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Abstract

A Hopf Theorem and Related Results for Pseduo-Riemannian Geometry
By Maxwell Auerbach

We show that a complete Pseudo-Riemannian metric without conjugate points along
time-like curves which is flat outside of a compact set must be flat inside that compact
set. This type of result is called a Hopf theorem, and our result is a generalization of a
result by Croke in the Riemannian case. We use a mixture of geometric methods from
that work and methods used in showing boundary rigidity through integral geometry.
During the course of this three part proof we show other related results, including that
the geodesic ray transform of functions over time-like curves for separable Pseudo-
Riemannian manifolds is injective.
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Chapter 1

Introduction and Main Results

1.1 The theorem of E. Hopf

This thesis concerns some geometric inverse problems. The main focus is to determine

the detailed information about the interior of a compact set when we have universal

information about the complement of that compact set, and minimal information

about the interior. The case I wish to study and generalize is centered around the

following question.

Question 1. If a Riemannian metric on Rn has no conjugate points and is flat outside

of a compact set Ω, must it also be flat on Ω?

Here by flat we mean the usual Euclidean metric. It is clear that the Euclidean

metric is one such Riemannian metric, and the question concerns the uniqueness

of Riemannian metrics without conjugate points. This type of question started in

Riemannian geometry from the work of E. Hopf [7] who proved that a Riemannian

metric on a two-dimensional torus without conjugate points is flat. This result is

generalized to high dimensional tori in [3]. Green and Gulliver [11] proved the result

for the plane, namely that metric perturbations of the Euclidean metric on R2 in

a compact set without conjugate points must be flat. Recently, this is proved for



2

asymptotically Euclidean type metric perturbations in [6]. A Hopf type theorem has

been studied in Loretnzian geometry, see [1]. In particular, the authors proved that

metric perturbations of the Minkowski metric on R2 without conjugate points along

time-like geodesics is flat. We discuss more details of these results in Section 1.4.1.

1.2 Main results

In this thesis, we are interested in Question 1 for Pseudo-Riemannian metrics which

generalize the Riemannian one. Our goal is to develop some methods based on recent

advances in geometric inverse problems to obtain Hopf type theorems. Along the way,

we also study the related geodesic ray transform in pseudo-Riemannian geometry. We

will now describe a concrete result for which our method works.

Let g be a smooth Pseudo-Riemannian metric on Rn×Rm where n ≥ 2,m ≥ 1. We

refer the readers to Chapter 2 for more discussions on Pseudo-Riemannian geometry.

We let e be the flat metric on Rn × Rm given by

e =

−In 0

0 Im

 ,

where Ik denotes the k×k identity matrix. In Pseudo-Riemannian geometry, geodesics

can be classified into time-like, null, and space-like geodesics according to

g(γ̇, γ̇) < 0, g(γ̇, γ̇) = 0, g(γ̇, γ̇) > 0,

respectively, where γ denotes a geodesic for g. For n = 1, the metric g is called

Lorentzian and the classification has physical meanings. We refer to Chapter 2 for

more discussions. In this work, we primarily consider the time-like geodesics.

Below we consider g conformal to e so g = φe for some positive scalar function φ.
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Theorem 1.2.1 (A.). Let g = φe be conformal to e and g = e outside of a bounded

open set Ω. Then there exists a open dense set Σ of C2 functions such that for any

g = φe with φ ∈ Σ, if there are no conjugate points along any time-like geodesic for

g, then g = e.

In other words, the answer to Question 1 is affirmative for generic pseudo-Riemannian

metrics that are conformal to the flat metric. In Chapter 3, we give a more general

Theorem 3.3.1, which relies on certain geodesic ray transforms on (Rn+m, g) being

injective. This naturally leads to the key part of the analysis: the geodesic ray trans-

form.

Let Ω be a bounded open set of Rn+m. Let f be a smooth function on Rn × Rm

supported in Ω. Let γg be a time-like geodesic in (Rn × Rm, g). The geodesic ray

transform for time-like geodesics is defined by

Igf(γg) =

∫
f(γg(r))dr.

In Chapter 3, we will briefly discuss the transform for tensors. In the last two decades,

various geodesic ray transforms in Riemannian and pseudo-Riemannian geometries

have attracted lots of attention. For example, the transform played an important

role in the study of the boundary rigidity problem. We will discuss more details in

Section 1.4.2 and 1.4.3. Here, we prove the injectivity and stability for Ig.

Theorem 1.2.2 (A.). There exists an open dense set of C2 separable Pseudo-

Riemannian metrics g on Rn+m such that the geodesic ray transform Ig for time-like

geodesics is injective on C∞0 (Ω). That is, for any f ∈ C∞0 (Ω), if Igf(γ) = 0 for all

time-like geodesics, then f = 0. Moreover, there exists C > 0 such that the following

stability holds

‖f‖Hs ≤ C‖Ngf‖Hs+1 .
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Here, by separable, we mean that g can be written as

g(z) =

−gN(z) 0

0 gM(z)


for z ∈ Rn+m where gN , gM are symmetric non-degenerate matrices. However, we

do not assume that (Rn+m, g) is a product manifold of (Rm, gM) and (Rn, gN). For

a Lorentzian metric g, it can be written in this form under some global hyperbolic

condition. We discuss these in Chapter 3.

1.3 Outline of the proof

The proof for Theorem 1.2.1 will consist of three parts, around each of which we

will prove more general results. First, in Chapter 2, we will reduce from the purely

geometric inverse problem to a problem about boundary distances. A modified version

of the argument presented by Croke [2] and used by Anderson, Dahl, and Howard [1]

is used to reduce this problem back down to a boundary rigidity problem.

After reduction to a geometric inverse problem, we will further reduce to a geodesic

ray transform problem in Chapter 3. The methods we will adapt come from various

historical sources. Since the case we care most about is the case with one metric being

flat, we will primarily adapt the argument from [19]. From there we will work with

conformal metrics to reduce the problem down to a problem about the injectivity

of a geodesic ray transform over functions. Additionally, we briefly discuss some

cases where the problem reduces to the injectivity of an geodesic ray transform over

2-tensors, which adds complications we do not consider here.

Next we will prove some injectivity results about geodesic ray transforms over

functions in Pseudo-Riemannian geometry in Chapter 4. We will directly show the

form of the normal operator for the geodesic ray transform for functions defined
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over time-like geodesics for a separable analytic Pseudo-Riemannian manifold. This

will allow us to conclude that the normal operator is an elliptic pseudo-differential

operator of order -1. To get a proper injectivity result we will use some tools for

analytic pseudo-differential operators from [22, 20]. Here we will extend the results

to generic separable Pseudo-Riemannian metrics to get the final result.

1.4 Historical results

There are three parts to the proof of Theorem 1.2.1, in Chapters 2, 3 and 4. We

will briefly state the historical results for all three parts of the proof, as each can

be viewed as a separate problem and have been worked on in very different contexts

than the one presented here.

1.4.1 Historical Hopf-type theorems

The First result in the nature of Theorem 1.2.1 was shown by E. Hopf in [7]. Explicitly,

he showed that if there is a C3 surface S such that there are no conjugate points on

S, and the total curvature is zero, then the curvature is zero locally. This implies

that if S is topologically a two-dimensional torus without conjugate points, then it

must be flat. The argument was done by explicitly considering curvature equations

and clever integration.

The conjecture that such a result can be generalized was proven in [3]. They

showed that if a Riemannian metric on the n-dimensional torus has no conjugate

points, then it is a flat metric. This proof relies on a lift to a periodic metric on Rm,

and constructing Banach norms that relate properly to the Euclidean norm.

Before Croke’s more general result, Green and Gulliver [11] proved the result for

the plane. They proved that on R2, if a metric without conjugate points is equal to the

flat metric outside a compact set, it must be isometric to the flat metric everywhere.



6

The result we are most interest is a result from Croke [2]. A crucial generalization

is that instead of working with metrics that universally have no conjugate points, he

worked with metrics that have no conjugate points on very specific geodesics over

some compact subset Ω ⊂ Rm. This is described in 2.1, and is defined as strongly

geodesic minimizing on Ω. He proved that if a metric is strongly geodesic minimizing

over some compact subset Ω ⊂ Rm and is equal to the flat metric outside of Ω, it

is isometric to the flat metric inside of Ω. This proof comes in two parts. First it

determines that the distance between boundary points on Ω for g and the flat metric

must be the same, and it then uses a volumetric argument to show the isometry.

In recent work, a collection of authors [6] showed a similar result for asymptotically

flat metrics. They showed that if g is a Riemannian metric without conjugate points

on Rm that is asymptotically Euclidean to some order greater than 2, then that metric

is diffeomorphic to the flat metric. This argument consists of four parts, which are

beyond the scope here. The work is reminiscent of the arguments by Croke, and

follows, very roughly, the idea of finding an equivalence between a map which is rigid

in the Euclidean case.

Work in the more general Pseudo-Riemannian setting is sparse, but was studied

in Lorentzian geometry in [1]. The full statement for their work is too ornery for this

quick review. They define an equivalent to strongly geodesic minimizing, and enforce

natural geometric conditions. In doing so, they get the result that if a metric that

satisfies the appropriate conditions is equal to the flat metric outside a compact set,

it must share the scattering relation with the flat metric. This argument is a direct

adaption of the first argument used in [2].

It is here that the present work sits. Except for the asymptotically flat case, the

work provides a generalization about as far as we can take the set-up for a Hopf

type theorem. We prove the equivalence of distance functions, which provides an

odd framework. Taking the standard distance function puts our work squarely in the
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settings used above and still gives the scattering relation.

1.4.2 Historical reductions to geodesic ray transforms

The work to reduce boundary rigidity problems to geodesic ray transforms is in truth

part of many works about the geodesic ray transforms and rarely studied separately.

There are a few novel or standard reductions, which we will mention and directly

generalize.

The construction we are most interested in comes from the seminal work by Ste-

fanov and Uhlmann in [19]. This work showed, roughly, that if there are two metrics

that share boundary data on some compact Ω ⊂ Rm, and are sufficiently close to the

Euclidean metric, those two metrics must be diffeomorphic to each other. The result

is done using an explicit calculation through the construction and then integration of

a clever function. This function is defined using the construction of geodesics from a

Hamiltonian system and the equivalence of boundary points. The argument is simpler

to work with if one of the metrics is flat (as it is in the case we consider). Using this

simplicity, we can prove a similar result with much care to the differences in moving

to Pseudo-Riemannian geometry. Another standard reference for this reduction is the

work by Sharafutinov [18] for the one parameter family case.

1.4.3 Historical injectivity for geodesic ray transforms

There is a glut of results in the field of injectivity for geodesic ray transforms, and

here we will very briefly describe a few that either are useful for our arguments or are

of particular interest.

For an overview of the process of proving injectivity of geodesic ray transforms

using pseudo-differential operators, see for example the process described by Stefanov

and Uhlmann in [20]. This has the skeleton of most arguments: find the kernel of

the normal operator in the correct sense, then use theory from pseudo-differential
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operators to get a result (often using some form of stability estimate). This is, in

fact, the exact process we will use.

Much work has been done in the case of simple manifolds. For now, we take an

intuitive understanding of simple manifolds to be a manifold that is diffeomorphic

to ball where every point is connected to every other point by a unique geodesic.

Under this, Stefanov and Uhlmann proved in [21] that the geodesic ray transform

for 2-tensors on an analytic simple manifold is s-injective. Here s-injectivity is the

best possible result (see section 3.4 for a brief discussion). This result used a much

more in depth method that still resembles the process described above. This result

is extended in the same work for a generic simple metric. A result that followed

this work by Stefanov and Uhlmann [22], showed a similar result for a limited angle

problem that helped inspire this work. Another major result using the method of

micro-local analysis comes in a paper by Stefanov, Uhlmann and Vasy [23]. In this

work, they show that, under a foliation condition, on a manifold with boundary the

geodesic ray transform is s-injective.

A different method of showing injectivity of geodesic ray transforms comes from

the Pestov identity. After the work by Muhometov in [13], the use of the Pestov

identity, coined due to the work by Pestov and Sharafutdinov in [17] and discussed

in detail in the book by Sharafutdinov [18], has proven an incredibly powerful tool.

Under strict curvature conditions, this identity can provide injectivity results and

stability estimates.

Of particular note is the result by Paternian, Salo and Uhlmann in [15], which

used this method to show that for simple two-dimensional metrics the geodesic ray

transform over tensor fields is injective in a sense analogous to s-injectivity. This work

cleverly navigates around any curvature restrictions using the unique tools available

in two dimensions.

The only work in this field done in Pseudo-Riemannian geometry is a recent work
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done by Ilmavirta in [10]. Using a Pestov identity, it is shown that the geodesic ray

transform of functions or 1-tensors on a limited class of Pseudo-Riemannian metrics

with non-positive sectional curvature in the appropriate sense over light-like geodesics

is injective or injective up to the natural kernel, respectively. This result inspired the

work done here.
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Chapter 2

Reduction to Geometric Inverse

Problems

2.1 Flat on a complement set in Riemannian ge-

ometry

We begin with defining most of the parts of Riemannian Geometry necessary for the

proof. In displaying the proof in the Euclidean case, we will explain the necessary

parts for the generalization, which otherwise may seem arbitrary.

Let M = Rm, m ≥ 2. Let e be the smooth (0, 2) tensor field defined by the identity

matrix. We call e the flat metric, which gives rise to the familiar Euclidean geometry.

Suppose x, y ∈ M . Let γ be the geodesic, in the sense of standard Riemannian

geometry, between x and y. Due to being in Euclidean geometry, this is simply a

straight line.

We will heavily lean on this connection between the ability to describe the Eu-

clidean structure in Riemannian geometry and the vast depth of knowledge available

in Euclidean geometry. Each of the parts we define below will match their intuitive

case in Euclidean geometry.
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Define the length of a piecewise C1(M) curve α : [0, T ]→M to be

∫ T

0

e(α̇(r), α̇(r))dr. (2.1)

This coincides exactly with the length of the curve α in the standard sense. In

Euclidean geometry, the geodesics are always the unique minimizers (up to param-

eterization) of the lengths over of the class of C1 curves between x and y. That is,

in this special Euclidean case, lines are the shortest paths between two points. The

fact that we will be primarily working with geodesics in Euclidean geometry rather

than geodesics in an unknown geometry is how we are able to connect this generalized

theorem to the specialized tools at our disposal.

In this result we will have a metric equal to e outside of some set Ω. However,

we need the fact that geodesics are the unique length minimizing curves between two

points for this argument. To this end, we will adopt the definition used in [2] to try

and keep the class of metrics we can consider as general as possible. It is this idea

that we will adapt in the next section to get a very general result.

Now we explicitly state some Riemannian geometry to clarify what we need for

the argument. Let g be a positive-definite smooth (0, 2) tensor field on M . We can

view g as a Riemannian metric, which lets us construct the same definitions as we had

before in Euclidean geometry. Exactly as above, we define the length of a piecewise

C1(M) curve α : [0, T ]→M to be

∫ T

0

g(α̇(r), α̇(r))dr. (2.2)

We define the distance between x and y in M to be the minimum length of all C1

curves between x and y.

We often phrase the ideas used in terms of the length of curves. Since each of

the curves we consider will be piecewise geodesics, we could focus exclusively on the
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distance between points. This strategy, focusing solely on distances between points,

will provide us with the general result in Theorem 2.2.2.

Let Ω be some compact set with non-empty interior such that g = e outside of Ω.

We desire for geodesics of g to minimize across points on the boundary of Ω. Define

g to be strongly geodesic minimizing on Ω if for all x, y ∈ ∂Ω there exists a geodesic

between x and y which is the unique minimizer of the length of C1 curves between x

and y. Alternatively, we can define g to be strongly geodesic minimizing on ∂Ω if for

all x, y ∈ ∂Ω there is a geodesic between x and y which has no conjugate points.

In the work on the injectivity of geodesic ray transforms, it is common to work

on simple manifolds. A metric g is simple if for all points x, y ∈ Ω, there a is

geodesic from x to y that has no conjugate points and every geodesics extends to

intersect with the boundary of Ω in a non-tangential manner. In relation to the

boundary this means that for x ∈ ∂Ω, every geodesic issued into Ω from x intersects

the boundary. The major difference between the conditions simple and strongly

geodesic minimizing is that for strongly geodesic minimizing we do not necessarily

consider all possible geodesics issued from x, rather only geodesics we already know

go between two boundary points. This is a relatively minor difference, but when we

generalize it, the natural fact that we are only looking at a specific class of geodesics

will be helpful.

We define the boundary distance function for a metric g on Ω to be a map dg :

∂Ω× ∂Ω→ R≥0 where dg(x, y) is the distance between x and y in Ω. Now we finally

have enough to properly state our theorem, which comes from Croke [2].

Theorem 2.1.1. Suppose g is a Riemannian metric on Rm such that there is some

Ω such that g = e outside of Ω, and that g is strongly geodesic minimizing on Ω. The

boundary distance function for g and e on ∂Ω are the same.

Next we establish a set of conditions that are necessary for the proof, and which

will be the basis of the generalization. We will notate a unit speed geodesic through x
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and y according to a specified Riemannian metric as γx,y : R � Rm with γx,y(0) = x

and γx,y(T ) = y for some T . Since we use the same notation across different metrics,

each time we define the geodesic we will say which metric we are defining it across.

Notate the distance between x and y according to a metric as dg(x, y).

Lemma 2.1.2. For the flat metric e and a metric g described as above, the following

hold.

1. If x, y and z are points in Rm, and γxy : R → Rm is the unit speed geodesic

according to g through x and y as described above, then dg(γx,y(−t), γx,y(T +

t)) ≤ dg(γx,y(−t), x) + dg(x+ z, y + z) + dg(y, γx,y(T + t)).

2. If x, y are points in Rm such that in a neighborhood of the geodesic from x to

y according to e g = e then de(x, y) = dg(x, y).

3. If x, y and z are points in Rm, then de(x, y) = de(x+ z, y + z).

4. If x, y and z are points in Rm, and γx,y, γx,z, and γy,z are unit speed geodesics

according to e as described above such that γx,y(0) = x and γx,z(0) = x and

e(γ̇x,y(0), γ̇x,z(0)) = 0, then, limk→∞ de(γx,z(k), x)− de(γx,z(k), y) = 0.

In more plain terms, the above are as follows. The first statement is a very com-

plicated consequence of the triangle inequality, or it can be viewed as a consequence

of the fact that the unique distance minimizing curve between x and y is a geodesic.

The second statement says that when two metrics are equal the distance between

points is equal.

The third statement says that in the Euclidean space the length of geodesics,

which are lines, are translation invariant.

The fourth statement says that if we take a right triangle and stretch out one of

the sides with a right angle then the difference in the Euclidean length of the stretched

hypotenuse and the length of the stretched side goes to zero.
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Further, each statement is a simple conclusion from our assumptions. The first

statements is a result of the strongly geodesic minimizing assumption, while the

second statement is simply a truth about the length function as it is defined above.

The last two statements are result from basic Euclidean geometry, and in fact the

fourth statement can directly be computed using the Pythagorean theorem. It is

primarily these simple facts that generate the proof.

Proof. Let x, y ∈ ∂Ω. Let γg : R → Rm be the unit speed geodesic through x and y

with regards to g with γg(0) = x and γg(T ) = y for some T . Let γe : R→ Rm be the

unit speed geodesic through x and y with regards to e with γe(0) = x and γe(T
′) = y

for some T ′. Note that γe is just a line segment. Suppose that γ̇g(0) 6= γ̇g(T ), or that

a line entering Ω, following the geodesic from g inside, comes out as a line that is not

parallel to how it entered. Since these two lines are not parallel, there exist infinitely

many lines that intersect the two original lines. So if the extension of γg outside of Γ

does not form parallel lines, then there are geodesics between at least one pair of points

on γg that are not γg. This implies that γg has conjugate points, which contradicts

the assumption that g is strongly geodesic minimizing. Thus, γ̇g(x) = γ̇g(y), or the

geodesic according to g enters and exits Ω in the same direction.

The basic idea of the proof is that we wish to create right triangles using the

geodesics of either e or g outside of Ω, and then use Lemma 2.1.2 to get inequalities

purely in terms of dg and de by stretching these right triangles out to infinity.

First we will show that dg(x, y) ≤ de(x, y). Recall that x, y are points on the

boundary of Ω. Recall the notation that γg : R→ Rm is the unit speed geodesic with

regards to g such that γg(0) = x and γg(T ) = y for some T and that γe : R→ Rm is

the unit speed geodesic with regards to e with γe(0) = x and γe(T
′) = y for some T ′.

Due to the fact that Ω is compact, there is some k such that both x+ kv and y + kv

are far enough outside of Ω that the line between them does not intersect Ω. By the

construction of γg, γg(−t) is a point a distance of t away from x, and γg(T + t) is a
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dg(x, y)

de(x, y)

Figure 2.1: An illustration of the argument that dg(x, y) ≤ de(x, y)

point a distance of t away from y.

We now have three points on both sides of γg that form right triangles. Namely

the triple x, x+kv and γg(−t), and the triple y, y+kv, and γg(T+t). Now, the length

of the geodesic from γg(−t) to γg(T + t) is t+dg(x, y)+ t. Let l−t = dg(x+kv, γg(−t))

and lt = dg(x + kv, γg(T + t)). Note that since the length of a line is translation

invariant, that the length of the line from x+ kv to y + kv is the same as the length

of the line from x to y, or de(x, y). Then the length of the curve given by the lines

from γg(−t) to x+ kv to y + kv to γg(T + t) is l−t + de(x+ y) + lt.

Since γg is a geodesic without conjugate points, and thus the unique distance

minimizing curve between any points on it, t + dg(x, y) + t ≤ lt + de(x, y) + l−t.

Moreover, dg(x, y) ≤ lt − t + de(x, y) + l−t − t. We have constructed it so that lt

represents the length of the hypotenuse of a right triangle with one side of length t,

and similarly l−t represents the length of the hypotenuse of a right triangle with one

side of length t. As we increase t, we can apply 2.1.2 to get that as t→∞, lt− t→ 0

and l−t − t→ 0.

Applying the limit as t approaches infinity to the construction above yields that

dg(x, y) ≤ de(x, y).

Next we will show that dg(x, y) ≥ de(x, y). This, again, will be done by cleverly
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dg(x, y)

de(x, y)

Figure 2.2: An illustration of the argument that de(x, y) ≤ dg(x, y)

constructing right triangles. Recall that x, y are points on the boundary of Ω. Recall

the notation that γg : R→ Rm is the unit speed geodesic with regards to g such that

γg(0) = x and γg(T ) = y for some T . There is some k such that x+vk and y+vk are

both far enough outside of Ω that the line between them does not intersect Ω. Let

αe : R→ Rm be the unit speed geodesic with regards to e such that αe(0) = x+vk and

αe(T
′′) = y+ vk for some T ′′. Since αe stays outside of Ω, that we could analogously

define it in terms of g. Note that αe(−t) is a distance of t away from x + kv and

αe(T
′′+ t) is a distance of t away from y+kv. Since the length of lines are translation

invariant, then the length of the line from x + kv to y + kv is equal to the length of

the line from x to y, or de(x + kv, y + kx) = de(x, y). Note that since g = e outside

Ω then the distances between points connected by geodesics that stay outside of Ω

are the same for e and g. The length along the geodesic from αe(−t) to αe(T
′′ + t)

according to g is then t+ Le(γe) + t.

Once again, we now have three points on both sides of γg that form right triangles.

Namely the triple x, x + kv and αe(−t), and the triple y, y + kv, and αe(T
′ + t).

Let r−t = de(x, αe(−t)) and r−t = de(y, αe(T
′′ + t)). Additionally, we note that since

g = e outside Ω then the distances between points are the same for e and g. Then

the length of the curve given by the line from αe(−t) to x, the geodesic according to
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g from x to y and the line from y to αe(−t) according to g is r−t + dg(x, y) + rt.

Since g = e outside of Ω, we have that γe is a geodesic of the metric g without

conjugate points and as such is the unique distance minimizing curve. Thus, t +

de(x, y) + t ≤ rt + dg(x, y) + r−t. Moreover, de(x, y) ≤ rt − t+ dg(x, y) + r−t − t. As

noted above, rt is the hypotenuse of a right triangle with one side of length t and

similarly, r−t is the hypotenuse of a right triangle with one side of length t. The

construction once again precisely fits the conditions for 2.1.2, and thus as t → ∞,

rt − t→ 0 and r−t − t→ 0. This yields that dg(x, y) ≥ de(x, y).

Thus, since dg(x, y) ≥ de(x, y) and dg(x, y) ≤ de(x, y), then dg(x, y) = de(x, y).

2.2 Flat on a compliment set in Pseduo-Riemannian

geometry

From the above, we now generalize. First we must define the new space we are

working under.

Let K be a smooth manifold of dimension k. Let g be a symmetric nondegenerate

smooth (0, 2) tensor field on K of constant index (

n︷ ︸︸ ︷
−, · · · ,−,

m︷ ︸︸ ︷
+, · · · ,+) where n +

m = k. Then g is called a Pseudo-Riemannian metric, (K, g) is called a Pseudo-

Riemannian (or semi-Riemannian) manifold, and (n,m) is called the signature of g.

We refer to [12, 14] for the background.

We quickly note that for much of the arguments presented the metrics need not

be smooth, but for ease and simplicity we work with smooth metrics.

When n = 0, or (K, g) is a Pseudo-Riemannanian manifold of signature (0, k), we

call g a Riemannian metric. This coincides with the more traditional definition of a

Riemannian metric discussed above. Much of the construction used in Riemannian

geometry carry over to Pseudo-Riemannian geometry.
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For a point z ∈ K, and a vector v ∈ TzK there are three cases for the sign of

g(v, v), each of which we refer to differently. If g(v, v) < 0 we call v time-like. If

g(v, v) > 0 we call v space-like. If g(v, v) = 0 we call v light-like. For any given TzK

we can split it into time-like, space-like and light-like subspaces. Sometimes light-like

vectors are called null vectors. This is language inherited from general relativity.

Geodesics on (K, g) can be defined in the usual way using the Levi-Civita connec-

tion. Alternatively, geodesics can defined using a Hamiltonian system, as described

in section 3.1. We can define the length of a C1(K) curve α : [0, T ]→ K as

∫ T

0

g(α̇(r), α̇(r))dr. (2.3)

This definition, however, has many flaws. Curves whose tangent vectors are all null

have a length of zero, as do some curves with mixed time-like and space-like tangent

vectors. Defining the distance between two points is thus very difficult. To try to

make sense of this, we will work in a setting where we can exert more control and

more easily separate out classes of curves we wish to work over.

Suppose that K = N ×M , dim(N) = n, dim(M) = m. Notate z = (zN , zM) =

(t, x) ∈ N ×M . Suppose that g is of the form

g =

−gN 0

0 gM


where for any z, gN(z) is a positive definite matrix on TtN and gM(z) is a positive

definite matrix on TxM , then we call g a separable Pseudo-Riemannian metric, and

(K, g) = (N ×M, g) a separable Pseudo-Riemannian manifold. The condition that

(K, g) is time-orientable is equivalent to the fact that K is separable.

The ability to explicitly describe behaviors on N versus on M is immensely helpful.

For a separable Pseudo-Riemannian manifold we refer to N as time and M as space.
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We can separate points into time and space components, or z = (zN , zM) ∈ K where

zN ∈ N and zM ∈ M . Similarly, we can split v = (vN , vM) ∈ TzK where vN ∈ TtN

and vM ∈ TxM .

Splitting in this way lets us more easily describe, and control, the types of geodesics.

In this setting time-like vectors are vectors where −gN(vN , vN) > gM(vM , vM), space-

like vectors are vectors where gN(vN , vN) < gM(vM , vM) and light-like vectors are

vectors where gN(vN , vN) = gM(vM , vM). Curves, including geodesics, with time-

like, space-like, or light-like tangent vectors we call time-like, space-like, or light-like

curves respectively. Since (K, g) is time orientable, this a complete classification of

all geodesics.

When n1 = 1, (M, g) is called a Lorentzian manifold, which is the arena for general

relativity theory. In this case, time-like geodesics represent trajectories of particles of

positive mass, see for example [27].

Similar to the Riemannian case, we can define a flat Pseudo-Riemannian metric

by the (0, 2) tensor field on N ×M = Rn+m by

e =

−In 0

0 Im


where Ik denotes the k × k identity matrix. When n = 1, the space is the familiar

Minkowski space and when n = 0 the space is the friendly Euclidean space. We

denote the flat metric by e and call any such (Rn+m, e) the flat Pseudo-Riemannian

space.

With all that setup, we can finally begin to narrow our focus down to the requisite

parts for the generalization of the argument in Section 2.1. We must generalize the

idea of a strongly geodesic minimizing manifold and Lemma 2.1.2. This lemma is

about a distance function on a class of geodesics. We will phrase our construction in

this setting. In application we will care about the integral that gives the length of
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curves which gives rise to a distance function, rather than the distance function itself.

Still, the theorem is complicated in notation but simple in argument to generalize in

terms of a distance function. First we will define a limited class of geodesics which

we will consider. In application, this will be a class like the time-like or light-like

geodesics.

Let g be a Pseudo-Riemannian metric with signature (n,m) on Rn+m. Let Γ ⊂

{(γ, γ̇) ∈ TRn+m|γ is a unit speed geodesic with respect to g on TRn+m} such that

for all z ∈ Rn+m there are infinitely many γ ∈ Γ that pass through z, and there is a

smooth curve in TzRn+m that is contained in Γ. In an abuse of notation, we refer to

Γ as the collection of points (z, v) where there is some geodesic γ ∈ Γ through z with

tangent vector v. In fact, we typically refer to Γ as that subset of TRn+m.

This set Γ represents the geodesics over which we work. Due to the drawbacks

of the length functional for C1 curves, it is necessary to limit the scope we wish to

consider. By forcing points to be connected only by a certain type of geodesic, we

can cover for the shortcomings of the length functional. This is further shown before

Corollary 2.2.3.

Suppose that g agrees with e outside a compact set Ω. Since g = e on the

complement of Ω, defining Γ with respect to g and with respect to e is identical

outside Γ. With this construction we are looking at a class of geodesics called Γ,

and we are trying to determine the relation of g and e on the boundary of Ω using

information about Γ.

We now have to construct an analogue for strongly geodesic minimizing. The easi-

est generalization is the alternative definition given. We define a Pseudo-Riemannian

metric g to be strongly geodesic minimizing on ∂Ω over Γ if Ω is simply connected

and for all x, y ∈ ∂Ω such there is a geodesic between x and y in Γ that geodesic has

no conjugate points (also referred to as cut points). The strength of this definition

will force time-like geodesics to be distance maximizing (or their negative distances
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to be distance minimizing).

Now, finally, we can introduce the equivalent to the distance function in the Rie-

mannian case. We limit the scope of our map to just the geodesics in Γ and put the

equivalent requirements from Lemma 2.1.2 on our new map.

Definition 2.2.1. We call a continuous map defined for the flat metric e and some

other metric g, notated by dg : Rn+m×Rn+m → R distance-like on Γ if it satisfies the

following conditions.

1. If x, y, a and b are points in Rn+m, such that a 6= b, x and y are connected by a

geodesic in Γ, and a and b are connected by a geodesic in Γ, then if we let αxy

be the extension of the parameterized geodesic according to g from [0, T ] to R,

then for all t greater than some number r dependent on x, y, a, b, γxy(−t) and a

are connected by a geodesic in Γ, γxy(T + t) and b are connected by a geodesic

Γ, and dg(γxy(−t), γxy(T + t)) ≤ dg(γxy(−t), a) + dg(a, b) + dg(b, γxy(T + t)).

2. If x, y are points in Rn+m such that in a neighborhood of the geodesic from x

to y according to e g = e, then de(x, y) = dg(x, y).

3. If e is the flat metric then for x, y, and z in Rn+m such that the geodesic from x to

y is in Γ, then the geodesic from x+z to y+z is in Γ and de(x, y) = de(x+z, y+z).

4. If e is the flat metric then for x, y and z in Rn, where γxy, γxz, and γyz are

geodesics in Γ such that γxy(0) = x, γxz(0) = x and e(γ̇xy(0), γ̇xz(0)) = 0, then

if we let zk = expx(kγ̇xz), limk→∞ de(y, zk)− de(γx,zk) = 0.

These conditions correspond exactly to the ones in Lemma 2.1.2. The first condi-

tion can be viewed as saying that when taking four points x, a, b, y that are connected

pairwise by different geodesics in Γ, the distance between x and y is less than the

sum of the distances between x and a, a and b, and b and y.
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The second condition essentially says that if g = e between two points x and y,

then their distances according to g and e are the same.

The third condition says that the distance between points according to the flat

metric is invariant under translation of those points.

The fourth conditions say the exact same thing as in Lemma 2.1.2. That is, if we

take a right triangle and stretch out one of the sides with a right angle, then with

respect to the flat metric the difference of the distance of the points that define the

hypotenuse and the distance of the points that define the stretched side goes to zero.

We also say that if −dg is distance-like, then dg is distance-like. However, we will

stick to the statements provided in the original definition for the proof. This set of

definitions serves to exactly generalize the conditions of Lemma 2.1.2, where dg serves

as our equivalent to a distance function.

With these assumptions the following theorem holds.

Theorem 2.2.2 (A.). If g is a Pseudo-Riemannian metric that is equal to e outside of

some Ω that is strongly geodesic minimizing on ∂Ω over some collection of geodesics

Γ, and dg is distance like over Γ, then for all x, y ∈ ∂Ω such that there exists a

geodesic in Γ between x and y, de(x, y) = dg(x, y).

To see the utility of this approach, we state some examples which are shown more

explicitly after the proof. If n = 0, Γ = TRm, and dg is the distance function defined

by the length of geodesics between points, then the construction exactly matches the

conditions for the theorem above.

In Anderson, Dahl and Howard [1], the setting they use is that n = 1, g is time

orientable, and Γ is the set of future (and past) pointing time-like vectors. In parallel

dg is the negative distance function defined by the length of geodesics between two

points.

Proof. 2.2.2
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Let x, y ∈ ∂Ω such that there exists a geodesic in Γ between x and y in Γ. Using

the same argument as in 2.1.1, we see that the geodesic from x to y with respect to

g must enter and leave Ω in the same direction. If the lines coming out were not

parallel, we would be able to connect the two new ends by a straight line that is away

from Ω. Thus, there is another geodesic connecting points along the geodesic from x

to y with respect to g. This contradicts the strongly geodesic minimizing condition.

Thus, the geodesic from x to y with respect to g must enter and leave Ω in the same

direction.

We now show that dg(x, y) ≤ de(x, y). Let γg : R → Rn+m be the unit speed

geodesic through from x to y with respect to g, where γg(0) = x, γg(T ) = y for some

T . For convenience, we will notate αa,b for a, b ∈ Rn+m to be the geodesic between

that a and b with respect to e. Let z be such that x+z and y+z are outside of Ω and

αx+z,y+z is an element of Γ that lays in the complement set of Ω. Additionally assume

that e(γ̇(0), α̇x,x+z(0)) = 0. This is equivalent to saying that αx,x+z is perpendicular

to γ. By condition 3 of Definition 2.2.1, de(x, y) = de(x + z, y + z). Note that since

γ̇g(0) = γ̇g(T ), such a z must exist. Recall that γ is an element of Γ. By the fact that

dg is distance-like, and then by condition 1 for all sufficiently large t,

dg(γ(−t), x) + dg(x, y) + dg(y, γ(T + t))

≤ dg(γ(−t), x+ z) + dg(x+ z, y + z) + dg(y + z, γ(T + t)). (2.4)

We note that by condition 4 of definition 2.2.1,

lim
t→∞

dg(γ(−t), x+ z)− dg(γ(−t), x) = lim
t→∞

dg(γ(T + t), y + z)− dg(γ(T + t), y) = 0.

(2.5)



24

Hence,

dg(x, y) ≤ dg(x+ z, y + z). (2.6)

As stated above, since g = e outside Ω, and by condition 2 of definition 2.2.1, dg(x+

z, y + z) = de(x+ z, y + z) = de(x, y). Thus,

dg(x, y) ≤ de(x, y). (2.7)

We now show that de(x, y) ≤ dg(x, y). Let z be as above. Let γe : R→ Rn+m be

the unit speed geodesic in Γ that passes through x+z to y+z such that γe(0) = x+z

and γe(T
′) = y + z for some T ′. Using a similar approach to before, we find that by

condition 1 in definition 2.2.1, for sufficiently large t,

dg(γe(−t), x+ z) + dg(x+ z, y + z) + dg(y + z, γe(T
′ + t))

≤ dg(γe(−t), x) + dg(x, y) + dg(y, γe(T + t)). (2.8)

Note that outside of Ω, g = e, so by condition 2 of definition 2.2.1, dg = de outside

of Ω, allowing us to phrase the above terms in terms of de with the sole exception of

dg(x, y). Using condition 4 of definition 2.2.1 and taking a limit we find that

de(x+ z, y + z) ≤ lim
t→∞

de(γe(−t), x)− de(γe(−t), x+ z) + dg(x, y)+

lim
t→∞

de(γe(T
′ + t), y)− de(γe(T ′ + t), y + z) (2.9)

Hence, de(x + z, y + z) ≤ dg(x, y). As stated above, since g = e outside Ω and by

conditions 2 and 3 of definition 2.2.1,

dg(x+ z, y + z) = de(x+ z, y + z) = de(x, y). (2.10)
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Thus,

de(x, y) ≤ dg(x, y). (2.11)

Combining these two inequalities together we get that

de(x, y) = dg(x, y). (2.12)

Theorem 2.2.2 is a very abstract result, and so we will narrow our focus down to

the case we will work with most.

First, we will restate the Riemannian result in this new framework. Suppose

n = 0, Γ is all geodesics, and dg(x, y) is the minimum length of C1 curves between x

and y.

As given in Lemma 2.1.2, this dg satisfies the conditions for the theorem.

In a more complicated example, and the one we will consider for the next two

chapters, let n ≥ 2 and Γ be all time-like geodesics. Define

dg(x, y) = − sup{
∫ T

0

g(α̇(r), α̇(r))dr | α : [0, T ]→ Rn+m is a time-like

piecewise C1 curve from x to y} (2.13)

This is, in truth, the negative of the standard definition for Pseudo-Riemannian

distance, just phrased oddly. It is known that the negative length of time-like

geodesics between two points is equal to this distance. If the geodesics of Γ uniquely

connect points, then geodesics are the unique minimizers for the above.

To see that dg is distance-like, we note that here dg(x, y) will be the negative

length of the geodesic between x and y. For the first condition, let γg be the unit
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length geodesic through x and y where γg(0) = x and γg(T ) = y for some T . Then

since the space of time-like vectors is open at all points in TK, and eventually γg

exits Ω, there will be some r such that for t ≥ r there is a time-like geodesic between

γg(−t) and a and a time-like geodesic between b and γg(T + t). The curve described

by the geodesics between γg(t) to a, a to b, then b to γg(T + t) has negative length

greater than or equal to the geodesic between x and y, and the negative length of

this curve is the three distances dg(γg(−t), a) + dg(a, b) + dg(b, γg(T + t).

Conditions 2 and 3 are direct consequences of the fact that distances are given

by the negative length of geodesics between points in Γ. To see the last condition

for Definition 2.2.1, it is easiest to separate Rn+m into Rn and Rm, then apply the

Pythagorean theorem on each.

Thus, Theorem 2.2.2 applies. To further push the result, we notice that if K is

some set where Ω ⊂ K and K is convex with respect to Euclidean geometry, then for

every x, y ∈ ∂K, de(x, y) = dg(x, y). This is due to the fact that K will be strongly

geodesic minimizing since Ω is strongly geodesic minimizing.

Define δ−TΩ = {(z, v) ∈ ∂Ω | v is an inward pointing unit vector}. Similarly,

define δ+TΩ = {(z, v) ∈ ∂Ω | v is an outward pointing unit vector}.

Next we will define the scattering map as a map Sg(z, v) : ∂−TΩ → ∂+TΩ to be

where the geodesic issued from z in the v direction according to g exits Ω and the

direction it exits in. Frequently, we call the scattering map the scattering relation. For

a certain class of manifolds, including simple manifolds, it is known that two metrics

have the same boundary distances if and only if they share the scattering map (see

[16] for precise details). In addition, we will refer to [12] to state that for a complete

manifold, there is a geodesic between any two points on that manifold. Meaning that

a complete manifold without conjugate points is strongly geodesic minimizing.

This gives the following corollary which will be the starting point for chapter 3.

Corollary 2.2.3 (A.). If g is a complete Pseudo-Riemannian metric of degree n ≥



27

1,m ≥ 1 that is equal to e outside of some Ω and has no conjugate points over

time-like geodesics, then, with dg defined as the length of the geodesic between two

points, for all x, y ∈ ∂Ω∪Ωc such that x and y are connected by a time-like geodesic,

de(x, y) = dg(x, y) and the scattering relation for e and g must be the same.

Proof. The first part of the statement was shown above. That is, for all x, y ∈ ∂Ω∪Ωc

such that x and y are connected by a time-like geodesic, de(x, y) = dg(x, y). Suppose

that for some (x, v) ∈ δ−TΩ, the scattering map according to g and e results in

different points (yg, v) 6= (ye, v) ∈ δ+TΩ. The proof of Theorem 2.2.2 already showed

that they must have the same v. Let γ be the geodesic from x in the v direction and

T be a number such that γ(T ) = yg. Then T is the distance from x to yg. Let ε be

a number such that the line from x to γ(T + ε) is time-like. This line is not equal to

γ outside of Ω by assumption. Then d(x, γ(T + ε) < d(x, yg) + d(yg, γ(T + ε). The

latter term is d(x, γ(T + ε), which is a contradiction. Thus e and g have the same

scattering relation.
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Chapter 3

From Boundary Rigidity to

Integral Geometry

3.1 Formulation of the problem

In this chapter, we reduce the boundary rigidity problem obtained in Chapter 2 to

an integral geometry problem, which we then solve in Chapter 4. We begin with the

formulation of the problem.

Let e be the flat Pseudo-Riemannian metric on Rn+m with signature (n,m), n ≥

2,m ≥ 1. Let Ω ⊂ Rn+m be a bounded open set with smooth boundary ∂Ω. We

let g be a smooth Pseudo-Riemannian metric on Rn+m such that g = e on Ωc. For

simplicity, we assume that g is separable and write g = (−gN , gM) where gN , gM

are positive definite matrices of degree n and m respectively. We remark that the

argument of this chapter also works for general Pseudo-Riemannian metrics as long as

the scattering relations can be reasonably defined. We are concerned with time-like

geodesics. In this setting, these geodesics can be parametrized by

γ(t) = expg(zN ,zM ) t(−vN , vM) (3.1)
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where expg denotes the exponential map for g, zN ∈ Rn, zM ∈ Rm, vM ∈ SzM
.
= {v ∈

TzMM : gM(v, v) = 1} and vN ∈ BzN
.
= {v ∈ TzNN : gN(v, v) > 1}.

Following from the setup in Chapter 2, we assume that the scattering relations

for e and g for time-like curves are the same. Because of the product structure of

the manifold, we can describe the scattering relation in more explicit terms. Without

loss of generality, we assume that Ω ⊂ Bn×Bm where Bn denotes the unit ball in Rn.

If we let Γ be the time-like geodesics, then we can parametrize time-like geodesics

through Bn × Bm by using boundary points and inward pointing vectors as in the

Riemannian case. We note that ∂(Bn × Bm) = ∂Bn × Bm ∪ Bn × ∂Bm ∪ ∂Bn × ∂Bm.

Let

Γ− = {(z, v) : z ∈ ∂(Bm × Bn) | v ∈ Tz is inward pointing, g(v, v) = −1},

and

Γ+ = {(z, v) : z ∈ ∂(Bm × Bn) | v ∈ Tz is outward pointing, g(v, v) = −1}.

The scattering relation for e can be seen as a map

Se : Γ− → Γ+

(zN , vN , zM , vM)→ (γ(t0), γ̇(t0))

(3.2)

where γ(t) is the unique time-like geodesic (3.1) with

γ(0) = (zN , zM), γ̇(0) = (vN , vM),

which exits Bn × Bm at t = t0.. If we assume that Bn × Bm is time-like geodesiccally

convex then scattering relation can be defined for g. Note that this is a slightly

stronger assumption than strongly geodesic maximizing. As in Section 2.2, we denote
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the scattering relation by Sg.

Now we introduce the geodesic ray transform for time-like geodesics. Consider

(Rn+m, g). We can again parametrize time-like geodesics as in equation (3.1). Equiv-

alently, given (zN , zM) ∈ Rn+m and (vN , vM) ∈ T(zN ,zM )Rn+m in Γ, we let γg be the

unique geodesic for g satisfying the geodesic equation ∇γ̇g(t)γ̇g(t) = 0 with initial

conditions

γg(0) = (zN , zM), γ̇g(0) = (vN , vM).

Let h be a sufficiently regular 2-tensor field on Rn+m supported in Ω. We define a

geodesic ray transform as

Igh(zN , zM , vN , vM) =

∫
R

n+m∑
j,k=1

hjk(γg(t))γ̇
j
g(t)γ̇

k
g (t)dt. (3.3)

For proving the main results of this thesis, it suffices to consider the transform for

scalar functions. However, the result for this chapter also applies to tensors. We

discuss this possibility in Section 3.4.

Explicitly, the goal of the chapter is to prove the following

Theorem 3.1.1 (A.). Assume Bn × Bm is time-like geodesically convex for g. If

Se = Sg as defined in equation (3.2), then Igh = 0 with h = g − e.

3.2 Derivation of the geodesic ray transform

To prove Theorem 3.1.1, we adapt the method in Stefanov and Uhlmann [19] to the

Pseudo-Riemannian setting. Since we know one of the metrics is constant, we can

simplify some of the calculations.

As stated in Chapter 2, we can define geodesics using the Levi-Civita connection.

However for the argument below it will be useful to describe geodesics in the tangent

bundle from the Hamiltonian point of view. The advantage to this method is that we
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have a clear relation between the vectors defining the geodesics and the metric. We

will take great care to keep universal coordinates for z = (zN , zM) ∈ Rn+m.

Define the Hamiltonian related to g to be

Hg(z, v) =
1

2
(
n+m∑
i,j=1

gij(z)vivj + 1)

where z ∈ Rn+m and v ∈ TzRn+m is a vector in Γ−. We remark that all time-like

vectors can be rescaled to satisfy this condition. The scaling will be convenient for

the analysis below, and it is the reason why we included +1 in the Hamiltonian. The

Hamiltonian for e is denoted by He.

Suppose that (z(0), v(0)) ∈ TRn+m with z(0) = (z
(0)
N , z

(0)
M ), v(0) = (v

(0)
N , v

(0)
M ). For

r ≥ 0, we let Xg(r, z
(0), v(0)) = (z(r), v(r)) be the solution to the Hamiltonian system

∂

∂r
zl =

n+m∑
j=1

gljvj,
∂

∂r
vl =

−1

2

n+m∑
i,j=1

∂gij

∂zl
vivj

z|r=0 = z(0), v|r=0 = v(0)

(3.4)

where l = 1, 2, · · · , n + m. It is wellknown that the projection of Xg to the base

manifold Rn+m gives exactly the unit speed parameterization of the time-like geodesic

issued from z(0) in the v(0) direction. The benefit to defining the geodesic in this

manner is that there is an explicit relation between the formulas defining the geodesic

and the metric. Of course, in the case of the flat metric e,

Xe(r, z
(0)
N , z

(0)
M , v

(0)
N , v

(0)
M ) = (z

(0)
N + rv

(0)
N , z

(0)
M + rv

(0)
M , v

(0)
N , v

(0)
M ). (3.5)

Proof of Theorem 3.1.1. By the assumption that Ω ⊂ Bn × Bm, we know that g = e

on the boundary of Bn × Bm. Let z(0) = (zN , zM), v(0) = (vN , vM) be such that

(zN , vN , zM , vM) ∈ Γ−. Then we consider the Hamiltonian flow for metrics g and e

with initial condition X(0) = (z(0), v(0)), denoted by Xg(r,X
(0)), Xe(r,X

(0)). Accord-
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ing to the assumption that Sg = Se, we know that the flows exit Bn×Bm at the same

time r0 > 0 and

Xg(r0, X
(0)) = Xe(r0, X

(0)). (3.6)

We define the function central to this proof as

F (r) := Xe(r0 − r,Xg(r,X
(0))). (3.7)

Because of (3.6), we know that F (0) = F (r0). Here, we remark that the z component

of F (r) may be outside of Bn × Bm for r ∈ [0, r0]. However, the Hamiltonian flows

Xg, Xe are well-defined even for non-time-like geodesics on Rn×Rm, so this is not an

issue. We find that ∫ r0

0

F ′(r)dr = 0. (3.8)

To compute the derivative, we let

Vg = (∂Hg/∂v,−∂Hg/∂z)

be the Hamilton vector field for g and Ve for e. Similarly to the calculation in (2.8)

of [19], we have

F ′(r) = −Ve(Xe(r0−r,Xg(r,X
(0))))+

∂Xe

∂X(0)
(r0−r,Xg(r,X

(0)))Vg(Xg(r,X
(0))) (3.9)

The first term on the right hand side can be transformed by using the following

observation. For any R > 0,

0 =
d

dr
|r=0X(R− r,X(r,X(0)))

= −V (X(R,X(0))) +
∂X

∂X(0)
(R,X(0))V (X(0))

(3.10)

in which X, V can be either Xg, Vg or Xe, Ve as appropriate. Setting R = r0 − r and
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applying (3.10) to Xe, Ve, we get

Ve(Xe(r0 − r,Xg(r,X
(0)))) =

∂Xe

∂X(0)
(r0 − r,Xg(r,X

(0)))Ve(Xg(r,X
(0))). (3.11)

Combining (3.8), (3.9) and (3.11), we arrive at

∫ r0

0

∂Xe

∂X(0)
(r0 − r,Xg(r,X

(0)))(Vg − Ve)(Xg(r,X
(0)))dr = 0. (3.12)

By the fact that e is a constant metric, we can see from the expression of the

Hamilton vector field (3.4) that

Vg − Ve = (
n+m∑
j=1

gljvj,−
1

2

n+m∑
i,j=1

∂gij

∂zl
vivj).

Also, from (3.5), we see that ∂Xe/∂X
(0) is the identity matrix. Thus (3.12) can be

simplified to ∫ r0

0

(Vg − Ve)(Xg(r,X
(0)))dr = 0 (3.13)

and the last (n+m) component gives for l = 1, 2, · · · , n+m

∫ r0

0

−1

2

n+m∑
i,j=1

∂gij(γg(r))

∂zl
vi(γg(r))vj(γg(r))dr = 0 (3.14)

where γg(r) is the projection of Xg to the base manifold, or in other words, the

geodesic from z(0) in direction v(0). This completes the proof of Theorem 3.1.1.

Remark 3.2.1. If we switch the role of g and e in the proof, we would get an integral

transform similar to (3.14) for the flat metric e but with a weight. The flow structure

for e is well understood. For small metric perturbations studied in [19], the structure

of the weight can be analyzed. However, in general, the weight is quite complicated.

This is the reason that we choose to derive (3.14).
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For metrics that are conformal to e, we can reduce (3.14) to a transform for scalar

functions. Let φ be a positive smooth function on Rn ×Rm and assume that g = φe.

Then we find that for l = 1, 2, · · · , n+m,

∂gij

∂zl
vivj =

n+m∑
i,j=1

∂(φ(z)e)ij

∂zl
vivj (3.15)

=
n+m∑
i,j=1

∂φ(z)

∂zl
eijvivj + φ(z)

n+m∑
i,j=1

∂eij

∂zl
vivj (3.16)

=
n+m∑
i,j=1

∂φ(z)

∂zl
eijvivj (3.17)

=
∂φ(z)

∂zl
φ(z)−1 (3.18)

where in the last line, we used that g(v, v) = −1 so φe(v, v) = −1. Thus (3.14)

becomes (ignoring the scalar factor −1/2)

0 =

∫ r0

0

∂gij

∂zl
vivjdr =

∫ r0

0

∂φ(γg(r))

∂zl
φ(γg(r))

−1dr (3.19)

for l = 1, 2, · · · , n+m.

3.3 Proof of the Hopf-type theorem

At this point, we can prove some Hopf-type theorems in Pseudo-Riemannian geom-

etry, assuming that the geodesic ray transform Ig is injective. More precisely, we

consider the transform on scalar functions. Let f be a smooth function on Rn × Rm

supported in Ω. Let γg be any time-like geodesic in (Rn × Rm, g). The injectivity

means that if

Igf(γg) =

∫
f(γg(r))dr = 0,

then f = 0. We will prove in Chapter 4 that this is true for generic separable metrics.
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Theorem 3.3.1. Let g be a smooth Pseudo-Riemannian metric on Rn × Rm, n ≥

2,m ≥ 1 conformal to e and g = e outside of a bounded open set Ω. Suppose that

1. There are no conjugate points along any time-like geodesic.

2. The metric g is geodesically convex on Ω

3. The geodesic ray transform Ig along time-like curves is injective on scalar func-

tions.

Then g = e.

Proof. Let g = φe with φ > 0 a smooth function. First, from Chapter 2, we can

derive from the assumptions 1 and 2 that Se = Sg. Then Theorem 3.1.1 implies that

for l = 1, 2, · · · , n+m ∫
∂φ(γg(r))

∂zl
φ(γg(r))

−1dr = 0

for any time-like geodesic γg for (Rn × Rm, g). By assumption 3, we know that

∂φ(z)

∂zl
φ(z)−1 = 0, l = 1, 2, · · · , n+m.

Thus, ∂φ(z)
∂zl

= 0. Because φ = 1 on Ωc, we deduce that φ = 1 is a constant function

on Rn × Rm. Thus g = e.

3.4 Remarks on tensor problems

From the proof of Theorem 3.1.1, we can see that the argument works for a much

larger class of Pseudo-Riemannian metrics, not necessarily just separable metrics. If

we can show that the geodesic ray transform Igh defined in (3.3) is “injective”, then

it is possible to get a Hopf-type theorem for g. However, we expect that the geodesic

ray transforms acting on 2-tensors has a kernel. So the injectivity only makes sense

modulo the kernel.
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We explain the issue in the Riemannian setting which is somewhat well-understood.

We refer to the book [18] of Sharafutidnov for details. Let Ω be a bounded domain

of Rm with smooth boundary. For ease, we let g be a simple Riemannian metric on

Ω. That is, Ω is strictly convex with respect to g, and for any x ∈ Ω the exponential

map is a diffeomorphism. Given a symmetric 2-tensor f = fij, we define the 1-tensor

δsf , called the divergence of f by

(δsf)i = gjk∇kfij

where ∇i are the covariant derivatives for g. Given a 1-tensor field v, we denote by

dsv the 2-tensor called the symmetric differential of v

(dsv)ij =
1

2
(∇ivj +∇jvi).

It is known that for symmetric 2-tensor field f in L2(Ω), we can decompose

f = f s + dsv (3.20)

such that

1. f s ∈ L2(Ω) is solenoidal, that is δsf s = 0.

2. v ∈ H1
0 (Ω) so v = 0 on ∂Ω.

Now we consider the geodesic ray transform defined by

Igf(γ) =

∫
fij(γ(t))γ̇i(t)γ̇j(t)dt

where γ is any geodesic on Ω. We can easily check that if f = dsv for some v ∈ H1
0 (Ω),

then Ig(f) = 0 so dsv belongs to the kernel or null space of Ig. It is generally believed

that this is the full null space. In the literature, this is often called the s-injectivity



37

of Ig. For example, Sharafutidnov proved that this is true for metrics with specific

and explicit upper bounds of the curvature, see [18].

In the Pseudo-Riemannian setting, the kernel problem is more complicated. For

example, let’s consider a Lorentzian metric g on R1+n, n ≥ 1. The geodesic ray

transform along light-like geodesics, also called the light ray transform, must have

conformal metrics φg in the kernel when acting on 2-tensors. This can be verified

easily via

Ig(φg)(γ) =

∫
φgij γ̇

i(t)γ̇j(t)dt = 0

because γ is a null geodesic. The full characterization of the kernel has been estab-

lished for some cases, see e.g. [4]. For the geodesic ray transform along time-like

geodesics as we study in this thesis, conformal metrics will not be in the kernel. We

expect that a decomposition similar to (3.20) holds, but we will not be going much

further with this issue. We only wish to emphasize its role in proving the Hopf type

theorem in our approach.
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Chapter 4

Analysis of Geodesic Ray

Transforms

In this chapter, we study the mapping properties of geodesic ray transforms for time-

like geodesics. In particular, we let g = (−gN , gM) be a separable metric on Rn×Rm,

and we analyze

Igf(γg) =

∫
f(γg(t))dt

where γg is a time-like geodesic and f is a scalar function. We are interested in

determining the injectivity of the transform and finding stability estimates. For a

somewhat similar problem, namely the integral transform for light-like geodesics,

Ilmavirta [10] investigated the injectivity question by using the Pestov energy method.

It is well known (see for example [18]) that the method requires certain curvature

conditions, so in the setting of [10], even though the metric is product type, there

are curvature constraints on gN and gM . Besides this, there are requirements on the

signature. We also remark that Pestov’s energy method can yield stability estimate

even though this is not done in [10]. The stability estimates are often referred to as

conditional type because some a priori bound on f is needed.

In this chapter, we will take another approach similar to [20] for the Riemannian
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problem. The method does not require any curvature condition, and it produces

injectivity of the ray transform for metrics in some open and dense subset of simple

metrics. This type of injectivity result is often referred to as generic injectivity. The

method relies on the analysis of the normal operator of the ray transform. Under

proper signature conditions, namely n ≥ 2,m ≥ 1, we can show that the normal

operator for Ig is an elliptic pseudo-differential operator. Besides the injectivity, the

method allows us to obtain stability estimates in the conventional form.

In this chapter, we start with a brief summary of the tools from microlocal analysis

in Section 4.1. Then we adapt the method from [22] to the Pseudo-Riemannian

setting. Roughly speaking, the method has two components. The first one is the

injectivity for analytic metrics. This only relies on a property of the geodesic ray

transform near a fixed geodesic, which applies to our setting with minor changes.

We discuss it in Section 4.4. The second component is the microlocal analysis of

the normal operator. Instead of trying to adapt the results from [22], we calculate

the Schwartz kernel and show directly that the normal operators are elliptic pseudo-

differential operators under the signature condition n ≥ 2. These are done in Sections

4.2 and 4.3. Before we delve into the analysis, we elaborate on the necessity of the

signature condition.

It has been known for a long time that the inversion of the geodesic ray transform

on Riemannian manifolds with dimension ≥ 3 is an over-determined problem, see for

instance [18]. Thus, it is possible to study the inversion problem with less geodesics.

For example, in the seminal work [26], the local geodesic ray transform was studied

from this point of view. In an interesting paper [22], Stefanov and Uhlmann stud-

ied the tensor tomography problem on non-simple Riemannian manifolds. Roughly

speaking, they showed that for any (x, ξ) ∈ T ∗X for some Riemannian manifold

(X, h), as long as there is a geodesic curve normal to ξ at x, the normal operator of

the geodesic ray transform will be elliptic (as a pseudo-differential operator) at (x, ξ).
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We expect the same principle to be true for geodesic ray transform in Pseudo-

Riemannian geometry. Now let’s consider the flat metric e on N × M with N =

Rn,M = Rm. Suppose ζ is a non-zero co-vector at z = (t, x). Then we can split

ζ = (τ, ξ) so that τ ∈ T ∗t N and ξ ∈ T ∗xM . We claim that there is time-like vector v at

z such that the Euclidean inner product ζ · v = 0. In fact, we can write v = (vN , vM)

with vN ∈ TtN, vM ∈ TxM . We know that −|vN |+ |vM | < 0. We also have

τ · vN + ξ · vM = 0. (4.1)

If τ = 0, this is clearly true. Suppose τ 6= 0. Without loss of generality, we write

τ = (τ1, τ2, · · · , τn) and assume that (τ1, τ2) 6= 0. Here, we used n ≥ 2. Then we can

choose (a1, a2) 6= 0 such that (a1, a2) · (τ1, τ2) = 0. With vN = (a1, a2, 0, · · · , 0), we

see that (4.1) is satisfied with any vM . By rescaling vN , we can arrange |vM | < |vN |.

Thus if n ≥ 2, we can easily find vN , vM to satisfy |vM | < |vN | so v = (vN , vM) is

a time-like vector. It is here that the importance of having signature (n,m) with

n ≥ 2,m ≥ 1 becomes clear. This allows us to have the freedom to have time-like

covectors normal to all other covectors. Following [10], it seems that this is a crucial

condition for such X-ray transforms to be injective.

4.1 Basics of pseudo-differential operators

We collect some facts about pseudo-differential operators that we will use in the

following sections. We also take this opportunity to introduce the notation. We refer

the readers to [5, 9, 24] for the detailed discussions on the general topics of microlocal

analysis.

We start with symbols. Let X ⊂ Rn be an open set and m ∈ R, N ∈ Z+.

Definition 4.1.1. Sm(X × RN) is the space of all a ∈ C∞(X × RN) such that for

all compact set K of X and all multi-index α = (α1, · · · , αn) ∈ Nn and multi-index
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β ∈ NN , there is a constant C = CK,α,β(a) such that

|∂αx∂
β
θ a(x, θ)| ≤ C(1 + |θ|)m−|β|, (x, θ) ∈ K × RN .

We say Sm is the space of symbols of order m.

The space of symbols of order −∞ is useful. This is defined as

S−∞(X × RN) = {a ∈ C∞(X × RN) : for every compact K ⊂ X,

all multi-index α ∈ Nn, multi-index β ∈ NN and M ∈ R,

there is a constant C = CK,α,β,M(a) such that

|∂αx∂
β
θ a(x, θ)| ≤ C(1 + |θ|)−M , (x, θ) ∈ K × RN}.

In fact, S−∞(X × RN) =
⋂
m∈R S

m(X × RN).

Definition 4.1.2. A pseudo-differential operator A : C∞0 (X)→ D′(X) is of the form

Au(x) =
1

(2π)n

∫ ∫
ei(x−y)θa(x, θ)u(y)dydθ, u ∈ C∞0 (X)

where a ∈ Sm(X × Rn) is called the complete symbol of A. We also write a = σA.

Here D′(X) denotes the set of distributions on X. We denote by Ψm(X) the space of

pseudo-differential operators of order ≤ m.

We recall a fact from distribution theory. If X ⊂ RnX , Y ⊂ RnY are open sets and

A : C∞0 (Y ) → D′(X) is continuous and linear with distributional kernel KA(x, y) ∈

D′(X × Y ), then A can be extended to a continuous operator E ′(Y ) → C∞(X)

equivalent to KA ∈ C∞(X × Y ). Such operators A are called smoothing. We let

Ψ−∞(X) be the set of operators with a ∈ S−∞(X × Rn). One can verify that such

operators have smooth kernels and Ψ−∞(X) is the space of smoothing operators

E ′(X)→ C∞(X).
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Let X ⊂ RnX , Y ⊂ RnY be open sets. If C is a closed subset of X × Y , we say C

is proper if the two projections

πX : (x, y) ∈ C → X,

πY : (x, y) ∈ C → Y

are proper. This means the pre-image of every compact set of X or Y respectively is

compact. An operator A ∈ Ψm(X) is called properly supported if supp(KA) ⊂ X×X

is proper. It is a useful fact that any A ∈ Ψm(X) can be decomposed as A = A′+A′′

where A′ ∈ Ψm(X) is properly supported and A′′ ∈ Ψ−∞(X).

Next, we discuss elliptic operators.

Definition 4.1.3. If A ∈ Ψm(X), we define the principal symbol of A as the image

of the complete symbol σA in Sm(X × Rn)/Sm−1(X × Rn).

Let P ∈ Ψm(X). We say P is elliptic at (x0, ξ0) ∈ X × Rn\{0} if there is a conic

neighborhood V of (x0, ξ0) and C > 0 such that

|σP (x, ξ)| ≥ 1

C
(1 + |ξ|)m

for (x, ξ) ∈ V and |ξ| ≥ C. We say P is elliptic at x0 ∈ X if P is elliptic at (x0, ξ0)

for every ξ0 ∈ Rn\{0}. We say P is elliptic on Y ⊂ X if P is elliptic for every x0 ∈ Y.

A key result for elliptic operator is the following.

Theorem 4.1.4. If P ∈ Ψm(X) is elliptic, then there exists Q ∈ Ψ−m(X) properly

supported such that

P ◦Q = Q ◦ P = I mod Ψ−∞.

Here, I denotes the identity operator. Also, Q is unique modulo Ψ−∞(X).

Finally, we consider mapping properties of pseudo-differential operators on Sobolev
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spaces. We recall that Hs(Rn) is the space of tempered distributions u ∈ S ′(Rn) such

that û(ξ) is locally square integrable and

‖u‖2Hs(Rn) = ‖u‖2s =
1

2π

∫
|û(ξ)|2(1 + |ξ|2)sdξ <∞.

It is well known that Hs(Rn) is a Hilbert space. For s ∈ N, Hs(Rn) is also the space

of u ∈ L2(Rn) such that Dαu ∈ L2(Rn) for |α| ≤ s. Then we define

Hs
loc(X) = {u ∈ D′(X) : φu ∈ Hs(Rn),∀φ ∈ C∞0 (X)}.

Theorem 4.1.5. Let A ∈ Ψm(X) be properly supported. Then A : Hs
loc(X) →

Hs−m
loc (X) is continuous for every s ∈ R. If A is elliptic, then for every u ∈ D′(X), we

have u ∈ Hs
loc(X) if and only if Au ∈ Hs−m

loc (X).

4.2 The normal operator for the flat metric

In this section, we use the flat Pseudo-Riemannian metrics to demonstrate the struc-

ture of the normal operator. Consider R2+2 with metric

g =



−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


.

We use z = (t, x) = (t1, t2, x1, x2) as coordinates for R2+2. At any (t, x) ∈ R2, we

consider time-like vectors of the form (v, w) where v ∈ S1, w ∈ B1 where B1 = {v ∈

R2 : |v| < 1}. It is easy to see that all time-like vectors at (t, x) are scalar multiples
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of such vectors. Then all time-like geodesics passing through (t, x) can be written as

γt,x,v,w(s) = (t+ sv, x+ sw), s ∈ R.

Note that there is some redundancy in this parametrization. In this case, for f ∈

C∞0 (R2+2), the time-like ray transform can be defined as

Igf(t, x, v, w) =

∫
R
f(t+ sv, x+ sw)ds,

which is a smooth function on R4 × S1 × B1. Note that recovery of f (which is a

function of four variables) from Igf (which is a function of seven variables) is formally

over-determined. To avoid some singularities in the analysis, we introduce a smooth

weight function in Ig. Let χ ∈ C∞(R) be a cut-off function such that χ(τ) = 1 for

|τ | > 3/2 and χ(τ) = 0 for |τ | < 1. Then by abusing the notation, we consider

Igf(t, x, v, w) =

∫
R
χ(|v|/|w|)f(t+ sv, x+ sw)ds

Note that χ(|v|/|w|) is supported in |v|/|w| > 1, which is the set of time-like vectors.

But it vanishes at the boundary |v| = |w|. We also assume that f is compactly

supported in an open set Ω ⊂ R4.

Lemma 4.2.1. Let I∗g be the L2 adjoint of Ig. Then for (t′, x′) ∈ R2 × R2

I∗gh(t′, x′) =

∫
B1

∫
S1

∫
R
χ(|v|/|w|)h(t′ − sv, x′ − sw, v, w)dsdvdw.
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Proof. We start with the L2 pairing

〈I∗gh, f〉 = 〈h, Igf〉

=

∫
R2

∫
B1

∫
S1

∫
R

∫
R2

h(t, x, v, w)χ(|v|/|w|)f(t+ sv, x+ sw)dtdsdvdwdx

=

∫
R2

∫
B1

∫
S1

∫
R

∫
R2

h(t− sv, x− sw, v, w)χ(|v|/|w|)f(t, x)dtdsdvdwdx.

Lemma 4.2.2. Let Ng = I∗g Ig be the normal operator. Then the Schwartz kernel of

Ng is given by

K(t, x, t′, x′) = Cχ(
|t− t′|
|x− x′|

)2
1

|x− x′|3

where C > 0 depends on Ω. Additionally, Ng ∈ Ψ−1(R2+2) is elliptic.

Proof. We start from

I∗g Igf(t′, x′) =

∫
R

∫
B1

∫
S1
χ(|v|/|w|)Igf(t′ − sv, x′ − sw, v, w)dsdvdw

=

∫
R

∫
R

∫
B1

∫
S1
χ(|v|/|w|)2f(t′ − sv + rv, x′ − sw + rw)drdsdvdw.

We split the integral to r − s ≥ 0 and r − s ≤ 0. For the first case, we let

α = r − s ≥ 0 and for the second case, we let β = s− r ≥ 0. We have

I∗g Igf(t′, x′) = N+f(t′, x′) +N−f(t′, x′)

where

N+f(t′, x′) = C

∫ ∞
0

∫
B1

∫
S1
χ(|v|/|w|)2f(t′ + αv, x′ + αw)dαdvdw,

N−f(t′, x′) = C

∫ ∞
0

∫
B1

∫
S1
χ(|v|/|w|)2f(t′ + βv, x′ + βw)dβdvdw.
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Here, we used that the integration in s happens on a finite interval depending on Ω.

Let t′′ = t′ + αt. We get

N+(t′, x′) = C

∫
B1

∫
R2

χ(
|t′′ − t′|
|w|

)f(t′′, x′ + |t′′ − t′|w)
1

|t′′ − t′|
dt′′dw.

Then we let x′′ = x′ + |t′′ − t′|w and see that w = (x′′ − x′)/|t′′ − t′|. We get

N+(t′, x′) = C

∫
R2

∫
R2

χ(
|t′′ − t′|
|x′′ − x′|

)f(t′′, x′′)
1

|t′′ − t′|3
dt′′dx′′. (4.2)

The calculation for N− is the same. So we get

K(t′, x′, t, x) = Cχ(
|t− t′|
|x− x′|

)2
1

|t− t′|3
.

We observe that the kernel is only singular at x = x′, t = t′.Moreover, we can prove

that Ng is a pseudo-differential operator. First, we observe that K is a convolution

kernel. It suffices to compute the Fourier transform of

G(t, x) = χ(
|t|
|x|

)2
1

|t|3
.

Now we define

F (t, x) =
1

(|t|2 + |x|2)3/2
,

and we observe that G(t, x) = F (t, x)h(t, x) where h ∈ C∞ and h(0, 0) = 1. Thus for

|t|+ |x| sufficiently small, we have the expansion

G(t, x) =
1

(|t|2 + |x|2)3/2
(1 +

∑
|γ|≥1

aγ((t, x)− 0)γ)

where γ ∈ Z4 is a multi-index and aγ ∈ R. Note that each term in the expansion can

be regarded as homogeneous distributions of degree −3 + |γ|, see for example Section
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3.2 of [8]. The Fourier transforms of such distributions are homogeneous of degree

−4 + 3− |γ| = −1− |γ|. This can also be found in Section 7.1 of [8]. For τ, ξ ∈ R2,

the Fourier transform of G(t, x) have the following expansion

Ĝ(τ, ξ) ∼
∑
j≥−1

bj(τ, ξ),

where bj is homogeneous of degree −j and b−1 6= 0. This proves that Ng is an

elliptic pseudo-differential operator of order −1. In fact, this is an operator of the

classical type, namely the symbol has asymptotic expansion in terms of homogeneous

symbols.

4.3 The normal operator for general metrics

For this section, we assume that g is a smooth Pseudo-Riemannian metric on N ×

M,N = Rn,M = Rm of the form

g =

−gN(z) 0

0 gM(z)

 (4.3)

where z ∈ Rn+m. Also, we assume that for each z, gN , gM are positive definite

on TzN, TzM. Note that g is a separable Pseudo-Riemannian metric. We make the

following geometric assumptions:

1. Time-like geodesics for g are non-trapping on Ω.

2. There are no conjugate points along time-like geodesics.

We remark that in Lorentzian geometry, it is known that under the globally hyper-

bolicity condition that any Lorentzian metric can be written in the form of (4.3).

This might be true for Pseudo-Riemannian metrics with general signatures, but the

relevant notions of hyperbolicity are only studied recently in [25].
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We again use z = (t, x), t ∈ Rn, x ∈ Rm as coordinates. At any z, we consider

time-like vectors ζ at z in the following set

ζ ∈ SzRn+m = {ζ : g(ζ, ζ) = −1}.

Note that all time-like vectors can be rescaled to a vector in SzRn+m. Then we use

these vectors to parametrize time-like geodesics passing through z as

γgz,ζ(s) = expgz(sζ), s ∈ R (4.4)

where expg denotes the exponential map for g.

As in the flat metric case, we need to introduce a cut-off function, but this time it

varies as the base points changes. Let z ∈ Rn+m and ζ = (v, w), v ∈ TtRn, w ∈ TxRm.

Let χ be the cut-off function we used before. We define

χg(z, ζ) = χ(gN(v, v)/gM(w,w)).

Again, the role of χg is to stay away from the boundary of time-like vectors. Now we

consider the time-like geodesic ray transform as

Igf(z, ζ) =

∫
R
χg(z, ζ)f(γgz,ζ(s))ds. (4.5)

We are ready to analyze the normal operator. Below, to choose the measure on

SRn+m, we first note that detg = (−1)n det gN det gM . We will use the restriction of

the measure
√

(−1)ndetgdzdζ on SRn+m, denoted by dµ(z, ζ) in the following. Note

that the measure corresponds to the measure for the Riemannian metric g̃ = (gN , gM)

on Rn+m. This is convenient for the following reason. Consider the Hamiltonian

Hg(z, ζ) = (g(ζ, ζ) + 1)/2. Let Φg(s) be the corresponding flow. On the energy level
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Hg = 0, we know that the measure is preserved as in the Riemannian case.

Lemma 4.3.1. Let Ng = I∗g Ig be the normal operator, and n ≥ 2,m ≥ 1. Then

Ng ∈ Ψ−1(Rn+m) is elliptic.

Proof. Let I∗g be the L2 adjoint of Ig in (4.5). We first compute the expression of I∗g

from the L2 pairing

〈I∗gh, f〉 = 〈h, Igf〉 =

∫
SRn+m

∫
R
h(z, ζ)χg(z, ζ)f(expgz(sζ))dsdµ(z, ζ). (4.6)

By the assumption that there is no conjugate points along any time-like curves, and we

know that the exponential map is a local diffeomorphism. It is convenient to use the

Hamiltonian flow Φg(s) and write (z′, ζ ′) = Φg(s)(z, ζ). Then (z, ζ) = Φg(−s)(z′, ζ ′).

Now making a change of variable in (4.6), we get

〈I∗gh, f〉 =

∫
SRn+m

∫
R
h(expgz′(−sζ

′))χg(Φg(−s)(z′, ζ ′))f(z′)dsdµ(z′, ζ ′).

Therefore, for z′ ∈ Rn × Rm

I∗gh(z′) =

∫
Sz′Rn+m

∫
R
h(expgz′(−sζ

′))χg(Φg(−s)(z′, ζ ′))dsdµ(z′, ζ ′).

Next, we compute

I∗g Igf(z′) =

∫
Sz′Rn+m

∫
R
Igf(expgz′(−sζ

′))χg(Φg(−s)(z′, ζ ′))dsdµ(z′, ζ ′)

=

∫
R

∫
Sz′Rn+m

∫
R
f(expgz′((r − s)ζ

′))χg(Φg(−s)(z′, ζ ′))2dsdµ(z′, ζ ′)dr

We split the integral to r − s ≥ 0 and r − s ≤ 0. For the first case, we let
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α = r − s ≥ 0 and for the second case, we let β = s− r ≥ 0. We have

I∗g Igf(z′) = N+f(z′) +N−f(z′)

where

N+f(z′) =

∫
R

∫
Sz′Rn+m

∫
R
f(expgz′(αζ

′))χg(Φg(α− r)(z′, ζ ′))2dαdµ(z′, ζ ′)dr,

N−f(z′) =

∫
R

∫
Sz′Rn+m

∫
R
f(expgz′(−βζ

′))χg(Φg(−β − r)(z′, ζ ′))2dβdµ(z′, ζ ′)dr.

At this point, one can compute the kernel explicitly. We will not carry out the

calculation. Instead, we make use of our knowledge of the flat case. We make the

following observation and we use N+ for example. First, for z′ away from z, the kernel

of N+ is smooth. Let z = expgz′(αζ
′). If ζ ′ is time-like, we know that α = distg(z, z′).

Here distg is the Pseudo-Riemannian distance which is the negative of the length of

the time-like geodesic from z′ to z. Also, note that αn+m−1dαdµ(z′, ζ ′) = dz. We

thus can write

N+f(z′) =

∫
Rn+m

∫
R
f(z)χg(Φg(distg(z, z′)− r)(z′, ζ ′))2(distg(z, z′))−n−m+1dzdr

=

∫
Rn+m

f(z)χ̃g(z, z′)(distg(z, z′))−n−m+1dz

where

χ̃g(z, z′) =

∫
R
χg(Φg(distg(z, z′)− r)(z′, ζ ′))2dr,

and we need to keep in mind that we only consider f supported in Ω so the above

integral makes sense. So for z′ away from z, the kernel is smooth. If ζ ′ is not time-

like, then the kernel is also smooth because of the cut off. Thus, the analysis of the

kernel can be reduced to the case when z, z′ are close. Now we can work in a small

neighborhood of z such that g is a small perturbation of the constant metric equal

to g(z) in that neighborhood. The calculation in Section 4.2 can be slightly modified
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(for general signature and small perturbation) to show that the kernel has the same

structure as (4.2). This argument shows that Ng is also an elliptic pseudo-differential

operator of order −1.

4.4 The generic injectivity and stability

We start with the injectivity for analytic metrics. Note that in this chapter, we have

assumed that g is a separable Pseudo-Riemannian metric on Rn+m, but we do not

assume g − e is compactly supported. Instead, we assume that the scalar function f

is supported in a fixed bounded open set Ω. Thus, the geodesic ray transform Igf(γ)

is well-defined, and there is no issue working with analytic metrics on Rn+m.

We first prove the following.

Proposition 4.4.1. Let g be a separable analytic metric on Rn+m, n,m ≥ 1. Let

f ∈ L2 be supported in Ω. If Igf(γ) = 0 for all time-like geodesics, then f is analytic

on Rn+m. Hence f = 0.

Proof. This result can be established by using the results in [22]. Below, we use

WFA(f) to denote the analytic wave front set of f . We refer to [24] for the discussion

on analytic microlocal analysis.

In Proposition 2 of [22], it is proved that the local geodesic ray transform de-

termines the analytic wave front set. We can apply it to time-like geodesic and

scalar functions as follows. Let (z0, ζ
0) ∈ T ∗(Rn+m)\0, and let γ0 be a fixed time-like

geodesic through z0 normal to ζ0. Let Igf(γ) = 0 for f ∈ L2(Rn+m) and all γ close

to γ0. Note that because γ0 is a time-like geodesic, γ are also time-like if they are

sufficiently close to γ0. Under the above assumptions, we have

(z0, ζ
0) /∈WFA(f).
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Because we know Igf(γ) = 0 for all time-like geodesics, we can conclude that f is

analytic on Rn+m. Also, because f is compactly supported, f = 0.

Now we can use Proposition 4.4.1 and the stability result to prove the generic

injectivity result.

Theorem 4.4.2. Let Ω be a bounded open set of Rn+m. Then there exists an

open dense set of Ck separable Pseudo-Riemannian metrics g on Rn+m such that the

geodesic ray transform Ig for time-like geodesics is injective on C∞0 (Ω). That is for

any f ∈ C∞0 (Ω), if Igf(γ) = 0 for all time-like geodesics, then f = 0. Moreover, there

exists C > 0 such that the following stability holds

‖f‖Hs ≤ C‖Ngf‖Hs+1 .

Proof. Let g0 be a separable analytic Pseudo-Riemannian metric on Rn+m. We know

that Ig0 is injective on C∞0 (Ω) from Proposition 4.4.1.

Now let g be a smooth separable Pseudo-Riemannian metric on Rn+m. Consider Ig

acting on C∞0 (Ω). We know that Ng = I∗g Ig is an elliptic pseudo-differential operator

of order −1. According to Theorem 4.1.4, we can find Qg ∈ Ψ1(Rn+m) such that

QgNg = I modulo smoothing operators. Thus, by Theorem 4.1.5, we get for any

s, ρ ∈ R that

‖f‖Hs ≤ ‖QgNgf‖Hs + Cρ‖f‖Hρ

≤ C‖Ngf‖Hs+1 + Cρ‖f‖Hρ .

(4.7)

To remove the last term, we will use a argument based on Lemma 2 of [20]. Let

ε > 0 be small and consider a separable smooth Pseudo-Riemannian metric g on

Rn+m such that

‖g − g0‖Ck < ε (4.8)

We claim that there is ε > 0 and C > 0 such that for all metrics g satisfying (4.8),
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we have

‖f‖Hs ≤ C‖Ngf‖Hs+1 . (4.9)

This implies the desired injectivity result.

We prove (4.9) by contradiction and assume that for n = 1, 2, · · · , there are

1. Metrics gn such that ‖gn − g0‖Ck < 1/n;

2. fn ∈ C∞0 (Ω) such that ‖fn‖Hs ≥ n‖Ngnfn‖Hs+1 . Without loss of generality, we

can assume ‖fn‖Hs = 1.

In (4.7), we choose ρ < s. Note that fn are supported in a fixed compact set Ω. We

know that Hs(Ω) is compactly embedded in Hρ(Ω). By going to a subsequence, still

denoted by fn, we can assume that fn converges to f0 in Hρ. By using (4.7), we

can show fn is Cauchy in Hs and thus converges to f0 in Hs. Using point 2 of the

contradiction assumption, we get that ‖Ngf0‖Hs+1 = 0 so that Igf0 = 0. Because we

know Ig is injective by Proposition 4.4.1 so f0 = 0. But this contradicts to ‖f0‖Hs = 1.

Thus (4.9) holds.
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