic acid $99(0.78 \mathrm{~mL}, 4.39$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. EDCI ($0.86 \mathrm{~mL}, 4.83 \mathrm{mmol}$) was added over 20 minutes, and the resulting mixture was stirred for 5 minutes. A solution of DMAP ($0.590 \mathrm{~g}, 4.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was added via syringe over 15 minutes, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(90.0 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.1 M aqueous $\mathrm{HCl}(2 \times 100 \mathrm{~mL})$, saturated aqueous NaHCO_{3} ($2 \times 100 \mathrm{~mL}$), and brine (100 mL). The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (40:1 \rightarrow 9:1 hexanes/EtOAc) afforded ester 267 as a yellow oil (0.369 g, 27\%); $\mathbf{R}_{\mathbf{f}} 0.38$ (7:3
hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=7.6, \mathrm{~Hz})$, $7.38(\mathrm{~d}, 1 \mathrm{H}, J=8.0, \mathrm{~Hz}), 7.21(\mathrm{t}, 1 \mathrm{H}, J=8.0, \mathrm{~Hz}), 7.14(\mathrm{t}, 1 \mathrm{H}, J=7.6, \mathrm{~Hz}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, $4.78(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.12(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.00(\mathrm{~s}, 2 \mathrm{H})$, $1.62(\mathrm{~s}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.9,140.4,136.3,127.6$, $122.3,122.2,119.5,118.9,111.9,111.9,111.3,65.0,44.2,26.8,24.9,-1.3$; IR (thin film, cm^{-1}) 3410.2 (br, w), 2953.1 (w), 1718.0 (m), 1634.1 (w), 1457.1 (w), 1420.8 (w), 1247.2 (m), 1148.2 (m), 838.6 (s), 738.7 (s); HRMS (+ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}$ 316.1733, found $316.1728[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of tetracyclic ethers 266 and 265:

A solution of ester $267(0.157 \mathrm{~g}, 0.498 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.00 \mathrm{~mL}, 1.00 \mathrm{mmol}$) was added dropwise over 15 minutes. The reaction mixture was stirred for 50 minutes, then trimethylsilyl imidazole (0.22 mL , 1.5 mmol) was added dropwise. The mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred for 12 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 4 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (5 mL). The biphasic mixture was transferred to a 50 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x} 5 \mathrm{~mL})$. The organic extracts were combined, washed with saturated aqueous $\mathrm{CuSO}_{4}(2 \times 10 \mathrm{~mL})$, brine ($2 \times 15 \mathrm{~mL}$), dried
over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude acetal 262 was obtained as a colorless oil, and was used without further purification; $\mathbf{R}_{\mathbf{f}} 0.65$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.96(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.37(\mathrm{~d}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.20(\mathrm{dt}, 1 \mathrm{H}, J=7.8,0.6 \mathrm{~Hz}), 7.13(\mathrm{dt}, 1 \mathrm{H}, J=7.8,0.6 \mathrm{~Hz}), 7.07(\mathrm{~d}, 1 \mathrm{H}$, $J=1.8 \mathrm{~Hz}), 4.89(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.67(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 4.61(\mathrm{t}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz})$, $3.96(\mathrm{dt}, 1 \mathrm{H}, J=9.0,7.2 \mathrm{~Hz}), 3.63(\mathrm{dt}, 1 \mathrm{H}, J=9.0,7.8 \mathrm{~Hz}), 3.06(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 2.35$ $(\mathrm{dd}, 1 \mathrm{H}, J=14.4,5.4 \mathrm{~Hz}), 2.22(\mathrm{dd}, 1 \mathrm{H}, J=14.4,5.4 \mathrm{~Hz}), 1.59(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.56$ $(\mathrm{d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.3$, $136.3,127.8,122.2,122.1,119.4,119.1,113.3,111.2,110.3,98.4,67.4,46.6,27.8,26.0$, $0.7,-1.2$; IR (thin film, cm^{-1}) 3415.0 (br, w), 2953.6 (w), 1634.2 (w), 1457.0 (w), 1419.5 (w), 1350.9 (w), 1249.4 (m), 1122.3 (w), $1030.0(\mathrm{~m}), 947.1(\mathrm{w}), 840.2(\mathrm{~s}), 739.3(\mathrm{~m})$; HRMS (+ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}_{2} 390.2285$, found $390.2277[\mathrm{M}+\mathrm{H}]^{+}$. Crude acetal 262 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.4 \mathrm{~mL})$, and the resulting clear solution was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.18 \mathrm{~mL}, 1.5 \mathrm{mmol})$ was added dropwise, and the resulting dark yellow mixture was stirred for 2.5 h . The reaction was quenched by addition into a stirring solution of saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ pre-cooled to $0{ }^{\circ} \mathrm{C}$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 \rightarrow 7:3 hexanes/EtOAc) afforded tetrahydrofuran 266 as a crystalline white solid ($0.050 \mathrm{~g}, 44 \%$, over two steps); $\mathbf{R}_{\mathbf{f}} 0.21$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.21(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $7.06(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.75(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.73(\mathrm{~s}$,
$1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dd}, 1 \mathrm{H}, J=12.6,5.4 \mathrm{~Hz}), 3.81-3.75(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.74(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=13.8,5.4 \mathrm{~Hz}), 2.55(\mathrm{dd}, 1 \mathrm{H}, J=14.4,6.0$ $\mathrm{Hz}), 2.33(\mathrm{t}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 2.15(\mathrm{dt}, 1 \mathrm{H}, J=11.4,9.6 \mathrm{~Hz}), 2.03(\mathrm{ddd}, 1 \mathrm{H}, J=12.0$, $7.2,3.0 \mathrm{~Hz}), 1.95(\mathrm{dd}, 1 \mathrm{H}, J=14.4,4.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 150.3$, $142.1,132.1,128.0,125.4,119.2,112.5,110.4,79.7,66.5,62.1,55.4,40.4,39.2,34.0$; IR (thin film, cm^{-1}) 3333.9 (br, w), 3071.7 (w), 2923.8 (m), 2881.3 (m), 1647.2 (w), 1604.1 (m), 1481.1 (m), 1463.1 (m), 1256.9 (w), 881.8 (m), 745.0 (s), 687.1 (m); m.p. 87.5-88.5; HRMS (+ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO} 228.1388$, found $228.1380[\mathrm{M}+\mathrm{H}]^{+}$; and tetrahydrofuran $2 \mathbf{2 6 5}$ as a colorless oil ($0.022 \mathrm{~g}, 20 \%$, over two steps); $\mathbf{R}_{\mathbf{f}} 0.29$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR (d_{8}-toluene, 600 MHz$) \delta 7.00(\mathrm{dt}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.85$ $(\mathrm{d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.70(\mathrm{dt}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.82(\mathrm{~s}, 2 \mathrm{H})$, $3.89(\mathrm{t}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 3.78-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.47$ (dd, 1H, $J=15.0,3.7 \mathrm{~Hz}), 2.24-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dd}, 1 \mathrm{H}, J=14.4,7.2 \mathrm{~Hz}), 1.88(\mathrm{t}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathbf{C}$ NMR (d_{8}-toluene, 150 MHz) $\delta 151.8,142.6,133.2,129.2,123.8,120.0$, $112.2,110.7,83.1,67.4,66.3,54.4,41.4,37.0,35.2$; IR (thin film, cm^{-1}) 3354.3 (br, w), 3070.4 (w), 2926.0 (m), 2852.1 (m), 1656.4 (w), 1607.8 (m), 1482.3 (s), 1464.3 (s), 1261.2 (w), 1069.7 (m), 891.2 (m), 742.0 (s); HRMS (+ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}$ 228.1388 , found $228.1380[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of amide 275:

Carboxylic acid $\mathbf{9 9}(1.32 \mathrm{~mL}, 7.41 \mathrm{mmole})$ was added to a solution of $\mathrm{HOBT} \cdot \mathrm{H}_{2} \mathrm{O}(1.05$ $\mathrm{g}, 7.78 \mathrm{mmol})$ and amine $274(0.864 \mathrm{~g}, 7.78 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(78.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. EDCI
$(1.38 \mathrm{~mL}, 7.78 \mathrm{mmole})$ was added over 20 minutes, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , warmed to r.t. and stirred for $24 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(160 \mathrm{~mL})$ was added, and the reaction was stirred for 15 minutes. The mixture was washed with 0.1 M aq. $\mathrm{HCl}(2 \times 100$ $\mathrm{mL})$, saturated aq. $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, and brine $(100 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 to 7:3 hexanes:EtOAc) afforded amide 275 as a viscous yellow oil (1.10 g, 56% over two steps); $\mathbf{R}_{\mathbf{f}} 0.17$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.29(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.37(\mathrm{q}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 2.82(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.47(\mathrm{~s}, 2 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 170.3,143.1,142.3,139.5,121.7,112.4,110.7,46.8,39.4,26.6,24.8,-1.5$; IR (thin film, cm^{-1}) 3291.9 (br, w), 3077.4 (br, w), 2952.5 (br, w), 1645.6 (m), 1540.9 (m), 1436.3, 1247.0 (m), 1158.9 (w), 1024.6 (w), 837.6 (s); HRMS (+ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{Si} 266.1576$, found $266.1590[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of N-tosylamide 276:

275

276

A solution of amide $275(0.256 \mathrm{~g}, 0.965 \mathrm{mmol})$ in THF (6.0 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. Freshly prepared LiHMDS solution (0.33 M in THF, $2.78 \mathrm{~mL}, 0.917 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the stating material solution via cannula. The mixture was stirred for 1 h at $78{ }^{\circ} \mathrm{C}$. In a separate flask, a solution of tosyl chloride $(0.900 \mathrm{~g}, 4.90 \mathrm{mmol})$ in THF (5.0 mL) was cooled to $0^{\circ} \mathrm{C}$ and added into the reaction mixture via cannula. The mixture was stirred for 16 h . The reaction was quenched with saturated aq. NaHCO_{3} (3
$\mathrm{mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 6 \mathrm{~mL})$. The organic extracts were combined, washed with brine (12 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 to 7:3 hexanes:EtOAc) afforded compound 276 as a clear viscous oil (0.073 g , $18 \%) ; \mathbf{R}_{\mathbf{f}} 0.54(7: 3$ hexanes $/ E t O A c) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.81(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{t}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}), 6.34(\mathrm{t}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}), 4.69(\mathrm{~s}, 1 \mathrm{H})$, $4.53(\mathrm{~d}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~d}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, 2H), -0.3 (s, 9H); IR (thin film, cm^{-1}) 2921.5 (br, w), 1641.1 (w), 1597.1 (w), 1331.2 (m), $1158.6(\mathrm{~s}), 1094.7(\mathrm{~m}), 890.0(\mathrm{~m}), 666.4(\mathrm{~m}), 560.0(\mathrm{~m}), 548.3(\mathrm{~m})$.

Synthesis of N -tosyl- O -TMS-aminol 268:

276

268

A solution of tosylamide $276(0.124 \mathrm{~g}, 0.295 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.60 \mathrm{~mL}, 0.60 \mathrm{mmol}$) was added dropwise over 15 minutes. The reaction mixture was stirred for 15 minutes, then trimethylsilyl imidazole $(173 \mu \mathrm{~L}, 1.18 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (3 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were
combined, washed with brine (10.0 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 $\rightarrow 9: 1$ pentane/ $\mathrm{Et}_{2} \mathrm{O}$, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 268 as a colorless oil (0.122 g, 83\%); $\mathbf{R}_{\mathbf{f}} 0.38$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.74(\mathrm{~d}$, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.37(\mathrm{t}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{dd}$, $1 \mathrm{H}, J=1.2,0.6 \mathrm{~Hz}), 5.51(\mathrm{dd}, 1 \mathrm{H}, J=8.4,4.2 \mathrm{~Hz}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 3.42$ (ddd, $1 \mathrm{H}, J=15.0,12.0,5.4 \mathrm{~Hz}), 3.27(\mathrm{ddd}, 1 \mathrm{H}, J=15.0,11.45 .4 \mathrm{~Hz}), 2.88(\mathrm{ddd}, 1 \mathrm{H}, J=$ $13.8,12.0,5.4 \mathrm{~Hz}), 2.76(\mathrm{ddd}, 1 \mathrm{H}, J=13.8,11.4,5.4 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.2,8.4 \mathrm{~Hz}), 1.94(\mathrm{dd}, 1 \mathrm{H}, J=13.2,4.2 \mathrm{~Hz}), 1.56(\mathrm{~d}, 1 \mathrm{H}, J=13.2), 1.37(\mathrm{~d}, 1 \mathrm{H}, J=$ 13.2), $0.12(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 143.4,143.1,142.4$, 139.3, 138.4, 129.8, 127.4, 122.2, 111.4, 111.14, 81.8, 45.7, 43.6, 27.1, 27.1, 21.7, 0.4, -1.3; IR (thin film, cm^{-1}) 2954.3 (br, w), 1634.0 (w), 1598.6 (w), 1340.6 (m), 1249.0 (m), 1159.6 (m), 932.7 (w), 840.6 (s); HRMS (+APCI) calculated for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{SSi}_{2}$ 494.2217, found $494.2220[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of caged-ether 270:

A solution of N-tosyl- O-TMS-aminol $268(0.047 \mathrm{~g}, 0.096 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(18.0 \mathrm{uL}, 0.144 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution (2 mL). The resulting biphasic mixture was stirred vigorously for 15
minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (4 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel $(7: 3 \rightarrow 3: 2$ hexanes/EtOAc) afforded ether 270 an amorphous white solid ($0.012 \mathrm{~g}, 37 \%$); $\mathbf{R}_{\mathbf{f}} 0.23$ ($7: 3$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.49(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz})$, $5.02(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{t}, 1 \mathrm{H}, J=1.0 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $4.38(\mathrm{q}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=13.0,5.8 \mathrm{~Hz}), 3.20(\mathrm{dt}, 1 \mathrm{H}, J=12.4,3.6 \mathrm{~Hz}$,$) ,$ $2.64(\mathrm{dd}, 1 \mathrm{H}, J=14.0,6.0 \mathrm{~Hz}), 2.49(\mathrm{dd}, 1 \mathrm{H}, J=12.8,3.2 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.35$ $(\mathrm{m}, 2 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 143.6, 143.7, 138.3, 137.1, $130.0,127.1,123.8,118.0,85.6,83.0,56.2,45.7,43.4,37.7,28.0,21.7$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3067.8(\mathrm{w}), 2919.0(\mathrm{w}), 1641.1$ (w), 1596.9 (w), 1443.3 (w), 1331.0 (m), 1158.3 (s), $1094.4(\mathrm{~s}), 889.6(\mathrm{~m}), 666.2(\mathrm{~m}), 548.2(\mathrm{~m})$; m.p. $128.5-129.0^{\circ} \mathrm{C}$; HRMS (+ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S} 332.1320$, found $332.1318[\mathrm{M}+\mathrm{H}]^{+}$; and furan 272 as a white solid ($0.005 \mathrm{~g}, 15 \%) ; \mathbf{R}_{\mathbf{f}} 0.30$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.65$ $(\mathrm{d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 7.19(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.05(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 5.16(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.85(\mathrm{t}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 4.74(\mathrm{t}, 1 \mathrm{H}, J=0.9 \mathrm{~Hz}), 3.96(\mathrm{dd}$, $1 \mathrm{H}, J=10.2,5.4 \mathrm{~Hz}), 3.28(\mathrm{ddd}, 1 \mathrm{H}, J=14.9,11.2,5.3 \mathrm{~Hz}), 2.55-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 148.9,143.4,141.4$, 141.4, 129.6, 127.3, 127.2, 115.2, 114.8, 110.0, 52.2, 43.1, 39.6, 22.4, 21.7, 21.6; IR (thin film, cm^{-1}) 2923.7 (br, w), 1651.9 (w), 1597.5 (w), 1455.5 (w), 1339.8 (m), 1159.0 (s), 1112.5 (w), 1090.2 (w), $724.0(\mathrm{~m}), 677.0(\mathrm{~m}), 558.7(\mathrm{~m})$; HRMS (+ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S} 332.1320$, found $332.1314[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-Cbz-amide 279:

275

279

A solution of amide $275(0.198 \mathrm{~g}, 0.772 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. A freshly prepared LiHMDS solution (0.73 M in $\mathrm{THF}, 1.0 \mathrm{~mL}, 0.73 \mathrm{mmol}$) was cooled to $-78^{\circ} \mathrm{C}$ and added to the staring material solution via cannula. The reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Benzyl chloroformate $(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ was added and the mixture was stirred for 12 h for $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1$ $\mathrm{mL})$ and warmed to $0{ }^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 4 \mathrm{~mL})$. The organic extracts were combined, washed with brine (12 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 pentane/ $\mathrm{Et}_{2} \mathrm{O}$) afforded N-Cbz-amide 279 as a colorless oil ($0.159 \mathrm{~g}, 54 \%$); $\mathbf{R}_{\mathbf{f}} 0.46$ (4:1 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.43-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.33-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{t}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}$, $1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.67-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of N -Cbz- O -TMS-aminol 277:

279

277

A solution of $\mathrm{N}-\mathrm{Cbz}$ amide $279(0.159 \mathrm{~g}, 0.397 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.54 \mathrm{~mL}, 0.54 \mathrm{mmol}$) was added dropwise over 10
minutes. The reaction mixture was stirred for 1 hour, then pyridine $(0.13 \mathrm{~mL}, 1.6 \mathrm{mmol})$ was added dropwise and the reaction was stirred for 10 minutes. Trimethylsilyl triflate $(0.18 \mathrm{~mL}, 0.99 \mathrm{mmole})$ was added dropwise and the mixture was stirred for 1 hour at $-78^{\circ} \mathrm{C}$. The reaction was warmed to $0^{\circ} \mathrm{C}$ and was quenched by slow addition of aqueous 15% Rochelle's salt solution (2 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (10 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $(40: 1 \rightarrow 9: 1$ hexanes/EtOAc, silica gel deactivated with 1% $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$ afforded N -Cbz- O -TMS-aminol 277 as a colorless oil $(0.161 \mathrm{~g}, 86 \%) ; \mathbf{R}_{\mathbf{f}} 0.68(7: 3$ hexanes/EtOAc).

Synthesis of furan 278:

A solution of N -Cbz- O -TMS-aminol $277(0.072 \mathrm{~g}, 0.152 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(28 \mu \mathrm{~L}, 0.228 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. The reaction was quenched by addition of saturated aqueous NaHCO_{3} solution $(2 \mathrm{~mL})$, and the resulting biphasic mixture was warmed stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by
chromatography on silica gel (7:3 hexanes/EtOAc) afforded tetracyclic amine 278 as a colorless oil ($0.017 \mathrm{~g}, 36 \%$); $\mathbf{R}_{\mathbf{f}} 0.61$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ (1.0:0.8 mixture of rotamers) $\delta 7.38-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.29(\mathrm{~d}, 1.6 \mathrm{H}, J=1.2 \mathrm{~Hz}), 6.26-6.21$ $(\mathrm{m}, 1.6 \mathrm{H}), 5.39-5.37(\mathrm{~m}, 0.8 \mathrm{H}), 5.20-5.10(\mathrm{~m}, 4.6 \mathrm{H}), 4.80(\mathrm{~s}, 0.8 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}$, $0.8 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.4 \mathrm{~Hz}), 4.28(\mathrm{dd}, 0.8 \mathrm{H}, J=13.6,5.1 \mathrm{~Hz})$, 3.15-3.07 (m, 1.8H), 2.70-2.34 (m, 2.6H), 2.48-2.36 (m, 4.6H), $1.85(\mathrm{~s}, 1.8 \mathrm{H}), 1.66(\mathrm{~s}$, $3 \mathrm{H})$.

Synthesis of \boldsymbol{N}-tosylamide 282:

A solution of N-benzyl, N-tosyl-amine ($0.500 \mathrm{~g}, 1.91 \mathrm{mmol}$) in THF:DMPU (12:1, 20.0 mL) was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.52 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added over 15 minutes, and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . In a separate flask, a solution of carboxylic acid $99(0.39 \mathrm{~mL}, 2.2 \mathrm{mmol})$ in THF $(22.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. N-methyl-morpholine $(0.25 \mathrm{~mL}, 2.3 \mathrm{mmol})$ was added to the carboxylic acid solution, followed by addition of isobutyl chloroformate ($0.28 \mathrm{~mL}, 2.2 \mathrm{mmol}$) over 10 minutes. The resulting mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$. Stirring was discontinued, and the suspension was allowed to settle for 30 minutes. The yellow supernatant was separated from the white precipitate, and was filtered through celite into a flask pre-cooled to $-50^{\circ} \mathrm{C}$. The filtered cake was washed with dry THF ($2 \times 7 \mathrm{~mL}$). The lithiate solution was added to the mixed anhydride solution via cannula, and the resulting mixture was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10.0$
mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 10 mL). The organic extracts were combined, washed with brine (30 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 hexanes/EtOAc) afforded N-tosylamide 282 as an amorphous white solid (0.156 g, 20\%); $\mathbf{R}_{\mathbf{f}} 0.57\left(7: 3\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.39-7.24(\mathrm{~m}, 7 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 2 \mathrm{H}),-0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 171.1,144.9,140.0$, $136.8,136.6,129.7,128.8,128.3,127.8,127.5,112.1,49.7,45.7,26.8,21.7,-1.5$; IR (thin film, cm^{-1}) 3033.2 (w), 2953.1 (w), 1700.5 (m), 1636.4 (w), 1597.0 (w), 1351.7 (m), 1247.6 (m), 1164.5 (s), 1119.9 (w), 1088.1 (m), 842.7 (s), 546.0 (s); HRMS (+APCI) calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{SSi} 416.1716$, found $416.1706[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of \boldsymbol{N}-tosyl-O-TMS-aminol 280:

A solution of N-tosylamide $282(0.156 \mathrm{~g}, 0.374 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.74 \mathrm{~mL}, 0.74 \mathrm{mmol}$) was added dropwise over 30 minutes. The reaction mixture was stirred for 10 minutes, then trimethylsilyl imidazole $(0.22 \mathrm{~mL}, 1.1 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 20 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (3 mL). The biphasic mixture was transferred to a 25 mL Erlenmeyer flask, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated,
and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (10 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica (20:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 280 as a colorless oil (0.130 $\mathrm{g}, 71 \%) ; \mathbf{R}_{\mathbf{f}} 0.73(7: 3$ hexanes $/ \mathrm{EtOAc}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.64(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.27-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.51(\mathrm{dd}, 1 \mathrm{H}, J=8.4,4.2 \mathrm{~Hz}), 4.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{q}, 2 \mathrm{H}, J=16.2 \mathrm{~Hz}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{dd}, 1 \mathrm{H}, J=13.5,8.4$ $\mathrm{Hz}), 2.02(\mathrm{~d}, 1 \mathrm{H}, J=13.5,4.2 \mathrm{~Hz}), 1.46(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.29(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz})$, $0.03(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 143.3,142.5,138.5,138.3$, $129.6,129.1,128.3,127.5,127.4,111.2,82.3,46.5,46.5,27.2,21.7,0.2,-1.3$; IR (thin film, cm^{-1}) 2954.8 (w), 1634.3 (w), 1598.7 (w), 1495.8 (w), 1455.8 (w), 1341.4 (w), $1249.8(\mathrm{~m}), 1161.7$ (m), $1102.5(\mathrm{w}), 1048.7$ (w), $845.49(\mathrm{~s})$; HRMS (+APCI) calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{SSi} 400.1767$, found 400.1758 [M-OTMS] ${ }^{+}$.

Synthesis of tricyclic amine 283:

A solution of N-tosyl- O-TMS-aminol $280(0.057 \mathrm{~g}, 0.117 \mathrm{mmol})$ and N-benzyl indole $281(0.025 \mathrm{~g}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.60 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(43 \mu \mathrm{~L}$, 0.35 mmol) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(0.1 \mathrm{~mL})$. The mixture was allowed to reach r.t., and was stirred vigorously for 15 minutes. The organic layer was
separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 0.5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (1 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The resulting light pink solid was triturated in cold hexanes. Removal of the supernatant afforded the desired tricyclic amine $\mathbf{2 8 3}$ as a crystalline white solid ($0.053 \mathrm{~g}, 85 \%$); $\mathbf{R}_{\mathbf{f}} 0.50\left(7: 3\right.$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.62$ $(\mathrm{d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.33-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.19(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H})$, $7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}), 4.34(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}), 3.97$ $(\mathrm{d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 3.61-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.33(\mathrm{dd}, 1 \mathrm{H}, J=10.4,6.8 \mathrm{~Hz}), 2.52(\mathrm{~d}$, $1 \mathrm{H}, J=14.8 \mathrm{~Hz}), 2.44-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $152.3,143.4,143.1,139.1,138.3,137.2,130.6,129.8,129.3,128.7,128.5,128.0,127.9$, $127.5,127.4,127.0,125.2,118.6,111.7,108.7,67.1,61.1,51.0,51.0,44.5,39.6,33.7$, 21.7; IR (thin film, cm^{-1}) 3028.9 (w), 2924.2 (w), 2852.4 (w), 1603.3 (w), 1478.0 (m), 1453.2 (w), 1337.7 (m), 1153.9 (s), 1091.4 (m), 907.6 (m), 728.9 (s), 700.9 (m), 545.1 (m); m.p 140.5-142.0 ${ }^{\circ} \mathrm{C}$; HRMS (+APCI) calculated for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 535.2419$, found $535.2421[\mathrm{M}+\mathrm{H}]^{+}$.

Alkene 284 was generated as a side product of the intermolecular annulation reaction described above prior to its optimization as showen in Table 2.3.

284

Amorphous white solid; $\mathbf{R}_{\mathbf{f}} 0.51$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.33-7.18(\mathrm{~m}, 11 \mathrm{H}), 7.12(\mathrm{dt}, 1 \mathrm{H}, J=$ $7.6,1.0 \mathrm{~Hz}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{dt}, 1 \mathrm{H}, J=7.5,0.9 \mathrm{~Hz}), 6.63(\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz})$, $6.47(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, 6H); IR (thin film, cm^{-1}) 3030.1 (w), 2961.3 (w), 2923.8 (w), 1651.4 (w), 1597.3 (w), 1495.7 (w), 1480.3 (w), 1465.6 (w), 1453.6 (w), 1354.1 (m), 1163.0 (s), 1091.0 (m), $733.8(\mathrm{~s})$; HRMS (+APCI) calculated for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ 535.2419, found 535.2428 $[\mathrm{M}+\mathrm{H}]^{+}$.

2.9. NMR Spectra

$$
\begin{aligned}
& 1 L L \cdot L Z- \\
& \\
& 26 S \cdot \varepsilon \varepsilon= \\
& 06 \mathrm{~S} \cdot \mathrm{~S} \mathrm{\varepsilon}= \\
& 298.5=
\end{aligned}
$$

$$
\varepsilon S 8 . \angle \downarrow-
$$

$$
6596
$$

$$
\begin{aligned}
& 611.95 \\
& 697.9 \mathrm{C}
\end{aligned}
$$

$$
6829 \mathrm{~S}
$$

$$
=
$$

$$
0 \varepsilon 8 \cdot z 9
$$

$$
809^{\circ} \angle 9
$$

$\underset{\downarrow 69^{\circ} \varepsilon 01}{\varepsilon \triangleright S^{\circ} \mathrm{EOL}}$
ZSでとに

08t＇ 891
680° §91

$\angle 9 \angle 1 \downarrow \square$

EL901！
トレでてい

020 OZ
88LとZ！

LOZ6てレ
ャレでEE！ \qquad
$629^{\circ} \mathrm{Z} \%$

S\％8 เร！

$\downarrow \mathcal{\circ} \downarrow \varepsilon$
$6 \angle 16 \varepsilon$
Stが0か

L9E＇SS
$\angle \varepsilon l^{\prime} Z 9$
ऽ $¢$ S． 99
$22 L 6 L$

ャ98．01L
0ヵS＇ZしL
$6 \downarrow Z .611 \longrightarrow$
$82 \downarrow$ 「521
く10．821
$090^{\circ} \mathrm{Z} \mathrm{\varepsilon L}$

950 ででし
$28 Z^{\circ} 0 \mathrm{SL}$

2.10. X-Ray Structures

Compound 245

245

Table 1. Crystal data and structure refinement for 245.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
rd_05_263s
C30 H32 N2 O3 S
500.64

173(2) K
$1.54178 \AA$
Triclinic
P-1
$\mathrm{a}=8.5502(4) \AA \quad \alpha=92.164(2)^{\circ}$.
$b=10.2566(5) \AA \quad \beta=92.184(2)^{\circ}$.
$\mathrm{c}=16.4565(8) \AA \quad \gamma=113.149(2)^{\circ}$.
$1323.82(11) \AA^{3}$
2
$1.256 \mathrm{Mg} / \mathrm{m}^{3}$
$1.352 \mathrm{~mm}^{-1}$
532
$0.24 \times 0.20 \times 0.04 \mathrm{~mm}^{3}$
2.69 to 66.09°.
$-10<=\mathrm{h}<=9,-11<=\mathrm{k}<=11,-19<=1<=19$

Reflections collected	10496
Independent reflections	$4017[\mathrm{R}(\mathrm{int})=0.0167]$
Completeness to theta $=66.09^{\circ}$	86.8%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9479 and 0.7374
Refinement method	Full-matrix least-squares on F
Data / restraints / parameters	$4017 / 0 / 327$
Goodness-of-fit on F 2	1.048
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0334, \mathrm{wR} 2=0.0877$
R indices (all data)	$\mathrm{R} 1=0.0353, \mathrm{wR} 2=0.0892$
Largest diff. peak and hole	0.201 and $-0.422 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters
$\left(\AA^{2} \times 10^{3}\right)$ for 245. U(eq) is defined as one third of the trace of the orthogonalized U^{ij}
tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C(1)	$-1394(3)$	$5447(2)$	$6272(1)$	$46(1)$
$\mathrm{C}(2)$	$-358(2)$	$4567(2)$	$6144(1)$	$34(1)$
$\mathrm{C}(3)$	$-1084(2)$	$3210(2)$	$5765(1)$	$35(1)$
$\mathrm{C}(4)$	$-122(2)$	$2413(2)$	$5631(1)$	$32(1)$
$\mathrm{C}(5)$	$1604(2)$	$2980(2)$	$5880(1)$	$28(1)$
$\mathrm{C}(6)$	$2344(2)$	$4324(2)$	$6271(1)$	$36(1)$
$\mathrm{C}(7)$	$1361(2)$	$5100(2)$	$6398(1)$	$39(1)$
$\mathrm{C}(8)$	$1007(2)$	$-283(2)$	$6537(1)$	$29(1)$
$\mathrm{C}(9)$	$559(2)$	$-316(2)$	$7429(1)$	$27(1)$
$\mathrm{C}(10)$	$2326(2)$	$464(2)$	$7878(1)$	$23(1)$
$\mathrm{C}(11)$	$3184(2)$	$-577(2)$	$7977(1)$	$23(1)$
$\mathrm{C}(12)$	$4062(2)$	$-1085(2)$	$7443(1)$	$24(1)$

$\mathrm{C}(13)$	$4636(2)$	$-2107(2)$	$7710(1)$	$26(1)$
$\mathrm{C}(14)$	$6023(2)$	$-2126(2)$	$6476(1)$	$39(1)$
$\mathrm{C}(15)$	$4307(2)$	$-2610(2)$	$8482(1)$	$28(1)$
$\mathrm{C}(16)$	$3427(2)$	$-2100(2)$	$9016(1)$	$26(1)$
$\mathrm{C}(17)$	$2878(2)$	$-1070(2)$	$8759(1)$	$23(1)$
$\mathrm{C}(18)$	$2194(2)$	$-245(2)$	$10077(1)$	$28(1)$
$\mathrm{C}(19)$	$1236(2)$	$-1589(2)$	$10496(1)$	$26(1)$
$\mathrm{C}(20)$	$-78(2)$	$-2762(2)$	$10109(1)$	$31(1)$
$\mathrm{C}(21)$	$-957(2)$	$-3946(2)$	$10538(1)$	$37(1)$
$\mathrm{C}(22)$	$-553(2)$	$-3971(2)$	$11359(1)$	$40(1)$
$\mathrm{C}(23)$	$757(2)$	$-2813(2)$	$11749(1)$	$36(1)$
$\mathrm{C}(24)$	$1652(2)$	$-1639(2)$	$11318(1)$	$29(1)$
$\mathrm{C}(25)$	$2363(2)$	$959(2)$	$8770(1)$	$25(1)$
$\mathrm{C}(26)$	$4166(2)$	$2081(2)$	$9047(1)$	$27(1)$
$\mathrm{C}(27)$	$5020(2)$	$3175(2)$	$8442(1)$	$27(1)$
$\mathrm{C}(28)$	$5785(2)$	$4547(2)$	$8651(1)$	$36(1)$
$\mathrm{C}(29)$	$4968(2)$	$2598(2)$	$7578(1)$	$27(1)$
$\mathrm{C}(30)$	$3105(2)$	$1711(2)$	$7339(1)$	$23(1)$
$\mathrm{N}(1)$	$2648(2)$	$996(1)$	$6509(1)$	$25(1)$
$\mathrm{N}(2)$	$1990(2)$	$-380(1)$	$9189(1)$	$25(1)$
$\mathrm{O}(1)$	$4592(1)$	$2950(1)$	$5738(1)$	$35(1)$
$\mathrm{O}(2)$	$2117(1)$	$1003(1)$	$5034(1)$	$34(1)$
$\mathrm{O}(3)$	$5532(2)$	$-2691(1)$	$7244(1)$	$35(1)$
$\mathrm{S}(1)$	$2849(1)$	$1976(1)$	$5726(1)$	$27(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 245.

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.507(2)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.392(2)$

$\mathrm{C}(2)-\mathrm{C}(3)$	1.392(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.386(2)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	1.394(2)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	1.389(2)
$\mathrm{C}(5)-\mathrm{S}(1)$	1.7661(16)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.382(2)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{N}(1)$	1.501(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.531(2)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	1.5453(19)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(10)-\mathrm{C}(30)$	1.525(2)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.525(2)
$\mathrm{C}(10)-\mathrm{C}(25)$	1.530(2)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.389(2)
$\mathrm{C}(11)-\mathrm{C}(17)$	1.396(2)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.399(2)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{O}(3)$	1.3800(18)
$\mathrm{C}(13)-\mathrm{C}(15)$	1.387(2)
$\mathrm{C}(14)-\mathrm{O}(3)$	1.420(2)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(16)$	1.391(2)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9500
$\mathrm{C}(16)-\mathrm{C}(17)$	1.388(2)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500
$\mathrm{C}(17)-\mathrm{N}(2)$	1.4158(19)
$\mathrm{C}(18)-\mathrm{N}(2)$	1.4588(19)

$\mathrm{C}(18)-\mathrm{C}(19)$	$1.508(2)$
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9900
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.393(2)$
$\mathrm{C}(19)-\mathrm{C}(24)$	$1.394(2)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.388(2)$
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.385(2)$
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.386(3)$
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.385(2)$
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(25)-\mathrm{N}(2)$	$1.4861(19)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.556(2)$
$\mathrm{C}(25)-\mathrm{H}(25)$	1.0000
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.510(2)$
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9900
$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9900
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.323(2)$
$\mathrm{C}(27)-\mathrm{C}(29)$	$1.511(2)$
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	0.9500
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9500
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.518(2)$
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	0.9900
$\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	0.9900
$\mathrm{C}(30)-\mathrm{N}(1)$	$1.4889(18)$
$\mathrm{C}(30)-\mathrm{H}(30)$	1.0000
$\mathrm{~N}(1)-\mathrm{S}(1)$	$1.6365(12)$
$\mathrm{O}(1)-\mathrm{S}(1)$	$\mathrm{O})$
$\mathrm{O}(2)-\mathrm{S}(1)$	

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.23(16)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.60(16)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$121.17(15)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$121.16(15)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	119.4
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	119.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.46(15)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.17(15)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)$	$119.56(12)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$120.25(12)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.39(15)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.3
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.3
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$121.57(16)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.2
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7)$	119.2
$\mathrm{~N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$104.75(11)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	110.8
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	110.8
$\mathrm{~N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	110.8
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	110.8
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.9
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$102.23(12)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	111.3
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	111.3
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	111.3
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	111.3
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.2
$\mathrm{C}(30)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.17(12)$
$\mathrm{C}(30)-\mathrm{C}(10)-\mathrm{C}(25)$	$111.89(12)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(25)$	$99.81(11)$

$\mathrm{C}(30)-\mathrm{C}(10)-\mathrm{C}(9)$	$100.51(11)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$109.15(12)$
$\mathrm{C}(25)-\mathrm{C}(10)-\mathrm{C}(9)$	$117.23(12)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(17)$	$121.28(13)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$131.90(13)$
$\mathrm{C}(17)-\mathrm{C}(11)-\mathrm{C}(10)$	$106.75(12)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.07(14)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	121.0
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	121.0
$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(15)$	$115.45(13)$
$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(12)$	$124.03(14)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.51(14)$
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(16)$	$121.28(14)$
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.4
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$118.42(14)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.8
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.8
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(11)$	$120.42(13)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{N}(2)$	$128.87(13)$
$\mathrm{C}(11)-\mathrm{C}(17)-\mathrm{N}(2)$	$110.70(12)$
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{C}(19)$	$114.91(13)$
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.5
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	108.5
$\mathrm{~N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.5
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	107.5
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	$118.53(14)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$123.24(14)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(18)$	$118.19(14)$

$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.41(15)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	119.8
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.8
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.50(16)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.7
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.7
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$119.59(16)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.2
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	120.2
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$119.93(16)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	120.0
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	120.0
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$121.02(15)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	119.5
$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{H}(24)$	119.5
$\mathrm{~N}(2)-\mathrm{C}(25)-\mathrm{C}(10)$	$101.84(11)$
$\mathrm{N}(2)-\mathrm{C}(25)-\mathrm{C}(26)$	$110.83(12)$
$\mathrm{C}(10)-\mathrm{C}(25)-\mathrm{C}(26)$	$110.17(12)$
$\mathrm{N}(2)-\mathrm{C}(25)-\mathrm{H}(25)$	111.2
$\mathrm{C}(10)-\mathrm{C}(25)-\mathrm{H}(25)$	111.2
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	111.2
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$115.80(12)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	108.3
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	108.3
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	108.3
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	108.3
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	107.4
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	$122.57(14)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(29)$	$121.84(15)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(29)$	$115.58(13)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	120.0
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	120.0
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	120.0
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{C}(30)$	$106.10(12)$
$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	110.5
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	110.5

$\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	110.5
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	110.5
$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	108.7
$\mathrm{~N}(1)-\mathrm{C}(30)-\mathrm{C}(29)$	$118.58(12)$
$\mathrm{N}(1)-\mathrm{C}(30)-\mathrm{C}(10)$	$101.81(11)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(10)$	$112.68(12)$
$\mathrm{N}(1)-\mathrm{C}(30)-\mathrm{H}(30)$	107.7
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	107.7
$\mathrm{C}(10)-\mathrm{C}(30)-\mathrm{H}(30)$	107.7
$\mathrm{C}(30)-\mathrm{N}(1)-\mathrm{C}(8)$	$108.33(11)$
$\mathrm{C}(30)-\mathrm{N}(1)-\mathrm{S}(1)$	$118.59(10)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{S}(1)$	$116.90(9)$
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(18)$	$118.58(12)$
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(25)$	$104.16(11)$
$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(25)$	$116.28(12)$
$\mathrm{C}(13)-\mathrm{O}(3)-\mathrm{C}(14)$	$117.50(12)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$119.58(7)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	$107.39(6)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$105.90(7)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	$107.59(7)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(5)$	$108.44(7)$
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	$107.39(7)$

[^0]
Compound 257

257

Table 1. Crystal data and structure refinement for 257.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
rd_06_234cs
C30 H32 N2 O5 S2
564.70

173(2) K
$0.71073 \AA$
Orthorhombic
Pbca
$\begin{array}{ll}\mathrm{a}=15.705(4) \AA & \alpha=90^{\circ} . \\ b=15.469(4) \AA & \beta=90^{\circ} . \\ c=22.491(5) \AA & \gamma=90^{\circ} .\end{array}$
5464(2) \AA^{3}
8
$1.373 \mathrm{Mg} / \mathrm{m}^{3}$
$0.239 \mathrm{~mm}^{-1}$
2384
$0.29 \times 0.20 \times 0.03 \mathrm{~mm}^{3}$

Theta range for data collection	1.81 to 30.44°.
Index ranges	$-22<=\mathrm{h}<=22,-21<=\mathrm{k}<=21,-32<=\mathrm{l}<=31$
Reflections collected	96169
Independent reflections	$8098[\mathrm{R}(\mathrm{int})=0.2105]$
Completeness to theta $=30.44^{\circ}$	97.8%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9929 and 0.9340
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$8098 / 0 / 352$
Goodness-of-fit on F^{2}	1.001
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0631, \mathrm{wR} 2=0.1197$
R indices (all data)	$\mathrm{R} 1=0.1826, \mathrm{wR} 2=0.1575$
Largest diff. peak and hole	0.310 and $-0.445 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 257. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$2962(2)$	$1614(2)$	$9297(1)$	$29(1)$
$\mathrm{C}(2)$	$2645(2)$	$2080(2)$	$8753(1)$	$27(1)$
$\mathrm{C}(3)$	$2496(2)$	$1556(2)$	$8188(1)$	$35(1)$
$\mathrm{C}(4)$	$2042(2)$	$2099(2)$	$7718(1)$	$37(1)$
$\mathrm{C}(5)$	$1398(2)$	$3052(2)$	$8552(1)$	$31(1)$
$\mathrm{C}(6)$	$1772(2)$	$2380(2)$	$8976(1)$	$26(1)$
$\mathrm{C}(7)$	$2582(2)$	$1984(2)$	$9801(1)$	$26(1)$
$\mathrm{C}(8)$	$2815(2)$	$1752(2)$	$10367(1)$	$28(1)$
$\mathrm{C}(9)$	$3449(2)$	$1120(2)$	$10433(1)$	$30(1)$
$\mathrm{C}(10)$	$3813(2)$	$730(2)$	$9943(1)$	$33(1)$
$\mathrm{C}(11)$	$3578(2)$	$989(2)$	$9375(1)$	$32(1)$
$\mathrm{C}(12)$	$3236(2)$	$2876(2)$	$8641(1)$	$30(1)$
$\mathrm{C}(13)$	$2853(2)$	$3634(2)$	$8315(1)$	$33(1)$
$\mathrm{C}(14)$	$1956(2)$	$3858(2)$	$8504(1)$	$33(1)$

$\mathrm{C}(15)$	$3270(2)$	$4096(2)$	$7916(1)$	$44(1)$
$\mathrm{C}(16)$	$4272(2)$	$269(2)$	$11117(2)$	$41(1)$
$\mathrm{C}(17)$	$491(2)$	$2144(2)$	$10178(1)$	$26(1)$
$\mathrm{C}(18)$	$572(2)$	$1626(2)$	$10680(1)$	$30(1)$
$\mathrm{C}(19)$	$12(2)$	$946(2)$	$10766(1)$	$34(1)$
$\mathrm{C}(20)$	$-639(2)$	$776(2)$	$10363(1)$	$33(1)$
$\mathrm{C}(21)$	$-713(2)$	$1306(2)$	$9869(1)$	$34(1)$
$\mathrm{C}(22)$	$-161(2)$	$1985(2)$	$9770(1)$	$29(1)$
$\mathrm{C}(23)$	$-1253(2)$	$43(2)$	$10463(2)$	$44(1)$
$\mathrm{C}(24)$	$-284(2)$	$1960(2)$	$7836(1)$	$30(1)$
$\mathrm{C}(25)$	$-957(2)$	$2205(2)$	$8194(1)$	$33(1)$
$\mathrm{C}(26)$	$-1517(2)$	$1576(2)$	$8394(1)$	$34(1)$
$\mathrm{C}(27)$	$-1410(2)$	$714(2)$	$8248(1)$	$37(1)$
$\mathrm{C}(28)$	$-731(2)$	$484(2)$	$7879(2)$	$42(1)$
$\mathrm{C}(29)$	$-175(2)$	$1096(2)$	$7676(1)$	$40(1)$
$\mathrm{C}(30)$	$-2018(2)$	$41(2)$	$8482(2)$	$59(1)$
$\mathrm{N}(1)$	$1966(1)$	$2626(1)$	$9603(1)$	$26(1)$
$\mathrm{N}(2)$	$1317(1)$	$2590(2)$	$7973(1)$	$35(1)$
$\mathrm{O}(1)$	$3666(1)$	$943(1)$	$11010(1)$	$36(1)$
$\mathrm{O}(2)$	$1622(1)$	$3219(1)$	$10596(1)$	$36(1)$
$\mathrm{O}(3)$	$779(1)$	$3642(1)$	$9710(1)$	$33(1)$
$\mathrm{O}(4)$	$127(1)$	$3570(1)$	$7733(1)$	$48(1)$
$\mathrm{O}(5)$	$663(1)$	$2531(2)$	$6982(1)$	$56(1)$
$\mathrm{S}(1)$	$1211(1)$	$2995(1)$	$10050(1)$	$28(1)$
$\mathrm{S}(2)$	$464(1)$	$2736(1)$	$7583(1)$	$39(1)$

Table 3. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 257.

$\mathrm{C}(1)-\mathrm{C}(11)$	$1.378(4)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.404(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.506(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.525(4)$
$\mathrm{C}(2)-\mathrm{C}(6)$	$1.532(3)$

$\mathrm{C}(2)-\mathrm{C}(12)$	$1.562(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.527(4)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{N}(2)$	$1.485(4)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{N}(2)$	$1.489(3)$
$\mathrm{C}(5)-\mathrm{C}(14)$	$1.527(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.528(4)$
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000
$\mathrm{C}(6)-\mathrm{N}(1)$	$1.493(3)$
$\mathrm{C}(6)-\mathrm{H}(6)$	1.0000
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.372(4)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.457(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.403(4)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.369(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.381(4)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.387(4)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9800
$\mathrm{C}(12)-\mathrm{C}(13)$	0.9500
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	$1.509(4)$
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900
$\mathrm{C}(13)-\mathrm{C}(15)$	0.9900
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.321(4)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	$1.511(4)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	l
$\mathrm{C}(16)-\mathrm{O}(1)$	l
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	$\mathrm{C}(17)-\mathrm{C}(18)$
C	

$\mathrm{C}(17)-\mathrm{C}(22)$	$1.395(4)$
$\mathrm{C}(17)-\mathrm{S}(1)$	$1.760(3)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.384(4)$
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.393(4)$
$\mathrm{C}(19)-\mathrm{H}(19)$	0.9500
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.385(4)$
$\mathrm{C}(20)-\mathrm{C}(23)$	$1.505(4)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.381(4)$
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9800
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9800
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.383(4)$
$\mathrm{C}(24)-\mathrm{C}(29)$	$1.394(4)$
$\mathrm{C}(24)-\mathrm{S}(2)$	$1.773(3)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.387(4)$
$\mathrm{C}(25)-\mathrm{H}(25)$	0.9500
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.384(4)$
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9500
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.396(4)$
$\mathrm{C}(27)-\mathrm{C}(30)$	$1.424(2)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.507(4)$
$\mathrm{C}(28)-\mathrm{H}(28)$	$1.367(4)$
$\mathrm{C}(29)-\mathrm{H}(29)$	0.9500
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9500
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9800
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	1.9800
$\mathrm{~N}(1)-\mathrm{S}(1)$	$1.617(2)$
$\mathrm{N}(2)-\mathrm{S}(2)$	$1.430(2)$
$\mathrm{O}(2)-\mathrm{S}(1)$	$\mathrm{O}(3)-\mathrm{S}(1)$
$\mathrm{O}(5)-\mathrm{S}(2)$	$\mathrm{S}(2)$

$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(7)$	$118.8(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	$132.2(3)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)$	$108.6(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.2(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$100.1(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	$107.2(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	$108.2(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(12)$	$112.0(2)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(12)$	$110.3(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$110.8(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.5
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	108.1
$\mathrm{~N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$111.8(2)$
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.2
$\mathrm{~N}(2)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.2
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107.9
$\mathrm{~N}(2)-\mathrm{C}(5)-\mathrm{C}(14)$	$112.3(2)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$104.6(2)$
$\mathrm{C}(14)-\mathrm{C}(5)-\mathrm{C}(6)$	$112.2(2)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{H}(5)$	109.2
$\mathrm{C}(14)-\mathrm{C}(5)-\mathrm{H}(5)$	109.2
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	109.2
$\mathrm{~N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.6(2)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(2)$	$101.75(19)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	$110.2(2)$
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6)$	108.2
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	108.2
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{H}(6)$	108.2
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$	$121.9(2)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	$129.8(2)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(1)$	$108.3(2)$

$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$118.0(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	121.0
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	121.0
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$124.5(3)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$114.5(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$121.0(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.9(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.1
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.1
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.4(3)$
$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{H}(11)$	119.8
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.8
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(2)$	$117.0(2)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.0
$\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.0
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.0
$\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.0
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	107.3
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(12)$	$123.6(3)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)$	$122.0(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$114.3(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(5)$	$111.6(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.3
$\mathrm{C}(5)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.3
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.3
$\mathrm{C}(5)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.3
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.0
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	122.8
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	115.6
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	121.6
$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.4
$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.7
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{O}(1)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.3
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5

$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	$120.0(3)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{S}(1)$	$120.3(2)$
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{S}(1)$	$119.7(2)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	$119.5(3)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120.2
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.2
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$121.3(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.4
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	119.4
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$118.2(3)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(23)$	$120.8(3)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(23)$	$121.0(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$121.8(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.1
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.1
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$	$119.3(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.4
$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{H}(22)$	120.4
$\mathrm{C}(20)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	109.5
$\mathrm{C}(20)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.4
$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	109.5
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(29)$	$120.5(3)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{S}(2)$	$120.4(2)$
$\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{S}(2)$	$119.0(2)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$118.7(3)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	120.6
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	120.6
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$121.5(3)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	119.3
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.3
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$118.6(3)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(30)$	$120.4(3)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(30)$	$121.0(3)$
C	

$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	$120.7(3)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28)$	119.6
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{H}(28)$	119.6
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(24)$	$119.9(3)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29)$	120.1
$\mathrm{C}(24)-\mathrm{C}(29)-\mathrm{H}(29)$	120.1
$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	109.5
$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5
$\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{H}(30 \mathrm{~B})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	$104.49(19)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)$	$121.70(18)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)$	$121.03(16)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	$121.1(2)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{S}(2)$	$119.81(19)$
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{S}(2)$	$118.56(18)$
$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{C}(16)$	$118.0(2)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	$120.28(12)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$106.32(11)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{N}(1)$	$104.81(12)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(17)$	$109.33(13)$
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(17)$	$107.87(12)$
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(17)$	$107.53(12)$
$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(4)$	$120.28(15)$
$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{N}(2)$	$107.57(13)$
$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{N}(2)$	$107.72(13)$
$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{C}(24)$	$107.35(14)$
$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{C}(24)$	$106.85(13)$
$\mathrm{N}(2)-\mathrm{S}(2)-\mathrm{C}(24)$	$106.30(13)$

[^1]Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 257. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U 13	U
$\mathrm{C}(1)$	$21(1)$	$24(1)$	$42(2)$	$-5(1)$	$-1(1)$	$-3(1)$
$\mathrm{C}(2)$	$18(1)$	$29(2)$	$35(2)$	$-3(1)$	$3(1)$	$1(1)$
$\mathrm{C}(3)$	$29(2)$	$35(2)$	$41(2)$	$-9(1)$	$4(1)$	$0(1)$
$\mathrm{C}(4)$	$26(2)$	$47(2)$	$39(2)$	$-11(2)$	$0(1)$	$-6(1)$
$\mathrm{C}(5)$	$21(1)$	$35(2)$	$38(2)$	$-2(1)$	$3(1)$	$2(1)$
$\mathrm{C}(6)$	$18(1)$	$27(1)$	$34(2)$	$-4(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(7)$	$18(1)$	$18(1)$	$41(2)$	$-3(1)$	$-1(1)$	$-1(1)$
$\mathrm{C}(8)$	$21(1)$	$25(1)$	$38(2)$	$-6(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(9)$	$24(2)$	$23(1)$	$43(2)$	$0(1)$	$-6(1)$	$-4(1)$
$\mathrm{C}(10)$	$24(1)$	$22(1)$	$52(2)$	$-5(1)$	$-2(1)$	$4(1)$
$\mathrm{C}(11)$	$23(1)$	$30(2)$	$43(2)$	$-7(1)$	$2(1)$	$3(1)$
$\mathrm{C}(12)$	$18(1)$	$33(2)$	$40(2)$	$-4(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(13)$	$26(2)$	$31(2)$	$43(2)$	$-6(1)$	$2(1)$	$-4(1)$
$\mathrm{C}(14)$	$31(2)$	$27(2)$	$41(2)$	$0(1)$	$3(1)$	$4(1)$
$\mathrm{C}(15)$	$39(2)$	$40(2)$	$51(2)$	$1(2)$	$9(2)$	$-4(2)$
$\mathrm{C}(16)$	$34(2)$	$30(2)$	$59(2)$	$8(2)$	$-6(2)$	$2(1)$
$\mathrm{C}(17)$	$24(1)$	$26(2)$	$28(2)$	$-2(1)$	$5(1)$	$5(1)$
$\mathrm{C}(18)$	$27(2)$	$36(2)$	$28(2)$	$-1(1)$	$-2(1)$	$5(1)$
$\mathrm{C}(19)$	$32(2)$	$36(2)$	$35(2)$	$6(1)$	$7(1)$	$8(1)$
$\mathrm{C}(20)$	$30(2)$	$30(2)$	$38(2)$	$-7(1)$	$12(1)$	$2(1)$
$\mathrm{C}(21)$	$28(2)$	$38(2)$	$35(2)$	$-5(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(22)$	$24(1)$	$33(2)$	$30(2)$	$3(1)$	$1(1)$	$5(1)$
$\mathrm{C}(23)$	$41(2)$	$35(2)$	$57(2)$	$-4(2)$	$13(2)$	$-7(2)$
$\mathrm{C}(24)$	$24(1)$	$33(2)$	$33(2)$	$3(1)$	$-6(1)$	$1(1)$
$\mathrm{C}(25)$	$32(2)$	$33(2)$	$35(2)$	$-3(1)$	$-3(1)$	$2(1)$
$\mathrm{C}(26)$	$30(2)$	$41(2)$	$32(2)$	$6(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(27)$	$32(2)$	$39(2)$	$39(2)$	$6(2)$	$-12(1)$	$-1(1)$
$\mathrm{C}(28)$	$42(2)$	$28(2)$	$56(2)$	$-7(2)$	$-10(2)$	$2(1)$
$\mathrm{C}(29)$	$30(2)$	$43(2)$	$45(2)$	$-8(2)$	$0(1)$	$5(1)$
$\mathrm{C}(30)$	$50(2)$	$54(2)$	$73(3)$	$16(2)$	$-9(2)$	$-20(2)$
$\mathrm{N}(1)$	$20(1)$	$26(1)$	$34(1)$	$-4(1)$	$-1(1)$	$5(1)$

$\mathrm{N}(2)$	$24(1)$	$49(2)$	$33(1)$	$-4(1)$	$-2(1)$	$-2(1)$
$\mathrm{O}(1)$	$33(1)$	$30(1)$	$45(1)$	$1(1)$	$-9(1)$	$4(1)$
$\mathrm{O}(2)$	$33(1)$	$34(1)$	$40(1)$	$-14(1)$	$-2(1)$	$4(1)$
$\mathrm{O}(3)$	$30(1)$	$25(1)$	$45(1)$	$2(1)$	$3(1)$	$8(1)$
$\mathrm{O}(4)$	$40(1)$	$34(1)$	$70(2)$	$18(1)$	$-15(1)$	$-4(1)$
$\mathrm{O}(5)$	$41(1)$	$99(2)$	$29(1)$	$11(1)$	$-3(1)$	$-13(1)$
$\mathrm{S}(1)$	$24(1)$	$24(1)$	$36(1)$	$-5(1)$	$2(1)$	$5(1)$
$\mathrm{S}(2)$	$28(1)$	$51(1)$	$37(1)$	$11(1)$	$-5(1)$	$-6(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 257.

	X	y	z	$\mathrm{U}(\mathrm{eq})$
H(3A)	2147	1041	8283	42
H(3B)	3050	1354	8029	42
H(4A)	2453	2509	7539	45
H(4B)	1830	1715	7398	45
H(5)	819	3223	8694	38
H(6)	1382	1868	8982	31
H(8)	2555	2011	10704	33
H(10)	4223	284	9994	39
H(11)	3843	734	9038	38
H(12A)	3444	3084	9031	36
H(12B)	3738	2675	8413	36
H(14A)	1703	4261	8212	39
H(14B)	1974	4153	8895	39
H(15A)	2990	4623	7685	52
H(15B)	3858	3922	7844	52
H(16A)	4061	-273	10946	62
H(16B)	4355	197	11546	62
H(16C)	4815	422	10930	62

$\mathrm{H}(18)$	1008	1738	10962	36
$\mathrm{H}(19)$	74	589	11107	41
$\mathrm{H}(21)$	-1155	1198	9590	40
$\mathrm{H}(22)$	-224	2341	9429	35
$\mathrm{H}(23 \mathrm{~A})$	-1346	-34	10890	66
$\mathrm{H}(23 B)$	-1018	-489	10294	66
$\mathrm{H}(23 \mathrm{C})$	-1797	177	10269	66
$\mathrm{H}(25)$	-1034	2794	8302	40
$\mathrm{H}(26)$	-1986	1741	8636	41
$\mathrm{H}(28)$	-656	-103	7767	51
$\mathrm{H}(29)$	286	933	7426	48
$\mathrm{H}(30 \mathrm{~A})$	-1948	-496	8256	89
$\mathrm{H}(30 B)$	-2604	249	8440	89
$\mathrm{H}(30 \mathrm{C})$	-1896	-68	8903	89

Table 6. Torsion angles [${ }^{\circ}$] for 257.

$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$43.1(4)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-143.8(2)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$159.0(3)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	$-27.9(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	$-85.6(3)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	$87.5(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$170.8(2)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$58.7(3)$
$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-62.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$	$-45.4(3)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$178.3(2)$
$\mathrm{C}(14)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$56.2(3)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	$61.0(3)$
$\mathrm{C}(14)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(2)$	$-61.1(3)$

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{N}(1)$	$39.0(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{N}(1)$	$162.9(2)$
$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{N}(1)$	$-74.8(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$166.9(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$-69.1(3)$
$\mathrm{C}(12)-\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$53.1(3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$1.0(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$-173.2(2)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(1)$	$179.4(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(1)$	$5.2(3)$
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-0.4(4)$
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$-178.4(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	$178.0(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-1.5(4)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-176.7(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$2.9(4)$
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$0.3(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$172.9(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(1)$	$-2.2(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$-153.6(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$74.3(3)$
$\mathrm{C}(6)-\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$-45.0(3)$
$\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	$-141.4(3)$
$\mathrm{C}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$41.7(3)$
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(5)$	$137.2(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(5)$	$-45.8(3)$
$\mathrm{N}(2)-\mathrm{C}(5)-\mathrm{C}(14)-\mathrm{C}(13)$	$-61.1(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(14)-\mathrm{C}(13)$	$56.4(3)$
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$1.1(4)$
$\mathrm{S}(1)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$-178.5(2)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$-0.8(4)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-C
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(23)$	$-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(17)$
C	

$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	-0.8(4)
$\mathrm{S}(1)-\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	178.8(2)
$\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	0.3(4)
$\mathrm{S}(2)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	-178.5(2)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	0.9(4)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	-1.7(4)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(30)$	178.6(3)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	1.4(4)
$\mathrm{C}(30)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	-178.9(3)
C(27)-C(28)-C(29)-C(24)	-0.3(5)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(29)-\mathrm{C}(28)$	-0.6(4)
$\mathrm{S}(2)-\mathrm{C}(24)-\mathrm{C}(29)-\mathrm{C}(28)$	178.3(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	-161.0(3)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(6)$	20.8(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)$	-19.3(4)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)$	162.52(18)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	-159.1(2)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(7)$	-37.5(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)$	58.9(3)
$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)$	-179.55(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	43.8(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{S}(2)$	-144.3(2)
$\mathrm{C}(14)-\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(4)$	71.9(3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(4)$	-50.1(3)
$\mathrm{C}(14)-\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{S}(2)$	-100.1(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{S}(2)$	137.93(19)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{C}(16)$	-4.1(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{C}(16)$	176.4(2)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	48.1(2)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	-176.31(19)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	176.45(18)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	-47.9(2)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(17)$	-69.0(2)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(17)$	66.7(2)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{S}(1)-\mathrm{O}(2)$	-19.7(2)
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{S}(1)-\mathrm{O}(2)$	160.7(2)

$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{S}(1)-\mathrm{O}(3)$	$-152.1(2)$
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{S}(1)-\mathrm{O}(3)$	$28.3(2)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{S}(1)-\mathrm{N}(1)$	$95.4(2)$
$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{S}(1)-\mathrm{N}(1)$	$-84.2(2)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{S}(2)-\mathrm{O}(5)$	$-14.7(3)$
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{S}(2)-\mathrm{O}(5)$	$157.4(2)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{S}(2)-\mathrm{O}(4)$	$-145.7(2)$
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{S}(2)-\mathrm{O}(4)$	$26.4(2)$
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{S}(2)-\mathrm{C}(24)$	$100.1(2)$
$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{S}(2)-\mathrm{C}(24)$	$-87.8(2)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{S}(2)-\mathrm{O}(5)$	$-140.2(2)$
$\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{S}(2)-\mathrm{O}(5)$	$40.9(3)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{S}(2)-\mathrm{O}(4)$	$-9.9(3)$
$\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{S}(2)-\mathrm{O}(4)$	$171.2(2)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{S}(2)-\mathrm{N}(2)$	$104.9(2)$
$\mathrm{C}(29)-\mathrm{C}(24)-\mathrm{S}(2)-\mathrm{N}(2)$	$-73.9(3)$

Symmetry transformations used to generate equivalent atoms:

Compound 270

270

Table 1. Crystal data and structure refinement for 270.
Identification code
d6_016
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
C18 H21 N O3 S
331.42

173(2) K
$1.54178 \AA$
Orthorhombic
Pbca
$a=10.7947(10) \AA \quad \alpha=90^{\circ}$.
$b=14.6736(16) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=20.2106(18) \AA \quad \gamma=90^{\circ}$.
3201.3(5) \AA^{3}

8
$1.375 \mathrm{Mg} / \mathrm{m}^{3}$
$1.921 \mathrm{~mm}^{-1}$
1408
$0.41 \times 0.13 \times 0.03 \mathrm{~mm}^{3}$
4.38 to 60.02°.
$-12<=\mathrm{h}<=11,-13<=\mathrm{k}<=15,-21<=1<=22$

Reflections collected	14955
Independent reflections	$2289[\mathrm{R}(\mathrm{int})=0.0787]$
Completeness to theta $=60.02^{\circ}$	96.3%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9446 and 0.5064
Refinement method	Full-matrix least-squares on F 2
Data / restraints / parameters	$2289 / 0 / 210$
Goodness-of-fit on F 2	1.018
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1156, \mathrm{wR} 2=0.2444$
R indices (all data)	$\mathrm{R} 1=0.1816, \mathrm{wR} 2=0.3168$
Extinction coefficient	$0.0026(3)$
Largest diff. peak and hole	0.893 and $-0.877 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 7 0} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$3873(10)$	$693(9)$	$1783(4)$	$74(3)$
$\mathrm{C}(2)$	$4651(10)$	$211(9)$	$1247(4)$	$71(3)$
$\mathrm{C}(3)$	$4748(10)$	$831(9)$	$665(4)$	$67(3)$
$\mathrm{C}(4)$	$5670(11)$	$1279(9)$	$383(5)$	$79(4)$
$\mathrm{C}(5)$	$5154(11)$	$1957(10)$	$-94(4)$	$79(4)$
$\mathrm{C}(6)$	$5220(10)$	$2955(9)$	$162(4)$	$75(4)$
$\mathrm{C}(7)$	$4148(10)$	$3194(9)$	$610(5)$	$69(3)$
$\mathrm{C}(8)$	$3624(11)$	$3991(9)$	$530(6)$	$84(4)$
$\mathrm{C}(9)$	$3769(10)$	$2584(9)$	$1156(4)$	$71(3)$
$\mathrm{C}(10)$	$2948(9)$	$1734(8)$	$942(4)$	$63(3)$
$\mathrm{C}(11)$	$3571(9)$	$1177(8)$	$385(4)$	$64(3)$
$\mathrm{C}(12)$	$1560(9)$	$2102(9)$	$2424(4)$	$73(4)$
$\mathrm{C}(13)$	$779(9)$	$2859(9)$	$2312(4)$	$70(4)$
$\mathrm{C}(14)$	$833(9)$	$3604(8)$	$2728(5)$	$65(3)$
$\mathrm{C}(15)$	$1699(9)$	$3665(9)$	$3232(4)$	$67(3)$

$\mathrm{C}(16)$	$1777(10)$	$4479(8)$	$3661(4)$	$69(3)$
$\mathrm{C}(17)$	$2473(9)$	$2920(9)$	$3337(4)$	$73(4)$
$\mathrm{C}(18)$	$2399(9)$	$2163(9)$	$2944(4)$	$65(3)$
$\mathrm{N}(1)$	$2750(8)$	$1088(7)$	$1483(3)$	$65(2)$
$\mathrm{O}(1)$	$1463(6)$	$386(6)$	$2330(3)$	$72(2)$
$\mathrm{O}(2)$	$487(6)$	$1302(5)$	$1462(3)$	$68(2)$
$\mathrm{O}(3)$	$3891(7)$	$1704(6)$	$-181(3)$	$73(2)$
$\mathrm{S}(1)$	$1484(2)$	$1148(2)$	$1913(1)$	$68(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 270.

$\mathrm{C}(1)-\mathrm{N}(1)$	$1.474(13)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.541(14)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.492(14)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.321(15)$
$\mathrm{C}(3)-\mathrm{C}(11)$	$1.479(14)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.493(16)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{O}(3)$	$1.424(13)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.553(16)$
$\mathrm{C}(5)-\mathrm{H}(5)$	1.0000
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.511(14)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.310(16)$
$\mathrm{C}(7)-\mathrm{C}(9)$	$1.478(15)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9500
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.590(15)$

$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(10)-\mathrm{N}(1)$	$1.462(12)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.545(14)$
$\mathrm{C}(10)-\mathrm{H}(10)$	1.0000
$\mathrm{C}(11)-\mathrm{O}(3)$	$1.423(11)$
$\mathrm{C}(11)-\mathrm{H}(11)$	1.0000
$\mathrm{C}(12)-\mathrm{C}(18)$	$1.391(13)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.413(16)$
$\mathrm{C}(12)-\mathrm{S}(1)$	$1.742(13)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.381(15)$
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.385(13)$
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{C}(17)$	$1.392(16)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.477(15)$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.367(15)$
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500
$\mathrm{~N}(1)-\mathrm{S}(1)$	$1.623(8)$
$\mathrm{O}(1)-\mathrm{S}(1)$	$1.399(8)$
$\mathrm{O}(2)-\mathrm{S}(1)$	$1.429(7)$

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2) \quad 109.8(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) \quad 109.7$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) \quad 109.7$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B}) \quad 109.7$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B}) \quad 109.7$
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B}) \quad 108.2$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1) \quad 108.2(10)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \quad 110.0$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A}) \quad 110.0$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B}) \quad 110.0$

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	110.0
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	108.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	$108.1(10)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$134.1(10)$
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(2)$	$116.8(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$109.2(10)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	125.4
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	125.4
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	$105.2(10)$
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	$109.4(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.4(9)$
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{H}(5)$	109.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	109.6
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	109.6
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$112.5(10)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.1
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.1
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.1
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.1
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.8
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	$120.9(11)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$117.7(11)$
$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{C}(6)$	$121.3(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	120.0
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	120.0
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	$115.2(8)$
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.5
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	108.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.5
$\mathrm{~N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$105.3(9)$
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$112.8(7)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$111.7(8)$
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{H}(10)$	109.0

$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	109.0
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	109.0
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(3)$	$106.5(8)$
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	$113.9(9)$
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	$106.1(7)$
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	110.0
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	110.0
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	110.0
$\mathrm{C}(18)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.3(12)$
$\mathrm{C}(18)-\mathrm{C}(12)-\mathrm{S}(1)$	$122.1(10)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{S}(1)$	$120.6(8)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$119.9(9)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120.0
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	120.0
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$121.9(11)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.0
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	119.0
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(17)$	$117.7(11)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121.5(11)$
$\mathrm{C}(17)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.8(10)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(15)$	$121.0(10)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{H}(17)$	119.5
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(12)$	$121.9(11)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	119.0
$\mathrm{C}(12)-\mathrm{C}(18)-\mathrm{H}(18)$	119.0
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(1)$	$116.3(8)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)$	$119.2(7)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)$	$119.5(6)$
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(5)$	$105.9(7)$
C	

$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$119.9(5)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	$107.0(5)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$107.5(4)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(12)$	$106.6(4)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(12)$	$106.6(5)$
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(12)$	$108.8(5)$

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 270. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U 12
$\mathrm{C}(1)$	$58(7)$	$128(11)$	$35(5)$	$5(6)$	$-3(5)$	$-1(7)$
$\mathrm{C}(2)$	$55(7)$	$109(10)$	$49(5)$	$5(6)$	$6(5)$	$14(6)$
$\mathrm{C}(3)$	$59(7)$	$111(9)$	$32(5)$	$-7(5)$	$5(5)$	$-2(6)$
$\mathrm{C}(4)$	$57(7)$	$144(12)$	$36(5)$	$-10(6)$	$4(5)$	$17(7)$
$\mathrm{C}(5)$	$66(8)$	$141(13)$	$30(5)$	$-9(6)$	$11(5)$	$3(7)$
$\mathrm{C}(6)$	$54(7)$	$139(12)$	$33(5)$	$-2(6)$	$1(4)$	$-2(7)$
$\mathrm{C}(7)$	$58(7)$	$105(10)$	$44(5)$	$7(6)$	$-12(5)$	$-5(6)$
$\mathrm{C}(8)$	$60(8)$	$114(12)$	$79(8)$	$30(8)$	$9(6)$	$-9(7)$
$\mathrm{C}(9)$	$70(7)$	$111(10)$	$32(5)$	$-3(5)$	$-1(5)$	$2(7)$
$\mathrm{C}(10)$	$48(6)$	$112(10)$	$31(4)$	$4(5)$	$-7(4)$	$2(6)$
$\mathrm{C}(11)$	$53(6)$	$106(9)$	$33(5)$	$-2(5)$	$-4(4)$	$-21(6)$
$\mathrm{C}(12)$	$36(6)$	$148(12)$	$34(5)$	$23(6)$	$3(4)$	$-1(6)$
$\mathrm{C}(13)$	$41(6)$	$136(11)$	$33(5)$	$8(6)$	$3(4)$	$1(6)$
$\mathrm{C}(14)$	$42(6)$	$107(10)$	$46(5)$	$18(6)$	$7(5)$	$-4(5)$
$\mathrm{C}(15)$	$49(6)$	$116(10)$	$36(5)$	$13(6)$	$8(4)$	$6(6)$
$\mathrm{C}(16)$	$63(7)$	$98(10)$	$46(5)$	$0(6)$	$13(5)$	$0(6)$
$\mathrm{C}(17)$	$44(6)$	$142(12)$	$31(5)$	$4(6)$	$3(4)$	$9(7)$
$\mathrm{C}(18)$	$44(6)$	$116(10)$	$35(5)$	$8(6)$	$4(4)$	$1(6)$
$\mathrm{N}(1)$	$57(5)$	$107(7)$	$30(4)$	$3(4)$	$-13(4)$	$-8(5)$
$\mathrm{O}(1)$	$62(5)$	$123(7)$	$31(3)$	$5(4)$	$2(3)$	$-6(4)$
$\mathrm{O}(2)$	$47(4)$	$114(6)$	$43(3)$	$-6(4)$	$-1(3)$	$-4(4)$

$\mathrm{O}(3)$	$64(5)$	$125(7)$	$30(3)$	$5(4)$	$0(3)$	$-11(4)$
$\mathrm{S}(1)$	$46(2)$	$127(3)$	$31(1)$	$3(1)$	$0(1)$	$-4(2)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for D6_016.

x	y	z	$U(e q)$

$\mathrm{H}(1 \mathrm{~A})$	3636	250	2130	89
$\mathrm{H}(1 \mathrm{~B})$	4370	1181	1992	89
$\mathrm{H}(2 \mathrm{~A})$	5487	71	1421	85
$\mathrm{H}(2 \mathrm{~B})$	4249	-368	1116	85
$\mathrm{H}(4)$	6525	1184	469	95
$\mathrm{H}(5)$	5601	1909	-525	95
$\mathrm{H}(6 \mathrm{~A})$	6006	3042	406	90
$\mathrm{H}(6 \mathrm{~B})$	5223	3375	-222	90
$\mathrm{H}(8 \mathrm{~A})$	2991	4184	825	101
$\mathrm{H}(8 \mathrm{~B})$	3876	4376	177	101
$\mathrm{H}(9 \mathrm{~A})$	3299	2947	1483	85
$\mathrm{H}(9 B)$	4525	2356	1378	85
$\mathrm{H}(10)$	2126	1958	783	76
$\mathrm{H}(11)$	3028	656	254	77
$\mathrm{H}(13)$	217	2855	1950	84
$\mathrm{H}(14)$	260	4088	2668	78
$\mathrm{H}(16 \mathrm{~A})$	2103	4993	3405	104
$\mathrm{H}(16 \mathrm{~B})$	2329	4352	4035	104
$\mathrm{H}(16 \mathrm{C})$	949	4630	3827	104
$\mathrm{H}(17)$	3062	2938	3686	87
H(18)	2936	1664	3030	78

Table 6. Torsion angles [${ }^{\circ}$] for 270.

$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$46.7(13)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$113.1(15)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	$-54.1(13)$
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$0.8(13)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-167.1(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(3)$	$-14.2(12)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$105.3(12)$

$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	33.7(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-83.4(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-137.5(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	47.6(12)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	105.5(13)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	-79.7(13)
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)$	171.8(9)
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	53.3(13)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(3)$	13.0(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(3)$	-176.7(9)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	-108.7(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	61.6(13)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(3)$	-177.4(7)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(3)$	-54.6(10)
$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(3)$	-60.5(10)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(3)$	62.3(11)
$\mathrm{C}(18)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-2.6(14)
$\mathrm{S}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	178.8(7)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	4.7(15)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(17)$	-4.1(14)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	177.9(9)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{C}(18)$	1.5(15)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{C}(18)$	179.5(9)
$\mathrm{C}(15)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(12)$	0.4(15)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(18)-\mathrm{C}(17)$	0.1(14)
$\mathrm{S}(1)-\mathrm{C}(12)-\mathrm{C}(18)-\mathrm{C}(17)$	178.7(8)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(1)$	63.7(10)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(1)$	-58.4(12)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)$	-141.3(7)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)$	96.6(9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(10)$	-57.3(13)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)$	147.9(8)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(5)$	-21.6(12)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{C}(5)$	95.0(10)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(3)-\mathrm{C}(11)$	21.7(11)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{O}(3)-\mathrm{C}(11)$	-100.4(10)

$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	$172.3(7)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	$-33.6(10)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$42.2(9)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$-163.6(9)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(12)$	$-72.9(8)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(12)$	$81.2(10)$
$\mathrm{C}(18)-\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{O}(1)$	$47.8(9)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{O}(1)$	$-133.6(8)$
$\mathrm{C}(18)-\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{O}(2)$	$177.0(8)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{O}(2)$	$-4.4(9)$
$\mathrm{C}(18)-\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{N}(1)$	$-67.3(9)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{S}(1)-\mathrm{N}(1)$	$111.3(8)$

Symmetry transformations used to generate equivalent atoms:

Compound 283

Table 1. Crystal data and structure refinement for 283.

Identification code	int_1s	
Empirical formula	C 35.50 H 37.50 N 2 O 2 S	
Formula weight	556.23	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{C} 2 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=26.9625(7) \AA$	
	$\mathrm{b}=12.6832(4) \AA$	$\beta=101.767(2)^{\circ}$.
	$\mathrm{c}=18.9477(5) \AA$	$\gamma=90^{\circ}$.
Volume	$6343.4(3) \AA^{3}$	
Z	8	
Density (calculated)	$1.165 \mathrm{Mg}^{\circ} / \mathrm{m}^{3}$	
Absorption coefficient	$1.153 \mathrm{~mm}^{-1}$	
F(000)	2372	
Crystal size	$0.46 \times 0.18 \times 0.14 \mathrm{~mm}^{3}$	
Theta range for data collection	3.35 to 65.83°.	

Index ranges	$-30<=\mathrm{h}<=31,-13<=\mathrm{k}<=14,-22<=1<=21$
Reflections collected	21329
Independent reflections	$5033[\mathrm{R}(\mathrm{int})=0.0245]$
Completeness to theta $=65.83^{\circ}$	91.5%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8553 and 0.6192
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$5033 / 0 / 366$
Goodness-of-fit on F^{2}	1.076
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0722, \mathrm{wR} 2=0.2354$
R indices (all data)	$\mathrm{R} 1=0.0790, \mathrm{wR} 2=0.2436$
Largest diff. peak and hole	1.965 and $-0.328 \mathrm{e} . \AA^{-3}$

Reflections collected
Independent reflections
Completeness to theta $=65.83^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$-30<=\mathrm{h}<=31,-13<=\mathrm{k}<=14,-22<=1<=21$
$5033[\mathrm{R}(\mathrm{int})=0.0245]$
91.5 \%

Semi-empirical from equivalents
0.8553 and 0.6192

Full-matrix least-squares on F^{2}
5033 / 0 / 366
1.076
$\mathrm{R} 1=0.0722, \mathrm{wR} 2=0.2354$
$R 1=0.0790, w R 2=0.2436$
1.965 and -0.328 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters
$\left(\AA^{2} \times 10^{3}\right)$ for 283. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij
tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$659(2)$	$6317(4)$	$-866(2)$	$52(1)$
$\mathrm{C}(2)$	$1112(1)$	$6310(3)$	$-251(2)$	$40(1)$
$\mathrm{C}(3)$	$1489(1)$	$7080(3)$	$-218(2)$	$40(1)$
$\mathrm{C}(4)$	$1915(1)$	$7063(3)$	$322(2)$	$38(1)$
$\mathrm{C}(5)$	$1973(1)$	$6277(2)$	$851(2)$	$32(1)$
$\mathrm{C}(6)$	$1602(1)$	$5522(3)$	$835(2)$	$36(1)$
$\mathrm{C}(7)$	$1173(1)$	$5544(3)$	$283(2)$	$41(1)$
$\mathrm{C}(8)$	$2828(1)$	$8241(2)$	$1772(2)$	$31(1)$
$\mathrm{C}(9)$	$3361(1)$	$8435(3)$	$2190(2)$	$32(1)$
$\mathrm{C}(10)$	$3714(1)$	$7632(3)$	$2370(2)$	$42(1)$
$\mathrm{C}(11)$	$4209(1)$	$7863(4)$	$2733(2)$	$58(1)$
$\mathrm{C}(12)$	$4351(2)$	$8896(4)$	$2907(2)$	$59(1)$
$\mathrm{C}(13)$	$4008(2)$	$9696(4)$	$2715(2)$	$52(1)$
$\mathrm{C}(14)$	$3513(1)$	$9470(3)$	$2360(2)$	$40(1)$
$\mathrm{C}(15)$	$2168(1)$	$7467(2)$	$2427(2)$	$28(1)$
$\mathrm{C}(16)$	$1758(1)$	$8243(3)$	$2077(2)$	$36(1)$
$\mathrm{C}(17)$	$1354(1)$	$8305(3)$	$2511(2)$	$39(1)$
$\mathrm{C}(18)$	$873(1)$	$8063(4)$	$2244(3)$	$57(1)$
$\mathrm{C}(19)$	$1549(1)$	$8695(3)$	$3266(2)$	$40(1)$
$\mathrm{C}(20)$	$2015(1)$	$8098(3)$	$3661(2)$	$34(1)$
$\mathrm{C}(21)$	$2326(1)$	$6466(3)$	$4064(2)$	$35(1)$
$\mathrm{C}(22)$	$2451(2)$	$5574(3)$	$4497(2)$	$47(1)$
$\mathrm{C}(23)$	$2922(2)$	$5099(3)$	$4515(2)$	$49(1)$
$\mathrm{C}(24)$	$3247(2)$	$5465(3)$	$4105(2)$	$46(1)$
$\mathrm{C}(25)$	$3114(1)$	$6347(3)$	$3654(2)$	$38(1)$
$\mathrm{C}(26)$	$2659(1)$	$6836(2)$	$3641(2)$	$31(1)$
$\mathrm{C}(27)$	$2413(1)$	$7782(2)$	$3212(2)$	$28(1)$
$\mathrm{C}(28)$	$1644(1)$	$7193(4)$	$4597(2)$	$50(1)$
$\mathrm{C}(29)$	$1079(1)$	$7009(3)$	$4433(2)$	$42(1)$
$\mathrm{C}(30)$	$803(2)$	$7303(4)$	$4942(3)$	$60(1)$
$\mathrm{C}(31)$	$289(2)$	$7117(4)$	$4832(4)$	$79(2)$
C		$6626(5)$	$4204(4)$	$78(2)$
	$3695(3)$	$70(1)$		

$\mathrm{C}(34)$	$827(2)$	$6527(4)$	$3808(2)$	$54(1)$
$\mathrm{C}(1 \mathrm{~S})$	$487(3)$	$581(7)$	$3585(5)$	$58(2)$
$\mathrm{C}(2 \mathrm{~S})$	$502(4)$	$333(8)$	$4392(5)$	$67(2)$
$\mathrm{C}(3 \mathrm{~S})$	$-21(3)$	$59(7)$	$4596(5)$	$57(2)$
$\mathrm{N}(1)$	$2570(1)$	$7309(2)$	$2004(1)$	$29(1)$
$\mathrm{N}(2)$	$1893(1)$	$7089(2)$	$3980(1)$	$37(1)$
$\mathrm{O}(1)$	$2485(1)$	$5361(2)$	$1981(1)$	$37(1)$
$\mathrm{O}(2)$	$2954(1)$	$6268(2)$	$1159(1)$	$39(1)$
$\mathrm{S}(1)$	$2536(1)$	$6236(1)$	$1521(1)$	$31(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 283.

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.504(5)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.388(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.402(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.374(5)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.399(5)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.380(5)$
$\mathrm{C}(5)-\mathrm{S}(1)$	$1.769(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.393(5)$
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500
$\mathrm{C}(8)-\mathrm{N}(1)$	$1.482(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.514(4)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.389(5)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.393(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.402(5)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.386(7)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.373(7)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.395(5)$
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500
$\mathrm{C}(15)-\mathrm{N}(1)$	$1.486(4)$
$\mathrm{C}(15)-\mathrm{C}(16)$	C

$\mathrm{C}(16)-\mathrm{C}(17)$	$1.497(5)$
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.328(5)$
$\mathrm{C}(17)-\mathrm{C}(19)$	$1.503(5)$
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9500
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9500
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.527(5)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9900
$\mathrm{C}(20)-\mathrm{N}(2)$	$1.481(4)$
$\mathrm{C}(20)-\mathrm{C}(27)$	$1.553(4)$
$\mathrm{C}(20)-\mathrm{H}(20)$	1.0000
$\mathrm{C}(21)-\mathrm{N}(2)$	$1.392(5)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.399(5)$
$\mathrm{C}(21)-\mathrm{C}(26)$	$1.400(5)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.399(6)$
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.366(6)$
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9500
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.409(5)$
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9500
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.389(9)$
$\mathrm{C}(25)-\mathrm{H}(25)$	$1.370(5)$
$\mathrm{C}(26)-\mathrm{C}(27)$	0.9500
$\mathrm{C}(27)-\mathrm{H}(27)$	$1.523(4)$
$\mathrm{C}(28)-\mathrm{N}(2)$	1.0000
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.469(4)$
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	$1.508(5)$
$\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	0.9900
$\mathrm{C}(29)-\mathrm{C}(34)$	$1.382(6)$
$\mathrm{C}(29)-\mathrm{C}(30)$	C
$\mathrm{C}(30)-\mathrm{C}(31)$	$\mathrm{C}(31)-\mathrm{C}(32)$
$\mathrm{C}(31)-\mathrm{H}(31)$	$\mathrm{H}(30)$
$\mathrm{C}(3000$	
C	

$\mathrm{C}(32)-\mathrm{C}(33)$	$1.368(8)$
$\mathrm{C}(32)-\mathrm{H}(32)$	0.9500
$\mathrm{C}(33)-\mathrm{C}(34)$	$1.390(6)$
$\mathrm{C}(33)-\mathrm{H}(33)$	0.9500
$\mathrm{C}(34)-\mathrm{H}(34)$	0.9500
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})$	$1.552(13)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 1)$	0.9800
$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	0.9800
$\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 3)$	0.9800
$\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S})$	$1.576(13)$
$\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S} 1)$	0.9900
$\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S} 2)$	0.9900
$\mathrm{C}(3 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S}) \# 1$	$1.519(17)$
$\mathrm{C}(3 \mathrm{~S})-\mathrm{H}(3 \mathrm{~S} 1)$	0.9900
$\mathrm{C}(3 \mathrm{~S})-\mathrm{H}(3 \mathrm{~S} 2)$	0.9900
$\mathrm{~N}(1)-\mathrm{S}(1)$	$1.631(3)$
$\mathrm{O}(1)-\mathrm{S}(1)$	$1.434(2)$
$\mathrm{O}(2)-\mathrm{S}(1)$	$1.437(2)$

$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A}) \quad 109.5$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B}) \quad 109.5$
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B}) \quad 109.5$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C}) \quad 109.5$
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C}) \quad 109.5$
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C}) \quad 109.5$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3) \quad 118.5(3)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1) \quad 121.8(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1) \quad 119.8(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2) \quad 120.8(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3) \quad 119.6$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3) \quad 119.6$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) \quad 120.0(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4) \quad 120.0$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4) \quad 120.0$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4) \quad 120.2(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1) \quad 120.5(3)$

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$119.3(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119.4(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.3
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.3
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$121.2(3)$
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7)$	119.4
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	119.4
$\mathrm{~N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$115.3(3)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.5
$\mathrm{~N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	107.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$118.6(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$122.7(3)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	$118.6(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.3(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.8
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.8
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.2(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.9
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.9
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$119.8(4)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.1
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.2(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.9
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.9
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.9(4)$
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	119.6
$\mathrm{~N}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	$113.3(2)$
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(27)$	$109.7(2)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(27)$	$112.3(3)$
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{H}(15)$	107.1
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	107.1

$\mathrm{C}(27)-\mathrm{C}(15)-\mathrm{H}(15)$	107.1
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$109.9(3)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.7
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.7
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.7
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.7
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.2
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$122.9(3)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(19)$	$124.3(3)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(19)$	$112.8(3)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	120.0
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	120.0
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	120.0
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)$	$113.4(3)$
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	108.9
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	108.9
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	108.9
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	108.9
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	107.7
$\mathrm{~N}(2)-\mathrm{C}(20)-\mathrm{C}(19)$	$113.5(3)$
$\mathrm{N}(2)-\mathrm{C}(20)-\mathrm{C}(27)$	$103.6(2)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(27)$	$116.9(3)$
$\mathrm{N}(2)-\mathrm{C}(20)-\mathrm{H}(20)$	107.4
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	107.4
$\mathrm{C}(27)-\mathrm{C}(20)-\mathrm{H}(20)$	107.4
$\mathrm{~N}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	$128.5(3)$
$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(26)$	$111.4(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	$120.1(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$118.1(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.9
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	120.9
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$121.6(3)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.2
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.2
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$120.1(4)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.0

$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	120.0
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$119.1(4)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	120.4
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	120.4
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$120.9(3)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$131.0(3)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)$	$108.0(3)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(15)$	$111.3(2)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(20)$	$100.7(2)$
$\mathrm{C}(15)-\mathrm{C}(27)-\mathrm{C}(20)$	$112.7(2)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	110.6
$\mathrm{C}(15)-\mathrm{C}(27)-\mathrm{H}(27)$	110.6
$\mathrm{C}(20)-\mathrm{C}(27)-\mathrm{H}(27)$	110.6
$\mathrm{~N}(2)-\mathrm{C}(28)-\mathrm{C}(29)$	$115.4(3)$
$\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	108.4
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	108.4
$\mathrm{~N}(2)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	108.4
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	108.4
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	107.5
$\mathrm{C}(34)-\mathrm{C}(29)-\mathrm{C}(30)$	$118.4(4)$
$\mathrm{C}(34)-\mathrm{C}(29)-\mathrm{C}(28)$	$123.0(3)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	$118.6(4)$
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)$	$121.0(5)$
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30)$	119.5
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30)$	119.5
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$120.1(5)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	119.9
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	119.9
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	$119.3(4)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	120.3
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	120.3
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$120.4(5)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	119.8
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	119.8
$\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(33)$	$120.8(4)$
$\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{H}(34)$	119.6

$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	119.6
$\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 1)$	109.5
$\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	109.5
$\mathrm{H}(1 \mathrm{~S} 1)-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 2)$	109.5
$\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 3)$	109.5
$\mathrm{H}(1 \mathrm{~S} 1)-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 3)$	109.5
$\mathrm{H}(1 \mathrm{~S} 2)-\mathrm{C}(1 \mathrm{~S})-\mathrm{H}(1 \mathrm{~S} 3)$	109.5
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S})$	$116.2(8)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S} 1)$	108.2
$\mathrm{C}(3 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S} 1)$	108.2
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S} 2)$	108.2
$\mathrm{C}(3 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S} 2)$	108.2
$\mathrm{H}(2 \mathrm{~S} 1)-\mathrm{C}(2 \mathrm{~S})-\mathrm{H}(2 \mathrm{~S} 2)$	107.4
$\mathrm{C}(3 \mathrm{~S}) \# 1-\mathrm{C}(3 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})$	$112.6(9)$
$\mathrm{C}(3 \mathrm{~S}) \# 1-\mathrm{C}(3 \mathrm{~S})-\mathrm{H}(3 \mathrm{~S} 1)$	109.1
$\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S})-\mathrm{H}(3 \mathrm{~S} 1)$	109.1
$\mathrm{C}(3 \mathrm{~S}) \# 1-\mathrm{C}(3 \mathrm{~S})-\mathrm{H}(3 \mathrm{~S} 2)$	109.1
$\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S})-\mathrm{H}(3 \mathrm{~S} 2)$	109.1
$\mathrm{H}(3 \mathrm{~S} 1)-\mathrm{C}(3 \mathrm{~S})-\mathrm{H}(3 \mathrm{~S} 2)$	107.8
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(15)$	$119.3(2)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{S}(1)$	$118.4(2)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{S}(1)$	$116.70(19)$
$\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(28)$	$118.0(3)$
$\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(20)$	$106.7(2)$
$\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{C}(20)$	$115.0(3)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$119.53(14)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	$107.86(13)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	$106.47(13)$
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	$106.55(15)$
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(5)$	$107.36(15)$
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	$108.73(14)$

[^2]\#1 -x,-y,-z+1

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 283. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U 13	U 12
$\mathrm{C}(1)$	$45(2)$	$71(3)$	$39(2)$	$-4(2)$	$4(2)$	$-8(2)$
$\mathrm{C}(2)$	$41(2)$	$47(2)$	$32(2)$	$-9(2)$	$10(1)$	$0(2)$
$\mathrm{C}(3)$	$47(2)$	$42(2)$	$30(2)$	$3(1)$	$8(1)$	$-1(2)$
$\mathrm{C}(4)$	$44(2)$	$36(2)$	$32(2)$	$-2(1)$	$6(1)$	$-7(2)$
$\mathrm{C}(5)$	$41(2)$	$30(2)$	$26(2)$	$-4(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(6)$	$45(2)$	$33(2)$	$32(2)$	$-2(1)$	$11(1)$	$-4(1)$
$\mathrm{C}(7)$	$42(2)$	$41(2)$	$41(2)$	$-6(2)$	$11(2)$	$-7(2)$
$\mathrm{C}(8)$	$33(2)$	$29(2)$	$31(2)$	$4(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(9)$	$33(2)$	$39(2)$	$25(2)$	$0(1)$	$8(1)$	$-3(1)$
$\mathrm{C}(10)$	$37(2)$	$45(2)$	$43(2)$	$7(2)$	$6(2)$	$1(2)$
$\mathrm{C}(11)$	$35(2)$	$82(3)$	$56(2)$	$20(2)$	$4(2)$	$9(2)$
$\mathrm{C}(12)$	$38(2)$	$90(3)$	$45(2)$	$5(2)$	$-2(2)$	$-19(2)$
$\mathrm{C}(13)$	$47(2)$	$65(3)$	$43(2)$	$-12(2)$	$7(2)$	$-20(2)$
$\mathrm{C}(14)$	$41(2)$	$43(2)$	$36(2)$	$-8(2)$	$9(2)$	$-7(2)$
$\mathrm{C}(15)$	$32(2)$	$26(2)$	$27(2)$	$-1(1)$	$7(1)$	$-2(1)$
$\mathrm{C}(16)$	$34(2)$	$36(2)$	$36(2)$	$1(1)$	$3(1)$	$3(1)$
$\mathrm{C}(17)$	$33(2)$	$35(2)$	$48(2)$	$-2(2)$	$6(2)$	$4(1)$
$\mathrm{C}(18)$	$36(2)$	$69(3)$	$63(3)$	$-6(2)$	$3(2)$	$-2(2)$
$\mathrm{C}(19)$	$34(2)$	$39(2)$	$50(2)$	$-10(2)$	$14(2)$	$-1(1)$
$\mathrm{C}(20)$	$35(2)$	$35(2)$	$32(2)$	$-11(1)$	$9(1)$	$-4(1)$
$\mathrm{C}(21)$	$45(2)$	$34(2)$	$23(2)$	$-6(1)$	$3(1)$	$-9(2)$
$\mathrm{C}(22)$	$73(3)$	$39(2)$	$26(2)$	$-3(1)$	$6(2)$	$-22(2)$
$\mathrm{C}(23)$	$80(3)$	$31(2)$	$30(2)$	$0(1)$	$-4(2)$	$-1(2)$
$\mathrm{C}(24)$	$65(2)$	$38(2)$	$30(2)$	$-5(2)$	$-3(2)$	$11(2)$
$\mathrm{C}(25)$	$48(2)$	$38(2)$	$26(2)$	$-2(1)$	$3(1)$	$7(2)$
$\mathrm{C}(26)$	$40(2)$	$28(2)$	$22(1)$	$-3(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(27)$	$29(2)$	$25(2)$	$29(2)$	$-2(1)$	$6(1)$	$-2(1)$
$\mathrm{C}(28)$	$48(2)$	$70(3)$	$33(2)$	$-10(2)$	$15(2)$	$-16(2)$
$\mathrm{C}(29)$	$45(2)$	$42(2)$	$42(2)$	$4(2)$	$15(2)$	$-6(2)$
$\mathrm{C}(30)$	$63(3)$	$55(2)$	$72(3)$	$-6(2)$	$35(2)$	$-4(2)$
$\mathrm{C}(31)$	$62(3)$	$77(3)$	$112(5)$	$6(3)$	$51(3)$	$4(3)$

$\mathrm{C}(32)$	$43(2)$	$84(4)$	$111(4)$	$34(3)$	$23(3)$	$0(2)$
$\mathrm{C}(33)$	$52(3)$	$81(3)$	$72(3)$	$20(3)$	$0(2)$	$-21(2)$
$\mathrm{C}(34)$	$47(2)$	$68(3)$	$49(2)$	$-1(2)$	$13(2)$	$-17(2)$
$\mathrm{N}(1)$	$33(1)$	$26(1)$	$27(1)$	$0(1)$	$6(1)$	$-1(1)$
$\mathrm{N}(2)$	$41(2)$	$44(2)$	$28(1)$	$-6(1)$	$11(1)$	$-12(1)$
$\mathrm{O}(1)$	$48(1)$	$26(1)$	$35(1)$	$2(1)$	$7(1)$	$2(1)$
$\mathrm{O}(2)$	$41(1)$	$42(1)$	$37(1)$	$-5(1)$	$13(1)$	$2(1)$
$\mathrm{S}(1)$	$38(1)$	$26(1)$	$28(1)$	$-2(1)$	$8(1)$	$1(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 283.

	X	y	z	U(eq)
H(1A)	751	5998	-1292	78
H(1B)	548	7046	-975	78
H(1C)	383	5913	-730	78
H(3)	1449	7619	-573	47
H(4)	2169	7585	337	45
H(6)	1639	4994	1197	43
H(7)	918	5024	272	49
H(8A)	2621	8874	1813	38
H(8B)	2839	8155	1256	38
H(10)	3620	6924	2247	51
H(11)	4448	7309	2860	70
$\mathrm{H}(12)$	4686	9050	3158	71
H(13)	4107	10406	2824	62
H(14)	3277	10029	2233	48
H(15)	2000	6769	2450	34
H(16A)	1910	8949	2048	43
H(16B)	1609	8008	1581	43

$\mathrm{H}(18 \mathrm{~A})$	773	7839	1757	68
$\mathrm{H}(18 \mathrm{~B})$	628	8114	2540	68
$\mathrm{H}(19 \mathrm{~A})$	1276	8630	3543	48
$\mathrm{H}(19 B)$	1634	9453	3247	48
$\mathrm{H}(20)$	2190	8557	4066	41
$\mathrm{H}(22)$	2223	5298	4772	56
$\mathrm{H}(23)$	3018	4507	4820	59
$\mathrm{H}(24)$	3563	5124	4123	56
$\mathrm{H}(25)$	3337	6600	3363	46
$\mathrm{H}(27)$	2666	8360	3216	33
H(28A)	1710	7910	4799	59
$\mathrm{H}(28 B)$	1802	6686	4973	59
$\mathrm{H}(30)$	970	7637	5374	72
H(31)	105	7325	5187	95
H(32)	-314	6491	4128	94
H(33)	140	6007	3263	84
H(34)	1009	6322	3451	65
H(1S1)	264	76	3283	87
H(1S2)	830	525	3488	87
H(1S3)	359	1297	3476	87
H(2S1)	648	951	4681	80
H(2S2)	736	-267	4535	80
H(3S1)	-268	623	4415	68
H(3S2)	-151	-607	4355	68

Table 6. Torsion angles [${ }^{\circ}$] for $\mathbf{2 8 3}$

$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$1.4(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-177.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-0.6(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-0.6(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$177.5(3)$

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$0.9(5)$
$\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-177.2(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$-1.1(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$177.7(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$0.0(5)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$43.9(4)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$-140.4(3)$
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$1.7(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$177.4(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$-0.8(6)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$-0.8(6)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$1.4(6)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-1.1(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$-177.0(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$-0.5(6)$
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$176.5(3)$
$\mathrm{C}(27)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-58.5(3)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-120.1(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(19)$	$61.5(4)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)$	$130.4(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)$	$-51.3(4)$
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{N}(2)$	$-81.8(3)$
$\mathrm{C}(17)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(27)$	$38.0(4)$
$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$-2.9(3)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$-177.5(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$2.5(5)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$-2.3(5)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$0.6(5)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$0.8(5)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$-0.5(5)$
$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$-179.3(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$178.8(3)$
$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)$	$-1.2(5)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)$	$-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(15)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(15)$	$-173)$

$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(20)$	$-161.3(3)$
$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(20)$	$19.7(3)$
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(27)-\mathrm{C}(26)$	$-75.1(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(27)-\mathrm{C}(26)$	$158.0(3)$
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(27)-\mathrm{C}(20)$	$172.7(2)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(27)-\mathrm{C}(20)$	$45.8(3)$
$\mathrm{N}(2)-\mathrm{C}(20)-\mathrm{C}(27)-\mathrm{C}(26)$	$-29.2(3)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(27)-\mathrm{C}(26)$	$-154.9(3)$
$\mathrm{N}(2)-\mathrm{C}(20)-\mathrm{C}(27)-\mathrm{C}(15)$	$89.4(3)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(27)-\mathrm{C}(15)$	$-36.3(4)$
$\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(34)$	$15.5(6)$
$\mathrm{N}(2)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$-166.8(4)$
$\mathrm{C}(34)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$0.2(7)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$-177.6(4)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$0.2(8)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$-0.5(8)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$0.5(8)$
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(33)$	$-0.2(7)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(33)$	$177.4(4)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(29)$	$-0.1(7)$
$\mathrm{C}(1 \mathrm{~S})-\mathrm{C}(2 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S})-\mathrm{C}(3 \mathrm{~S}) \# 1$	$-174.0(9)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(15)$	$105.1(3)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{S}(1)$	$-69.7(4)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(8)$	$-102.1(3)$
$\mathrm{C}(27)-\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(8)$	$51.8(3)$
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{S}(1)$	$-74.5(3)$
$\mathrm{C}(27)-\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{S}(1)$	$-101.5(3)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(28)$	$132.2(2)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(28)$	$31.0(5)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(20)$	$-149.0(3)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(20)$	$162.2(3)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{C}(21)$	$-17.9(3)$
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{N}(2)-\mathrm{C}(20)$	$-\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{C}(21)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{C}(28)$	$101.8(4)$
	$1573)$
C	

$\mathrm{C}(27)-\mathrm{C}(20)-\mathrm{N}(2)-\mathrm{C}(28)$	$162.5(3)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	$155.1(2)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	$-51.3(2)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$25.7(3)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	$179.2(2)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	$-89.7(2)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(5)$	$63.8(2)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(1)$	$-2.2(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(1)$	$179.7(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(2)$	$126.9(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{O}(2)$	$-51.1(3)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{N}(1)$	$-118.2(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{N}(1)$	$63.7(3)$

Symmetry transformations used to generate equivalent atoms:
\#1 -x,-y,-z+1

3. Chapter Three: Efforts Towards the Total Synthesis of Malagashanine Using Our Cascade Cyclization Reaction Sequence

3.1. First Generation Approach: Accessing Malagashanine via a Knoevenagel Condensation and a Tandem Hydrogenation Reaction

3.1.1. Retrosynthetic Analysis

With an efficient method in hand to construct the stereocenters at $\mathrm{C}(2), \mathrm{C}(3)$, and $C(7)$ in the malagashanine core, our focus turned to the development of a concise strategy for the total synthesis of malagashanine. Our retrosynthetic analysis is outlined in Scheme 3.1.

Scheme 3.1 Overall synthetic strategy for the construction of malagashanine.

Our approach relied on the synthesis of α, β-unsaturated ketoester 290, which would allow the construction of the E ring and the installation of the $\mathrm{C}(19)$ and (20) stereocenter via an ambitious cascade sequence (Scheme 3.2).

Scheme 3.2 Proposed tandem reaction to access malagashanine from α, β-unsaturated ketoester 290.

We envisioned that compound 290 could first undergo hydrogenation from the most accessible face of the olefin to generate the corresponding saturated ketoester 291 with the requisite stereochemistry at $\mathrm{C}(15)$. Carrying out this transformation under acidic conditions would allow the deprotection of the masked alcohol, which would then undergo an intramolecular hemiacetal formation with the more electrophilic ketone carbonyl, followed by in situ dehydration to produce α, β-unsaturated ester 192. A second in situ hydrogenation reaction would set the stereocenters at $\mathrm{C}(19)$ and $\mathrm{C}(20)$ to afford 293.

In turn, α, β-unsaturated ketoester $\mathbf{2 9 0}$ would be accessed through a Knoevonagel condensation ${ }^{51}$ of ketone 295 with ketoester 296 (Scheme 3.1). Compound 295 would be
constructed from tetracyclic core 297 using our cascade annulation reaction. ${ }^{52}$ Consequently, this strategy required us to extend the scope of our methodology by including an extra degree of olefin substitution in N -tosyl, O -TMS-aminol 298, in order to install the fourth stereocenter at $\mathrm{C}(16)$. At the onset of our investigation, we predicted that the cyclization of Z-olefin isomer N-tosyl, O-TMS-aminol 298 would undergo cyclization via a chair transition (vide infra) to produce the requisite stereochemistry at this carbon center. Consequently, compound 298 was synthesized by Dr. Boudet in our laboratory and subjected to our standard cyclization reaction conditions.

3.1.2. Initial Approach to Incorporate a Suitable C(16)-Substituent

Treatment of compound $\mathbf{2 9 8}$ with the previously developed cyclization conditions produced tetracyclic amine $\mathbf{3 0 0}$ as a single diastereomer (Scheme 3.3). The general structure of $\mathbf{3 0 0}$ was assigned based on COSY and HMQC experiments. We identified compound $\mathbf{3 0 0}$ as the $\mathrm{C}(16)$-epimer of the desired tetracycle using NOESY experiments, which revealed key correlations between H_{k} and proton signals H_{b}, H_{e} and H_{i}, thus indicating that all four protons were located on the same face of the D-ring.

Scheme 3.3 Cyclization of Z-isomer 298 and structural assignment of the product $\mathbf{3 0 0}$.

Despite obtaining the undesired epimer 300, the exquisite diastereoselectivity observed in the transformation was very promising. We reasoned that the intermediate iminium ion underwent cyclization exclusively through boat transition state 301 (Scheme 3.4). The desired tetracycle 302, which would have been generated via the corresponding Z-chair transition state 303, was never observed. Consequently, we reasoned that the desired core 302 should be accessible from the E-olefin isomer N-tosyl- O-TMS-aminol 304, as long as the intermediate iminium ion also underwent cyclization through boat transition state 305.

Scheme 3.4 Rationale for the observed stereochemical outcome.

3.1.3. Revised Approach to Incorporate a Suitable C(16)-Substituent: Synthesis of \boldsymbol{E}-Olefin Isomer \boldsymbol{N}-Tosyl- \boldsymbol{O}-TMS-Aminol 304

The synthesis of N -tosyl, O -TMS-aminol 304 began with conjugate addition of tributylstannylcuprate ${ }^{53}$ to known α, β-unsaturated alkynylester 307, followed by kinetic protonation of the intermediate enolate with methanol at $-78{ }^{\circ} \mathrm{C}$ to generate the corresponding of E-olefin 308 in 83% yield (Scheme 3.5). Reduction of the ester with DIBAL-H and treatment of the ensuing alcohol with TBSCl and imidazole produced silyl ether 309 in 95% yield. Tin-iodine exchange using NIS ${ }^{54}$ proceeded in 94% yield, followed by deprotection of the THP group with anhydrous magnesium bromide to afford alcohol $\mathbf{3 1 0}$ in 83% yield. Compound $\mathbf{3 1 0}$ was treated with Dess-Martin periodinane to produce a highly labile β, γ-unsaturated aldehyde intermediate, which was immediately subjected to a Pinnick oxidation ${ }^{55}$ to afford the desired β, γ-unsaturated acid 311 in 95% yield over two steps.

Scheme 3.5 Synthesis of N -tosyl, O -TMS-aminol 304.

Negishi cross-coupling of compound $\mathbf{3 1 1}$ with the allyl zinc reagent generated in situ from (trimethylsilyl)-methyl magnesium chloride produced the desired allylsilane in 66% yield. ${ }^{56}$ Conversion of 312 to the corresponding mixed anhydride with isobutyl chloroformate and N-methyl morpholine, followed by treatment with the lithium anion of tosylamine 211 produced a disappointing 31% of compound 311. Regardless, suffcient amounts of $\mathbf{3 1 1}$ were synthesized and subjected to our standard conditions to afford $\mathbf{3 0 4}$ in 77% yield.

3.1.4. Cyclization of N -Tosyl- O -TMS-Aminol 304

With N-tosyl, O-TMS-aminol 304 in hand, treatment with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $0{ }^{\circ} \mathrm{C}$ produced surprisingly low yields of the desired tetracyclic amine 302, along with several other unidentified side products. Switching to the milder Lewis acid $\mathrm{BF}_{3} \cdot \mathrm{THF}$ increased the yield of $\mathbf{3 1 4}$ to 25% and also allowed the isolation of tetrahydrocarboline $\mathbf{3 1 4}$ in 28% yield (Scheme 3.6).

25\%

314
28\%

Scheme 3.6 Cyclization of N-tosyl, O-TMS-aminol 304 to tetracyclic amine 302.

Compound 302 was highly acid sensitive and decomposed readily in CDCl_{3}, which precluded the initial use of long 2D NMR experiments to assert the relative
stereochemical configuration at $\mathrm{C}(16)$. However, the structure of compound $\mathbf{3 0 2}$ was assigned based on comparisons of its ${ }^{1} \mathrm{H}$ NMR spectrum to that of its $\mathrm{C}(16)$-epimer $\mathbf{3 0 0}$ (Figure 3.1). More specifically, proton H_{b} and its neighboring proton were not coupled to each other in compound 302, while on $\mathrm{C}(16)$-epimer 300 the equivalent protons displayed a coupling constant of 5.0 Hz . The lack of coupling in $\mathbf{3 0 2}$ suggested that the dihedral angle between H_{b} and its neighbor was close to 90°, consistent with the assigned stereochemistry.

302

300

Figure 3.1 Structural assignment of tetracyclic amine 302.

The formation of tetrahydrocarboline 314 can be explained through the mechanism shown in Scheme 3.7, in which the tert-butyl-dimethylsilyloxy moeity first engages the Lewis acid. This is then followed by elimination of the tert-butyldimethylsilyloxy group, possibly promoted by the formation of a highly stable β-silyl allylic cation intermediate. Once compound $\mathbf{3 1 5}$ forms, it can eventually undergo spiroindolium fomation, followed by 1,2-alkyl migration and rearomatization to produce 314.

Scheme 3.7 Mechanistic rationale for the formation of tetrahydrocarboline 314.

The previous results, combined with the observed lability of the desired compound 302, led us to rethink our functional group strategy. Consequently, we decided to replace the tert-butyl-dimethylsilyl protected substrate $\mathbf{3 0 4}$ for compounds $\mathbf{3 1 6}$ and 317 with the more robust benzyl and tert-butyl-diphenylsilyl groups.

3.1.5. Synthesis of N-Tosyl- O-TMS-Aminols 316 and 317 Containing the

 Benzyl and TBDPS Protecting Groups RespectivelyDuring the synthesis of N-Tosyl- O-TMS-Aminol 316, we devised a more concise route to the requisite iodo-alcohol 318 (Scheme 3.8), starting from the corresponding propargyl ether 319. This would reduce the overall number of steps in the sequence by three.

Scheme 3.8 Second generation synthesis of iodo-alcohol 318.

The synthesis of iodo-alcohol 318 began with the addition of known alkyne 319 to oxirane, ${ }^{57}$ which produced homopropargylic alcohol $\mathbf{3 2 0}$ in 73% yield. This was followed by alkoxy-directed hydrozirconation ${ }^{58}$ of 320, and NIS quench of the intermediate vinylzirconocene to afford iodo-alcohol $\mathbf{3 1 8}$ in 42% yield. Regiosiomer 321 was also isolated in 17%. The ratio of desired product $\mathbf{3 1 8}$ to regioisomer $\mathbf{3 2 1}$ was increased to $\sim 6: 1$ when the reaction was carried out at $-5^{\circ} \mathrm{C}$ instead of $25^{\circ} \mathrm{C}$. At temperatures lower than $-5^{\circ} \mathrm{C}$, the initial hydrozirconation was prohibitively slow.

With 318 in hand, we carried out a Dess-Martin oxidation to produce the corresponding β, γ-unsaturated aldehyde, which was used directly in the subsequent Pinnick oxidation to generate acid 322 in nearly quantitative yield over two steps (Scheme 3.9). Negishi cross-coupling with the allylzinc reagent generated in situ from (trimethylsilyl)-methyl magnesium chloride initially afforded the required tri-substituted acid 323 in good yield, but as we gradually increased the scale of the reaction, large amounts of $\alpha, \beta, \gamma, \delta$-unsaturated acids 324 and 325 were produced. During the course of our optimization, we observed that the reaction mixture underwent a significant exotherm during the addition of the palladium catalyst. Fearing that this sharp increase in temperature was favoring the formation of elimination products like 324 and $\mathbf{3 2 5}$, we carried out the reaction at $0{ }^{\circ} \mathrm{C}$. Gratifyingly, this precaution solved the problem and allowed for the synthesis of multigram quantities of acid $\mathbf{3 2 3}$.

Scheme 3.9 Synthesis of β, γ-unsaturated acid 323.

Treatment of acid $\mathbf{3 2 3}$ with isobutyl chloroformate and subsequent reaction with the lithium anion of 211 at $-78{ }^{\circ} \mathrm{C}$ generated N-tosylamide $\mathbf{3 2 6}$ in only $20-30 \%$ yield (Scheme 3.10), along with equimolar amounts of compound 327, as well as large amounts of ester $\mathbf{3 2 8}$ and unreacted staring material $\mathbf{3 2 3}$.

Scheme 3.10 Initial attempts to couple acid $\mathbf{3 2 3}$ and tosylamide 211.

Compound $\mathbf{3 2 7}$ was produced via nucleophilic attack of mixed anhydride $\mathbf{3 2 9}$ at carbonyl carbon C_{a}. Additionally, the formation of ester $\mathbf{3 2 8}$ (identified by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum to that of the fully characterized TBDMS-protected analog)
suggested that isobutoxide (330) was competing as a nucleophile with the tosylamide anion for the available mixed anhydride 329.

At this stage, we decided to employ the more sterically congested mixed anhydride 331, ${ }^{47 a}$ the bulk of which was expected to preclude nucleophilic attack at C_{a} (Scheme 3.11). This change indeed produced the desired tosylamide 326 in 86% yield and completely suppressed the formation of regioisomer 332, thus indicating that the nucleophilic attack occurred exclusively at C_{b}.

Scheme 3.11 Improved procedure for the synthesis of N-tosylamide 326.

With tosylamide 326 in hand, reduction with DIBAL-H and trapping with TMSimidazole produced the corresponding N-tosyl, O-TMS-aminol 316 in 82% yield (Scheme 3.12).

Scheme 3.12 Synthesis of N-tosyl, O-TMS-aminol 316.

The synthesis of N-tosyl- O-TMS-aminol 317 was carried out in an analogous manner to that of N-tosyl- O-TMS-aminol 316, as indicated in Scheme 3.13. The reduction of amide 333 with DIBAL-H and subsequent trapping with trimethylsilyl imidazole was problematic. Compound $\mathbf{3 1 7}$ decomposed extensively during the reaction work-up, producing large amounts of aldehyde 334 in the process. To circumvent the problem, a one-pot reduction/trapping/cyclization protocol was employed (vida infra).

Scheme 3.13 Synthesis of N-tosyl- O-TMS-aminol 317.

3.1.6. Synthesis of Malagashanine Cores 340 and 341 via Cyclization of N -Tosyl-O-TMS-Aminols 316 and 317 Respectively

With N-tosyl- O-TMS-aminol 316 at hand, the cyclization reaction was carried out using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ at $0{ }^{\circ} \mathrm{C}$ to afford tetracyclic amine $\mathbf{3 4 0}$ in 80% yield (Scheme 3.14). As mentioned earlier, N-tosyl- O-TMS-aminol 317 was cyclized in situ (following reduction with DIBAL-H and trapping with trimethylsilyl imidazole), which generated the desired product 341 in 51% yield.

Scheme 3.14 Cyclization of N-Tosyl- O-TMS-Aminols 316 and 317.

The general structures of tetracyclic amines $\mathbf{3 4 0}$ and $\mathbf{3 4 1}$ were established by 1D and 2D NMR experiments. The relative stereochemistry at $C(16)$ was established by analysis of the coupling constant of the indoline methine proton H_{2} with H_{16}, which were 1.2 and 0 Hz for 340 and 341, respectively. Indeed, using benzyl and TBDPS protecting groups in place of the more labile TBDMS group had a significant effect on the efficiency of the transformation.

3.1.7. Synthesis of Ketone $\mathbf{3 4 2}$ for Knoevenagel Condensation

The synthesis of ketone $\mathbf{3 4 2}$ began with treatment of tetracyclic amine $\mathbf{3 4 0}$ with OsO_{4} and NMO to afford $\mathbf{3 4 3}$ as a 3:1 inseparable mixture of diols in 67% yield (Scheme 3.15). ${ }^{59}$ We also isolated 10% of de-benzylated product 344 , which presumably formed under the oxidative reaction conditions via N-oxide 345, ${ }^{60}$ which could undergo subsequent elimination of hydroxide to produce iminium ion 345, followed by hydrolysis to afford 344. With 344 in hand, treatment with NaIO_{4} afforded the corresponding ketone 342 in 79% yield. ${ }^{20}$

Scheme 3.15 Synthesis of ketone 342.

The previous route was eventually replaced with a more convenient one-pot protocol in which tetracyclic amine $\mathbf{3 4 0}$ was treated with OsO_{4} in the presence of NaIO_{4} and 2,6-lutidine to afford ketone $\mathbf{3 4 2}$ in 59\% yield (Scheme 3.16).

Scheme 3.16 Improved synthesis of ketone 342.

3.1.8. Knoevenagel Condensation of Ketone 342 and Ketoester 296

The first attempts to carry out the Knoevenagel condensation of ketone $\mathbf{3 4 2}$ and ketoester 296 entailed standard conditions with $\mathrm{NH}_{4} \mathrm{OAc}$ and acetic acid in refluxing benzene. ${ }^{51 \mathrm{~b}}$ However, the desired product was never observed. Instead pyridine 347 was isolated in 52\% yield (Scheme 3.17).

342

52%

Scheme 3.17 Early attempts to condense ketone 342 and ketoester 296.

The structure of pyridine 347 was determined by 1D and 2D NMR experiments. Irradiation of H_{a} produced enhancements of 3.7% and 3.0% on H_{f} and H_{h}, respectively, which indicated that all three protons were located on the same face of the D-ring.

Additionally, the general structure was supported by NOE's between H_{a} and H_{P}, and H_{P} and the ester methyl group.

A possible explanation for the formation of pyridine 347 could involve initial formation of iminium ion 348, followed by tautomerization to enaminium 349 and then β-elimination of benzyl alcohol to produce α, β-unsaturated iminium ion 350 (Scheme 3.18). At this stage, Michael addition of ketoester 296 would be followed by intramolecular imine formation to generate $\mathbf{3 5 1}$, which could then undergo air oxidation to produce pyridine 347 .

Scheme 3.18 Possible mechanism for the formation of pyridine 347.

At this stage, we switched to Lehnert conditions, ${ }^{51 d, e}$ which were known to work more efficiently in Knoevenagel condensations involving sterically congested ketones like 342 (Scheme 3.19). However, the combination of TiCl_{4} with different amine bases ($\mathrm{Et}_{3} \mathrm{~N}$ and pyridine), solvents (THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CCl}_{4}$), as well as the use of various addition
protocols, mainly led to the recovery of unreacted starting material. When higher temperatures were employed we observed significant decomposition as well as the formation of side products, the major component of which was the α, β-unsaturated ketone 354.

Scheme 3.19 Attempts to condense ketone 342 and β-ketoester 296 under Lehnert conditions.

Our observations indicated that under Knoevenagel condensation conditions, ketone 342 was not directly reacting with ketoester 296. Moreover, when harsher reaction conditions were utilized, β-elimination of benzyl alcohol was occurring. Conformational studies with molecular models suggested that the sterically congested environment around the ketone carbonyl might be preventing large nucleophiles from adopting the necessary Bürgi-Dunitz trajectory. This notion was supported by NOESY experiments with 342 (Figure 3.2), which showed interactions between methine proton H_{a} and the ethereal methylene protons, as well as with H_{f} and H_{k}. This indicated that the D-ring existed in a half-chair conformation, with the ethereal methylene carbon projecting nearly perpendicularly from the plane of the carbonyl. A nucleophile approaching from the top face of the molecule (still the most accessible face) would experience large destabilizing steric interactions. In light of these observations, an alternate strategy to malagashanine was pursued.

Figure 3.2 NOE experiments with $\mathbf{3 4 2}$ suggest that the carbonyl D-ring exists in a half-chair conformation.

3.2. Second Generation Approach: Accessing Malagashanine via a Key Negishi Cross-Coupling and a Tandem Hydrogenation Reaction

3.2.1. Retrosynthetic Analysis

Our second approach to malagashanine incorporated a cross-coupling reaction between triflate $\mathbf{3 5 5}$ and vinyliodide $\mathbf{3 5 6}$ to generate the corresponding product $\mathbf{3 5 7}$ (Scheme 3.20). Thermolysis of $\mathbf{3 5 7}$ in the presence of methanol would afford key α, β-unsaturated ketone 290, which would then be converted into malagashanine (vide supra). In turn, triflate $\mathbf{3 5 5}$ would be accessed via ketone 342.

Scheme 3.20 Second generation approach to malagashanine.

3.2.2. Synthesis of Kinetic Enol Triflate $\mathbf{3 5 5}$ for Key Negishi Cross-Coupling

 with 356Subjecting ketone $\mathbf{3 4 2}$ to standard triflating conditions with NaHMDS ${ }^{61}$ in THF at $-78{ }^{\circ} \mathrm{C}$, followed by trapping of the resulting enolate with N, N-di-triflylaniline only produced thermodynamic enol triflate $\mathbf{3 5 9}$ (Scheme 3.21). On the other hand, adding $\mathbf{3 4 2}$ to a solution of NaHMDS at $-78^{\circ} \mathrm{C}$ afforded the desired kinetic enol triflate $\mathbf{3 5 5}$, albeit in only 13% yield, along with 26% of thermodynamic enol triflate 359 . Similar results were also observed with KHMDS.

Scheme 3.21 Early attempts to synthesize kinetic enol triflate $\mathbf{3 5 5}$ using NaHMDS.

Switching to lithium bases 62 like LiHMDS produced ${ }^{63}$ thermodynamic enol triflate 359, along with significant amounts of compound 360, which was tentatively assigned as either the $\mathrm{C}(3)$ or the $\mathrm{C}(16)$ epimer of $\mathbf{3 4 2}$ based on HRMS and NMR data (Scheme 3.22). Using the more hindered base LiTMP changed the product distribution in favor of compound 360. Surprisingly, the kinetic enol triflate was never observed. ${ }^{64}$ Additionally, employing a more reactive triflating reagent (361) did not have a significant effect on the reaction.

359
Major

360 (Tentative structure)
Major

Scheme 3.22 Early attempts to synthesize kinetic enol triflate $\mathbf{3 5 5}$ using lithium bases.

A possible explanation for the formation of a $\mathrm{C}(3)$ epimeric product entail a retroMichael reaction of kinetic enolate $\mathbf{3 6 2}$ to open the strained trans-pyrrolidine moeity and generate α, β-unsaturated ketone 363 (Scheme 3.23). Michael addition of the tosylamide anion could then generate the more stable cis-pyrrolidine 364 after workup. Additionally,
quenching of the thermodynamic enolate $\mathbf{3 6 5}$ during work-up could explain the formation of a C(16) epimer $\mathbf{3 6 6}$.

Scheme 3.23 Mechanistic rationale for the formation of C(3)/C(16) epimers of ketone 342.

In light of the suspected epimerization of starting material under the reaction conditions, the stereochemical integrity of triflates $\mathbf{3 5 5}$ and $\mathbf{3 5 9}$ was checked using 2D NOE experiments (Figure 3.3). NOESY correlations in kinetic enol triflate $\mathbf{3 5 5}$ between H_{j} and protons H_{d} and H_{b} indicated that the stereochemistry at $\mathrm{C}(2)$ and $\mathrm{C}(3)$ was conserved. Additionally, correlations between Hb and one of the benzylic ether protons showed that the stereochemistry at $C(16)$ had not changed. Similarly, NOESY experiments corroborated the structure of thermodynamic enol triflate $\mathbf{3 5 9}$.

Figure 3.3 NOESY correlations of triflates $\mathbf{3 5 5}$ and $\mathbf{3 5 9}$.

The formation of the thermodynamic enol triflate $\mathbf{5 9}$ under the reaction conditions was surprising considering how hindered the $\mathrm{C}(16)$ proton was in comparison to the axial $\mathrm{C}(14)$ proton. However, we thought of the possibility that the indoline nitrogen could be coordinating to the metal counterion, thus directing the deprotonation at $\mathrm{C}(16)$ and favoring the formation of the thermodynamic enolate $\mathbf{3 6 5}$ (Scheme 3.24). To test our hypothesis, we would need to employ the more hindered ketone 368 (vide infra), which was expected to decrease the directing effect of the indoline nitrogen via destabilizing steric interactions caused by the bulkier tert-butyldiphenylsilyl group.

Scheme 3.24 Possible rationale for the formation of thermodynamic enolate $\mathbf{3 6 5}$.

3.2.3. Synthesis of the More Hindered $\boldsymbol{\beta}$-tert-Butyldiphenylsiloxy Ketone

368

Our initial approach to the synthesis of ketone $\mathbf{3 6 8}$ (Scheme 3.25) relied on the same one-pot procedure employed in the conversion of $\mathbf{3 4 0}$ to $\mathbf{3 4 2}$. However, the reaction produced only trace amounts of $\mathbf{3 6 8}$ along with debenzylated ketone 369 . Additionally, starting material was also recovered.

Scheme 3.25 Initial attempts to synthesize ketone 368.

Switching to a two-step procedure revealed that the intermediate dihydroxylation step was proceeding very slowly. Addition of stoichiometric amounts of $\mathrm{OsO}_{4}{ }^{20}$ in the presence of DMAP pushed the reaction to completion, but oddly, did not afford significant amounts of diol 370 after hydrolytic workup. Moreover, a conspicuous unidentified compound was being isolated in large amounts after purification, which we tentatively assigned as osmate ester $\mathbf{3 7 1}$ based on the similarities of its ${ }^{1} \mathrm{H}$ NMR spectrum to that of diol $\mathbf{3 7 0}$ (Scheme 3.26). At this stage, we hypothesized that the large bulk of the TBDPS group might be responsible for the failure of osmate ester $\mathbf{3 7 1}$ to undergo hydrolysis, even after treatment with sodium sulfite solution. Employing a strong reductive work-up using NaBH_{4} in methanol at $0{ }^{\circ} \mathrm{C}$, indeed produced the desired diol
$\mathbf{3 7 0}$ as an inseparable 1.3:1 mixture of epimers in 68%. With $\mathbf{3 7 0}$ in hand, treatment with NaIO_{4} afforded ketone 368 in 78% yield.

Scheme 3.26 Improved synthesis of ketone 368.

3.2.4. Synthesis of Kinetic Enol Triflate 372 and Key Negishi CrossCoupling with 356

Addition of $\mathbf{3 6 8}$ to a solution of either LiHMDS or LDA at $-78^{\circ} \mathrm{C}$ consistently allowed the recovery of starting material (Scheme 3.27). In an effort to increase the reactivity of the base, additives like TMEDA and DMPU were used to sequester the lithium counterion, but the results were equally disappointing. Moreover, large amounts of α, β-unsaturated ketone 354 were isolated when an excess of base was utilized.

368

2-3 equiv LDA

354

Not observed
Major

Starting Material

Major
Not observed

Scheme 3.27 Attempts to synthesize kinetic enol triflate $\mathbf{3 7 2}$ using lithium bases.

Switching the counterion to potassium produced the best results, yielding 33% of the desired kinetic enol triflate 372, along with 17% of the unsaturated kinetic enol triflate $\mathbf{3 7 3}$ and 3% of the thermodynamic enol triflate $\mathbf{3 7 4}$ (Scheme 3.28). Carrying out the reaction at $-100{ }^{\circ} \mathrm{C}$ afforded lower yields of $\mathbf{3 7 2}$ and did not improve the product distribution.

373

Scheme 3.28 Synthesis of $\mathbf{3 7 2}$ using KHMDS and Comins' reagent (361).

With triflate 372 in hand, the key cross-coupling reaction was undertaken (Scheme 3.29). Treatment of $\mathbf{3 7 2}$ with the zinc reagent of vinyliodide $\mathbf{3 5 6}^{65}$ in the presence of $\mathrm{Pd}(\mathrm{dba})_{2}$ and tri(2-furyl)phosphine (TFP) in refluxing THF afforded 15% of the desired product $\mathbf{3 7 5}$ along with 19% recovered starting material.

372

Scheme 3.29 Negishi cross-coupling of triflate 372 and vinyliodide 356.

Despite our initial success in the construction of the desired product 375, we recognized that the improvement to the synthesis of triflate $\mathbf{3 7 2}$ by means of the bulkier tert-butyldiphenylsilylether was marginal at best, and was not amenable to large-scale synthesis. This limitation was significant, which prompted us to devise a more efficient approach to malagashanine.

3.3. Third Generation Approach: Accessing Malagashanine via a Formal Olefin Hydroacylation Reaction and a Late-Stage Hydrogenation

3.3.1. Retrosynthetic Analysis

The difficulties of using ketones $\mathbf{3 4 2}$ and $\mathbf{3 6 8}$ as practical intermediates in the synthesis of the E ring of malagashanine led us to develop a third generation approach to the molecule (Scheme 30). Although we would still rely on a late stage hydrogenation reaction of unsaturated ester $\mathbf{3 7 6}$ to set the requisite stereochemistry at $\mathrm{C}(19)$ and $\mathrm{C}(20)$, compound $\mathbf{3 7 6}$ would now be synthesized from pyran 377 . In turn, compound 377 would be accessed from core 341 via a formal olefin hydroacylation reaction.

Scheme 3.30 Third generation approach to malagashanine.

3.3.2. Synthesis of Pyran 377

The synthesis of the E ring began with the formal hydroacylation of the olefin using a method developed by Knochel and co-workers. ${ }^{66}$ Hydroboration of 341 with 9-BBN set the stereocenter at $\mathrm{C}(15)$ and produced the corresponding alkyl-borane species 378 (Scheme 3.31). In order to functionalize $C(20)$ by reaction with acetyl chloride, it was first necessary to transmetallate the alkyl-boron species to a more suitable metal like copper. This was accomplished by first exchanging the boron species with zinc, which then facilitated the subsequent exchange with copper to form the desired intermediate 379. Treatment with acetyl chloride at $-78^{\circ} \mathrm{C}$ afforded ketone $\mathbf{3 8 0}$ in 64% yield and $10: 1$ diastereoselectivity. Interestingly, Dr. Boudet observed the inherent diastereoselectivity of the initial hydroboration reaction to be $c a$. 2.5:1, which suggests that the transmetallation steps involve a kinetic resolution.

Scheme 3.31 Formal hydroacylation of olefin 341.

The relative stereochemistry at $\mathrm{C}(15)$ was indirectly determined through 2D NMR experiments of pyran $\mathbf{3 7 7}$ (vide infra). With ketone $\mathbf{3 8 0}$ in hand, hydrogenolysis of the benzyl group over palladium on carbon initially produced irreproducible yields of indoline 383 (Scheme 3.32). ${ }^{67}$ However, during the course of our optimizations we observed that the product $\mathbf{3 8 3}$ would slowly decompose over the long reaction times. The problem was circumvented with the use of stoichiometric amounts of palladium on carbon, which allowed the reaction to reach completion within 4 hours. With this new procedure, indoline $\mathbf{3 8 3}$ was generated consistently in 80% yield.

Scheme 3.32 Hydrogenolysis of N -benzyl indoline 380.

With indoline $\mathbf{3 8 3}$ in hand, hydrolysis of the silyl ether was accomplished using with HCl in methanol at $70^{\circ} \mathrm{C}$, which afforded a mixture of acetal $\mathbf{3 8 4}$ and hemiacteal 385 in 90% overall yield (Scheme 3.33).

383
$\xrightarrow[70^{\circ} \mathrm{C}]{1.25 \mathrm{M} \mathrm{HCl} \text { in } \mathrm{CH}_{3} \mathrm{OH}}$

Scheme 3.33 Hydrolysis of silyl ether 383.

Hemiacetal 384 was also accessed from tetracyclic amine $\mathbf{3 4 0}$ as shown in Scheme 3.34, which reduced the overall synthetic sequence by one step.

Scheme 3.34 Conversion of tetracyclic amine 340 to hemiacetal 384.

Hemiacetal 384 could be converted into the desired pyran 377 via dehydration in a Dean-Stark trap, or by heating in anhydrous dioxane at $110^{\circ} \mathrm{C}$ in the presence of PTSA and activated molecular sieves (Scheme 3.35). Both methods could generate $\mathbf{3 7 7}$ in over 90% yield, but the latter method was preferred because it required shorter reaction times. The structure of $\mathbf{3 7 7}$ was assigned based on COSY, HMQC and NOESY experiments.

384

377
80-95\%

Scheme 3.35 Synthesis and structural assignment of pyran 377.

3.3.3. Synthesis of Ester $\mathbf{3 7 6}$ for Key Hydrogenation Reaction

The next step in the synthetic sequence required the installation of a formyl group at $\mathrm{C}(20)$ of pyran 377 , which would be subsequently oxidized to generate the requisite carboxylic acid. To construct aldehyde 387, we first installed the acetyl group on indoline 377, required for malagashanine, and then carried out a Vilsmeier formylation ${ }^{68}$ on $\mathbf{3 8 8}$ (Scheme 3.36). However, despite extensive optimization, the yields were low and irreproducible. Additionally, the desired product $\mathbf{3 8 7}$ seemed to be undergoing a second transformation in situ to afford side product 389.

377

388
90-95\%

387
Irreproducible yields

Scheme 3.36 Initial attempts to synthesize aldehyde 387.

Compound 389 could be formed via nucleophilic attack of Vilsmeier reagent (390) by amide 391 to generate intermediate 392 (Scheme 3.37), followed by addition of chloride anion and elimination of dimethylformamide to afford indolium salt 393. Loss of hydrogen chloride would afford enamine 394, which could attack a second equivalent of Vilsmeier reagent (390) and undergo subsequent elimination of hydrogen chloride to generate α, β,-unsaturated chloroiminium ion 395. Hydrolysis of 395 during basic workup would produce compound 389.

Scheme 3.37 Mechanistic rationale for the formation of side product $\mathbf{3 8 9}$.

In order to circumvent the formation of $\mathbf{3 8 9}$, it was necessary to protect the indoline moiety by installing a more electron deficient acyl group at the nitrogen atom. Treating pyran 377 with trifluoroacetic anhydride in the presence of pyridine at $-78{ }^{\circ} \mathrm{C}$ afforded the corresponding trifluoroacetamide 397 in 95% yield, which was subjected to the Vilsmeier formylation conditions to afford the desired aldehyde with no detectable
side products (Scheme 3.38). Using a more basic work-up procedure allowed the in situ removal of the trifluoroacetyl moiety to generate indoline $\mathbf{3 9 8}$ in one step. Treatment with acetyl chloride and DMAP generated acetamide 387 in 72% from 397.

Scheme 3.38 Synthesis of aldehyde 387 from pyran 377.

With aldehyde 387 in hand, we attempted the conversion to acid 399 using a variety of oxidizing reagents. However, TPAP, alkaline $\mathrm{KMnO}_{4},{ }^{69} \mathrm{AgNO}_{3}{ }^{70}$ and $\mathrm{MnO}_{2} / \mathrm{NaCN} / \mathrm{HOAc}^{71}$ (to produce the corresponding ester) were not successful. Even after extended reaction times, only starting material was recovered. Moreover, using Jones' reagent ${ }^{72}$ afforded side products and none of the desired acid 399. The overall lack of reactivity of aldehyde $\mathbf{3 8 7}$ towards standard oxidation protocols was not entirely surprising given that compound 387 could also be thought of as an vinylogous formate ester by virtue of its β-alkoxy substituent (Figure 3.4).

387

Vinylogous formate ester

Figure 3.4 Compound 387 is a vinylogous formate ester.

We had some success using radical-based chemistry with tert-butylhydroperoxide in the presence of catalytic amounts of copper(I) chloride, ${ }^{73}$ which initially generated 399 in 50% yield (Scheme 3.39). However, as we attempted to scale up the reaction using this protocol we had great difficulty in obtaining reproducible yields.

387

Scheme 3.39 Oxidation of aldehyde 387 via a radical-based protocol.

Ultimately, we were able to generate acid 399 by subjecting 387 to a 3 day-long Pinnick ${ }^{74}$ oxidation protocol, which produced the desired product consistently in 53% yield. Compound 399 was then converted to the corresponding ester 376 using trimethylsilyl diazomethane (Scheme 3.40).

Scheme 3.40 Synthesis of ester 376.

3.3.4. Attempts to Synthesize Malagashanine by Hydrogenation of the $\mathbf{C}(19)$-C(20) Olefin and Removal of the \mathbf{N}_{b} Tosyl Auxilliary.

With compound $\mathbf{3 7 6}$ in hand, we began our efforts towards the hydrogenation of the $\mathrm{C}(19)-\mathrm{C}(20)$ olefin. During our first attempts, we subjected 376 to different heterogeneous palladium catalyst systems under an atmosphere of hydrogen gas (1-3 atm). ${ }^{75}$ However, the starting material was always recovered unreacted. Searching the literature we discovered that 5% rhodium on alumina had been successfully used to effect the hydrogenation of tetrasubstituted electron-deficient olefins. ${ }^{76}$ Treatment of $\mathbf{3 7 6}$ with an excess of this catalyst system under 50 psi of hydrogen gas produced compound $\mathbf{4 0 0}$ in 58\% yield (Scheme 3.41).

Scheme 3.41 Hydrogenation of the C(19)-C(20) olefin in ester 376.

Given that $\mathbf{4 0 0}$ existed as a $1: 1$ mixture of rotamers by ${ }^{1} \mathrm{H}$ NMR, the signals of which did not coalesce even at a temperature of $120^{\circ} \mathrm{C}$, its was not possible to carry out 2D experiments to assess its structure. However, the ${ }^{1} \mathrm{H}$ NMR data at $25^{\circ} \mathrm{C}$ indicated that the rotameric allylic methyl signals ($2.4-2.0 \mathrm{ppm}$) had been replaced by two rotameric methyl doublet signals (1.05 ppm), which was a good indication that the $\mathrm{C}(19)-\mathrm{C}(20)$ double bond had undergone hydrogenation. Compound 400 was obtained as a single
diastereomer, and for the moment it was assumed that the hydrogenation had taken place from the most accessible convex face of the E ring.

With 400 in hand, the removal of the N_{b} tosyl auxiliary was attempted using sodium naphthalide in 1,2-dimethoxyethane at $-60^{\circ} \mathrm{C}$, which were conditions that had previously worked well with our model system 195 (vide supra, section 2.5). However, only unreacted starting material was recovered. Carrying out the reaction with excess reagent at $25^{\circ} \mathrm{C}$ yielded similar results. Moreover, using stronger reducing reagents like LiDBB^{77} led to the decomposition of the starting material. On the other hand, subjecting 400 to $\mathrm{SmI}_{2}{ }^{78}$ in the presence of $\mathrm{H}_{2} \mathrm{O}$ and pyrrolidine produced three major products, the structures of which were difficult to assign. The 1 H NMR spectra for all three compounds indicated that the tosyl group was not present. However, the indoline aromatic signals had shifted upfield from their usual positions between 7 and 8 ppm . Also, the signals corresponding to the ester and amide methyls were not present. Additionally, all three compounds existed as single sets of proton signals, indicating the absence of rotamers (and possibly that of the amide groups). The HRMS data did not enhance our understanding of the structures further.

In light of our observations, which indicated that the ester functionality was not surviving the harsh reducing conditions necessary to remove the tosyl group, we decided to employ compound 401, with the more resilient carboxyl functionality. Compound 401 was synthesized by treating 399 with 5% rhodium on alumina (Scheme 3.42).

Scheme 3.42 Synthesis of acid 401.

During the course of our investigation we noticed a discrepancy in the HRMS data for saturated acid 401, which had also been previously observed in the HRMS for the corresponding saturated ester 400. The data (+APCI, -APCI, +ESI, and -ESI) indicated that the molecular formula of compound 401 possessed four extra hydrogen atoms over that of its originally assigned structure.

In light of this evidence, a thorough inspection of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 401 revealed that, despite the presence of a misleading benzylic-like methyl singlet around 2.3 ppm , the corresponding toluene sulfonamide aromatic signals were not present. The latter fact had been initially overlooked because the strong CHCl_{3} singlet from the NMR solvent had impeded a complete assessment of the aromatic region. The absence of these signals became obvious when $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was used as the NMR solvent instead.

This observation, in combination with an over-integration in the aliphatic region of the spectrum, as well as the presence of a methyl signal around 2.2 ppm , all led us to consider the possibility that the tosyl group might had been modified during the hydrogenation reaction. After all, of all the common metal used in heterogeneous hydrogenation catalysis, rhodium is the most reactive towards aromatic systems.

Furthermore, none of the methods used to cleave tosyl groups (vida supra) were effective in the removal of the tosyl group in $\mathbf{4 0 1}$ either.

As a measure of precaution, we opted to try cleaving the tosyl group in unsaturated acid 399 (Scheme 3.43). This was an approach that we had considered before, but had decided against for fears of also reducing the α, β-unsaturated system in the process. Gratifyingly however, treating α, β-unsaturated acid 399 with sodium naphthalide in DME at $-60{ }^{\circ} \mathrm{C}$, and then subjecting the crude reaction mixture to trimethylsilyl diazomethane in methanol afforded amines $\mathbf{4 0 2}$ and $\mathbf{4 0 3}$ in 15% and 17% yield, respectively. The structures of $\mathbf{4 0 2}$ and $\mathbf{4 0 3}$ were assigned based on 1H NMR and HRMS data. We also note that the formation of N-methylpyrrolidine $\mathbf{4 0 2}$ was unexpected given the scarce amount of literature on the use of trimethylsilyl diazomethane as an effective methylating reagent for secondary amines.

399

402
15\%

403
17%

Scheme 3.43 Synthesis of C(19)-C(20)dehydro-malagashanine 402 and N_{b}-desmethyl-$\mathrm{C}(19)-\mathrm{C}(20)$ dehydro-malagashanine 403.

These results lent some validity to the notion that the toluene sulfonamide groups in compounds $\mathbf{4 0 0}$ and $\mathbf{4 0 1}$ had been modified under the hydrogenation conditions. More importantly however, we were now one chemical transformation away from accessing malagashanine. To this end, preliminary attempts were made to set the $\mathrm{C}(19)$ and $\mathrm{C}(20)$ stereocenters in $\mathrm{C}(19)-\mathrm{C}(20)$ dehydro-malagashanine 402. Having removed the tosyl
auxiliary in the previous step, there was no reason to avoid using 5% rhodium on alumina to effect the requisite hydrogenation. However, only starting material was recovered when $\mathbf{4 0 2}$ was subjected to this system. There are still ongoing efforts in our laboratory to construct malagashanine via this overall strategy.

3.4. Conclusions

During this phase of our studies towards the total synthesis of malagashanine, we showed that E-olefin isomer N -tosyl- O -TMS-aminol 304 undergoes cyclization to afford core $\mathbf{3 0 2}$ with the necessary stereochemistry at $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(7)$ and $\mathrm{C}(16)$ in modest yield. Moreover, switching the tert-butyldimethylsiloxy substituent in $\mathbf{3 0 4}$ for the lesser labile tert-butyldiphenylsiloxy and benzyloxy substituents in 316 and 317, respectively, significantly increased the overall yield for the transformation.

Our first generation approach to malagashanine, which centered on the construction of β, γ-unsaturated ketoester 290 via a Knoevonagel condensation, was precluded by the inherent tendency of ketone 342 to undergo β-elimination under the reaction conditions. Presumably, the highly sterically congested environment around the carbonyl moeity impeded the attack of the keto ester nucleophile (296), which favored side reactions when more forcing conditions were employed.

We attempted to circumvent the issue by constructing 290 via Negishi crosscoupling of vinyliodide $\mathbf{3 5 6}$ with either kinetic enol triflate $\mathbf{3 5 5}$ or $\mathbf{3 7 2}$. However, the syntheses of the requisite kinetic enol trifates were hampered by the formation of side products generated via the intermediate thermodynamic enolates.

Our third generation approach to malagashanine permitted on the construction of the E-ring via a formal olefin hydroacylation of tetracyclic amine 341 and subsequent dehydration of hemiacetal 384. Moreover, lowering the electron density of pyran 377 was necessary in order to suppress side reaction in the subsequent Vilsmeier formylation reaction. Additionally, the hydrogenations of acid $\mathbf{3 9 9}$ and ester $\mathbf{3 7 6}$ were complicated by possible side reactions involving the toluenesulfonamide moieties, which made impossible the subsequent removal of those groups. On the other hand, carrying out the cleavage of the tosyl auxilliary on unsaturated acid 399 generated the corresponding zwitterion, which was methylated in situ to afford $\mathrm{C}(19)-\mathrm{C}(20)$ dehydro-malagashanine (402). The hydrogenation of 402 is currently being investigated in our laboratory.

3.5. Experimentals

Synthesis of β-stannyl-ester 308:

$n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $2.57 \mathrm{~mL}, 4.11 \mathrm{mmol})$ was added over 10 minutes to a solution of di-isopropylamine ($0.58 \mathrm{~mL}, 4.14 \mathrm{mmol}$) in THF (7.0 mL) and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. Tributyltin hydride ($1.13 \mathrm{~mL}, 4.28 \mathrm{mmol}$) was added over 5 minutes and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. The mixture was cooled to $-50{ }^{\circ} \mathrm{C}$ and copper(I) bromide dimethyl sulfide complex ($0.883 \mathrm{~g}, 4.29$ mmol) was added in portions. The resulting solution was stirred at $-50^{\circ} \mathrm{C}$ for 20 minutes, and then was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of alkynyl ester $\mathbf{3 0 7}(0.291 \mathrm{~g}, 1.37 \mathrm{mmol})$ in THF (5.8 mL) was added over 20 minutes, and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes. The reaction was quenched with methanol $(4.5 \mathrm{~mL})$ and was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to $0^{\circ} \mathrm{C}$ and stirred for 30 minutes. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the mixture was filtrated through celite. The filtered cake was washed with EtOAc (3 x 20 mL). The filtrate was washed with brine (40 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 \rightarrow 17:3 pentane $/ \mathrm{Et}_{2} \mathrm{O}$) afforded β-stannyl-ester 308 as a colorless oil ($0.573 \mathrm{~g}, 83 \%$); ${ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.01(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{t}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 3.87-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.51-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.83-1.25(\mathrm{~m}, 19 \mathrm{H}), 1.04-0.86(\mathrm{~m}, 14 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.5,164.5,129.4,98.7$ 66.7, 62.2, 51.0, 35.6, 30.8,
29.1, 27.5, 25.6, 19.6, 13.8, 10.2; IR (thin film, cm^{-1}) 2952.9 (m), 2922.2 (m), 2870.5 (m), 2851.3 (m), 1717.1 (s), 1591.8 (w), 1455.8 (w), 1431.7 (w), 1350.0(w), 1164.9 (s), 1031.3 (s).

Synthesis of allylic alcohol 409:

DIBAL-H (1 M in THF, $3.42 \mathrm{~mL}, 3.42 \mathrm{mmol}$) was added dropwise to a solution of ester $308(0.573 \mathrm{~g}, 1.14 \mathrm{mmol})$ in THF $(5.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 4 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl} /$ methanol $(1: 1,3 \mathrm{~mL})$, warmed to room temperature and stirred for 20 minutes. The organic layer was separated, and the aqueous layer was extracted with pentane $/ \mathrm{Et}_{2} \mathrm{O}(1: 1,3 \times 3 \mathrm{~mL})$. The organic extracts were combined, washed with brine (5 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded alcohol 409 as a colorless oil ($0.432 \mathrm{~g}, 80 \%$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.01(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.57(\mathrm{t}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 4.15-4.08(\mathrm{~m}, 2 \mathrm{H})$, 3.81-3.75 (m, 2H), 3.49-3.48 (m, 1H), 3.32-3.28 (m, 1H), $2.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.69-2.55(\mathrm{~m}$, $2 H), 1.81-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.40(\mathrm{~m}, 11 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 6 \mathrm{H}), 0.94-$ $0.83(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 145.8,141.8,99.0,66.2,62.1,57.7,33.6$, 30.3, 29.2, 27.6, 25.5, 19.4, 13.8, 9.7; IR (thin film, cm^{-1}) 3412.7 (br w), 2952.8 (m), 2921.3 (m), 2869.6 (m), 2851.6 (m), 1463.6 (w), 1120.5 (m), 1070.9 (m), 1028.1 (s).

Synthesis of silyl ether 309:

A solution of alcohol $409(0.432 \mathrm{~g}, 0.913 \mathrm{mmol})$ in DMF $(1.0 \mathrm{~mL})$ was added via cannula to a solution of tert-butyl(chloro)dimethylsilane ($0.412 \mathrm{~g}, 2.74 \mathrm{mmol}$), imidazole $(0.224 \mathrm{~g}, 3.28 \mathrm{mmol})$ and DMAP $(0.005 \mathrm{~g}, 0.045 \mathrm{mmol})$ in DMF $(2.0 \mathrm{~mL})$. The reaction was quenched with ether $(15 \mathrm{~mL})$. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 3 \mathrm{~mL})$ and brine (3 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 hexanes/EtOAc) afforded silyl ether $\mathbf{3 0 9}$ as a colorless oil $(0.509 \mathrm{~g}, 95 \%) ;{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.73(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 4.56$ $(\mathrm{t}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 4.32(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.53-$ $3.45(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.61-1.38(\mathrm{~m}, 10 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.72(\mathrm{~m}, 24 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.4,140.2,98.9,67.1,62.3,60.4,34.3,30.8,29.3,27.6,26.1$, 25.6, 19.7, 18.5, 13.9, 9.8, -4.9; IR (thin film, cm^{-1}) 2953.3 (m), 2925.1 (m), 2854.1 (m), 1463.2 (w), 1252.9 (m), 1078.5 (s), 1031.9 (s), 834.5 (s), 773.8 (s).

Synthesis of vinyliodide 410:

A solution of N-iodosuccinimide ($0.389 \mathrm{~g}, 1.73 \mathrm{mmol}$) in THF (3.5 mL) was added via cannula to a solution of vinylstannane $309(0.928 \mathrm{~g}, 1.57 \mathrm{mmol})$ in THF $(10.5 \mathrm{~mL})$, and the resulting mixture was stirred for 30 minutes. The reaction was quenched with
saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1: 1,25 \mathrm{~mL})$, and the biphasic mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic extracts were combined, washed with brine (30 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (40:1 \rightarrow 9:1 hexanes/EtOAc) afforded vinyliodide $\mathbf{4 1 0}$ as a colorless oil $(0.630 \mathrm{~g}, 94 \%) ;{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.40(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 4.60$ $(\mathrm{t}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 4.18(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.88-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.71$ $(\mathrm{dt}, 2 \mathrm{H}, J=6.3,2.1 \mathrm{~Hz}), 1.80-1.49(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 143.3,99.5,99.0,65.7,62.3,61.4,40.3,30.7,26.1,25.6,19.6,18.5,-5.0 ;$ IR (thin film, cm^{-1}) 2927.3 (m), 2855.0 (m), 1633.3 (w), 1253.7 (m), 1078.1 (s), 1033.1 (s), 833.4 (s), 774.3 (s).

Synthesis of homoallylic alcohol 310:

A solution of vinyliodide $410(0.630 \mathrm{~g}, 1.48 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ was added via cannula to a solution of anhydrous magnesium bromide ($2.0 \mathrm{~g}, 7.7 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(6.0$ mL), and the resulting mixture was stirred for 3 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the biphasic mixture was stirred for 5 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (10 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 $\rightarrow 7: 3$ hexanes/EtOAc) afforded homoallylic alcohol 310 as a colorless oil ($0.418 \mathrm{~g}, 83 \%$);
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.51(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 4.12(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.70(\mathrm{t}$, $2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.71(\mathrm{t}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}), 2.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.0,102.0,60.8,60.5,42.7,26.0,18.5,-5.1$; IR (thin film, cm^{-1}) 3354.3 (br w), 2952.0 (w), 2927.7 (w), 2882.8 (w), 2855.8 (w), 1632.1 (w), 1470.9 (w), $1253.6(\mathrm{~m}), 1084.5(\mathrm{~m}), 1040.7(\mathrm{~m}), 832.5(\mathrm{~s}), 811.5(\mathrm{~s}), 774.6(\mathrm{~s})$.

Synthesis of iodo-acid 311:

Dess-Martin periodinane $(0.333 \mathrm{~g}, 0.785 \mathrm{mmol})$ was added to a solution of iodo-alcohol $310(0.179 \mathrm{~g}, 0.524 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.25 \mathrm{~mL})$, and the resulting suspension was stirred for 2 hours. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1: 1,5 \mathrm{~mL})$, and the biphasic mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The organic extracts were combined, washed with brine (20 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo to afford the unstable iodo-aldehyde 411 as a colorless oil ($0.176 \mathrm{~g}, 99 \%$); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right) \delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{t}, 1 \mathrm{H}, J=$ $6.2 \mathrm{~Hz}), 3.66(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}),-0.07(\mathrm{~s}, 6 \mathrm{H})$. Compound 411 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and tert- $\mathrm{BuOH}(8.5 \mathrm{~mL}$). 2-Methyl-2-butene (2.6 mL) was added, and the resulting mixture was stirred for 5 minutes. A solution of NaClO_{2} $(0.464 \mathrm{~g}, 5.13 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(0.564 \mathrm{~g}, 4.09 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(4.7 \mathrm{~mL})$ was added, and the resulting mixture was stirred for 1 hour. The reaction was quenched with brine $(10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$
$(3 \times 10 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 10 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Crude iodo-acid 311 was obtained as a colorless oil ($0.177 \mathrm{~g}, 95 \%$), and was used without further purification; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.56(\mathrm{t}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 0.90$ (s, 9H), $0.09(\mathrm{~s}, 6 \mathrm{H})$.

Synthesis of acid 312:

Trimethylsilyl-methyl magnesium chloride ($0.94 \mathrm{M} \mathrm{in}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}, 1.60 \mathrm{~mL}, 1.50 \mathrm{mmol}$) was added to anhydrous $\mathrm{ZnBr}_{2}(0.349 \mathrm{~g}, 1.55 \mathrm{mmol})$, and the resulting suspension was stirred vigorously for 14 hours. DMF (1.0 mL) was added, followed by $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, and the mixture was stirred for 10 minutes. A solution of iodo-acid $311(0.177 \mathrm{~g}, 0.498 \mathrm{mmol})$ in DMF $(1.0 \mathrm{~mL})$ was added via cannula. A solution of $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.013 \mathrm{~g}, 0.05$ $\mathrm{mmol})$ in DMF (0.5 mL) was added over 5 minutes, and the resulting mixture was stirred for 1.5 hours. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. EtOAc $(10 \mathrm{~mL})$ was added, and the mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The organic extracts were combined, washed with brine ($3 \times 5 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 \rightarrow 7:3 hexanes/EtOAc, then 7:3:0.1 hexanes/EtOAc/methanol) afforded acid 312 as a colorless oil $(0.104 \mathrm{~g}, 66 \%) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$
$6.9 \mathrm{~Hz}), 4.20(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 0.92(\mathrm{~m}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$, 0.03 (s, 9H);

Synthesis of \boldsymbol{N}-tosylamide 314:

A solution of carboxylic acid $312(0.104 \mathrm{~g}, 0.327 \mathrm{mmol})$ in THF $(1.9 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. N -methyl-morpholine ($0.039 \mathrm{~mL}, 0.357 \mathrm{mmol}$) was added to the carboxylic acid solution, followed by slow addition of isobutyl chloroformate ($0.041 \mathrm{~mL}, 0.327 \mathrm{mmol}$). The resulting mixture was stirred for 2 hour at $0^{\circ} \mathrm{C}$. Stirring was discontinued, and the suspension was allowed to settle for 1 hour. The resulting supernatant was transferred into a flask pre-cooled to $-78{ }^{\circ} \mathrm{C}$. THF (2.0 mL) was added to the remaining white precipitate, and the resulting suspension was stirred for 2 minutes, and then allowed to settle for 1 hour. The resulting supernatant was combined with the rest of the mixed anhydride solution. In a separate flask, a solution of tosylamine 211 ($0.120 \mathrm{~g}, 0.297$ $\mathrm{mmol})$ in THF/DMPU $(10: 1,1.65 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.20 \mathrm{~mL}, 0.327 \mathrm{mmol}$) was added over 15 minutes, and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. The mixture was added to the mixed anhydride solution via cannula, and the resulting orange solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 12 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$, and was allowed to reach room temperature. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 5 \mathrm{~mL}$),
dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (20:1 $\rightarrow 9: 1$ hexanes/EtOAc) afforded tosylamide 314 as an amorphous white solid ($0.066 \mathrm{~g}, 31 \%$); $\mathbf{R}_{\mathbf{f}} 0.63$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.82-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{t}, 1 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 4.10-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 3.23-3.19$ $(\mathrm{m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}),-0.05(\mathrm{~m}, 9 \mathrm{H})$.

Synthesis of N -tosyl- O -TMS-aminol 304:

A solution of N-tosylamide $314(0.020 \mathrm{~g}, 0.029 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.06 \mathrm{~mL}, 0.06 \mathrm{mmol}$) was added dropwise over 15 minutes, and the resulting mixture was stirred for 10 minutes at $-78^{\circ} \mathrm{C}$. Trimethylsilyl imidazole ($0.013 \mathrm{~mL}, 0.087 \mathrm{mmol}$) was added dropwise, and the solution was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 12 hours. The reaction was quenched with aqueous 15% Rochelle's salt solution (1 mL). $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added, and the mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(5 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMS-aminol 304 as a colorless oil ($0.017 \mathrm{~g}, 77 \%$); $\mathbf{R}_{\mathbf{f}} 0.74$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.74(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.22-$ $7.13(\mathrm{~m}, 5 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{dd}, 1 \mathrm{H}, J=9.6,2.5 \mathrm{~Hz}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{t}, 1 \mathrm{H}, J=$
$6.5 \mathrm{~Hz}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=9.9,5.1 \mathrm{~Hz}), 4.11(\mathrm{dt}, 1 \mathrm{H}, J=12.2,5.7 \mathrm{~Hz}), 3.58(\mathrm{ddd}, 1 \mathrm{H}, J=$ $14.6,12.0,5.6 \mathrm{~Hz}), 3.45(\mathrm{ddd}, 1 \mathrm{H}, J=14.6,12.0,5.0 \mathrm{~Hz}), 3.24(\mathrm{dt}, 1 \mathrm{H}, J=13.8,5.3 \mathrm{~Hz})$, $3.15(\mathrm{dt}, 1 \mathrm{H}, J=12.6,5.6 \mathrm{~Hz}), 2.53(\mathrm{dd}, 1 \mathrm{H}, J=12.8,9.6 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dd}, 1 \mathrm{H}$, $J=12.7,2.5 \mathrm{~Hz}), 1.54(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.29(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.12$ $(\mathrm{s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),-0.05(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of tetracyclic amine 302:

304

302

314

A solution of N-tosyl- O-TMS-aminol $304(0.020 \mathrm{~g}, 0.0255 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.64 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{THF}(3 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$ was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded tetracyclic amine $\mathbf{3 0 2}$ as a colorless oil ($3.8 \mathrm{mg}, 25 \%$); $\mathbf{R}_{\mathbf{f}} 0.65$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $7.76(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.32-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{t}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 6.61(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~d}$, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.71(\mathrm{dt}, 1 \mathrm{H}, J=10.8,6.8 \mathrm{~Hz}), 3.62(\mathrm{~s}, 1 \mathrm{H})$, $3.51(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=9.9,6.3 \mathrm{~Hz}), 3.37(\mathrm{dd}, 1 \mathrm{H}, J=11.4,7.2 \mathrm{~Hz})$,
$3.31(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.04-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, 1 \mathrm{H}, J=16.7,11.6 \mathrm{~Hz}), 2.50(\mathrm{dd}$, $1 \mathrm{H}, J=9.6,6.6 \mathrm{~Hz}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}, 1 \mathrm{H}, J=11.7,6.3 \mathrm{~Hz}), 1.45(\mathrm{q}, 1 \mathrm{H}, J=11.0$ $\mathrm{Hz}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$; and tetrahydrocarboline 314 as an amorphous white solid ($3.5 \mathrm{mg}, 28 \%$); $\mathbf{R}_{\mathrm{f}} 0.65$ (7:3 hexanes/EtOAc).

Synthesis of homopropargylic alcohol 320:

A solution of benzyl ether $319(3.52 \mathrm{~g}, 24.1 \mathrm{mmol})$ in THF (125.0 mL) was cooled to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $19.6 \mathrm{~mL}, 31.3 \mathrm{mmol})$ was added over 15 minutes, and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3.86 \mathrm{~mL}, 31.3 \mathrm{mmol})$ was added over 10 minutes, and the solution was stirred for 15 minutes. In a separate flask, a solution of oxirane ($1.43 \mathrm{~mL}, 28.9 \mathrm{mmol}$) in THF (3.0 mL) was cooled to $-78^{\circ} \mathrm{C}$, and added to the reaction mixture via cannula. The resulting mixture was stirred at $-780^{\circ} \mathrm{C}$ for 2 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(45 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100$ $\mathrm{mL})$. The organic extracts were combined, washed with brine (200 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded homopropargylic alcohol $\mathbf{3 2 0}$ as a colorless oil (3.35 g, $73 \%) ; \mathbf{R}_{\mathbf{f}} 0.18\left(7: 3\right.$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H})$, $4.60(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, 2 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.75(\mathrm{q}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.54(\mathrm{tt}, 2 \mathrm{H}, J=6.2,2.2$ $\mathrm{Hz}), 1.75(\mathrm{brt}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.3,128.4,128.1$,
127.9, 84.0, 77.43, 71.6, 60.8, 57.7, 23.0; IR (thin film, cm^{-1}) 3390.4 (br, w), 3030.4 (w), 2857.4 (w), 1495.8 (w), 1453.6 (w), 1353.7 (m), 1261.5 (w), 1206.0 (w), 1131.9 (w), 1047.2 (s), 1026.9 (s), 736.9 (s), 696.7 (s); HRMS (+APCI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}$ 191.1072, found $191.1063[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of iodo-alcohol 318:

A solution of homopropargylic alcohol $\mathbf{3 2 0}(4.79 \mathrm{~g}, 25.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(126.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added via cannula into a suspension of $\mathrm{Cp}_{2} \mathrm{ZrHCl}(19.5 \mathrm{~g}, 75.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(126.0 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 3 hours. A solution of NIS (11.3 g, 50.4 mole) in THF $(126.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added to the reaction mixture via cannula. The resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. A solution of saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1: 1,200 \mathrm{~mL})$ was added, and the biphasic mixture was stirred for 15 minutes. The mixture was filtrated through a celite pad, and the filtered cake was washed with with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 75 \mathrm{~mL})$. The organic extracts were combined, washed with brine (300 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded iodo-alcohol $\mathbf{3 1 8}$ as a black oil ($4.89 \mathrm{~g}, 61 \%$); $\mathbf{R}_{\mathbf{f}} 0.31$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.62(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.53(\mathrm{~s}, 2 \mathrm{H})$, $3.98(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.74(\mathrm{t}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}), 2.72(\mathrm{t}, 2 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.01(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 140.1,137.5,128.6,128.0,128.0,104.3,72.6,66.9,60.6$,
42.7; IR (thin film, cm^{-1}) 3376.8 (br w), 30329.0 (w), 2859.2 (w), 1629.1 (w), 1495.2 (w), 1452.8 (w), 1357.7 (w), 1042.5 (s), 1027.4 (s), 734.8 (s), 696.1 (s$) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{IO}_{2}$ 319.0195, found $319.0190[\mathrm{M}+\mathrm{H}]^{+}$; and regioisomeric iodoalcohol 321 as a red oil $(0.962 \mathrm{~g}, 12 \%) ; \mathrm{R}_{\mathrm{f}} 0.27$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.49(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.56$ $(\mathrm{dt}, 2 \mathrm{H}, J=6.0,2.1 \mathrm{~Hz}), 2.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.30(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 141.9,137.5,128.5,128.1,127.9,100.2,71.6,71.4,60.9,34.5$; IR (thin film, cm^{-1}) 3377.5 (br w), 3029.2 (w), 2860.4 (w), 1628.6 (w), 495.5 (w), 1452.9 (w), 1355.9 (w), 1044.5 (s), 1027.3 (s), 734.2 (s), 696.3 (w); HRMS (+APCI) calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{IO}_{2} 319.0195$, found $319.0190[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of iodo-acid 322:

Dess-Martin periodinane ($6.46 \mathrm{~g}, 15.2 \mathrm{mmol}$) was added to a stirring solution of iodo-alcohol $318(3.23 \mathrm{~g}, 10.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100.0 \mathrm{~mL})$, and the resulting suspension was stirred for 3 hours. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1: 1,100 \mathrm{~mL})$, and the resulting biphasic mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 100.0 \mathrm{~mL}$). The organic extracts were combined, washed with brine (300 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The unstable iodo-aldehyde 413 was dissolved in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.3 \mathrm{~mL})$ and tert- $\mathrm{BuOH}(84.6 \mathrm{~mL})$. 2-Methyl-2butene (46.0 mL) was added, and the resulting mixture was stirred for 5 minutes. A
solution of $\mathrm{NaClO}_{2}(9.00 \mathrm{~g}, 99.5 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(10.9 \mathrm{~g}, 79.2 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(90$ mL) was added, and the resulting mixture was stirred for 1 hour. The reaction was quenched with brine $(100 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 100 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude iodo-acid $\mathbf{3 2 2}$ was obtained as a yellow oil ($3.37 \mathrm{~g}, 99 \%$), and was used without further purification; $\mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc). HRMS (+APCI) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{IO}_{3}$ 332.9988, found $332.9987[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of Acid 323:

322

323

Trimethylsilyl-methyl magnesium chloride (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 40.7 \mathrm{~mL}, 40.7 \mathrm{mmol}$) was added to anhydrous $\mathrm{ZnBr}_{2}(9.79 \mathrm{~g}, 43.5 \mathrm{mmol})$, and the resulting suspension was stirred vigorously for 14 hours. DMF (30.0 mL) was added, followed by $\mathrm{Et}_{2} \mathrm{O}(10.0 \mathrm{~mL})$, and the mixture was stirred for 10 minutes. A solution of iodo-acid $322(4.51 \mathrm{~g}, 13.6 \mathrm{mmol})$ in DMF (25.0 mL) was added via cannula, and the resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.352 \mathrm{~g}, 1.36 \mathrm{mmol})$ in DMF $(5.0 \mathrm{~mL})$ was added over 5 minutes, and the resulting mixture was stirred for 2 hours, warmed to room temperature and stirred for 30 minutes. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. EtOAc (200 mL) was added, and the mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 125 mL). The organic extracts were combined,
washed with brine (300 mL), filtrated through celite, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Crude acid 323 was obtained as a yellow oil ($3.76 \mathrm{~g}, 93 \%$), and was used without further purification; $\mathbf{R}_{\mathbf{f}} 0.20$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 8.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.51(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.56(\mathrm{~s}, 2 \mathrm{H})$, $4.03(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 175.1,137.8,136.8$ 128.6, 128.1, 128.0, 122.6, 72.3, 66.3, 39.3, 28.1, -1.2; IR (thin film, cm^{-1}) 3550-2560 (br w), 2952.4 (w), 1706.8 (s), 1656.9 (w), 1247.2 (m), 839.7 (s); HRMS (+APCI) calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}$ 293.1573, found 293.1565 $[\mathrm{M}+\mathrm{H}]^{+}$.

Elimination products 324 was obtained when the procedure above was carried out at r.t. instead of at $0^{\circ} \mathrm{C}$.

324
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.85(\mathrm{dd}, 1 \mathrm{H}, J=17.6,11.0 \mathrm{~Hz}), 5.58(\mathrm{~d}, 2 \mathrm{H}, J=17.6$ $\mathrm{Hz}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{dd}, 1 \mathrm{H}, J=11.0,1.2 \mathrm{~Hz}), 1.95(\mathrm{~s}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.

Elimination products $\mathbf{3 2 5}$ was obtained when the procedure above was carried out at r.t. instead of at $0^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.38(\mathrm{dd}, 1 \mathrm{H}, J=17.4,10.7 \mathrm{~Hz}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~d}$, $1 \mathrm{H}, J=17.3 \mathrm{~Hz}), 5.42(\mathrm{~d}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}), 2.59(\mathrm{~s}, 2 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H})$.

Synthesis of N-tosylamide 326:

A solution of tosylamine $211(0.339 \mathrm{~g}, 0.838 \mathrm{mmol})$ in THF $(10.8 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.59 \mathrm{M}$ in hexanes, $0.63 \mathrm{~mL}, 1.00 \mathrm{mmol})$ was added over 15 minutes, and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . DMPU (1.2 mL) was added, and the solution was stirred for 30 minutes. In a separate flask, a solution of carboxylic acid $323(0.319 \mathrm{~g}, 1.09 \mathrm{mmol})$ in THF (11.0 mL) was cooled to $0^{\circ} \mathrm{C} . N$-methyl-morpholine $(0.13 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added to the carboxylic acid solution, followed by addition of pivaloyl chloride ($0.13 \mathrm{~mL}, 1.1 \mathrm{mmol}$). The resulting mixture was stirred for 45 minutes at $0{ }^{\circ} \mathrm{C}$. Stirring was discontinued, and the suspension was allowed to settle for 1 hour to allow the morpholinium salts to precipitate. The yellow supernatant was transferred to a flask pre-cooled to $-78{ }^{\circ} \mathrm{C}$. THF (11.0 mL) was added to the white precipitate, and the resulting suspension was stirred for 2 minutes. Stirring was discontinued, and the suspension was allowed to settle for 1 hour. The yellow supernatant was separated by syringe and combined with the first extraction. The lithiate solution was quickly added to the mixed anhydride solution via cannula, and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 4 hours. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic extracts were combined, washed with brine (50 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (17:3 hexanes/EtOAc) afforded tosylamide 326 as a colorless oil $(0.488 \mathrm{~g}, 86 \%) ; \mathbf{R}_{\mathbf{f}} 0.56$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.82-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 15 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{t}, 1 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.32(\mathrm{~s}$, $2 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 2 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 170.5,145.0,138.6,137.7,137.1,136.8,135.1,130.1,128.9,128.5,128.2$, $127.8,127.8,127.7,127.7,127.1,126.8,123.5,122.1,119.6,119.5,111.5,109.9,71.7$, 66.5, 50.1, 48.2, 40.4, 28.5, 26.3, 21.8, -1.2; IR (thin film, cm^{-1}) 3029.7 (w), 2952.0 (w), 1697.79 (m), 1495.1 (w), 1467.2 (w), 1453.0 (w), 1351.9 (s), 1247.1 (w), 1158.7 (s), 1088.1 (m), 850 (s), 738.8 (s); HRMS (+ESI) calculated for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SSi}$ 696.3291, found $696.3299\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Ester 328 was obtained when the above procedure employed isobutyl chloroformate in place of pivaloyl chloride.

328
$\mathbf{R}_{\mathbf{f}} 0.66$ (9:1 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.43(\mathrm{t}$, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.85(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.04(\mathrm{~s}$, $2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 0.92(\mathrm{~d}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 171.3,138.7,135.2,128.6,128.0,127.7,123.2,71.9,71.1,66.7$, 38.7, 28.3, 27.9, 19.3, -1.1; IR (thin film, cm^{-1}) 2925.1 (m), $1731.5(\mathrm{~m}), 1064.3(\mathrm{~s}), 848.9$ (s), 789.0 (s); HRMS (+ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si} 371.2018$, found 371.2012 $[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of N-tosyl- O -TMS-aminol 316:

A solution of tosylamide $326(1.54 \mathrm{~g}, 2.27 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.54 \mathrm{~mL}, 4.54 \mathrm{mmol}$) was added dropwise over 15 minutes. The reaction mixture was stirred for 45 minutes, then trimethylsilyl imidazole $(1.81 \mathrm{~mL}, 9.07 \mathrm{mmol})$ was added dropwise, and the reaction was warmed to $-25^{\circ} \mathrm{C}$ and stirred for 12 hours. The mixture was warmed to $0^{\circ} \mathrm{C}$, trimethylsilyl imidazole (1.81 mL , 9.07 mmol) was added and the reaction was stirred for 8 hours. The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution (20 mL). $\mathrm{Et}_{2} \mathrm{O}$ (80 mL) was added, and the mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3×25 $\mathrm{mL})$. The organic extracts were combined, washed with brine (100.0 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc, silica gel deactivated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded N-tosyl- O-TMSaminol 316 as a colorless oil ($1.39 \mathrm{~g}, 82 \%$); $\mathbf{R}_{\mathbf{f}} 0.62$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.78-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 12 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}$, $1 \mathrm{H}), 5.33(\mathrm{dd}, 1 \mathrm{H}, J=9.6,2.4 \mathrm{~Hz}), 5.35(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{q}, 2 \mathrm{H}, J=$ $10.3 \mathrm{~Hz}), 4.14(\mathrm{dd}, 1 \mathrm{H}, J=12.4,7.6 \mathrm{~Hz}), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=12.4,6.4 \mathrm{~Hz}), 3.60(\mathrm{ddd}, 1 \mathrm{H}$, $J=14.6,11.8,5.6 \mathrm{~Hz}), 3.45(\mathrm{ddd}, 1 \mathrm{H}, J=14.6,11.8,4.8 \mathrm{~Hz}), 3.25(\mathrm{dt}, 1 \mathrm{H}, J=12.6,4.8$ $\mathrm{Hz}), 3.16(\mathrm{dt}, 1 \mathrm{H}, J=12.6,5.6 \mathrm{~Hz}), 2.56(\mathrm{dd}, 1 \mathrm{H}, J=12.8,9.6 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.90$ $(\mathrm{dd}, 1 \mathrm{H}, J=12.8,2.4 \mathrm{~Hz}), 1.64(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 1.40(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}), 0.12(\mathrm{~s}$, 9H), $0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.2,138.7,138.6,137.7,137.0$,
136.7, 129.8, 128.8, 128.4, 128.1, 127.7, 127.6, 127.5, 127.1, 126.9, 126.2, 126.1, 122.9, $121.9,119.3,112.6,109.9,81.4,71.6,66.7,49.9,44.0,40.2,28.0,27.8,21.5,0.1,-1.3$; IR (thin film, cm^{-1}) 3029.5 (w), 2953.1 (w), 1466.9 (w), 1453.2 (w), 1333.7 (m), 1248.5 $9(\mathrm{~m}), 1158.9(\mathrm{~m}), 843.4(\mathrm{~s}), 735.6$ (s); HRMS (+ESI) calculated for $\mathrm{C}_{43} \mathrm{H}_{60} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SSi}_{2}$ 770.3843 , found $770.4864\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Synthesis of tetracyclic amine 340:

A solution of N -tosyl- O -TMS-aminol $316(1.393 \mathrm{~g}, 1.849 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (46.0 mL) was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.14 \mathrm{~mL}, 9.25 \mathrm{mmol})$ was added dropwise over 3 minutes and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 minutes. The reaction was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30 mL). The organic extracts were combined, washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (4:1 hexanes/EtOAc) afforded tetracyclic amine 340 as an amorphous white solid ($0.876 \mathrm{~g}, 80 \%$); $\mathbf{R}_{\mathbf{f}} 0.50$ (7:3 hexanes/EtOAc);
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.34-7.19(\mathrm{~m}, 13 \mathrm{H}), 7.02(\mathrm{dt}$, $1 \mathrm{H}, J=7.4,1.2 \mathrm{~Hz}), 6.63(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.26(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.73(\mathrm{~s}, 2 \mathrm{H}), 4.47-$ $4.42(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 4.25(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.66(\mathrm{dt}, 1 \mathrm{H}, J=10.8$, $7.0 \mathrm{~Hz}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 3.41(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.36-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{dd}$,
$1 \mathrm{H}, J=9.6,7.8 \mathrm{~Hz}), 3.06(\mathrm{dd}, 1 \mathrm{H}, J=16.2,6.6 \mathrm{~Hz}), 2.69(\mathrm{dd}, 1 \mathrm{H}, J=16.2,11.4 \mathrm{~Hz})$, $2.59(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.6 \mathrm{~Hz}), 1.36(\mathrm{q}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) 150.3,143.8,142.3,138.5,138.0,132.6,130.7$, $129.8,128.6,128.5,128.5,127.8,127.8,127.6,127.4,127.2,124.8,117.1,114.6,106.0$, $73.0,73.0,68.9,59.3,55.0,48.6,47.8,46.1,36.5,33.6,21.7$.

Synthesis of homopropargylic alcohol 336:

A solution of silyl ether $335(2.00 \mathrm{~g}, 6.79 \mathrm{mmol})$ in THF $(45.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. $n-\mathrm{BuLi}(1.59 \mathrm{M}$ in hexanes, $5.55 \mathrm{~mL}, 8.83 \mathrm{mmol})$ was added over 15 minutes, and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.90 \mathrm{~mL}, 8.83 \mathrm{mmol})$ was added over 5 minutes, and the solution was stirred for 15 minutes. In a separate flask, a solution of oxirane ($0.40 \mathrm{~mL}, 8.15 \mathrm{mmol}$) in THF (1.0 mL) was cooled to $-78^{\circ} \mathrm{C}$, and added to the reaction mixture via cannula. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(45 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic extracts were combined, washed with brine (200 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded homopropargylic alcohol 336 as a colorless oil ($1.89 \mathrm{~g}, 82 \%$); $\mathbf{R}_{\mathbf{f}} 0.30$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.76-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.48-$ $7.39(\mathrm{~m}, 6 \mathrm{H}), 4.36(\mathrm{t}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.63(\mathrm{q}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.42(\mathrm{tt}, 2 \mathrm{H}, J=6.2,2.1$ $\mathrm{Hz}), 1.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 135.8,133.4,130.0$,
127.9, 82.4, 80.7, 61.1, 53.0, 26.9, 23.4, 19.3; IR (thin film, cm^{-1}) 3346.9 (br, w), 3070.8 (w), 2930.5 (w), 2857.5 (w), 1472.1 (w), 1427.5 (w), 1372.8 (w), 1111.3 (m), 1060.7 (m), 700.8 (s), 612.6 (m); HRMS (+ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{Si}$ 361.1600, found $361.1598[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of iodo-alcohol 337:

A solution of homopropargylic alcohol $336(1.89 \mathrm{~g}, 5.57 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added via cannula into a suspension of $\mathrm{Cp}_{2} \mathrm{ZrHCl}(4.31 \mathrm{~g}, 16.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28.0 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 3 hours. A solution of NIS $(2.50 \mathrm{~g}, 11.1 \mathrm{mmol})$ in THF $(28 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added to the reaction mixture via cannula. The resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1: 1,100 \mathrm{~mL})$, and the resulting biphasic mixture was stirred for 15 minutes. The mixture was filtrated through a celite pad, and the filtered cake was washed with with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic extracts were combined, washed with brine (150 mL), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded iodo-alcohol 337 as a colorless oil (2.02 g, 78\%); $\mathbf{R}_{\mathbf{f}} 0.28$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ 7.71-7.65 (m, 4H), 7.47-7.39 (m, 6H), $6.56(\mathrm{t}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 4.15(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.65(\mathrm{q}, 2 \mathrm{H}, J=5.9 \mathrm{~Hz}), 2.54(\mathrm{t}, 2 \mathrm{H}, J$ $=5.8 \mathrm{~Hz}), 1.62(\mathrm{t}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.0$,
$135.7,133.2,130.0,127.9,101.6,61.6,60.8,42.5,26.9,19.3$; IR (thin film, cm^{-1}) 3367.1 (br, w), 3070.2 (w), 2929.8 (w), 2856.4 (w), 1632.8 (w), 1588.7 (w), 1471.4 (w), 1427.0 (w), 1372.8 (w), 1105.5 (m), 1039.9 (m), 733.2 (m), 699.2 (s$), 611.8$ (m); HRMS (+ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{INaO}_{2} \mathrm{Si} 489.0723$, found $489.0726[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of iodo-acid 338:

Dess-Martin periodinane ($10.9 \mathrm{~g}, 25.6 \mathrm{mmol}$) was added to a solution of iodo-alcohol 337 ($7.97 \mathrm{~g}, 17.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(171.0 \mathrm{~mL})$, and the resulting suspension was stirred for 3 hours. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ $(1: 1,200 \mathrm{~mL})$, and the resulting biphasic mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 150 \mathrm{~mL}$). The organic extracts were combined, washed with brine (300 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The unstable iodo-aldehyde 414 was dissolved in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34.0 \mathrm{~mL})$ and tert- $\mathrm{BuOH}(143.0 \mathrm{~mL})$. 2-Methyl-2-butene (78.0 mL) was added, and the resulting mixture was stirred for 5 minutes. A solution of NaClO_{2} $(15.15 \mathrm{~g}, 167.5 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(18.4 \mathrm{~g}, 133.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(151.0 \mathrm{~mL})$ was added, and the resulting mixture was stirred for 1 hour. The reaction was quenched with brine (200 mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The organic extracts were combined, washed with brine (2×150 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Crude iodo-acid 338 was obtained as an orange oil ($8.18 \mathrm{~g}, 99 \%$), and was used without further purification;
$\mathbf{R}_{\mathbf{f}} 0.28$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.66(\mathrm{~d}, 4 \mathrm{H}, J=7.0 \mathrm{~Hz})$, 7.46-7.39 (m, 6H), $6.59(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.14(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 1.04$ (s, 9H) ; ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 175.1,144.5,135.7,133.1,130.1,128.0,89.3$, 62.1, 45.2, 26.9, 19.3; IR (thin film, cm^{-1}) 3500-2500 (br w), 3069.9 (w), 2929.4 (w), 2856.0 (w), 1711.5 (s), 1426.9 (m), 1105.5 (s), 699.8 (s); HRMS (+ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{INaO}_{3} \mathrm{Si} 503.0515$, found $503.0510[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of acid 339:

Trimethylsilyl-methyl magnesium chloride (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 54.5 \mathrm{~mL}, 54.5 \mathrm{mmol}$) was added to anhydrous $\mathrm{ZnBr}_{2}(13.09 \mathrm{~g}, 58.12 \mathrm{mmol})$, and the resulting suspension was stirred vigorously for 14 hours. DMF (50.0 mL) was added, followed by $\mathrm{Et}_{2} \mathrm{O}(30.0 \mathrm{~mL})$, and the mixture was stirred for 10 minutes. A solution of iodo-acid $338(8.73 \mathrm{~g}, 18.2$ mmol) in DMF (50.0 mL) was added via cannula, and the resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.441 \mathrm{~g}, 1.70 \mathrm{mmol})$ in DMF $(5.0 \mathrm{~mL})$ was added over 5 minutes, and the resulting mixture was stirred for 30 minutes, warmed to room temperature and stirred for 2 hours. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. EtOAc (300 mL) was added, and the mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 200 mL). The organic extracts were combined, washed with brine (300 mL), filtered through celite, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Crude acid 339 was obtained as a yellow oil ($7.69 \mathrm{~g}, 96 \%$), and
was used without further purification; $\mathbf{R}_{\mathbf{f}} 0.23$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 10.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 4.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 177.2,135.7,133.8,132.6,129.8,127.9,126.1,60.9,38.5$, 27.9, 27.0, 19.3, -1.2; IR (thin film, cm^{-1}) 3300-2700 (br, w), 2953.8 (w), 2856.8 (w), 1706.1 (m), 1248.0 (w), 1110.0 (m), 1044.9 (m), 841.5 (m), 823.0 (m), 699.6 (s), 612.2 (m); HRMS (-ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}_{2} 439.2125$, found $439.2136[\mathrm{M}-\mathrm{H}]^{-}$.

Synthesis of \boldsymbol{N}-tosylamide 333:

A solution of carboxylic acid $339(4.44 \mathrm{~g}, 10.1 \mathrm{mmol})$ in THF $(100.0 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C} . N$-methyl-morpholine ($1.19 \mathrm{~mL}, 10.9 \mathrm{mmol}$) was added to the carboxylic acid solution, followed by addition of pivaloyl chloride ($1.24 \mathrm{~mL}, 10.1 \mathrm{mmol}$). The resulting mixture was stirred for 1 hour at $0{ }^{\circ} \mathrm{C}$. Stirring was discontinued, and the suspension was allowed to settle for 1 hour. The resulting supernatant was transferred into a flask precooled to $-78^{\circ} \mathrm{C}$. THF (100.0 mL) was added to the remaining white precipitate, and the resulting suspension was stirred for 2 minutes, and then allowed to settle for 1 hour. The resulting supernatant was combined with the rest of the mixed anhydride solution. In a separate flask, a solution of tosylamine $211(3.13 \mathrm{~g}, 7.75 \mathrm{mmol})$ in THF (100.0 mL) was cooled to $-78{ }^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $5.81 \mathrm{~mL}, 9.30 \mathrm{mmol})$ was added over 15 minutes, and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. DMPU was added
over 5 minutes, and the solution was stirred for 15 minutes. The mixture was added to the mixed anhydride solution via cannula, and the resulting orange solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$, and was warmed to room temperature. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 150 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 150 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel $(9: 1 \rightarrow 4: 1$ hexanes/EtOAc) afforded N-tosylamide 333 as an amorphous white solid (5.79 g, 90\%); $\mathbf{R}_{\mathbf{f}} 0.62$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.75(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.67(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}), 7.66-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 3 \mathrm{H})$, 7.11-7.09 (m, 3H), $6.93(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~d}, 2 \mathrm{H}, J=6.5$ $\mathrm{Hz}), 3.98-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 3.14-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 2 \mathrm{H}), 1.01$ (s, 9H), -0.03 (s, 9H); ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 170.5,144.8,137.6,136.9,136.7$, $135.6,134.0,131.9,129.9,129.7,128.8,128.1,127.8,127.7,127.5,127.0,126.7,126.5$, $122.0,119.5,119.4,111.4,109.8,60.9,50.0,48.1,40.2,27.9,26.9,26.3,21.6,19.3,-1.3$; IR (thin film, cm^{-1}) 3068.7 (w), 2954.3 (w), 2856.2 (w), 1698.8 (m), 1495.2 (w), 1427.5 (w), 1352.7 (s), 1247.3 (w), 1157.8 (s), 1110.3 (m), 1088.4 (m), 1046.2 (w), 849.2 (s), 738.2 (s), 701.8 (s); HRMS (+ESI) calculated for $\mathrm{C}_{49} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{SSi}_{2}$ 849.3554, found $849.3532[\mathrm{M}+\mathrm{Na}]^{+}$.

Synthesis of tetracyclic amine 341:

A solution of N-tosylamide $317(5.81 \mathrm{~g}, 7.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70.0 \mathrm{~mL})$ was cooled to $78{ }^{\circ} \mathrm{C}$. DIBAL-H (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 14.0 \mathrm{~mL}, 14.1 \mathrm{mmol}$) was added dropwise over 15 minutes, and the resulting mixture was stirred for 45 minutes. Trimethylsilyl imidazole $(8.4 \mathrm{~mL}, 42.1 \mathrm{mmol})$ was added dropwise, and the solution was warmed to $0^{\circ} \mathrm{C}$ over 2 hours. Additional trimethylsilyl imidazole ($8.4 \mathrm{~mL}, 42.1 \mathrm{mmol}$) was added and the mixture was stirred for 4 hours. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(13.0 \mathrm{~mL}, 105.4 \mathrm{mmol})$ was added over 5 minutes, and the resulting deep orange solution was stirred for 5 minutes. The reaction was quenched by slow addition of aqueous 15% Rochelle's salt solution/aqueous saturated $\mathrm{NaHCO}_{3}(1: 1,200 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added, and the mixture was stirred vigorously at r.t. until both layers were clear. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 100 \mathrm{~mL})$. The organic extracts were combined, washed with brine (200 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (17:3 $\rightarrow 4: 1$ hexanes/EtOAc, $)$ afforded tetracycle 341 as an amorphous white solid (2.65 g, 51\%); $\mathbf{R}_{\mathbf{f}} 0.47$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.57(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $7.2 \mathrm{~Hz}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.48-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 7.00(\mathrm{t}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 6.60(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.19(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.70$ $(\mathrm{s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 3.64(\mathrm{dt}, 1 \mathrm{H}, J$ $=10.9,7.1 \mathrm{~Hz}), 3.52(\mathrm{dd}, 1 \mathrm{H}, J=10.1,6.6 \mathrm{~Hz}), 3.41-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{t}, 1 \mathrm{H}, J=10.2$
$\mathrm{Hz}), 3.17(\mathrm{dd}, 1 \mathrm{H}, J=11.6,7.0 \mathrm{~Hz}), 2.98(\mathrm{dd}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}, 6.9 \mathrm{~Hz}), 2.66(\mathrm{dd}, 1 \mathrm{H}, J=$ $16.8,11.7 \mathrm{~Hz}), 2.57(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{dd}, 1 \mathrm{H}, J=11.9,6.9 \mathrm{~Hz}), 1.08$ $(\mathrm{q}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 1.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 150.7,143.8,141.5$, 138.7, 135.8, 135.7, 133.7, 133.5, 132.6, 130.4, 130.1, 130.0, 129.9, 128.7, 128.6, 128.0, $127.9,127.9,127.2,127.2,124.9,117.0,115.5,105.5,68.8,67.4,58.8,54.9,49.4,48.2$, 47.9, 36.7, 32.9, 27.1, 21.8, 19.4; IR (thin film, cm^{-1}) $3069.3(\mathrm{w}), 2928.9$ (w), 2856.8 (w), 1600.7 (m), 1484.2 (m), 1351.4 (m), 1164.5 (s), 1109.0 (s), 736.2 (s), 702.3 (s); HRMS (+ESI) calculated for $\mathrm{C}_{46} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi} 739.3390$, found $739.3381[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of diol 343:

Osmium tetroxide (2.5% wt in tert-butanol, $0.12 \mathrm{~mL}, 0.0092 \mathrm{mmol}$) and N-methyl morpholine oxide $(0.011 \mathrm{~g}, 0.096 \mathrm{mmol})$ were sequentially added to a solution of tetracycle $340(0.054 \mathrm{~g}, 0.092 \mathrm{mmol})$ in acetone: $\mathrm{H}_{2} \mathrm{O}(4: 1,0.65 \mathrm{~mL})$, and the resulting mixture was stirred for 4 hours. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added, followed by $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (2 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (13:7 \rightarrow 1:1 hexanes/EtOAc) afforded $\mathbf{3 4 3}$ as an amorphous white solid ($0.039 \mathrm{~g}, 67 \%$); $\mathbf{R}_{\mathbf{f}} 0.56$ (1:1 hexanes/EtOAc); and debenzylated diol 344 as an amorphous light pink solid (0.007 g ,
$15 \%) ; \mathbf{R}_{\mathbf{f}} 0.30(1: 1$ hexanes $/ E t O A c) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(5: 1$ mixture of diastereomers) $\delta 7.84(\mathrm{~d}, 1.6 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.77(\mathrm{~d}, 0.4 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.42-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.83(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 6.67(\mathrm{~d}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 4.55-4.48(\mathrm{~m}, 3 \mathrm{H}), 3.73-3.50(\mathrm{~m}, 5 \mathrm{H}), 3.43-3.29(\mathrm{~m}, 3 \mathrm{H}), 2.98(\mathrm{~d}, 2 \mathrm{H}, J=11.4 \mathrm{~Hz})$, 2.52-2.50 (m, 1H), 2.46(s, 3H), $1.84(\mathrm{t}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{q}, 1 \mathrm{H}$, $J=10.7 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(5: 1$ mixture of diastereomers) δ 144.0, $137.3,132.0,130.0,128.9,128.9,128.5,128.4,128.4,128.1,128.0,125.7,120.1,111.9$, $74.9,74.0,68.6,65.3,65.2,59.7,55.9,49.1,47.7,36.4,35.3,21.8$; IR (thin film, cm^{-1}) 3418.7 (br w), 3373.1 (br w), 3041.7 (w), 2924.0 (w), 2875.5 (w), 1597.8 (w), 1476.6 (w), 1454.9 (w), 1342.8 (m), 1297.4 (w), 1159.2 (s), 1089.2 (w), 1051.3 (s), 664.9 (s); HRMS (+APCI) calculated for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 535.2267$, found $535.2262[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of ketone 342:

Sodium periodate $(0.050 \mathrm{~g}, 0.23 \mathrm{mmol})$ was added to a solution of diol $343(0.039 \mathrm{~g}$, $0.062 \mathrm{mmol})$ in THF: $\mathrm{H}_{2} \mathrm{O}(4: 1,1.0 \mathrm{~mL})$, and the mixture was stirred for 5 hours. $\mathrm{Et}_{2} \mathrm{O}(2$ mL) was added, followed by $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded ketone $\mathbf{3 4 2}$ as a colorless oil
$(0.029 \mathrm{~g}, 78 \%) ; \mathbf{R}_{\mathbf{f}} 0.30(7: 3$ hexanes $/ \mathrm{EtOAc}) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.66(\mathrm{~d}$, $2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{dt}, 1 \mathrm{H}, J$ $=7.5,0.6 \mathrm{~Hz}), 6.36(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}, J=12.5$ $\mathrm{Hz}), 4.28(\mathrm{~d}, 1 \mathrm{H}, J=12.5 \mathrm{~Hz}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 3.88(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.1 \mathrm{~Hz})$, $3.68(\mathrm{dt}, 1 \mathrm{H}, J=11.2,6.7 \mathrm{~Hz}), 3.54-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.19(\mathrm{dd}, 1 \mathrm{H}, J=8.8,4.4 \mathrm{~Hz}), 3.15$ (dd, $1 \mathrm{H}, J=18.8,6.1 \mathrm{~Hz}), 2.85(\mathrm{dd}, 1 \mathrm{H}, J=18.7,12.1 \mathrm{~Hz}), 2.42(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 2.37$ $(\mathrm{s}, 3 \mathrm{H}), 1.93(\mathrm{dd}, 1 \mathrm{H}, J=11.9,6.4 \mathrm{~Hz}), 1.51(\mathrm{q}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta 208.9,150.0,144.1,137.5,137.4,132.9,130.0,129.5,128.9,128.8,128.8$, $128.2,128.1,127.8,127.7,127.7,125.8,118.9,107.6,73.5,72.0,68.6,58.0,54.9,51.1$, 48.3, 48.2, 43.2, 36.0, 21.8; IR (thin film, cm^{-1}) 3030.4 (w), 2918.6 (m), 2849.9 (w), 1705.1 (m), 1599.9 (m), 1478.9 (m), 1453.1 (w), 1350.4 (m), 1162.4 (s), 1092.1 (m), 733.6 (s); HRMS (+APCI) calculated for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ 593.2474, found 593.2474 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of ketone 342 (One Pot procedure):

Sodium periodate $(0.220 \mathrm{~g}, 1.029 \mathrm{mmol})$ and osmium tetroxide $(2.5 \% \mathrm{wt}$ in tert-butanol, $0.081 \mathrm{~mL}, 0.0064 \mathrm{mmol}$) were sequentially added to a suspension of tetracycle $\mathbf{3 4 0}$ $(0.076 \mathrm{~g}, 0.13 \mathrm{mmol})$ and 2,6-lutidine $(0.060 \mathrm{~mL}, 0.51 \mathrm{mmol})$ in dioxane: $\mathrm{H}_{2} \mathrm{O}(3: 1,1.4$ $\mathrm{mL})$, and the mixture was stirred for 6 hours. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added, followed by $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The
organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1$ mL). The organic extracts were combined, washed with brine (3 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 hexanes/EtOAc) afforded ketone 342 as a colorless oil ($0.045 \mathrm{~g}, 59 \%$). The product was identical to that obtained by the two-step procedure as judged by ${ }^{1} \mathrm{H}$ NMR.

Synthesis of pyridine 347:

Ammonium acetate $(0.069 \mathrm{~g}, 0.90 \mathrm{mmol})$ was added to a solution of ketone $342(0.023 \mathrm{~g}$, $0.038 \mathrm{mmol})$ and methyl acetoacetate $(0.010 \mathrm{~mL}, 0.093 \mathrm{mmol})$ in benzene/acetic $(4: 1,2.0$ mL), and the resulting mixture was placed in a Dean-Stark trap and heated at reflux for 18 hours. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added, and the mixture was filtered through celite and concentrated in vacuo. Purification by chromatography on silica gel (13:1 $\rightarrow 7: 3$ hexanes/EtOAc) afforded pyridine 347 as an amorphous white solid ($0.012 \mathrm{~g}, 52 \%$); $\mathbf{R}_{\mathbf{f}} 0.30$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}), 6.75(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 4.42$ $(\mathrm{s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{dt}, 1 \mathrm{H}, J=10.9,7.1 \mathrm{~Hz}), 3.65(\mathrm{dd}$, $1 \mathrm{H}, J=16.8,4.2 \mathrm{~Hz}), 3.59(\mathrm{t}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.40(\mathrm{dd}, 1 \mathrm{H}, J=16.9,12.0 \mathrm{~Hz}), 3.23$ $(\mathrm{dd}, 1 \mathrm{H}, J=12.0,4.2 \mathrm{~Hz}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{dd}, 1 \mathrm{H}, J=11.7,6.8 \mathrm{~Hz}), 1.69$ $(\mathrm{q}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 168.9,158.7,158.5,149.6,144.0$,
$140.0,137.5,132.9,130.0,130.0,129.2,129.0,128.3,128.0,127.9,127.7,125.7,122.6$, $119.1,108.6,67.0,61.1,55.1,52.4,49.9,48.0,37.2,35.8,24.8,21.8 ;$ IR (thin film, cm^{-1}) 2951.8 (w), 1722.9 (s), 1597.3 (m), 1548.2 (w), 1480.5 (m), 1448.6 (m), 1348.8 (m), 1265.5 (m), 1158.6 (s), 1094.0 (w), 730.6 (s); HRMS (+APCI) calculated for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} 580.2270$, found $580.2269[\mathrm{M}+\mathrm{H}]^{+}$.

Elimination products 354 was obtained when Lehnert conditions were employed to carry out the Knoevenagel condensation of ketone $\mathbf{3 4 2}$ with methyl acetoacetate.

$\mathbf{R}_{\mathbf{f}} 0.34$ (7:3 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $6.69(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.35(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.85(\mathrm{~d}, 1 \mathrm{H}, J=0.6 \mathrm{~Hz}), 5.08(\mathrm{~s}, 1 \mathrm{H})$, $4.46(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, 1 \mathrm{H}, J=16.2 \mathrm{~Hz}), 3.81(\mathrm{dt}, 1 \mathrm{H}, J=10.8$, $7.1 \mathrm{~Hz}), 3.62(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=12.6,5.4 \mathrm{~Hz}), 3.12-3.07(\mathrm{dd}, 1 \mathrm{H}, J=$ $18.9,5.4 \mathrm{~Hz}), 2.76(\mathrm{dd}, 1 \mathrm{H}, J=18.9,12.6 \mathrm{~Hz}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{dd}, 1 \mathrm{H}, J=12.0,7.2$ $\mathrm{Hz}), 1.72(\mathrm{q}, 1, J=18.3 \mathrm{~Hz})$; IR (thin film, cm^{-1}) 3029.6 (w), 2922.6 (w), 1724.2 (w), 1696.9 (m), 1598.2 (m), 1480.5 (m), 1347.7 (m), 1161.2 (s), 1091.2 (m), 732.4 (s); HRMS (+APCI) calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 485.1899$, found $485.1894[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of kinetic enol triflate 355:

359

A solution of ketone $342(0.012 \mathrm{~g}, 0.021 \mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$ was added over 15 minutes to a stirring solution of NaHMDS (0.19 M in THF, $0.12 \mathrm{~mL}, 0.023 \mathrm{mmol}$) at -78 ${ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 30 minutes. A solution of triflating reagent $\mathbf{3 6 1}(9.0 \mathrm{mg}, 0.023 \mathrm{mmol})$ in THF (0.2 mL) was added over 5 minutes, and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 hours. The reaction was quenched by addition of aqueous saturated $\mathrm{NaHCO}_{3}(0.2 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the crude reaction mixture washed with brine ($2 \times 1 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 $\rightarrow 4: 1$ hexanes/EtOAc,) afforded kinetic enol triflate $\mathbf{3 5 5}$ as an amorphous white solid ($2.0 \mathrm{mg}, 13 \%$); $\mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.68(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.33-7.23(\mathrm{~m}$, $11 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.72(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.58(\mathrm{~d}, 1 \mathrm{H}, J$ $=2.1 \mathrm{~Hz}), 6.35(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.43(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 4.36(\mathrm{q}, 2 \mathrm{H}, J=12.6 \mathrm{~Hz})$, $4.05(\mathrm{~m}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{dt}, 1 \mathrm{H}, J=11.1,6.9 \mathrm{~Hz}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=$ $0.8 \mathrm{~Hz}), 3.50(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.36(\mathrm{dd}, 1 \mathrm{H}, J=9.0,5.4 \mathrm{~Hz}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=9.3$, $3.9 \mathrm{~Hz}), 2.66-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{dd}, 1 \mathrm{H}, J=11.8,6.6 \mathrm{~Hz}), 1.60-1.53(\mathrm{~m}$, 10 H); IR (thin film, cm^{-1}) 3029.9 (w), 2922.0 (w), 2856.1 (w), 1739.1 (w), 1663.6 (w), 1598.9 (w), 1477.4 (w), 1453.5 (w), 1418.4 (m), 1350.1 (m), 1208.1 (m), 1162.3 (m), 1138.1 (m), 1090.9 (m), 1026.3 (m), 734.8 (s); HRMS (+APCI) calculated for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} 725.1967$, found $725.1963[\mathrm{M}+\mathrm{H}]^{+}$; and thermodynamic enol triflate $\mathbf{3 5 9}$
as an amorphous white solid ($4.0 \mathrm{~g}, 26 \%$); $\mathbf{R}_{\mathbf{f}} 0.53$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.36-7.29(\mathrm{~m}$, $6 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.58(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 4.49(\mathrm{q}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 4.34(\mathrm{~d}$, $1 \mathrm{H}, J=11.9 \mathrm{~Hz}), 4.29(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 4.17(\mathrm{dd}, 1 \mathrm{H}, J=11.9,2.7 \mathrm{~Hz}), 4.08(\mathrm{~s}, 1 \mathrm{H})$, $3.57(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 3.31(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.14-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{dd}, 1 \mathrm{H}, J=12.0,7.1 \mathrm{~Hz}), 1.10(\mathrm{q}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) 149.0,144.4,144.2,138.4,137.4,132.2,130.7,130.2,129.9$, 129.3, 128.7, 128.7, 128.6, 128.3, 128.1, 128.1, 127.7, 125.1, 119.4, 118.4 (q, 1C,$J=$ 318.5 Hz), 111.1, $73.5,65.0,64.4,59.8,54.9,52.8,47.7,35.6,32.3,21.8$; IR (thin film, cm^{-1}) 3030.0 (w), 2926.5 (w), 2861.7 (w), 1599.2 (m), 1478.4 (m), 1453.4 (m), 1415.4 (m), 1353.8 (m), 1212.3 (s), 1164.7 (s), 1138.9 (s), 1092.7 (m), 1069.4 (m); HRMS (+APCI) calculated for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} 725.1967$, found $725.1967[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of diol 370:

341

A solution of osmium tetroxide $(0.181 \mathrm{~g}, 0.714 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added to a solution of tetracycle $341(0.479 \mathrm{~g}, 0.649 \mathrm{mmol})$ and DMAP $(0.174 \mathrm{~g}, 1.43 \mathrm{mmol})$ in THF (7.0 mL), and the resulting mixture was stirred for 4 hours. Methanol (10.0 mL) was added, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Sodium borohydride $(0.491 \mathrm{~g}, 13.0 \mathrm{mmol})$ was added in portions, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes, warmed to
room temperature and stirred for 1.5 hours. The reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc (30 mL). The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic extracts were combined, washed with brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel ($9: 1 \rightarrow 3: 2$ hexanes/EtOAc) afforded $\mathbf{3 7 0}$ as an amorphous white solid ($0.34 \mathrm{~g}, 68 \%) ; \mathbf{R}_{\mathbf{f}} 0.44$ (3:2 hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ (1:1 mixture of diastereomers) $\delta 7.88(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.70-$ $7.59(\mathrm{~m}, 8 \mathrm{H}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.54-7.33(\mathrm{~m}, 17 \mathrm{H}), 7.16-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.85-6.77$ $(\mathrm{m}, 6 \mathrm{H}), 6.46-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.84(\mathrm{~m}, 8 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.42(\mathrm{~m}, 8 \mathrm{H})$, $3.31(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 3.19(\mathrm{t}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.05(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 2.98(\mathrm{dd}$, $1 \mathrm{H}, J=12.6,1.8 \mathrm{~Hz}), 2.92(\mathrm{dd}, 1 \mathrm{H}, J=13.1,2.5 \mathrm{~Hz}), 2.87(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 2.58(\mathrm{dd}$, $1 \mathrm{H}, J=12.9,2.5 \mathrm{~Hz}), 2.49-2.42(\mathrm{~m}, 7 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{t}, 1 \mathrm{H}, J=12.9 \mathrm{~Hz})$, $1.83(\mathrm{t}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 1.59(\mathrm{dd}, 1 \mathrm{H}, J=11.1,6.9 \mathrm{~Hz}), 1.50-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.18$ $(\mathrm{m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(1: 1 \mathrm{mixture}$ of diastereomers) $\delta 149.2,149.2,143.8,143.7,138.2,137.9,135.8,135.8,135.7,135.7$, $133.4,132.9,132.3,132.2,132.1,132.0,131.8,130.4,130.3,129.9,129.8,128.6,128.5$, $128.5,128.4,128.3,128.2,128.2,128.2,127.9,127.4,125.5,125.3,119.4,119.3,111.6$, $110.4,76.2,74.2,70.1,66.8,66.5,66.0,64.3,63.6,59.6,58.8,56.2,56.2,53.7,52.7$, $49.8,49.6,47.2,46.7,36.7,36.5,36.2,34.0,26.9,26.9,21.8,21.7,19.2,19.1$; IR (thin film, cm^{-1}) 3466.0 (br w), 2930.4 (w), 1599.5 (w), 1471.2 (w), 1332.9 (w), 1215.9 (w), 1160.6 (m), 1044.3 (m), 747.6 (s), 700.0 (s), 663.5 (s); HRMS (+ESI) calculated for $\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SSi} 773.3444$, found $773.3443[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of ketone 368:

Sodium periodate $(0.187 \mathrm{~g}, 0.872 \mathrm{mmol})$ was added to a solution of diol $370(0.169 \mathrm{~g}$, $0.218 \mathrm{mmol})$ in THF: $\mathrm{H}_{2} \mathrm{O}(2: 1,4.4 \mathrm{~mL})$, and the mixture was stirred for 18 hours. EtOAc (5 mL) was added, followed by saturated aqueous $\mathrm{NaHCO}_{3} / 20 \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(1: 1$, 10 mL). The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3×10 $\mathrm{mL})$. The organic extracts were combined, washed with brine $(30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (13:1 $\rightarrow 4: 1$ hexanes/EtOAc) afforded ketone $\mathbf{3 6 8}$ as an amorphous white solid (0.132 $\mathrm{g}, 81 \%) ; \mathbf{R}_{\mathbf{f}} 0.46(7: 3$ hexanes $/ \mathrm{EtOAc}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.64(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.2 Hz), 7.53-7.50 (m, 4H), 7.47-7.43 (m, 2H), 7.38-7.34 (m, 4H), 7.29-7.22 (m, 4H), 7.19-7.16 (m, 4H), 7.07-7.05 (dt, $1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 6.71-6.69(\mathrm{dt}, 1 \mathrm{H}, J=7.5,1.2 \mathrm{~Hz})$, $6.33(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 4.04(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 3.71-3.63$ (m, 3H), $3.58(\mathrm{dd}, 1 \mathrm{H}, J=10.0,6.4 \mathrm{~Hz}), 3.57-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=18.6,6.2$ $\mathrm{Hz}), 2.85(\mathrm{dd}, 1 \mathrm{H}, J=18.6,12.2 \mathrm{~Hz}), 2.50(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{dd}, 1 \mathrm{H}$, $J=12.0,6.8 \mathrm{~Hz}), 1.49-1.44(\mathrm{q}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 0.96(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}) \delta$ 207.7, 150.1, 144.0, 137.6, 135.7, 135.7, 133.4, 133.1, 132.9, 130.2, 130.2, 130.1, 129.5, 128.8, 128.7, 128.1, 128.1, 127.8, 127.5, 127.5, 125.6, 118.8, 107.8, 67.5, $65.2,57.9,55.0,53.7,48.3,48.0,42.8,36.1,27.0,21.8,19.4$; IR (thin film, cm^{-1}) 3050.0 (w), 2929.4 (w), 2856.8 (w), 1705.7 (m), 1599.5 (m), 1478.5 (m), 1350.9 (m), 1162.1 (s),
1092.0 (s), 700.6 (s), 732.7 (s), 665.1 (s); HRMS (+APCI) calculated for $\mathrm{C}_{45} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}$ 741.3182 , found $741.3184[\mathrm{M}+\mathrm{H}]^{+}$.

Debenzylated ketone 369 was observed when the osmium mediated dihydroxylation of olefin 341 was carried out under catalytic conditions in the presence of stoichiometric NaIO_{4} and 2,6-lutidine.

$\mathbf{R}_{\mathbf{f}} 0.41$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.71(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $7.64(\mathrm{~d}, 2 \mathrm{H}, J=7.8,0.6 \mathrm{~Hz}), 7.59(\mathrm{~d}, 2 \mathrm{H}, J=7.2,0.6 \mathrm{~Hz}), 7.55(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.47-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.19-7.18(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $6.88(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=10.6$, $4.5 \mathrm{~Hz}), 3.83(\mathrm{dd}, 1 \mathrm{H}, J=10.4,9.2 \mathrm{~Hz}), 3.69(\mathrm{dt}, 1 \mathrm{H}, J=10.9,7.0 \mathrm{~Hz}), 3.55(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.3 \mathrm{~Hz}), 3.50(\mathrm{t}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=13.9,3.9 \mathrm{~Hz}), 3.15(\mathrm{dd}, 1 \mathrm{H}, J=13.6$, $3.9 \mathrm{~Hz}), 2.93(\mathrm{t}, 1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dd}, 1 \mathrm{H}, J=12.0$, $6.6 \mathrm{~Hz}), 1.54(\mathrm{q}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 206.6$, $149.4,144.2,135.8,135.7,132.8,132.7,132.4,130.3,130.2,130.2,130.2,129.3,128.1$, $128.1,128.0,125.6,120.3,112.1,67.3,64.2,60.7,55.9,55.7,48.1,43.7,35.3,27.1,21.8$, 19.3; IR (thin film, cm^{-1}) 3368.0 (br, w), 3048.7 (w), 2929.3 (m), 2856.9 (w), 1710.1 (m), 1604.6 (w), 1464.5 (m), 1351.5 (m), 1164.4 (s), 1112.1 (s), 1091.3 (m), 1059.4 (m), 703.9 (s); HRMS (+ESI) calculated for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi}$ 651.2713, found 651.2709 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of kinetic enol triflate 372:

368

372

A solution of ketone $\mathbf{3 6 8}(0.038 \mathrm{~g}, 0.051 \mathrm{mmol})$ in THF (0.45 mL) was added over 15 minutes to a solution of KHMDS $(0.305 \mathrm{M}$ in THF, $0.20 \mathrm{~mL}, 0.061 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 30 minutes. A solution of triflating reagent $\mathbf{3 6 1}$ $(0.028 \mathrm{~g}, 0.071 \mathrm{mmol})$ in THF (0.3 mL) was added over 5 minutes, and the resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 hours. The reaction was quenched by addition of aqueous saturated $\mathrm{NaHCO}_{3}(0.2 \mathrm{~mL}) . \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added and the crude reaction mixture washed with brine ($2 \times 1 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc,) afforded kinetic enol triflate $\mathbf{3 7 2}$ as an amorphous white solid ($0.015 \mathrm{~g}, 33 \%$); $\mathbf{R}_{\mathbf{f}} 0.48$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.63(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.51(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.1,1.5 \mathrm{~Hz}), 7.49(\mathrm{dd}, 2 \mathrm{H}, J=8.0,1.3 \mathrm{~Hz}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-$ $7.22(\mathrm{~m}, 6 \mathrm{H}), 7.14(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.03(\mathrm{dt}, 1 \mathrm{H}, J=7.7,1.1 \mathrm{~Hz}), 6.70(\mathrm{dt}, 1 \mathrm{H}, J=$ $7.5,0.8 \mathrm{~Hz}), 6.59(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 6.31(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.38(\mathrm{~d}, 1 \mathrm{H}, J=15.5 \mathrm{~Hz})$, $4.10(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.0 \mathrm{~Hz}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.3 \mathrm{~Hz}), 3.56(\mathrm{dd}, 1 \mathrm{H}, J=10.2,5.1 \mathrm{~Hz}), 3.48(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.46-3.43(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.5,6.3 \mathrm{~Hz}), 2.71(\mathrm{t}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.6 \mathrm{~Hz}), 1.48$ $(\mathrm{q}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 0.94(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 151.3,150.1,144.3$, $137.8,135.7,135.6,133.0,132.7,132.1,131.0,130.2,130.2,130.1,128.8,128.8,128.3$, 128.1, 128.1, 127.5, 127.4, 124.9, 121.1, 119.1, 118.5 (q, 1C,$J=320.3 \mathrm{~Hz}), 107.6$; IR
(thin film, cm^{-1}) 2930.1, (w), 2857.9 (w), 1600.9 (w), 1477.0 (w), 1419.5 (w), 1350.3 (w), $1209.4(\mathrm{~m}), 1164.4(\mathrm{~m}), 1139.0(\mathrm{~m}), 1110.5(\mathrm{~m}), 733.8(\mathrm{~s}), 700.5(\mathrm{~s}), 608.2(\mathrm{~s}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~F}_{3} \mathrm{KN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si} 911.2234$, found $911.2236[\mathrm{M}+\mathrm{K}]^{+}$; and unsaturated kinetic enol triflate $\mathbf{3 7 3}$ as an amorphous white solid ($5.3 \mathrm{mg}, 17 \%$); $\mathbf{R}_{\mathbf{f}} 0.37$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.72(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.37(\mathrm{~d}$, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.35-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=10.1,5.3 \mathrm{~Hz}), 6.69(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 3.92(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.2 \mathrm{~Hz}), 3.57(\mathrm{t}$, $1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 3.54(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, 1 \mathrm{H}, J=11.9,6.8 \mathrm{~Hz})$, $1.72(\mathrm{q}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 150.3,147.0,144.6,137.7$, $133.4,131.5,130.5,130.2,129.1,129.0,128.4,127.7,127.5,124.6,121.3,118.8,118.6$ $(\mathrm{q}, 1 \mathrm{C}, ~ J=319.8 \mathrm{~Hz}), 118.0,107.0,67.8,61.5,56.7,48.6,47.3,34.5,21.8$; HRMS (+ESI) calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 617.1392$, found $617.1389[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of coupling product 375:

372

A solution of isopropyl magnesium chloride $(0.028 \mathrm{~mL}, 0.056 \mathrm{mmol})$ was added over 5 minutes to a solution of $\mathbf{3 5 6}$ in THF $(0.3 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 30 minutes. A solution of zinc bromide $(0.012 \mathrm{mg}, 0.054 \mathrm{mmol})$ in THF (0.5 mL) was added via cannula, and the resulting suspension was warmed to room temperature. A solution of kinetic enol triflate $372(0.015 \mathrm{~g}, 0.017 \mathrm{mmol})$ in THF (0.2
$\mathrm{mL})$ was added to a separate solution of $\operatorname{Pd}(\mathrm{dba})_{2}\left(1.0 \mathrm{mg}, 1.8 \times 10^{-3} \mathrm{mmol}\right)$ and TFP (1.0 $\left.\mathrm{mg}, 4.3 \times 10^{-3} \mathrm{mmol}\right)$ in THF $(0.2 \mathrm{~mL})$, and this was immediately followed by addition of the zinc reagent solution via cannula. The resulting mixture was heated to $60^{\circ} \mathrm{C}$ for 1.5 hours, cooled to room temperature and quenched with brine $(1.0 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with ether ($3 \times 1.0 \mathrm{~mL}$). The organic extracts were combined, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded compound 375 as an amorphous white solid ($2.2 \mathrm{mg}, 15 \%$); $\mathbf{R}_{\mathbf{f}} 0.19$ ($4: 1$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.65(\mathrm{dd}, 2 \mathrm{H}, J=8.3,1.8 \mathrm{~Hz}), 7.48(\mathrm{dd}, 2 \mathrm{H}, J=8.0,1.3 \mathrm{~Hz}), 7.43$ $(\mathrm{d}, 2 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.17(\mathrm{~m}, 10 \mathrm{H}), 7.16-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{dt}, 1 \mathrm{H}, J=7.7,1.2 \mathrm{~Hz}), 6.54(\mathrm{dt}, 1 \mathrm{H}, J=7.4,0.9 \mathrm{~Hz}), 6.32(\mathrm{~d}, 1 \mathrm{H}, J$ $=2.7 \mathrm{~Hz}), 6.15(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.36(\mathrm{q}, 2 \mathrm{H}, J=17.1 \mathrm{~Hz}), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=10.4,4.5$ $\mathrm{Hz}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{dt}, 1 \mathrm{H}, J=10.5,7.2 \mathrm{~Hz}), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}), 3.35(\mathrm{t}, 1 \mathrm{H}, J$ $=10.2 \mathrm{~Hz}), 3.28(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 2.76(\mathrm{dd}, 1 \mathrm{H}, J=10.3,4.4 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.90$ $(\mathrm{dd}, 1 \mathrm{H}, J=12.0,7.8 \mathrm{~Hz}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{q}, 1 \mathrm{H}, 10.8 \mathrm{~Hz})$, 0.95 (s, 9H); IR (thin film, cm^{-1}) 2925.8 (m), 2855.2 (w), 1721.6 (s), 1601.6 (m), 1485.7 (m), 1389.7 (m), 1348.7 (s$), 1269.4(\mathrm{~m}), 1165.5(\mathrm{~s}), 1110.7(\mathrm{~m}), 1052.5(\mathrm{~m}), 739.2(\mathrm{~m})$, 703.1 (m), 663.9 (m); HRMS (+ESI) calculated for $\mathrm{C}_{52} \mathrm{H}_{56} \mathrm{KN}_{2} \mathrm{O}_{6} \mathrm{SSi} 903.3265$, found $903.3259[\mathrm{M}+\mathrm{K}]^{+}$.

Synthesis of ketone 380:

341

380

A solution of tetracycle $341(0.722 \mathrm{~g}, 0.977 \mathrm{mmol})$ in THF (5.1 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. 9-BBN (0.5 M in THF, $2.2 \mathrm{~mL}, 1.1 \mathrm{mmol}$) was added and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 42 hours. After removal of the volatiles in vacuo $\left(0.1 \mathrm{mmHg}, 25^{\circ} \mathrm{C}, 1\right.$ hour), $\mathrm{Et}_{2} \mathrm{O}(5.5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexanes, $9.8 \mathrm{~mL}, 9.8 \mathrm{mmol})$ were added, and the resulting solution was stirred for 5 hours. The volatiles were removed in vacuo (0.1 $\mathrm{mmHg}, 25^{\circ} \mathrm{C}, 1$ hour), the grey-black residue was diluted with THF (6.9 mL), and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. A freshly prepared solution of $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$ (1 M in THF, $9.8 \mathrm{~mL}, 9.8 \mathrm{mmol}$) was added over 30 minutes, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. Acetyl chloride was added slowly over 30 minutes, and the resulting solution was warmed to $-20^{\circ} \mathrm{C}$ over 12 hours. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ containing aqueous $\mathrm{NH}_{3}\left(1.5 \mathrm{~mL}, 30 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$, and diluted with EtOAc (50 mL). The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x $50.0 \mathrm{~mL})$. The organic extracts were combined, washed with brine $(150.0 \mathrm{~mL})$, dried over anhydrous MgSO_{4}, and concentrated in vacuo. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded ketone 380 as an amorphous white solid (0.443 g , $58 \%) ; \mathbf{R}_{\mathbf{f}} 0.50\left(7: 3\right.$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.2$ $\mathrm{Hz}), 7.56(\mathrm{dd}, 2 \mathrm{H}, J=8.0,1.3 \mathrm{~Hz}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, 1 \mathrm{H}, J$ $=7.3,0.9 \mathrm{~Hz}), 7.27-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.02(\mathrm{dt}, 1 \mathrm{H}, J=7.7,1.2 \mathrm{~Hz})$,
$6.57(\mathrm{dt}, 1 \mathrm{H}, J=7.4,0.7 \mathrm{~Hz}), 6.27(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 4.29(\mathrm{~d}$, $1 \mathrm{H}, J=16.3 \mathrm{~Hz}), 3.67-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.23(\mathrm{dd}, 1 \mathrm{H}$, $J=10.5,7.4 \mathrm{~Hz}), 2.95(\mathrm{dd}, 1 \mathrm{H}, J=10.7,7.7 \mathrm{~Hz}), 2.48-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.26-$ $2.21(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.01$ $(\mathrm{q}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}), 0.97(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 207.3,150.6,143.8$, $138.8,135.6,135.6,133.4,133.3,132.4,130.9,130.1,130.0,129.9,128.8,128.7,128.1$, $128.0,127.8,127.1,124.3,116.7,105.1,69.0,64.0,59.3,53.7,47.7,47.5,43.5,37.5$, 30.5, 30.1, 30.1, 27.1, 21.7, 19.2; IR (thin film, cm^{-1}) 3049.8 (w), 2929.4 (w), 2856.7 (w), $1712.4(\mathrm{~m}), 1599.5(\mathrm{~m}), 1485.3(\mathrm{~m}), 1347.5(\mathrm{~m}), 1162.4(\mathrm{~s}), 1104.8(\mathrm{~m}), 1089.6(\mathrm{~m})$, 731.0 (s), 700.8 (s); HRMS (+ESI) calculated for $\mathrm{C}_{48} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SSi} 783.3652$, found $783.3641[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of indoline 383:

Palladium on carbon ($5 \% \mathrm{wt}, 0.353 \mathrm{mg}, 0.166 \mathrm{mmol}$) was added to a solution of ketone $380(0.130 \mathrm{~g}, 0.166 \mathrm{mmol})$ in EtOAc $(10.0 \mathrm{~mL})$. The suspension was deoxygenated by argon sparge for 15 minutes. Subsequently hydrogen gas was bubbled through the mixture for 15 minutes. The suspension was stirred for 4 hours under a hydrogen atmosphere (1 atm). The suspension was filtered through celite, and the filter cake was washed with EtOAc (3 x 30 mL). The organic layer was concentrated in vacuo. Purification by chromatography on silica gel (17:3 $\rightarrow 4: 1$ hexanes/EtOAc) afforded
indoline $\mathbf{3 8 3}$ as an amorphous white solid ($0.092 \mathrm{~g}, 80 \%$); $\mathbf{R}_{\mathbf{f}} 0.29$ (7:3 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.64-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.44(\mathrm{~m}$, $3 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.11(\mathrm{dt}, 1 \mathrm{H}, J=7.6,1.2 \mathrm{~Hz}), 6.79(\mathrm{dt}$, $1 \mathrm{H}, J=7.5,0.8 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.62(\mathrm{dd}, 1 \mathrm{H}, J=10.4,4.9$ $\mathrm{Hz}), 3.57(\mathrm{dt}, 1 \mathrm{H}, J=10.8,7.1 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=10.3,8.5 \mathrm{~Hz}), 3.42(\mathrm{t}, 1 \mathrm{H}, J=10.2$ $\mathrm{Hz}), 3.33(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.01(\mathrm{dd}, 1 \mathrm{H}, J=12.5,4.0 \mathrm{~Hz}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{dd}, 1 \mathrm{H}, J=16.6,6.0 \mathrm{~Hz}), 2.23(\mathrm{dt}, 1 \mathrm{H}, J=13.5,4.0 \mathrm{~Hz}), 2.17(\mathrm{dd}, 1 \mathrm{H}, J=$ $16.6,8.4 \mathrm{~Hz}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dt}, 1 \mathrm{H}, J=12.9,6.5 \mathrm{~Hz}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{q}$, $1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 206.9,149.9,143.9$, $135.6,135.6,133.4,132.9,132.6,131.1,130.2,130.2,129.9,128.4,128.1,128.1,128.1$, $125.3,119.5,111.2,67.0,66.8,59.2,55.7,47.3,44.6,43.9,36.0,30.4,30.4,29.8,27.1$, 21.8, 19.2.

Synthesis of pyran 377:

383

377

A solution of indoline $383(0.300 \mathrm{~g}, 0.433 \mathrm{mmol})$ in methanolic $\mathrm{HCl}(1.25 \mathrm{M}, 12.0 \mathrm{~mL})$ was heated at $70{ }^{\circ} \mathrm{C}$ for 16 hours. The mixture was cooled to room temperature and concentrated in vacuo. The crude mixture of acetals was dissolved in anhydrous dioxane $(12.0 \mathrm{~mL})$. PTSA $(0.780 \mathrm{~g}, 0.453 \mathrm{mmol})$ was added, followed by activated powdered $3 \AA$ molecular sieves $(0.750 \mathrm{~g})$. The flask was equipped with a reflux condenser and the suspension was heated at $110{ }^{\circ} \mathrm{C}$ for 2 hours. The mixture was cooled to reach room
temperature and diluted with aqueous saturated $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($3 \times 12 \mathrm{~mL}$). The organic extracts were combined, washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 \rightarrow 1:1 hexanes/EtOAc) afforded pyran 377 as an amorphous white solid ($0.151 \mathrm{~g}, 80 \%$); $\mathbf{R}_{\mathbf{f}} 0.50$ (1:1 hexanes/EtOAc); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.76(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.47(\mathrm{~d}$, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.09(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.83(\mathrm{t}, 1 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}, 1 \mathrm{H}, J=11.2,1.7$ $\mathrm{Hz}), 3.54(\mathrm{dt}, 1 \mathrm{H}, J=11.1,6.9 \mathrm{~Hz}), 3.40(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.33(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz})$, $3.07(\mathrm{dd}, 1 \mathrm{H}, J=12.6,3.0 \mathrm{~Hz}), 2.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{dt}, 1 \mathrm{H}, J=12.9,2.7$ $\mathrm{Hz}), 1.99(\mathrm{dt}, 1 \mathrm{H}, J=12.8,4.5 \mathrm{~Hz}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{dd}, 1 \mathrm{H}, J=11.8,6.8 \mathrm{~Hz}), 1.47-$ $1.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 152.0,149.6,143.9,132.6,131.2,129.7$, $128.2,128.2,125.6,119.9,111.7,100.0,67.3,63.5,58.7,55.4,47.5,37.5,35.8,31.5$, 30.8, 21.8, 20.0; IR (thin film, cm^{-1}) 3355.8 (w), 2923.1 (w), 2854.6 (w), 1675.5 (w), 1598.6 (w), 1462.0 (w), 1346.8 (w), 1327.1 (w), 1162.3 (s), 1091.3 (m); HRMS (+APCI) calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 437.1899$, found $437.1895[\mathrm{M}+\mathrm{H}]^{+}$;

Hemiacetal 384 was isolated in variable ratios upon treatment of compound 383 with 1.25 M HCl in methanol. Compound $\mathbf{3 8 4}$ was also subjected to PTSA and $3 \AA$ podwered molecular sieves in refluxing dioxane to afford compound 377.

384
$\mathbf{R}_{\mathbf{f}} 0.27$ (1:4 hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz})$, $7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.38(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.08(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.81(\mathrm{t}, 1 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}), 6.69(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.05(\mathrm{dd}, 2 \mathrm{H}, J=12.0,2.4 \mathrm{~Hz}), 4.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.57-$ $3.50(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 3.39(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.06(\mathrm{dd}, 1 \mathrm{H}, J=12.6$, $2.4 \mathrm{~Hz}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 2.31(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 2.07(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.00(\mathrm{dt}, 1 \mathrm{H}, J=13.2,4.4 \mathrm{~Hz}), 1.70(\mathrm{dd}, 1 \mathrm{H}, J=11.7,7.1 \mathrm{~Hz}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.45-1.40(m, 4H), 1.26-1.24 (m, 1H); ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ 149.1, 144.1, $132.8,131.4,129.9,128.2,128.1,125.6,119.9,111.8,95.9,62.7,61.4,59.1,55.9,47.2$, $38.0,35.8,35.7,30.8,30.5,29.0,21.8$; IR (thin film, cm^{-1}) 3361.4 (br w), 3050.8 (w), 2933.0 (w), 1604.4 (w), 1461.6 (w), 1345.5 (w), 1329.8 (w), 1265.1 (w), 1159.9 (m), 1089.3 (m), 1031.8 (m), 731.2 (s), 701.6 (m), 665.7 (s), 606.8 (m); HRMS (+ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 455.2005$, found $455.2001[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of acetamide 388:

Acetyl chloride ($0.083 \mathrm{~mL}, 1.17 \mathrm{mmol}$) was added dropwise to a solution of pyran 377 $(0.102 \mathrm{~g}, 0.233 \mathrm{mmol})$ and DMAP $(0.130 \mathrm{~g}, 1.06 \mathrm{mmol})$ in THF $(2.3 \mathrm{~mL})$, and the resulting mixture was stirred for 1 hour. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The resulting biphasic mixture was stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 3 mL). The organic extracts were combined, washed with brine (10 mL),
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (3:2 \rightarrow 1:1 hexanes/EtOAc) afforded acetamide $\mathbf{3 8 8}$ as an amorphous white solid ($0.092 \mathrm{~g}, 82 \%$); $\mathbf{R}_{\mathbf{f}} 0.32$ ($3: 7$ hexanes/EtOAc); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz})(1: 0.6$ mixture of rotamers) $\delta 8.01(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.78-7.73(\mathrm{~m}, 3.2 \mathrm{H})$, $7.63(\mathrm{~d}, 0.6 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.56(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.43-7.36(\mathrm{~m}, 3.2 \mathrm{H}), 7.29-7.26(\mathrm{~m}$, $1.6 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2.2 \mathrm{H}), 4.71(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.22(\mathrm{~m}, 1.2 \mathrm{H})$, $4.11(\mathrm{dd}, 1 \mathrm{H}, J=11.5,1.7 \mathrm{~Hz}), 4.03(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.88(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 3.77$ $(\mathrm{dd}, 0.6 \mathrm{H}, J=10.6,1.5 \mathrm{~Hz}), 3.54-3.49(\mathrm{~m}, 1.6 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 1.6 \mathrm{H}), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=$ $12.7,3.2 \mathrm{~Hz}), 3.07(\mathrm{dd}, 0.6 \mathrm{H}, J=12.6,2.9 \mathrm{~Hz}), 2.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.66(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}), 2.49(\mathrm{~s}$, $4.8 \mathrm{H}), 2.44(\mathrm{dt}, 1 \mathrm{H}, J=13.2,3.0 \mathrm{~Hz}), 2.41-2.35(\mathrm{~m}, 2.4 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{dt}, 1 \mathrm{H}, J=$ $12.9,4.5 \mathrm{~Hz}), 1.92(\mathrm{dt}, 0.6 \mathrm{H}, J=12.9,4.6 \mathrm{~Hz}), 1.78-1.71(\mathrm{~m}, 1.6 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 3.2 \mathrm{H})$, 1.53-1.43 (m, 3H); ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(1: 0.6$ mixture of rotamers) 168.6, $168.0,153.1,152.6,144.3,144.2,141.5,141.2,136.7,134.9,132.5,132.0,129.9,129.9$, $128.5,128.3,128.2,128.2,126.3,125.1,125.0,124.7,120.2,117.7,99.8,99.1,67.4$, $66.7,65.7,64.5,58.6,58.5,54.9,54.1,47.1,46.9,37.1,37.0,35.8,35.5,32.2,31.6,30.2$, 26.7, 23.4, 23.4, 21.8, 21.8, 20.2, 20.1; IR (thin film, cm^{-1}) 2922.2 (w), 1655.8 (s), 1597.6 (w), 1473.4 (m), 1461.7 (m), 1393.9 (m), 1349.9 (m), 1332.8 (w), 1163.1 (s), 1091.6 (m), 730.2 (m); HRMS (+APCI) calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ 479.2005, found 479.1999 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of trifluoroacetamide 397:

A solution of pyran $377(0.316 \mathrm{~g}, 0.724 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. Pyridine ($0.18 \mathrm{~mL}, 2.17 \mathrm{mmol}$) was added, followed by dropwise addition of trifluoroacetic anhydride ($0.11 \mathrm{~mL}, 0.80 \mathrm{mmol}$), and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. The reaction was quenched with aqueous phosphate buffer $(\mathrm{pH}=$ $7.0,10 \mathrm{~mL}$). The resulting biphasic mixture was warmed to room temperature and stirred vigorously for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic extracts were combined, washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (17:3 hexanes/EtOAc) afforded trifluoroacetamide 397 as an amorphous white solid ($0.367 \mathrm{~g}, 95 \%$); $\mathbf{R}_{\mathbf{f}} 0.50$ ($7: 3$ hexanes/EtOAc); ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1: 0.3$ mixture of rotamers) $\delta 7.95(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.75(\mathrm{~d}, 2.6 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 7.67(\mathrm{~d}, 1.3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.41-7.25(\mathrm{~m}, 5.5 \mathrm{H}), 4.77(\mathrm{~d}, 0.3 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $4.37(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.22(\mathrm{~s}, 1.3 \mathrm{H}), 4.15(\mathrm{~d}, 0.3 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.4 \mathrm{~Hz}), 3.84-3.81(\mathrm{~m}, 1.3 \mathrm{H}), 3.52(\mathrm{dt}, 1.3 \mathrm{H}, J=10.8,7.3 \mathrm{~Hz}), 3.47-3.38(\mathrm{~m}, 1.3 \mathrm{H})$, $3.13(\mathrm{dd}, 1 \mathrm{H}, J=12.5,3.1 \mathrm{~Hz}), 3.09(\mathrm{~d}, 0.3 \mathrm{H}, J=12.0 \mathrm{~Hz}), 2.77-2.68(\mathrm{br} \mathrm{s}, 1.3 \mathrm{H}), 2.50($, $3.9 \mathrm{H}), 2.44-2.42(\mathrm{~m}, 1.3 \mathrm{H}), 2.01(\mathrm{dt}, 1 \mathrm{H}, J=12.9,4.7 \mathrm{~Hz}), 1.95-1.88(\mathrm{~m}, 0.3 \mathrm{H}), 1.77-$ $1.70(\mathrm{~m}, 3.9 \mathrm{H}), 1.68-1.48(\mathrm{~m}, 3.9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(1: 0.3$ mixture of rotamers) $154.7\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=37.3 \mathrm{~Hz}, 1 \mathrm{C}\right)$, [153.1], 152.7, 144.4, 140.8, [138.5], [136.5], 135.5, 132.2, [131.8], 130.0, [129.9], 128.6, [128.2], 128.1, 127.0, [126.7], [126.1],
$125.6,121.1,[118.2], 116.2\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=286.2 \mathrm{~Hz}, 1 \mathrm{C}\right), 99.0,[67.8],[67.1], 66.0,66.0$, [58.4], 58.2, 55.3, [53.8], [47.0], 46.7, 36.3, [36.1], [35.0], 34.8, 32.0, [31.7], 30.2, [29.9], 21.8, [20.1], 20.0; IR (thin film, cm^{-1}) 2922.7 (w), 2882.2 (w), 1690.6 (s), 1598.4 (w), 1475.0 (w), 1462.0 (w), 1428.6 (w), 1350.8 (w), 1331.8 (w), 1275.5 (w), $1207.0(\mathrm{~m})$, 1154.7 (s), 1091.7 (m); HRMS (+APCI) calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 533.1722$, found $533.1722[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of aldehyde 387:

Phosphoryl chloride ($0.38 \mathrm{~mL}, 4.13 \mathrm{mmol}$) was added dropwise to DMF $(2.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 10 minutes. A solution of trifluoroacetamide $397(0.366 \mathrm{~g}, 0.688 \mathrm{mmol})$ in DMF (4.0 mL) was added over 5 minutes to the Vilsmeier reagent solution, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, warmed to room temperature and stirred for a further 30 minutes. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with aqueous $\mathrm{NaOH}(3 \mathrm{M}, 6 \mathrm{~mL})$ warmed to room temperature and stirred for 1 hour. EtOAc $(10 \mathrm{~mL})$ was added, and the organic layer was separated. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), and the organic extracts were combined, washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x} 40 \mathrm{~mL})$, brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude aldehyde 398 was dissolved in THF (7.0 mL). DMAP ($0.092 \mathrm{~g}, 0.757 \mathrm{mmol}$) and acetyl chloride ($0.25 \mathrm{~mL}, 0.35 \mathrm{mmol}$) were added, and the resulting suspension was stirred at room temperature for 1 hour. The
reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic extracts were combined, washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (1:1 \rightarrow 1:9 hexanes/EtOAc) afforded aldehyde 387 as an amorphous white solid ($0.250 \mathrm{~g}, 72 \%$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz})(1: 0.4$ mixture of rotamers) $\delta 9.81(\mathrm{~s}, 0.4 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, 0.4 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 7.75-7.68(\mathrm{~m}, 2.8 \mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.54(\mathrm{~d}, 0.4 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.37(\mathrm{~d}$, $2.8 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.30-7.27(\mathrm{~m}, 1.4 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 2.4 \mathrm{H}), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz})$, $4.07-4.00(\mathrm{~m}, 2.8 \mathrm{H}), 3.89(\mathrm{~d}, 0.4 \mathrm{H}, J=5.0 \mathrm{~Hz}), 3.60-3.51(\mathrm{~m} 1.4 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1.4 \mathrm{H})$, $3.05(\mathrm{dd}, 0.4 \mathrm{H}, J=12.3,4.9 \mathrm{~Hz}), 2.96(\mathrm{dd}, 1 \mathrm{H}, J=12.3,5.1 \mathrm{~Hz}), 2.89-2.70(\mathrm{~m}, 1.8 \mathrm{H})$, $2.66(\mathrm{q}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.49(\mathrm{~d}, 4.2 \mathrm{H}, J=4.7 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 1.2 \mathrm{H}), 2.24-$ $2.19(\mathrm{~m}, 4.2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1.4 \mathrm{H}), 1.91$ (quintet, $0.4 \mathrm{H}, J=5.1 \mathrm{~Hz}$), 1.84 (quintet, $1 \mathrm{H}, J$ $=5.3 \mathrm{~Hz}), 1.74(\mathrm{dd}, 0.4 \mathrm{H}, J=11.7,6.7 \mathrm{~Hz}), 1.68(\mathrm{dd}, 1 \mathrm{H}, J=12.0,6.6 \mathrm{~Hz}), 1.60-1.49$ $(\mathrm{m}, 1.4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)(1: 0.6$ mixture of rotamers) $\delta 188.5,188.4$, $171.8,170.6,168.2,167.6,144.0,144.0$, , 141.4, 140.6, 135.6, 133.7, 132.7, 132.5, 129.8, $129.7,128.6,128.5,127.9,127.9,126.0,124.9,124.7,124.6,118.8,117.0,116.6,116.1$, $68.4,67.9,65.8,64.4,58.3,57.9,53.7,52.5,46.8,46.7,38.9,38.0,36.1,35.8,27.9,27.7$, 27.6, 27.4, 23.7, 23.5, 21.6, 21.6, 17.0, 16.9; IR (thin film, cm^{-1}) 2891.2 (w), 1649.1 (s), 1598.2 (m), 1475.9 (m), 1462.2 (w), 1392.4 (m), 1343.7 (m), 1161.6 (s), $906.0(\mathrm{~s}) ;$ HRMS (+APCI) calculated for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} 507.1954$, found $507.1942[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of acid 399:

Aldehyde 387 ($0.012 \mathrm{~g}, 0.024 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.20 \mathrm{~mL})$ and tert- $\mathrm{BuOH}(0.80 \mathrm{~mL})$. 2-Methyl-2-butene $(0.45 \mathrm{~mL})$ was added, and the resulting mixture was stirred for 5 minutes. A solution of $\mathrm{NaClO}_{2}(0.080 \mathrm{~g}, 0.88 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(0.097 \mathrm{~g}, 0.70 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.80 \mathrm{~mL})$ was added, and the resulting mixture was stirred for 72 hour in the dark. The reaction was quenched with brine (2 mL). The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The organic extracts were combined, washed with brine ($2 \times 1 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (7:3 \rightarrow 1:1 hexanes/EtOAc) afforded acid 399 as an amorphous white solid ($6.9 \mathrm{mg}, 55 \%$); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)\left(1: 1.5\right.$ mixture of rotamers) $\delta{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$: $\delta 8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.72-7.64(\mathrm{~m}, 6.5 \mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.41-7.34(\mathrm{~m}$, $5 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2.5 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{~d}, 1.5 \mathrm{H}, J=4.9 \mathrm{~Hz}), 4.01-3.94(\mathrm{~m}$, $6 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 2.5 \mathrm{H}), 3.43-3.34(\mathrm{~m}, 2.5 \mathrm{H}), 3.09-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, 1.5 \mathrm{H}, \mathrm{J}=$ $12.3,4.5 \mathrm{~Hz}), 2.83-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 4.5 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, 4.5H), 2.27 (s, 3H), 2.25 ($\mathrm{s}, 4.5 \mathrm{H}$), 2.24 (s, 3H), 2.21-2.15 (m, 2.5H), 1.95-1.90 (m, 1H), $1.90-1.84(\mathrm{~m}, 1.5 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2.5 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2.5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz})(1: 1.5$ mixture of rotamers) $\delta 172.8,172.5,168.5,168.5,168.0,167.5,144.2$, $144.2,141.5,140.9,135.9,134.1,132.3,132.0,130.1,130.1,128.8,128.7,128.1,128.1$, $126.3,125.2,125.0,124.8,119.4,116.3,105.5,105.0,68.1,67.5,66.1,64.9,58.5,58.4$,
$54.2,52.8,47.1,46.9,39.4,38.8,36.1,36.0,30.0,29.1,23.9,23.6,21.8,21.8,21.0,20.7$;
IR (thin film, cm^{-1}) 2956.8 (s$), 2925.1$ (s$), 1661.4$ (s$), 1477.1$ (m), 1395.4 (m), 1597.2 (m), 1162.9 (s); HRMS (+APCI) calculated for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} 523.1903$, found 523.1891 $[\mathrm{M}+\mathrm{H}]^{+}$.

Synthesis of Saturated Acid 401 (Tentative Structure):

Rhodium on silica (5% by weight, $28.0 \mathrm{mg}, 0.014 \mathrm{mmol}$) was added to a solution of acid 399 ($7.1 \mathrm{mg}, 0.014 \mathrm{mmol}$) in EtOAc (1.5 mL). The mixture was subjected to an atmosphere of hydrogen gas (50 psi) for 24 hours using a Parr shaker hydrogenator. EtOAc (4 mL) was added and the mixture was stirred for 30 minutes. The suspension was filtered through celite, and the filter cake was washed with EtOAc ($3 \times 3 \mathrm{~mL}$). The filtrate was concentrated in vacuo. Purification by chromatography on silica gel (7:3 \rightarrow 1:1 hexanes/EtOAc) afforded compound 401 as an amorphous white solid ($3.8 \mathrm{mg}, 50 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1: 1$ mixture of rotamers) $\delta 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{H})$, 7.47$(\mathrm{d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.37(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.31(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=8.1$ $\mathrm{Hz}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=10.5,2.1 \mathrm{~Hz}), 4.11-$ $4.07(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{q}, 2 \mathrm{H}, J=9.5 \mathrm{~Hz}), 3.90(\mathrm{q}, 2 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.84(\mathrm{dd}, 1 \mathrm{H}, J=12.3$, $5.4 \mathrm{~Hz}), 3.80(\mathrm{dd}, 1 \mathrm{H}, J=12.2,5.6 \mathrm{~Hz}), 3.49-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.67$ $(\mathrm{m}, 1 \mathrm{H}), 2.59-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 4 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 2.12-$
$1.82(\mathrm{~m}, 18 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 5 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.03-1.00(\mathrm{~m}, 6 \mathrm{H}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S} 547.1879[\mathrm{M}+\mathrm{Na}]^{+}$, found $551.1879[\mathrm{M}+4 \mathrm{H}+\mathrm{Na}]^{+}$.

Synthesis of amine 402:

DME (4.4 mL) was added to a flask charged with naphthalene $(0.728 \mathrm{~g}, 5.68 \mathrm{mmol})$ and sodium metal $(0.106 \mathrm{~g}, 4.61 \mathrm{mmol})$. The resuling dark green mixture was stirred at r.t. for 1 h . In a separate flask, a solution of tosylamine $399(0.014 \mathrm{~g}, 0.027 \mathrm{mmol})$ in DME (0.5 mL) was cooled to $-60{ }^{\circ} \mathrm{C}$. The sodium naphthalide solution ($55 \mu \mathrm{~L}, 0.028 \mathrm{mmol}$) was added slowly by syringe until the clear starting material solution turned green. The reaction was quenched by addition of a solution of acetic acid/methanol (10:1, 0.3 mL). The resulting mixture was warmed to r.t. and concentrated in vacuo. The excess acetic acid was removed by repeated azotroping with toluene, and the crude reaction mixture was dissolved in methanol (0.45 mL). Excess $\mathrm{TMSCHN}_{2}\left(2 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.1 \mathrm{~mL}\right)$ was added and the mixture was stirred for 20 minutes. The reaction mixture was concentrated in vacuo. EtOAc (2.0 mL) was added, followed by aqueous saturated NaHCO_{3}, and the resulting biphasic mixture was stirred for 15 minutes. The organic layer was separated, and the aqueous layer was extracted with EtOAc ($2 \times 1.0 \mathrm{~mL}$). The organic extracts were combined, washed with brine (2.0 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel ($93: 7 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ methanol) afforded amine $\mathbf{4 0 2}$ as a pale yellow oil ($1.8 \mathrm{mg}, 17 \%$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1: 1$ mixture
of rotamers) $\delta 8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 7.25-7.20 (m, 2H), $7.10(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz})$, 4.17-4.15 (m, 1H), 4.09-4.02 (m, 4H), 3.67 (s, 3H), 3.66 (s, 3H), 3.28-3.23(m, 2H), 2.76$2.72(1 \mathrm{H}), 2.59-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 5 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 11 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.15$ $(\mathrm{s}, 3 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 6 \mathrm{H}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}$ 397.2127, found $397.2120[\mathrm{M}+\mathrm{H}]^{+}$; and amine 403 as a pale yellow oil ($1.5 \mathrm{mg}, 15 \%$); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)(1: 1$ mixture of rotamers) $\delta 8.08(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.62$ $(\mathrm{d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.25(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.13(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 7.08(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.11-4.01(\mathrm{~m}, 5 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 4 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.64(\mathrm{~m}$, $1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 6 \mathrm{H}), 2.00-1.76(\mathrm{~m}, 10 \mathrm{H}) ;$ HRMS (+ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} 383.1971$, found $383.1964[\mathrm{M}+\mathrm{H}]^{+}$.

3.6. NMR Spectra

$$
\begin{aligned}
& \text { 2 } 29 \text { ' }\llcorner\square \\
& 689^{\circ} \text { ' } \\
& \text { S8* } 98 \\
& \begin{array}{l}
6 \angle 0.97 \\
\angle 9 \angle \angle 7 \\
019.87
\end{array} \\
& \angle 2095 \\
& \text { 26Z.65 } \\
& \begin{array}{l}
606.89 \\
0662 L
\end{array}
\end{aligned}
$$

$896 \cdot 29$
228.89

4. References

1. Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K. J. Am. Chem. Soc. 1954, 76, 47449.
2. Josef, H. Collect. Czech. Chem. Comm. 2004, 69, 1681.
3. (a) Saxton, J. E., 1.1 Alkaloids of the Aspodospermine Group. In The Alkaloids, Cordell, G. A., Ed. Academic Press: San Diego, 1988; Vol. 51; (b) Saxton, J. E., 1.1 Synthesis of the Aspidosperma Alkaloids. In The Alkaloids: Chemistry and Biology, Cordell, G. A., Ed. Academic Press: San Diego, 1998; Vol. 50.
4. Rahman, A.-u.-. Studies in Natural Product Chemistry. series editor, eds:ELSEVIER SCIENCE B.V.: Amsterdam, 2002; Vol. 26.
5. (a) Rasonaivo, P.; Galeffi, G.; de Vicente, Y.; Nicoletti, M. Rev. Latinoamer. Quim. 1991, 22, 32; (b) Ramanitrahasimbola, D.; Rasoanaivo, P.; Ratsimamanga, S.; Vial, H. Molecular and Biochemical parasitology 2006, 146, 58; (c) Rasoanaivo, P.; Ratsimamanga-Urverg, S.; Milijaona, R.; Rafatro, H.; Rakoto-Ratsimamanga, A.; Galeffi, C.; Nicoletti, M. Planta Med. 1994, 60, 13.
6. Rasoanaivo, P.; Palazzino, G.; Nicoletti, M.; Galeffi, C. Phytochemistry 2001, 56, 863.
7. Martin, M.-T.; Rasoanaivo, P.; Palazzino, G.; Galeffi, C.; Nicoletti, M.; Trigalo, F.; Frappier, F. Phytochemistry 1999, 51, 479.
8. Caira, M. R.; Rasoanaivo, P. Journal of Chemical Crystallography 1995, 25, 725.
9. World Health Organization, World Malaria Report 2009.
10. Henry, M.; Alibert, S.; Orlandi-Pradines, E.; Bogreau, H.; Fusai, T.; Rogier, C.; Barbe, J.; Pradines, B. Current Drug Targets 2006, 7, 935.
11. Hayeshi, R.; Masimirembwa, C.; Mukanganyama, S.; Ungell, A.-L. B. European Journal of Pharmaceutical Sciences 2006, 29, 70.
12. (a) Howard, E. M.; Zhang, H.; Roepe, P. D. Membrane Biology 2002, 190, 1; (b) Zhang, H.; Paguio, M.; Roepe, P. D. Biochemistry 2004, 43, 8290.
13. Trigalo, F.; Joyeau, R.; Pham, V. C.; Youte, J. J.; Rasoanaivoa, P.; Frappier, F. Tetrahedron 2004, 5471.
14. Harley-Mason, J.; Waterfield, W. R. Chemistry and Industry 1960, 1477.
15. van Tamelen, E. E.; Dolby, L. J.; Lawton, R. G. Tetrahedron Lett. 1960, 19, 30.
16. Büchi, G.; Matsumoto, K. E.; Nishimura, H. J. Am. Chem. Soc. 1971, 93, 3299.
17. Ando, M.; Büchi, G.; Ohnuma, T. J. Am. Chem. Soc. 1975, 97, 6880.
18. Turet, L.; Markó, I. E.; Tinant, B.; Declercq, J.-P.; Touillaux, R. Tetrahedron Lett. 2002, 43, 6591.
19. Heurex, N.; Wouters, J.; Marko, I. E. Organic Letters 2005, 7, 5245.
20. He, F.; Bo, Y.; Altom, J. D.; Corey, E. J. J. Am. Chem. Soc. 1999, 121.
21. Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558.
22. (a) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070; (b)

Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583; (c) Itoh, J.;
Fuchibe, K.; Akiyama, T. Angew. Chem. Int. Ed. 2006, 45, 4796.
23. (a) Lee, T. V.; Richardson, K. A.; Taylor, D. A. Tetrahedron Letters 1986, 27,

5021; (b) Lee, T. V.; Boucher, R. J.; Porter, J. R.; Taylor, D. A. Tetrahedron 1988, 44,
4233; (c) Lee, T. V.; Boucher, R. J.; Rockell, C. J. M. Tetrahedron Lett. 1988, 29, 689.
24. Itoh, K.; Yogo, T.; Ishii, Y. Chem. Lett. 1977, 103.
25. Ni, Z.-J.; Luh, T.-Y. Organic Syntheses 1998, Coll. Vol. 9, 727.
26. Guziec, F. S.; Luzzio, F. A. Synthesis 1980, 691.
27. Hu, T.; Panek, J. S. J. Org. Chem. 1999, 64, 3000.
28. Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019.
29. Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
30. (a) Lee, T. V.; Channon, J. A.; Cregg, C.; Porter, J. R.; Roden, F. S.; Yeoh, H. T.-
L. Tetrahedron 1989, 45, 5877; (b) Lee, T. V.; Porter, J. R.; Roden, F. S. Tetrahedron

Lett. 1988, 29, 5009; (c) Mickelson, T. J.; Koviach, J. L.; Forsyth, C. J. J. Org. Chem.
1996, 61, 9617; (d) Narayanan, B. A.; Bunnelle, W. H. Tetrahedron Lett. 1987, 28, 6261.
31. (a) Kiyooka, S.-i.; Shirouchi, M. J. Org. Chem. 1992, 57, 1; (b) Kiyooka, S.-i.;

Shirouchi, M.; Kaneko, Y. Tetrahedron Lett. 1993, 34, 1491; (c) Kiyooka, S.-i.; Suzuki,
K.; Shirouchi, M.; Kaneko, Y.; Tanimori, S. Tetrahedron Lett. 1993, 34, 5729; (d)

Kopecky, D. J.; Rychnovsky, S. D. J. Org. Chem. 2000, 65, 191; (e) Kopecky, D. J.; Rychnovsky, S. D. Organic Syntheses 2003, 80, 177.
32. (a) Jung, J.-W.; Shin, D.-Y.; Seo, S.-Y.; Kim, S.-H.; Paek, S.-M.; Jung, J.-K.;

Suh, Y.-G. Tetrahedron Lett. 2005, 46, 573; (b) Suh, Y.-G.; Kim, S.-H.; Jung, J.-K.; Shin, D.-Y. Tetrahedron Lett. 2002, 43, 3165; (c) Suh, Y.-G.; Shin, D.-Y.; Jung, J.-K.; Kim, S.-H. Chem. Comm. 2002, 1064.
33. Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem. Int. Ed. 2006, 45, 2254.
34. Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804.
35. Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
36. (a) Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887; (b) Menche, D.; Hassfeld, J.; Li, J.; Menche, G.; Ritter, A.; Rudolph, S. Org. Lett. 2006, 8, 741; (c)
Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404; (d) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012.
37. Danheiser, R. L.; Miller, R. F.; Brisbois, R. G. Organic Syntheses 1998, Coll. Vol. 9, 197.
38. (a) Amat, M.; Lozano, O.; Escolano, C.; Molins, E.; Bosch, J. J. Org. Chem. 2007, 72, 4431; (b) Amat, M.; Santos, M. M. M.; Gómez, A. M.; Jokic, D.; Molins, E.; Bosch, J. Org. Lett. 2007, 2907.
39. Yong Qin, H. S., Ju Yang, Wei Chen Org. Lett. 2006, 8, 6011.
40. (a) Sole, N.; Torres, J. L.; Anton, J. M. G.; Valencia, G.; Reig, F. Tetrahedron

1986, 42, 193; (b) Carpino, L. A.; El-Faham, A. J. Org. Chem. 1995, 60, 3561; (c) König, W.; Geiger, R. Chem. Ber. 1970, 103, 788; (d) Mahmoud, K. A.; Long, Y.-T.; Schatte, G.; Kraazt, H.-B. Eur. J. Inorg. Chem. 2005, 173.
41. (a) Dong, Q.; Anderson, C. E.; Cuifolini, M. A. Tetrahedron Lett. 1995, 36, 5681; (b) Eckert, H.; listl, M.; Ugi, I. Angew. Chem. Int. Ed. Engl 1978, 17, 361.
42. Ryoichi Kuwano, M. K., Koji Sato, Takashi Ito, Kohei Kaneda, Yoshihiko Ito Tetrahedron: Asymmetry 2006, 17, 521.
43. Nakashima, D.; Yamamoto, H. Journal of the American Chemical Society 2006, 128, 9626.
44. Kiso, Y.; Inai, M.; Kitagawa, K.; Akita, T. Chem. Lett. 1983, 739.
45. Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 613.
46. (a) Shelkov, R.; Nahmany, M.; Melman, A. J. Org. Chem. 2002, 67, 8975; (b) Shelkov, R.; Nahmany, M.; Melman, A. Org. Biomol. Chem. 2004, 2, 397.
47. (a) Dobarro, A.; Velasco, D. Tetrahedron 1996, 52, 13733; (b) Hintermann, T.; Seebach, D. Helv. Chim. Acta 1998, 81, 2093.
48. Sames, D.; Liu, Y.; DeYoung, L.; Polt, R. J. Org. Chem. 1995, 60, 2153.
49. (a) Heathcock, C. H.; Blumenkopf, T. A.; Smith, K. M. J. Org. Chem. 1989, 54, 1548; (b) Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A.; Bank, S.; Closson, W. D.; Wriede, P. J. Am. Chem. Soc. 1967, 89, 5311; (c) Katoh, T.; Itoh, E.; Yoshino, T.;
Terashima, S. Tetrahedron Lett. 1966, 37, 3471; (d) McIntosh, J. M.; Matassa, L. C. J. Org. Chem. 1988, 53, 4452.
50. Rose, M. D.; Cassidy, M. P.; Rashatasakhon, P.; Padwa, A. J. Org. Chem. 2007, 72, 538.
51. (a) Cardillo, G.; Gentilucci, L.; Gianotti, M.; Perciaccante, R.; Tolomelli, A. J. Org. Chem. 2001, 66, 8657; (b) Danilin, A. A.; Purygin, P. P.; Makarova, N. V.; Zemtsova, M. N.; Moiseev, I. K. Russian J. Org. Chem. 2001, 37, 56; (c) Hellou, J.; Bérubé, G.; Newlands, M. J.; Fallis, A. G.; Gabe, E. J. Can. J. Chem. 1988, 66, 439; (d) Lehnert, W. Tetrahedron Lett. 1970, 54, 4723; (e) Lehnert, W. Tetrahedron 1973, 29, 635; (f) Mangelinckx, S.; Vermaut, B.; Verhé, R.; Kimpe, N. D. Synlett 2008, 17, 2697;
(g) Renzetti, A.; Dardennes, E.; Fontana, A.; Maria, P. D.; Sapi, J.; Gérard, S. J. Org.

Chem. 2008, 73; (h) Zhu, Q.; Qiao, L.; Wu, Y.; Wu, Y.-L. J. Org. Chem. 2001, 66, 2692.
52. Delgado, R.; Blakey, S. B. Eur. J. Org. Chem. 2009, 1506.
53. (a) Baxter, J.; Mata, E. G.; Thomas, E. J. Tetrahedron 1998, 54, 14359; (b) Piers, E.; Chong, J. M.; Morton, H. E. Tetrahedron Lett. 1989, 45, 363.
54. Inokuchi, E.; Narumi, T.; Niida, A.; Kobayashi, K.; Tomita, K.; Oishi, S.; Ohno, H.; Fujii, N. J. Org. Chem. 2008, 73, 3942.
55. (a) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron Lett. 1981, 37, 2091; (b) Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567.
56. Duchêne, A.; Abarbri, M.; Parrain, J.-L.; Kitamura, M.; Noyori, R. Synlett 1994,
524.
57. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
58. (a) Liu, X.; Ready, J. M. Tetrahedron 2008, 64, 6955; (b) Zhang, D.; Ready, J. M. J. Am. Chem. Soc. 2007, 129, 12088.
59. (a) Magnus, P.; Giles, M.; Bonnert, R.; Kim, C. S.; McQuire, L.; Merritt, A.; Vicker, N. J. Am. Chem. Soc. 1992, 114, 4403; (b) Magnus, P.; Katoh, T.; Matthews, I. R.; Huffman, J. C. J. Am. Chem. Soc. 1989, 111, 6707; (c) Magnus, P.; Mendoza, J. S.; Stamford, A.; Ladlow, M.; Willis, P. J. Am. Chem. Soc. 1992, 114.
60. (a) Goti, A.; Romani, M. Tetrahedron Lett. 1994, 35, 6567; (b) Maruyama, K.; Kusukawa, T.; Huguchi, Y.; Nishinaga, A. Chem. Lett. 1991, 1093; (c) Yamaguchi, J.-i.; Takeda, T. Chem. Lett. 1992, 1933.
61. Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368.
62. McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24.
63. (a) Zorn, N.; Lett, R. Tetrahedron Lett. 2006, 47, 4331; (b) Bunlaksananusorn, T.; Knochel, P. J. Org. Chem. 2004, 69, 4595.
64. (a) d'Angelo, J. Tetrahedron 1976, 32, 2979; (b) Xie, L.; Isenberger, K. M.; Held, G.; Dahl, L. M. J. Org. Chem. 1997, 62, 7526.
65. (a) Iwaoka, T.; Murohashi, T.; Katagiri, N.; Sato, M.; Kaneko, C. J. Chem. Soc. Perkin Trans. 1 1992, 1393; (b) Thibonnet, J.; Vu, V. A.; Bérillon, L.; Knochel, P.

Tetrahedron 2002, 58, 4787; (c) Vu, V. A.; Bérillon, L.; Knochel, P. Tetrahedron Lett. 2001, 42, 6847; (d) Wang, X.-j.; Sun, X.; Zhang, L.; Xu, Y.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett 2006, 8, 305.
66. (a) Hupe, E.; Calaza, M. I.; Knochel, P. Tetrahedron Lett. 2001, 42, 8829; (b)

Hupe, E.; Calaza, M. I.; Knochel, P. Chem. Eur. J. 2003, 9, 2789.
67. Peterli-Roth, P.; Maguire, M. P.; León, E.; Rapoport, H. J. Org. Chem. 1994, 59, 4186.
68. Ramesh, N. G.; Balasubramanian, K. K. Tetrahedron Lett. 1991, 31, 3875.
69. Samuel, A. P. S.; Xu, J.; Raymond, K. N. Inorg. Chem. 2009, 48, 687.
70. Sharma, G. V. M.; Ilangovan, A.; Lavanya, B. Synth. Comm. 2000, 30, 397.
71. Corey, E. J.; Gilman, N. W.; Ganem, B. E. J. Am. Chem. Soc. 1968, 90, 5616.
72. Harding, K. E.; May, L. M.; Dick, K. F. J. Org. Chem. 1975, 40, 1664.
73. Mannam, S.; Sekar, G. Tetrahedron Lett. 2008, 49, 1083.
74. Shimokawa, J.; Ishiwata, T.; Shirai, K.; Koshino, H.; Tanatani, A.; Nakata, T.; Hashimoto, Y.; Nagasawa, K. Chem. Eur. J. 2005, 11, 6878.
75. (a) Bellur, E.; Freifeld, I.; Böttcher, D.; Bornscheuer, U. T.; Langer, P.

Tetrahedron 2006, 62, 7132; (b) Blouin, M.; Béland, M.-C.; Bressard, P. J. Org. Chem. 1990, 55, 1466; (c) Juhász, L.; Szilágyi, L.; Antus, S.; Visy, J.; Zsila, F.; Simonyo, M. Tetrahedron 2002, 58, 4261; (d) Schatz, P. F.; Ralph, J.; Lu, F.; Guzei, I. A.; Buzel, M. Org. Biomol. Chem. 2006, 4, 2801; (e) Pohmakotr, M.; Issaree, A.; Sampaongoen, L.; Tuchinda, P.; Reutrakul, V. Tetrahedron Lett. 2003, 44, 7937.
76. (a) Bartlett, P. A.; Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. 1984, 106, 5304;
(b) Brandänge, S.; Färnbäck, M.; Leijonmarck, H.; Sundin, A. J. Am. Chem. Soc. 2003, 125, 11942; (c) Honda, T.; Satoh, A.; Yamada, T.; Hayakawa, T.; Kanai, K. J. Chem.
Soc. Perkin Trans. 1 1998, 397; (d) Kametani, T.; Katoh, T.; Fujio, J.; Nogiwa, I.;
Tsubuki, M.; Honda, T. J. Org. Chem. 1988, 53, 1982; (e) Kametani, T.; Katoh, T.;
Tsubuki, M.; Honda, T. J. Am. Chem. Soc. 1986, 108, 7055; (f) Lee, J. Y.; Kim, B. H. Tetrahedron 1996, 52, 571.
77. (a) Donohoe, T. J.; House, D. J. Org. Chem. 2002, 67, 5015; (b) Vincent, S. P.; Sinaÿ, P.; al., e. Chem. Eur. J. 2007, 13, 1471.
78. Ankner, T.; Hilmersson, G. Org. Lett 2009, 11, 503.

[^0]: Symmetry transformations used to generate equivalent atoms:

[^1]: Symmetry transformations used to generate equivalent atoms:

[^2]: Symmetry transformations used to generate equivalent atoms:

