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Abstract

Locally nearly perfect packings
By Daniel M. Martin

In 1963 P. Erdős and H. Hanani conjectured that for every fixed positive
integers ℓ < k, and for every n there exists a family Fn of k-element subsets
of {1, 2, . . . , n} with the property that every ℓ-element subset of {1, 2, . . . , n}
is contained in at most one member of Fn, and the proportion of ℓ-element
subsets which are not contained in any member of Fn tends to 0 as n tends
to infinity. The conjecture was solved by V. Rödl in 1985. Since then, many
improvements and generalizations followed Rödl’s result. Until the present
moment all known proofs of the conjecture use the “semi-random method”,
an iterative process in which the desired set system is build as a successive
union of small randomly chosen pieces. In the first part of this dissertation we
give an alternative proof of Rödl’s result using a somewhat different approach
which is elementary and fairly simple. In the second part, we use the semi-
random method to show a strengthening of Rödl’s result in which the family
Fn is also required to satisfy that, for every 0 < j < ℓ and for all j-element
subset J ⊆ {1, 2, . . . , n}, the proportion of ℓ-element subsets containing J

which are not contained in any member of Fn tends to 0 as n tends to infinity.
This means that the family Fn is close to being a perfect packing not only
globally, but also locally.
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Chapter 1

Introduction

1.1 A problem on combinations

In the fields of combinatorics and design theory, there is an interesting class

of objects which has been studied extensively over the last 150 years. These

objects are named Steiner systems. We introduce the reader to Steiner sys-

tems with a question that appeared in the 1844 issue of an almanac published

in London called Lady’s and Gentleman’s Diary1 devoted to mathematical

problems and enigmas.

“Determine the number of combinations that can be made out of n

symbols, each combination having p symbols, with this limitation,

that no combination of q symbols which may appear in any one

of them, may be repeated in any other.”

Since the general problem turned out to be too difficult for the readers, a

later issue specialized the question to the case q = 2, p = 3. A few years later,

the British mathematician T. P. Kirkman solved this case, and published his

solution in the second volume of the Cambridge and Dublin Mathematical

Journal [14].

1The Lady’s and Gentleman’s Diary is a successor of the periodical Ladies Diary. See [1]

for a compendium of its contributions to mathematical and exact sciences.
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We restate the problem in a different language. For conciseness, denote the

set of the first n positive integers {1, 2, . . . , n} by [n].

Problem 1.1 Given positive integers ℓ < k < n, what is the largest car-

dinality of a family of k-element subsets of [n] with the property that any

ℓ-element subset is contained in at most one member of the family?

Below, an easy upper bound for the size of such families is given.

Proposition 1.2 Let F be a family of k-subsets of [n] with the property that

no ℓ-subset is contained in more than one member of F . Then

|F| ≤
(

n
ℓ

)(
k
ℓ

)−1
. (1.1)

Proof. We count pairs (L,K) with L ⊆ K, where L is an ℓ-subset of [n],

and K belongs to F . Note that each member K of F appears in exactly
(

k
ℓ

)
pairs. Therefore the total number of pairs is |F|

(
k
ℓ

)
. Since each ℓ-subset

is contained in at most one member of F , it is also counted in at most one

pair. Hence, the total number of pairs must not exceed the total number of

ℓ-subsets, which implies

|F|
(

k
ℓ

)
≤

(
n
ℓ

)
.

Moreover, equality holds if and only if each ℓ-subset belongs to precisely one

member of F . The proposition follows. ⊓⊔

A family F satisfying the hypothesis of Proposition 1.2 is called a partial

Steiner (n, k, ℓ)-system, or an (n, k, ℓ)-system for short. Alternatively, F may

be called packing, because the ℓ-subsets are being “packed” into k-subsets.

Furthermore, if F satisfies (1.1) with equality, then F is a Steiner (n, k, ℓ)-

system. The special case of Steiner (n, 3, 2)-systems are traditionally called

Steiner triple systems.
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1.1.1 Steiner systems

Even though the study of such set systems were initiated by Kirkman, they

were named after the Swiss mathematician J. Steiner who posed questions

related to Problem 1.1 in the Crelle’s Journal fur Mathematik, vol. 45 (1853).

In 1859, M. Reiss [19] solved one of Steiner’s questions which corresponded

precisely to the case ℓ = 2, k = 3 of Problem 1.1. His achievement was inde-

pendent of Kirkman, and in fact, it took many years until the mathematical

community gave Kirkman credit for his contributions on this problem.

Existence of Steiner Systems

In this section we intend to briefly survey what is known on the existence of

Steiner systems. We start with a necessary and sufficient condition for the

occurrence of Steiner triple systems.

Proposition 1.3 There exists a Steiner triple system on n ≥ 1 elements if

and only if n ≡ 1, 3 (mod 6).

For a proof, see Chapter 8 in [6]. The necessity part of Proposition 1.3 is

actually a consequence of the following general criteria given by H. Hanani

in [10].

Proposition 1.4 If there exists a Steiner (n, k, ℓ)-system on n ≥ 1 elements,

then
(

k−j
ℓ−j

)
divides

(
n−j
ℓ−j

)
for every j = 0, 1, . . . , ℓ − 1.

Proof. Let F be an (n, k, ℓ)-system on n elements. Let 0 ≤ j < ℓ be fixed,

and let J be a subset of [n] of cardinality j. We restrict our attention to the

ℓ-subsets of [n] containing J . The number of ℓ-subsets of interest is
(

n−j
ℓ−j

)
,

each of which is contained in precisely one member of F . In turn, each

K ∈ F with J ⊆ K, contains
(

k−j
ℓ−j

)
ℓ-subsets of interest. Therefore, it must
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be the case that
(

k−j
ℓ−j

)
divides

(
n−j
ℓ−j

)
. Since j was arbitrary, the proposition

follows. ⊓⊔

In general, given k and ℓ, the problem of deciding whether Steiner (n, k, ℓ)-

systems exist is still wide open. The criteria given by Proposition 1.4 is

shown [10, 11] to be sufficient for (k, ℓ) = (3, 2), (4, 2), (5, 2), (4, 3). Thanks to

a sequence of difficult papers by R. M. Wilson [23, 24, 25], it is also known to

be sufficient for ℓ = 2, any k, and n ≥ n0(k). On the other hand, the criteria

is not always sufficient. For example (n2 + n + 1, n + 1, 2)-Steiner Systems

are equivalent to projective planes of order n. The divisibility conditions

in Proposition 1.4 are satisfied, but a famous theorem of R. H. Bruck and

H. J. Ryser [5] gives an infinite class of numbers n for which projective planes

do not exist.

There are some infinite families of Steiner systems which are known to

exist. The Handbook of Combinatorial Designs [7] lists examples of Steiner

systems and a few inductive constructions. We summarize all in Table 1.1 in

the next page. For conciseness, instead of writing “a Steiner (n, k, ℓ)-system

exists”, we write “(n, k, ℓ) exists”.
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Table 1.1: Steiner systems known to exist

n k ℓ Conditions

qn q 2 q is a prime power, and n ≥ 2

qn + · · · + q + 1 q + 1 2 q is a prime power, and n ≥ 2

q3 + 1 q + 1 2 q is a prime power

2r+s + 2r − 2s 2r 2 2 ≤ r < s

qn + 1 q + 1 3 q is a prime power, and n ≥ 2

4t − 2 6 3 provided (t, 6, 3) exists

rs + 1 q + 1 3 q is a prime power, and both (r + 1, q + 1, 3)

and (s + 1, q + 1, 3) exist

n k ℓ provided (n + 1, k + 1, ℓ + 1) exists

On the other hand, only finitely many examples of Steiner systems are

known for ℓ ≥ 4. An even more surprising fact is that no Steiner system is

known to exist for ℓ ≥ 6.

1.1.2 Partial Steiner systems

Let us denote by S(n, k, ℓ) the maximum cardinality of a partial Steiner

(n, k, ℓ)-system. In view of the discussion in the preceding section, finding

an answer to the general question in the Lady’s and Gentleman’s Diary,

i.e. computing the value of S(n, k, ℓ) for any ℓ < k < n, seems completely

hopeless. For this reason, we turn our attention to a related (although still

very difficult) problem which has already been solved.

1.2 The conjecture of P. Erdős and H. Hanani

The following is a very natural question, which perhaps has already crossed

the mind of the reader. How far is S(n, k, ℓ) from the upper bound given
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in Proposition 1.2? Can we find a good lower bound? In fact, P. Erdős

and H. Hanani [8] conjectured in 1963 that for every fixed k and ℓ, and n

tending to infinity, there should be (n, k, ℓ)-systems which are really close to

being Steiner. In other words, they conjectured that, as n goes to infinity, it

is possible to have packings with only a o(1)-proportion of all the ℓ-subsets

of [n] being uncovered. Such packings are called nearly perfect. The precise

statement of the conjecture is written below.

Conjecture 1.5 (Erdős and Hanani, 1963) For fixed integers 0 < ℓ < k

the following holds

lim
n→∞

S(n, k, ℓ)
(

n
ℓ

)
/
(

k
ℓ

) = 1. (1.2)

In [16], N. Kuzjurin studied a variant of this problem in which k is not

constant, but varies with n. He considered an algebraic construction, which

was first introduced by Zinoviev [26] in 1965, to show that, if k = k(n) tends

to infinity, ℓ = ℓ(n) = o(k(n)), and k(n) < c
√

n for some c < 1, then (1.2)

holds. On the other hand, he proved that nearly perfect packings do not

exist if k > c
√

n for some constant c > 1.

In 1985, V. Rödl [20] proved that Conjecture 1.5 is indeed true. In his

seminal paper, he introduced a technique which is called today the semi-

random method or the Rödl nibble. This paper caught the attention of several

authors who were interested both in the beauty of the problem and in the

ingenuity of the proof. Many of them further improved and generalized Rödl’s

result in different ways. These authors all seem to benefit from an important

link that was first observed by P. Frankl and V. Rödl in [9] between the

problem of finding nearly perfect packings and the problem of finding large

matchings in hypergraphs. In the next section, we give some definitions and

explain the connection between these two problems.
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1.2.1 A connection with matchings in hypergraphs

A hypergraph is an ordered pair (V,H), where V is a finite set and H is a

family of subsets of V . Elements of V are called vertices, members of H are

called edges. Sometimes we refer to (V,H) simply as H. A hypergraph is

said to be uniform if all edges have the same cardinality. A matching in a

hypergraph H is simply a subfamily M ⊆ H with the property that no two

members of M intersect. Define the degree deg(v) of a vertex v to be the

number of members of H containing v, and the codegree deg(u, v) to be the

number of members containing both u and v. If all degrees are the same, H
is said to be regular. The minimum and maximum degree of H are denoted

by δ(H) and ∆(H) respectively. The maximum codegree of H is denoted

by ∆2(H). For a set X and a integer k, let
(

X
k

)
denote the family of all

k-element subsets of X.

As mentioned earlier, P. Frankl and V. Rödl were the first to point out

a connection between the problem of finding large (n, k, ℓ)-systems and the

problem of finding large matchings in hypergraphs.

The connection is described as follows. Suppose ℓ < k < n are positive

integers. Set V =
(
[n]
ℓ

)
, i.e. elements of V are ℓ-subsets of [n]. Consider the

hypergraph (V,H) defined by

H = H(n, k, ℓ) = {
(

K
ℓ

)
: K ∈

(
[n]
k

)
}.

A subset of V constitutes an edge of H if and only if the corresponding ℓ-

subsets are all the ℓ-subsets contained in some k-subset of [n]. Hence, edges

of H are in one-to-one correspondence with k-subsets of [n]. Note that H
has

(
n
ℓ

)
vertices, it is

(
k
ℓ

)
-uniform, and

(
n−ℓ
k−ℓ

)
-regular.

Now consider an (n, k, ℓ)-system F . Since two members of F do not share

ℓ elements, the edges of H corresponding to members of F form a matching

in H. Conversely, if M is a matching in H, then the k-subsets of [n] corre-

sponding to the edges in M form an (n, k, ℓ)-system. That establishes the
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correspondence between (n, k, ℓ)-systems and matchings of the hypergraph

H(n, k, ℓ).

Now let M be a matching of H(n, k, ℓ), and let F be the corresponding

(n, k, ℓ)-system. Suppose M covers all but an ε-fraction of the vertices in V .

Then the proportion of ℓ-subsets which are not covered by any member of F
is also ε, which implies

|F| ≥ (1 − ε)
(

n
ℓ

)(
k
ℓ

)−1
. (1.3)

1.2.2 Exploiting the connection

The paper of Frankl and Rödl [9] also contained a generalization to Rödl’s

first proof of Conjecture 1.5. We omit their result, which was later strength-

ened by N. Pippenger (unpublished) as follows.

Theorem 1.6 For an integer r ≥ 2, and a real ε > 0 there exists a real

µ = µ(r, ε) such that the following holds. If the r-uniform hypergraph H on

n vertices satisfies

(i) δ(H) ≥ (1 − µ)∆(H),

(ii) ∆2(H) < µ∆(H),

then H has a perfect matching that covers all but at most εn vertices.

Proposition 1.7 Theorem 1.6 implies Conjecture 1.5.

Proof. Fix positive integers ℓ < k. Set r =
(

k
ℓ

)
. Let ε > 0 be arbitrary, and

get µ = µ(r, ε) from Theorem 1.6. We want to show that, for sufficiently

large n, the r-uniform hypergraph H = H(n, k, ℓ) satisfies both conditions

of Theorem 1.6. Condition (i) is clearly satisfied, since H is regular of de-

gree
(

n−ℓ
k−ℓ

)
= O(nk−ℓ). To verify that H satisfies condition (ii), note that

∆2(H) corresponds to the number of k-subsets of [n] that contain two fixed
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distinct ℓ-subsets of [n]. Since any two ℓ-subsets span at least ℓ+1 elements,

∆2(H) =
(

n−ℓ−1
k−ℓ−1

)
= o(nk−ℓ). Therefore, for sufficiently large n, condition (ii)

holds. Consequently, by Theorem 1.6, H has a matching M that covers all

but εn vertices. As previously discussed in Section 1.2.1, the (n, k, ℓ)-system

corresponding to M must satisfy inequality (1.3). Since ε is arbitrary, Con-

jecture 1.5 follows. ⊓⊔

Various authors have considered the problem of finding large matchings

in nearly regular hypergraphs. We cite, for example, N. Pippenger and

J. Spencer [18], N. Alon, J. Kim and J. Spencer [2], A. Kostochka, V. Rödl

and L. Talysheva [15], V. Vu [22], N. Alon and R. Yuster [4].

Their results can also be stated in terms of finding nearly perfect (n, k, ℓ)-

systems. Some of these results improve the fraction of covered ℓ-subsets,

while others prove the existence of set systems satisfying stronger properties.

The original result of Rödl, however, gives no upper bound on the fraction

of uncovered ℓ-subsets. This is also the case of [18] and [4] although these

papers are strong generalizations of [20]. The author who currently has the

best known upper bound on the fraction of uncovered ℓ-subsets is V. Vu [22].

For the general case, he proved the existence of (n, k, ℓ)-systems with only

O(nℓ−β lnγ n) uncovered ℓ-subsets, where β = 1/
((

k
ℓ

)
− 1

)
, and γ > 0. For

k > ℓ+ 3, he gave even a better bound, namely O(nℓ−β(k−ℓ)/3 lnγ n), for some

other γ > 0.

1.3 A result of interest

We have cited both [2] and [4] as generalizations of [20]. Since this disser-

tation is especially motivated by these two papers, we find it relevant to

mention the first briefly, and to discuss the second in more details.

The paper of N. Alon, J. Kim and J. Spencer [2] is very important to us,
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because we adapt many of its techniques, and use them in the proof of the

main lemma of Chapter 4. Another nice feature of [2] is the introduction of

a martingale inequality which we apply a couple of times (see Section 2.2.3

in Chapter 2 for the statement of this inequality).

We now describe the main result of N. Alon and R. Yuster in [4] and point

out one of its consequences. Let (V,H) be a uniform hypergraph, and let

F ⊆ 2V be a family of subsets of V . A matching M in H is called (α,F)-

perfect if, for each F ∈ F , at least α|F | vertices of F are covered by M. The

main result in [4] gives sufficient conditions for the existence of a (1 − ε,F)-

perfect matching in a uniform hypergraph.

Before we state their result, let us introduce some more notation. For

F ⊆ 2V , let s(F) denote minF∈F |F |. Given a hypergraph H, let g(H) =

∆(H)/∆2(H).

Theorem 1.8 (N. Alon and R. Yuster, 2005) For an integer r ≥ 2, a

real C > 1 and a real ε > 0 there exists a real µ = µ(r, C, ε) and a real

K = K(r, C, ε) such that the following holds. If an r-uniform hypergraph on

n vertices satisfies

(i) δ(H) ≥ (1 − µ)∆(H), and

(ii) g(H) > max{1/µ,K ln6 n},

then for every F ⊆ 2V with |F| ≤ Cg(H)1/(3r−3)
, and with s(F) being at least

5g(H)1/(3r−3) ln (|F|g(H)), there is a ((1 − ε),F)-perfect matching in H.

Essentially, the hypothesis of Theorem 1.8 require the hypergraph to be

nearly regular, the maximum codegree to be relatively small compared to

the maximum degree, and the family F to satisfy two modest constraints:

an upper bound on its cardinality, and a lower bound on the cardinality of

its smallest member.
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Alon and Yuster use Theorem 1.8 to generalize Rödl’s result in the following

sense.

Corollary 1.9 Let 1 < ℓ < k be fixed integers, and let ε > 0. For n suf-

ficiently large there exists an (n, k, ℓ)-system such that every element of [n]

belongs to at most ε
(

n−1
ℓ−1

)
uncovered ℓ-subsets.

What Corollary 1.9 says is that, for large enough n, it is possible not only

to find packings which are nearly perfect, but also locally nearly perfect. By

looking at the proof of Corollary 1.9 (i.e. Theorem 3.1 in [4]) we were able

to further extend Corollary 1.9 as follows.

Corollary 1.10 Let 1 < ℓ < k be fixed integers, and let ε > 0. For n

sufficiently large there exists an (n, k, ℓ)-system such that, for every j with

0 ≤ j < ℓ, and for every j-subset J ⊆ [n], the set J is contained in at most

ε
(

n−j
ℓ−j

)
uncovered ℓ-subsets.

Proof. We apply Theorem 1.8 with ε, r =
(

k
ℓ

)
, and C = 2. Consider

the hypergraph H = H(n, k, ℓ) from Section 1.2.1. Recall that H is
(

k
ℓ

)
-

uniform, and has N =
(

n
ℓ

)
vertices. Also, δ(H) = ∆(H) =

(
n−ℓ
k−ℓ

)
. This

implies condition (i) in Theorem 1.8 is satisfied. Recall also that any two

ℓ-subsets of [n] span at least ℓ + 1 points. Thus ∆2(H) =
(

n−ℓ−1
k−ℓ−1

)
, and

g(H) = (n−ℓ)/(k−ℓ) = Θ(n), which guarantees the validity of condition (ii)

in Theorem 1.8. For each subset J ⊆ [n], with 0 ≤ |J | < ℓ, let FJ be the

family of ℓ-subsets of [n] containing J . Note also that FJ is a subset of vertices

of H with |FJ | =
(

n−j
ℓ−j

)
, where j = |J |. Let F = {FJ : J ⊆ [n], 0 ≤ |J | < ℓ}.

Thus

|F| =
ℓ−1∑

j=0

(
n−j
ℓ−j

)
= Θ(nℓ),

and s(F) = (n − ℓ + 1) = Θ(n).
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We need to verify that the remaining conditions of Theorem 1.8 are satis-

fied. For n sufficiently large (and consequently also N large) we have

Cg(H)1/(3r−3) ≥ CΘ(n1/(3r−3)) > Θ(nℓ) = |F|.

Also, s(F) = Θ(n) > 5Θ(n1/(3r−3))Θ(ln n) = 5g(H)1/(3r−3) ln (|F|g(H)).

Therefore, H has a (1 − ε)-perfect matching. This, in turn, implies that

there is an (n, k, ℓ)-system such that each j-subset, 0 < j < ℓ is contained in

at most ε
(

n−j
ℓ−j

)
uncovered ℓ-subsets as desired. ⊓⊔

1.4 Main results

We are ready to state our two main results.

We start with the result in Chapter 4, because it is directly related to what

we have been discussing in the previous section. The goal is to give a joint

generalization of Corollary 1.10 and the result of V. Vu in [22]. We want

to find locally nearly perfect packings, and further bound the proportion of

uncovered ℓ-subsets as function that decreases polynomially in n. We were

able to obtain the same bound as V. Vu gets in [22] for the general case. We

did not achieve, however, the bound he obtains for the special case k > ℓ+3.

More specifically, we prove the following theorem.

Theorem 1.11 Let ℓ < k be fixed. For every n there exists an (n, k, ℓ)-

system such that, for every 0 ≤ j < ℓ, and for every j-subset J ⊆ [n], the

number of uncovered ℓ-subsets containing J is

O(nℓ−j−β lnγ n),

where β = 1/
((

k
ℓ

)
− 1

)
, and γ > 0 is constant.

The proof of Theorem 1.11 also uses a variant of the semi-random method.

In fact, no previous proof of Conjecture 1.5 (or of any result that implies it)
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is known that does not use this method. In contrast, our second main result

is an elementary proof of Conjecture 1.5 that does not use the semi-random

method. We use the same algebraic construction as Kuzjurin does in [16],

together with a simple counting argument, to prove (1.2). The bound on the

proportion of uncovered ℓ-subsets, however, is much weaker than the bound

in [22]. We are only able to show that all but O
((

n
ℓ

)
(log log n)−β

)
ℓ-subsets

are covered.

1.5 A word about packings and coverings

A problem which is the natural dual to the problem of finding maximum

packings is the following. What is the minimum number s(n, k, ℓ) of k-

element subsets of [n] in a family E with the property that every ℓ-element

subset of [n] is contained in at least one member of E? A family of k-sets as

above is called an (n, k, ℓ)-covering, because every ℓ-subset of [n] is “covered”

by one of the members of the family. With a proof very much similar to that

of Proposition 1.2, one has the following proposition, which provides a lower

bound on s(n, k, ℓ).

Proposition 1.12 Let ℓ < k < n be positive integers. Then

s(n, k, ℓ) ≥
(

n
ℓ

)(
k
ℓ

)−1
.

Conjecture 1.5 was originally stated in [8] in a seemingly stronger form.

Besides (1.2), it was also conjectured that the following identity is true.

lim
n→∞

s(n, k, ℓ)
(

n
ℓ

)
/
(

k
ℓ

) = 1. (1.4)

We decided to omit (1.4) from the statement of Conjecture 1.5 because it

turns out that (1.4) and (1.2) are equivalent.
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Proposition 1.13 (1.4) and (1.2) are equivalent.

Proof. The equivalence is very simple to demonstrate. First, suppose (1.2)

is true. Fix ε > 0 and let n0 = n0(ε) be such that, for all n ≥ n0, we

have S(n, k, ℓ) ≥ (1 − ε/
(

k
ℓ

)
)
(

n
ℓ

)
/
(

k
ℓ

)
. Let F be an optimal (n, k, ℓ)-system,

i.e. |F| = S(n, k, ℓ). An (n, k, ℓ)-covering E may be constructed from F as

follows. For each uncovered ℓ-subset L ⊆ [n], we add to the family some

k-set containing L. The resulting family E is clearly a covering, and has at

most ε
(

n
ℓ

)
/
(

k
ℓ

)
additional members. Therefore

|E| ≤ |F| + ε
(

n
ℓ

)
/
(

k
ℓ

)

= (1 − ε/
(

k
ℓ

)
)
(

n
ℓ

)(
k
ℓ

)−1
+ ε

(
n
ℓ

)
/
(

k
ℓ

)

= (1 − ε/
(

k
ℓ

)
+ ε)

(
n
ℓ

)(
k
ℓ

)−1

< (1 + ε)
(

n
ℓ

)(
k
ℓ

)−1
.

Since s(n, k, ℓ) ≤ |E|, and ε is arbitrary, (1.4) follows. The converse has a

similar proof. ⊓⊔
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Chapter 2

Probabilistic tools

2.1 Basic probability

2.1.1 Probability spaces

A finite probability space consists of a finite set Ω together with a function

Pr: Ω → [0, 1] satisfying
∑

ω∈Ω

Pr(ω) = 1.

The set Ω is called the sample space, and Pr is called the probability function.

A trial consists of sampling an element from Ω in accordance with the given

probability function. The resulting element is called the outcome of the trial.

Subsets of the sample space Ω are called events. We can naturally extend

Pr to all events as follows. For any A ⊆ Ω, define Pr(A) as

Pr(A) =
∑

ω∈A

Pr(ω).

In order to differentiate sets that are events from usual sets, we use ∧ and

∨ to denote their intersection and union respectively. The complement of an

event A is defined as A = Ω \ A.

In this dissertation, the definition of certain probability spaces implicitly

depend on a parameter n, which goes to infinity. In this case, given an
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event A in such a probability space, we say that A happens asymptotically

almost surely (a.a.s. for short) if Pr(A) tends to 1 as n tends to infinity.

2.1.2 Inclusion-Exclusion

We need the following tool in Chapter 4.

Proposition 2.1 (Inclusion-Exclusion Formula) Let A1, . . . , Ak ⊆ Ω be

events in a probability space. For I ⊆ [k], set AI =
∧

i∈I Ai, and A∅ = Ω.

Then
∑

I⊆[k]

(−1)|I| Pr(AI) = 1 − Pr

(
∨

i∈[k]

Ai

)

.

In the case of finite probability spaces, a proof can be found in Combinatorial

Problems and Exercises by L. Lovász [17] (see 2.2 part (b)).

2.1.3 Independence

Two events A and B are said to be independent if

Pr(A ∧ B) = Pr(A) Pr(B).

Similarly, events A1, A2, . . . , Ak are said to be mutually independent if for

any B ⊆ {A1, A2, . . . , Ak} we have

Pr
( ∧

B∈B

B
)

=
∏

B∈B

Pr(B).

It is straightforward to verify that, given a set A of mutually independent

events, and subsets B, C ⊆ A with B ∩ C = ∅, the following holds.

Pr
( ∧

B∈B

B ∧
∧

C∈C

C
)

=
∏

B∈B

Pr(B)
∏

C∈C

Pr(C).
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2.1.4 Random variables

A random variable over Ω is simply a function X : Ω → R.

Sometimes events can be described in terms of a random variable. For

example, when we consider the event that X > 17 , we are referring to the

subset of Ω described by {ω ∈ Ω: X(ω) > 17}.

The expectation of a random variable X, or the expected value of X, is

defined to be

E(X) =
∑

ω∈Ω

X(ω) Pr(ω).

An important property of the expectation of random variables is that it is

a linear function. If X and Y are random variables over a certain probability

space, then

E(X + Y ) =
∑

ω∈Ω

[X + Y ](ω) Pr(ω)

=
∑

ω∈Ω

(
X(ω) + Y (ω)

)
Pr(ω)

=
∑

ω∈Ω

X(ω) Pr(ω) +
∑

ω∈Ω

Y (ω) Pr(ω)

= E(X) + E(Y ).

2.2 Concentration

2.2.1 Markov’s Inequality

Let X be a non-negative random variable (i.e. X(ω) ≥ 0 for all ω ∈ Ω).

Markov’s Inequality can be stated as follows. For t > 0, the probability that

X ≥ t is bounded by

Pr(X ≥ t) ≤ E(X)

t
. (2.1)
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Clearly, this bound is only useful if t > E(X). Below, a proof is given.

E(X) =
∑

ω∈Ω

X(ω) Pr(ω)

=
∑

ω∈Ω
X(ω)<t

X(ω) Pr(ω) +
∑

ω∈Ω
X(ω)≥t

X(ω) Pr(ω)

≥
∑

ω∈Ω
X(ω)≥t

t Pr(ω)

= t Pr(X ≥ t).

Inequality (2.1) follows.

2.2.2 The Chernoff Bound

In Chapter 4, we need to work with random variables which can be expressed

as a sum of others independent random variables, Chernoff’s Inequality is

often the right tool to prove concentration for these kinds of random variables.

Below we state two versions of this inequality which are of special interest for

us. Both were taken from [13], where the reader can also find their proofs.

Proposition 2.2 ((2.9) in Corollary 2.3 in [13]) Suppose X is a sum of

n independent random variables, each being 1 with probability p and 0 with

probability (1 − p). If 0 < ε ≤ 3/2, then

Pr(|X − E(X)| ≥ εE(X)) ≤ 2e−ε2
E(X)/3.

Proposition 2.3 ((2.11) in Corollary 2.8 in [13]) Suppose X is a sum

of n independent random variables, each being either 1 or 0. If x ≥ 7E(X),

then

Pr(X ≥ x) ≤ e−x.
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2.2.3 A martingale inequality

When proving that certain random variables are concentrated, we apply a

martingale inequality which was developed in Section 3 in [2]. We now briefly

explain the setup and the statement of this inequality.

Suppose that X is a random variable determined by m independent trials

T1, . . . , Tm, each Ti being 1 with probability pi, and 0 with probability 1−pi.

Let ci be the maximum change in the value of X when the outcome of Ti is

altered. Set C = max ci.

Suppose also that, in order to obtain the outcome of trial Ti, we must pay

pi(1−pi)c
2
i dollars. Typically, the goal is to compute the value of X spending

as little as possible. The way we evaluate X is by looking at outcomes of

trials, one at a time, until we have enough information to compute X. We

start by checking the outcome of a certain trial Ti1 of our choice. Based on

the outcome of Ti1 , we choose an index i2, and look at the outcome of Ti2 .

Again, we choose i3 and look at the outcome of Ti3 , and so on. In general,

each time we choose the trial we want to observe based on the outcomes

of trials previously observed. A strategy to compute X can be thought of

as rooted tree that indicates which trials should be observed. Each node

corresponds to a trial, and each node is either a leaf or branches into two

other nodes, one for each possible outcome of its associated trial.

A strategy to compute X is said to have cost at most a, if no matter what

the outcomes of T1, . . . , Tm are, someone looking at the trials according to

this strategy would always spend at most a dollars to obtain all necessary

information to compute X.

Theorem 2.4 (Alon, Kim, Spencer [2]) Suppose there exists a strategy

to compute X of cost at most σ2. If αC < 2σ, then

Pr(|X − E(X)| ≥ ασ) ≤ 2e−α2/4.



20

See [3] page 101, for a proof of a slightly more general version of Theo-

rem 2.4.
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Chapter 3

A simple proof

3.1 Introduction

The goal of this chapter is to give a new proof to Conjecture 1.5 first stated

by P. Erdős and H. Hanani in 1963. Until now, all known proofs of this

conjecture use the “semi-random method”, an iterative process in which the

desired (n, k, ℓ)-system is built as a successive union of small randomly chosen

pieces. The proof described in this chapter is based on a somewhat different

approach. While our proof gives a much weaker bound on the proportion

of uncovered ℓ-subsets than the one in [22], it has the advantage of being

elementary and fairly simple.

We remind the reader of some basic definitions. An (n, k, ℓ)-system is a

family P of k-element subsets of [n] with the property that every ℓ-subset

L ⊆ [n] is contained in at most one member of P. The maximum size of an

(n, k, ℓ)-system is denoted by S(n, k, ℓ). Clearly,

S(n, k, ℓ) ≤
(

n
ℓ

)(
k
ℓ

)−1
.

Erdős and Hanani [8] conjectured that

lim
n→∞

S(n, k, ℓ)
(

n
ℓ

)−1(k
ℓ

)
= 1. (3.1)
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For an (n, k, ℓ)-system P, let ε(P) be the fraction of uncovered ℓ-subsets,

i.e. ε(P) satisfies

|P| = (1 − ε(P))
(

n
ℓ

)(
k
ℓ

)−1
.

Let ε(n) = εk,ℓ(n) denote the minimum ε(P) among all (n, k, ℓ)-systems P,

i.e. let ε(n) satisfy

S(n, k, ℓ) = (1 − ε(n))
(

n
ℓ

)(
k
ℓ

)−1
.

We can rephrase Erdős-Hanani conjecture as

lim
n→∞

ε(n) = 0. (3.2)

3.2 An easy bound

Set ρ0 = 1
2

(
k
ℓ

)−1
. We prove the following proposition.

Proposition 3.1 Any family A of k-sets contains a subfamily B ⊆ A

which is an (n, k, ℓ)-system of cardinality

|B| ≥ |A |ρ0

(
n−ℓ
k−ℓ

)−1
. (3.3)

A consequence of Proposition 3.1 is the existence of an (n, k, ℓ)-system Q

with ε(Q) ≤ (1−ρ0) as follows. Consider the family of all possible k-subsets

of [n]. Then Proposition 3.1 gives an (n, k, ℓ)-system Q ⊆
(
[n]
k

)
with

|Q| ≥ ρ0

(
n
k

)(
n−ℓ
k−ℓ

)−1
. (3.4)

After simplifying the binomial coefficients (using Proposition 5.1 in the Ap-

pendix), we obtain

|Q| ≥ ρ0

(
n
ℓ

)(
k
ℓ

)−1
. (3.5)

As desired, the size of Q is a ρ0-fraction of the best possible size of an

(n, k, ℓ)-system.
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Proof of Proposition 3.1. The proof consists of a simple probabilistic

argument. Set

p =
(

k
ℓ

)−1(n−ℓ
k−ℓ

)−1
.

We select k-subsets in A independently, each with probability p. Let B̃

denote the resulting random set system. We call a pair of members of B̃

conflicting, if they intersect in at least ℓ elements. Observe that, if we remove

one member of B̃ from each conflicting pair, we are left with an (n, k, ℓ)-

system. The idea is to use the first moment method to show that, after such

members are removed from B̃, the resulting family still has large cardinality.

We consider two random variables X = X(B̃), and Y = Y (B̃). The first

is defined as X = |B|, and Y counts the number of (unordered) conflicting

pairs in B̃. Since any A ∈ A can form a conflicting pair with at most
(

k
ℓ

)(
n−ℓ
k−ℓ

)
other members of A , by the linearity of the expectation, we obtain

E(X − Y ) = E(X) − E(Y )

≥ |A |p − 1
2
|A |

(
k
ℓ

)(
n−ℓ
k−ℓ

)
p2

= |A |1
2

(
k
ℓ

)−1(n−ℓ
k−ℓ

)−1

= |A |ρ0

(
n−ℓ
k−ℓ

)−1
.

Consider a set system B0 ⊆ A with X(B0)−Y (B0) ≥ E(X−Y ). Removing

from B0 one member for every conflicting pair (at most Y members), we

obtain an (n, k, ℓ)-system B satisfying (3.3). ⊓⊔

3.3 The construction

In [16], N. Kuzjurin studied a variant of this problem in which k is not

constant, but varies with n. He considered an algebraic construction (see also

Zinoviev [26]) to prove that, if k = k(n) tends to infinity, ℓ = ℓ(n) = o(k(n)),
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and k(n) < c
√

n for some c < 1, then (3.1) is true. We use a similar

construction to show (3.1) for fixed k and ℓ.

Lemma 3.2 Let n = qm, where q is a prime power and q ≥ m, and let M

be an (m, k, ℓ)-system. Then there exists an (n, k, ℓ)-system P with

ε(P) ≤ ε(M ) − ρ0 ε(M )(
k
ℓ) + O

(
1
m

)
, (3.6)

where the constant in the big O term depends on k and ℓ only.

Proof. We identify the sets [n] and [m] × [q], and partition [n] into m sets

S0, . . . , Sm−1 where Si = {(i, j) : j ∈ [q]}. A subset T of [n] is said to be

crossing if |T ∩ Si| ≤ 1 for every i, 0 ≤ i < m. Let L be the family

of all polynomials of degree ℓ − 1 over Fq, the field on q elements. We

associate every polynomial f ∈ L with a crossing m-subset of [n] by making

T (f) = {(i, j) : 0 ≤ i < m, f(i) = j}. Let T = {T (f) : f ∈ L }. It

is a well known fact (c.f. Lagrange’s Interpolation Formula) that if K is

a field, then for any given distinct elements x1, . . . , xℓ ∈ K and for any

y1, . . . , yℓ ∈ K there exists a unique polynomial f over K of degree ℓ−1 such

that f(xi) = yi for every i, 1 ≤ i ≤ ℓ. Therefore, every crossing ℓ-subset of

[n] determines precisely one set T (f), in which it is contained. That implies

T is an (n,m, ℓ)-system on [n], and |T | = |L | = qℓ.

Now, we will describe how to obtain an (n, k, ℓ)-system R from the (n,m, ℓ)-

system T and the (m, k, ℓ)-system M . For each m-subset T (f) ∈ T , con-

sider a copy of M with vertex set T (f). The union of all such copies of M

forms an (n, k, ℓ)-system R. Observe that there are precisely m!/|Aut(M )|
distinct copies of M with vertex set T (f). Consequently, there are

(
m!

|Aut(M )|

)|T |
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distinct (n, k, ℓ)-systems obtained in the way described above. Let R be the

set of all such (n, k, ℓ)-systems R. Note that each R ∈ R has cardinality

|R| = |T ||M |
= qℓ(1 − ε(M ))

(
m
ℓ

)(
k
ℓ

)−1

= (1 − ε(M ))
( q(m−1)

qm−1

)( q(m−2)
qm−2

)
· · ·

( q(m−ℓ+1)
qm−ℓ+1

)(
n
ℓ

)(
k
ℓ

)−1
. (3.7)

For each i = 1, . . . , ℓ − 1, we have q(m−i)
qm−i

≥ q(m−ℓ)
qm

= 1 − ℓ
m

. Using that

(1 − x)ℓ ≥ (1 − xℓ) for 0 < x < 1, which one can easily prove by induction,

we obtain
ℓ−1∏

i=1

q(m − i)

qm − i
≥ 1 − ℓ2

m
. (3.8)

Combining (3.7) and (3.8) we conclude

|R| ≥ (1 − ε(M ))
(
1 − O

(
1
m

))(
n
ℓ

)(
k
ℓ

)−1 ∀R ∈ R. (3.9)

Since for any R ∈ R, the proportion of uncovered ℓ-subsets of [n] is still

too large for our purpose, we are going to select R0 ∈ R so that one can add

more k-subsets to obtain a sufficiently larger (n, k, ℓ)-system.

A k-subset of [n] is said to be diverse if it is crossing, and all its ℓ-subsets

belong to distinct members of T . In order to estimate the number of diverse

k-subsets, we note that to construct such a set, we can start with a crossing

ℓ-subset {x1, . . . , xℓ} and gradually add elements, choosing xℓ+i such that

{x1, . . . , xℓ+i} is crossing, and xℓ+i 6∈ T (f) for every f determined by an ℓ-

subset of {x1, . . . , xℓ+i−1}. Thus, the number of diverse k-subsets of [n] can

be bounded by

#diverse ≥
(

m
k

)
qℓ(q − 1)

(
q −

(
ℓ+1

ℓ

))(
q −

(
ℓ+2

ℓ

))
· · ·

(
q −

(
k−1

ℓ

))

=
(

m
k

)
qk

(
1 − O

(
1
q

))
(3.10)

=
(

n
k

)(
1 − O

(
1
m

))
.
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Now, given R ∈ R, a crossing k-subset of [n] is said to be available if it is

diverse, and none of its ℓ-subsets are in R. In order to obtain the desired

R0 ∈ R, consider a randomly and uniformly chosen R ∈ R. Observe that the

probability that any fixed crossing ℓ-subset is uncovered is precisely ε(M ).

Note also that, for every diverse k-subset K of [n], all events of the form “L

is not covered by R”, where L is an ℓ-subset of K, are mutually independent.

Hence, the probability that a fixed diverse k-set K is available is precisely

ε(M )(
k
ℓ).

Denoting by available(R) the set of available k-sets with respect to R ∈ R,

we consequently have

E(#available(R)) = #diverse × ε(M )(
k
ℓ). (3.11)

On the other hand, fix R0 ∈ R such that available(R0) has size

#available(R0) ≥ E(#available(R)). (3.12)

Next, we add to R0 some available sets to obtain an (n, k, ℓ)-system P with

the fraction ε(P) of uncovered sets satisfying (3.6). Any single available k-

set can be added to R0, but we cannot add too many of them at the same

time, since we do not want the resulting family to have two members sharing

ℓ points. In Section 3.2, we argued that any family A of k-sets contains

an (n, k, ℓ)-system B ⊆ A satisfying (3.3). Hence, one can fix an (n, k, ℓ)-

system B ⊆ available(R0) with

|B| ≥ #available(R0) × ρ0

(
n−ℓ
k−ℓ

)−1
. (3.13)

We then construct the desired (n, k, ℓ)-system P as

P = R0 ∪ B.
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Now we need to estimate |P| in order to obtain the desired bound on

ε(P). We already have a lower bound on |R0| given by inequality (3.9). It

is left to bound the size of B. From inequalities (3.11), (3.12), and (3.13)

the following holds.

|B| ≥ #diverse × ε(M )(
k
ℓ) × ρ0

(
n−ℓ
k−ℓ

)−1
.

Using (3.10) and the binomial identity (5.1) (see Appendix, Proposition 5.1),

we obtain

|B| ≥
(
1 − O

(
1
m

))
ε(M )(

k
ℓ)ρ0

(
n
ℓ

)(
k
ℓ

)−1
. (3.14)

Finally, using (3.9) and (3.14), we are able to bound |P| from below:

|P| ≥
(

(1 − ε(M )) + ρ0 ε(M )(
k
ℓ)

)(
1 − O

(
1
m

))(
n
ℓ

)(
k
ℓ

)−1
.

Therefore, by the definition of ε(P), we have

(1 − ε(P)) ≥
(

(1 − ε(M )) + ρ0 ε(M )(
k
ℓ)

)(
1 − O

(
1
m

))
.

The desired inequality follows, and this finishes the proof of the lemma. ⊓⊔

3.4 The analysis

Theorem 3.3 Let ε(n) be as previously defined. Then

lim
n→∞

ε(n) = 0.

Proof. Let us assume, for the purpose of contradiction, that the statement

is false, and let ε > 0 be defined as

ε = lim sup
n→∞

ε(n).

Let δ be defined as

δ = ρ0

3

(
ε
2

)(k
ℓ).
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Let n1 < n2 < . . . be a sequence of integers satisfying ε(ni) ≥ ε − δ for

every i. We want to apply Lemma 3.2 when n = ni. Unfortunately, in

order to apply Lemma 3.2, we need n of the form qm, where q is a prime

power and q ≥ m. To overcome this problem, we will apply Lemma 3.2 to

a number qimi which is slightly larger than ni (and an (mi, k, ℓ)-system Mi

which is optimal in the sense that ε(Mi) = ε(mi)). Lemma 3.2 then gives a

(qimi, k, ℓ)-system Qi on [qimi]. We will show that the (ni, k, ℓ)-system Pi

induced by Qi on [ni] ⊆ [qimi] satisfies ε(Pi) < ε − δ for i is sufficiently

large, which is a contradiction to the assumption that ε(ni) ≥ ε− δ for all i.

Let α < 1 be a number such that for any sufficiently large integer s there

is a prime on the interval [s, s + sα]. (By a result of D. R. Heath-Brown and

H. Iwaniec [12], any α > 11
20

satisfies this requirement.) For every i = 1, 2, . . . ,

let mi = ⌈√ni ⌉, and let qi be a prime in [mi,mi + mα
i ]. Also, consider an

(mi, k, ℓ)-system Mi with ε(Mi) = ε(mi). By Lemma 3.2, there exists an

(qimi, k, ℓ)-system Qi satisfying

ε(Qi) ≤ ε(mi) − ρ0 ε(mi)
(k

ℓ) + O
(
n
− 1

2
i

)
.

We now restrict Qi to a system Pi on ni points, by deleting a total of

qimi − ni = O(mα
i

√
ni) = O

(
n

1+α
2

i

)
points. The number of k-sets which are

in Qi but not in Pi is bounded by

O
(
n

1+α
2

i

)(
qimi−1

ℓ−1

)(
k−1
ℓ−1

)−1
= O

(
(qimi)

ℓ−1+ 1+α
2

)
.

Hence, the fraction of uncovered ℓ-subsets in Pi is given by

ε(Pi) ≤ ε(Qi) + O
(
(qimi)

− 1−α
2

)

≤ ε(mi) − ρ0 ε(mi)
(k

ℓ) + O
(
n
− 1

2
i

)
+ O

(
n
− 1−α

2
i

)
. (3.15)

Since the constants in the big O terms depend on k and ℓ only, for sufficiently

large i (and consequently also ni), the last two terms are each strictly less
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than δ
2
. Therefore

ε(Pi) < ε(mi) − ρ0 ε(mi)
(k

ℓ) + δ. (3.16)

We will show that the right-hand-side of (3.16) is less than ε − δ which is a

contradiction to the assumption on the sequence (ni)
∞
i=1 that ε(ni) ≥ ε − δ

for every i.

If ε(mi) ≤ ε−2δ, inequality (3.16) clearly implies ε(Pi) < ε−δ. Otherwise,

suppose ε(mi) > ε − 2δ. By the definition of ε, for i sufficiently large,

ε(mi) ≤ ε + δ holds. Combining (3.16) with the definition of δ we obtain

ε(Pi) < (ε + δ) − ρ0 (ε − 2δ)(
k
ℓ) + δ

≤ ε − ρ0

(
ε
2

)(k
ℓ) + 2δ

= ε − δ,

which completes the proof. ⊓⊔

3.5 A finer analysis

We remark that a more careful analysis of the construction in Lemma 3.2,

yields ε(n) ≤ C(log log n)−β, where β = 1/
((

k
ℓ

)
− 1

)
. This will be accom-

plished by Lemma 3.4, Lemma 3.5 and Theorem 3.6 below.

Before we go any further, let A = A(k, ℓ) be a large enough constant so

that the big O term in (3.6) can be bounded by A/m. Let t0 be the smallest

integer such that all numbers t ≥ t0 satisfy

ρ0

2
t−β(k

ℓ) ≥ A

22t . (3.17)

Also, let

B ≥ max
{

(1 − ρ0)t
β
0 ,

(
2β
ρ0

)β
}

,

and set C = B + 1.
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Lemma 3.4 Let q be a prime power. Let m be an integer less than q and

suppose ε(m) ≤ B(t − 1)−β for some integer t > t0. Then

ε(qm) ≤ Bt−β. (3.18)

Proof. By Lemma 3.2, we know

ε(qm) ≤ ε(m) − ρ0ε(m)(
k
ℓ) +

A

m
. (3.19)

Using simple methods from calculus, one can show that x− axb is increasing

on (0, 1) when ab < 1 and b ≥ 1. Hence, we may replace ε(m) by B(t− 1)−β

in (3.19) to obtain

ε(qm) ≤ B(t − 1)−β − ρ0

(
B(t − 1)−β

)(k
ℓ) +

A

m
.

Since t − 1 ≥ t0 satisfies (3.17), the previous inequality implies

ε(qm) ≤ B(t − 1)−β − ρ0

2

(
B(t − 1)−β

)(k
ℓ). (3.20)

We want to show that the right-hand-side of (3.20) is bounded by Bt−β.

Equivalently, we need to show

1

(t − 1)β
− 1

tβ
≤ λ

(
1

(t − 1)β

)(k
ℓ)

, (3.21)

where λ = ρ0

2
B(k

ℓ)−1. To this end, consider the function g(t) = 1/tβ. By the

Mean Value Theorem, we know g(t−1)−g(t) = −g′(θ) for some θ ∈ [t−1, t].

Since βθ−β−1 ≤ β(t − 1)−β−1, it would suffice to prove

β

(t − 1)β+1
≤ λ

tβ(k
ℓ)

.

Replacing 1/
((

k
ℓ

)
− 1

)
for β in the exponents, we can see that the previous

inequality holds as long as

1 ≤ λ

β
. (3.22)

Recalling that B is at least
(

2β
ρ0

)β
, one can check that (3.22) holds. The proof

follows. ⊓⊔
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Lemma 3.5 If t ≥ t0, then

ε(22t

) ≤ Bt−β. (3.23)

Proof. The proof is by induction on t. The base case is t = t0. By Proposi-

tion 3.1 and the definition of B, we have

ε(22t0 ) ≤ (1 − ρ0) ≤ Bt
−β
0 .

Now suppose t > t0, and assume (3.23) holds for t − 1. Let q = m = 22t−1
.

By the induction hypothesis, we have ε(m) ≤ B(t − 1)−β. Hence, the proof

follows by Lemma 3.4. ⊓⊔

Theorem 3.6 If n is sufficiently large, then

ε(n) ≤ C(log log n)−β. (3.24)

Proof. Let t be a number such that 22t
< n ≤ 22t+1

, and let m = 22t−1
. Note

that n1/4 ≤ m < n1/2. We may assume n is large enough so that t > t0. As

in Theorem 3.3, let α < 1 be a number such that for all sufficiently large s

there is a prime in the interval [s, s + sα]. Set s = n/m. Let q be a prime in

[s, s + sα]. By Lemma 3.4, we have

ε(qm) ≤ B(t − 1)−β ≤ B(log log n1/2)−β. (3.25)

Let Q be an optimal (qm, k, ℓ)-system, i.e. with ε(Q) = ε(qm). We remove

all members of Q that contain elements from {qm, qm−1, . . . , n+1}. Let P

denote the resulting family. In particular, if qm = n, no member is removed,

and we have P = Q. Observe that P can be viewed as an (n, k, ℓ)-system

since its ground set is [n]. In summary, P is the restriction of Q to [n].

Therefore, we may upper bound ε(P) as follows.

ε(P) ≤ ε(Q) +
|Q \ P|
(

n
ℓ

)
/
(

k
ℓ

) . (3.26)
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We want to find a bound on the rightmost term of (3.26). First, notice

every element in [qm] is contained in at most
(

qm−1
ℓ−1

)
ℓ-subsets of [qm]. Each

such ℓ-subset, in turn, is contained in at most one member of Q, which

implies

|Q \ P| ≤ (qm − n)

(
qm − 1

ℓ − 1

)

. (3.27)

Note also that qm − n can be bounded as follows.

qm − n ≤ (s + sα)m − n ≤ nαm1−α ≤ n
1+α

2 . (3.28)

We now expand
(

qm−1
ℓ−1

)
/
(

n
ℓ

)
as

(
qm − 1

ℓ − 1
× qm − 2

ℓ − 2
× · · · × qm − ℓ + 1

1

)(
n

ℓ
× n − 1

ℓ − 1
× · · · × n − ℓ + 1

1

)−1

and cancel repeated factors to get

(
qm − 1

ℓ − 1

)(
n

ℓ

)−1

=
ℓ

n

ℓ−1∏

i=1

qm − i

n − i

=
ℓ

n

ℓ−1∏

i=1

(

1 +
qm − n

n − i

)

≤ ℓ

n

(
1 + 2n

α−1
2

)ℓ
.

For n sufficiently large, we obtain
(

qm − 1

ℓ − 1

)(
n

ℓ

)−1

= 2ℓℓn−1. (3.29)

Finally, using (3.27) together with (3.28) and (3.29), one can upper bound

the rightmost term of (3.26) by

2ℓℓ
(

k
ℓ

)
n

α−1
2 . (3.30)

Combining the fact that Q is optimal with (3.25), (3.26), and (3.30) above

yields

ε(n) ≤ ε(P) ≤ ε(qm) + 2ℓℓ
(

k
ℓ

)
n

α−1
2 ≤ B(log log n)−β + (log log n)−β.
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Recall the definition of C on page 29, which gives ε(n) ≤ C(log log n)−β. ⊓⊔
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Chapter 4

Locally quasi-perfect packings

4.1 Introduction

In [4] N. Alon and R. Yuster proved as a consequence of their main result

that for every two integers 1 < ℓ < k, and n tending to infinity, there exists

an (n, k, ℓ)-system with the property that the number of uncovered ℓ-subsets

containing each fixed vertex is o(nℓ−1). Their proof, however, does not give

any bounds on the proportion of uncovered ℓ-subsets. In this chapter, we

show the existence of an (n, k, ℓ)-system such that the proportion of uncov-

ered ℓ-subsets containing each j-subset, 0 ≤ j < ℓ, is O(nℓ−j−β lnγ n) (see

Theorem 1.11). This is a generalization of their result.

4.2 Simplifying the problem

To prove Theorem 1.11, it is enough to take care of subsets of size ℓ − 1.

That is, it is enough to show the following.

Theorem 4.1 Let ℓ < k be fixed. For every n there exists an (n, k, ℓ)-system

such that, for every (ℓ−1)-subset M ⊆ [n], the number of uncovered ℓ-subsets

containing M is of order

O(n1−β lnγ n),
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where β = 1/
((

k
ℓ

)
− 1

)
, and γ > 0 is a constant depending on k and ℓ.

Proposition 4.2 Theorem 4.1 is equivalent to Theorem 1.11.

Proof. Trivially, Theorem 1.11 implies Theorem 4.1. To prove the converse,

we show that for every 0 ≤ j < ℓ, every j-subset of [n] is contained in at most

Anℓ−j−β lnγ n uncovered ℓ-subsets of [n], for some constant A depending on k

and ℓ. Theorem 4.1 settles the case j = ℓ − 1, and defines the constant A.

Assume now that 0 ≤ j < ℓ− 1. Let J be an arbitrary j-subset of [n]. There

are
(

n
ℓ−1−j

)
subsets of size (ℓ− 1) containing J , each of which is contained in

at most An1−β lnγ n uncovered ℓ-subsets of [n] (by Theorem 4.1). Therefore,

the number of uncovered ℓ-subsets containing J is at most

A
(

n
ℓ−1−j

)
n1−β lnγ n ≤ Anℓ−j−β lnγ n.

Theorem 1.11 follows. ⊓⊔

4.3 Main strategy

The basic structure of the proof is roughly that of Lemma 1 in [21]. We even

try to use a similar notation, however the details are more involving due to

the more general nature of our problem.

We now describe how we produce the desired (n, k, ℓ)-system F . The main

idea is to grow F iteratively. Initially, F is empty, and we have a family H
of eligible k-sets. Among other things, we require H to be nearly regular, in

the sense that every ℓ-subset of [n] must be contained in approximately the

same number of members of H. In each iteration, we perform a “bite”. A

bite consists of selecting a few members of H, adding them to F , and then

removing from H the selected k-sets together with those k-sets that intersect

a selected one in at least ℓ elements. Furthermore, each iteration is conducted
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so that the resulting hypergraph H is nearly regular with respect to ℓ-sets (i.e.

every ℓ-subset of vertices is contained in approximately the same number of

members of H). After a certain number of iterations, the number of eligible

k-sets becomes so small that we are unable to guarantee near regularity. At

this point we stop our procedure. The union of the selected k-subsets in the

various iterations constitute the family F . By construction, every ℓ-subset

of [n] belongs to at most one member of F . One can show that F leaves very

few ℓ-subsets uncovered.

This rough sketch does not explain how, in the end, every (ℓ − 1)-set is

contained in few uncovered ℓ-subsets. For this reason, after every iteration,

in addition to near regularity, we also require every (ℓ − 1)-set to be con-

tained in approximately the same number of uncovered ℓ-subsets. Since very

few ℓ-subsets are left uncovered, every (ℓ − 1)-set must be contained in few

uncovered ℓ-subsets.

Initially, we could take H to be the family of all k-subsets of [n]. However,

that does not work for some technical reason. To get around this problem,

we carefully choose a family H0 of eligible k-sets. At each step i, for i =

1, 2, . . . , the family of selected k-sets is called Si, and the family of the

remaining eligible k-sets is called Hi. If we are able to perform s steps, then

F = S1 ∪ S2 ∪ · · · ∪ Ss, and H0 ⊇ H1 ⊇ · · · ⊇ Hs.

4.4 Preliminaries

4.4.1 Important definitions

A hypergraph is a pair (V,H) where V is a set, and H is a family of subsets

of V . The elements of V are called vertices and the elements of H are called

hyperedges. We say that (V,H) is k-uniform if |E| = k for every E ∈ H.

Sometimes we refer to a hypergraph (V,H) simply as H.
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Let V be a set, F a family of subsets of V , and i a positive integer. We

denote by ∆i(F) the family of all subsets of V of size i contained in some

member of F . Similarly, ∇i(F) denotes the family of all subsets of V of size i

containing some member of F . If F is simply a subset of V , we write ∆i(F )

and ∇i(F ) for ∆i({F}) and ∇i({F}) respectively.

For X,Y ⊆ [n], with |X| < ℓ and |Y | < k, we define degℓ(X) and deg(Y )

as follows:

degℓ(X) = |{L ∈ ∆ℓ(H) : L ⊃ X}|,
deg(Y ) = |{H ∈ H : H ⊃ Y }|.

Since the hypergraph H is k-uniform, we unify the notation and write degk(Y )

for deg(Y ). Below, we introduce the two main objects which will be used in

the proofs.

Definition 4.3 Given positive integers 1 < ℓ < k < n, d,D, and a function

f : R → R
+, an (f, ℓ, k, n, d,D)-graph, is a k-uniform hypergraph (V,H) on

n vertices satisfying

(i) D − f(D) ≤ degk(L) ≤ D ∀L ∈ ∆ℓ(H),

(ii) d − f(d) ≤ degℓ(M) ≤ d ∀M ∈
(

V
ℓ−1

)
,

(iii) degk(I) ≤ (ℓ + 7) log n ∀ I ∈
(

V
ℓ+1

)
.

Until f is precisely defined in (4.9) in Section 4.5, we implicitly assume that

f(x) = o(x).

In this chapter, edges of H are called k-blocks. Members of ∆ℓ(H), which

are “shadows” of k-blocks, are called ℓ-shadows.

Definition 4.4 A bite from a k-uniform hypergraph (V,H) is an ordered

pair (K,W ), where K ⊆ H, and W ⊆ ∆ℓ(H). A k-block in K which does
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not share ℓ elements with any other member of K is called selected. The

ℓ-shadows in W are called wasted. The family of selected k-blocks is denoted

S = {K ∈ K : |K ∩ K ′| < ℓ for all K ′ ∈ K, K ′ 6= K}.

Given a bite (K,W ) from (V,H), we define the remaining hypergraph (V,H∗)

as the set of k-blocks in H which are not selected, do not share ℓ elements

with a selected k-block, and do not contain a wasted ℓ-shadow. That is

H∗ = H \
(
S ∪ ∇k(∆ℓ(S)) ∪∇k(W )

)
. (4.1)

Note that, the definition of H∗ yields

∆ℓ(H∗) ⊆ ∆ℓ(H) \ (∆ℓ(S) ∪ W ). (4.2)

In other words, the ℓ-shadows of H which are wasted or contained in some

selected k-block are no longer ℓ-shadows of H∗. We denote the right hand

side of (4.2) by L∗.

4.4.2 Random bites

Given an (f, ℓ, k, n, d,D)-graph (V,H), we define a random bite (K,W ) in

the following way. Independently, for every k-block K ∈ H and for every

ℓ-shadow L ∈ ∆ℓ(H), we set

Pr(K ∈ K) = 1/D and Pr(L ∈ W ) = w(L),

where w(L) will be defined as follows. Let p(L) be the probability that L is

contained in some selected k-block K ∈ S, and define

p∗ = max
L∈∆ℓ(H)

p(L).

Now define the probability that L ∈ W as

w(L) =
p∗ − p(L)

1 − p(L)
.
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We implicitly assume that D ≥ 2, so that p(L) < 1, which is important

in order to have w(L) well defined. The purpose of having a set of wasted

ℓ-shadows is to guarantee that all ℓ-shadows of H have the same probability

of being in L∗. Namely, for every L ∈ ∆ℓ(H), we have

Pr(L ∈ L∗) = Pr(L 6∈ ∆ℓ(S) ∧ L 6∈ W )

= Pr(L 6∈ ∆ℓ(S)) Pr(L 6∈ W )

= (1 − p(L))(1 − w(L))

= 1 − p∗.

Small Waste

Below, we estimate the amount of wasted ℓ-shadows in a single random bite.

Given a k-block K ∈ H, define

N (K) = H ∩∇k(∆ℓ(K)) \ {K}. (4.3)

Note that K ∈ S holds if and only if K ∈ K and none of the blocks in N (K)

is in K. Hence

Pr(K ∈ S) =
1

D

(

1 − 1

D

)|N (K)|

. (4.4)

By the definition of p(L), and by the fact that two k-blocks sharing ℓ points

cannot be simultaneously in S, we have

p(L) = Pr(L ∈ ∆ℓ(S))

=
∑

K∈H∩∇k(L)

Pr(K ∈ S). (4.5)

Using (4.4), we obtain

p(L) =
∑

K∈H∩∇k(L)

1

D

(

1 − 1

D

)|N (K)|

. (4.6)
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Observe that |N (K)| =
(

k
ℓ

)
D + O(f(D)) for any block K, hence

p(L) = (D + O(f(D)))
1

D

(

1 − 1

D

)(k
ℓ)D+O(f(D))

= (1 + O(f(D)/D))e−(k
ℓ).

In particular, for the maximum of the p(L), we also have

p∗ = (1 + O(f(D)/D))e−(k
ℓ). (4.7)

Using the definition of w(L), and recalling that f(D) = o(D), we obtain

w(L) = O(f(D)/D), (4.8)

for all L ∈ ∆ℓ(H).

4.5 Biting lemma

From now on, set

f(x) = Ax1/2 ln3/2 n, (4.9)

where A is a large constant depending on k and ℓ which is chosen to satisfy

inequalities (4.19), (4.23), and (4.30) in the proof of Lemma 4.6.

Definition 4.5 A bite (K,W ) from an (f, ℓ, k, n, d,D)-graph (V,H) is said

to be a good bite if it satisfies the following.

(a) For any fixed (ℓ − 1)-subset M ⊆ V , the number of wasted ℓ-shadows

containing M is at most 21AdD−1/2 ln3/2 n.

(b) The remaining hypergraph (V,H∗) is an (f, ℓ, k, n, d∗, D∗)-graph, with

d∗ and D∗ given by

d∗ = d(1 − p∗) + Bd1/2 ln3/2 n, (4.10)

D∗ = D(1 − p∗)(
k
ℓ)−1 + BD1/2 ln3/2 n, (4.11)
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where B is a constant depending on k and ℓ, chosen to satisfy inequal-

ity (4.28) in the proof of Lemma 4.6.

(c) L∗ = ∆ℓ(H∗)

Lemma 4.6 If (V,H) is an (f, ℓ, k, n, d,D)-graph, then a random bite from

(V,H) is a.a.s. a good bite provided

d ≥ D >
(
4A

(
k
ℓ

))2
ln3 n. (4.12)

Proof. We divide the proof into three main parts. In Subsection 4.5.1, we

show that a.a.s. a random bite satisfies (a) in Definition 4.5.

Second, we have to check that a.a.s. H∗ satisfies property (i) in Defini-

tion 4.3 with respect to D∗. For an ℓ-subset L ⊆ V , let deg∗
k(L) denote the

number of k-blocks in H∗ containing L. In Subsection 4.5.2, we show that

a.a.s. all L ∈ L∗ satisfy

D∗ − f(D∗) ≤ deg∗
k(L) ≤ D∗. (4.13)

Moreover (4.13) implies L∗ = ∆ℓ(H∗), which takes care of (c) in Defini-

tion 4.5.

Finally, the last part corresponds to verifying that a.a.s. H∗ satisfies prop-

erty (ii) in Definition 4.3 with respect to d∗. For an (ℓ − 1)-subset M ⊆ V ,

let deg∗
ℓ(M) denote the number of ℓ-shadows of H∗ containing M . In Sub-

section 4.5.3, we show that a.a.s. all (ℓ − 1)-subsets M ⊆ V satisfy

d∗ − f(d∗) ≤ deg∗
ℓ(M) ≤ d∗. (4.14)

Note also that, since H∗ is a sub-hypergraph of H, it automatically satisfies

property (iii) in Definition 4.3. Hence, the second and third parts of the proof

guarantees that a.a.s. a random bite satisfies (b) in Definition 4.5.
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4.5.1 Bounding the wasted ℓ-degree of (ℓ − 1)-sets

We prove that, with probability tending to 1 with n, a random bite satisfies

part (a) of Definition 4.5. Together, Claim 4.7 and Claim 4.8 will accomplish

this task.

Let M be an arbitrary (ℓ−1)-subset of vertices, and let ZM be the random

variable counting the number of wasted ℓ-shadows containing M .

Claim 4.7 E(ZM) ≤ 3AdD−1/2 ln3/2 n.

Proof. First, we need to estimate p(L) as well as w(L) more precisely. Recall,

by equation (4.6), that

p(L) =
∑

K∈H∩∇k(L)

1

D

(

1 − 1

D

)|N (K)|

.

To find bounds for p(L), we combine (ii) in Definition 4.3 with the definition

of |N (K)|. We start with a lower bound on p(L) for any L ∈ ∆ℓ(H). Since,

|N (K)| ≤
(

k
ℓ

)
(D − 1), we have

p(L) ≥
(

1 − f(D)

D

)(

1 − 1

D

)(k
ℓ)(D−1)

.

From the definition of f and Proposition 5.3 in the Appendix, it follows that

p(L) ≥ e−(k
ℓ)

(
1 − AD−1/2 ln3/2 n

)
. (4.15)

On the other hand, the corresponding lower bound on |N (K)| implies

p(L) ≤
(

1 − 1

D

)(k
ℓ)(D−1−AD1/2 ln3/2 n)

≤ e−(k
ℓ)(1−2AD−1/2 ln3/2 n).

Using the assumption on D, and the fact that ex ≤ 1 + 2x for 0 ≤ x < 1
2
, we

have

p(L) ≤ e−(k
ℓ)

(
1 + 4

(
k
ℓ

)
AD−1/2 ln3/2 n

)
. (4.16)
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Now, in order to find an upper bound on w(L), we do the following. By (4.16)

and the assumption that D >
(
4A

(
k
ℓ

))2
ln3 n, we have

1 − p(L) ≥ 1 − e−(k
ℓ)

(
1 + 4

(
k
ℓ

)
AD−1/2 ln3/2 n

)
≥ 1

2
. (4.17)

Combining (4.15), (4.16), and (4.17) we obtain

w(L) =
p∗ − p(L)

1 − p(L)

≤ 2(1 + 4
(

k
ℓ

)
) e−(k

ℓ)AD−1/2 ln3/2 n

≤ 3AD−1/2 ln3/2 n. (4.18)

Now, at most d ℓ-shadows contain the fixed (ℓ − 1)-subset M . Each one of

them is wasted with probability at most 3AD−1/2 ln3/2 n. By the linearity of

expectation, we conclude

E(ZM) ≤ 3AdD−1/2 ln3/2 n.

The claim is proved. ⊓⊔

Let E1(M) be the event that M is contained in at least 21AdD−1/2 ln3/2 n

wasted ℓ-shadows, and let E1 be the event that E1(M) happens for some M .

Claim 4.8 Pr(E1) → 0 as n → ∞.

Proof. Now we use Chernoff’s Inequality to bound the probability of E1(M).

Using Claim 4.7, and Proposition 2.3, we obtain

Pr(E1(M)) = Pr(ZM ≥ 21AdD−1/2 ln3/2 n)

≤ exp{−21AdD−1/2 ln3/2 n}
≤ exp{−21A ln n},

where the last inequality follows from the assumption that d ≥ D > ln3 n.

So the probability that there exist ℓ−1 vertices that are contained in at least
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21AdD−1/2 ln3/2 n wasted ℓ-shadows is

Pr(E1) = Pr
( ⋃

E1(M)
)

≤
∑

Pr(E1(M)) ≤ nℓ−1 × n−21A ≤ n−1. (4.19)

Since Pr(E1) tends to zero as n tends to infinity, the claim follows. ⊓⊔

4.5.2 Bounding the k-degree of ℓ-shadows

We need to show that a.a.s. (4.13) holds for every ℓ-shadow L ∈ L∗. Here,

certain difficulties arise. The first problem is that we do not know in advance

which ℓ-shadows of H will still be in L∗. So we need to prove such a statement

for all ℓ-shadows of H. Second, if L is not an ℓ-shadow of H∗, then deg∗
k(L) =

0, which implies that concentration does not hold for the random variable

deg∗
k(L). To get around these problems, we consider a random variable XL

which is slightly different from deg∗
k(L). Let L be an arbitrary ℓ-shadow of

H. Define

R(L) = {K ∈ H :
(

K
ℓ

)
\ {L} ⊆ L∗}.

Note that H∗ ⊆ R(L). Let XL be the number of k-blocks containing L in the

hypergraph (V,R(L)). In other words, XL is the random variable defined by

XL = |∇k(L) ∩R(L)|. (4.20)

Note also that, whenever L ∈ ∆ℓ(H∗), the family R(L) is exactly H∗, and

XL is precisely deg∗
k(L), the number of k-blocks containing L in (V,H∗). We

will show

D∗ − f(D∗) ≤ XL ≤ D∗ ∀L ∈ ∆ℓ(H), (4.21)

and that implies (4.13) as explained above.

We need two claims in order to prove (4.21). Their proofs will be given

later in this subsection.

Claim 4.9 E(XL) = degk(L) (1 − p∗)(
k
ℓ)−1(1 + O(D−1 ln n)).
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Before we state the second claim, let us define E2(L) to be the event that

|XL − E(XL)| > 1
2
BD1/2 ln3/2 n,

where B, as mentioned earlier, is a large enough constant depending on k

and ℓ, and chosen to satisfy inequality (4.28) in the proof of Claim 4.10. Let

E2 be the event that E2(L) happens for some L ∈ ∆ℓ(H).

Claim 4.10 Pr(E2) → 0 as n → ∞.

Now, recall the definition of D∗ in (4.11). By the previous claims, a.a.s. the

following holds.

XL ≤ degk(L)(1 − p∗)(
k
ℓ)−1(1 + O(D−1)) + 1

2
BD1/2 ln3/2 n

≤ D(1 − p∗)(
k
ℓ)−1 + 1

2
BD1/2 ln3/2 n + O(1).

In particular, we have

XL ≤ D(1 − p∗)(
k
ℓ)−1 + BD1/2 ln3/2 n = D∗. (4.22)

The lower bound for deg∗
k(L) is obtained as follows.

XL ≥
(
D − AD1/2 ln3/2 n

)
(1 − p∗)(

k
ℓ)−1(1 + O(D−1)) − 1

2
BD1/2 ln3/2 n

= D(1 − p∗)(
k
ℓ)−1 −

(
A(1 − p∗)(

k
ℓ)−1 + 1

2
B

)
D1/2 ln3/2 n + O(1)

≥ D(1 − p∗)(
k
ℓ)−1 −

(
A(1 − p∗)((

k
ℓ)−1)/2 − B

)
D1/2 ln3/2 n (4.23)

= D(1 − p∗)(
k
ℓ)−1 + BD1/2 ln3/2 n − A

(
(1 − p∗)(

k
ℓ)−1D

)1/2
ln3/2 n

≥ D∗ − A(D∗)1/2 ln3/2 n.

This completes the proof of (4.21). We now proceed with the proofs of

Claim 4.9 and Claim 4.10.

Proof of Claim 4.9. Fix K ∈ H containing L, let t =
(

k
ℓ

)
− 1, and let

L1, L2, . . . , Lt be the ℓ-shadows in
(

K
ℓ

)
\ {L}. If we prove

Pr
( ∧

i∈[t]

Li ∈ L∗
)

= (1 − p∗)t(1 + O(D−1 ln n)), (4.24)
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then the claim follows by the linearity of expectation. The remainder of this

proof is devoted to show (4.24).

Let K1, . . . , Kr ∈ H be k-blocks, for some 1 ≤ r ≤ t, no two of which share

ℓ points. We first claim that

Pr(K1, . . . , Kr ∈ S) = (1 + O(D−1 ln n))
r∏

i=1

Pr(Ki ∈ S). (4.25)

Let a = Pr(K1, . . . , Kr ∈ S), and let b =
∏

Pr(Ki ∈ S). Let N =
⋃N (Ki).

We can rewrite a and b as

a =

( r∏

i=1

Pr(Ki ∈ K)

)
∏

K̃∈N

Pr(K̃ 6∈ K),

b =
r∏

i=1

(

Pr(Ki ∈ K)
∏

K̃∈N (Ki)

Pr(K̃ 6∈ K)

)

.

Note that a term of the form Pr(K̃ 6∈ K) is counted multiple times in b but

not in a whenever K̃ shares ℓ points with both Ki and Kj, for some i 6= j.

Let i 6= j be fixed, and let K̃ be such a block. Set W = K̃ ∩ (Ki ∪Kj). Since

W has at least ℓ + 1 elements, there are only at most (ℓ + 7) ln n possibilities

for K̃. So, for a fixed choice of i 6= j, the number of blocks K̃ sharing ℓ

elements with both Ki and Kj is bounded by (ℓ + 7)
(

k
ℓ

)2
ln n. Hence at most

(ℓ + 7)
(

k
ℓ

)4
ln n terms are missing in a, which implies (4.25) after a routine

calculation.

Now let F1, . . . , Fr ∈
(

K
ℓ

)
\ {L}, for some 1 ≤ r ≤ t. Since two members of

H sharing ℓ points cannot both be in S, we have

r∏

i=1

p(Fi) =
r∏

i=1

A∑

Pr(K̃ ∈ S) =
B∑ r∏

i=1

Pr(Ki ∈ S), (4.26)

where
∑

A is over all K̃ ∈ H containing Fi, and
∑

B is over all r-tuples

(K1, . . . , Kr) of k-blocks in H satisfying Fi ⊆ Ki for every i ∈ [r]. We also
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know that

Pr(F1, . . . , Fr ∈ ∆ℓ(S)) = Pr(K ∈ S)

+
C∑

Pr(K1, . . . , Kr ∈ S)

+
D∑

Pr(K1, . . . , Kr ∈ S),

where
∑

C and
∑

D are both over all r-tuples (K1, . . . , Kr) satisfying Fi ⊆ Ki

for every i ∈ [r], the only difference being the following. In
∑

C, one requires

|Ki ∩ Kj| < ℓ for every 1 ≤ i < j ≤ r, while in
∑

D one requires that

either Ki = Kj or |Ki ∩ Kj| < ℓ hold, with Ki = Kj for at least one pair

i 6= j. Notice that the terms in
∑

D contribute to O(D−1 ln n). Therefore

Pr(F1, . . . , Fr ∈ ∆ℓ(S)) can be written as

O(D−1) +
C∑

Pr(K1, . . . , Kr ∈ S) + O(D−1 ln n).

Using (4.25), we obtain

O(D−1 ln n) + (1 + O(D−1 ln n))
C∑ r∏

i=1

Pr(Ki ∈ S).

Recall that degk(Fi) = O(D), which implies
∑

C is missing O(Dr−1 ln n)

terms from the Θ(Dr) terms in
∑

B above. Therefore, we have

Pr(F1, . . . , Fr ∈ ∆ℓ(S)) = O(D−1 ln n)+(1+O(D−1 ln n))
B∑ r∏

i=1

Pr(Ki ∈ S),

which, combined with (4.26), yields

Pr(F1, . . . , Fr ∈ ∆ℓ(S)) = (1 + O(D−1 ln n))
r∏

i=1

p(Fi).

Since the wasted edges are chosen independently, if G1, . . . , Gs ∈
(

K
ℓ

)
\ {L},

for some 1 ≤ s ≤ t, we also have that

Pr
(( ∧

i∈[r]

Fi ∈ ∆ℓ(S)
)

∧
( ∧

j∈[s]

Gj ∈ W

))
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equals

(1 + O(D−1 ln n))
r∏

i=1

p(Fi)
s∏

j=1

w(Gj). (4.27)

Now recall L1, L2, . . . , Lt are the ℓ-shadows in
(

K
ℓ

)
\ {L}, hence

Pr
( ∧

i∈[t]

Li ∈ L∗
)

= 1 − Pr
(( ∨

i∈[t]

Li ∈ ∆ℓ(S)
)

∨
( ∨

j∈[t]

Lj ∈ W

))

.

By the Inclusion-Exclusion Formula (see Proposition 2.1 in Chapter 2), we

can write Pr({L1, L2, . . . , Lt} ⊆ L∗) as

∑

I,J⊆[t]

(−1)|I|+|J | Pr
(( ∧

i∈I

Li ∈ ∆ℓ(S)
)

∧
( ∧

j∈J

Lj ∈ W

))

.

Using (4.27), we obtain

∑

I,J⊆[t]

(−1)|I|+|J |

(

(1 + O(D−1 ln n))
∏

i∈I

p(Li)
∏

j∈J

w(Lj)

)

.

Since the number of terms in the previous summation is constant (precisely

4t), we have

Pr
( ∧

i∈[t]

Li ∈ L∗
)

= (1 + O(D−1 ln n))
∏

i∈[t]

(1 − p(Li))
∏

j∈[t]

(1 − w(Lj))

= (1 − p∗)t(1 − O(D−1 ln n)).

This settles (4.24), and Claim 4.9 follows. ⊓⊔

Proof of Claim 4.10. First, let L ∈ ∆ℓ(H) be fixed. We call a k-block

primary if it contains L, and secondary if it is not primary, but shares ℓ

points with some primary k-block. The number of primary k-blocks is no

more than D, and the number of secondary k-blocks is less than
(

k
ℓ

)
D2. We

call an ℓ-shadow primary, if it is not L and is contained in a primary k-block.

To prove that E2(L) → 0 with n, we apply Theorem 2.4 to the random

variable XL, which clearly depends on the random bite (K,W ). Note that
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a random bite can be viewed a sequence of trials, each of which is 1 if the

corresponding k-block is in K (resp. ℓ-shadow is in W ), and 0 otherwise.

To apply the martingale bound, we first need to define a strategy to com-

pute XL consisting of a sequence of questions. Each question can be about a

k-block being in K or about an ℓ-shadow being in W . The price of a question

of the first type is at most

1

D

(

1 − 1

D

)

c2
k <

c2
k

D
,

where ck is the maximum possible change in the value of XL when a k-block

is added to K or removed from K. Similarly, cℓ is the maximum possible

change in the value of XL when an ℓ-shadow is added to W or removed from

W . The price of a question about an ℓ-shadow F being in W is at most

w(F ) (1 − w(F )) c2
ℓ < c2

ℓ .

Estimating ck and cℓ

Recall that

XL = |∇k(L) ∩R(L)|,

and recall that H∗ is defined in (4.1) as

H∗ = H \
(
S ∪ ∇k(∆ℓ(S)) ∪∇k(W )

)
.

Let us assume that a block K is removed from K. The analysis regarding

addition of a block into K is symmetric. The reasons why this operation

could affect the value of XL are two. First, because a block containing L

could now belong to S, although there can only be at most one such block.

Second, because a few blocks containing L could be added to ∇k(∆ℓ(S)). In

fact, since blocks in R(L) are also counted in XL, only the blocks added to

∇k(∆ℓ(S) \ {L}) could possibly affect XL.
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To begin the analysis, note that |S| changes by at most
(

k
ℓ

)
. This would

happen precisely when there are
(

k
ℓ

)
blocks K̃0, . . . , K̃t, each containing a

distinct ℓ-shadow of K, and each of which was previously not in S only

because K was in K. In turn, for each block K̃i that goes into S (as a result

of K being removed from K), we will show that XL changes by at most

k(ℓ + 7) ln n as follows. If a block K ′ intersects K̃i in at least ℓ vertices, and

the intersection is not L itself, then K ′ is not in H∗ ∪ R(L). Since H is an

(f, ℓ, k, n, d,D)-graph, every ℓ+ 1 points are contained in at most (ℓ+ 7) ln n

blocks of H (see item (iii) in Definition 4.3). Hence every point in K̃i \ L is

in at most (ℓ + 7) ln n blocks K ′ containing L. This settles the bound on the

change of XL with respect to K̃i. Given the number of choices for K̃i, we set

ck =
(

k
ℓ

)
k(ℓ + 7) ln n.

Suppose now that an ℓ-shadow L′ 6= L is removed from (or added to) W .

Since there are at most (ℓ + 7) ln n blocks of H containing both L′ and L, we

set cℓ = (ℓ + 7) ln n.

Defining the strategy to compute XL

Let us define the sequence of questions that are necessary to compute XL.

First, we need to know whether each primary k-block is in S. Hence, for each

primary and secondary k-block K, we ask whether K ∈ K. These questions

are all of the first type, and their number is less than

(
k
ℓ

)
D2.

At this point we already know which primary k-blocks are in S, but we do

not have enough information to determine which secondary k-blocks are in

S. We call a secondary k-block K a candidate to be in S, if K ∈ K, and

none of the primary or secondary k-blocks which contain an ℓ-shadow of K

are in K. Deciding whether each candidate is in S requires less than
(

k
ℓ

)
D

questions. Note that each candidate contains a primary ℓ-shadow, and each
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primary ℓ-shadow is contained in at most one candidate. Hence the number

of such candidates is less than
(

k
ℓ

)
D. Therefore, less than

(
k
ℓ

)2
D2

additional questions of the first type are needed.

Finally, we need to know whether each primary ℓ-shadow F is in W . The

number of questions of the second type is less than

(
k
ℓ

)
D.

Now we have all the necessary information to determine how many k-blocks

containing L survived in H∗ ∪R(L), which is precisely the value of XL. The

total cost of the algorithm can be estimated as

(
# questions of
the first type

)c2
k

D
+

(
# questions of
the second type

)

c2
ℓ < BD ln2 n, (4.28)

for some large enough constant B that depends on k and ℓ.

Applying the martingale inequality

Now we set α = 2
√

(ℓ + 1) ln n and σ2 = BD ln2 n, and apply Theorem 2.4

to the random variable X with parameters σ and α, obtaining

Pr(|XL − E(XL)| > 2
√

(ℓ + 1)BD1/2 ln3/2 n) < 2e−α2/4 = 2n−(ℓ+1). (4.29)

We can bound Pr(E2(L)) by the right hand side of (4.29), if we also assume

that B is large enough to satisfy B/2 ≥ 2
√

(ℓ + 1)B. Using the union bound,

we can easily estimate Pr(E2) as follows.

Pr(E2) = Pr
( ⋃

E2(L)
)

≤
∑

Pr(E2(L)) ≤ nℓ × 2n−(ℓ+1) ≤ 2n−1.

Clearly, Pr(E2) → 0 as n tends to infinity, and Claim 4.10 is proved. ⊓⊔
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4.5.3 Bounding the ℓ-degree of (ℓ − 1)-sets

Let M be an (ℓ− 1)-subset of V . Let YM be the random variable defined by

YM = deg∗
ℓ(M), the number of ℓ-shadows containing M in the hypergraph

(V,H∗). The following claim easily follows from the linearity of expectation.

Claim 4.11 E(YM) = degℓ(M)(1 − p∗).

Now let E3(M) be the event that

|YM − E(YM)| > B′d1/2 ln1/2 n

where B′ is a constant depending on k and ℓ chosen to satisfy inequality (4.31)

in the proof of Claim 4.12. Let E3 be the event that E3(M) happens for some

(ℓ − 1)-subset M . We are ready to state Claim 4.12.

Claim 4.12 Pr(E3) → 0 as n → ∞.

We now use claims 4.11 and 4.12 to find upper and lower bounds for

deg∗
ℓ(M). The upper bound is easy, as a.a.s. we have

deg∗
ℓ(M) ≤ degℓ(M)(1 − p∗) + B′d1/2 ln1/2 n ≤ d∗.

Regarding the lower bound, we know that a.a.s. deg∗
ℓ(M) satisfies

deg∗
ℓ(M) ≥ degℓ(M)(1 − p∗) − B′d1/2 ln1/2 n

≥ (d − Ad1/2 ln3/2 n)(1 − p∗) − B′d1/2 ln3/2 n

= d(1 − p∗) −
(
A(1 − p∗) + B′

)
d1/2 ln3/2 n

≥ d(1 − p∗) −
(
A(1 − p∗)1/2 − B

)
d1/2 ln3/2 n (4.30)

= d(1 − p∗) + Bd1/2 ln3/2 n − A
(
(1 − p∗)d

)1/2
ln3/2 n

≥ d∗ − A(d∗)1/2 ln3/2 n.

Here, the dependency of A and B become clear, since we already mentioned

that A needs to be large enough to satisfy (4.30).
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Proof of Claim 4.12. This proof will basically follow along the lines of the

proof of Claim 4.10. We fix an (ℓ − 1)-subset M ⊆ V . A k-block is primary

if it contains M , and secondary if it is not primary and shares ℓ elements

with some primary k-block.

We will apply Theorem 2.4 to bound the probability of E3(M). As previ-

ously, a question about a k-block being in K costs 1
D

(
1 − 1

D

)
c2
k < c2

kD
−1, and

a question about an ℓ-shadow F being in W costs w(F )(1 − w(F ))c2
ℓ < c2

ℓ .

The only difference is that now we are dealing with a different random vari-

able, so the values of ck and cℓ need to be recomputed. That means, we need

to find what is the maximum change in the value of YM when a k-block is

added to (or removed from) K, and also when an ℓ-shadow is added to (or

removed from) W .

This time, the analysis is a lot simpler. The only way an ℓ-shadow L

containing M may be excluded from ∆ℓ(H∗) (as a result of a k-block K

being removed from K) is if L is contained in some k-block K̃ ∈ K which

now belongs to S. The maximum change in |S| is still
(

k
ℓ

)
, as before. Hence,

the maximum change in YM is at most ck = (k − ℓ + 1)
(

k
ℓ

)
. On the other

hand, it is easy to see that cℓ = 1.

Now we define a strategy to compute the value of YM . Essentially, we need

to know which ℓ-shadows containing M “survived the bite”, i.e. which ℓ-

shadows are neither in ∆ℓ(S) nor in W . First, we ask whether each primary

k-block is in K. At most dD questions were asked. After that, some of the

primary k-blocks could be candidates to be in S. For each candidate K̃,

we ask which secondary k-blocks (w.r.t. K̃) are in K. Here, at most
(

k
ℓ

)
dD

questions were asked. We now know exactly the primary k-blocks in S, and

consequently, the ℓ-shadows containing M that are in ∆ℓ(S).

Finally, to know which ℓ-shadows containing M were wasted, we need d

additional questions. Therefore the total cost of the algorithm is at most

(dD +
(

k
ℓ

)
dD)(k − ℓ + 1)

(
k
ℓ

)
D−1 + d ≤ B′d, (4.31)
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for some constant B′ depending on k and ℓ.

Set ρ = 2
√

ℓ ln n, and σ2 = B′d. We can now apply Theorem 2.4 with these

parameters as follows.

Pr
(

|YM − E(YM)| > 2
√

ℓB′d ln n
)

< 2e−ρ2/4 = 2n−ℓ.

Assuming that B′ is large enough to beat 2
√

ℓB′, we can bound Pr(E3) by

taking the union bound over all (ℓ − 1)-subsets of vertices. We obtain

Pr(E3) = Pr
( ⋃

E3(M)
)

≤
∑

Pr(E3(M)) ≤ nℓ−1 × 2n−ℓ ≤ 2n−1.

Claim 4.12 is proved. ⊓⊔

This completes the proof of Lemma 4.6. ⊓⊔

4.6 Construction of H0

The goal of this section is to prove the existence of an (f, ℓ, k, n, d,D)-graph

H0 with d = n, n ≤ D ≤ 2n ln n, and f given by (4.9).

If ℓ = k − 1, we simply set H0 =
(
[n]
k

)
. For ℓ < k − 1, consider the

following random procedure. Choose each k-subset of [n] independently with

probability p = n−k+ℓ+1 ln n. Let H be the resulting random family. We are

going to show that, with high probability, H is as desired. We then fix one

such hypergraph to be H0.

For L ∈
(
[n]
ℓ

)
, consider the random variable XL = |H ∩ ∇k(L)|. Similarly,

for each (ℓ + 1)-subset of [n], let YI = |H ∩ ∇k(I)|. Clearly, E(XL) = n ln n,

and E(YI) = ln n. Next, we argue that XL and XI are concentrated.

Starting with XL, let us set ǫ =
√

3(ℓ + 1)/E(XL), and let AL be the event

that |XL − E(XL)| > ǫE(XL). By Chernoff’s Inequality (Proposition 2.2),

we have

Pr(AL) = Pr
(
|XL − E(XL)| > ǫE(XL)

)
< 2 exp

{
− ǫ2

3
E(XL)

}
= 2n−ℓ−1.
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Hence the probability that there exists L ∈
(
[n]
ℓ

)
with |XL − E(XL)| >

√

3(ℓ + 1) n ln n is less than nℓ × 2n−ℓ−1, which tends to 0 as n tends to

infinity.

Now let x = max{7, (ℓ + 2)}E(YI), and let BI be the event that YI > x.

Similarly, by (2.11) in Corollary 2.4 in [13], we can bound the upper tail of

YI as

Pr(BI) = Pr(YI ≥ x) < e−x ≤ n−ℓ−2.

Therefore, the probability that there exists I with YI > max{7, (ℓ+2)}E(YI)

is less than nℓ+1 × n−ℓ−2, which tends to 0 as well.

In view of the previous discussion, we may fix a k-uniform hypergraph H0

on n vertices satisfying

|∇ℓ(M) ∩ ∆ℓ(H0)| = n − (ℓ − 1) ∀M ∈
(

V
ℓ−1

)
(4.32)

|∇k(L) ∩H0| ≥ n ln n − (ℓ + 1)
√

n ln n ∀L ∈
(

V
ℓ

)
(4.33)

|∇k(L) ∩H0| ≤ n ln n + (ℓ + 1)
√

n ln n ∀L ∈
(

V
ℓ

)
(4.34)

|∇k(I) ∩H0| ≤ (ℓ + 7) ln n ∀I ∈
(

V
ℓ+1

)
(4.35)

It is straightforward to check that (4.32) – (4.35) imply H0 is indeed an

(f, ℓ, k, n, d,D)-graph with the desired parameters.

4.7 Successive bites

In order to prove Theorem 4.1, we study the evolution of the parameters d

and D as we successively bite (with good bites) from H0. Set d0 = d, and

D0 = D. We inductively define Hi+1 to be the (f, ℓ, k, n, di+1, Di+1)-graph

that remains after a fixed good bite is taken from Hi. By Lemma 4.6, there

is always a good bite (Ki+1,Wi+1) from Hi, provided Di is not too small.

Denote by Si+1 the set of selected k-blocks of the bite (Ki+1,Wi+1). By

the definition of good bite, di+1 and Di+1 must satisfy the relations given
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by (4.36) and (4.37) below.

di+1 = di(1 − p∗i ) + Bd
1/2
i ln3/2 n, (4.36)

Di+1 = Di(1 − p∗i )(
k
ℓ)−1 + BD

1/2
i ln3/2 n. (4.37)

We denote by s the smallest integer such that Ds > ln5 n is no longer satisfied.

The parameter s denotes the number of bites that we perform. Next, we

compute s, ds and, for any fixed (ℓ−1)-subset M ⊂ V , we bound the number

of ℓ-shadows containing M that were wasted along the s bites. Since D0 ≤
2d0 ln n, relations (4.36) and (4.37) guarantee Di ≤ 2di ln n for all 0 ≤ i ≤ s.

Using this fact, and inequality (4.7), the relationship between di+1 and di

can be written as follows.

di+1 = di(1 − p∗i ) + Bd
1/2
i ln3/2 n

= di

(

1 − e−(k
ℓ)

)(
1 + O

(
D

−1/2
i ln3/2 n

)
+ O

(
d
−1/2
i ln3/2 n

))

= di

(

1 − e−(k
ℓ)

)(
1 + O

(
D

−1/2
i ln2 n

))
. (4.38)

Similarly, we have

Di+1 = Di(1 − p∗i )(
k
ℓ)−1 + BD

1/2
i ln3/2 n

= Di

(

1 − e−(k
ℓ)

)(k
ℓ)−1(

1 + O
(
D

−1/2
i ln3/2 n

))
. (4.39)

Set λ =
(
1 − e−(k

ℓ)
)
, and t =

(
k
ℓ

)
− 1. It follows from (4.38) and (4.39), that

di = d0 λi
(
1 + O

(
D

−1/2
0 ln2 n

))
· · ·

(
1 + O

(
D

−1/2
i−1 ln2 n

))
, (4.40)

Di = D0 λit
(
1 + O

(
D

−1/2
0 ln2 n

))
· · ·

(
1 + O

(
D

−1/2
i−1 ln2 n

))

︸ ︷︷ ︸

E

. (4.41)

To estimate the error term E in both (4.40) and (4.41) above, let c > 0 be a

constant such that

E ≥
(
1 − cD

−1/2
0 ln2 n

)
. . .

(
1 − cD

−1/2
i−1 ln2 n

)
(4.42)
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and

E ≤
(
1 + cD

−1/2
0 ln2 n

)
. . .

(
1 + cD

−1/2
i−1 ln2 n

)
. (4.43)

Even though the number of big-O terms being multiplied in E is not constant,

they all come from (4.38) (or (4.39)), hence the choice of c is licit. Therefore,

using (4.43) and the exponential bound 1 + x ≤ ex, we obtain

E ≤ exp
{

c ln2 n

i−1∑

j=0

D
−1/2
j

}

. (4.44)

To bound the sum of D
−1/2
j , we observe that (4.39) implies

Di = Di−1λ
t(1 + o(1)) ≤ Di−1λ

t−1,

which can be generalized, for every 0 ≤ j < i ≤ s, as

Di ≤ Djλ
(i−j)(t−1). (4.45)

Using (4.45), and the assumption that Di > ln5 n, for i < s, we have

i−1∑

j=0

D
−1/2
j ≤ D

−1/2
i−1 + D

−1/2
i−2 + · · · + D

−1/2
0

≤ D
−1/2
i−1

(
1 +

(
λ

1
2
(t−1)

)
+ · · · +

(
λ

1
2
(t−1)

)(i−1))

≤ D
−1/2
i−1

(
1 − λ

1
2
(t−1)

)−1
. (4.46)

Now we use (4.46) to bound E from above as follows.

E ≤ exp
{
c ln2 nD

−1/2
i−1

(
1 − λ

1
2
(t−1)

)−1}

≤ exp
{
c
(
1 − λ

1
2
(t−1)

)−1
ln−1/2 n

}
.

Since c is positive, and 1 + 2x ≥ ex for 0 ≤ x ≤ 1/2, we obtain

E ≤ 1 + o(1).
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Similarly, we obtain a lower bound on E. By (4.42), and 1 + 2x ≥ ex for

0 ≤ x ≤ 1/2, it follows that

E ≥ exp
{

− c

2
ln2 n

i−1∑

j=0

D
−1/2
j

}

≥ exp
{

− c

2
ln2 nD

−1/2
i−1

(
1 − λ

1
2
(t−1)

)−1
}

(4.47)

≥ exp
{

− c

2

(
1 − λ

1
2
(t−1)

)−1
ln−1/2 n

}

(4.48)

= 1 + o(1).

Hence, we can restate (4.40) and (4.41) as

di = d0 λi(1 + o(1)), (4.49)

Di = D0 λit(1 + o(1)). (4.50)

We now compute s and ds. Observe that Ds ≤ ln5 n < Ds−1 implies

λstD0(1 + o(1)) ≤ ln5 n < λ(s−1)tD0(1 + o(1)),

which implies

λs = Θ
( ln5 n

D0

)1/t

. (4.51)

Making e−bs = λs, we get

−bs = Θ(ln ln n) − Θ(ln D0).

The assumption that D0 ≤ 2n ln n yields

s = Θ(ln n). (4.52)

Using (4.51) and (4.49), together with the assumption that d0 = n ≤ D0, we

obtain

ds = λsd0(1 + o(1))

= O
( ln5 n

D0

)1/t

d0

= O
(

n1−1/t ln4/t n
)

. (4.53)
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Now we bound the number of ℓ-shadows containing a fixed (ℓ−1)-subset M ∈
(

V
ℓ−1

)
that were wasted along the process, after s bites. At each bite i, the

number of such ℓ-shadows is bounded by 21AdiD
−1/2
i ln3/2 n. Therefore, the

number of ℓ-shadows containing M that were wasted along the s iterations

can be bounded, using (4.49), (4.50), and the assumption that n ≤ D0, as

follows.

s−1∑

i=0

21AdiD
−1/2
i ln3/2 n = 21A ln3/2 n

s−1∑

i=0

diD
−1/2
i

= 21A ln3/2 n

s−1∑

i=0

(
d0λ

i(1 + o(1))
)(

D0λ
it(1 + o(1))

)−1/2

= O
(
n1/2 ln3/2 n

)
s−1∑

i=0

λi(1−t/2)

= O
(
n1/2 ln3/2 nλs(1−t/2)

)
.

Using the estimate on λs given by (4.51), we conclude that the number of

wasted ℓ-shadows containing M is

O

(

n1/2 ln3/2 n
( ln5 n

D0

)1/t−1/2
)

= O
(
n1−1/t lnγ n

)
. (4.54)

4.8 Proof of Theorem 4.1

We are now ready to prove our main theorem. We are going to show that the

desired object, i.e. a locally nearly perfect (n, k, ℓ)-system, can be obtained

by taking the union of the selected k-blocks along the s good bites from the

previous section. Let F be the family of k-sets defined by

F = S1 ∪ S2 ∪ · · · ∪ Ss.

Clearly, two k-blocks in the same family Si do not share ℓ elements. Recall

that Si ⊆ Hi−1. Moreover, since Hi ∩ ∇k(∆ℓ(Sj)) = ∅ for all j ≤ i, no two
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members of F intersect in more than ℓ − 1 elements. Below, we verify that

F is indeed the desired (n, k, ℓ)-system.

Let M be an arbitrary (ℓ − 1)-element subset of [n]. Let Hi be as defined

in the previous section. We know

H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hs. (4.55)

Note that, if an ℓ-shadow L belongs to ∆ℓ(Hi) \ ∆ℓ(Hi+1), then either L ∈
∆ℓ(Si) or L ∈ Wi or both. Since every ℓ-subset of [n] is an ℓ-shadow of H0,

the number of uncovered ℓ-subsets containing M is at most

|∇ℓ(M) ∩ ∆ℓ(Hs)| +
∣
∣
∣

s⋃

i=1

∇ℓ(M) ∩ Wi

∣
∣
∣. (4.56)

Th first term is at most ds, which by (4.53) is O
(
n1−1/t ln4/t n

)
. The second

is O
(
n1−1/t ln5/t n

)
by (4.54). Hence, the number of uncovered ℓ-subsets

containing M is of order O
(
n1−β lnγ n

)
, for some γ which depends only on k

and ℓ.
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Appendix

Proposition 5.1 Let 0 ≤ ℓ ≤ k ≤ n. Then the following binomial identity

holds. (
n

k

)(
n − ℓ

k − ℓ

)−1

=

(
n

ℓ

)(
k

ℓ

)−1

. (5.1)

Proof. We expand the left-hand-side of (5.1) as

(n

k

n − 1

k − 1
· · · n − k + 1

1

)(k − ℓ

n − ℓ

k − ℓ − 1

n − ℓ − 1
· · · 1

n − k + 1

)

.

Canceling terms yields
n

k

n − 1

k − 1
· · · n − ℓ + 1

k − ℓ + 1
.

Multiply and divide by ℓ!, then regroup terms to get the right-hand-side

of (5.1). ⊓⊔

Proposition 5.2 For a positive integer ℓ and a real number x ≤ 1, the

following inequality holds.

(1 − x)ℓ ≥ (1 − ℓx). (5.2)

Proof. The proof is by induction on ℓ. If ℓ = 1 the inequality holds trivially.

Suppose that ℓ > 1, and assume inequality 5.2 holds for smaller values of ℓ.

Using the induction hypothesis, we obtain

(1 − x)ℓ = (1 − x)(1 − x)ℓ−1

≥ (1 − x)(1 − (ℓ − 1)x)

= 1 − ℓx + (ℓ − 1)x2

≥ 1 − ℓx.
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The proposition follows. ⊓⊔

Proposition 5.3 For a positive integer D the following inequality holds.

(

1 − 1

D

)D−1

≥ e−1.

Proof. Since

lim
x→∞

(

1 − 1

x

)x

= lim
x→∞

(

1 − 1

x

)x−1

= e−1,

it is enough to show that for any integer D > 1, we have

(

1 − 1

D + 1

)D

<
(

1 − 1

D

)D−1

. (5.3)

Observe that (5.3) is equivalent to

(

1 − 1

D + 1

)

<

(
1 − 1

D

1 − 1
D+1

)D−1

. (5.4)

In fact, this inequality is true since the right-hand-side of (5.4) can be

bounded as follows.

(
1 − 1

D

1 − 1
D+1

)D−1

=
(

1 − 1

D2

)D−1

>
(

1 − (D − 1)

D2

)

>
(

1 − (D − 1)

(D − 1)(D + 1)

)

=
(

1 − 1

D + 1

)

,

where the the first inequality follows from Proposition 5.2. This completes

the proof. ⊓⊔
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