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Abstract 

SARS-CoV-2 transmission and control: from understanding social contact and mobility to formulating 

effective vaccine policy 

By Carol Yingkai Liu 

Background: Human behavior influences the spread of SARS-CoV-2 both individually and across 

communities. At both levels, vaccines emerged as an instrumental tool for prevention and control. The 

goal of this dissertation is to understand individual-level social contact and community-level human 

movement patterns in the context of SARS-CoV-2 transmission and utilize this knowledge to inform 

effective vaccine policy.  

Aim 1: We estimate the effect of receiving a COVID-19 vaccination on change in individual-level 

contact rates in a longitudinal cohort sampled from U.S. households. We found that in the context of 

increasing contact rates over survey rounds, individuals who newly completed primary vaccine series had 

additional increases in contacts compared to individuals who remained unvaccinated. A mathematical 

framework integrating competing effects of changing vaccine coverage and contact rates showed that 

vaccine protection against infection was insufficient to fully offset observed patterns of increase in 

contact rates, but transmission remained below levels expected under pre-pandemic contact rates.  

Aim 2: We infer spatial patterns of transmission across waves of COVID-19 in Georgia, USA through a 

novel mathematical framework with a multilayered transmission process and informed by 

spatiotemporally resolved data on social contact, human mobility, and vaccination. We find that in 

counties with smaller populations, lower contact rates and higher vaccination coverage, intercounty 

mobility contributes to a higher proportion of onward transmission. In addition, we present evidence that 

in an interconnected spatial network with a patchwork of local uptake in mitigation measures, the net 

infection flow is still from counties with lower mitigation to counties with higher mitigation.  

Aim 3: We assess the utility of guiding the timing of future COVID-19 re-vaccination strategies with 

serological surveillance for SARS-CoV-2 in Mozambique over a ten-year horizon. We use a 

mathematical model informed by local contact rates to simulate using population-level seroprevalence 

thresholds to trigger the timing of re-vaccination campaigns among older adults and compared this 

approach to re-vaccination at fixed time intervals. We find that, in this context, serology-triggered 

vaccination strategies are unlikely to minimize both deaths and the number needed to treat to prevent one 

death (NNT) compared to fixed time interval strategies. 

Potential impact: This dissertation generates valuable insights on transmission dynamics and infection 

control, weaving together the use of novel behaviorally related data collected during a pandemic and 

assessing the impact of an innovative temporally targeted vaccination strategy. These insights will guide 

analysis of behavior data and their incorporation into mathematical models to assess the likely impact of 

intervention strategies for future outbreaks of infectious diseases.  

  

  



 

SARS-CoV-2 transmission and control: from understanding social contact and mobility to formulating 

effective vaccine policy 

 

By 

 

 

Carol Yingkai Liu 

MSc, London School of Hygiene and Tropical Medicine, 2017 

BSc, Massachusetts Institute of Technology, 2015 

 

 

 

 

Advisor: Benjamin A. Lopman, PhD, MSc 

 

 

 

 

 

A dissertation submitted to the Faculty of the 

James T. Laney School of Graduate Studies of Emory University 

in partial fulfillment of the requirements for the degree of 

Doctor in Philosophy 

in Epidemiology 

2024 

  



Acknowledgements 

I would first and foremost like to thank my dissertation committee for their generous guidance and 

support over the past five years. They have provided me with invaluable feedback, scientific insights, 

resources, and technical expertise, both on my dissertation and my general development as a scientist, 

without which my doctoral training would not have been possible. To Ben, I am incredibly grateful for 

the yearslong mentorship and guidance you have provided me. Thank you for your timely and thoughtful 

feedback, scientific guidance, encouragement, advocacy and for your open-mindedness in allowing 

flexibility in my doctoral studies. To Kristin, it has been a wonderful journey working with you across a 

range of projects and studies. Thank you for all the ideas we have exchanged and for providing clarity and 

logic when I found myself stuck. To Max, thank you for lending your technical expertise and creativity on 

mathematical modeling. We have had to problem solve one challenge after another. Without your 

patience and support, I would have given up on learning how to construct, parameterize and analyze a 

metapopulation model. To Sam, thankful for your technical inputs on model calibration and computing 

and for your insightful ideas on social interactions and modeling. To Stefan, thank you for your 

continuous valuable insights on mathematical modeling and on vaccine policy, and for allowing me to 

maintain connections with my alma mater.  

I would like to thank my fellow PhD students. Through grit, tears, and a touch of self-deprecating humor, 

we labored through our coursework and qualifying exams in the middle of a raging pandemic. Your 

support and friendship have made the dissertation process less lonely. I would like to thank both former 

and current affiliates of the Lopman Lab Group. To former lab members, your work served as examples 

of rigorous research in infectious diseases and your characters served as role models for being personable 

and collaborative while pursuing difficult scientific questions. To current lab members, thank you for 

your engaging conversations, knowledge and friendship.  

I would like to thank my family and a number of lifelong mentors. To my parents for instilling in me a 

strong sense of work ethic and for your determination to immigrate to provide the best opportunities for 



your child. To several generations of academics, for serving as role models of scientific curiosity and 

academic excellence. To my partner, Luke, you detoured your career to move across the world to support 

my studies and have been my number one support over the past years. Thank you for always reminding 

me of the importance of life and staying true to my values. To Deborah and Lance for paving the way in 

public health, and for providing me with invaluable advice and encouragement on career and life every 

step of the way.  To Sarita, thank you for your continued support and career advice for my pursuit of 

global health.  

Finally, thank you to all the collaborators and study participants that have made this dissertation possible, 

including collaborators at Manhiça Health Research Centre (CISM), Global Mix study team, Georgia 

Department of Public Health, Emory COVID-19 Response Collaborative, COVIDVu study team, 

COVID-19 Trends and Impact Survey study team and analysts at SafeGraph and Cuebiq.  

  



TABLE OF CONTENTS 

CHAPTER 1 BACKGROUND .............................................................................................................. 1 
1.1 COVID-19 history and disease burden ......................................................................................... 1 

1.2 Natural history of SARS-CoV-2 ................................................................................................... 1 

1.3 Evolving data sources on human behavior relevant to infection transmission ............................. 2 

1.4 Individual-level human behavior and infection transmission ....................................................... 4 

1.4.1 Social contact patterns relevant for infection transmission ................................................... 4 

1.4.2 Behavioral adaptations during outbreaks .............................................................................. 5 

1.5 Human movement and spatial patterns of transmission ................................................................ 6 

1.5.1 Human movement and spatial patterns of transmission ........................................................ 6 

1.5.2 Incorporating human movement into mathematical models ................................................. 7 

1.6 Intervention strategies for SARS-CoV-2 control .......................................................................... 7 

CHAPTER 2 STUDY RATIONALE AND SPECIFIC AIMS ............................................................... 9 
2.1 Overarching goal ........................................................................................................................... 9 

2.2 Aim 1 rationale and overview ....................................................................................................... 9 

2.3 Aim 2 rationale and overview ..................................................................................................... 10 

2.4 Aim 3 rationale and overview ..................................................................................................... 10 

CHAPTER 3 THE EFFECT OF COVID-19 VACCINATION ON CHANGE IN CONTACT RATES

 12 
3.1 Abstract ....................................................................................................................................... 12 

3.2 Introduction ................................................................................................................................. 14 

3.3 Methods....................................................................................................................................... 15 

3.3.1 Sampling ............................................................................................................................. 15 

3.3.2 Survey data .......................................................................................................................... 16 

3.3.3 Latent class model to classify risk tolerance at baseline ..................................................... 16 

3.3.4 Modeling effect of vaccination on contact rate ................................................................... 17 

3.3.5 Estimating the impact of contact change on transmission potential ................................... 18 

3.4 Results ......................................................................................................................................... 19 

3.4.1 Participant description ......................................................................................................... 19 

3.4.2 Change in contact rates over time ....................................................................................... 20 

3.4.3 Vaccination and contact rates.............................................................................................. 20 

3.4.4 Variation in contact rates by key covariates ....................................................................... 21 

3.4.5 Change in individual-level vaccination status over time .................................................... 22 

3.4.6 Effect of vaccination on change in contact rates ................................................................. 27 



3.4.7 Impact of differential changes in contact rates among vaccinated and unvaccinated on 

transmission ........................................................................................................................................ 30 

3.5 Discussion ................................................................................................................................... 32 

3.6 Conclusion .................................................................................................................................. 34 

3.7 Supplementary File ..................................................................................................................... 35 

3.7.1 Comparing distribution of covariates among initially enrolled study population and those 

completing follow-up .......................................................................................................................... 35 

3.7.2 Additional details for Latent Class Analysis (LCA) ........................................................... 37 

3.7.3 Exposure classification ....................................................................................................... 45 

3.7.4 Exploring relationship between key covariates ................................................................... 46 

3.7.5 Mean contact rate by time-varying covariates .................................................................... 50 

3.7.6 Effect of vaccination on changes in location-specific contact ............................................ 55 

3.7.7 Sensitivity analysis .............................................................................................................. 62 

3.7.8 Additional Next Generation Matrix analysis on impact on transmission ........................... 67 

CHAPTER 4 METAPOPULATION MODEL TO QUANTIFY TRANSMISSION ........................... 69 
4.1 Abstract ....................................................................................................................................... 69 

4.2 Introduction ................................................................................................................................. 69 

4.3 Methods....................................................................................................................................... 71 

4.3.1 Model structure ................................................................................................................... 71 

4.3.2 Infection process ................................................................................................................. 73 

4.3.3 Parameterizing between-county transmission ..................................................................... 74 

4.3.4 Key model inputs for transmission process ........................................................................ 74 

4.3.5 Model initialization ............................................................................................................. 79 

4.3.6 Model calibration ................................................................................................................ 80 

4.4 Results ......................................................................................................................................... 81 

4.4.1 Results from model calibration ........................................................................................... 81 

4.4.2 Proportion of SARS-CoV-2 infections imported through intercounty mobility ................. 83 

4.4.3 Directionality of infection flow ........................................................................................... 86 

4.5 Discussion ................................................................................................................................... 88 

4.6 Conclusion .................................................................................................................................. 90 

4.7 Supplementary File ..................................................................................................................... 91 

4.7.1 Detailed model structure and equations .............................................................................. 91 

4.7.2 Additional data descriptions ................................................................................................ 94 

4.7.3 Additional model calibration details ................................................................................... 95 

4.7.4 Proportion infections from intercounty mobility .............................................................. 102 



4.7.5 Scatter plots of difference in pairwise county attributes and differences in importations and 

trips 108 

4.7.6 Exploration of using state-wide seroprevalence data to inform age-specific reporting rate

 111 

CHAPTER 5 MODELING THE USE OF SEROPREVALENCE TO GUIDE COVID-19 

VACCINATION IN MOZAMBIQUE ..................................................................................................... 117 
5.1 Abstract ..................................................................................................................................... 117 

5.2 Background ............................................................................................................................... 118 

5.3 Methods..................................................................................................................................... 120 

5.3.1 Model structure ................................................................................................................. 120 

5.3.2 Seroconversion and seroreversion..................................................................................... 122 

5.3.3 Tiered susceptibility .......................................................................................................... 123 

5.3.4 Data sources and calibration ............................................................................................. 123 

5.3.5 Forward simulation epidemiological scenarios ................................................................. 125 

5.3.6 Vaccination triggers and analytical outputs ...................................................................... 126 

5.3.7 Code availability ............................................................................................................... 127 

5.4 Results ....................................................................................................................................... 127 

5.4.1 Model calibration .............................................................................................................. 127 

5.4.2 Description of simulated epidemic and changing immunity ............................................. 128 

5.4.3 Descriptive results from re-vaccination strategies ............................................................ 129 

5.4.4 Impact of different re-vaccination strategy on vaccine NNV ........................................... 130 

5.4.5 Tradeoffs in number-needed-to-vaccinate (NNV) ............................................................ 132 

5.4.6 Sensitivity analysis ............................................................................................................ 134 

5.5 Discussion ................................................................................................................................. 135 

5.6 Conclusion ................................................................................................................................ 138 

5.7 Supplementary File ................................................................................................................... 139 

5.7.1 Additional model methodology ........................................................................................ 139 

5.7.2 Model parameters .............................................................................................................. 145 

5.7.3 Data sources from Mozambique ....................................................................................... 149 

5.7.4 Calibration results ............................................................................................................. 154 

5.7.5 Assessing correlations between seroprevalence, susceptibility and cumulative deaths in 

base scenarios with no vaccination ................................................................................................... 156 

5.7.6 Vaccination impact results for main analysis .................................................................... 161 

5.7.7 Sensitivity analysis ............................................................................................................ 165 

5.7.8 Summary of literature review of key parameters .............................................................. 178 

CHAPTER 6 CONCLUSIONS AND PUBLIC HEALTH IMPLICATIONS .................................... 184 



6.1 Overview ................................................................................................................................... 184 

6.2 Contributions and future directions of each specific aim .......................................................... 184 

6.2.1 Aim 1 ................................................................................................................................ 184 

6.2.2 Aim 2 ................................................................................................................................ 187 

6.2.3 Aim 3 ................................................................................................................................ 189 

6.3 Reflections ................................................................................................................................ 191 

CHAPTER 7 REFERENCES ............................................................................................................. 194 
CHAPTER 8 APPENDIX ................................................................................................................... 223 

8.1 Abbreviations ............................................................................................................................ 223 

8.2 Publications, presentations, and funding-related activities ....................................................... 224 

8.2.1 Peer Reviewed Publications .............................................................................................. 225 

8.2.2 Presentations ..................................................................................................................... 226 

8.2.3 Grants ................................................................................................................................ 228 

 

  



LIST OF FIGURES 

Figure 3-1. Distribution of mean contact rates and exposure over survey round ....................................... 23 
Figure 3-2. Plots of main effect estimate and change in relative transmissibility ...................................... 31 
Figure 3-3. Distribution of indicator variables related to risk mitigation for COVID-19 prevention at 

baseline1 ...................................................................................................................................................... 39 
Figure 3-4. Radar plots of average profiles of each class classified under various solution sizes and 

variable groupings ....................................................................................................................................... 41 
Figure 3-5. Schematic for exposure classification ...................................................................................... 45 
Figure 3-6. Mean contact rates over survey round by self-reported changing concern for new variants ... 52 
Figure 3-7. Mean contact rates over survey round by stringency of state-level COVID-19 policy1 .......... 53 
Figure 3-8. Mean contact rates over survey round by county-level vaccination coverage at time of survey

 .................................................................................................................................................................... 54 
Figure 3-9. Plot of model results for main analysis comparing different right truncation choices ............. 67 
Figure 3-10. Relative transmissibility calculated using the Next Generation Matrix ................................. 67 
Figure 4-1. Schematic of within-county transmission process1 .................................................................. 72 
Figure 4-2. Summarizes non-household age-specific contact rates by county, age group and over time that 

were inputs into the metapopulation model ................................................................................................ 76 
Figure 4-3. Visualization of outflowing and inflowing mobility. ............................................................... 78 
Figure 4-4. Temporal Comparison of Modeled and Reported COVID-19 Cases per 100,000 ................... 82 
Figure 4-5. Variations in Proportion of Imported SARS-CoV-2 Infections Across County Attributes and 

Epidemic Phases Coverage. ........................................................................................................................ 85 
Figure 4-6. Correlations Between County Pair Attributes and Infection Importation Dynamics ............... 87 
Figure 4-7. Mean proportion of devices in each county that do not leave their house1 .............................. 94 
Figure 4-8. The posterior distributions obtained for calibrated parameters using the ABC rejection 

algorithm. .................................................................................................................................................... 99 
Figure 4-9. Facet grid of reported cases per 100,000 and modeled range of cases per 100,000 for each of 

the 159 counties in Georgia1,2 ................................................................................................................... 100 
Figure 4-10. Scatterplots depicting of the relative difference between modeled and reported COVID-19 

cases plotted against county population size1,2 ......................................................................................... 101 
Figure 4-11. Facet grid of proportion of SARS-CoV-2 infection imported through intercounty mobility, 

stratified by county1,2,3 .............................................................................................................................. 102 
Figure 4-12. Proportion of infections imported through intercounty mobility by county summarized by 

epidemic wave1 ......................................................................................................................................... 103 
Figure 4-13. Proportion of infections imported through intercounty mobility summarized by population 

size group of the county and by epidemic wave1 ...................................................................................... 104 
Figure 4-14. Proportion of infections imported through intercounty mobility summarized by quintile of 

county-level contact rate1,2 ........................................................................................................................ 105 
Figure 4-15. Proportion of infections imported through intercounty mobility stratified by quintile of 

county-level contact rate, epidemic wave, and of county population size1,2. ............................................ 106 
Figure 4-16. Proportion of infections imported through intercounty mobility stratified by quintiles of 

county-level vaccination coverage1,2 ......................................................................................................... 107 
Figure 4-17. Proportion of infections imported through intercounty mobility stratified by surges and 

declines in epidemic waves and tertiles of county population size1 ......................................................... 107 
Figure 4-18. Temporal trends in the relationship between difference in contact rate and infection 

importation across county pairs ................................................................................................................ 108 



Figure 4-19. Temporal trends in the relationship between difference in population size and infection 

importation across county pairs ................................................................................................................ 109 
Figure 4-20. Temporal trends in the relationship between difference in trips and differences in county 

attributes across county pairs. ................................................................................................................... 110 
Figure 4-21. Age-stratified seroprevalence, cumulative infections estimated from seroprevalence and 

estimated reporting rate ............................................................................................................................. 112 
Figure 4-22. Age-specific seroprevalence at start and end of each wave ................................................. 114 
Figure 4-23. Reporting rate for wave two estimated using sequential serology. ...................................... 116 
Figure 5-1. Compartmental model diagram1 ............................................................................................. 121 
Figure 5-2. Calibrated model results compared to observed data ............................................................. 128 
Figure 5-3. Model results of time series of ten-year epidemic trajectory, seroprevalence and immunity 

landscape and overall number of doses needed to avert one death (NNV) and cumulative deaths .......... 131 
Figure 5-4. Sensitivity analysis on varying time of first vaccination campaign for fixed interval strategies 

and varying rate of antibody waning......................................................................................................... 133 
Figure 5-5. Diagram describing the gamma-distributed antibody waning process for the tiers with the 

fastest rates of antibody waning ................................................................................................................ 143 
Figure 5-6. Matrix of mixing, or who-acquired-infection-from-whom (WAIFW) stratified by age group 

and by urban/rural1 .................................................................................................................................... 150 
Figure 5-7. Seroprevalence point estimates sampled during the COVID-19 pandemic stratified by age 

group and by urban/rural. .......................................................................................................................... 152 
Figure 5-8. Scatter plots of correlations between seroprevalence at the start of each wave and deaths in 

each wave (among older adults)................................................................................................................ 157 
Figure 5-9. Overall correlations (R2) between seroprevalence at the start of each wave and deaths in each 

wave. ......................................................................................................................................................... 157 
Figure 5-10. Scatter plots of correlations between seroprevalence at the start of each wave and proportion 

immune at the start of each wave (among older adults) ............................................................................ 158 
Figure 5-11. Overall correlations (R2) between seroprevalence at the start of each wave and proportion 

immune at the start of each wave .............................................................................................................. 158 
Figure 5-12. Scatter plots of correlations between seroprevalence at the start of each wave and proportion 

susceptible at the start of each wave (among older adults) ....................................................................... 159 
Figure 5-13. Overall correlations (R2) between seroprevalence at the start of each wave and proportion 

susceptible at the start of each wave ......................................................................................................... 159 
Figure 5-14. Scatter plots of correlations between proportion susceptible at the start of each wave and 

total deaths in the wave (among older adults) ........................................................................................... 160 
Figure 5-15. Distribution of NNV and number of deaths across all age groups ....................................... 163 
Figure 5-16. Susceptibility landscape over time stratified by age group .................................................. 164 
Figure 5-17. Model results for randomly-timed epidemic patterns .......................................................... 165 
Figure 5-18. Distribution of NNV and number of deaths across all age groups for randomly-timed 

epidemic patters ........................................................................................................................................ 168 
Figure 5-19. Model results for epidemic patterns driven by immune escape ........................................... 169 
Figure 5-20. Susceptibility landscape over time stratified by age group for epidemic pattern driven by 

immune escape .......................................................................................................................................... 174 
Figure 5-21. Main outcomes in number-needed-to-vaccinate to avert one death (NNV) and deaths under 

different parameter scenarios for the relative decrease in susceptibility among seropositive. ................. 176 
Figure 5-22. Main outcomes in number-needed-to-vaccinate to avert one death (NNV) and deaths under 

different parameter scenarios for the rate of antibody waning.................................................................. 177 
 



LIST OF TABLES 

 

Table 3-1. Mean contact rate stratified by participant characteristics ........................................................ 26 
Table 3-2. Univariate and multivariate effect estimates of individual-level vaccination status and county-

level vaccination status on change in contact rates ..................................................................................... 30 
Table 3-3. Covariate distributions among those initially enrolled versus those included in the study ....... 36 
Table 3-4. Survey questions on risk mitigation behavior at baseline and response choices ....................... 38 
Table 3-5. Sets of indicator variables considered for the Latent Class Analysis ........................................ 40 
Table 3-6. Statistical criterion for model fit and model diagnostic criteria for LCA .................................. 42 
Table 3-7. Distribution of behavioral-related survey responses across LCA categories ............................ 45 
Table 3-8. Correlation between risk tolerance at baseline and changes in concern for new variants ......... 46 
Table 3-9. Correlation between risk tolerance at baseline and vaccination status over round .................... 47 
Table 3-10. Correlation between concern for new variants and vaccination status over round .................. 49 
Table 3-11. Mean contact rates over survey round and time-varying covariates ....................................... 51 
Table 3-12. Effect of vaccination on changes in contact at work ............................................................... 57 
Table 3-13. Effect of vaccination on changes in contacts at other locations .............................................. 59 
Table 3-14. Effect of vaccination on changes in contacts at home ............................................................. 62 
Table 3-15. Effect of vaccination on changes in contact without adjusting for concern for new variants . 64 
Table 3-16. Cutoff values for various right truncation methods to remove extreme outliers in contact 

numbers ....................................................................................................................................................... 66 
Table 4-1. Relative susceptibility (σS, V) for susceptibility tiers based on combinations of prior infection 

and prior vaccination1 ................................................................................................................................. 95 
Table 4-2. Equations for distance calculations and the accepted tolerance for algorithms used in the 

calibration1 .................................................................................................................................................. 95 
Table 4-3. Summary of minimum and maximum population sizes for each population size category1 ..... 96 
Table 4-4. Initialized and accepted ranges for calibrated parameters in the model1 ................................... 98 
Table 4-5. Reporting rate estimated for each wave................................................................................... 115 
Table 5-1. Model parameters, corresponding description, value and source ............................................ 148 
Table 5-2 Data sources from Mozambique used to parameterize the transmission model ....................... 149 
Table 5-3. Modeled seroprevalence from the top performing calibration runs compared to the population 

samples of seroprevalence estimates ........................................................................................................ 154 
Table 5-4. Values from top performing calibration runs for calibrated parameters with median and range.

 .................................................................................................................................................................. 155 
Table 5-5. Summary table of vaccine impact results for main analysis .................................................... 162 
Table 5-6. Summary table of vaccine impact results for randomly-timed epidemic patterns ................... 167 
Table 5-7. Summary table of vaccine impact results for epidemic patterns driven by immune escape ... 173 
Table 5-8. Evidence on seroconversion after infection or vaccination ..................................................... 178 
Table 5-9. Evidence for durability of antibody ......................................................................................... 180 
Table 5-10. Evidence for vaccine effectiveness ........................................................................................ 183 



1 

CHAPTER 1 BACKGROUND 

1.1 COVID-19 history and disease burden 

In December 2019, a cluster of severe pneumonia cases of unknown cause was first reported in a large 

metropolitan city in China, Wuhan1–3. Subsequently on January 7, 2020, a novel strain of coronavirus was 

first isolated in lower respiratory tract samples collected from these cases4,5. Since then, the virus hitched 

rides through transportation and human movement networks6,7, rapidly spreading through China8 and 

across the world. By March 2020, when the World Health Organization declared the COVID-19 outbreak 

as a pandemic, the infection had spread to more than 114 countries, leading to at least 4,000 documented 

deaths9. As of March 10, 2024, over 775 million cases and 7 million deaths have been reported 

worldwide10, with infections, cases and deaths likely substantially underestimated. The disease burden of 

COVID-19 varied by region and country. Even though the United States documented the highest COVID-

19 disease burden, reporting 103 million cumulative cases and 1.2 million cumulative deaths, multiple 

other countries such as the United Kingdom, Italy and Brazil experienced similar or higher per capita 

cases and deaths11. On the African continent, despite early projections suggesting high morbidity and 

mortality12–15, the number of documented cases and deaths remained substantially below that of other 

regions16. Reported diseases are known to underestimate the true number of infections17–19, particularly in 

regions where testing resources were constrained20. Infection burden estimated from serological 

surveys21–27 and mathematical models28 appeared more comparable across regions.  

1.2 Natural history of SARS-CoV-2 

SARS-CoV-2 is primarily transmitted through respiratory fluids29. Routes of exposure include contact 

with infectious respiratory droplets when an infected person coughs, sneezes, talks or breathes or through 

exposure to finer aerosolized infectious particles suspended in the air30,31. Symptoms of COVID-19 

typically appear after the 2–14-day incubation period32–35 and can range in severity. The most reported 

symptoms include fever, chills, cough, shortness of breath, fatigue, myalgia, headache, sore throat and 



2 

new loss of taste or smell36. Between 20%-35% of infected individuals remain asymptomatic throughout 

the course of their infection37,38; however, onward transmission can occur regardless of the presence of 

symptoms39–41. The basic reproduction number, R0, defined as the average number of new infections 

generated by an infectious person in a fully susceptible population, serves as an indication of infection 

transmissibility. R0 values >1 suggest a growing outbreak and rising infection incidence42. Early estimates 

of R0 for SARS-CoV-2 varied, but consistently ranged between 2-643,44. 

Immunity following exposure to SARS-CoV-2 is complex. Following infection or vaccination, most 

individuals develop a humoral and cell-mediated immune responses, leading to protection against 

subsequent infection and disease45. However, protection is imperfect, wanes over time, and is further 

influenced by the emergence of new SARS-CoV-2 variants46–49. Protection against severe disease and 

deaths remains durable but protection against infection is transient. Variants with high immune escape 

properties, like the omicron variant, resulted in a large number of re-infections or breakthrough infection 

post-vaccination50,51.  

1.3 Evolving data sources on human behavior relevant to infection transmission 

Human behavior effects SARS-CoV-2 transmission at the individual-level52, where close interactions 

result in exposure to respiratory fluids carrying the virus29 and at the community-level, where individual 

movement facilitates importation of infections from one location to another53,54. Over the past two 

decades, several key sources of data relevant to quantifying human behavior in the context of infection 

transmission have emerged. Relevant to this dissertation are: 1) social contact data actively collected 

through surveys55 and proximity sensors56–58 and their projections onto populations without empirical 

data59,60 and 2) human mobility data actively collected through travel or commuter surveys or passively 

collected through either mobile phone Call Data Records (CDR)61,62 or app-based geolocation63–65.  

Social contact studies are commonly used to measure contact rates, defined as the average number of 

other people a person encounters per day55. Participants are asked to enumerate the number of individual 



3 

contacts over a specified time frame, and report on a range of attributes for each contact such as the 

duration, proximity, frequency, and locations of contact. Since the first multi-country social contact study 

conducted across eight European countries55, a number of localized social contact studies in various 

geographical settings continue to inform context-specific insights on patterns of human interactions 

important for transmission55,66–70. Social contact studies have increasingly leveraged social media and 

online marketing platforms71, facilitating the rapid sampling of an unprecedented number of participants 

for response. Large scale online panels facilitated the real-time surveillance of contact rates that captured 

contemporaneous changes in social interactions during the COVID-19 pandemic, particularly in the US72–

77 and in numerous European countries71,78–84. In the U.S., the COVID-19 Trends and Impact Survey 

(CTIS), operated jointly by Meta Data for Good and Carnegie Mellon University, sampled over 50,000 

Facebook users on a daily basis to measure behaviors and attitudes relevant to the pandemic, including 

contact rates72,85. The extensive scope and large sample size of the CTIS allowed the tracking of trends in 

behavior over short time scales and granular geographical areas.  

Human movement data passively collected from mobile phone traces has become widely available and 

offers new possibilities for understanding infection transmission and control. Modern mobile phone 

devices routinely transmit location data, providing a massive and readily available source of data to study 

population-level human mobility patterns. Mobile phone tracts are created, timestamped and location-

tagged each time a subscriber uses a specific mobile phone application, recording a trace of movement. 

Multiple commercial companies (ex. Safegraph86, Cuebiq87, Google mobility88 and Unacast89 among 

others) recently developed tractable pipelines for mobile phone app-based Global Positioning System 

(GPS) location data that readily summarize cumbersome mobility traces into sensible and usable formats. 

Partnerships between mobile data aggregators and academic institutions have enabled their use in 

research.  Cell phone-based geolocation is unique in its ability to capture real-time population-level 

mobility changes at fine spatiotemporal scales90. Accurate quantification of such changes is critical for 

transmission models during epidemics when human behavior and mobility are rapidly changing. During 
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early phases of the pandemic, mobile phone geolocation data captured spatial heterogeneities in 

adherence to social distancing measures and served as an early proxy for changes in human interactions 

predicting transmission risk64,91–97 and further characterized spatial networks as input into spatially-

explicit mathematical models6,64,98–102.  

1.4 Individual-level human behavior and infection transmission 

1.4.1 Social contact patterns relevant for infection transmission 

Contact patterns are a key determinant for the size, speed of spread and peak timing of an epidemic, as 

well as the intensity of interventions needed to prevent and contain it103. Specifically, R0 is the product of 

the contact rate, probability of transmission per contact, and duration of infectious period. Contact 

patterns consistently show age-based assortativity across geographical settings66,104, highlighting the 

general tendency for individuals to interact preferentially with peers of the same age group more 

frequently than individuals of other age groups. Nuances in contact patterns are further shaped by 

demographic structure, social and cultural norms and daily behavior patterns of individuals105. For 

example, in European countries, older individuals display strong assortative mixing. In contrast, in 

countries like Zimbabwe105 and Kenya106,107 with younger population-level age distributions and where 

extended-family households are more common, older individuals are more likely to contact younger 

individuals. Contact patterns are commonly quantified by the contact rate, which serves as a direct input 

into mathematical models linking individual behavior and population-level transmission. Prior to the 

COVID-19 pandemic, contact rates were shown to differ by age group, household size, occupation, 

income status day of week and sometimes by gender55,60,66,104,108. Heterogeneity in contact rates further 

influences the impact of non-pharmaceutical interventions (NPI) such as shelter-in-place orders, school 

and workplace closures and restrictions on large gatherings109.  

Population-level contact rates evolved throughout the COVID-19 pandemic, characterized by historical 

lows during universal lockdowns110, slow rebounds during relaxation of the most stringent measures 

followed by continued fluctuations78,80 in response to new COVID waves and changing policies. In the 
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U.S., after the most stringent shelter-in-place orders in March 2020, contact rates broadly increased as 

risk mitigation policies relaxed. During this gradual return-to-normal, contact rates were highest among 

young adults 18-35 years of age, individuals in lower income households and individuals in occupations 

such as retail, hospitality and food service, and transportation73 and lower among individuals with 

comorbidities111. Contact rates further varied by race and ethnicity although the subgroup with the highest 

contact differed between studies. Spatiotemporal trends in contact patterns were also observed.  Contact 

rates were consistently highest in the southern U.S., followed by the Midwest and noticeably lower in the 

Northeast and West72.  

1.4.2 Behavioral adaptations during outbreaks 

During infectious disease outbreaks, human behavior is responsive to various individual-level and 

community-level changes. For example, contact reductions in response to case surges of COVID-19 in 

fall 2020 often preceded policy changes112, supporting the theory of a behavioral feedback mechanism 

where rising incidence in a community prompts risk avoidance and reductions in contact which 

subsequently curbs tranmission113,114. Similarly, risk compensation is the idea that individuals may offset 

perceived gains in safety from adopting a risk mitigation behavior by increasing risk-taking behavior due 

to decreased risk perception and overvaluing of protection115–117. Despite concerns of risk compensation 

for a range of public health measures such as HIV prevention118,119, motorcycle helmet laws120 and 

vaccinations against HPV121, Lyme disease121 and influenza122, the evidence is mixed and inconsistent.  

Following the rollout of COVID-19 vaccination, speculations emerged on whether individuals would 

excessively relax their behavior too soon and inadvertently offset the protective effects of vaccination115. 

Evidence on relaxations in behavior following COVID-19 vaccination is mixed and likely driven by a 

balance between subjective risk-value trade-offs between transmission risk and the desire to return to 

normal for social and economic benefits. In several studies in the United Kingdom (UK)123–125 and a 

cross-sectional study across 12 countries126, little to no differences in social distancing and mask-wearing 

were observed between those receiving one dose versus unvaccinated individuals. Other cross-sectional 



6 

surveys in Japan127, Italy128, Bangladesh129, Israel130, and Brazil131 found decreased mask-wearing and 

social distancing among vaccinated individuals, especially among younger adults. In the US, longitudinal 

panel data between March-June 2021 suggested that relative to unvaccinated individuals, vaccinated 

individuals experienced a larger decline in risk perception and protective behaviors despite negligible 

differences in preventative behaviors prior to vaccination132.  

An additional feature of human behaviors during outbreaks is that risk mitigation tends to cluster within 

individuals. During the COVID-19 pandemic, individuals who adopted one mitigation measure were 

more likely to adopt multiple protective measures133–135. For example, individuals who wore a mask were 

more likely to accept vaccination against SARS-CoV-2 and conversely134,136, individuals who reported 

lower social distancing behavior were more likely to be vaccine hesitant137,138. This feature effectively 

partitions populations into distinct groups: those who rigorously adhere to multiple risk mitigation 

behaviors that substantially limit their exposure and are highly protected, and those who adopt few or no 

risk mitigation measures and are highly exposed139.   

1.5 Human movement and spatial patterns of transmission 

1.5.1  Human movement and spatial patterns of transmission 

Human mobility plays an important role in determining spatial patterns of infectious disease transmission. 

Patterns of human movement contribute to importation of malaria from endemic to low-transmission 

areas61,140 and predicts timing and geographical scope of importations into previously uninfected locations 

during epidemics of dengue141 and cholera142. Prior to the availability of detailed data on human 

movement, “traveling waves” during periods of endemic measles were observed to follow a spatial 

hierarchy where infections moved from large cities to small towns143. However, as vaccination against 

measles increased, infection spread that was once predictable and structured based on the distance to large 

cities was disrupted144. Moreover, uptake of mitigation policies in one community not only affects 

transmission within its boundaries but can also impact the epidemic trajectory of other mobility-linked 

communities, giving rise to sources and sinks of infection. Traditionally, infections are hypothesized to 
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flow from source locations with fewer mitigation efforts and lower vaccination coverage (i.e., net 

exporters) to sink locations with more mitigation measures and higher vaccination coverage145–148 (i.e., net 

importers). 

At the onset of the pandemic, the sequence in which infections spread from Wuhan to other Chinese cities 

and onwards to international destinations, was readily predicted by human movement networks53,54. As 

the pandemic wore on, cases surged and peaked asynchronously across different regions and subregions 

of the world149. Localized patterns of rapidly changing immunity, pathogen transmissibility and human 

behavior likely increasingly underpinned traveling waves of COVID-19 cases150.  

1.5.2 Incorporating human movement into mathematical models 

Spatially explicit mathematical models serve as a framework to understand infection propagation through 

time and geographical area.  Originating from the field of ecology, this class of models divides a 

population into discrete localized subpopulations, often delineated based on administrative boundaries 

such as neighborhoods, cities, or states. Connections between subpopulations represent movement by the 

host99,151–155. Within each subpopulation, the local epidemic is described using conventional 

compartmental models. Human movement data are essential for more realistic parameterizations of 

spatially explicit mathematical models. Increasing availability of mobility data across a range of sources 

described in the previous section improves upon gravity- and radiation- models where contagion between 

two subpopulations is proportional to the population size of origin and destination and the distance 

between them144,156. Parameterizing spatially explicit models with real-world data requires summarizing 

empirical mobility data into origin-destination matrices that reflect either the population-level probability 

of travel from origin to destination or the number of trips between them151,157,158.  

1.6 Intervention strategies for SARS-CoV-2 control 

Prior to the widespread availability of COVID-19 vaccinations, a number of NPIs were proposed to 

reduce virus spread. Specific NPI strategies and their level of enforcement differed by geographical 

location159. In the early months of the pandemic, the most disruptive NPIs included shelter-in-place 
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orders, closure of educational institutions, workplaces, businesses and public venues and restrictions on 

public gatherings, frequently complemented by test-trace-isolate strategies and mask mandates160.  By 

May 2020, many states in the U.S. began to relax blanket shelter-in-place orders160. At this point, 

restrictions and risk mitigation measures became increasingly heterogeneous, with counties, cities, 

schools, workplaces, and businesses often adopting individualized policies.  

Vaccines rapidly emerged as an instrumental tool for SARS-CoV-2 prevention and control. Vaccines 

showed high efficacy and effectiveness in preventing severe COVID-19 disease and deaths161–163, thus 

permitting the safe relaxation of NPIs while maintaining a manageable disease burden164,165.  A primary 

goal of vaccination was to reduce severe disease and deaths. While early vaccine supply was limited, 

vaccination strategies prioritized population groups at the highest risk for severe outcomes such as older 

adults and frontline healthcare workers166.  

Mathematical models were critical in estimating the likely impact of intervention strategies for COVID-

19, weighing tradeoffs in costs and benefits of potential strategies to inform policies for mitigation and 

control. For example, mathematical models informed combinations and timing of NPIs best suited to 

reduce strain on hospital capacity167,168. Models further guided vaccine allocation to maximize their 

population-level health impact by determining priority population groups169,170, assessing a strategy of a 

delayed second dose to reach a larger population with a single dose171,172, and informing subsequent 

decisions and target populations for booster vaccination173–178.  Models also served as an experimental 

platform for untested potential strategies. For COVID-19, these included proposals on shielding high risk 

individuals179, individualized serology testing prior to relaxing NPIs180 or prioritizing seronegative 

individuals for vaccination181, among others.  
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CHAPTER 2 STUDY RATIONALE AND SPECIFIC AIMS 

2.1 Overarching goal 

Understanding changing human interactions and mobility in the context of transmission is key to 

designing suitable long-term infection prevention and control strategies for both SARS-CoV-2 and 

ongoing and future outbreaks of other infectious pathogens149. The goal of this dissertation is to 

understand social contact and mobility patterns in the context of SARS-CoV-2 transmission and utilize 

this knowledge to inform effective vaccine policy.  

2.2 Aim 1 rationale and overview 

Improved understanding of social contact and human mobility guides more realistic estimations of the 

population-level impact of interventions for COVID-19 control. Although broad trends in contact rates 

prior to and during the pandemic were well-documented, individuals likely have displayed different 

“trajectories” in contact and less is known about sociodemographic and behavioral determinants of 

changing contacts during the pandemic. For example, it is often assumed that receiving a vaccine, an 

important risk mitigation measure, impacts contact rates182–185; however evidence of such causality is 

mixed123,186 and largely based on cross-sectional data or measurements of behavior rather than contact 

rates126,187. Longitudinal data spanning the duration of vaccine rollout can quantify the extent vaccination 

changed contact rates, a metric with direct implications for disease transmission. 

Aim 1: Estimate the effect of receiving a COVID-19 vaccination on change in individual-level contact 

rates. This aim used data from COVIDVu, a geographically representative cohort from the US sampled 

over 18 months during the COVID-19 pandemic. A multivariate mixed linear regression was used to 

estimate the effect of vaccination on change in contact rate and a mathematical framework was used to 

jointly assess the effect of protection from vaccination amidst observed increases in contact on 

transmission intensity.  
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2.3 Aim 2 rationale and overview 

Spatial patterns of transmission in a highly interconnected spatial network of communities with 

heterogeneous demography, dynamically changing immunity levels and within-community contact rates, 

remain to be characterized. The state of Georgia, USA, with its diverse demographics, varying levels of 

urbanization and highly heterogeneous COVID-19 containment policies presents a unique case study for 

examining these dynamics. In Georgia, the COVID-19 pandemic unfolded in an asynchronized mosaic of 

localized transmissions characterized by surges varying in timing and intensity during the first two years, 

increasingly shaped by fluctuations in human behaviors and population-level immunity. Identifying 

sources and sinks of transmission and their correlates can guide more localized interventions and assist in 

the mitigation of infection spread.   

Aim 2: Quantify the relative contribution of local exposure versus intercounty mobility across waves of 

the COVID-19 pandemic in Georgia, USA. We developed a metapopulation model where the 

transmission process is decomposed into between county and within county components. Between county 

transmission was informed by cell phone-derived mobility data and within-county transmission is 

modeled using an SEIR-like framework informed by county-level age-specific mixing, vaccination rates 

and reported cases. We calibrate the model to reported case data stratified by age group and by county 

population group. We analyze relative contributions of intercounty mobility to onward transmission with 

respect to county-level attributes and infer directionality of net infection flow across pairwise counties.  

2.4 Aim 3 rationale and overview 

Despite high worldwide vaccination coverage188 and substantial previously exposed individuals, pockets 

of susceptible individuals, waning immunity, and new immunity-escaping variants will drive future 

resurgences. Monitoring the level of susceptible individuals can enable targeted interventions, but 

estimating contemporary population immunity from routine surveillance is challenging189. Serological 

assays can measure prevalence of immunological markers that are potential markers for prior infection or 

vaccination. In the past, population-level immunity markers have been used to direct measles, rubella, and 
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polio vaccination campaigns190 to areas and age groups with the highest immunity gaps. Monitoring 

changing immunity for SARS-CoV-2 to trigger subsequent rounds of booster vaccines was proposed for 

COVID-19 control191, yet its potential utility is unknown.   

Aim 3: Evaluate the utility of guiding the timing of COVID-19 vaccination strategies with serological 

surveillance for SARS-CoV-2 in Mozambique. We developed an SEIR-like model with varying immunity 

tiers for subgroups with prior exposure through infection or vaccination and simulated the impact of 

triggering re-vaccinations based on 1) fixed time intervals; 2) population seroprevalence, using 

Mozambique as a case study.  Tradeoffs in the number of deaths averted and number-needed-to-

vaccinated to avert one death were compared.  
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CHAPTER 3 THE EFFECT OF COVID-19 VACCINATION ON CHANGE IN 

CONTACT RATES 

[Manuscript 1] 

The effect of COVID-19 vaccination on change in contact rates during the pandemic among a US 

cohort 

Carol Y Liu, Aaron Siegler, Patrick Sullivan, Samuel M Jenness, Stefan Flasche, Ben Lopman, Kristin 

Nelson 

3.1 Abstract 

Background 

The COVID-19 pandemic drastically altered social behaviors, initially shaped by strict non-

pharmaceutical interventions (NPIs), and subsequently through individual choice as restrictions eased. 

The development of COVID-19 vaccines, which were highly effective at reducing illness and death, was 

a watershed event in the pandemic. This intervention altered individual risk perception, which could have 

increased contact rates. Evidence for this hypothesis is mixed, and most studies do not explicitly estimate 

the effect of vaccination on contact rates, which are an explicit input into mathematical models that could 

quantify the population-level impact of such interventions on morbidity and mortality. The goal of this 

analysis is to estimate the effect of individual-level COVID-19 vaccination and population-level 

vaccination coverage on change in contact rates in a U.S. cohort and their subsequent impact on 

transmission.  

Methods & results 

We analyzed data from a longitudinal survey of individuals sampled from U.S. households that measured 

contact rates, risk mitigation and COVID-19 vaccination status between August 2020-April 2022. We 

used a multilevel generalized linear mixed effects model to assess the effect of individual-level COVID-

19 vaccination status and county-level vaccination coverage on change in contact rates. We adjusted for 
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sociodemographic factors, self-reported concern for the pandemic and stringency of COVID-19 policies 

over time. Contact rates increased across survey rounds for nearly all groups. We found individuals who 

had newly completed a primary vaccine series had an additional increase of 1.93 (95% CI: 0.27-3.59) 

contacts compared to individuals who remained unvaccinated, and that fully vaccinated individuals 

continued to increase their contact across multiple periods after becoming vaccinated (2.72 (95%CI: 0.71-

4.73) additional contacts compared to unvaccinated). County-level vaccination coverage had minimal 

impact on individuals’ change in contacts. We inferred reproduction numbers from changes in contact 

rates mathematical framework and found that the reduction in transmission due to vaccination was 

insufficient to fully offset the observed increase in contact rates, but transmission was still maintained 

below what it would have been pre-distancing levels.  

Conclusion 

These findings reveal the complex interplay between vaccination, behavior, and transmission dynamics, 

emphasizing the importance of considering changing behavior in mathematical models for transmission 

and underscores the need for ongoing monitoring of contact patterns during pandemics. 
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3.2 Introduction 

The COVID-19 pandemic profoundly altered social behaviors and contact patterns192. Early in the 

pandemic, efforts to reduce transmission (e,g., shelter-in-place policies;  and closures of schools, 

workplaces and public locations) prompted dramatic reductions in person-to-person interactions in many 

places.110 As initial measures were relaxed, rates of contact gradually rebounded and began to fluctuate, 

increasingly shaped by individual choice rather than policy mandates.78,80 In January 2021, the 

widespread rollout of COVID-19 vaccinations marked a new phase in the control of COVID-19. COVID-

19 vaccinations substantially reduced morbidity and mortality149,193,194 and permitted the easing of risk 

mitigation policies such as school closures and restrictions on indoor gatherings.  

At the individual level, the extent of behavior change following vaccination was likely driven by risk-

value trade-offs. Individuals weighed the benefits of in-person activities against the perceived and real 

risk of infection, severe illness and onward transmission post-vaccination115. Community-level 

vaccination rates also played a role in behavior change. Increased vaccination rates among one’s social 

network may have led to decreased risk perception regardless of one’s own vaccination status115,124. 

Lower risk perception was associated with less frequent adherence and adoption of risk mitigation 

measures during the COVID-19 pandemic195. 

Contact rates in populations provide a quantifiable link between shifting individual behavior and 

population-level transmission and are an important assumption in mathematical models, tools that are 

critical to estimating the impact of interventions for SARS-CoV-2 control. R0, the number of secondary 

infections generated by an average infectious individual in a fully susceptible population, is a function of 

both the number of contacts made by individuals and their level of susceptibility against infection. 

Although vaccines provide strong protection against severe SARS-CoV-2 infection, vaccine protection 

against infection and onward transmission is incomplete196. Therefore, if vaccinated individuals 

drastically increased their contact post-vaccination, they may inadvertently have a higher probability of 

infection and potential for onward transmission than unvaccinated individuals with lower contact. At the 
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population-level, incomplete vaccine protection against infection followed by increasing contact rates 

post-vaccination could lead to higher incidence than pre-vaccination115.  Understanding potentially 

counterintuitive population-level effects of vaccination, whereby the introduction of vaccination increases 

disease incidence among some groups, is critical to understand the overall health impact of a COVID-19 

vaccine program in the context of a protracted pandemic.    

Evidence on behavior change following COVID-19 vaccination is mixed and primarily from earlier 

periods of vaccine rollout. Moreover, most studies compared the adoption of protective behaviors 

between vaccinated and unvaccinated individuals rather than estimating differences in contact rates. Only 

one previous study assessed differences in contact rates between vaccinated and unvaccinated individuals 

across multiple European countries between Dec 2020 – Sept 2021197, observing that vaccinated 

individuals had higher contact rates compared to unvaccinated individuals. At present, there is a lack of 

evidence on the effect of COVID-19 vaccination on changes to individual-level contact rates in the U.S, 

where attitudes towards vaccination and other social distancing measures were different than in Europe, 

and the subsequent impact of such changes on population-level transmission.    

Our analysis leverages longitudinal data obtained from a diverse U.S. cohort that spans the duration of 

vaccine rollout and multiple subsequent waves of the pandemic from August 2020 to March 2022. We 

separately assess the impact of changing individual-level vaccination and community-level vaccination 

coverage on changes to an individual’s contact rate. We further estimate the impact of changing contact 

rates on population-level transmission using a model that estimates the relative transmissibility (ratio of 

Rt to R0) from contact rates, vaccination coverage and vaccine protection.  

3.3 Methods 

3.3.1 Sampling 

The COVIDVu study is a longitudinal survey that was conducted during the COVID-19 pandemic, 

consisting of a diverse and geographically representative cohort of individuals sampled from households 

in the United States. The address-based household sampling frame was previously described198. In brief, 
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residential addresses were chosen to be representative of the U.S. population in terms of age, gender, 

race/ethnicity, education level, household income, region of residence and home ownership.  From each 

household, a single household member >18 years of age was randomly chosen to participate in the study. 

Surveys were conducted at four time points representing distinct periods of the COVID-19 pandemic in 

the U.S.: 1) August–December, 2020, during initial relaxation of the most stringent pandemic restrictions 

followed by a rise in cases in the winter of 2020; 2) March–April, 2021; during the start of widespread 

COVID-19 vaccine availability and a fall in cases 3) July–August, 2021; during continued relaxations in 

policies and case surges during the Delta wave and 4) March–April, 2022; shortly after the Omicron 

wave199. The COVIDVu study was approved by the Emory University Institutional Review Board 

(STUDY00000695). 

3.3.2 Survey data  

Participants completed an online survey which included a set of questions that measured  vaccination 

status198, risk mitigation behaviors, level of concern for new variants during the four survey periods, and 

included a contact survey adapted from previously published contact surveys55,79,200,201. Participants 

reported on the number of contacts they had the day before the survey by age of contact (0-4 years, 5-9 

years, 10-19 years, 20-39 years, 40-59 years, 60-69 years, and 70 years and older) and by location (home, 

work, school, other locations). Contacts were classified as physical (physical touch, such as hug or kiss) 

or non-physical (being within 6 feet with an exchange of three or more words or for longer than 15 

minutes)202,55,66,105,203–205.  Other information collected as part of the survey included sociodemographic 

characteristics (age, gender, race/ethnicity, household size, occupation status), presence of comorbidities 

and political affiliation at baseline. Age, gender and race/ethnicity were imputed when missing using 

hierarchical hot deck imputation206,207.  

3.3.3 Latent class model to classify risk tolerance at baseline 

We conducted latent class analysis (LCA) to classify participants into unobserved groups of similar 

patterns of intrinsic risk tolerance. We used participant-reported level of adoption of various risk 
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mitigation behaviors at baseline as indicator inputs into the LCA. We used the R software package 

“poLCA”208 and considered several sets of indicator variables (Table 3-5). To select for the number of 

classes, we considered statistical criteria of model fit (Bayesian information criteria) and model 

diagnostics (target mean posterior probability for classification and entropy)209. To decide on the set of 

indicator variables and number of classes, we aimed to select the best-fitting model that met diagnostic 

criteria that allowed for more classes for more distinguishing power. Individuals were assigned to latent 

classes based on the probabilities of belonging to each class based on the model of choice. LCA classes 

were considered as model covariates. Detailed methods can be found in 3.7.2. 

3.3.4 Modeling effect of vaccination on contact rate 

We fit a multivariate mixed linear regression to estimate the effect of vaccination on change in contact 

rate, with a random intercept for the individual to account for repeated survey responses from the same 

participants. The primary outcome was change in number of contacts made in one day between two 

consecutive periods of data collection, chosen to examine how contacts evolved over time and to isolate 

the effect of vaccination from broader temporal trends in contact rates. Secondary outcomes were change 

in location-specific contacts between two consecutive periods made at work, home and at other locations 

(i.e., stores and restaurants, public transit, gym). Before calculating change in contact rate, we truncated 

the number of location-specific contacts at the 99th percentile of responses for each round to reduce the 

effect of unrealistic survey responses and computed the truncated number of total contacts by summing 

the truncated location-specific contacts. Previous studies chose 100197,210 or 450 contacts as cutoffs.202 In 

sensitivity analysis, we considered other truncation criteria of 1) 95th percentile; 2) 97.5th percentile and 3) 

100 contacts per location.  

The primary exposure was change in vaccination status: 1) unvaccinated at current period (no change); 2) 

one SARS-CoV-2 vaccine dose between previous period and current period; 3) completed primary series 

between previous period and current period; 4) completed second dose between previous period and 

current period and 5) fully vaccinated before current period (no change) (schematic in 3.7.3). The 
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secondary exposure was vaccination coverage in the participant’s county of residence at the time of 

survey completion. We decided a priori to adjust for age group and household size, which are known to 

influence both contact and COVID-19 vaccine uptake112,211. Since contact rates fluctuated during the 

pandemic in response to both policy measures and individual risk perception197,210, we decided a priori to 

adjust for time-varying covariates of state-wide COVID-19 stringency level, using the Oxford Stringency 

Index (OSI)160) and the level of changing personal concern for new variants. The OSI is a composite 

index of nine mitigation interventions (stay-at-home orders, closure of schools, workplaces and public 

transport, restrictions on gatherings, cancellation of public events, movement restrictions and international 

travel controls) and is used as a comparable time-varying measure of stringency of risk mitigation policies 

at the state-level. We used the OSI of participant’s state of residence on the date of survey completion.  

We conducted stepwise backwards selection to decide on the most parsimonious set of additional 

covariates (gender, race/ethnicity, self-reported political affiliation, income status, employment status, 

comorbidity, baseline LCA) to include in the fully adjusted multivariate model. Briefly, an initial model 

was fit with all potential covariates. The covariate producing the lowest change in effect estimate of 

primary outcome was removed until removing any additional covariate produced an important change 

(>10%).  

3.3.5 Estimating the impact of contact change on transmission potential 

We incorporated both vaccine effectiveness and changing contact rates among vaccinated and 

unvaccinated participants into a mathematical framework to estimate their joint effects on transmission 

using the Next Generation Matrix (NGM) at each round t. The NGM quantifies the number of secondary 

infections generated in each population subgroup based on heterogeneous mixing patterns between and 

within subgroupError! Reference source not found.. Here, we stratify the population into vaccinated a

nd unvaccinated subgroups (Eq 1). Briefly, 𝑅𝑣𝑣 is the number of secondary infections generated between 

vaccinated persons interacting with other vaccinated persons. Under assumptions of proportional mixing 

between the two subgroups based on the vaccine coverage in the US at the time of each survey, 𝑅𝑣𝑣 is 



19 

defined by 𝑐𝑣,𝑡, contact rate among vaccinated persons in data collection round t; 𝜒𝑡, vaccine coverage; 𝛽, 

the probability of transmission between two unvaccinated individuals; 𝑉𝐸𝑠, vaccine effectiveness against 

susceptibility (50% for main analysis) and 𝑑, the duration of infection (7 days)212. We estimate 𝛽 through 

the formula 𝛽 =
𝑅

𝑑∗𝑐
, assuming an initial reproduction number, R, of 343,213,214 and a daily mean contact 

rate of 16 in the U.S. under no social distancing60. 𝑅𝑡 is estimated by solving for the dominant eigenvalue 

of the NGM200,212,215 (Eq 2). We then produce NGMs exploring a range of vaccine coverage, accounting 

for heterogeneity in local coverage, and a range of mixing assortativity where vaccinated individuals 

preferentially mix with other vaccinated individuals and unvaccinated with other unvaccinated.  

𝑁𝐺𝑀𝑡 = (
𝑅𝑣𝑣 𝑅𝑣𝑢

𝑅𝑢𝑣 𝑅𝑢𝑢
) =  (

𝑐𝑣,𝑡𝜒𝑡𝛽(1 − 𝑉𝐸𝑠)𝑑 𝑐𝑣,𝑡(1 − 𝜒𝑡)𝛽𝑑

𝑐𝑢,𝑡𝜒𝑡𝛽(1 − 𝑉𝐸𝑠)𝑑 𝑐𝑢,𝑡(1 − 𝜒𝑡)𝛽𝑑
) Eq 1 

 

 

𝑅𝑡 = 𝜆(𝑁𝐺𝑀𝑡) 
Eq 2 

 

3.4 Results 

3.4.1 Participant description 

A total of 2403 adult participants aged 18 years and above completed all four survey rounds and were 

included in the analysis. Among the included participants, the median age was 52 years (IQR: 36-65) at 

baseline and 1496 (62%) were female. Most identified as non-Hispanic White (n=1657, 69%), followed 

by non-Hispanic Black (n=302, 13%), Hispanic (n=276, 11%), non-Hispanic Asian (n=126, 5%) and non-

Hispanic Other (n=42, 2%), comparable to the distribution of race and ethnicity in the U.S216.  

Latent Class Analysis of risk mitigation measures to classify risk tolerance 

We included all available variables on risk mitigation behavior into the latent class classification 

(distribution of responses in Figure 3-3 and radar plots in Figure 3-4).  We found that BIC values were 

lower (indicating a better fit) among 2-, 3- and 4-class solutions and model diagnostic criteria were met 

for 3- and 4- class solutions (Table 3-6) and decided to use a 4-class solution for increased distinguishing 
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power offered by more classes. In the 4-class solution, individuals classified into the lowest risk tolerance 

group were substantially more likely to engage in risk mitigation behavior.  For example, 90% of 

individuals with the lowest risk tolerance reportedly always wore a mask when going out compared to 8% 

of individuals with the highest risk tolerance (Table 3-7). Individuals with the lowest risk tolerance at 

baseline were less likely to remain unvaccinated although Spearman’s rank correlation coefficient showed 

only a weak correlation between vaccination status and risk tolerance classification (-0.16 on a scale of -1 

to 1 where 0 is no correlation) (Table 3-9).  

3.4.2 Change in contact rates over time 

Overall, the mean number of total daily contacts increased across survey rounds, from 8.4 (95% CI: 7.8-

9.0) at baseline, 9.8 (95% CI: 9.1-10.6) at round 2, 11.7 (95% CI: 10.8-12.8) at round 3 and 14.7 (95% 

CI: 13.7-15.8) at round 4 (Table 3-1). At baseline, mean numbers of contacts reported by participants 

varied by locations: 4.0 (95% CI: 3.4-4.5), 2.4 (95% CI: 2.2-2.6), 1.9 (95% CI: 1.8-2.0) and 0.1 (95% CI: 

0.1-0.1) contacts at work, other locations, home, and school, respectively, accounting for 48%, 29%, 22% 

and 1% of all contacts, respectively.  Mean contact rates increased at both work and other locations 

throughout the survey rounds but remained similar at home and at school. Contact rates at work increased 

to 4.8 (95% CI: 4.1-5.4) in round 2, 5.3 (95% CI: 4.6-6.0) in round 3, 7.5 (95% CI: 6.7-8.4) in round 4 

and contact rates at other locations increased to 2.7 (95% CI 2.4-3.0) in round 2 to 4.1 (95% CI 3.7-4.4) in 

round 3 to 4.4 (95% CI 4.0-4.9) in round 4 (Table 3-1).  

3.4.3 Vaccination and contact rates 

COVID-19 vaccinations became available for the general population during round 2, and vaccination 

rates among participants increased between round 2 and round 4. In round 2, 1,773 (49%) of participants 

were unvaccinated and by round 4, only 255 (11%) remained unvaccinated. In each round, contact rates 

were higher among participants remaining unvaccinated compared to those who had completed the 

primary series (10.8 contacts (95% CI: 9.5-12.0) versus 8.6 contacts (95% CI: 7.6-9.5 in round 2 and 15.2 

contacts (95% CI: 11.7-18.6) versus11.2 contacts (95% CI: 10.4-12.1) in round 3) (Figure 3-1; Table 
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3-11Table 3-11. Mean contact rates over survey round and time-varying covariates). The overall primary 

series vaccination coverage among all age groups in the U.S. rose from 11.5% in round 2 to 65.9% by 

round 440. Contact rates were comparable across counties with different levels of vaccination coverage in 

rounds 2 and 3 but participants residing in counties with higher coverage had lower contact rates 

compared to those residing in counties with lower coverage (Figure 3-8).  

3.4.4 Variation in contact rates by key covariates 

At baseline, contact rates differed by age group, employment status, risk tolerance, presence of 

comorbidities and household size. Younger individuals had higher contact rates, with 18-24-year-olds 

reporting the most contacts at 12.9 (95% CI: 9.1-16.8) and 65+ year olds reporting the fewest contacts at 

3.9 (95% CI: 3.3-4.4). Employed individuals required to work outside of their homes reported the most 

contacts at 14.1 (95%CI: 12.8-15.5), while employed individuals permitted to work at home and 

unemployed individuals had similarly low contacts of 4.8 and 4.1, respectively. Individuals classified as 

having high risk tolerance had the highest contacts at 14 (95% CI: 11.4-16.7) and those classified as 

medium-low risk tolerance had the lowest contacts at 4.2 (95% CI: 3.7-4.7). Individuals without 

comorbidities had more contacts (9.1; 95% CI: 8.2-10.0) than those with at least one comorbidity (7.7; 

95% CI: 6.9-8.5). (Table 3-1). Contact rates were more comparable by gender, household income, 

race/ethnicity, and political affiliation at baseline.  

Contacts increased in all subgroups through survey rounds across almost all sociodemographic groups 

(Table 3-1; Figure 3-1. Distribution of mean contact rates and exposure over survey round).  Absolute 

increases in contact between rounds one and four were comparable across age group, gender, those with 

and without comorbidities and political affiliation. For example, mean contacts among 18-24-year-olds 

increased by 6.2 contacts between rounds one and four, comparable to an increase of 5.0 contacts among 

65+ year olds. In contrast, Hispanic individuals, individuals classified as having the highest risk tolerance 

and those working at home at baseline had the most absolute increase in contact compared to individuals 

in all other racial/ethnic, risk tolerance and employment subgroups.  
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Contact rates further differed by time-varying covariates of self-reported concern over new variants and 

stringency of state-level COVID-19 mitigation policy. Over survey round, participants reported decreased 

concern over new variants and were less likely to live in states with stringent COVID-19 mitigation 

policies such as restrictions to public gatherings and school closures. Participants who reported increased 

concern over new variants and participants who resided in states with more stringent mitigation policies 

reported fewer contacts (Figure 3-6; Figure 3-7).  

3.4.5 Change in individual-level vaccination status over time 

We categorized our main exposure as the change in vaccination status between rounds to isolate the effect 

of receiving vaccination on change in contact behavior. Between round 1 and 2, 1173 (49%) remained 

unvaccinated, 484 (20%) newly received the first dose and 746 (31%) newly completed the primary 

series. Between round 2 and 3, 254 (11%) remained unvaccinated, 149 (6%) newly received the first dose, 

1,254 (53%) newly completed the primary series. Between round 3 and 4, 148 (6%) remained 

unvaccinated, 50 (2%) newly received the first dose, 204 (9%) newly completed the primary series and 

2001 (83%) were already fully vaccinated before round 3 (Figure 3-1).  
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Figure 3-1. Distribution of mean contact rates and exposure over survey round 

A. Distribution of mean contact over survey round stratified by age group, gender, race/ethnicity, 

household size, political affiliation, and employment status. B. Mean contact rates by vaccine doses (0-

blue, 1-green, 2-yellow) received for each round with the size of circle representing the number of 

participants reporting each vaccination status in each round. C. Distribution of the main exposure, change 

in vaccination status, over round of survey.
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Variable Value 

Total (%) 

(N=2403) 

Mean contact rate (95% CI) 

Round 1 Round 2 Round 3 Round 4 

(Aug-Dec, 2020) (Mar-Apr, 2021) (July-Aug, 2021) (Mar-April, 2022) 

Location-specific contacts among all participants 

  

Work 

2403 

(100%) 

4 (3.4-4.5) 4.8 (4.1-5.4) 5.3 (4.6-6) 7.5 (6.7-8.4) 

Other 2.4 (2.2-2.6) 2.7 (2.4-3) 4.1 (3.7-4.4) 4.4 (4-4.9) 

Home 1.9 (1.8-2) 2.2 (2.1-2.4) 2.3 (2.1-2.4) 2.3 (2.2-2.4) 

School 0.1 (0.1-0.1) 0.1 (0.1-0.1) 0.1 (0.1-0.1) 0.5 (0.4-0.6) 

All-location contacts stratified by population subgroup 

Overall    8.4 (7.8-9) 9.8 (9.1-10.6) 11.7 (10.8-12.5) 14.7 (13.7-15.8) 

Age group 

18-24 111 (5%) 12.9 (9.1-16.8) 13.4 (9.9-17) 16.5 (11-22) 19.1 (14.2-24) 

25-34 345 (14%) 10.9 (9.1-12.8) 13.4 (10.9-15.9) 16.6 (13.6-19.6) 17.4 (14.5-20.2) 

35-44 407 (17%) 10.6 (9-12.2) 11.5 (9.6-13.4) 13.3 (11.1-15.4) 19.3 (16.3-22.4) 

45-54 417 (17%) 10.2 (8.5-12) 10.9 (9-12.8) 12.7 (10.7-14.7) 17.2 (14.4-19.9) 

55-64 502 (21%) 7.9 (6.6-9.1) 9.8 (8-11.7) 10.6 (9-12.2) 13.6 (11.3-15.8) 

65+ 621 (26%) 3.9 (3.3-4.4) 5.3 (4.6-6) 7.2 (6.3-8.1) 8.8 (7.7-10) 
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Gender 

Female 1496 (62%) 8.4 (7.7-9.2) 10.4 (9.4-11.4) 11.7 (10.6-12.7) 14.9 (13.6-16.2) 

Male 907 (38%) 8.3 (7.3-9.2) 8.9 (7.8-10) 11.7 (10.4-12.9) 14.5 (12.9-16.1) 

Race/ethnicity 

Hispanic 276 (11%) 8.1 (6.5-9.7) 10 (7.8-12.3) 12.1 (9.6-14.5) 16.7 (13.1-20.3) 

Non-Hispanic, White 1657 (69%) 8.3 (7.6-9) 9.4 (8.6-10.2) 11.8 (10.8-12.8) 14.9 (13.7-16.1) 

Non-Hispanic, Black 302 (13%) 9 (7-11.1) 11.9 (9.1-14.7) 10.9 (8.7-13.1) 14.2 (11-17.4) 

Non-Hispanic, Asian 126 (5%) 8.8 (6.1-11.5) 9.6 (6.7-12.6) 10.8 (7.3-14.3) 11.5 (8.4-14.6) 

Non-Hispanic, Other 42 (2%) 6.9 (3.6-10.2) 10.4 (3.7-17.1) 13 (5.3-20.6) 9.5 (5.3-13.6) 

Household size 

1 638 (27%) 6.7 (5.6-7.8) 8.1 (6.7-9.5) 10.3 (8.8-11.8) 12.1 (10.3-13.9) 

2-4 1619 (67%) 8.8 (8-9.5) 9.9 (9-10.7) 11.9 (10.9-12.9) 14.9 (13.8-16.1) 

5+ 146 (6%) 11.4 (8.7-14.1) 16.8 (12.3-21.3) 15.3 (11.3-19.4) 24 (17.3-30.7) 

Self-reported 

political 

affiliation 

Democratic 996 (41%) 7.4 (6.6-8.3) 8.5 (7.5-9.5) 10.2 (9.1-11.3) 13.2 (11.7-14.8) 

Republican 378 (16%) 8.4 (7-9.8) 9.3 (7.7-11) 12.7 (10.7-14.7) 15.5 (13.2-17.9) 

Independent 445 (19%) 7.9 (6.6-9.3) 9.7 (8-11.5) 12.2 (10.1-14.2) 15.7 (13.2-18.2) 

Unknown 584 (24%) 10.3 (8.9-11.7) 12.4 (10.6-14.3) 13.1 (11.2-15.1) 16.1 (13.9-18.3) 

Employment 

status 

Emp,in home 472 (20%) 4.8 (4.1-5.5) 5.5 (4.6-6.4) 8.3 (6.8-9.9) 12.5 (10.2-14.7) 

Emp,out home 950 (40%) 14.1 (12.8-15.5) 15.4 (13.9-17) 17.2 (15.6-18.9) 20.8 (18.8-22.8) 

Unemp 891 (37%) 4.1 (3.7-4.5) 5.8 (5.1-6.5) 7.4 (6.6-8.2) 9 (8.1-10) 

Unknown 90 (4%) 8.6 (6.3-10.9) 13.5 (7.7-19.3) 12.3 (7.5-17.1) 19.5 (12.8-26.2) 
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Household 

income 

0-$24,999 250 (10%) 8.6 (6.6-10.7) 11 (8.3-13.7) 10.4 (8-12.8) 14.1 (10.8-17.4) 

$25,000-$74,999 756 (31%) 9 (7.8-10.2) 11.6 (9.9-13.2) 13.1 (11.3-14.8) 15.8 (13.8-17.8) 

$75,000-$149,999 695 (29%) 8.3 (7.2-9.3) 8.7 (7.5-9.9) 10.9 (9.7-12.2) 14.2 (12.5-15.9) 

Greater than $150,000  384 (16%) 8.4 (6.9-9.9) 9.3 (7.8-10.8) 12.4 (10.4-14.5) 15.5 (13-18) 

Unknown 318 (13%) 6.8 (5.4-8.2) 7.7 (6.3-9.1) 10 (7.9-12) 12.9 (10.3-15.6) 

Comorbidities 

No 1151 (48%) 9.1 (8.2-10) 10.3 (9.2-11.4) 12.4 (11.2-13.6) 15.7 (14.2-17.3) 

Yes 1252 (52%) 7.7 (6.9-8.5) 9.4 (8.3-10.4) 11 (9.9-12.1) 13.8 (12.5-15.2) 

Risk tolerance1 

(from Latent 

Class Analysis) 

High 208 (9%) 14 (11.4-16.7) 18.2 (14.6-21.8) 20.8 (16.5-25.2) 24 (19.5-28.4) 

Med-high 841 (35%) 9.1 (8.1-10) 9.7 (8.6-10.8) 11.2 (10-12.3) 14.9 (13.4-16.5) 

Med-low 856 (36%) 4.2 (3.7-4.7) 6.6 (5.6-7.7) 8.3 (7.2-9.3) 10.9 (9.5-12.4) 

Low 498 (21%) 12 (10.2-13.8) 12 (10.1-14) 14.5 (12.3-16.7) 17.1 (14.4-19.8) 

 

Table 3-1. Mean contact rate stratified by participant characteristics 

1 Risk tolerance characterized by latent class analysis of responses to a set of survey questions related to risk mitigation behavior.
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3.4.6 Effect of vaccination on change in contact rates 

After stepwise backwards regression, we arrived at a multivariate model that was adjusted for age group, 

household size, political affiliation, employment status, risk tolerance at baseline estimated by a Latent 

Class Analysis, baseline contact rates, change in concern over pandemic and stringency of COVID-19 

policy at the state-level (OSI). Our model outcome is change in contact rates between consecutive survey 

rounds, chosen to explore marginal differences in increases due to vaccination in the context of 

universally increasing contact rates. In the fully adjusted model, individuals who completed a primary 

series between two survey rounds increased their contacts by an additional 1.93 (95% CI: 0.27-3.59) 

contacts compared to individuals who remained unvaccinated. Individuals already fully vaccinated had an 

additional increase of 2.72 (95%CI: 0.71-4.73) contacts, and individuals who newly received the first 

vaccine dose had a slight increase of contacts 0.99 (95%CI: -1.12-3.1) (Figure 3-2; Table 3-2). 

Multivariate models using change in location-specific contacts at work, other leisure locations and home 

as the outcome showed that individual-level vaccination status affected contacts at work and at other 

locations and did not affect contacts at home. Individuals newly completing a primary series reported 

additional increases of 0.99 (95% CI: -0.4-2.39), 0.63 (95% CI: -0.15-1.51) and 0.94 (95% CI: 0.16-1.73) 

contacts at work, other locations, and home, respectively (Figure 3-2; Table 3-2). We did not find 

evidence that increasing vaccination coverage in participants’ county of residence was associated with a 

change in contact (Figure 3-2; Table 3-2).  

In sensitivity analysis using various thresholds for truncating survey responses of high numbers of 

contacts, we find similar trends in the effect of vaccination on change in contact regardless of the 

threshold used (Table 3-16). Truncating at 100 contacts per location provided similar effect estimates 

whereas more stringent truncation at 97.5th and 95th percentiles produced smaller effect estimates, but 

similar trends. 
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Covariate Category 

Change in number of contacts 

Univariate 

associations 

Multivariate 

associations 

Intercept     6.95(1.65-12.25) 

Change in 

vaccination status 

Remain unvaxed     

First dose new 0.59(-1.46-2.64) 0.99(-1.12-3.1) 

Newly completed series 1.11(-0.37-2.58) 1.93(0.27-3.59) 

Already fully vaxed 1.9(0.48-3.31) 2.72(0.71-4.73) 

Every 20% increase in county-level vax coverage 0.41(-0.01-0.83) -0.37(-1.02-0.29) 

Age group 

18-24 yrs     

25-34 yrs 0.1(-2.71-2.92) -0.06(-2.98-2.86) 

35-44 yrs 0.88(-1.88-3.65) 0.63(-2.24-3.51) 

45-54 yrs 0.26(-2.5-3.02) 0.42(-2.47-3.31) 

55-64 yrs -0.15(-2.86-2.56) -0.07(-2.89-2.75) 

65+ yrs -0.39(-3.06-2.27) -0.67(-3.52-2.18) 

Gender 

Female     

Male -0.08(-1.16-1.01)   

Race ethnicity 

Hispanic     

Non-hispanic, White -0.67(-2.35-1.01)   

Non-hispanic, Black -1.13(-3.29-1.02)   

Non-hispanic, Asian -1.95(-4.72-0.83)   

Non-hispanic, Other -2.01(-6.28-2.27)   

Household size 

1     

2-4 0.25(-0.95-1.46) 0.16(-1.08-1.39) 

5+ 2.4(0.03-4.77) 1.56(-0.96-4.08) 
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Political affiliation 

Dem     

Rep 0.47(-1.09-2.03) -0.04(-1.7-1.62) 

Ind 0.67(-0.8-2.15) 0.68(-0.81-2.18) 

Unknown 0.47(-1.09-2.03) -0.04(-1.7-1.62) 

Employment status 

Emp,in home     

Emp,out home -0.33(-1.78-1.13) -0.39(-1.9-1.12) 

Unemp -0.91(-2.38-0.56) -0.67(-2.33-0.99) 

Unknown 1.07(-1.9-4.04) 0.43(-2.59-3.46) 

Household income 

$0-$24,999     

$25,000-$74,999 0.44(-1.5-2.37)   

$75,000-$149,999 0.16(-1.8-2.12)   

More than $150,000 0.55(-1.61-2.71)   

Comorbidities 

No     

Yes -0.18(-1.23-0.88)   

Risk tolerance (from 

Latent Class Analysis) 

High     

Med-high -1.35(-3.35-0.65) -1.28(-3.4-0.84) 

Med-low -1.08(-3.08-0.92) -0.94(-3.12-1.25) 

Low -1.61(-3.74-0.53) -1.61(-3.86-0.64) 

Unit increase in baseline contact rates -0.16(-0.2--0.13)   

Change in concern 

over pandemic   

Decreased greatly     

Decreased slightly -2.3(-6.25-1.66) -2.39(-6.37-1.58) 

No change -4.07(-7.14--1) -3.83(-6.93--0.74) 

Increased slightly -5.35(-8.4--2.3) -5.06(-8.19--1.93) 

Increased greatly -4.46(-7.82--1.11) -4.25(-7.7--0.81) 
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Unit increase in state-wide Oxford Stringency Index -0.04(-0.08-0) -0.01(-0.07-0.04) 

 

Table 3-2. Univariate and multivariate effect estimates of individual-level vaccination status and county-

level vaccination status on change in contact rates 

a Main effect is the difference in change in contact rates between rounds among individuals with various 

vaccination status (first dose new, both dose new, second dose new and already fully vaccinated) 

compared to the change in contact rates among unvaccinated individuals. 

b The multivariate model adjusted for age group, household size, political affiliation, employment status, 

risk tolerance at baseline estimated by a Latent Class Analysis, change in concern over pandemic and the 

state-wide Oxford Stringency Index approximating stringency of COVID-19 policy at the state-level.   

3.4.7 Impact of differential changes in contact rates among vaccinated and unvaccinated on 

transmission 

When we jointly modeled the effects of contact rates and reduced transmissibility from vaccine protection 

using the NGM, we found that assuming up to 50% vaccine effectiveness against susceptibility, vaccine 

protection was unable to offset increases in contact rates. Despite increases in transmission intensity, 

relative transmissibility (ratio of Rt/R(t=0)) remained below one in round 2 and round 3, suggesting that Rt 

remained less than R(t=0), the pre-social distancing estimate for transmissibility of the original SARS-

CoV-2 strain. In round 4, contact rates among both vaccinated and unvaccinated increased to an extent 

that relative transmissibility could have exceeded one (Figure 3-2). Areas with low vaccination coverage 

or highly assortative mixing where unvaccinated individuals mix preferentially with other unvaccinated 

individuals are most likely to have increased relative transmissibility.   
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Figure 3-2. Plots of main effect estimate and change in relative transmissibility 

A. Plots of difference in contact change among vaccinated groups compared to contact change among 

unvaccinated and the effect estimate for every 20% increase in county-level vaccination coverage for 

multivariate (blue) and univariate (yellow) estimates among contacts in all locations, at work, at other 

leisure locations and at home.  

B. Relative transmissibility based on measured contact in vaccinated and unvaccinated for each round 

using a vaccine effectiveness against susceptibility of 50% and sweeping across vaccine coverage (0%-

100%) and assortativity (0-1). Relative transmissibility is the ratio of Rt to R(t=0)., R(t=0) is estimated at 3 for 

the transmissibility of the original SARS-CoV-2 strain pre-social distancing.  
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3.5 Discussion 

Using longitudinal data from the U.S. spanning 18 months of the pandemic, we found that while 

unvaccinated individuals persistently had the highest contact rates, those newly completing their primary 

series had a greater increase in contact compared to unvaccinated individuals. Fully vaccinated 

individuals continued to increase their contact through subsequent survey rounds suggesting continued 

effects beyond the initial post-vaccination phase. Further, individual-level vaccination had more impact 

on changes in contact rates at work and at other locations than at home and we did not find evidence of an 

effect of county-level vaccination coverage on changes in contact rates. Lastly, transmission intensity 

remained below that of pre-distancing levels despite increases in transmission observed from modeling 

the joint effects of vaccine protection against infection and increasing contact rates following vaccination.  

Our findings of increased changes in contact among those newly completing a primary vaccine series 

aligns with evidence from the U.S.132, Japan127, Italy128, Bangladesh129, Israel130, and Brazil131 that 

observed a decline in protective behaviors among vaccinated individuals. While these studies assessed the 

adoption of risk mitigation behavior post-vaccination217, we focused on quantifying effects on contact 

rates which we used to estimate population-level changes in transmission due to vaccination. Our findings 

further isolated the effect of vaccination on individual-level changes in contact rates, extending on 

evidence from a multi-country European study that found increased contacts among vaccinated 

individuals197. Evidence from the UK123–125 and a cross-sectional study across 12 countries126 found no 

change in behavior post-vaccination. The restricted timing of these studies to the first months of vaccine 

rollout in early 2021 likely explains the difference in conclusion compared to our study that expanded 

over 18 months.   

We further show that the extent of contact increase following vaccination is unlikely to raise 

transmissibility to above that of pre-social distancing levels, particularly under sufficient (>50%) vaccine 

coverage and moderately assortative (Q<0.5) to proportional mixing (Q=0) between vaccinated and 

unvaccinated individuals. The hypothesized effect of county-level vaccine coverage on contact rates 
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assumes that information on which people act is available to them. In reality, most are unlikely to monitor 

local vaccination coverage beyond their most immediate social networks, potentially explaining the lack 

of effect of county-level coverage on change in contact rates. Similar to previous studies conducted both 

during72,75,110,200,202,210,218–220 and before the pandemic, contact rates differed by age group, employment 

status, risk tolerance, presence of comorbidities and household size55,221, across all data collection periods. 

Despite these differences, contact rates universally increased across most sociodemographic groups across 

survey round. 

The observed clustering of risk mitigation behaviors was consistent with previous analyses133–135. 

Individuals who adopted one mitigation measure at baseline were more likely to adopt multiple, 

partitioning the population into highly protected groups reporting low contact rates and highly exposed 

groups reporting high contact rates. Moreover, individuals who remained unvaccinated had persistently 

higher contact, and presumably had higher probability of infection prior to vaccine rollout.  While contact 

rates universally increased among both vaccinated and unvaccinated individuals, additional increases in 

contact among vaccinated individuals, who were on average more cautious prior to vaccination and thus 

less likely to have infection-induced immunity, likely has implications on changing infection probabilities 

among vaccinated and unvaccinated individuals. Empirical data on differences in contact change can 

inform infectious disease models seeking to directly incorporate complex behavioral feedback loops to 

improve estimations of population-level vaccine impact. Our estimates on the expected increase in contact 

rates from changes in individual vaccination status and community vaccination coverage enables the 

explicit representation of the relationship between vaccination and contact rates in mathematical models.   

There are several limitations to this analysis. Baseline participation rates were 10-15% which are low but 

typical for mailed surveys using address-based sampling frames222. Because attrition between survey 

rounds was also likely differential, the subset of participants who responded to all four surveys is not 

rigorously representative of the U.S. population; however, we find similar distributions of key covariates 

among those initially enrolled and among those completing all survey rounds (3.7.1). Our cohort had a 
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higher rate of completing primary series of vaccination than the general U.S. population. We find that by 

round 4, 91% of our cohort had completed the primary series compared to 79% of the U.S. population 

aged 18 years and above. This suggests that our cohort has more health awareness and results may not be 

generalizable to the larger U.S. population. Social desirability bias from self-report may result in 

underestimates of contact and overestimates to adherence of other risk mitigation measures; however, if 

underestimation was consistent across rounds, changes in contact rates would remain valid even if the 

absolute rates are underestimated. Many individuals received either their first or second dose of the 

vaccine between the second and third time points when a range of policies and sentiments regarding 

COVID-19 precautions were changing. Additional contemporaneous and unmeasured changes such as 

remote work policies, increasing population-level vaccine coverage could have affected changes in 

contact rates. Despite challenges in disentangling the effects of vaccination on changing contact rates 

from other contemporaneous changes is difficult, we adjusted for numerous important factors that affect 

contact rates such as the OSI, baseline risk tolerance and concern for new variants.  

3.6 Conclusion 

In conclusion, our study sheds light on the complex interplay between COVID-19 vaccination, individual 

behavior, and population-level transmission dynamics. We find that COVID-19 vaccination can influence 

individual behavior, leading to an increase in contact rates. Given the substantial vaccine protection 

against severe disease, vaccinations permitted the safe relaxation of the most disruptive social distancing 

measures, but also resulted in behavioral changes that had a net effect of increasing transmission.  These 

findings underscore the importance of considering behavioral changes when modeling the impact of 

vaccination strategies and highlight the need for continued monitoring of contacts as they evolve in 

response to current and future pandemics.   
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3.7 Supplementary File 

3.7.1 Comparing distribution of covariates among initially enrolled study population and those 

completing follow-up 

Variable Value 

Total completing 

follow-up (%) 

(N=2403)1 

Total initially 

enrolled (N=4654) 
 

 

Age group 

18-24 111 (5%) 308(7%)  

25-34 345 (14%) 705(15%)  

35-44 407 (17%) 777(17%)  

45-54 417 (17%) 765(16%)  

55-64 502 (21%) 926(20%)  

65+ 621 (26%) 1173(25%)  

Gender 

Female 1496 (62%) 2727(59%)  

Male 907 (38%) 1927(41%)  

Race/ethnicity 

Hispa nic 276 (11%) 607(13%)  

Non-Hispanic, White 1657 (69%) 3063(66%)  

Non-Hispanic, Black 302 (13%) 683(15%)  

Non-Hispanic, Asian 126 (5%) 221(5%)  

Non-Hispanic, Other 42 (2%) 80(2%)  

Household size 

1 638 (27%) 1204(26%)  

2-4 1619 (67%) 3093(66%)  

5+ 146 (6%) 357(8%)  

Self-reported 

political affiliation 

Democratic 996 (41%) 1201(26%)  

Republican  378 (16%) 464(10%)  
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Independent 445 (19%) 529(11%)  

Unknown 584 (24%) 2460(53%)  

Employment status 

Emp,in home 472 (20%) 857(18%)  

Emp,out home 950 (40%) 1854(40%)  

Unemp 891 (37%) 1734(37%)  

Unknown 90 (4%) 209(4%)  

Household income 

0-$24,999 250 (10%) 608(13%)  

$25,000-$74,999 756 (31%) 1470(32%)  

$75,000-$149,999 695 (29%) 1222(26%)  

Greater than $150,000  384 (16%) 717(15%)  

Unknown 318 (13%) 637(14%)  

Comorbidities 

No 1151 (48%) 2237(48%)  

Yes 1252 (52%) 2417(52%)  

Table 3-3. Covariate distributions among those initially enrolled versus those included in the study 

1Participants included in the study completed all four rounds of follow-up surveys.  
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3.7.2 Additional details for Latent Class Analysis (LCA) 

3.7.2.1 Survey questions on risk mitigation behavior at baseline 

Table 1. Survey questions and values on risk mitigation behavior that were considered in as indicator 

variables for the Latent Class Analysis used to classify participants into different levels of inherent risk 

tolerance at baseline 

Variable Question Values  

Social distancing 

How often are you trying to keep at 

least 6 feet between you and other 

people you don't live with to avoid 

spreading illness? 

1 = Never 

2 = Rarely 

3 = Sometimes 

4 = Often 

5 = Always 

Essential travel 

In the last month, how often have 

you gone out to grocery stores, 

pharmacies, or visiting other 

essential service providers? 

1 = Daily 

2 = Several times a week 

3 = Once a week 

4 = Once every two-three weeks 

5 = Monthly or less often 

6 = Never 

Nonessential travel 

In the last month, how often have 

you gone out to bars, dining at 

restaurants, exercising at gyms or 

other non-essential venues? 

1 = Daily 

2 = Several times a week 

3 = Once a week 

4 = Once every two-three weeks 

5 = Monthly or less often 

6 = Never 
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Face mask 

When you go out, do you wear a 

face mask? 

1 = Never (0%) 

2 = Rarely (1 - 30%) 

3 = Sometimes (31 - 69%) 

4 = Often (70 - 99%)  

5 = Always (100%) 

Public transport 

In the last month, how often have 

you used public transportation 

(bus/train) or car service 

(taxi/Uber/Lyft/other rideshare)? 

0 = 0 times 

1 = 1 - 2 times 

2 = 3 - 5 times 

3 = 6 - 10 times 

4 = More than 10 times 

Intention to vaccinate 

How likely are you to get 

vaccinated for coronavirus once a 

vaccination is available to the 

public? 

1 = Very unlikely 

2 = Somewhat unlikely 

3 = Somewhat likely 

4 = Very likely 

5 = Unsure 

Handwashing with soap 

Estimate how many times you 

washed your hands with soap and 

water yesterday 

Quantiles for analysis 

Hand sanitizing 

Estimate how many times you used 

hand sanitizer on your hands 

yesterday 

Tertiles for analysis 

Table 3-4. Survey questions on risk mitigation behavior at baseline and response choices 
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3.7.2.2 Distribution of reported risk mitigation measures at baseline 

 

Figure 3-3. Distribution of indicator variables related to risk mitigation for COVID-19 prevention at 

baseline1 

1Categorical responses vary based on the variable but in general, darker colors indicate more precaution. 

3.7.2.3 Detailed methodologies for LCA 

We conducted latent class analysis (LCA) on level of adoption of risk mitigation behaviors reported at 

baseline to classify participants as having different intrinsic levels of risk tolerance. Participants were 

further asked to report on the level of adoption of recommended COVID-related risk mitigation strategies 

such as frequency of mask-wearing, social distancing, essential and non-essential travel and handwashing 

with soap. LCA assumes the presence of an underlying, unobserved latent variable that can explain 

patterns among observed indicator variables and identifies latent typologies of similar response patterns 

within indicator variables, classifying participants into unobserved groups of similar patterns of COVID-

19 risk mitigation behaviors. Here, we assume that the level of cautionary behavior during the acute phase 

of the pandemic is closely correlated with an inherent level of risk tolerance. Table 1 shows the survey 

questions related to risk mitigation available for the LCA analysis at baseline.  
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We use the R software package “poLCA”208 and considered several sets of indicator variables. To select 

for the number of classes, we considered statistical criteria of model fit and model diagnostics. For model 

fit, we primarily considered the Bayesian information criteria (BIC) which penalizes the log-likelihood by 

a function of the number of parameters estimated. We further considered the mean posterior probability 

for classification (target >80%); the entropy (target >0.8 but minimum >0.6) as diagnostic criteria and 

ensured that no class sizes are smaller than 50209.  To decide on the set of indicator variables and number 

of classes, we aimed to select the best-fitting model that met diagnostic criteria that allowed for more 

classes for more distinguishing power. Individuals are assigned to latent classes based on the probabilities 

of belonging to each class based on the model of choice.  

 

Model Indicator variables 

Full model All indicator variables 

Model 1 Social distancing + Essential travel + Nonessential travel +Face mask + 

Intention to vaccinate + Handwashing with soap + Hand sanitizing 

Model 2 Social distancing + Essential travel + Nonessential travel +Face mask + 

Intention to vaccinate 

Model 3 Social distancing + Essential travel + Nonessential travel +Face 

 

Table 3-5. Sets of indicator variables considered for the Latent Class Analysis 
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3.7.2.4 Radar plots for LCA solutions 

 

Figure 3-4. Radar plots of average profiles of each class classified under various solution sizes and 

variable groupings 

Latent class models including frequency of handwashing with soap and hand sanitization added an 

additional dimension to the classification scheme (non-concentric area plots).  
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3.7.2.5 Model fit and diagnostics 

    1 class 2 class 3 class 4 class 5 class 6 class 

BIC 

Full model 40867 40352 40352 40418 40575 40781 

Model 1 38742 38219 38197 38239 38361 38531 

Model 2 27824 27269 27266 27358 27491 27640 

Model 3 21379 20835 20876 20940 21064 21166 

AIC 

Full model 40681 39976 39785 39661 39627 39641 

Model 1 38580 37889 37700 37573 37528 37530 

Model 2 27697 27009 26873 26832 26831 26847 

Model 3 21275 20621 20552 20506 20520 20512 

Smallest 

class (N,%) 

Full model 2403 808(34%) 645(27%) 219(9%) 175(7%) 102(4%) 

Model 1 2403 756(31%) 567(24%) 223(9%) 187(8%) 167(7%) 

Model 2 2403 763(32%) 239(10%) 197(8%) 120(5%) 105(4%) 

Model 3 2403 879(37%) 326(14%) 291(12%) 239(10%) 50 (2%) 

Mean 

posterior 

probability 

Full model 1 0.87 0.82 0.8 0.73 0.69 

Model 1 1 0.88 0.82 0.8 0.74 0.68 

Model 2 1 0.88 0.8 0.77 0.67 0.65 

Model 3 1 0.86 0.78 0.71 0.67 0.72 

Entropy 

Full model NA 0.55 0.6 0.6 0.56 0.53 

Model 1 NA 0.56 0.58 0.6 0.58 0.55 

Model 2 NA 0.55 0.59 0.53 0.49 0.47 

Model 3 NA 0.53 0.5 0.48 0.45 0.53 

 

Table 3-6. Statistical criterion for model fit and model diagnostic criteria for LCA 
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3.7.2.6 Distribution of behavioral-related survey responses across the final LCA categories 

Survey question Value 4-Low 

risk 

tolerance 

3 2 1-High 

risk 

tolerance 

When you go out, do 

you wear a face 

mask? 

Never (0%) 0.20% 0% 0% 1.70% 

Rarely (1-30%) 0.20% 0% 0.10% 7.80% 

Sometimes (31-

69%) 

0% 0.60% 1.60% 21.30% 

Often (70-99%) 6.90% 9.20% 29.20% 56.10% 

Always (100%) 90.10% 87.70% 66.30% 8.30% 

Unknown 2.60% 2.60% 2.70% 4.80% 

How often are you 

trying to keep at 

least 6 feet between 

you and other people 

you don't live with 

to avoid spreading 

illness? 

Never 0.40% 0.10% 0% 3.50% 

Rarely 0.80% 0.40% 0.10% 14.30% 

Sometimes 1.20% 0.50% 7.30% 40% 

Often 32% 30.70% 67.50% 40.90% 

Always 65.20% 68.30% 24.50% 0% 

Unknown 0.40% 0% 0.60% 1.30% 

In the last month, 

how often have you 

gone out to bars, 

dining at restaurants, 

exercising at gyms 

Daily 1.20% 0% 1.40% 4.30% 

Several times a 

week 

4.20% 0% 15.50% 27.80% 

Once a week 7.90% 0.20% 27.10% 24.30% 

Once 2-3 week 10.70% 1% 25.80% 16.10% 
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or other non-

essential venues? 

Monthly 19.40% 17.10% 19.70% 14.80% 

Never 54.50% 79.20% 8% 7.80% 

Unknown 2.20% 2.40% 2.50% 4.80% 

In the last month, 

how often have you 

gone out to grocery 

stores, pharmacies, 

or visiting other 

essential service 

providers? 

Daily 5.50% 0% 5.80% 14.80% 

Several times a 

week 

40.70% 22.20% 48.80% 52.20% 

Once a week 32.80% 41.90% 39.50% 20.40% 

Once 2-3 week 13.40% 23.20% 3.80% 6.10% 

Monthly 5.70% 8.70% 0% 1.30% 

Never travel 0.20% 2.20% 0.10% 0% 

Unknown 1.60% 1.70% 2.10% 5.20% 

In the last month, 

how often have you 

used public 

transportation 

(bus/train) or car 

service 

(taxi/Uber/Lyft/other 

rideshare)? 

0 times 88.70% 92.50% 82.30% 78.70% 

1-2 times 4.70% 3.20% 10% 10.90% 

3-5 times 0.80% 1.30% 2.60% 3% 

6-10 times 0.40% 0.20% 1.30% 1.30% 

More than 10 3% 0.10% 1.10% 0.90% 

Unknown 2.40% 2.60% 2.70% 5.20% 

How likely are you 

to get vaccinated for 

coronavirus once a 

vaccination is 

Very unlikely 18.60% 7% 3.50% 39.10% 

Somewhat 

unlikely 

7.90% 4.20% 2% 23.50% 

Somewhat likely 18.80% 16% 21.80% 20.40% 
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available to the 

public? 

Very likely 35.40% 59.90% 60.10% 11.70% 

Unsure 18.80% 12.30% 12% 4.30% 

Unknown 0.60% 0.60% 0.60% 0.90% 

Estimate how many 

times you used hand 

sanitizer on your 

hands yesterday 

0 times 0% 35.70% 20.50% 28.70% 

1-3 times 1% 42.70% 41.60% 24.30% 

4-5 times 36% 2.30% 8.80% 12.20% 

6 or more times 54.90% 0% 10.40% 15.70% 

Unknown 8.10% 19.30% 18.70% 19.10% 

Estimate how many 

times you washed 

your hands with 

soap and water 

yesterday 

0-4 times 1.80% 24.90% 30.30% 23.90% 

5-6 times 14.20% 23% 25.80% 20% 

7-10 times 39.90% 22.70% 17.70% 23% 

11 or more times 36.80% 10.90% 8.10% 15.70% 

Unknown 7.30% 18.50% 18.10% 17.40% 

 

Table 3-7. Distribution of behavioral-related survey responses across LCA categories 

3.7.3 Exposure classification 

 

 

Figure 3-5. Schematic for exposure classification
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3.7.4 Exploring relationship between key covariates 
 

Risk 

tolerance 

at baseline 

Total Concern 

Increased 

greatly 

Concern 

Increased 

slightly 

No change 

in concern 

Concern 

Decreased 

slightly 

Concern 

Decreased 

greatly 

Unknown Spearman's 

Rank 

Correlation 

Coefficient 
 

n (%) n (%) n (%) n (%) n (%) n (%) 

Round 2 High 208 3(1%) 53(25%) 128(62%) 1(0%) 4(2%) 19(9%) -0.1625 

Med-high 841 52(6%) 432(51%) 313(37%) 3(0%) 4(0%) 37(4%) 

Med-low 856 96(11%) 480(56%) 240(28%) 7(1%) 1(0%) 32(4%) 

Low 498 68(14%) 226(45%) 165(33%) 3(1%) 2(0%) 34(7%) 

Round 3 High 208 14(7%) 70(34%) 115(55%) 3(1%) 5(2%) 1(0%) -0.157 

Med-high 841 122(15%) 493(59%) 196(23%) 15(2%) 14(2%) 1(0%) 

Med-low 856 201(23%) 489(57%) 142(17%) 12(1%) 11(1%) 1(0%) 

Low 498 116(23%) 245(49%) 122(24%) 7(1%) 7(1%) 1(0%) 

Round 4 High 208 1(0%) 16(8%) 138(66%) 19(9%) 34(16%) 0(0%) -0.1691 

Med-high 841 19(2%) 204(24%) 446(53%) 100(12%) 71(8%) 1(0%) 

Med-low 856 49(6%) 287(34%) 403(47%) 71(8%) 43(5%) 3(0%) 

Low 498 31(6%) 147(30%) 247(50%) 41(8%) 31(6%) 1(0%) 

Table 3-8. Correlation between risk tolerance at baseline and changes in concern for new variants 
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  Risk 

tolerance at 

baseline 

Total Remain 

unvaccinated 

First dose 

new 

Newly 

completed 

series 

Already fully 

vaccinated 

Spearman's 

Rank 

Correlation 

Coefficient   n (%) n (%) n (%) n (%) 

Round 2 High 208 159(76%) 21(10%) 28(13%) 0(0%) 0.0865 

Med-high 841 398(47%) 173(21%) 270(32%) 0(0%) 

Med-low 856 369(43%) 210(25%) 277(32%) 0(0%) 

Low 498 247(50%) 80(16%) 171(34%) 0(0%) 

Round 3 High 208 79(38%) 15(7%) 86(41%) 28(13%) 0.09582 

Med-high 841 58(7%) 61(7%) 452(54%) 270(32%) 

Med-low 856 45(5%) 41(5%) 493(58%) 277(32%) 

Low 498 72(14%) 32(6%) 223(45%) 171(34%) 

Round 4 High 208 53(25%) 13(6%) 28(13%) 114(55%) 0.087 

Med-high 841 31(4%) 18(2%) 69(8%) 723(86%) 

Med-low 856 26(3%) 11(1%) 49(6%) 770(90%) 

Low 498 38(8%) 8(2%) 58(12%) 394(79%) 

Table 3-9. Correlation between risk tolerance at baseline and vaccination status over round 
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  Concern for 

pandemic 

Total Remain 

unvaccinated 

First dose 

new 

Newly 

completed 

series 

Already fully 

vaccinated 

Spearman's 

Rank 

Correlation 

Coefficient   n (%) n (%) n (%) n (%) 

Round 2 Increased greatly 219 123 (56%) 48 (22%) 48 (22%) 0 (0%) -0.00675 

Increased slightly 1191 527 (44%) 246 (21%) 418 (35%) 0 (0%) 

No change 846 415 (49%) 173 (20%) 258 (30%) 0 (0%) 

Decreased slightly 14 6 (43%) 2 (14%) 6 (43%) 0 (0%) 

Decreased greatly 11 10 (91%) 1 (9%) 0 (0%) 0 (0%) 

Round 3 Increased greatly 453 25 (6%) 24 (5%) 255 (56%) 149 (33%) -0.1587 

Increased slightly 1297 81 (6%) 69 (5%) 705 (54%) 442 (34%) 

No change 575 129 (22%) 54 (9%) 263 (46%) 129 (22%) 

Decreased slightly 37 10 (27%) 1 (3%) 15 (41%) 11 (30%) 

Decreased greatly 37 8 (22%) 1 (3%) 14 (38%) 14 (38%) 

Round 4 Increased greatly 100 5 (5%) 1 (1%) 14 (14%) 80 (80%) -0.108 

Increased slightly 654 12 (2%) 6 (1%) 36 (6%) 600 (92%) 
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No change 1234 96 (8%) 30 (2%) 125 (10%) 983 (80%) 

Decreased slightly 231 11 (5%) 6 (3%) 12 (5%) 202 (87%) 

Decreased greatly 179 24 (13%) 7 (4%) 17 (9%) 131 (73%) 

Table 3-10. Correlation between concern for new variants and vaccination status over round 
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3.7.5 Mean contact rate by time-varying covariates 

  Round 1 Round 2 Round 3 Round 4 

Variable Value Total (%) 

Mean 

contact 

(95% CI) 

Total 

(%) 

Mean 

contact 

(95% CI) 

Total 

(%) 

Mean 

contact 

(95% CI) 

Total 

(%) 

Mean 

contact 

(95% CI) 

Overall  2403 

(100%) 

8.4 

(7.8-9) 

2403 

(100%) 

9.8 

(9.1-10.6) 

2403 

(100%) 

11.7 

(10.8-12.5) 

2403 

(100%) 

14.7 

(13.7-15.8) 

Oxford 

Stringency 

index1 

High 24 (1%) 
10 

(2-17.9) 
2 (0%) 

26 

(20.1-31.9) 
- - - - 

Med-high 457 (19%) 
6.4 

(5.5-7.4) 

718 

(30%) 

7.6 

(6.6-8.6) 
- - - - 

Med-low 
1647 

(69%) 

8.6 

(7.8-9.3) 

555 

(23%) 

10.4 

(8.7-12.1) 
13 (1%) 6.3 (3.2-9.4) - - 

Low 275 (11%) 
10.4 

(8.1-12.7) 

1128 

(47%) 

10.9 

(9.7-12.1) 

2390 

(99%) 

11.7 

(10.9-12.5) 

2403 

(100%) 

14.7 

(13.7-15.8) 

Self-

reported 

level of 

concern for 

new variants 

Increased greatly - - 
219 

(9%) 

9.1 

(6.6-11.6) 

453 

(19%) 

10.4 

(8.5-12.3) 
100 (4%) 

15.4 

(9.2-21.6) 

Increased slightly - - 
1191 

(50%) 

8.4 

(7.5-9.3) 

1297 

(54%) 

10.8 

(9.8-11.8) 

654 

(27%) 

11.7 

(10.1-13.4) 

No change - - 
846 

(35%) 

11.1 

(9.7-12.4) 

575 

(24%) 

13.7 

(11.7-15.7) 

1234 

(51%) 

15.2 

(13.8-16.6) 

Decreased slightly - - 
14 

(1%) 

15.4 

(-0.3-31.1) 
37 (2%) 

14.2 

(8-20.5) 

231 

(10%) 

16.7 

(12.7-20.7) 

Decreased greatly - - 
11 

(0%) 

15 

(-3.3-33.3) 
37 (2%) 

22.8 

(12-33.5) 
179 (7%) 

20.2 

(16.2-24.3) 

Unknown 
2403 

(100%) 

8.4 

(7.8-9) 
122 (5%) 

15 

(9.9-20.1) 
4 (0%) 

4 

(-1.9-9.9) 
5 (0%) 4 (1-7) 

Self-

reported 
None - - 

1173 

(49%) 

10.8 (9.5-

12) 

255 

(11%) 

15.2 (11.7-

18.6) 
153 (6%) 

15.9 

(11.9-20) 
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Table 3-11. Mean contact rates over survey round and time-varying covariates 

1A standardized weighted metric of level of stringency of state-level COVID-19 risk mitigation policies 

 

vaccination 

status 
One dose - - 

484 

(20%) 

9.3 (7.8-

10.9) 

153 

(6%) 

11.5 (8.5-

14.5) 
54 (2%) 

13 

(7.6-18.3) 

Series complete - - 
746 

(31%) 

8.6 (7.6-

9.5) 

1995 

(83%) 

11.2 (10.4-

12.1) 

2196 

(91%) 

14.7 

(13.6-15.8) 

Unknown 
2403 

(100%) 

8.4 

(7.8-9) 
- - - - - - 

County-

level 

vaccination 

coverage 

0%-20% - - 
2313 

(96%) 

9.7 

(9-10.5) 

304 

(13%) 

12.7 

(10-15.3) 
- - 

21%-40% - - 84 (3%) 
11.9 

(6.4-17.3) 

705 

(29%) 

12.4 

(10.7-14) 

74 

(3%) 

16.1 

(9.9-22.3) 

41%-50% - - - - 
510 

(21%) 

11 

(9.4-12.6) 

284 

(12%) 

18 

(14.8-21.3) 

51%-60% - - - - 
600 

(25%) 

11 

(9.5-12.5) 

797 

(33%) 

15.1 

(13.2-16.9) 

61%-100% - - - - 
278 

(12%) 

11.3 

(8.8-13.8) 

1239 

(52%) 

13.7 

(12.3-15) 

Unknown 
2403 

(100%) 

8.4 

(7.8-9) 
6 (0%) 

13.5 

(4.6-22.4) 
6 (0%) 

18.2 

(-3.2-39.5) 
9 (0%) 

13.9 

(-0.2-28) 
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Figure 3-6. Mean contact rates over survey round by self-reported changing concern for new variants 

Across survey round, participant attitude shifted from more concern to less concern (number of 

respondents denoted by the size of the dot). Within each survey round, individuals who had decreased 

concern had higher overall contacts.  
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Figure 3-7. Mean contact rates over survey round by stringency of state-level COVID-19 policy1 

1Stringency of state-level COVID-19 policy classified using the Oxford Stringency Index at time of 

survey 

Across survey round, more participants resided in states with less stringent COVID-19 policy (number of 

respondents denoted by the size of the dot), aligning with relaxation of risk mitigation policies during the 

study period (August 2020 to March 2022). In earlier survey rounds (round 1 and 2), participants who 

lived in states with less stringent policies had higher contact compared to those who lived in states with 

more stringent policies. By round 3, almost all participants lived in states with low stringency COVID-19 

policies.  
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Figure 3-8. Mean contact rates over survey round by county-level vaccination coverage at time of survey 

Across survey round, participants increasingly resided in counties with higher vaccination coverage, 

aligning with increasing vaccination from the start of vaccine rollout in January 2021 (round 2 data 

collection) and March 2022 (round 4 data collection). There were no clear patterns between mean contact 

rates and county-level vaccination coverage in rounds 2 and round 3 but by round 5, participants residing 

in areas with the highest vaccination coverage (>60% of total population) appeared to have the lowest 

mean contact.  
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3.7.6 Effect of vaccination on changes in location-specific contact 

Covariate Category 

Change in number of contacts 

Univariate associations 
Multivariate 

associations 

Intercept     5.05(0.59-9.51) 

Change in 

vaccination status 

Remain unvaxed     

First dose new 0.4(-1.32-2.12) 0.83(-0.94-2.61) 

Newly completed series 0.19(-1.05-1.44) 0.99(-0.4-2.39) 

Already fully vaxed 1.26(0.07-2.45) 2.13(0.44-3.83) 

Every 20% increase in county-level vax coverage 0.33(-0.03-0.68) -0.26(-0.82-0.29) 

Age group 

18-24 yrs     

25-34 yrs -0.02(-2.39-2.35) -0.26(-2.72-2.2) 

35-44 yrs 0.34(-1.99-2.67) -0.02(-2.45-2.4) 

45-54 yrs -0.02(-2.34-2.3) -0.12(-2.55-2.32) 

55-64 yrs -0.7(-2.98-1.58) -0.92(-3.29-1.46) 

65+ yrs -1.44(-3.68-0.8) -1.83(-4.23-0.57) 

Gender 

Female     

Male -0.23(-1.14-0.69)   

Race ethnicity 

Hispanic     

Non-hispanic, White -0.89(-2.3-0.52)   

Non-hispanic, Black -0.96(-2.77-0.85)   

Non-hispanic, Asian -1.5(-3.84-0.84)   

Non-hispanic, Other -1.97(-5.57-1.63)   

Household size 1     
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2-4 -0.02(-1.04-0.99) -0.25(-1.29-0.79) 

5+ 1.53(-0.46-3.53) 0.51(-1.62-2.63) 

Political affiliation 

Dem     

Rep -0.29(-1.6-1.02) -0.45(-1.85-0.95) 

Ind 0.23(-1.01-1.47) 0.36(-0.91-1.62) 

Unknown -0.59(-1.72-0.54) -0.85(-2.05-0.34) 

Employment status 

Emp,in home     

Emp,out home -0.56(-1.79-0.66) -0.47(-1.74-0.8) 

Unemp -1.5(-2.73--0.26) -0.85(-2.25-0.54) 

Unknown 0.57(-1.93-3.07) 0.16(-2.39-2.71) 

Household income 

$0-$24,999     

$25,000-$74,999 0.29(-1.35-1.93)   

$75,000-$149,999 0.06(-1.6-1.71)   

More than $150,000 0.25(-1.58-2.07)   

Comorbidities 

No     

Yes -0.18(-1.07-0.71)   

Risk tolerance (from 

Latent Class 

Analysis) 

High     

Med-high -0.46(-2.14-1.23) -0.44(-2.23-1.34) 

Med-low -0.43(-2.11-1.25) -0.23(-2.07-1.61) 

Low -0.88(-2.68-0.91) -0.98(-2.88-0.92) 

Unit increase in baseline contact rates -0.19(-0.22--0.15)   

Change in concern 

over pandemic   

Decreased greatly     

Decreased slightly -0.81(-4.14-2.53) -1.03(-4.37-2.32) 

No change -2.32(-4.91-0.26) -2.09(-4.7-0.51) 

Increased slightly -3.3(-5.87--0.73) -3.14(-5.78--0.51) 
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Increased greatly -2.87(-5.69--0.05) -2.74(-5.64-0.16) 

Unit increase in state-wide Oxford Stringency Index -0.03(-0.06-0.01) 0(-0.05-0.05) 

 

Table 3-12. Effect of vaccination on changes in contact at work 

Covariate Category 

Change in number of contacts 

Univariate associations 
Multivariate 

associations 

Intercept   0.2(0.02-0.38) 0.09(-0.77-0.95) 

Change in vaccination 

status 

Remain unvaxed     

First dose new 0.22(-0.11-0.55) 0.17(-0.17-0.52) 

Newly completed series -0.1(-0.33-0.14) -0.02(-0.29-0.25) 

Already fully vaxed -0.17(-0.39-0.06) -0.05(-0.38-0.27) 

Every 20% increase in county-level vax coverage -0.07(-0.14-0) 0(-0.11-0.11) 

Age group 

18-24 yrs     

25-34 yrs 0.18(-0.28-0.63) 0.24(-0.24-0.71) 

35-44 yrs 0.21(-0.23-0.66) 0.27(-0.2-0.74) 

45-54 yrs 0.13(-0.31-0.58) 0.19(-0.27-0.66) 

55-64 yrs 0.22(-0.21-0.66) 0.27(-0.18-0.73) 

65+ yrs 0.22(-0.21-0.65) 0.25(-0.21-0.71) 

Gender 

Female     

Male 0.06(-0.11-0.24)   

Race ethnicity 

Hispanic     

Non-hispanic, White -0.13(-0.4-0.14)   

Non-hispanic, Black -0.23(-0.58-0.11)   

Non-hispanic, Asian -0.23(-0.68-0.22)   
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Non-hispanic, Other 0.21(-0.48-0.9)   

Household size 

1     

2-4 0.01(-0.19-0.2) 0(-0.2-0.2) 

5+ 0.08(-0.3-0.47) 0.09(-0.32-0.5) 

Political affiliation 

Dem     

Rep 0.07(-0.18-0.32) 0(-0.27-0.27) 

Ind 0.11(-0.13-0.34) 0.08(-0.16-0.33) 

Unknown 0.12(-0.1-0.34) 0.07(-0.16-0.3) 

Employment status 

Emp,in home     

Emp,out home 0.14(-0.09-0.38) 0.13(-0.11-0.38) 

Unemp 0.18(-0.06-0.41) 0.2(-0.07-0.47) 

Unknown 0.16(-0.32-0.64) 0.11(-0.38-0.6) 

Household income 

$0-$24,999     

$25,000-$74,999 -0.02(-0.33-0.28)   

$75,000-$149,999 -0.09(-0.4-0.22)   

More than $150,000 -0.05(-0.38-0.29)   

Comorbidities 

No     

Yes -0.01(-0.18-0.16)   

Risk tolerance (from Latent 

Class Analysis) 

High     

Med-high -0.12(-0.44-0.2) -0.08(-0.42-0.26) 

Med-low -0.21(-0.53-0.11) -0.17(-0.53-0.18) 

Low -0.06(-0.41-0.28) -0.04(-0.4-0.33) 

Unit increase in baseline contact rates -0.19(-0.23--0.16)   

Change in concern over 

pandemic   

Decreased greatly     

Decreased slightly -0.36(-1-0.28) -0.34(-0.99-0.3) 
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No change -0.44(-0.93-0.06) -0.51(-1.01-0) 

Increased slightly -0.39(-0.89-0.1) -0.46(-0.96-0.05) 

Increased greatly -0.51(-1.05-0.03) -0.56(-1.12--0.01) 

Unit increase in state-wide Oxford Stringency Index 0.01(0-0.01) 0.01(0-0.02) 

 

Table 3-13. Effect of vaccination on changes in contacts at other locations  
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Covariate Category 

Change in number of contacts 

Univariate 

associations 

Multivariate 

associations 

Intercept     1.13(-1.39-3.65) 

Change in vaccination 

status 

Remain unvaxed     

First dose new 0.03(-0.94-1) -0.01(-1.01-0.99) 

Newly completed series 1.02(0.32-1.72) 0.94(0.16-1.73) 

Already fully vaxed 0.61(-0.05-1.28) 0.5(-0.45-1.46) 

Every 20% increase in county-level vax coverage 0.06(-0.14-0.26) -0.14(-0.45-0.17) 

Age group 

18-24 yrs     

25-34 yrs 0.46(-0.87-1.79) 0.48(-0.91-1.87) 

35-44 yrs 0.85(-0.46-2.16) 0.91(-0.45-2.28) 

45-54 yrs 0.71(-0.6-2.01) 0.89(-0.48-2.26) 

55-64 yrs 0.9(-0.38-2.18) 1.13(-0.21-2.47) 

65+ yrs 1.49(0.23-2.75) 1.58(0.22-2.93) 

Gender 

Female     

Male 0.08(-0.43-0.6)   

Race ethnicity 

Hispanic     

Non-hispanic, White 0.4(-0.39-1.19)   

Non-hispanic, Black 0.13(-0.89-1.15)   

Non-hispanic, Asian -0.32(-1.63-1)   

Non-hispanic, Other -0.08(-2.1-1.95)   

Household size 

1     

2-4 0.2(-0.37-0.78) 0.37(-0.22-0.96) 

5+ 0.42(-0.7-1.55) 0.74(-0.46-1.94) 
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Political affiliation 

Dem     

Rep 0.73(-0.01-1.47) 0.42(-0.37-1.21) 

Ind 0.31(-0.39-1) 0.22(-0.49-0.93) 

Unknown 0.39(-0.24-1.03) 0.44(-0.24-1.11) 

Employment status 

Emp,in home 0.46(-0.1-1.03)   

Emp,out home 0.08(-0.61-0.77) -0.04(-0.75-0.68) 

Unemp 0.45(-0.25-1.14) 0(-0.79-0.79) 

Unknown 0.4(-1.01-1.8) 0.23(-1.21-1.66) 

Household income 

$0-$24,999 0.42(-0.36-1.2)   

$25,000-$74,999 0.24(-0.66-1.14)   

$75,000-$149,999 0.31(-0.6-1.23)   

More than $150,000 0.48(-0.53-1.49)   

Comorbidities 

No 0.62(0.26-0.98)   

Yes 0.1(-0.39-0.6)   

Risk tolerance (from Latent 

Class Analysis) 

High 1.23(0.38-2.08)   

Med-high -0.74(-1.69-0.2) -0.8(-1.81-0.21) 

Med-low -0.46(-1.4-0.48) -0.66(-1.7-0.38) 

Low -0.63(-1.64-0.37) -0.66(-1.73-0.41) 

Unit increase in baseline contact rates -0.21(-0.25--0.16)   

Change in concern over 

pandemic   

Decreased greatly 1.82(0.42-3.22)   

Decreased slightly -1.06(-2.94-0.83) -0.92(-2.8-0.97) 

No change -1.11(-2.57-0.36) -1.1(-2.57-0.37) 

Increased slightly -1.33(-2.79-0.12) -1.23(-2.72-0.26) 

Increased greatly -0.7(-2.3-0.89) -0.65(-2.28-0.99) 

Unit increase in state-wide Oxford Stringency Index -0.02(-0.03-0) -0.02(-0.04-0.01) 
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Table 3-14. Effect of vaccination on changes in contacts at home 

3.7.7 Sensitivity analysis 

3.7.7.1 Effect of vaccination on changes in all contacts without concern for new variants 

 

Covariate Category 

Change in number of contacts 

Univariate 

associations 

Multivariate 

associations 

Intercept     2.44(-1.91-6.78) 

Change in 

vaccination status 

Remain unvaxed     

First dose new 0.59(-1.46-2.64) 1.08(-1.01-3.17) 

Newly completed series 1.11(-0.37-2.58) 1.66(0.03-3.3) 

Already fully vaxed 1.9(0.48-3.31) 2.69(0.69-4.7) 

Every 20% increase in county-level vax coverage 1.4(0.98-1.82) -0.01(-0.07-0.05) 

Age group 

18-24 yrs     

25-34 yrs 0.1(-2.71-2.92) 0.05(-2.81-2.92) 

35-44 yrs 0.88(-1.88-3.65) 0.64(-2.19-3.46) 

45-54 yrs 0.26(-2.5-3.02) 0.24(-2.59-3.08) 

55-64 yrs -0.15(-2.86-2.56) -0.09(-2.87-2.68) 

65+ yrs -0.39(-3.06-2.27) -0.6(-3.41-2.21) 

Gender 

Female     

Male -0.08(-1.16-1.01)   

Race ethnicity 

Hispanic     

Non-hispanic, White -0.67(-2.35-1.01)   

Non-hispanic, Black -1.13(-3.29-1.02)   

Non-hispanic, Asian -1.95(-4.72-0.83)   
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Non-hispanic, Other -2.01(-6.28-2.27)   

Household size 

1     

4-Feb 0.25(-0.95-1.46) 0.16(-1.08-1.39) 

5+ 2.4(0.03-4.77) 2.18(-0.31-4.67) 

Political affiliation 

Dem     

Rep 0.47(-1.09-2.03) 0.56(-1.09-2.21)) 

Ind 0.67(-0.8-2.15) 0.82(-0.68-2.31) 

Unknown 0.47(-1.09-2.03) 0.15(-1.25-1.55) 

Employment 

status 

Emp,in home     

Emp,out home -0.33(-1.78-1.13) -0.53(-2.04-0.97) 

Unemp -0.91(-2.38-0.56) -0.79(-2.44-0.87) 

Unknown 1.07(-1.9-4.04) 1.07(-1.94-4.08) 

Household income 

$0-$24,999     

$25,000-$74,999 0.44(-1.5-2.37)   

$75,000-$149,999 0.16(-1.8-2.12)   

More than $150,000 0.55(-1.61-2.71)   

Comorbidities 

No     

Yes -0.18(-1.23-0.88)   

Risk tolerance 

(from Latent Class 

Analysis) 

High     

Med-high -1.35(-3.35-0.65) -1.6(-3.69-0.49) 

Med-low -1.08(-3.08-0.92) -1.25(-3.4-0.9) 

Low -1.61(-3.74-0.53) -1.85(-4.06-0.37) 

Unit increase in baseline contact rates -0.16(-0.2--0.13)  

Increased greatly     
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Change in concern 

over pandemic   

Increased slightly -2.3(-6.25-1.66)   

No change -4.07(-7.14--1)   

Decreased slightly -5.35(-8.4--2.3)   

Decreased greatly -4.46(-7.82--1.11)   

Unit increase in state-wide Oxford Stringency Index -0.04(-0.08-0) -0.17(-0.82-0.48) 

Table 3-15. Effect of vaccination on changes in contact without adjusting for concern for new variants 
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3.7.7.2 Sensitivity analysis on contact outlier cutoff 

While we used the 99th percentile to right truncate responses on number of contacts per location and age 

group, previous studies chose 100197,210 or 450 contacts as the cutoff202. We chose the 99th percentile for 

our main analysis to remove only the most extreme outliers that were least likely to be accurate and to 

increase the absolute truncation thresholds across the rounds as social distancing relaxed and individuals 

were more likely to truly have high numbers of contact. For sensitivity analysis, we considered other 

truncation criteria of 1) 95th percentile; 2) 97.5th percentile and 3) 100 contacts per location. The 

truncation thresholds used for each round and location can be found in table below). Results for the main 

model with sensitivity analysis on choice of right truncation and be found in Figure 7.  

  
Truncation value for various 

percentiles 

No. reporting more 

than 100 contacts 

Survey round Contact location 95th 97.5th 99th 

Round 1 Home 6 10 13.98 2 

Round 1 Other 11 19 35 4 

Round 1 School 0 0 5 0 

Round 1 Work 23 45 89.96 21 

Round 2 Home 7 10 22.98 1 

Round 2 Other 12 21 47.98 7 

Round 2 School 0 0 6.98 2 

Round 2 Work 26.9 49.9 116.92 28 

Round 3 Home 7 10 19.98 1 

Round 3 Other 18 29.9 66.92 12 

Round 3 School 0 0 4 1 

Round 3 Work 30 54.95 119.9 30 

Round 4 Home 8 10 22.96 5 
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Round 4 Other 20 34 73.96 17 

Round 4 School 0 5 23.98 6 

Round 4 Work 42.9 77 142.98 43 

 

Table 3-16. Cutoff values for various right truncation methods to remove extreme outliers in contact 

numbers 
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Figure 3-9. Plot of model results for main analysis comparing different right truncation choices 

3.7.8 Additional Next Generation Matrix analysis on impact on transmission 

For each level of vaccination coverage and for each round, we perturb the Next Generation Matrix by 

allowing for increasingly assortative mixing where vaccinated individuals mix more preferentially with 

other vaccinated individuals and unvaccinated individuals mix more preferentially with other 

unvaccinated individuals. We quantify the extent of assortativity with the Q index, which is calculated as 

Q = [Tr(P)-1]/(n-1), where P is a matrix with elements of 𝑃𝑖𝑗 =  𝑀𝑖𝑗/ ∑ 𝑀𝑖𝑗𝑗  is the matrix of average 

contacts between vax groups223,224. Tr(P) is the trace of the matrix or the sum of its diagonals and n is the 

number of subgroups (n=2). The Q index is 0 when mixing between subgroups is completely proportional 

and 1 when mixing is completely assortative (vaccinated individuals only contact other vaccinated 

individuals). 

 

Figure 3-10. Relative transmissibility calculated using the Next Generation Matrix 

 

Relative transmissibility (Rt/R0) calculated using the Next Generation Matrix (see methods section in 

main paper) based on measured contact in vaccinated and unvaccinated individuals in each round and 

overall vaccine coverage in the US, sweeping over a range of vaccine effectiveness against susceptibility 
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and assortativity coefficient (Q=0 for proportional mixing based on vaccine coverage, Q=1 for assortative 

mixing where vaccinated individuals only mix with other vaccinated individuals and unvaccinated 

individuals only mix with other unvaccinated individuals). From round 2 (March-April, 2021) to round 4 

(March-April, 2022), the average daily contact rates among vaccinated individuals were 9.2, 11.6 and 

14.9; average daily contact rates among unvaccinated individuals were 11.5, 15.6, 17.3 and the primary 

series vaccine coverage in the U.S. was 11.5%, 49.8% and 65.9%. As contact rates increased across 

survey rounds, relative transmissibility increased even as more individuals in the population became 

vaccinated.  We find the relative transmissibility increases as the population mixes more assortatively 

(increasing Q values) and that with fully assortative mixing (Q=1), the relative transmissibility converges 

regardless of the vaccine effectiveness.  
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CHAPTER 4 METAPOPULATION MODEL TO QUANTIFY TRANSMISSION  

 

[Manuscript 2] 

 

Integrating multi-dimensional data streams to infer spatial patterns of transmission across waves of 

COVID-19 in Georgia, USA 

Carol Y Liu, Kristin Nelson, Samuel M Jenness, Stefan Flasche, Benjamin A Lopman, Max SY Lau 

4.1 Abstract 

Spatial patterns of transmission in a highly interconnected spatial network of communities with 

heterogeneous demography, dynamically changing immunity levels and within-community contact rates, 

remain to be characterized. We infer spatial patterns of transmission across waves of COVID-19 in 

Georgia, USA through a novel mathematical framework with a multilayered transmission process and 

informed by spatiotemporally resolved data on social contact, human mobility, and vaccination. We find 

that in counties with smaller populations, lower contact rates and higher vaccination coverage, 

intercounty mobility contributes to a higher proportion of onward transmission. In addition, we present 

evidence that in an interconnected spatial network with a patchwork of local uptake in mitigation 

measures, the net infection flow is still from counties with lower mitigation to counties with higher 

mitigation. Identifying sources and sinks of transmission and their correlates can guide more localized 

interventions and assist in the mitigation of infection spread.   

4.2 Introduction 

Human mobility plays an important role in determining spatial patterns of infectious disease transmission. 

Specifically, human movement determines the frequency of contacts between susceptible and infected 

individuals within a community and the rate of importations from other communities225. Uptake of 

mitigation policies in one community not only affects transmission within its boundaries but can also 

impact the epidemic trajectory of other mobility-linked communities, giving rise to sources and sinks of 
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infection. Traditionally, infections are hypothesized to flow from source locations with fewer mitigation 

and lower vaccination coverage (i.e., net exporters) to sink locations with more mitigation measures and 

higher vaccination coverage145–148 (i.e., net importers). Additionally, the mechanism of spatial hierarchical 

spread, which predicts travelling waves from source regions with higher population density to sink 

regions with lower population density, is often assumed143. However, in a highly interconnected spatial 

network of communities with heterogeneous demography, dynamically changing immunity levels and 

within-community contact rates, the impact of intercounty mobility on local transmission intensity and 

the directionality of infection flows between locations remains to be characterized. 

Novel time- and space- resolved data on human behavior can be integrated with routine surveillance and 

vaccination data for more nuanced understanding of spatial patterns of infection transmission. During the 

COVID-19 pandemic, data on social contact patterns and human mobility emerged as two information 

sources that readily captured rapid fluctuations in human behavior and generated crucial epidemiological 

insights on transmission63,65,110,226. Information on human-to-human interactions derived from social 

contact surveys facilitated the estimation of the time-dependent reproductive number, Rt
200,215. Global 

Positioning System (GPS) location data from smartphone devices were used to passively captured 

contemporaneous, granular changes in population-level mobility flows and informed spatial patterns of 

transmission in multiple countries54,91,92,95,97.  

Metapopulation models enable the integration of these multiple data streams across different 

spatiotemporal scales into a unified modeling framework to capture multiscale transmission dynamics. In 

this framework, individuals are partitioned into geographical units within which contact is frequent and 

between which contacts are less frequent. Metapopulation models with simple Susceptible-Exposed-

Infectious-Recovered disease states were deployed extensively to capture early dynamics of SARS-CoV-

2 transmission. Yet few such models extend into the post-vaccination period, where the need to represent 

dynamically changing immunity and behavior increases model complexity. 
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The state of Georgia, USA, with its diverse demographics, varying levels of urbanization and highly 

heterogeneous COVID-19 containment policies presents a unique case study for examining these 

dynamics. In Georgia, the COVID-19 pandemic unfolded in an asynchronized mosaic of localized 

transmissions characterized by surges varying in timing and intensity during the first two years, 

increasingly shaped by fluctuations in human behaviors and population-level immunity. To jointly 

capture these changes and explore their impact on spatial patterns of transmission, we designed a 

metapopulation modeling framework that readily integrates space and time-resolved data streams of 

social contact, human mobility and changing immunity. The model was formulated with a multilayered 

transmission process decomposed into household, local and non-local components, allowing for the 

explicit quantification of the relative contribution of local dynamics versus imported infections on overall 

incidence and for the inference of the directionality of county-level infection flow. Identifying sources 

and sinks of transmission and their correlates can guide more localized interventions and assist in the 

mitigation of infection spread.   

4.3 Methods 

4.3.1 Model structure 

We extended a previously published stochastic Susceptible-Exposed-Infectious-Recovered (SEIR) model 

inference framework227,228 into a metapopulation framework for the state of Georgia, USA. We partitioned 

the population of Georgia into weakly interacting counties and three age groups within each county. The 

transmission process of the model system was represented on a matrix of three age groups (0-17 years, 

18-64 years, and 65 years and above) multiplied by 159 counties. Each age group within each county can 

infect all other age groups of other counties based on a two-layered infection network informed by age-

specific contact rates, derived from data collected during the pandemic72,112 and mobility patterns derived 

from mobile app-based GPS location data63–65,103. A stochastic SEIR-like model captured the relevant 

disease states, where, upon exposure, susceptible individuals enter a latent, non-infectious period (E), 

after which they become either reported (I) or unreported (U) based on the age-specific proportion of 
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unreported infections 𝑃𝑢𝑖
, before recovering (R). After a period of immunity (wr days), individuals 

transition into a partially susceptible class (Figure 4-1). Population-level susceptible for each county is 

dynamic over time. Susceptibility decreases following periods of concerted vaccination efforts or periods 

of intense transmission and subsequently increases as protection from immunizing events wane over time. 

We succinctly capture changing population-level susceptible for each county informed by triangulating 

data from vaccination and infection from Georgia’s case and vaccination surveillance system229–231.  

 

Figure 4-1. Schematic of within-county transmission process1  

1Model with the following disease classes: the disease classes are as follows: S0 (susceptible individuals 

with no prior infection), S1 (susceptible individuals with one or more prior infection), E (latent infection, 

exposed but not yet infectious), U (infectious and unreported), I (infectious and reported as a case) and R 

(recovered and temporarily immune). ΎA × Ύi × β(t) is the probability of transmission upon contact with 

ΎA (fitted) being county-strata dependent susceptibility Ύi (fitted) being age-dependent susceptibility, 

and β(t) (fitted) a scaled to the pathogen transmissibility of the dominant variant for each wave (three 

waves in the study period). Pui
 is an age-dependent probability of underreporting (informed by data), wr 

is waning immunity for individuals with infection-derived immunity. The time step t is in days. 
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4.3.2 Infection process 

The infection process for susceptible individuals in age group i at time t in county A is decomposed into 

three components: 1) within-county household component; 2) within-county non-household component; 

and 3) between-county non-household component (Eq 3). All infectious individuals (either reported in 

class I or unreported in class U) contribute to transmission within their household based on the within 

household contact rate (𝑐𝑗,𝑖
𝐴,𝐻𝐻(𝑡)), parameterized by the term ∑ 𝛽𝑗=1  ×  𝑐𝑗,𝑖

𝐴,𝐻𝐻(𝑡)  × {𝐼𝑗
𝐴(𝑡 − 1) +

𝑈𝑗
𝐴(𝑡 − 1)}.  Infected individuals who travel outside of their home contribute to either transmission 

within their county or in another county, parameterized by the term ∑ 𝛽𝑗=1  ×  𝑐𝑗,𝑖
𝐴,𝑁𝐻(𝑡)  ×

∑ 𝑚𝐵→𝐴
𝑗

(𝑡 − 1)𝐵 .  𝑐𝑗,𝑖
𝐴,𝑁𝐻(𝑡) is the average number of non-household contacts per day made by age 

group j to i and ∑ 𝑚𝐵→𝐴
𝑗

(𝑡 − 1)𝐵  sums all the outflowing infections from age group j at time t based on 

all other counties where mobility between B→A is observed, including those who moved outside of the 

home but within their own county, where A=B (details in section below). 

The infection process is further modified by three key fitted parameters: ΎA, a county-dependent 

susceptibility based on eight population strata, introduced to broadly capture spatial heterogeneities in 

behavior such as masking and distancing beyond contact rates alone;  Ύi, an age-dependent susceptibility, 

and β(t), the per contact probability of infection, scaled to the pathogen transmissibility of the dominant 

variant for each wave. The following equation summarizes the number of new infections from the 

susceptible class with no prior exposure (S0) that transition into the exposed class (E): 

𝑛𝑆0𝐸𝐴
𝑖 (𝑡) ~ 𝑃𝑜𝑖 (𝑆0𝐴

𝑖 (𝑡 − 1) ×  ΎA × Ύ𝑖 × {∑ 𝛽(𝑡)

𝑗=1

 ×  𝑐𝑗,𝑖
𝐴,𝐻𝐻(𝑡)  × (𝐼𝑗

𝐴(𝑡 − 1) + 𝑈𝑗
𝐴(𝑡 − 1))

+ ∑ 𝛽(𝑡)

𝑗=1

 ×  𝑐𝑗,𝑖
𝐴,𝑁𝐻(𝑡)  × ∑ 𝑚𝐵→𝐴

𝑗
(𝑡 − 1)}

𝐵

/𝑁𝐴
𝑖) 

Eq 3 

 

where i denotes the age group of the susceptible class, j denotes the age group of the infectious class, A 

denotes the susceptible county being infected, B denotes the infecting county and t is time in days. 
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4.3.3 Parameterizing between-county transmission 

Individuals can move between counties based on mobility networks derived from smartphone app-based 

GPS location. The outflow of infections from county B to county A for age group j (𝑚𝐵→𝐴
𝑗

) was 

parameterized using the following equation: 

𝑚(𝑡)𝐵→𝐴
𝑖 ~𝐵𝑖𝑛 [𝐼(𝑡)𝐵

𝑗
+ 𝑈(𝑡)𝐵

𝑗
, δ(t)𝑐 ×

𝑛(𝑡)𝐵𝐴

∑ 𝑛(𝑡)𝐵𝐴
𝑐
𝐵=1

] 
Eq 4 

where 𝐼𝐵
𝑗
 and 𝑈𝐵

𝑗
 are the number of daily infectious individuals, reported and unreported respectively, 

from county B, age group j. 𝑛(𝑡)𝐵𝐴 is the daily number of unique visitors from county B to county A and 

∑ 𝑛(𝑡)𝐵𝐴
𝑐
𝐵=1  is the sum of all daily movements out of county B to c other counties, both derived from a 

commercialized aggregator of mobility data, SafeGraph86. δ𝑐 is the county-specific probability of leaving 

their home, estimated from a separate mobility data aggregator, Cuebiq87. In this framework, infectious 

individuals within county B at time t is split into 1) a group that stays at home, 2) a group that leaves their 

home and moves to other locations within their home county 3) a group that moves to other counties, with 

the latter two groups informed by an origin-destination matrix generated from SafeGraph.  

4.3.4 Key model inputs for transmission process 

4.3.4.1 Age-specific contact rates 

Contact rates likely varied at the local county-level and over time during the pandemic; however, time-

resolved, county-level data on age-specific contact rates is rare. We draw on a several data sources in 

order to capture variations in age-specific contact rates by county and over time using the following data 

sources:  DELPHI group’s COVID-19 Trends and Impact Surveys (CTIS)232, Berkeley Interpersonal 

Contact Study77 (BICS) and projected contact rates from Prem et al60. 

The COVID-19 Trends and Impact Survey (CTIS) randomly sampled active Facebook users in the US to 

collect data on COVID-19 symptoms, testing and preventive behaviors on a daily basis. Between April 

2020 and April 2021, the survey asked participants to estimate the number of people outside of their 

household with whom they had direct contact with, at 1) work; 2) shopping for groceries and other 
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essentials; 3) social gatherings; and 4) other. The survey defines a direct contact as “a conversation lasting 

more than 5 minutes with a person who is closer than 6 feet away from you, or physical contact like hand-

shaking, hugging or kissing”232. In Georgia, the monthly sample sizes with valid responses for the 

questions on non-household contacts range from 5000 to 48,234. We weighed responses to account for 

survey design and to provide adjustments for non-response and coverage errors233.  

We considered the 97.5th percentile of contacts reported for each county, month and location as extreme 

outliers, comparable to previous online surveys of contact rates71,110,234, and right truncated the contact 

rate at this threshold. We sum the contacts from the four locations for the total number of non-household 

contacts per participant and aggregate by county, month, and age group. To smooth over sampling errors 

from small numbers by borrowing information from neighboring counties, we fit a Bayesian generalized 

linear mixed model (GLMM) with a spatiotemporal autoregressive process and a piecewise constant 

intercept term. The model included several county-level covariates associated with contact rates: the 

urban-rural continuum code classified by U.S. Department of Agriculture235, percentage of black 

inhabitants and percentage of trump vote share236.  

Outputs of average contact rates per person per day from the GLMM model were then projected onto a 

Georgia state age-specific contact matrix derived from multilevel regression with poststratification from 

the BICS survey on contact patterns77,237. For example, if the overall daily non-household contact rate 

made by 18–64-year-olds in a single county was estimated as 15 contacts per person per day from CTIS, 

we then assigned the 15 contacts to recipient age groups based on the age structure of the county and on 

the average age-specific mixing patterns from Georgia. Since CTIS did not sample children, we assumed 

symmetrical mixing patterns and took the weighted reciprocal for contacts made by 0–17-year-olds with 

18–64-year-olds and 65+ year olds. For contacts made between 0–17-year-olds and other 0–17-year-olds, 

we applied a county-level scaling factor to the estimated Georgia average from BICS. Lastly, we modeled 

a recovery process where contact rates gradually recovered to pre-pandemic estimates60 starting in 

January 2021 when schools were increasingly in-person for the spring semester238.   
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Figure 4-2. Summarizes non-household age-specific contact rates by county, age group and over time that 

were inputs into the metapopulation model 

4.3.4.2 Origin-destination matrices 

We primarily used SafeGraph to construct county-level origin-to-destination matrixes. SafeGraph 

provides anonymized cell phone-based geolocation data from anonymous mobile phone users in the 

United States101. The dataset includes traffic from around 47M mobile phone devices (~10% of all devices 

in the U.S.). Data are captured when geolocation is enabled for specific, but undisclosed, smartphone 

mobile applications. Devices represented in the SafeGraph data are assigned to a home census block 

group (CBG) based on its most common nighttime (6pm-7am local time) location during the previous six 

weeks86. To protect privacy, the data itself is pre-aggregated into a weekly visit and visitor count to 

points-of-interest (POI), which can be further stratified into weekly CBG-POI visitor flows. POIs are 

public locations designated by SafeGraph such as stores, schools, parks, health facilities, offices, hotels 
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etc239, bounded by a polygon. Devices are counted as visiting a POI when a ping is captured within the 

polygon with a dwell time of longer than four minutes.  Mobility counts were inverse-weighted based on 

weekly, CBG-specific sampling fraction and origin CBGs with sampling fraction.  
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Figure 4-3. Visualization of outflowing and inflowing mobility.  

A. Visualization of outflowing mobility from counties of varying population sizes (probability of trip 

from origin county B to destination county A out of all trips originating from county B). B. Visualization 

of inflowing mobility from counties of varying population sizes (probability of trip from origin county B 

to destination county A out of all trips into destination county A).  

>100% were removed and aggregated into weekly origin-to-destination (O-D) population flows at the 

county level, reflecting the number of trips between a device’s home county (county A) and the county of 

the destination POI (county B) per day. In the model equations, the O-D matrix of trip counts is then 

converted into a daily probability of travel from county A to county B given residence in county A (Eq 4). 

The available SafeGraph data product did not account for individuals who did not leave their homes. We 

expect the proportion of individuals who left their home to differ by county and over time during the 

pandemic and integrate this probability into (Eq 4). We use a secondary mobility data product from 

Cuebiq to calculate a daily probability of a resident of county A leaving their home. Similar to SafeGraph, 

Cuebiq also aggregated anonymized cell phone-based geolocation data during the pandemic and provided 

a daily estimate of a county-level proportion of devices captured through their platform that remained 

home.  

4.3.4.3 Representing changing susceptibility 

We mathematically account for decreasing susceptibility following combinations of both vaccination and 

infection in a parsimonious way without introducing additional compartments. Individuals in the S0 (fully 

susceptible, no prior exposure) state are partitioned into six different mutually exclusive states based on 

combinations of prior infection and vaccination and time since last immunizing event: 1) V0 

(unvaccinated); 2) V121+days (21 days or more after first dose, but no second dose or second dose within 14 

days); 3) V214-133days (14-133 days after second dose, no additional doses); 4) V2134-193days (134-193 days 

after second dose, no additional doses); 5) V2194+days (194 days after second dose, no additional doses); 6) 

V3+ (more than two doses). 
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For each county A, age group i, at each time step t, we calculate an “effective” S0 that accounts for the 

distribution of vaccination states within S0 individuals (no prior infection) and their respective differences 

in susceptibility. The same is done for the S1 state (one or more prior infection). A multinomial random 

draw was used to sample the number of susceptible individuals in each vaccination state (as above). The 

following is the equation: 

𝑆0𝑒𝑓𝑓,𝑖= ∑[𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆0𝑖, 𝑃𝑆0,𝑉=𝑣,𝑖,𝐴)]

𝑉=𝑣

× 𝜎𝑆0,𝑉=𝑣 Eq 5 

 

 

Where S0eff,i is the “effective” number of susceptible individuals with no prior infection in age group i, 

NS0,i is the total number of susceptible individuals with no prior infection in age group i and Psv,i,A is a 

vector of the probability distribution for the susceptibility states for each age group i and county A, and 

𝜎𝑆0,𝑉=𝑣 is  reduced susceptibility for each of the states (4.7.2.2 lists the values inferred from the 

literature51). Psv,i,A is calculated for each age group i, county A and time t from vaccination and case data 

from Georgia. In the model implementation, we combine the calculation of “effective” numbers for S0eff,I 

and S1eff,I and the probability distribution is a joint probability distribution between the S and V states. To 

calculate, Psv,i,A, we use a combination of lab-confirmed reported case data from Georgia Department of 

Public Health State Electronic Notifiable Disease Surveillance System (GDPH SENDSS) and from the 

Georgia Immunization Registry (GRITs). The linked dataset from GDPH SENDSS and GRITs allows us 

to estimate the proportion of individuals in each vaccination tier (unvaccinated, one dose, two dose, two 

dose and waned etc) and among each vaccination tier, the proportion with prior infection. We further 

account for underreporting through an age-specific underreporting informed by state-level seroprevalence 

and state-level reported cases to date and available literature (Eq 20; 4.7.6)  

4.3.5 Model initialization 

We initialize the age structure across three age groups (0-17 years, 18-64 years and 65 years and 

above)236. We stratify PCR lab-confirmed reported cases using the GDPH SENDSS data by county, age 
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group and day of positive test to estimate the infection prevalence (E, I and U compartments) and the 

number of immune individuals (R compartment) at start of model simulation (June 1st, 2020). Since the I 

compartment represents reported cases and with a 7-day infectious period and 7-day incubation period, 

we consider the number of reported cases between June 1st and May 26th, 2020, as infectious, reported, 

and symptomatic and those reported between June 2nd-June 8th as exposed and incubating. For the U 

compartment, we apply a similar age-specific underreporting as was done to infer immunity from 

reported cases and vaccinations. For the R compartment, we consider the number of reported cases 

between March 2nd, 2020 (date of first reported case in Georgia) and May 25th, 2020, and apply the same 

age-specific underreporting rate to estimate the number of recovered and immune individuals (Eq 20).  

4.3.6 Model calibration 

The model was run from June 2020 to Nov 2021, chosen to allow for enough variation in mobility, 

transmission, and vaccination while having comparable test reporting. In Georgia, testing criteria was 

initially restricted and tests did not become widely available until June 2020. In the fall of 2021, near 

ubiquitous availability of at-home testing likely drastically decreased the proportion of infections that 

were reported through the state surveillance system.  

We proposed a set of parameters for calibration related to the probability of transmission (β), relative 

susceptibility among different age groups and groupings of counties by population size, and changes in 

probability of transmission over different waves of the pandemic. Counties were grouped into seven 

categories based on population size (4.7.3.2): six categories grouped by population sizes with the largest 

group further stratified by metro Atlanta and non-metro Atlanta. The categorization of counties allowed 

for additional flexibility to capture relative susceptibility due to differential policies and adherence to 

guidance on masking and social distancing.  The population sizes of counties in the lowest category (pop 

size 7) ranged from 1500 to 8700 and the population sizes counties in the highest category with metro 

Atlanta (pop size 1) ranged from 100,000 to 1 million (metro Atlanta).  
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We calibrated the model using an Approximate Bayesian Computation (ABC) rejection algorithm240. 

Parameter sets ϴ* were sampled from uniform prior distributions p(ϴ) bounded by a minimum and 

maximum using Latin Hypercube Sampling241 and then used as inputs for the model simulation (4.7.3). 

The parameter set ϴ* is accepted if the distance between empirical data D and the model simulated data 

D* is less than a pre-specified threshold ϵ. The process is repeated until 1000 parameter sets were 

accepted. We chose several summary statistics, each with a separate threshold, to improve the model fit 

across age and county strata over waves. The distance measures used as criteria were square root of the 

sum of squared differences of 1) the number of daily, age-stratified reported cases (0-17 years, 18-64 

years and 65 years and older); 2) the number weekly reported cases stratified by eight county-level 

population sizes; 3) the peak number of overall state-wide reported cases for the third wave. We use an 

intersection metric with a binary indicator where all criteria must be satisfied for the parameter set to be 

accepted. The tolerance levels were selected to reduce the inter-quartile range of model parameters and 

for a reasonable acceptance probability (4.7.3.1). 

4.4 Results 

4.4.1 Results from model calibration 

We achieved 1000 accepted parameter sets after over 1.2 million parameter sets were sampled for an 

acceptance probability of 0.000821. Density plots of the posterior distributions and the ranges of accepted 

parameters can be found in 4.7.3.4. We find the model was able to generally reproduce epidemic patterns 

across three age groups and 159 counties and over multiple epidemic waves (Figure 4-4; Figure 4-9). 

Using the rejection algorithm, adults and older adults were more susceptible to infection than children, 

with medians of 1.7- and 2.3-times increased susceptibility. Counties with smaller population sizes have 

slightly higher susceptibility.  The probability of transmission is 1.086 times higher for wave 2 compared 

to wave 1 and 1.9 times higher for wave 3 compared to wave 1 (Table 4-4).  
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Figure 4-4. Temporal Comparison of Modeled and Reported COVID-19 Cases per 100,000 

A. Number of reported and modeled cases per 100,000 among three age groups: 0-17 years, 18-64 years, 

and 65+ years. B. Number of reported and modeled cases per 100,000 across six categories of county 

population sizes, with Pop size 1 being the largest and Pop size 6 the smallest. Blue line represents the 7-
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day rolling average of reported cases, black line represents the median of the 7-day rolling average of 

modeled cases and gray area represents the simulated range from 1000 accepted parameter sets.  

4.4.2 Proportion of SARS-CoV-2 infections imported through intercounty mobility 

The infection process in the model is decomposed into three components: household, non-household 

within county and non-household between counties, allowing for the calculation of the number of new 

infections generated by each component, stratified by county, age group and day. We calculate median 

and ranges of proportion of infections generated through intercounty mobility from the 1000 accepted 

parameter sets. Across the 550-day simulation period and all counties, 30.5% (2.5th-97.5th percentile: 

30.0%-31.1%) SARS-CoV-2 infections were imported through intercounty mobility, 57.0% (2.5th-97.5th: 

56.3%-57.8%) were generated through within county mobility.  

We observe heterogeneities in proportion of imported SARS-CoV-2 infections across counties. Counties 

with smaller population size had higher proportions of imported infections compared to counties with 

larger population size. Counties in the lowest decile of population size (population size of 1,596-6,888) 

had a median of 51% (25th-75th percentile: 39%-68%) of infections imported through intercounty 

mobility. Counties in the highest decile (population size of 154,257 – 1,051,550) had a median of 30% 

(27%-36%) of infections imported through intercounty mobility (Figure 4-5).  

Counties were categorized into different levels of within-county contact rates based on the contact rate of 

non-household contacts per person per day at the start of each wave, with the lowest quintile consisting of 

counties with contact rates between 7.5-12.3 and the highest quintile consisting of counties with contact 

rates between 15.2-18.7. Counties with lower contact rates had higher proportions of imported infections 

compared to counties with higher contact rates. Among counties in the top tertile of population sizes, 

counties with the lowest quintile of contact rates had a median of 42% (33%-46%) infections imported 

through intercounty mobility while counties with the highest quintile of contact rates had a median of 

27% (20%-31%) infections imported through intercounty mobility. Similar trends were observed in 

counties with the smallest population size but less so among mid-sized counties (Figure 4-5).  
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Counties were categorized into quintiles of vaccination coverage of one or more doses of vaccine among 

adults aged 18 years and above, prior to the start of the third wave (July 1st, 2021). The lowest quintile 

had a single-dose vaccination coverage of between 11.1% to 22.7% and the highest quintile had a 

coverage between 35.5% - 55.0%. Counties with lower vaccination coverage had lower proportions of 

imported infections compared to counties with higher vaccination coverage. Among counties in the top 

tertile of population size, counties with the lowest quintile of vaccination coverage had a median of 24% 

(21%-31%) infections imported through intercounty mobility and those with the highest quintile of 

vaccination coverage had a median of 33% (29%-44%) infections imported. Similar trends were observed 

in mid-size and small-size counties. Small sized counties with the highest quintile of vaccination coverage 

had a median of 51% (42%-61%) of infections imported through intercounty mobility (Figure 4-5).  

Lastly, for each county, we categorized periods of surges and declines for each wave based on the timing 

of minimum and maximum new infections per day for each wave. We did not observe substantial 

differences in proportion of infections imported through intercounty mobility across periods of surges and 

declines of each wave (Figure 4-5).  
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Figure 4-5. Variations in Proportion of Imported SARS-CoV-2 Infections Across County Attributes and 

Epidemic Phases Coverage.  

Boxplots comparing the proportion of infections attributed to intercounty mobility, segmented by (A) 

deciles of county population size (1-smallest, 10-largest), (B) quintiles of county-level average contact 

rates per person per day at start of each wave (Q1-lowest, Q5 highest), and tertile of population size, (C) 

periods of epidemic wave (surges and declines), and (D) quintiles of county-level vaccination coverage of 

one or more doses among adults aged >18 years at the start of wave 3 (Q1- lowest, Q5-highest) and tertile 

of population size (wave 3 only) .  
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4.4.3 Directionality of infection flow 

We further explored the directionality of infection flow between pairs of counties. Across 159 counties 

and 12,561 unique county pairs, 12,298 had at least one trip recorded in either direction during the 550-

day simulation period.  On any given day, between 7,848 and 5,877 county pairs recorded at least one trip 

in either direction. Among pairs with at least one trip recorded, the median number of directed trips per 

day was 43 (2.5th-97.5th percentile: 5-3,660, minimum =1, maximum=223,147. The distribution of trips 

between county pairs and their difference in strength of connectivity in either direction underpinned 

infection flows and the difference in strength of connectivity in either direction.  

To understand the key drivers of importation dynamics, we analyze the correlations between differences 

in vaccination coverage, contact rates, and population sizes among county pairs with the difference in 

imported infections among county pairs across three time points, representing the beginning (June 30th, 

2021), peak (Aug 24th, 2021) and the end (Sept 28th, 2021) of the third wave. We find that when 

considering each county pair individually, the number of infection importations from the county with 

lower vaccination coverage to the county with higher coverage is higher than importations from the 

county with higher coverage to the county with lower coverage (Figure 4-6). The number of infection 

importations is higher from the county with higher contact rate to the county with lower contact rate than 

the reverse (Figure 4-6). The number of importations is on average higher from the county with lower 

population size to the county with higher population size than the reverse (Figure 4-6). This is counter to 

the directionality of mobility flows, where on average the number of trips from the county with lower 

population size to the county with higher population size is lower (Figure 4-20). The magnitude of these 

correlations is the highest at the beginning of the wave (R=0.54, R=-0.4 and R=0.55 for correlations with 

difference in vaccination coverage, contact rates, and population sizes, respectively).  The same 

directionality of correlations was observed across other time periods (Figure 4-19).  
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We find that the number of infections from origin to destination is correlated with the number of trips 

between origin to destination (Figure 4-6) and the difference in vaccination coverage, contact rates and 

population size between the origin and destination further modulates this relationship.  

 

Figure 4-6. Correlations Between County Pair Attributes and Infection Importation Dynamics 

Panels A-C) Scatter plots analyzing the correlations between differences in vaccination coverage, contact 

rates, and population sizes among county pairs with the difference in infections imported, across three 

select dates during the third wave. Panels (D-F) Scatter plots of the number of infections generated from 

origin to destination and the number of trips from origin to destination, colored by county pairwise 

differences in vaccination coverage, contact rates and population size.  
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4.5 Discussion 

In this study, we examine spatial patterns of SARS-CoV-2 transmission across counties in Georgia, USA 

by developing and implementing a novel analytical framework that integrates multiple fine-grain 

spatiotemporally-resolved data streams, fitted to time series of age- and county-stratified case data.  We 

highlight spatial heterogeneities in the importation of SARS-CoV-2 infections between the state's 

counties, driven by an interplay of human mobility, local contact and vaccination rates and population 

size.  

We show that areas with lower uptake of mitigation measures such as vaccination or social distancing 

measures can inadvertently drive transmission in areas with higher uptake of mitigation measures. 

Similarly, previous work showed human movement linking locations with asynchronized local-level risk 

mitigation measures heightened global infection prevalence and degraded overall pandemic control145,242. 

Spatial asynchrony prompted by a lack of coordination in lifting or re-implementing containment 

measures facilitates re-importations of community transmission. Outbreak response plans would benefit 

from coordination across geographical areas to reduce the likelihood of resurgences.  

We find an average net flow of infections from counties with lower population to counties with higher 

population, counter to the direction of net flow for mobility. Counties with larger populations also had 

higher uptake of risk mitigation behaviors such as vaccination and social distancing. This suggests that 

differential local immunity and behavior can reverse expected source-sink dynamics hypothesized from 

the strength of mobility flows alone. We further observe that for smaller counties, imported infections 

compose of a larger proportion of the counties’ total infections, suggesting that even if the smaller county 

on average acts as the net exporter in pairwise relationships, a larger proportion of their own infections 

are imported. The theory of spatial hierarchical spread suggests that infections diffuse from areas with 

high population density to areas with low population density143, yet in practice the directionality of 

transmission along the rural-urban gradient is often variable. For example, during the early stages of 

COVID-19 pandemic, cities were determined to have higher incidence and infections were hypothesized 
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to flow from urban to rural areas243. However, genomic studies have identified scenarios of virus 

importation from rural to urban areas. In Missouri, phylodynamic analysis showed frequent bi-directional 

diffusions between rural and urban communities244.  

Further, the extent of mobility between counties was correlated with but not synonymous with infection 

importation. We found that the relationship between mobility flows, and infection flows was further 

modified by the differential gradient of vaccination coverage, contact rates and population sizes between 

pair-wise counties, suggesting while mobility is important in determining local epidemic trajectories it is 

far from the only factor. This highlights the need to analyze mobility data in conjunction with additional 

data that informs other key aspects of transmission such as contact rates and vaccination rates. Therefore, 

the impact of monitoring and controlling movement is contextual because their dynamics effects are 

intertwined with the magnitude of asynchrony in local transmission across space. 

Lastly, we find that the relative contribution of infection importation remains consistent across different 

phases of a pandemic wave at the state level, despite observable variances at the county level. We did not 

observe substantial differences in the relative contribution of importations during surges versus declines 

of each wave at an aggregated state level. This suggests that once the virus is locally introduced through 

initial seeding events, the ensuing transmission dynamics within the community becomes the dominant 

driver, superseding the role of importations. 

We report several limitations. App-based GPS tracking using mobile devices track individuals who own 

and regularly use specific smart-phone mobile applications and may not be fully representative of 

population-level mobility flows. The mobility data is thus a measure of relative connectivity between 

counties rather than an exact quantification of movement and improves on previous methods used to 

parameterize metapopulation models such as mathematical assumptions or survey data on commuting 

patterns. We do not consider long-distance movements via air travel that could be important in seeding 

events but occur at lower frequencies than daily commuting. We do not account for counties outside of 

Georgia, underestimating the extent of intercounty mobility for counties on the state borders. Disease and 
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vaccination data were obtained from Georgia Department of Public Health, and we did not have access to 

comparable data from other states. An underlying assumption is intercounty mobility is distributed 

proportionally by age and infection-status. Age-stratified or infection-status stratified mobility data is 

rare, and homogeneity is a common assumption for metapopulation models. Our model goes beyond 

typical metapopulation models by introducing age-specific transmission within county. Future work can 

explore relaxing these assumptions.  

4.6 Conclusion 

In conclusion we integrate multi-dimensional data streams to infer spatial patterns of transmission across 

waves of COVID-19 in Georgia, USA using a metapopulation mode.  We find that in counties with 

smaller populations, lower contact rates and higher vaccination coverage, intercounty mobility contributes 

to a higher proportion of onward transmission. In addition, we present evidence that in an interconnected 

spatial network with a patchwork of local uptake in mitigation measures, the net infection flow is still 

from counties with lower mitigation to counties with higher mitigation.  An understanding of spatial 

patterns of transmission can guide public health strategies and policymaking and inform preparedness and 

response for future public health emergencies. 
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4.7 Supplementary File 

4.7.1 Detailed model structure and equations 

4.7.1.1 Model equations 

The model equations is as follows: 

𝑆0𝑖(𝑡) =  𝑆0𝑖(𝑡 − 1) − 𝑛𝑆0𝐸
𝑖  (𝑡) Eq 6 

 

𝑆1𝑖(𝑡) =  𝑆1𝑖(𝑡 − 1) + 𝑛𝑅𝑆
𝑖 (𝑡) − 𝑛𝑆1𝐸

𝑖  (𝑡) Eq 7 

 

𝐸𝑈𝑖(𝑡) =  𝐸𝑈𝑖(𝑡 − 1) +  𝑛𝑆𝐸𝑈
𝑖 (𝑡) − 𝑛𝐸𝑈

𝑖 (𝑡) Eq 8 

 

𝐸𝐼𝑖(𝑡) =  𝐸𝐼𝑖(𝑡 − 1) +  𝑛𝑆𝐸𝐼
𝑖 (𝑡) − 𝑛𝐸𝐼

𝑖 (𝑡) Eq 9 

 

𝑈𝑖(𝑡) =  𝑈𝑖(𝑡 − 1) + 𝑛𝐸𝑈
𝑖 (𝑡) −  𝑛𝑈𝑅

𝑖 (𝑡) Eq 10 

 

𝐼𝑖(𝑡) =  𝐼𝑖(𝑡 − 1) +  𝑛𝐸𝐼
𝑖 (𝑡) − 𝑛𝐼𝑅

𝑖 (𝑡) Eq 11 

 

𝑅𝑖(𝑡) =  𝑅𝑖(𝑡 − 1) +  𝑛𝐼𝑅
𝑖 (𝑡) + 𝑛𝑈𝑅

𝑖 (𝑡) − 𝑛𝑅𝑆
𝑖 (𝑡) Eq 12 

 

Where t represents time t, i represents model age groups (i=1 is 0-17 years, i=2 is 18-64 years and i=3 is 

65 years and above), 𝑛𝑋𝑌𝑖
(𝑡) is the number of transitions from class X to class Y for age group i at time t. 

The disease classes are as follows: S0 (susceptible individuals with no prior infection), S1 (susceptible 

individuals with one or more prior infection), E (latent infection, exposed but not yet infectious), U 

(infectious and unreported), I (infectious and reported as a case) and R (recovered and temporarily 

immune).  

The rate individuals in each age group infect each other is determined by the age-specific mixing matrix 

and age group infection density within the county. The number of transitions from susceptible to exposed 

class for group i at time t in county A is modelled by the following equation that also incorporates 

infection flow from all other counties where i denotes the age group of the susceptible class and j denotes 

the age group of the infectious class: 
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𝑛𝑆0𝐸𝐴
𝑖 (𝑡) ~ 𝑃𝑜𝑖 (𝑆0𝐴

𝑖 (𝑡 − 1) ×  ΎA × Ύ𝑖 × {∑ 𝛽(𝑡)

𝑗=1

 ×  𝑐𝑗,𝑖
𝐴,𝐻𝐻(𝑡)  × (𝐼𝑗

𝐴(𝑡 − 1) + 𝑈𝑗
𝐴(𝑡 − 1))

+ ∑ 𝛽

𝑗=1

 ×  𝑐𝑗,𝑖
𝐴,𝑁𝐻(𝑡)  × ∑ 𝑚𝐵→𝐴

𝑗
(𝑡 − 1)}

𝐵

/𝑁𝐴
𝑖) 

Eq 13 
 

𝑛𝑆1𝐸𝐴
𝑖 (𝑡) ~ 𝑃𝑜𝑖 (𝑆1𝐴

𝑖 (𝑡 − 1) ×  ΎA × Ύ𝑖 × {∑ 𝛽(𝑡)

𝑗=1

 ×  𝑐𝑗,𝑖
𝐴,𝐻𝐻(𝑡)  × (𝐼𝑗

𝐴(𝑡 − 1) + 𝑈𝑗
𝐴(𝑡 − 1))

+ ∑ 𝛽

𝑗=1

 ×  𝑐𝑗,𝑖
𝐴,𝑁𝐻(𝑡)  × ∑ 𝑚𝐵→𝐴

𝑗
(𝑡 − 1)}

𝐵

/𝑁𝐴
𝑖) 

Eq 14 
 

 

Where Ύ𝑖 ×  𝛽(𝑡) denotes the average probability of transmission from an infectious individual in any 

age group to susceptible individuals in age group i, modified by an age-specific ratio for susceptibility 

(Ύ𝑖) , with the youngest age group as the reference group. All infectious individuals contribute to 

transmission within their household based on the within household contact rate 

(𝑐𝑗,𝑖
𝐴,𝐻𝐻(𝑡)), parameterized by the term ∑ 𝛽𝑗=1  ×  𝑐𝑗,𝑖

𝐴,𝐻𝐻(𝑡)  × {𝐼𝑗
𝐴(𝑡 − 1) + 𝑈𝑗

𝐴(𝑡 − 1)}.  Infected 

individuals who travel outside of their home contribute to either transmission within their county or in 

another county, parameterized by the term ∑ 𝛽𝑗=1  ×  𝑐𝑗,𝑖
𝐴,𝑁𝐻(𝑡)  × ∑ 𝑚𝐵→𝐴

𝑗
(𝑡 − 1)}𝐵 .  𝑐𝑗,𝑖

𝐴,𝑁𝐻(𝑡) is the 

average number of non-household contacts per day made by age group j to i and ∑ 𝑚𝐵→𝐴
𝑗

(𝑡 − 1)𝐵  sums 

all the inflowing infections from age group j at time t based on all other counties where mobility between 

B→A is observed, including those who moved outside of the home but within the county (details in 

section below).  

𝑝𝑈𝑖
, the probability that an infection is unreported at times t for age group i, is defined through a cubic 

spline function with two fitted parameters 𝛼𝑖 and 𝑏𝑖, which will be used to model time-varying average 

reporting rate in a particular age group i. Here, we assume the reporting rate increases over time due to 
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increasing efforts for asymptomatic screening and testing and subsequently declines at the beginning of 

widespread availability of self-testing around the 

Transitions for 𝑛𝑆0𝐸𝐴

𝑖   and  𝑛𝑆1𝐸𝐴

𝑖  are discussed above. Transitions between other classes are modelled as: 

𝑛𝐸𝑈𝑖
(𝑡)~𝐵𝑖𝑛(𝑛𝑆𝐸𝑖

(𝑡 − 𝐷𝐸𝑈), 𝑝𝑈𝑖
(𝑡 − 𝐷𝐸𝑈)) 

Eq 15 

 

𝑛𝐸𝐼𝑖
(𝑡) =  𝑛𝑆𝐸𝑖

(𝑡 − 𝐷𝐸𝐼) −   𝑛𝐸𝑈𝑖
(𝑡) 

Eq 16 

 

𝑛𝐼𝑅𝑖
(𝑡) =  𝑛𝐸𝐼𝑖

(𝑡 − 𝐷𝐼𝑅) 
Eq 17 

 

𝑛𝑈𝑅𝑖
(𝑡) =  𝑛𝐸𝑈𝑖

(𝑡 − 𝐷𝑈𝑅) 
Eq 18 

 

𝑛𝑅𝑆𝑖
(𝑡) =  𝑛𝐼𝑅𝑖

(𝑡 − 𝐷𝑅𝑆) + 𝑛𝑈𝑅𝑖
(𝑡 − 𝐷𝑅𝑆) 

Eq 19 

 

 

Where 𝐷𝐸𝐼, 𝐷𝐸𝑈, 𝐷𝐼𝑅, 𝐷𝑈𝑅, 𝐷𝑅𝑆 denote the mean time-to-transition between the indicated two classes.  

𝑝𝑈𝑖
 represents probability that an infection is unreported for age group I (in years), through a piecewise 

function (Eq 20). 

𝑝𝑈𝑖
{

0.2;      0 ≤ 𝑖 ≤ 17
0.3;    18 ≤ 𝑖 ≤ 64
0.4;              𝑖 > 65

 Eq 20 
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4.7.2 Additional data descriptions 

4.7.2.1 Estimated proportion who stay at home in each county over the pandemic 

 

Figure 4-7. Mean proportion of devices in each county that do not leave their house1 

1Mean proportion of devices that do not leave their house estimated from Cuebiq data on the first day of 

each month. This measure is used as an input to inform non-household transmission including both non-

household within county and non-household between county transmission processes.  

4.7.2.2 Relative susceptibility values for susceptibility tiers 

Vaccination state 

Prior infection 

S0 S1 

V0 1 0.4 

V121+days 0.35 0.2 

V214-133days 0.15 0.18 

V2134-193days 0.33 0.18 

V2194+days 0.49 0.2 
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V3+ 0.1 0.1 

Table 4-1. Relative susceptibility (σS,V) for susceptibility tiers based on combinations of prior infection 

and prior vaccination1 

1A value of 1 means fully susceptible, 0 is fully immune, increasing vaccination and more recent 

vaccination confers more immunity.   

4.7.3 Additional model calibration details 

4.7.3.1 Distance and tolerance for algorithms used in calibration 

Algorithm Distance measure Tolerance 

1 
√∑ ∑ (𝐼𝑡,𝑖 − 𝐼𝑡,𝑖

∗ )2𝑖=3
𝑖=1

𝑡=550
𝑡=1  , 

where i is age groups of 0-17 years, 18-59 years and 60 years and above 

and 𝐼𝑡,𝑖 is number of reported cases at time t, age group i and 𝐼𝑡,𝑖
∗  is 

number of modeled cases at time t, age group i 

18000 

2 
√∑ ∑ (𝐼𝑡,𝑐 − 𝐼𝑡,𝑐

∗ )2𝑐=8
𝑐=1

𝑡=550
𝑡=1  , 

where c is county grouped by population size and 𝐼𝑐,𝑖 is number of 

reported cases at time t, county group c and 𝐼𝑐,𝑖
∗  is number of modeled 

cases at time t, county group c 

3000 

3 
√∑ (𝐼𝑡𝑚𝑎𝑥,𝑖 − 𝐼𝑡𝑚𝑎𝑥,𝑖

∗ )2𝑖=3
𝑖=1 ,  

where i is age groups of 0-17 years, 18-59 years and 60 years and above 

and 𝐼𝑡𝑚𝑎𝑥,𝑖 is number of reported cases at time of wave 3 peak, age group 

i and 𝐼𝑡𝑚𝑎𝑥,𝑖
∗  is number of modeled cases at time of wave 3 peak, age 

group i 

4000 

Table 4-2. Equations for distance calculations and the accepted tolerance for algorithms used in the 

calibration1 
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1 All three criteria must be met for parameter set to be accepted.  

4.7.3.2 Categorization of county population sizes 

County population category Min population size Max population size 

Pop size 1 (Metro Atlanta) 106,456 1,051,550 

Pop size 1 (Non-metro Atlanta) 85,008 289,649 

Pop size 3 35,745 81,294 

Pop size 4 22,509 34,676 

Pop size 5 15,548 22,072 

Pop size 6 8,787 15,489 

Pop size 7 1,596 8,701 

 

Table 4-3. Summary of minimum and maximum population sizes for each population size category1  

1Each population size category was assigned a separate value for relative susceptibility.  

 

4.7.3.3 Model Calibration results  

  Parameter Initialized Range 

Accepted range  

(Median, 25th-

75th 

percentile) 

 

Beta 0.0065-0.015 

0.011  

(0.007-0.015) 

 

Relative susceptibility (adults) 0.8-3 

1.739  

(1.245-2.879) 

 

Relative susceptibility (older adults) 0.8-3.75 

2.329  

(1.542-3.606) 
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Relative susceptibility (county popsize 1 metro) 0.7-1 

0.771  

(0.703-0.886) 

 

Relative susceptibility (county popsize 1 non-metro) 0.9-1.2 

1.047  

(0.96-1.098) 

 

Relative susceptibility (county popsize 2) 1-1.2 

1.102  

(1.006-1.195) 

 

Relative susceptibility (county popsize 3) 1-1.4 

1.179  

(1.009-1.391) 

 

Relative susceptibility (county popsize 4) 1-1.4 

1.188  

(1.013-1.387) 

 

Relative susceptibility (county popsize 5) 1-1.4 

1.202  

(1.011-1.386) 

 

Relative susceptibility (county popsize 6) 1-1.4 

1.197  

(1.012-1.391) 

Wave 1 Relative decrease beta 0.5-0.9 

0.607  

(0.509-0.732) 

Time decrease 41-57 50  (42-57) 

Wave 2 

Relative increase beta 1.05-1.2 

1.086  

(1.052-1.161) 

Time increase 115-140 

130  

(117-139) 

Relative decrease beta 0.68-0.95 

0.816  

(0.702-0.868) 

Wave 2 length 80-110 92 (81-109) 

Wave 3 Relative increase beta 1.05-2.46 1.909  
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(1.564-2.375) 

Time increase 360-386 373 (362-385) 

Relative decrease beta 0.4-0.95 

0.79  

(0.498-0.895) 

Wave 3 length 60-80 71 (61-80) 

 

Table 4-4. Initialized and accepted ranges for calibrated parameters in the model1 

1We used Latin Hypercube Sampling to sample from a uniform distribution where the minimum and 

maximum are described in the initialized range.  
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4.7.3.4 Posterior density plots of calibrated parameters 

 

Figure 4-8. The posterior distributions obtained for calibrated parameters using the ABC rejection 

algorithm.  
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4.7.3.5 County-level reported vs modeled cases 

 

Figure 4-9. Facet grid of reported cases per 100,000 and modeled range of cases per 100,000 for each of 

the 159 counties in Georgia1,2  
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1Counties are arranged based on their spatial position in the state 

2Time period between June 2020-December 2021  

 

 

Figure 4-10. Scatterplots depicting of the relative difference between modeled and reported COVID-19 

cases plotted against county population size1,2 

1Population size plotted on a logarithmic scale 

2Each panel represents one of the three waves. Generally, the magnitude of relative difference is unrelated 

to the population size of the county.  
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4.7.4 Proportion infections from intercounty mobility 

 

Figure 4-11. Facet grid of proportion of SARS-CoV-2 infection imported through intercounty mobility, 

stratified by county1,2,3  
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1Time period between June 1st, 2020 – Dec 3rd, 2021 (three waves) 

2Grey line shows the median of proportion imported across 1000 accepted parameter sets over time 

3Pink shade shows the modeled new cases per 100,000 

 

Figure 4-12. Proportion of infections imported through intercounty mobility by county summarized by 

epidemic wave1 

1The median of proportion imported from the accepted parameter sets are displayed.  
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Figure 4-13. Proportion of infections imported through intercounty mobility summarized by population 

size group of the county and by epidemic wave1 

1The median of proportion imported from the accepted parameter sets are displayed. 
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Figure 4-14. Proportion of infections imported through intercounty mobility summarized by quintile of 

county-level contact rate1,2  

1Q1 is counties with the lowest contact rates, Q5 is counties with the highest contact rates.  

2The median of proportion imported from the accepted parameter sets are displayed. 
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Figure 4-15. Proportion of infections imported through intercounty mobility stratified by quintile of 

county-level contact rate, epidemic wave, and of county population size1,2.  

1Q1 is counties with the lowest contact rates, Q5 is counties with the highest contact rates.  

2The median of proportion imported from the accepted parameter sets are displayed. 
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Figure 4-16. Proportion of infections imported through intercounty mobility stratified by quintiles of 

county-level vaccination coverage1,2  

1Vaccination coverage of one or more doses among adults with Q1 as the counties with the lowest 

vaccination coverage and Q5 as counties with the highest vaccination coverage. Analysis for the third 

modeled epidemic wave only  

2The median of proportion imported from the accepted parameter sets are displayed 

 

Figure 4-17. Proportion of infections imported through intercounty mobility stratified by surges and 

declines in epidemic waves and tertiles of county population size1  

1The median of proportion imported from the accepted parameter sets are displayed.  
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4.7.5 Scatter plots of difference in pairwise county attributes and differences in importations 

and trips 

 

Figure 4-18. Temporal trends in the relationship between difference in contact rate and infection 

importation across county pairs  

Scatter plots illustrate the correlation between the difference in contact rates and the difference in the 

number of infections imported between pairs of counties over multiple dates. The positive correlation 

coefficient (R) indicates infections tend to flow from counties with higher contact rates to counties with 

lower contact rates. The strength of R fluctuates over time.  
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Figure 4-19. Temporal trends in the relationship between difference in population size and infection 

importation across county pairs 
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Figure 4-20. Temporal trends in the relationship between difference in trips and differences in county 

attributes across county pairs.  

Scatter plots of differences in vaccination coverage, contact rates, and population size—each compared 

against the log-transformed differences in trips between county pairs over three dates in the third wave 

representing the start, peak and end of the wave. The correlation coefficients (R) indicate the strength and 

direction of the relationships. We observe a correlation where the number of trips is higher from the 

county with higher population to the county with lower population compared to the number of trips from 
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the county with lower population to higher population. Correlations between difference in number of trips 

and differences in vaccination coverage and contact rates are negligible. 

 

Scatter plots illustrate the correlation between the difference in the log of population sizes and the 

difference in the number of infections imported between pairs of counties over multiple dates. The 

positive correlation coefficient (R) indicates infections tend to flow from counties with higher contact 

rates to counties with lower contact rates. The strength of R fluctuates over time.  

4.7.6 Exploration of using state-wide seroprevalence data to inform age-specific reporting rate 

We used state-wide COVID-19 infection-induced antibody seroprevalence estimates from CDC, a 

repeated cross-sectional survey that sampled patient sera from specimens collected for routine screening 

in commercial laboratories across 50 US states roughly every 2 weeks. The goal of the survey was to 

provide estimates of the percentage of people in the United States with at least one resolving or past 

infection with SARS-CoV-2. For the state of Georgia, the first round of sampling began on August 2nd, 

2020 and the last round ended on February 18th, 2022, with roughly biweekly samples. The primary assay 

was Ortho VITROS Anti-S between August 2nd, 2020 and February 4th, 2021; Abbott ARCHITECT Anti-

N between February 8th, 2021 and June 30th, 2021; and Roche Elecsys Anti-N between September 6th 

2021 and February 18th, 2022. The switch from anti-S target to anti-N was to allow continued estimating 

prior infections in the context of mRNA vaccinations which produced antibody responses to the S-gene 

target. The Roche assay was deemed to have higher sensitivity, particularly in light of antibody waning, 

compared to the Abbott assay245. Figure 4-21 shows age-stratified seroprevalence estimated for the state 

of Georgia. Seroprevalence increases during epidemic waves. The change from Abbott assay to Roche 

assay was implemented after the period without seroprevalence estimates between June 2021 and 

September 2021, which coincides with an epidemic wave. The increase in seroprevalence is likely a result 

of infections from the epidemic wave and the increased sensitivity of the Roche assay.   
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We first attempted to estimate the cumulative reporting rates. We use age-stratified seroprevalence to 

estimate age-stratified cumulative incidence by applying the age-specific seroprevalence to the 

population, assuming negligible waning of infection-derived antibodies. The cumulative reporting rate 

was estimated by dividing cumulative reported cases from GDPH SENDSS by the cumulative infections 

estimated from seroprevalence (Figure 4-21). The cumulative reporting rates generally increased over 

time but drastically reduced after the switch to the Roche assay. The increase in cumulating rate over time 

is likely partly attributable to waning antibodies where those infected earlier on end up with undetectable 

antibodies in later time periods, resulting in an underestimate of cumulative incidence from 

seroprevalence.  

 

Figure 4-21. Age-stratified seroprevalence, cumulative infections estimated from seroprevalence and 

estimated reporting rate 

A. Age-stratified seroprevalence estimates over time from the CDC. B. Cumulative infections estimated 

by applying the age-specific seroprevalence to the population, without assuming waning and cumulative 
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reported cases from Georgia Department of Public Health over time. C. Cumulative reporting rate 

estimated by dividing cumulative reported cases by the cumulative infections estimated from 

seroprevalence.  

We then estimated underreporting by each wave using one seroprevalence at the beginning and one at end 

of each wave and estimating the number of infections in each wave from the change in seroprevalence 

between beginning and end. This reduces bias in estimates due to waning antibodies since antibodies 

remain relatively durable between 90-540 days245. We calculate the cumulative reported cases between 

the first day of sampling at the beginning of wave and the last day of sampling at the end of wave with a 

2-week lag to allow time for seroconversion after infection. The reporting rate per wave is the cumulative 

reported cases for the wave (with 2-week lag) divided by the number of infections for the wave estimated 

from the seroprevalence. Waves were specified based on Figure 4-23. shows the seroprevalence at the 

start and end of each wave used to estimate cumulative incidence for each wave. In the middle of second 

wave, CDC switched the target from anti-S to anti-N. We used the last anti-S estimate even though this 

time was not at the end of wave 2. Further, the last available seroprevalence Feb 18th, 2022, for children 

and older adults and Jan 24th for adults, these dates were during the decline of wave 4 (omicron wave).   
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Figure 4-22. Age-specific seroprevalence at start and end of each wave 

A. Age-specific seroprevalence at start and end of each wave (colored by wave) used to estimate 

cumulative infections for the wave. B. Start, end and peak dates of the four COVID-19 waves in Georgia 

between June 2020 and March 2022.  

The estimated reporting rate increased from 5.9% to 16.7% between wave 1 and wave 4 for children 0-17 

years. The reporting rate fluctuates between 31.9% to 53.9% for adults aged 18-64 years and between 

31.9% and 50.1% for older adults aged 65 years and above. Wave 2 and wave 4 appear to have higher 

reporting rate for 18-64 years and 65+ years. This could potentially be because the last appropriate 

seroprevalence estimate wasn’t after the wave but rather in the middle. In a more detailed analysis from 

wave 2, we see a pattern where reporting rate appears to track with the epidemic curve: reporting rate is 

low and increases as the epidemic increases and then decreases as the epidemic decreases (Figure 4-23). 

If we are missing serology estimates from later dates of a wave, our overall estimate of reporting rate for 

the wave may have been overestimated due to missing a period with lower reporting rate.  We also tested 
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using a one-week lag for reported cases and found similar reporting rates per wave. The pre-wave 1 

reporting rate was estimated from cumulative infection incidence derived from the first seroprevalence 

available (August 2nd, 2020) and cumulative cases up until that point.  

Age 

group 

Wave 

Estimated reported 

rate for wave 

Estimated infection from 

change in seroprevalence 

Reported cases 

0-17 

years 

pre 7.8% NA NA 

wave1 5.9% 253036.714 14890 

wave2 14.9% 521105.312 77391 

wave3 15.2% 874354.586 132934 

wave4 16.7% 844290.818 140623 

18-64 

years 

pre 36.6% NA NA 

wave1 31.9% 343630.224 109632 

wave2 53.9% 885559.26 477637 

wave3 20.5% 1632375.036 334020 

wave4 43.2% 843431.04 364658 

65+ 

years 

pre 67.7% NA NA 

wave1 35.3% 51077.635 18017 

wave2 50.1% 126964.407 63649 

wave3 31.9% 154692.266 49294 

wave4 42.0% 170745.237 71630 

Table 4-5. Reporting rate estimated for each wave 
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Figure 4-23. Reporting rate for wave two estimated using sequential serology.  
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CHAPTER 5 MODELING THE USE OF SEROPREVALENCE TO GUIDE COVID-19 

VACCINATION IN MOZAMBIQUE 

 

[Manuscript 1. This is a Manuscript in Review in Nature Communications, available in pre-print: 

https://www.medrxiv.org/content/10.1101/2023.08.29.23294793v1.] 

 

Can long-term COVID-19 vaccination be improved by serological surveillance?: a modeling study 

for Mozambique 

 

Carol Y Liu, Kayoko Shioda, Alicia NM Kraay, Sergio Massora, Áuria de Jesus, Arsénia Massinga, 

Celso Monjane, Saad B Omer, Samuel M Jenness, Kristin Nelson, Stefan Flasche, Inacio Mandomando, 

Benjamin A Lopman 

5.1 Abstract 

Seroprevalence provides an estimate of the population-level susceptibility to infection. We used a 

transmission model to examine the potential of using serological surveillance to inform the timing of 

COVID-19 re-vaccinations in Mozambique. We simulated using population-level seroprevalence 

thresholds as an estimate of the risk of outbreaks to trigger the timing of re-vaccination campaigns among 

older adults. We compared this approach to re-vaccination at fixed time intervals. Re-vaccinating older 

adults each time the seroprevalence falls below 50% and 80% resulted in medians of 13% and 79% 

reduction in deaths and number-needed-to-vaccinate to avert one death (NNV) of 448 (2.5th-

97.5thcentile: 330-808) and 1,516 (1,417-1,584). Biennial and annual re-vaccination of older adults 

resulted in medians of 47% and 64% deaths averted and NNVs of 597 (541-689) and 888 (822-928). In 

sensitivity analysis over a range of antibody waning rates and epidemic scenarios, we consistently found 

that re-vaccination trigger thresholds of 50-55% seroprevalence are most likely to be efficient compared 

to fixed-time strategies, but at the expense of higher numbers of deaths. No serology-triggered strategy 

minimized NNV while minimizing deaths compared to fixed-time strategies. Lacking substantial benefit 

https://www.medrxiv.org/content/10.1101/2023.08.29.23294793v1
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of serology-informed vaccination, our results favor the use of simpler fixed-time strategies for long-term 

control of SARS-CoV-2.  

5.2 Background 

Vaccines are a pivotal tool for SARS-CoV-2 control, eliciting strong protection against severe disease and 

death for vaccinated individuals161–163. Since the beginning of global vaccine rollout in December 2020, 

COVID-19 vaccines averted an estimated 19.8 million deaths in 185 countries and territories193. 

Vaccination programs enabled safer relaxation of non-pharmaceutical interventions (e.g., social 

distancing), which facilitated a transition away from the most severe phase of the pandemic149,194.  

Despite early successes of SARS-CoV-2 vaccines, evidence of waning immunity and the emergence of 

novel immune-escaping variants raised concern over the longevity of vaccine-induced protection. Since 

the rise of the highly infectious Omicron variant, effectiveness of the primary series of mRNA vaccines 

against hospitalizations reduced by almost half compared to protection estimated from the first clinical 

trials246. Booster doses partially restored short-term protection, prompting their strong recommendation 

for those most at risk of developing severe outcomes247,248.  Repeated booster campaigns aimed at 

restoring protection against severe disease among high risk groups remains an important tool in the 

medium- to long-term249,250.   

Effective deployment of vaccines maximizes their public health impact. While population immunity 

against SARS-CoV-2 was still low, targeted vaccine prioritization rapidly increased protection for 

vulnerable portions of the population, beginning with those at the highest risk for severe outcomes and 

deaths. Long-term control of COVID-19 requires the consideration of refined and information-driven 

strategies that optimize efficiency of vaccines, ideally preventing the greatest number of severe health 

outcomes with the fewest resources. Identifying critical time periods and targeting population groups 

most susceptible to impending waves can minimize resource needs while maximizing public health 

impact.  
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Serology, a marker for prior exposure determined by the presence of antibodies against SARS-CoV-2 in 

blood serum, provides information on the degree of susceptibility to infection or disease in individuals. 

Seroprevalence of randomly sampled individuals provides an estimation of population-level susceptibility 

and has previously influenced vaccination strategy. When serological studies from England251,252 

identified waning SARS-CoV-2 seroprevalence among the oldest age groups, an additional booster 

targeting this group was recommended. Seroprevalence estimates are further leveraged to guide 

vaccination strategies for endemic infections. In the case of measles, a fully immunizing infection with a 

high reproduction number, seroprevalence is used to identify locations and age groups with inadequate 

immunity for targeted vaccination campaigns. By providing snapshots of the landscape of population-

level immunity before surges in hospitalizations and deaths, seroprevalence estimates enabled preemptive 

vaccination of the most susceptible population groups253.  

The use of serological surveillance, specifically measuring seroprevalence, to monitor changing immunity 

for SARS-CoV-2 at the population level and to trigger vaccination campaigns emerged as a potential 

long-term strategy for COVID-19 control191,254. However, the utility of a long-term serology-guided 

vaccination strategy for a pathogen  with an imperfect correlate of protection is unknown and will likely 

depend on unpredictable long-term dynamics of SARS-CoV-2 driven by waning immunity and new 

variant emergence255,256. Targeted vaccination strategies hold potential in resource limited settings where 

vaccine provision is constrained257,258; however, there are few mathematical models tailored to localized 

and distinct epidemic patterns in low income countries despite their utility for optimizing vaccine 

strategies.  

Our study uses a mathematical model of SARS-CoV-2 to determine the utility of incorporating 

population-level seroprevalence to trigger future COVID-19 re-vaccination efforts. We developed our 

model to represent Mozambique, a resource-limited setting. Mozambique is notable for its early efforts in 

measuring countrywide SARS-CoV-2 seroprevalence259 and for studying seroprevalence in children 

before commencing a resource-intensive campaign to vaccinate children23. We assess the impact of a re-
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vaccination strategy for COVID-19 in Mozambique guided by population-level serology under uncertain 

epidemic dynamics over a 10-year time horizon.  

5.3 Methods 

5.3.1 Model structure 

We extend a deterministic, compartmental SEIR-like model260,261 to incorporate demographic strata of age 

group (≤18 years, 19-49 and ≥50 years) and urban/rural and twelve tiers of immunity status: combinations 

of four tiers of vaccine status (unvaccinated, vaccinated with one dose, two doses and three doses) and 

three tiers of exposure status (unexposed, one prior exposure and two prior exposures) (Figure 5-1). The 

multiple tiers of immunity allow differential susceptibility based on prior exposure from either infection 

or vaccination. To summarize the model design: after exposure, individuals enter a latent, non-infectious 

period (E), after which they progress to either infectious and asymptomatic (A) or infectious and 

symptomatic (I). A proportion of symptomatic individuals progress to more severe disease and are 

hospitalized (H). A subset of those who are hospitalized ultimately die from SARS-CoV-2 (entering the D 

class). All individuals who are not hospitalized recover (entering the R class) and can either be 

seropositive (Rp) or seronegative (Rn). Individuals can also be vaccinated and, if unexposed, enter the 

seropositive Vp or seronegative Vn classes immediately post-vaccination, if previously exposed, enter the 

seropositive Rp or seronegative Rn classes corresponding to their prior infection tier. The R and V classes 

are temporarily immune to infections; however, immunity wanes over time and individuals return to a 

partially susceptible class (Sp,1 for seropositive and one prior infection and Sn,1 for seronegative and one 

prior infection). The force of infection (Eq 35) is modified by probability of infection of exposed age 

group (𝛽𝑖), vaccine effectiveness against infection, differential by 1-3 doses (𝑉𝐸𝐼𝑣), reduced 

susceptibility from protection from prior infection (𝐼𝑃𝑒), increased variant transmissibility (for Delta and 

Omicron waves), immune escape (applied to immunity tiers with prior exposure through either infection 

of vaccination), a relative decrease in susceptibility for seropositive individuals compared to seronegative 

individuals with the same prior exposure (𝑓𝑜𝑖𝑠)50,262,263, age and rural/urban-specific contact rate (𝜒𝑗,𝑖,𝑟,𝑢) 
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and infection density within each demographic strata. Infected individuals who are asymptomatic have 

reduced transmissibility (𝛼𝑖). The model diagram is described in Figure 5-1, equations can be found in 

5.7.1.1 and details on model parameters, values, ranges and sources can be found in 5.7.2.  

 

 

Figure 5-1. Compartmental model diagram1 

1Schematic of an S-E-I-R-like compartment for a single demographic stratum (out of six total: three age 

groups in each of urban and rural) with four tiers of immunity shown (two tiers of vaccination: 

unvaccinated and one dose of vaccine, with the superscript V1 the vaccine dose and two tiers of exposure: 

no prior exposure and one exposure, with the subscript representing the number of exposures). Individuals 

who recover from infection are immune for a period. The majority seroconvert after infection (Rp) while 

others do not (Rn). Immunity for both seropositive (Rp) and seronegative (Rn) can wane over time, 

returning individuals to Sp and Sn, respectively, allowing for subsequent infection. Individuals in classes 

outlined in green are eligible for vaccination and move to a higher vaccine tier upon vaccination (not all 

arrows drawn explicitly in the diagram) The majority of individuals seroconvert after vaccination. 
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Vaccinated individuals are temporarily immune before their immunity wanes. Individuals in vaccinated 

and previously exposed strata have a reduced probability of infection and disease. 

5.3.2 Seroconversion and seroreversion 

Our model distinguishes between antibody positivity and immunity with separate seropositive and 

seronegative compartments in the S (susceptible), R (recovered) and V (vaccinated) disease states. 

Presence of neutralizing antibodies following exposure is associated with reduced risk of severe 

disease264–268. Nevertheless, protection against infection also depends on cell-mediated immunity and 

circulating variants. For example, individuals who lack neutralizing antibodies but have robust cell-

mediated immunity can still be protected, while others with antibodies may remain susceptible to new 

immune-escaping variants267,269,270. Explicit separation of immunity and serological status represents their 

imperfect correlation. 

Upon exposure through either infection or vaccination, most individuals seroconvert and become 

seropositive. Some with weaker immune systems or milder infections may not produce detectable 

antibodies after infection265,271,272. We assumed that 90%264,265 of infected individuals seroconvert after 

recovering and 85%252 of vaccinated individuals seroconvert upon moving to the vaccinated class 

following first dose. Further, we assume 70% of seronegative individuals who receive an additional 

vaccine dose will seroconvert273.   

Over time, antibodies can wane with seropositive individuals seroreverting to seronegative. Fully immune 

and seropositive individuals (Rp) will serorevert to fully immune and seronegative (Rn) while partially 

susceptible and seropositive individuals (Sp) will serorevert to partially susceptible and seronegative (Sn). 

Waning rates differ by number of exposures, regardless of whether the exposure was from vaccination or 

infection (e.g. antibody waning among those infected once and vaccinated once is the same as waning 

among those vaccinated twice). Seroreversion is fastest following the first exposure (1/500 days)274–277 

and declines after multiple exposures (range of 1/2500 days after second exposure), in line with recent 

evidence that antibody titers are higher and more persistent after multiple exposures278,279. To more 
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appropriately represent the dynamics of waning antibodies in the real world, the rate of seroreversion is 

modeled as a gamma distribution with four sequential compartments for the tiers with the fastest waning 

rates280 (5.7.1.2). 

We assessed pairwise correlations between seroprevalence, susceptibility and deaths per wave to ensure 

that the relationship between seroprevalence and deaths, seroprevalence and susceptibility and 

susceptibility and deaths in our model was as expected (5.7.5).  

5.3.3 Tiered susceptibility 

Following infection or vaccination, we assume that individuals are fully immune for an average of 150 

days before moving to a partially susceptible class. Among unvaccinated individuals, one and two prior 

infections will confer 35%51 and 60% protection against infection (𝐼𝑃𝑒), respectively. 

Vaccinated individuals move to a higher vaccination class (V1 -> V2 -> V3) with reduced rates of 

infection and probability of hospitalization if infected. We parameterize vaccine effectiveness based on 

performance of the ChAdOx1 nCoV-19 vaccine (Astra Zeneca), the main vaccine used in Mozambique 

(and many LMICs) and assume that one dose of vaccine reduces rate of infection (𝑉𝐸𝐼𝑣) by 50%, two 

doses by 60% and three doses by 70%281. Further, one, two, three doses of vaccine reduce the probability 

of progression to severe disease (𝑉𝐸𝑃𝑣) by 40%, 67% and 70% respectively. Overall vaccine 

effectiveness against hospitalization is 70%, 87% and 91%281 for one, two, three doses of vaccine, 

respectively. For individuals with hybrid immunity, protection from infection is determined by literature 

when available51 or 1-(1-𝐼𝑃𝑒)*(1- 𝑉𝐸𝐼𝑣).  Key evidence on infection and vaccination effectiveness against 

susceptibility and severe disease stratified by variants used to inform our immunity parameters is 

summarized in 5.7.8. 

5.3.4 Data sources and calibration  

Model calibration provided an estimation of the population distribution across compartments and the 

seroprevalence at the start of the simulation (Sept 1, 2022), nine months after the last sampled 

seroprevalence in Mozambique. We incorporated data on social contact sampled in an urban and a rural 
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area in Mozambique during the COVID-19 pandemic between March 2021-March 2022282, multiple 

cross-sectional seroprevalence data available at several time points from an urban and a rural area in 

Mozambique (5.7.3.3); vaccination data and time-series of reported cases11 adjusted for an underreporting 

factor to calibrate the model.  

The following parameters were calibrated using an approximate Bayesian approach: 𝛽𝑐 , 𝛽𝑎 , 𝛽𝑒, 

(probability of infection upon contact among children, adults, and older adults), increased transmissibility 

and immune escape for Delta and Omicron variants and waning rate of antibodies (Table 5-4). We 

defined a range of plausible priors for each parameter informed by literature review and prior experience 

calibrating a comparable model. The initial ranges for calibration can be found in Table 5-4. We used 

Latin hypercube sampling241 to randomly sample from the pre-defined parameter space for each run. R0 

from the sampled 𝛽s was calculated by identifying the dominant eigenvalue of the next generation matrix 

that incorporates both age-specific mixing patterns and the age-specific probabilities of transmission 

(𝛽𝑐 , 𝛽𝑎 , 𝛽𝑒)283. We further constrained 𝛽s to sampled trios that met the pre-specified R0. We compared the 

modeled age-specific seroprevalence estimates after each wave to available seroprevalence information as 

the primary target statistic (17 unique estimates). We conducted the calibration iteratively. Initially, 5000 

iterations were sampled from the initial range of parameter spaces. We then identified parameter draws 

that performed in the top 10% based on the sum of square errors across all seroprevalence estimates and 

where each modeled data point was within 5 percentage points of estimates measured from field studies. 

We then restricted the ranges for each parameter and conducted another round of LHS sampling based on 

the new, restricted ranges. This process was repeated 4 times until, iteratively narrowing the calibration 

range each time. We then ranked each set of parameters by the sum of square errors for seroprevalence 

estimates and conducted forward simulation using the top 10% (n=500). We then chose the set of 

parameters that produced the median cases and epidemic trajectory over the 10-years simulation period as 

the primary parameter values for the forward simulations.  Sensitivity analysis for the range of acceptable 

calibrated parameters (top 10%) to assess the degree to which uncertainty in the calibrated values would 
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affect our forward simulation results. Our calibrated values for transmissibility of the delta and omicron 

variants are in line with the published literature44,284. Ranges from calibration reflect choice to select the 

top 10% of parameters during calibration rather than uncertainty.  

5.3.5 Forward simulation epidemiological scenarios 

We simulated the epidemic forward for ten years from September 1, 2022. Dynamics of long-term 

immunity were simulated by allowing waning from the highest vaccination and infection tier in addition 

to the modeled waning described earlier. This included: 1) waning immunity for individuals who 

recovered after their third infection (𝑅𝑝,3, 𝑅𝑛,3) to the two-infection susceptible tier (𝑆𝑝,2, 𝑆𝑛,2) after a 

period of immunity and 2) waning immunity for individuals from the three-vaccine-dose susceptibility 

tier (𝑆𝑃
𝑉3, 𝑆𝑛

𝑉3) to the two-vaccine-dose susceptibility tier (𝑆𝑃
𝑉2, 𝑆𝑛

𝑉2) after a period of full immunity. We 

assumed annual waves driven by increases in transmission in the cool, dry season (April-July in 

Mozambique)285, informed by observational studies of early SARS-CoV-2 dynamics that cooler and dryer 

weather were moderately associated with increased transmissibility286–288 and by evidence suggesting that 

cooler, dryer air improved half-life and viability of the virus289,290. The relationship between 𝑅0(𝑡) and the 

specific humidity q(t) is determined by a prior model288: 𝑅0(𝑡) = exp(𝛼 ∗ 𝑞(𝑡) + log(𝑅0𝑚𝑎𝑥 −

𝑅0𝑚𝑖𝑛)) + 𝑅0𝑚𝑖𝑛.  

To represent uncertainty in future transmission, we sample 𝑅0𝑚𝑎𝑥 for each year from a log normal 

distribution (mean R0 = 5.5, standard deviation = 0.2). 𝑅0𝑚𝑖𝑛 is fixed at 2.05, marginally lower than the 

transmissibility of the original Wuhan strain. Given unpredictable long-term transmission dynamics, we 

consider one scenario where future waves are driven by high rates of immune escape and a second 

scenario where future waves are driven by high rates of waning immunity. In the high immune escape 

scenario, in addition to sampling 𝑅0𝑚𝑎𝑥 from the distribution, we enforce a general trend of yearly 

increases using the following formula: 𝑅0𝑚𝑎𝑥
ℎ (𝑦𝑟) = 𝑅0𝑚𝑎𝑥 (𝑦𝑟) × 1.075𝑦𝑟, where 𝑅0𝑚𝑎𝑥

ℎ (𝑦𝑟) is the 

yearly 𝑅0𝑚𝑎𝑥  for the immune escape scenario, 𝑅0𝑚𝑎𝑥 (𝑦𝑟) is the randomly sampled R0 and 𝑦𝑟 is years 

since start of simulation. In the waning immunity scenario, we allow for additional waning immunity 
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from the highest three-exposure tier to the two-exposure tier (90% protection to 75% protection in the 

three-vaccine dose tier and 86% protection to 67% protection in the two-vaccine dose tier). For each 

scenario, we conducted 500 different runs, each with 10 randomly sampled R0 for each year. 

5.3.6 Vaccination triggers and analytical outputs 

Based on literature suggesting increased impact and cost-effectiveness of routine vaccination for older 

adults compared to routine vaccination of other age groups, we focus on a strategy of booster vaccination 

for older adults and compare the impact of timing additional doses guided by population-level 

seroprevalence estimates or based on fixed time intervals. When triggered in the model, additional 

vaccination was provided to the older adult population at 2% (or ~28,000 doses) of the older adult 

population per day over a 30-day campaign period for 50% coverage per campaign, with the same 

vaccination rate applied to seropositive and seronegative subgroups. A 30-day campaign was deemed 

feasible and vaccinating ~28,000 deemed achievable compared to the 100,000 doses provided per day 

during peak campaign periods for the primary COVID-19 series in Mozambique291. Specifically, the 

timing of vaccination was guided by: 1) seroprevalence thresholds among older adults ranging from 50-

80% where vaccination will be triggered when the seroprevalence falls below the threshold; 2) fixed time 

intervals where vaccination will be triggered annually or biennially, with the first vaccine campaign 

triggered a year after the start of simulation, chosen a priori for feasibility at the time of project 

conceptualization.  

Our primary outcome is the number of vaccinations provided to older adults needed to avert one death in 

the population (or number-needed-to-treat, NNV), using the number of deaths when no additional 

vaccinations are provided as the base case. The NNV allows more equitable comparison between 

scenarios where vaccination is constantly triggered versus scenarios where vaccination is rarely triggered, 

shedding insight on the NNV and potential cost-effectiveness of different vaccination timing strategies. 

We further present the number of deaths and the number of deaths averted compared to a no vaccination 

scenario and the number and timing of additional vaccination campaigns.  
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5.3.7 Code availability 

Code used for model calibration, forward simulation and analysis of model outputs can be found in the 

following Github Repository: https://github.com/lopmanlab/COVID_serovax_Mozambique_v2/   

5.4 Results 

We modeled transmission dynamics and re-vaccination scenarios using a deterministic, compartmental 

SEIR-like model260,261 over a ten-year period starting in September 2022. The model was stratified by age 

group (≤18 years, 19-49 and ≥50 years), urban/rural and 12 immunological tiers: combinations of four 

levels of vaccination status (unvaccinated to three doses) and three levels of SARS-CoV-2 exposure status 

(unexposed to two prior exposures) with lower susceptibility for increased exposure. Our model captures 

differential rates of waning antibodies and immune protection, each informed separately by observational 

studies252,271,274,275,277,279,292. For long-term SARS-CoV-2 dynamics, we incorporated seasonality288,293 

assuming annual increases in transmission in the cool, dry season (April to July) and uncertainty in 

transmission intensity (annual Rt). We assessed a strategy of repeat re-vaccination for older adults (≥50 

years), likely the most cost-effective173,177,178,294, and compared the impact of timing re-vaccination 

campaigns guided by population-level seroprevalence estimates to the impact of vaccinating at fixed time 

intervals.  We integrated empirical data from Mozambique on vaccine coverage, human contact patterns 

collected during the pandemic and survey-derived seroprevalence. 

5.4.1 Model calibration 

Our historical model projection matched the COVID-19 epidemic waves observed in Mozambique 

between 2020 and August 2022 (Figure 5-2) and our modeled seroprevalence closely reflected historical 

estimates sampled at various times points in Mozambique across three age groups in both urban and rural 

settings (Figure 5-2). At the start of model projections (September 2022), the median seroprevalence was 

56.5%, 86.0% and 84.3% for children, adults, older adults, respectively, based on model calibration. At 

this time, the estimated distribution of individuals who were fully susceptible (no exposure through 

infection or vaccination), partially susceptible and fully immune was 16.6%, 67.0%, 16.4% for children, 

https://github.com/lopmanlab/COVID_serovax_Mozambique_v2/
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0.6%, 67.9%, 31.5% for adults and 1.3%,68.3%, 30.6% for older adults. Calibrated primary series vaccine 

coverage among adults and older adults was 93% and 96%, respectively, comparable to the data. For 

children who were ineligible for vaccination, immunity was acquired from natural infection alone. 

 

Figure 5-2. Calibrated model results compared to observed data 

(Left) Modeled historical epidemic of cases per 100 persons using the top performing calibrated 

parameters (shaded grey=range of modeled cases per 100, dotted blue=reported cases per 100 accounting 

for 1/90 underreporting for the first two waves, 1/100 underreporting for the third wave, 1/120 

underreporting for the fourth wave). Ranges reflect choice to select the top 10% of parameters during 

calibration rather than uncertainty (Right) Modeled seroprevalence compared to seroprevalence estimated 

from serological studies during various periods of the pandemic in Mozambique. 

5.4.2 Description of simulated epidemic and changing immunity 

Long-term COVID-19 epidemic patterns will likely be driven by immune waning and immune 

escape255,295. We focused on modelling long-term dynamics driven by the former, assuming that a re-

vaccination strategy triggered by seroprevalence is more likely to be beneficial under an epidemic driven 

by waning immunity. Under this assumption, the ten-year projection with no re-vaccination results in 
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multiple peaks that are on average most intense in the third year and diminishes over time due to an 

increase in population-level immunity (Figure 5-3). The median cumulative number of deaths per 100,000 

across sampled Rt (mean = 5.5, SD = 0.2) over 10 years is 51 (2.5th-97.5th percentile: 49-55) for all ages, 

1.1 (1.05-1.18) for children, 31 (30-34) for adults and 778 (741-839) for older adults (Table 5-5). 

Seroprevalence declines over time and increases following surges in cases.  

We further observed from our model that 31% of older adults were fully immune before the start of the 

forward simulation, of which 58% had protection from vaccination alone with no prior infection. The 

proportion immune reduces over the next year as individuals lose their full protection and become 

increasingly susceptible to infection. This immunity gap drives a large wave in 2026 which infects 13% 

of the population, resulting in a shift in susceptibility whereby individuals transition from vaccine-only 

protection to hybrid protection from both vaccination and infection (Figure 5-3). The shift leads to smaller 

subsequent waves, in line with evidence of increased protection from hybrid immunity47,49,164,296.  

5.4.3 Descriptive results from re-vaccination strategies 

For all re-vaccination scenarios, we trigger a vaccination campaign where 50% of the older adult 

population is vaccinated over a 30-day period. A strategy in which re-vaccination is triggered at a higher 

seroprevalence threshold (ex. 80%) increases the number of vaccination campaigns and cumulative 

vaccine doses needed. While a median of only one campaign (or 0.63 million doses) is needed to maintain 

a seroprevalence of at least 50% among older adults, 21 campaigns (or 13.3 million doses) would be 

needed to maintain a seroprevalence of at least 80% (Table 5-5). Using a 50% seroprevalence threshold, 

re-vaccination is first triggered after a median of 5.6 years. Given the higher intensity of earlier epidemic 

waves, the later re-vaccination trigger has lower impact on the overall epidemic trajectory and total 

disease burden. In comparison, using a 65% and 80% seroprevalence threshold triggers the first re-

vaccinations after 1.6 years and 109 days, respectively. Using either of these thresholds to trigger re-

vaccination reduces the size of early waves compared to the 50% threshold, but is at the expense of more 

frequent vaccination campaigns. In the fixed time interval annual and biennial re-vaccination strategies 
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implemented without regard to seroprevalence, we simulated the first re-vaccinations at 300 days, chosen 

a priori, for a total of 10 and 5 campaigns over ten years, respectively, early enough to reduce the size of 

larger projected epidemic waves in 2026.  

5.4.4 Impact of different re-vaccination strategy on vaccine NNV 

Compared to a median of 11,202 (2.5th-97.5th percentile: 10,667-12,076) total simulated deaths among 

older adults with no additional vaccinations over ten years, vaccinating older adults each time the 

seroprevalence among older adults falls below 50% and 80% results in a median of 9,774 (8,886-10,603) 

and 2,393 (1,954-2,828) deaths, respectively (Figure 5-3 and Table 5-5), a reduction of 13% and 79%. 

The number needed to vaccinate to avert one death (NNV) reaches a minimum at a 50% threshold where 

a single campaign results in a median of 1,434 (787-2,079) deaths averted and a median NNV of 448 

(330-808). The NNV increases with increasing seroprevalence threshold with a median NNV of 1,516 

(1,417-1,594) for an 80% threshold. In comparison, annual and biennial re-vaccination of older adults 

results in a median of 4,097 (3,779-4,345) and 5,922 (5,493-6,538) deaths, respectively, and median 

NNVs of 888 (822-928) and 597 (541-689), respectively (Figure 5-3 and Table 5-5). In summary, 

vaccinating at seroprevalence thresholds of 50% - 55% is more efficient than both annual and biennial 

strategies while vaccinating at thresholds of 60%-70% is more efficient than an annual strategy but less 

efficient than a biennial strategy. 
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Figure 5-3. Model results of time series of ten-year epidemic trajectory, seroprevalence and immunity 

landscape and overall number of doses needed to avert one death (NNV) and cumulative deaths 

(Top row) Modeled 10-year seroprevalence (gray = 2.5th-97.5th percentile) over time for children 

(lightest blue), adults (medium blue) and older adults >50 years (darkest blue) under 1) no additional 

vaccinations; 2) re-vaccinations timed by seroprevalence trigger thresholds of 50%, 65% and 80% and 3) 

re-vaccinations timed annually and biennially.  (Middle row) Modeled 10-year cases per 100 individuals 

over re-vaccination scenarios (gray shading=ranges from random Rt sampling, red= median); (Bottom 
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row) Susceptibility among older adults. Colored density represents population proportion within 

susceptible or immune tiers over time, ranging from fully immune (yellow) to up to 2 prior infections and 

3 vaccination doses. The blue and purple densities indicate proportion of individuals in the 2- and 3- 

vaccine dose susceptibility tiers, respectively. The darkest shades within each color have no prior 

infection and are the most susceptible, with lighter shades indicating more exposure and decreased 

susceptibility. Individuals can wane from the 3-dose susceptibility tier to the 2-dose tier and from the 3-

prior infection tier to the 2-prior infections at a rate of 1/365 days. The degree of susceptibility is 

indicated in the grid legend and is relative to totally susceptible, with 1 indicating fully susceptible and 0 

fully immune. In scenarios with re-vaccination, campaigns generate spikes in the proportion of 

individuals fully immune (yellow). More frequent vaccination campaigns result in higher proportion 

immune (yellow) and longer period in the compartment with highest protection (purple).  (Bottom left) 

Distribution of the number of vaccine doses needed to avert one death (NNV) by re-vaccination timing 

strategy (biennial, annual, triggered based on seroprevalence thresholds of between 50%-80%); (Bottom 

center) Cumulative deaths over ten years among older adults. Error bar represents 2.5th-97.5th percentile 

of cumulative deaths for older adults; (Bottom right) Scatterplot of tradeoffs in NNV and number of 

deaths comparing serology-triggered strategies with fixed-time strategies. Serology-triggered thresholds 

that fall into the shaded region would demonstrate improved tradeoffs compared to fixed-time strategy. 

For all scenarios, we use an antibody waning rate of 1/2500 days. 

5.4.5 Tradeoffs in number-needed-to-vaccinate (NNV) 

We explore tradeoffs in the NNV and the number of deaths across different serology-triggered re-

vaccination strategies compared to the tradeoffs observed in the annual and biennial strategies. We 

observe a pattern of tradeoff where no single serology-triggered re-vaccination strategy can minimize 

both NNV and the cumulative deaths compared to the fixed-time strategies. Re-vaccinating at 80% 

seroprevalence results in fewer deaths than both annual and biennial strategies but has a higher NNV and 

thus requires more doses of vaccines to avert one death. Re-vaccinating at 50% and 55% seroprevalence 

thresholds produces a lower NNV compared to than annual and biennial strategies, but at the expense of 
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more deaths. In summary, none of the serology-triggered strategies resulted in both lower NNV and lower 

deaths compared to fixed-time strategies.   

Start times of the first vaccination campaign in fixed-time strategies was set at 300 days, while serology-

triggered strategies are delayed until seroprevalence falls to specific thresholds. To examine if the timing 

affected the relative outcomes, we modified start times for fixed-time strategies, sampling between 90 to 

2000 days, and ran a set of 50 random Rt draws for each. We plot the median across Rt draws and 

visualize the relationship between start time and 1) the number of deaths and 2) NNV using smoothed 

conditional means from a linear model with a cubic spline (Figure 5-4). Delaying the start time for both 

annual and biennial strategies increased the cumulative number of deaths but produced similar NNVs. We 

find that most serology-triggered scenarios are still unable to minimize both the NNV and deaths when 

compared to fixed-time strategies of similar start times.  

 

Figure 5-4. Sensitivity analysis on varying time of first vaccination campaign for fixed interval strategies 

and varying rate of antibody waning 
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(Left) Scatter plots of start time of first vaccination over random Rt simulation runs and number of deaths 

among older adults and number-needed-to-vaccinate to avert one death (NNV) compared with fixed-time 

strategies initiated at different start times. (Right) Median NNV by seroprevalence threshold for re-

vaccination over various rates of time-to-seroreversion (lightest purple = slowest time-to-seroreversion, 

darkest purple = fastest time-to-seroreversion), with annual (orange) and biennial (yellow) NNVs for 

reference. Inset shows the modeled rates of different antibody waning after two or more prior exposures 

compared to waning immunity (pink). 

5.4.6 Sensitivity analysis  

5.4.6.1 Sensitivity analysis of rates of waning antibody, waning immunity and decreased susceptibility 

for seropositive 

The time-to-seroreversion of serological markers can vary by target and the choice of titer thresholds used 

to determine seropostivity245. For example, estimates of time-to-seroreversion after one infection exposure 

range from 250 days to 730 days for anti-N IgG and 255 days to 1500 days for anti-S IgG245,271,297, with 

evidence suggesting more durable antibodies after repeated exposures252,298,299. We vary the modeled rate 

of antibody waning to explore outcomes across a range of antibody targets and seroprevalence trigger 

thresholds that could be used as part of a surveillance program, assuming multiple exposures, from fastest 

(time to seroreversion of 500 days) to slowest (time to seroreversion of 3500 days). Under assumptions of 

relatively durable hybrid immunity after multiple exposures, we find that choosing a serological marker 

with rapid time-to-seroreversion relative to waning immunity results in early first vaccination and 

frequent subsequent re-vaccination, a highly inefficient strategy. A marker with slower waning and higher 

correlation with waning immunity is more likely to have lower NNV compared to annual and biennial re-

vaccination strategies (Figure 5-4). 

The main analysis assumes a rate of waning immunity from immune to partially susceptible of 1/150 days 

and a 1.85 times higher probability of infection among seropositive individuals compared to seronegative 
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individuals with the same degree of prior exposure. We conducted sensitivity analysis around these two 

parameters and did not find substantial differences in our main conclusions (Figure 5-21; Figure 5-22). 

5.4.6.2 Sensitivity analysis on epidemic assumptions 

While the expectation is that, SARS-CoV-2 will begin to display regular, seasonal epidemic patterns, so 

far, SARS-CoV-2 waves have occurred at irregular times throughout the year300, which may continue 

into the near future. We conducted sensitivity analysis to explore the relative outcomes of serology-

triggered versus fixed-time re-vaccination strategies under randomly-timed epidemics by randomizing the 

timing of annual increases in transmission each year. We find that triggering re-vaccination at 50%-65% 

seroprevalence thresholds are more efficient than both annual and biennial re-vaccinations but are again at 

the expense of higher number of deaths. Compared to seasonal epidemic patterns, under randomly-timed 

epidemics lower trigger thresholds for serologically-guided scenarios displayed wider variations in NNV 

and deaths averted. In some simulation runs, serology-triggered strategies can be highly efficient while in 

others, sustained transmission over several years maintained seroprevalence levels and thus delayed the 

timing of first vaccination leading to almost no deaths averted (5.7.7.1). 

In a separate sensitivity analysis, we simulate future waves driven by increasingly transmissible immune 

escape variants. We find a higher number of deaths and that seroprevalence is more likely to be 

maintained by repeated epidemic waves that infect a higher proportion of the population. In serologically 

triggered vaccination scenarios, vaccinations are less likely to be triggered. We find similar deaths averted 

by re-vaccination compared to the main epidemic scenario and lower NNV but similar patterns in NNV 

across re-vaccination timing strategies whereby only the lower seroprevalence thresholds are more 

efficient than either annual or biennial strategies (5.7.7.2). 

5.5 Discussion 

We use a transmission model to examine the potential for serological surveillance to guide the timing of 

future rounds of COVID-19 re-vaccination in Mozambique, a resource-limited setting. Across scenarios 

of waning rates of serological marker, immunity, relative susceptibility between seropositive and 
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seronegative and epidemic patterns we explored, triggering re-vaccination using lower seroprevalence 

thresholds of 50-65% is more efficient than both annual and biennial vaccination strategies and triggering 

re-vaccinations using 60-70% thresholds is more efficient than an annual strategy. The improved NNV, or 

fewer doses needing to avert one death, is at the expense of more deaths, and no serology-triggered re-

vaccination strategy minimizes NNV while minimizing deaths. Moreover, routine population-based 

sampling that can yield accurate and timely seroprevalence estimates will be costly. Without clearly 

favorable tradeoffs between NNV and deaths even in the best-case scenarios, we conclude that there is 

unlikely to be a favorable strategy to monitor population-level protection and reactively vaccinate the 

most vulnerable population groups before observing increases in clinical cases and hospitalizations. 

Taken together, the results from our modeling work favor the use of simpler fixed-time re-vaccination 

interval strategies over serology-triggered re-vaccination strategies.  

 

Our modeling work provides a framework for explicit considerations necessary for population-level 

serological surveillance to guide response. The degree of correlation between seroprevalence and 

immunity is likely to impact its utility. In the case of SARS-CoV-2, studies have explored the level of 

protection conferred by titers of different serological markers at the individual-level267,300. To formulate a 

feasible population-based strategy using information on correlates of protection requires its translation 

into measurable population-level estimates. Selecting an appropriate serological marker and a 

corresponding titer threshold that can reflect complex population-level susceptibility to future outbreaks 

and can be monitored through population surveillance will be key. Relatedly, considerations must be 

given to selecting the most suitable seroprevalence trigger threshold. In the case of measles, where the 

goal of vaccination is to eliminate infections, the proposed serology-guided vaccination strategy uses the 

herd immunity thresholds as the trigger for vaccination campaigns253. In contrast, the primary objective of 

SARS-CoV-2 vaccination is to reduce severe outcomes and deaths. Without defined population-level 

thresholds predictive of severe outcome potential, our modeling work tested a range of seroprevalence 

thresholds as vaccination triggers. Our analysis demonstrated, that in the context of durable hybrid 
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immunity against severe outcomes, using a serological marker with slower waning to trigger re-

vaccination is most likely to be efficient against fixed-time strategies. These considerations are further 

applicable to other infectious diseases that can benefit from leveraging serosurveillance to inform public 

health interventions301,302 

Our analysis is the first study to assess potential outcomes of serological triggers for a long-term SARS-

CoV-2 strategy. Our model structure extends previously published models177,293 by explicitly representing 

complex immunity profiles of hybrid immunity. Since the duration and extent of protection conferred by 

prior exposures depends on whether an individual’s particular history includes infection by the virus or 

one or more vaccine doses295, an explicit representation more accurately reflects population-level 

susceptibility that dynamically changes in response to vaccinations, infections and waning immunity. 

Unlike other models, we further decouple antibody waning from immunity waning with both processes 

informed by available data, which more accurately reflects their varying timelines and dynamics. Our 

NNV values are within the range other modelling studies that evaluated the NNV of vaccinations in 

LMICs.  One estimated the NNV to be 370 for all eligible age group303, a second estimated the NNV to be 

<1000 for boosters to high risk groups175 and a third estimate the NNV to be 1453 for yearly boosters 

among those aged 60 years and above178. 

We acknowledge several limitations. There is considerable uncertainty around model parameters, 

especially for the extent of protection conferred by multiple exposures, rates of waning antibody levels 

and immunity304. Our parameterization reflected the observed protection conferred by prior exposures up 

until December 2023where cross protection against repeat infections was predominantly driven by a mix 

of variants including the Omicron variant 48,51,305. Future variants may have greater or less cross protection 

against future infections than we have modeled here. We assumed a seasonally-forced long-term 

transmission pattern based on evidence from other respiratory illnesses in Mozambique and from other 

human coronaviruses255,294,306,307. We acknowledge further limitations in assuming that the protection from 

severe outcomes over time is proportional to protection from infection308. There remains considerable 

uncertainty regarding the long-term dynamics of endemic SARS-CoV-2 infection and dynamics proposed 
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by our model served as a base case scenario that allowed for an evaluation of the merits of using a 

seroprevalence-guided long-term re-vaccination strategy. We conducted extensive sensitivity analyses 

over a range of values for key uncertain parameters and epidemic patterns and consistently found 

comparable results.  

5.6 Conclusion 

In conclusion, our study favors the use of regularly-timed re-vaccination strategy for older adults over a 

serology-triggered re-vaccination strategy. The immune structure underlying varying degrees of 

protection against SARS-CoV-2 is complex. We parameterize the complexities of acquiring and losing 

immunity and seropositivity using a plethora of empirical data on tiered protection and rates of waning. 

We find that contrary to our expectation, a serology-triggered strategy that pre-emptively targets time 

periods of greater susceptibility does not substantially outperform fixed-time re-vaccination strategies. 

Indicators that capture the complex immune landscape more accurately than a singular seroprevalence 

estimated may improve the performance of re-vaccination strategies based on correlates of protection.
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5.7 Supplementary File 

5.7.1 Additional model methodology 

5.7.1.1 Model equations 

The first set of equations shows the compartments for one age group, urban/rural with no previous vaccination or prior exposure 

𝑑𝑆𝑣=0,𝑒=0

𝑑𝑡
= −𝜆𝑣=0,𝑒=0(𝑡)𝑆𝑣,𝑒 −  𝛿𝑣1𝑆𝑣,𝑒 Eq 21 

 
𝑑𝐸𝑣=0,𝑒=1

𝑑𝑡
= 𝜆𝑣=0,𝑒=0(𝑡)𝑆𝑣,𝑒 − 𝜎𝐸𝑣,𝑒 − 𝛿𝑣1𝐸𝑣,𝑒 Eq 22 

 
𝑑𝐼𝑣=0,𝑒=1

𝑑𝑡
= (𝜈𝑖)𝜎𝐸𝑣,𝑒 − 𝛾𝐼𝐼𝑣,𝑒 Eq 23 

 
𝑑𝐴𝑣=0,𝑒=1

𝑑𝑡
= (1 − 𝜈𝑖)𝜎𝐸𝑣,𝑒 − 𝛾𝐴𝐴𝑣,𝑒 −  𝛿𝑣1𝐴𝑣,𝑒 Eq 24 

 
𝑑𝐻𝑣=0,𝑒=1

𝑑𝑡
= (1 − 𝑉𝐸𝑃𝑣)𝜙𝑖𝛾𝐼𝐼𝑣,𝑒 − 𝛾𝐻𝐻𝑣,𝑒 Eq 25 

 

𝑑𝑅𝑣=0,𝑒=1
𝑝

𝑑𝑡
= 𝜋(1 − (1 − 𝑉𝐸𝑃𝑣)𝜙𝑖)𝛾𝐼𝐼𝑣,𝑒 + 𝜋𝛾𝐴𝐴𝑣,𝑒 + 𝜋(1 − 𝜇𝑖)𝛾𝐻𝐻𝑣,𝑒 −  𝛿𝑣1𝑅𝑣,𝑒

𝑝
− 𝜔𝑖𝑅𝑣,𝑒

𝑝
− 𝜅1𝑅𝑣,𝑒

𝑝
 Eq 26 

 
𝑑𝑅𝑣=0,𝑒=1

𝑛

𝑑𝑡
= (1 − 𝜋)(1 − (1 − 𝑉𝐸𝑃𝑣)𝜙𝑖)𝛾𝐼𝐼𝑣,𝑒 + (1 − 𝜋)𝛾𝐴𝐴𝑣,𝑒 + (1 − 𝜋)(1 − 𝜇𝑖)𝛾𝐻𝐻𝑣,𝑒 − 𝛿𝑣1𝑅𝑣,𝑒

𝑛 − 𝜔𝑖𝑅𝑣,𝑒
𝑛 + 𝜅1𝑅𝑣,𝑒

𝑛  Eq 27 

 
𝑑𝐷𝑣,𝑒

𝑑𝑡
= 𝜇𝑖𝛾𝐻𝐻𝑣,𝑒 Eq 28 
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Where S is susceptible, E is exposed & latent, I is infectious & symptomatic, A is infectious & asymptomatic, H is hospitalized, Rp is recovered 

and seropositive, Rn is recovered and seronegative, and D is deceased, λ is the force of infection (described below) and all other parameters are 

described in the parameter table below. 
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For other demographic and immunological strata, the equations are similar except the S compartment is 

split into Sp and Sn for individuals who are 1) susceptible and seropositive or 2) susceptible and 

seronegative, respectively. Equations below show the S compartments for the immunity strata of v=1 and 

e=0. Note that for the tiers with the fastest antibody waning, we further implement a gamma-distributed 

waning for the sero-reversion process from Rp to Rn (detailed below).  

𝑑𝑆𝑣=1,𝑒=0
𝑝

𝑑𝑡
= 𝜔𝑖𝑉𝑣,𝑒

𝑝
− 𝜆𝑣=1,𝑒=0(𝑡)𝑆𝑣,𝑒

𝑝
− 𝛿𝑣2𝑆𝑣,𝑒

𝑝
− 𝜅1𝑆𝑣,𝑒

𝑝
 Eq 29 

 

𝑑𝑆𝑣=1,𝑒=0
𝑛

𝑑𝑡
= 𝜔𝑖𝑉𝑣,𝑒

𝑛 − 𝜆𝑣=1,𝑒=0(𝑡)𝑆𝑣,𝑒
𝑛 − 𝛿𝑣2𝑆𝑣,𝑒

𝑛 + 𝜅1𝑆𝑣,𝑒
𝑝

 Eq 30 

 

 

Likewise, equations below show the S compartments for the immunity strata of v=0 and e=1: 

 

𝑑𝑆𝑣=0,𝑒=1
𝑝

𝑑𝑡
= 𝜔𝑖𝑅𝑣,𝑒

𝑝
− 𝜆𝑣=0,𝑒=1(𝑡)𝑆𝑣,𝑒

𝑝
− 𝛿𝑣1𝑆𝑣,𝑒

𝑝
− 4 ∗ 𝜅1𝑆𝑣,𝑒

𝑝
 Eq 31 

 

𝑑𝑆𝑣=0,𝑒=1
𝑛

𝑑𝑡
= 𝜔𝑖𝑅𝑣,𝑒

𝑛 − 𝜆𝑣=0,𝑒=1(𝑡)𝑆𝑣,𝑒
𝑛 − 𝛿𝑣1𝑆𝑣,𝑒

𝑛 + 𝜅1𝑆𝑣,𝑒
𝑝

 Eq 32 

 

 

Individuals who have no prior history of infection go into the V compartments upon vaccination with one, 

two or three vaccine doses, allowing a period of temporary immunity. Individuals who have a prior 

history of infection go into the R compartment corresponding to their prior infection tier (see model 

diagram in Methods section of paper). This again allows for a period of temporary immunity before 

returning individuals to a susceptible tier corresponding to the number of vaccine doses and number of 

prior infections. Vp  represents those immune from vaccination and seropositive and Vn  represents those 

immune from vaccination and seronegative. 
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𝑑𝑉𝑣=1,𝑒=0
𝑝

𝑑𝑡
= 𝜌𝑣1 𝛿𝑣1𝑆𝑣,𝑒 − 𝜔𝑖𝑉𝑣=1,𝑒=0

𝑝 − 𝜅1𝑉𝑣,𝑒
𝑝

 Eq 33 

 

𝑑𝑉𝑣=1,𝑒=0
𝑛

𝑑𝑡
= (1 − 𝜌𝑣1) 𝛿𝑣1𝑆𝑣,𝑒 − 𝜔𝑖𝑉𝑣=1,𝑒=0

𝑛 + 𝜅1𝑉𝑣,𝑒
𝑛  Eq 34 

 

 

The force of infection is as follows: 

 

𝜆𝑖,𝑣,𝑒,𝑠(𝑡) = 𝛽𝑖(1 − 𝑉𝐸𝐼𝑣)(1 − 𝐼𝑃𝑒)(𝑒𝑠𝑐)(𝑣𝑎𝑟𝑡𝑟𝑎𝑛𝑠)(𝑓𝑜𝑖𝑠) [ ∑ ∑ (
𝜒𝑗,𝑖,𝑟,𝑢 ∑ ∑ 𝐼𝑗,𝑚,𝑣,𝑒

3
𝑣=0 (𝑡) + 𝛼𝐴𝑗,𝑚,𝑣,𝑒(𝑡)3

𝑒=0

∑ ∑ 𝑁𝑗,𝑚,𝑣,𝑒
3
𝑣=0 (𝑡)2

𝑒=0

)

𝑚=𝑟,𝑢𝑗=𝑐,𝑎,𝑒

]
 Eq 35 

 

 

Where i denotes age group of children (0-17 years, 18-49 years and 50 years and above), v denotes number of doses of vaccine (0-3 doses), e 

denotes number of prior exposures (0-2 exposures) and s denotes serological status (p=seropositive, n=seronegative).  𝜆𝑖,𝑣,𝑒,𝑝(𝑡) is the force of 

infection among susceptible and seropositive (s=p) individuals in the ith age group with e prior infections and v doses of vaccine. The force of 

infection (SI.1. Eq.1) is modified by probability of infection of exposed age group (𝛽𝑖), vaccine effectiveness against infection, differential by 1-3 

doses (𝑉𝐸𝐼𝑣), reduced susceptibility from protection from prior infection (𝐼𝑃𝑒), increased variant transmissibility ( representing Delta and Omicron 

waves for ), immune escape (esc) applied to immunity tiers with prior exposure through either infection of vaccination, a relative increased 

transmission due to new variants (var_trans), based on Delta and Omicron variants in the calibration and based on assumptions for future 
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epidemic patterns in forward simulation, a relative decrease in susceptibility for seropositive individuals 

compared to seronegative individuals with the same amount of prior exposure (𝑓𝑜𝑖𝑠) , age and 

rural/urban-specific contact rate (𝜒𝑗,𝑖,𝑚,𝑘) and infection density within each demographic strata. Infected 

individuals who are asymptomatic have reduced transmissibility (𝛼𝑖). 𝜒𝑗,𝑖,𝑚 denotes the per person per 

day contact rate from an individual in age group j and rural area (r)with individuals in age group i and 

urban area (u). 𝑓𝑜𝑖𝑠 is parameterized so that a 10% decrease in susceptibility among seropositive 

individuals (𝑓𝑜𝑖𝑠=𝑝 = 0.9) corresponds to a 10% increase in susceptibility among seronegative 

individuals (𝑓𝑜𝑖𝑠=𝑛 = 1.1) with the same prior exposure.  

5.7.1.2 Gamma-distributed antibody waning process 

 

  

 

 

Figure 5-5. Diagram describing the gamma-distributed antibody waning process for the tiers with the 

fastest rates of antibody waning 

(Left) Gamma-distributed waning for those who were seropositive after their first infection. (Right) 

Gamma-distributed waning for those who were seropositive after first vaccination.  

To most appropriately represent the dynamics of antibody waning, we implement a gamma-distributed 

waning process for the tiers with the fastest rates of antibody waning. After first infection, individuals can 

be seropositive (Rp,1) or seronegative (Rn,1). Seropositive individuals can wane into seronegative through a 

gamma-distributed process with four compartments. Seropositive individuals can also lose their immunity 

and become susceptible again (Sp,1) at a rate and in a process independent from the waning of antibodies. 
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All compartments are eligible for vaccination. The equations specific to the gamma-distributed waning 

are detailed below. The same logic applies to the gamma-distributed waning of antibodies for those who 

are seropositive after receiving their first dose of vaccination.  

𝑑𝑅𝑣=0,𝑒=1
𝑝

𝑑𝑡
= −𝜔𝑖𝑅𝑣,𝑒

𝑝 − 4 ∗ 𝜅1𝑅𝑣,𝑒
𝑝 −  𝛿𝑣1𝑅𝑣,𝑒

𝑝
 

 

Eq 36 

 

𝑑𝑊1𝑅𝑣=0,𝑒=1
𝑝

𝑑𝑡
= −𝜔𝑖𝑊1𝑅𝑣,𝑒

𝑝 − 4 ∗ 𝜅1𝑊1𝑅𝑣,𝑒
𝑝 + 4 ∗ 𝜅1𝑅𝑣,𝑒

𝑝 −  𝛿𝑣1𝑊1𝑅𝑣,𝑒
𝑝

 

 

Eq 37 

 

𝑑𝑊2𝑅𝑣=0,𝑒=1
𝑝

𝑑𝑡
= −𝜔𝑖𝑊2𝑅𝑣,𝑒

𝑝 − 4 ∗ 𝜅1𝑊2𝑅𝑣,𝑒
𝑝 + 4 ∗ 𝜅1𝑊1𝑅𝑣,𝑒

𝑝 −  𝛿𝑣1𝑊2𝑅𝑣,𝑒
𝑝

 

 

Eq 38 

 

𝑑𝑊3𝑅𝑣=0,𝑒=1
𝑝

𝑑𝑡
= −𝜔𝑖𝑊3𝑅𝑣,𝑒

𝑝 − 4 ∗ 𝜅1𝑊3𝑅𝑣,𝑒
𝑝 + 4 ∗ 𝜅1𝑊2𝑅𝑣,𝑒

𝑝 − 𝛿𝑣1𝑊3𝑅𝑣,𝑒
𝑝

 

 

Eq 39 

 

𝑑𝑅𝑣=0,𝑒=1
𝑛

𝑑𝑡
= 4 ∗ 𝜅1𝑊3𝑅𝑣,𝑒

𝑝 − 𝛿𝑣1𝑅𝑣,𝑒
𝑛 − 𝜔𝑖𝑅𝑣,𝑒

𝑛  

 

Eq 40 

 

 

5.7.1.3 Implementing historical vaccination 

Individuals in S, E, A, R compartments are eligible for vaccination. Historical vaccinations were 

implemented based on documented first and second dose vaccination administered in Mozambique over 

time, beginning March 2021,291 with an early preference towards the age group of 50 years and above. At 

the start of the forward simulation period (Sept 1st, 2022), the two-dose vaccination coverage among 

adults is >90%, while children <18 years of age in Mozambique have not yet been vaccinated. 
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5.7.2 Model parameters  

Abbreviation Description Value (Range) Source 

Transmission    

R0 Basic reproduction number 2.58 (2-4) 44,309 

𝛽𝑐 , 𝛽𝑎, 𝛽𝑒 Prob. of infection of exposed age 

group 

0.02326, 0.02442, 

0.0116 

Calibrated 

𝛼 Relative infectiousness btwn 

asympt & sympt 

0.6 (0.3-0.9) 310,311 

𝛾𝐼 Infectious period, symptomatic 

(days) 

7 306 

𝛾𝐴 Infectious period, 

asymptomatic(days) 

7 306 

𝛾𝐻 Hospital LOS (days) 5 (3-9) 312 

𝜎 Latent period 5.5 (3.0-6.7) 32,33,35,313 

𝜈𝑐 , 𝜈𝑎 , 𝜈𝑒 Probability of symptomatic 

infection by age group 

0.45, 0.55, 0.65 310 

𝜙𝑐 , 𝜙𝑎 , 𝜙𝑒 , Probability of hospitalization upon 

symptomatic infection by age group 

0.004-0.0075,  

0.03-0.15,  

0.2-0.35 

314–316 

𝜇𝑐 , 𝜇𝑎 , 𝜇𝑒 Probability of death upon 

hospitalization by age group 

0.005-0.01,  

0.0365-0.465,  

0.15 

317,318 
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𝜔𝑐 , 𝜔𝑎 , 𝜔𝑒 Rate of waning immunity from 

immune to partially susceptible 

1/150, 1/150, 

1/150 

292 

𝜔𝑐,2, 𝜔𝑎,2, 𝜔𝑒,2 Additional waning from S3 (3 prior 

exposures) to S2 (2 prior exposures) 

1/365, 1/365, 

1/365 

281 

Serology  

𝜋 Probability of seroconversion after 

infection 

0.9 (0.8-0.98) 319,320 

𝜌𝑣1, 𝜌𝑣2, 𝜌𝑣3 Probability of seroconversion 

among seronegative individuals 

after vaccination (dose 1-3) 

0.85,0.7, 0.9 273 

𝜅1 Seroreversion rate for first exposure 

(either vaccine or infection) 

1/500 321,322 

𝜅2 Seroreversion rate for second or 

more exposures exposure 

1/2500 321,322 

Vaccination  

𝛿𝑖,𝑘,𝑣 Per capita vaccination rate by age 

group, urban/rural and dose 

Time-varying 

based on data 

(0.01%-4%)  

291 

𝑉𝐸𝐼𝑣1, 𝑉𝐸𝐼𝑣2, 𝑉𝐸𝐼𝑣3 Vaccine effectiveness against 

infections by number of vaccine 

doses (assuming Astra Zeneca) 

0.5, 0.6, 0.7 281 

𝑉𝐸𝑃𝑣1, 𝑉𝐸𝑃𝑣2, 𝑉𝐸𝑃𝑣3 Vaccine effectiveness against 

progression from infection to severe 

disease/hospitalization by number 

0.4, 0.67, 0.9 281 
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of vaccine dose (assuming Astra 

Zeneca) 

Prior exposure protection  

𝐼𝑃𝑒 Protection from first/second 

infection 

0.35, 0.6 48,51 

foi_sp/foi_sn Relative transmissibility between 

seropositive and seronegative 

0.7,1.3 Assumption50,262,263 

Variants  

R0 (delta)/var_trans R0 during Delta wave/increased 

transmissibility during Delta wave 

3.1 (2.4-4) Calibrated323,324 

R0 

(omicron)/var_trans 

R0 during Omicron/increased 

transmissibility during omicron 

6.4 (5.0-6.5) Calibrated325 

Immune escape 

(Delta) 

Increased transmission among those 

with prior exposure during Delta 

wave 

1.2 326,327 

Immune escape 

(Omicron) 

Increased transmission among those 

with prior exposure during Omicron 

wave 

1.6 326,327 

Immune escape (new 

variant) 

Increased transmission among those 

with prior exposure for new variant 

1.7 Assumption 

Under-reporting    

Under-reporting 

(wave alpha-beta) 

Case under-reporting for alpha/beta 

wave 

 Calibrated 
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Under-reporting 

(Delta) 

Case under-reporting for Delta 

wave 

 Calibrated 

Under-reporting 

(omicron) 

Case under-reporting for omicron 

wave 

 Calibrated 

Table 5-1. Model parameters, corresponding description, value and source 
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5.7.3 Data sources from Mozambique 

5.7.3.1 Summary of data sources on contact, seroprevalence, vaccination and cases 

Parameter Source Stratification 

Social contact 

mixing matrix 

GlobalMix Study (Comprehensively profiled 

social contact patterns in an urban and rural 

area in Mozambique) 

• Age group 

• Urban/rural 

Seroprevalence 

data 

Instituto Nacional de Saude, Mozambique23  • Age group 

• Rural : After waves 2, 3, 4 

• Urban : After waves 1, 2, 3 

Vaccination rates 

over time 

Instituto Nacional de Saude, Mozambique/ 

Our World in data291 

• Daily 

• First/second dose 

Reported cases Instituto Nacional de Saude, Mozambique/ 

Our world in data291 

• Daily 

Table 5-2 Data sources from Mozambique used to parameterize the transmission model 

5.7.3.2 Generation of mixing matrix 

Our social contact mixing matrix (Figure 5-6) is derived from contact diaries sampled through age-based 

quotas in an urban and a rural area during the COVID-19 pandemic between March 2021-March 2022 

(N=1242).  The socialmixr package328 was used to generate symmetric age-specific contact matrices, 

separately for urban and rural areas. Since contact age groups were estimated with an upper and lower 

bound, we used 1000 bootstrapped samples to compute the number of contacts between each age group 

(0-17 years, 18-49 years, 50 years and above).  We generated weights by calculating the sampling 

probabilities for the participant age groups used to develop the sampling frame of the survey and applied 

these weights during the bootstrapping. Urban and rural daily travel probabilities were estimated for the 

extent of contact between urban and rural populations based on a travel survey conducted in Mozambique 

between 2021-2022. Briefly, the survey asked participants from Mahnica (rural) on the frequency of 
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travel to an urban area over the two weeks prior to survey. This frequency was then converted to a daily 

probability of travel to an urban area among rural participants. Similarly, the survey asked participants 

from Maputo (urban) on the frequency of travel to a rural area over the two weeks prior to survey, which 

was then converted to a daily probability of travel to a rural area among urban participants. We then 

applied these probabilities evenly across the age distribution for who-acquired-infection-from-whom 

(WAIFW) matrix stratified by both age group and by urban/rural (Figure 5-6).  

 

Figure 5-6. Matrix of mixing, or who-acquired-infection-from-whom (WAIFW) stratified by age group 

and by urban/rural1 

1Data used to inform this matrix was collected from an urban and a rural area during the COVID-19 

pandemic between March 2021-March 2022.   
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5.7.3.3 Seroprevalence estimates 

Several seroprevalence studies have been conducted in Mozambique since the beginning of the COVID-

19 pandemic. Between June-Dec 2020 after the first and second waves, the Insituto Nacional de Saude 

(INS) conducted seroprevalence surveys in 13 urban or peri-urban areas (at least one per province) using 

the Panbio COVID-19 IgG/IgM rapid test. Surveys were stratified sampled by age group and were 

intended to be representative of the sampled area. A total of 49,103 individuals were sampled and the 

area-specific seroprevalence ranged from 0.7% to 7.4%. We pooled these estimates using a simple 

average to represent the seroprevalence before the start of the second wave in December 2020. Between 

Dec 2020- Dec 2021, longitudinal seroprevalence surveys using Dried Blood Samples (DBS) were 

conducted among 2400 individuals in an urban area which forms our seroprevalence estimates for urban 

areas after the second (winter 2020-2021) and third (summer 2021) COVID-19 waves. Between May 

2021 and June 2022, four cross-sectional seroprevalence surveys were conducted in a rural area forms our 

seroprevalence estimates for rural areas after the second, third and fourth (winter 2021-2022) COVID-19 

waves (N= between 666-974). The primary assay used was an S-protein target-specific Luminex assay for 

IgG and IgM (92% sensitivity and 100% specificity).  The most recent Luminex seroprevalence results 

from February 2022 estimated an overall seroprevalence of 79% in the rural area. Children who are 

largely unvaccinated have a seroprevalence of 64%, while adults and older adults with high primary series 

vaccination coverage have a seroprevalence of 86% and 79%, respectively.  
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Figure 5-7. Seroprevalence point estimates sampled during the COVID-19 pandemic stratified by age 

group and by urban/rural.  

5.7.3.4 Vaccination and case data 

A publicly-available data source (Our World in Data) and data compiled by Mozambique’s Instituto 

Nacional de Saude were used to derive reported cases to inform model calibration and the number of first 
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and second doses administered on a daily basis to model the vaccination rate. The latter was converted 

into a daily vaccination rate for first and second dose.  
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5.7.4 Calibration results 

5.7.4.1 Modeled seroprevalence from the top performing calibration runs 

Date 

Epide

mic 

Period 

Urban/ 

Rural 

Age group 

Modeled 

median 

Lower Upper 

Population 

samples 

10/22/2020 

Post 

wave1 

Urban 

All ages 1.6% 1.3% 2.4% 3.6% 

Children 1.5% 1.2% 2.3% 2.6% 

Adults 1.8% 1.4% 2.7% 3.9% 

Adults >50 yrs 1.1% 0.9% 1.6% 2.9% 

1/30/2021 Wave 2 Urban All ages 7.9% 6.8% 10.0% 9.0% 

5/19/2021 

Post 

wave 2 

Rural 

All ages 27.8% 26.2% 30.6% 27.6% 

Children 25.3% 22.5% 28.5% 25.6% 

Adults 31.8% 29.1% 35.1% 29.7% 

Adults >50 yrs 25.3% 23.7% 27.3% 25.0% 

Urban All ages 16.9% 16.0% 19.1% 21.0% 

10/1/2021 

Post 

wave 3 

Rural 

All ages 54.2% 51.2% 58.8% 54.2% 

Children 50.8% 47.0% 56.1% 45.2% 

Adults 59.2% 55.7% 64.0% 57.2% 

Adults >50 yrs 51.2% 48.9% 56.9% 55.4% 

1/1/2022 

Post 

wave 4 

Rural 

All ages 74.7% 72.0% 78.1% 78.6% 

Children 65.4% 61.3% 70.9% 63.6% 

Adults 86.4% 84.8% 88.0% 86.2% 

Adults >50 yrs 82.3% 81.1% 84.5% 78.7% 

Table 5-3. Modeled seroprevalence from the top performing calibration runs compared to the population 

samples of seroprevalence estimates  
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5.7.4.2 Values from top performing calibration runs for calibrated parameters  

Parameter Initial range Median calibrated value 

(range) 

𝛽𝑐 (relative to 𝛽𝑒) 0.4-1.2 0.358 (0.350-0.370) 

𝛽𝑎(relative to 𝛽𝑒) 0.4-1.2 0.479 (0.439-0.528) 

𝛽𝑒 0.04-0.08 0.0747 (0.0712-0.0769) 

R0 1.8-2.5 2.11 (2.08-2.17) 

Rate of antibody waning after first 

infection 

1/400-1/650 1/500 (1/450-1/650) 

Increased transmissibility relative to 

original strain (Delta) 

1.4-1.7 1.57 (1.49-1.65) 

Immune escape (Delta) 1-1.5 1.27 (1.10-1.45) 

Increased transmissibility relative to 

original strain (omicron) 

2.5-6 3.20 (2.93-3.67) 

Immune escape (omicron) 1.3-1.9 1.55 (1.40-1.80) 

 

Table 5-4. Values from top performing calibration runs for calibrated parameters with median and range.
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5.7.5 Assessing correlations between seroprevalence, susceptibility and cumulative deaths in base 

scenarios with no vaccination 

For our base scenario with no re-vaccinations, we assessed the following pairwise correlations between 1) 

seroprevalence and population-level susceptibility prior to each wave; 2) seroprevalence and proportion 

immune prior to each wave; 3) seroprevalence prior to each wave and deaths among older adults in each 

wave; 4) population-level susceptibility prior to each wave and deaths among older adults in each wave. 

We calculate a summary estimate of susceptibility where the proportion of the population in each 

susceptible tier is multiplied by the degree of susceptibility, with theoretical ranges from 1 for a 

completely susceptible population to 0 for a completely immune population. We assess these correlations 

over a sweep of relative decreases in susceptibility among seropositive vs seronegative (with the same 

amount of prior exposure) and waning antibody rates.  

In summary, we find that regardless of the degree of relative decrease in susceptibility among seropositive 

individuals (𝑓𝑜𝑖𝑠=𝑝) and the rate of waning antibody, seroprevalence is always positively correlated with 

proportion immune and proportion susceptible is always positively correlated with the number of deaths, 

as expected. We find that among scenarios with decreased susceptibility among seropositive individuals, 

seroprevalence is always negatively correlated with deaths, as expected, with a stronger negative 

correlation between seroprevalence and deaths and seroprevalence and susceptibility with decreasing 

relative susceptibility among seropositive individuals. In scenarios where seropositive individuals have 

the same probability of infection as seronegative individuals with the same amount of prior exposure, 

seroprevalence is not negatively correlated with deaths or susceptibility.   

For our main analysis, we chose 𝑓𝑜𝑖𝑠=𝑝 = 0.7 (decreased susceptibility among seropositive individuals) 

and 𝑓𝑜𝑖𝑠=𝑛 = 1.3 for seronegative individuals, (seronegative have 1.85 times higher probability of 

infection compared to seropositive)262 and a waning antibody rate of 1/2500 after two or more exposures 

(from calibration), and further conduct sensitivity analysis over a range of 𝑓𝑜𝑖𝑠 and waning antibody 

rates.  
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Figure 5-8. Scatter plots of correlations between seroprevalence at the start of each wave and deaths in 

each wave (among older adults) 

 

Figure 5-9. Overall correlations (R2) between seroprevalence at the start of each wave and deaths in each 

wave.  
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Figure 5-10. Scatter plots of correlations between seroprevalence at the start of each wave and proportion 

immune at the start of each wave (among older adults) 

  

Figure 5-11. Overall correlations (R2) between seroprevalence at the start of each wave and proportion 

immune at the start of each wave 
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Figure 5-12. Scatter plots of correlations between seroprevalence at the start of each wave and proportion 

susceptible at the start of each wave (among older adults)  

 

Figure 5-13. Overall correlations (R2) between seroprevalence at the start of each wave and proportion 

susceptible at the start of each wave 
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Figure 5-14. Scatter plots of correlations between proportion susceptible at the start of each wave and 

total deaths in the wave (among older adults) 
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5.7.6 Vaccination impact results for main analysis 

Vaccination 

scenario 

Time of 

first 

vaccination  

(days since 

start) 

NNV  

(older adults) 

Deaths Averted 

among older 

adults 

Median 

percent 

reduction 

in deaths 

Deaths among older 

adults 

No.  

of 

campaigns 

No vax - - - 0% 11202 (10667-12076) - 

50% thresh 2046  

(1962-3108) 

448  

(330-808) 

1434 (787-2079) 13% 9774 (8886-10603) 1 (1-2) 

55% thresh 1703  

(1652-1721) 

462  

(383-611) 

2762 (2273-3325) 25% 8502 (7970-8977) 2 (2-3) 

60% thresh 916  

(801-1484) 

610 (505-774) 4067 (3067-5047) 36% 7202 (6121-8318) 4 (3-4) 

65% thresh 591  

(589-595) 

717 (658-827) 5332 (4623-5806) 48% 5919 (5427-6443) 6 (6-6) 

70% thresh 416  

(415-419) 

850 (783-904) 6751 (6349-7331) 60% 4472 (4198-4859) 9 (9-9) 
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75% thresh 255  

(255-255) 

1072 (995-1143) 7743 (7277-8338) 69% 3493 (3112-3919) 13 (13-13) 

80% thresh 109  

(109-109) 

1516 (1417-1594) 8844 (8468-9396) 79% 2393 (1954-2828) 21 (21-21) 

Annual 300 888 (822-928) 7180 (6873-7755) 64% 4047 (3779-4345) 10 (10-10) 

Biennial 300 597 (541-689) 5333 (4616-5875) 47% 5922 (5493-6538) 5 (5-5) 

 

Table 5-5. Summary table of vaccine impact results for main analysis 

Summary results on NNV, number of deaths, number of deaths averted, median percent reduction in deaths and vaccination timing and frequency 

based on different vaccination strategies in the main epidemic scenario driven by waning immunity. Quantitative results presented as median and 

2.5th-97.5th percentile ranges. The median percent reduction in deaths was calculated using the medians of deaths averted and deaths among older 

adults in a no vaccination scenario.
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Figure 5-15. Distribution of NNV and number of deaths across all age groups  

(Left) Distribution of the number of vaccine doses needed to avert one death among all ages (NNV) by 

vaccination timing strategy (biennual, annual, triggered based on seroprevalence thresholds of between 

50%-80%) based on random sampling for annual transmission under an epidemic scenario driven by 

waning immunity. (Right) Cumulative deaths over ten years by age group (dark green=child, medium 

shade = adults, lightest shade =adults >50 years). Error bar represents 25th-75th percentile of cumulative 

deaths across all age groups.  
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Figure 5-16. Susceptibility landscape over time stratified by age group 

Colored density represents population proportion within susceptible or immune tiers over time, ranging 

from fully immune (yellow) to up to 2 prior infections and 3 vaccination doses. The blue and purple 

densities indicate proportion of individuals in the 2- and 3- vaccine dose susceptibility tiers, respectively. 

The darkest shades within each color have no prior infection and are the most susceptible, with lighter 

shades indicating more exposure and decreased susceptibility. Individuals can wane from the 3-dose 

susceptibility tier to the 2-dose tier and from the 3-prior infection tier to the 2-prior infections at a rate of 

1/365 days. The degree of susceptibility is indicated in the grid legend and is relative to totally 
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susceptible, with 1 indicating fully susceptible and 0 fully immune. In scenarios with vaccination, 

campaigns generate spikes in the proportion of individuals fully immune (yellow). More frequent 

vaccination campaigns result in higher proportion immune (yellow) and longer period in the compartment 

with highest protection (purple).   

5.7.7 Sensitivity analysis 

5.7.7.1 Sensitivity analysis using randomly-timed epidemic patterns 

  

 

Figure 5-17. Model results for randomly-timed epidemic patterns 

(Top row) Modeled 10-year seroprevalence (gray = 2.5th-97.5th percentile) over time for children 

(lightest blue), adults (medium blue) and older adults >50 years (darkest blue) under 1) no additional 
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vaccinations; 2) vaccinations timed by seroprevalence trigger thresholds of 50%, 65% and 80% and 3) 

vaccinations timed annually and biennially.  (Middle row) Modeled random Rt sampling, red= median); 

(Left) Distribution of the number of vaccine doses needed to avert one death among all ages (NNV) by 

vaccination timing strategy (biennual, annual, triggered based on seroprevalence thresholds of between 

50%-80%) based on a randomly-timed epidemic scenario driven by immune waning (Right) Cumulative 

deaths over ten years by age group (dark green=child, medium shade = adults, lightest shade =adults >50 

years). Error bar represents 25th-75th percentile of cumulative deaths across all age groups.
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Table 5-6. Summary table of vaccine impact results for randomly-timed epidemic patterns 

Summary results on NNV, number of deaths, number of deaths averted and vaccination timing and frequency based on different vaccination 

strategies in the epidemic scenario driven by randomly-timed annual epidemic and by waning immunity. Quantitative results presented as median 

and 2.5th-97.5th percentile ranges. 

 

Vaccination 

scenario 

Time of first 

vaccination  

(days since start) 

NNV  

(older adults) 

Deaths Averted 

among older 

adults 

Median percent 

reduction in 

deaths 

Deaths among 

older adults 

No.  

of campaigns 

No vax - - - 0% 11144 (9864-13636) - 

50% thresh 2282 (1799-3164) 547 (0-5892) 1516 (0-3903) 14% 9695 (8104-11866) 1 (1-2) 

55% thresh 1716 (1142-2233) 586 (305-2285) 2429 (558-4879) 23% 8651 (7425-10353) 2 (2-3) 

60% thresh 829 (796-1416) 657 (426-1502) 3876 (1539-6132) 35% 7106 (5885-9654) 4 (3-5) 

65% thresh 606 (589-647) 734 (520-1236) 5233 (2629-7366) 47% 5958 (4887-8068) 6 (5-6) 

70% thresh 419 (415-436) 875 (655-1227) 6381 (4651-8556) 59% 4572 (3607-6475) 9 (8-9) 

75% thresh 260 (255-277) 1099 (855-1432) 7630 (5683-9796) 69% 3490 (2736-5489) 13 (12-14) 

80% thresh 111 (109-124) 1548 (1237-1962) 8408 (6507-10709) 76% 2647 (2086-4077) 21 (20-21) 

Annual 300 (300-300) 945 (749-1197) 6747 (5337-8520) 62% 4190 (3503-5704) 10 (10-10) 

Biennial 300 (300-300) 683 (468-1150) 4662 (2775-6809) 42% 6389 (5537-8307) 5 (5-5) 



168 

 

Figure 5-18. Distribution of NNV and number of deaths across all age groups for randomly-timed epidemic patters 

(Left) Distribution of the number of vaccine doses needed to avert one death among all ages (NNV) by vaccination timing strategy (biennual, 

annual, triggered based on seroprevalence thresholds of between 50%-80%) based on random sampling for annual transmission under an epidemic 

scenario driven by randomly-timed epidemics. (Right) Cumulative deaths over ten years by age group (dark green=child, medium shade = adults, 

lightest shade =adults >50 years). Error bar represents 25th-75th percentile of cumulative deaths across all age groups.
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5.7.7.2 Sensitivity analysis using a 10-year epidemic trajectory driven by immune escape 

 

 

 

Figure 5-19. Model results for epidemic patterns driven by immune escape 

(Top) Modeled 10-year seroprevalence (gray = ranges) over time using a high immune escape scenario for children 

(lightest blue), adults (medium blue) and older adults >50 years (darkest blue) under 1) no additional vaccinations; 

2) vaccinations timed by seroprevalence trigger thresholds of 50%, 65% and 80% and 3) vaccinations timed 

annually and biennially.  (Middle) Modeled 10-year cases per 100 over vaccination scenarios (gray=ranges from 

random R0 sampling, red= median); (Bottom left) Distribution of the number of vaccine doses needed to avert one 
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death (NNV) by vaccination timing strategy (biennial, annual, triggered based on seroprevalence thresholds of 

between 50%-80%). Note that the seroprevalence never drops below 50% in this epidemic scenarios and no 

vaccinations are triggered and thus no NNV estimates; (Bottom right) Cumulative deaths over ten years among older 

adults. Error bar represents 25th-75th percentile of cumulative deaths for older adults. 

In the base case high immune escape scenario with no additional vaccinations, multiple peaks arise that 

are more intense in later years 
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(

 

Figure 5-19). Similar to the high waning immunity scenario, the seroprevalence declines then increases in 

response to surges in cases. Unlike the high waning immunity scenario, the seroprevalence is largely 

maintained above 50% due to repeated epidemic waves that infect a substantial proportion of the 

population. Across model runs, the median cumulative number of deaths over 10 years is 28,148 (25th-

75th percentile: 26,200-32025) for all ages, and 20,591 (25th-75th percentile: 19,183-23,480) for older 

adults. 
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With seroprevalence-informed vaccination triggers, slightly fewer number of campaigns are triggered 

compared to the high waning immunity scenario. For the lower seroprevalence thresholds of 50% and 

55%, campaigns are never or seldomly triggered. For higher thresholds, vaccinating each time the 

seroprevalence among older adult falls below 60 % and 80% results in a median of 18,275 and 8,052 

deaths respectively. Among the vaccination strategies guided by seroprevalence, the median number 

needed to vaccinate to avert one death (NNV) reaches a minimum at a 60% threshold where 2 campaigns 

providing a total of 1.2 million vaccine doses result in a median of 2,072 fewer deaths and a median NNV 

of 312. The NNV increases for higher seroprevalence thresholds with an NNV of 855 for an 80% 

threshold. In comparison, annual and biennial vaccination of older adults results in a median of 10,258 

and 13,986deaths among older adults, respectively and NNVs of 605 and 486, respectively. Similar 

patterns are observed for the NNV across all age groups (number needed to vaccinate to avert one death 

in the entire population). NNVs are lower for the epidemic scenario driven by immune escape compared 

to the epidemic scenario driven by waning immunity.  

We observe similar tradeoffs in NNV and number of deaths where vaccination scenarios triggered by 

seroprevalence thresholds do not necessarily provide an improved tradeoff.  
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Vaccination 

scenario 

Time of first 

vaccination  

(days since start) 

NNV  

(older adults) 

Deaths Averted 

among older adults 

Median 

percent 

reduction in 

deaths 

Deaths among older 

adults 

No.  

of campaigns 

No vax - - 0 (0-0) 0% 20591 (19183-23480) 0 (0-0) 

50% thresh - - 0 (0-0) 0% 20591 (19183-23480) 0 (0-0) 

55% thresh 2022 (1916-3113) 226 (0-623) 0 (0-3284) 0% 20507 (17348-23480) 0 (0-1) 

60% thresh 1603 (858-1643) 312 (0-10004) 2072 (0-6173) 9% 18275 (15576-21916) 2 (1-2) 

65% thresh 591 (589-596) 402 (296-771) 5750 (3059-8604) 27% 14730 (13135-17246) 4 (3-4) 

70% thresh 416 (415-419) 509 (361-711) 7504 (5378-10580) 37% 12972 (12176-15074) 6 (6-6) 

75% thresh 255 (255-255) 645 (533-849) 10879 (8288-13164) 53% 9729 (8999-11589) 11 (11-11) 

80% thresh 109 (109-109) 855 (741-1056) 12684 (10272-14632) 62% 8052 (7468-9771) 17 (17-18) 

Annual 300 (300-300) 605 (474-810) 10514 (7839-13406) 51% 10258 (9219-11664) 10 (10-10) 

Biennial 300 (300-300) 486 (340-827) 6484 (3825-9257) 32% 13986 (12658-16426) 5 (5-5) 

 

Table 5-7. Summary table of vaccine impact results for epidemic patterns driven by immune escape 

Summary results on NNV, number of deaths, number of deaths averted (for older adults and all ages) and vaccination timing and frequency based 

on different vaccination timing strategies under an epidemic scenario driven by immune escape.
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Figure 5-20. Susceptibility landscape over time stratified by age group for epidemic pattern driven by 

immune escape 
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Colored density represents population proportion within susceptible or immune tiers over time, ranging 

from fully immune (yellow) to up to 2 prior infections and 3 vaccination doses. The blue and purple 

densities indicate proportion of individuals in the 2- and 3- vaccine dose susceptibility tiers, respectively. 

The darkest shades within each color have no prior infection and are the most susceptible, with lighter 

shades indicating more exposure and decreased susceptibility. Individuals can wane from the 3-dose 

susceptibility tier to the 2-dose tier and from the 3-prior infection tier to the 2-prior infections at a rate of 

1/365 days. The degree of susceptibility is indicated in the grid legend and is relative to totally 

susceptible, with 1 indicating fully susceptible and 0 fully immune. In scenarios with vaccination, 

campaigns generate spikes in the proportion of individuals fully immune (yellow). More frequent 

vaccination campaigns result in higher proportion immune (yellow) and longer period in the compartment 

with highest protection (purple).   
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5.7.7.3 Sensitivity analysis of relative decrease in susceptibility among seropositive individuals 

 

Figure 5-21. Main outcomes in number-needed-to-vaccinate to avert one death (NNV) and deaths under 

different parameter scenarios for the relative decrease in susceptibility among seropositive.  

(Left) Distribution of the number of vaccine doses needed to avert one death (NNVT) by re-vaccination 

timing strategy (biennial, annual, triggered based on seroprevalence thresholds of between 50%-80%); 

(Center) Cumulative deaths over ten years among older adults. Error bar represents 2.5th-97.5th 

percentile of cumulative deaths for older adults; (Right) Scatterplot of tradeoffs in efficiency (NNV) and 

number of deaths comparing serology-triggered strategies with fixed interval strategies.  
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5.7.7.4 Sensitivity analysis of rate of waning antibody 

 

 

Figure 5-22. Main outcomes in number-needed-to-vaccinate to avert one death (NNV) and deaths under 

different parameter scenarios for the rate of antibody waning.  

(Left) Distribution of the number of vaccine doses needed to avert one death (NNV) by re-vaccination 

timing strategy (biennial, annual, triggered based on seroprevalence thresholds of between 50%-80%); 

(Center) Cumulative deaths over ten years among older adults. Error bar represents 2.5th-97.5th 

percentile of cumulative deaths for older adults; (Right) Scatterplot of tradeoffs in efficiency (NNV) and 

number of deaths comparing serology-triggered strategies with fixed interval strategies. 
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5.7.8 Summary of literature review of key parameters 

 

Reference Evidence Location 
Study design 

and population 

Post-infection 

Lou et al264 

Seroconversion rates for total 

antibody, IgM and IgG were 

98.8%, 93.8% and 93.8%, 

respectively 

China 

Longitudinal 

(N=80) among 

PCR confirmed 

Oved et al320 

Using multiple assays, antigen 

targets, estimated 5% of PCR-

infected individuals remained 

persistently seronegative 

Israel 

Longitudinal 

(698) among 

PCR positive 

individuals 

Van Elslande et al266 
•22% of mild cases and 2.6% of 

severe cases never seroconverted 
Belgium 

Paired sera 

(N=236) PCR 

confirmed from 

hospitals 

Post-vaccination 

Ali et al279 

Post-vaccination antibody-levels 

are higher among individuals with 

prior infection (30-40% higher) 

Kuwait 

N=1025 among 

vaccinated 

individuals 

Anichini et al329 

•Similar post-vax IgG levels 

between individuals with and 

without prior infection 

•Higher neutralizing titers among 

those with prior infection 

Italy 

N=100 HCWs 

post first dose 

vax, 38 with 

history of 

infection 

Assis et al330 

•Post-vax, previously infected 

individuals developed higher 

antibody titers to vaccine than non 

pre-exposed individuals 

•Higher antibody levels among 

those with severe disease 

California, US 

N=8761 before 

and after vax 

campaign 

Ward et al252 

•After single dose Pfizer after 21 

days, 84% of people under 60 years 

tested positive and 90% among 

those with prior infection (across 

all age groups) 

•After two dose Pfizer, ~100% test 

positive 

•After two dose AZ, <90% for 

those aged 35 and above and 73% 

among oldest age group 

UK 

REACT study 

155,172 with 

valid IgG results 

Table 5-8. Evidence on seroconversion after infection or vaccination 
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Reference Evidence Location 
Study design and 

population 

CDC 

Antibodies derived from infection 

last between 3-6 months and up to 

11 months 

  

He et al274 
90% positive for IgGs 6-8 months 

after seroconversion 

Wuhan, 

China 

Longitudinal, 

among those 

positive for IgGs 

Alfego et al331 

•max of 90% seropositive for IgG 

(S and N-proteins) 21 days post-

index 

•N-protein seropositivity declined 

to 68.2% through 293 days;  

•S-antibody seropositivity 

declined to 88% through 300 days 

•Age associated with 

seroreversion, ~seropos approx 

15% lower in >-65 years after 280 

days 

US 

Cross-sectional 

(N=39,086) 

individuals with 

PCR-confirmed 

infection between 

Mar 2020-Jan 2021 

Peluso et al245 

•Time to seroreversion ranged by 

assay, ranging from 96 days for 

N(frag) – Lum to 925 days for S-

DiaSorin. S-Lum had mean time 

to sero-reversion of 400-500 days 

among the non-hospitalized 

•Lower antibody titers among 

individuals with mild infection 

California, 

US 

Longitudinal 

(n=128) 

Wei et al271 

• Anti-spike IgG half-life was 184 

days 

• Ab levels associated with 

protection against reinfection 

likely last 1.5-2 years on average 

with levels associated with 

protection from severe infection 

present for several years 

China 
Among PCR 

positive individuals 

Wang et al277 

positivity rates for IgM, IgG, anti-

RBD IgG, and NAb fell to 20.4% 

(39/191), 97.9% (187/191), 97.4% 

(186/191), and 95.8% (183/191), 

respectively, during 9–10 months 

post symptom onset 

China 

215 individuals 

established in Feb 

2020 

Harris et al332 

•Predicted proporstions sero-

reverting after 52 weeks were 

100% for Abbot, 59% 

Euroimmun, 41% RBD, 10% 

Roche (N), <2% Roche (S) 

UK 

Longitudinal 

(N=264) among 

those seropositive 

for >2 assays  
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Shioda et al333 
Time from seroconversion to 

seroreversion was 3-4 months 

NYC and 

Connecticut 

Cross-sectional 

serology data 

(N=1800 for each 

site, each cross) 

Swartz et al275 

Model fitting of antibody 

response suggests that individuals 

may remain antibody positive 

from natural infection beyond 500 

days 

Texas, US 

Longitudinal-ish? 

(N=4553) among 

those with at least 

one antibody test 

with 1-3 Ab tests 

over 11 months 

Yang et al334 

•Anti-RBD IgG peaked at 120 

days and declined 

•At 400-480 days, undetectable 

neutralizing acitivty found in 14% 

(16/111) of mild 

•At 330-480 days, 50% (5/10) 

undetectable among 

asymptomatic infections 

China 

Longitudinal 

(N=214) 

convalescents 

without additional 

exposure after 

recovery or 

vaccination 

Van Elslande et 

al266 

•22% of mild cases and 2.6% of 

severe cases never seroconverted 

•Of mild seroconverters, 18.8%, 

40% and 61% were seronegative 

in the windows 60-119 days, 120-

179 days and 180-240 days 

•Of severe seroconverters, number 

was 1.9%, 10.8% and 29.4% 

Belgium 

Paired sera (N=236) 

PCR confirmed 

from hospitals 

Rees et al335 

Using age-structured reverse 

catalytic model, estimated 

antibody persistence lasted 

between 0.9 (0.6-1.6 years) and 

5.8 (2.0-7.4 years) 

Multiple 

countries 

Historical 

seroprevalence data 

of four circulating 

HCoVs 

Feng et al336 

Increasing Ab titers following 

vaccination associated with 

increasing VE 

UK 
Cohort of AZ 

efficacy trial 

Grandjean et al337 

S antibody predicted to remain 

detectable in 95% of participants 

until 465 days compared to 75% 

of N-antibodies (nice figures for 

reference) 

UK 

Cohort (N=349) of 

seropostivie HCWs, 

data for 200 days 

Ward et al252 

 

•Between 1-2 dose of pfizer, Ab 

fell to 64% of peak levels (10-12 

weeks) after a peak at 4-5 weeks 

UK 

REACT study 

155,172 with valid 

IfF results 

Table 5-9. Evidence for durability of antibody 
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Reference Evidence Location 
Study design and 

population 

Cromer et al338 

Modelling of predicted vaccine 

efficacy (based on neutralisation 

titres) against variants over time 

suggested that protection against 

symptomatic infection might 

decrease below 50% within the first 

year after vaccination  

Multiple, 

pooled data 

across 24 

studies 

Modeled based on 

antibody 

neutralisation titres 

Hall et al49 

• Two dose Pfizer, VE=85% at 14-

73 days and VE = 51% at 201 days 

•Two dose AZ VE = 49% (16-69%) 

at 14-73 days 

•Two dose AZ VE = 47% (26-63%) 

at 74-133 days 

•Two dose AZ VE = 51% (18-71%) 

after 133 days 

•Infection-acquire immunity in 

unvaxed participants (<5%) waned 

after 1 year (dropped from 86% (81-

89%) within 1 year to 70% (38-84%) 

after 1 year.  

•Among infected and vaxed 1 dose, 

VE 90% (60-97%) at >1 year after 

primary infection 

•Infected and vaxed 2 dose, VE 95% 

(82-99%) at >1 year after primary 

infection 

Qatar 

(Expats) 

Test negative case-

control (nested in 

N=35K undergoing 

aoutine 

symptomatic 

screening) 

Altarawneh et 

al47 

•Pfizer/moderna (6 months prior)+ 

no prior infection  against 

symptomatic omicron= -1.1% 

(basically none) 

•Three dose pfizer/moderna +no 

prior infection = 52.2% (48-56) 

•Effectiveness of IE, VE and hybrid 

against severe, critical, fatal BA.1 

infection was >95% 

•2-dose VE alone against 

severe/critical fatal BA.2 infection = 

77% 

•3-dose VE against 

severe/critical/fatal BA.2 infection = 

98% 

Qatar 

(Expats) 

Matached, test-

negative, case-

control 

Murugesan et 

al339 

•VE (AZ) (vaxed Jan 2021) with no 

prior infection =32% (24-39%) 
South India 

Cohort study, 

infection outcomes 
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during Delta wave 

(April 2021) 

Poukka et al340 

•VE (AZ) against infection from 

Delta 14-90 days = 88% (71-95) 

•VE (AZ) against infection from 

Delta91-180 days = 62% (17-95) 

•VE(AZ) against severe disease from 

Delta 14-90 days = 100 (25-100%) 

•VE (AZ) against severe disease 

from Delta 91-180 days = 81 (9-

96%) 

Finland 
Retrospective 

cohort study 

Nordstrom et 

al341 

•VE (AZ) against symptomatic 

disease 31-120 days = 45% (28-

60%) 

•VE (AZ) against symptomatic 

disease >120 days = 19% (-97-28%) 

Sweden 
Retrospective 

cohort study 

Pattni et al342 

•VE (AZ) one dose in reducing 

susceptibility to infection = 39%(34-

43%) for Delta 

•VE (AZ) two dose in reducing 

susceptibility to infection = 64% 

(61-67%) for Delta 

UK 

Retrospective 

cohort from 

anonymized public 

health data linked 

to PCR data 

Tan et al 

•VE (mRNA) two dose against 

infection with Delta = 45% (40-

50%), against Omicron = 21% (7-

34%) 

•VE (mRNA) for booster against 

infection was 44% (38-50%) for 

Delta and 40% (35-40%) for 

omicron 

•VE against severe disease by 

booster for omicron was 83% (76-

88%), VE against severe disaese by 

primary series for Delta was 80% 

(73-85%) 

See figure image 

Singapore 
Test-negative case-

control study 

 

Table XXX. Evidence for effectiveness of prior infection against subsequent infection 

Reference Evidence Location Study design and 

population 

Altarawneh et al47 •IE alone against symptomatic 

BA.2 infection = 46.1% (40-52%) 

•IE + two dose pfizer/moderna = 

55% (51-59) 

•IE + three dose pfizer/moderna = 

Qatar (Expats) Matached, test-

negative, case-

control 
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77% (72-81%) 

•IE alone against severe/critical 

fatal BA.2 infection = 73% 

•Hybrid against severe/critical/fatal 

BA.2 infection = 98%-100% 

Kojima et al343 •Weighted average = 90.4% (range 

82-100) up to 10 months fololow 

up 

Multiple HICs Systematic review 

(10 articles), 

published before 

June 2021 

Murugesan et al339 •IE against symptomatic infection = 

86% (77-92%) 

•IE+vax in Jan 2021 = 91% (84-

95%) 

South India Cohort study, 

infection 

outcomes during 

Delta wave (April 

2021) 

Hansen et al344 •Protection against repeat infection 

= 81% (75-85%) 

Denmark Compared 

reinfection in 

second surge 

(Sep-Dec 2020) 

between 

individuals with 

positive and 

negative PCR tests 

during first surge  

Lumley et al269 •Protection against re-infection 

among Ab positive = 89% (56-

97%) (up to 5 months) 

UK Cohort study, 

seropositive and 

negative HCWs 

beginning April 

2020  

Letizia et al345 •Protection against re-infection 

among Ab positive = 92% (72-

89%) 

•Higher baseline Ab titres 

associated with decreased risk of 

re-infection 

US Cohort of marine 

recruits (N=3168) 

followed for 6 

weeks 

Table 5-10. Evidence for vaccine effectiveness 
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CHAPTER 6 CONCLUSIONS AND PUBLIC HEALTH IMPLICATIONS 

6.1 Overview 

Over four years since the first identification of SARS-CoV-2 and realization of its transmissibility and 

severity, the threat of COVID-19 as a disease of pandemic concern has receded. In May 2023, the WHO 

removed COVID-19 as a public health emergency of international concern.  The world has weathered the 

most acute phases of the pandemic, but the disease burden persists. SARS-CoV-2 remains in circulation 

and new variants continue to emerge. Moreover, the threat of infectious diseases of outbreak or pandemic 

potential persists. 

Human behavior underpins the spread of infectious diseases at both individual and community levels. The 

primary goal of this dissertation was to advance the understanding of individual-level social contact and 

community-level human movement patterns in the context of SARS-CoV-2 transmission and utilize this 

knowledge to inform effective vaccine policy. This dissertation generates valuable insights on 

transmission dynamics and infection control, weaving together the use of novel behaviorally related data 

collected during a pandemic and assessing the impact of an innovative temporally targeted vaccination 

strategy. These insights will guide analyses of behavior data and their incorporation into mathematical 

models to assess the likely impact of intervention strategies on SARS-CoV-2 outbreaks and future 

outbreaks of other infectious diseases. 

6.2 Contributions and future directions of each specific aim 

6.2.1 Aim 1 

In Aim 1, we focused on understanding how contact rates changed over the course of the pandemic, 

specifically estimating the effect of one risk mitigation behavior, receiving a vaccination, on contact rates, 

an indicator of another risk mitigation behavior. We use longitudinal data from the U.S. spanning 18 

months of the pandemic and found that contact rates broadly increased over the survey rounds across all 

sociodemographic groups, reflecting the gradual relaxation of social distancing measures. We sought to 

isolate the effects of receiving a vaccination on contact rates and found that, within the context of 
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universal increases in contact rates, individuals newly completing their primary series had additional 

increases in contact rates compared to unvaccinated individuals. Overall, our findings are in line with the 

broader evidence base indicating that behavior during outbreaks of infectious diseases are responsive to 

changes in individual-level factors such as adoption of other risk mitigation behaviors, changing risk 

perception and illness346,347 and to changes in policy-level interventions such as social distancing 

recommendations116,121,129,130,137,348–352.  

The measurement of changes in contact rates over the COVID-19 pandemic complemented a plethora of 

behavioral surveys assessing the level and frequency of adherence to risk mitigation behaviors such as 

masking, avoiding crowded spaces, remaining six feet apart among others85,137,138,217,352–354. A distinctive 

value of quantifying contact rates is that they can be directly incorporated into mathematical frameworks 

to estimate transmission intensity. We assess the competing effects of vaccine protection against infection 

and increasing contact rates following vaccination on transmission through a simple mathematical 

framework, the Next Generation Matrix (NGM). We demonstrate that vaccine protection against infection 

is unlikely to fully offset increases in transmission intensity from observed increases in contact following 

the preliminary vaccination campaign. 

There are several future directions for this work. Almost 20 years since the first multi-country contact 

surveys were conducted in Europe, there are still no systematically collected contact data from the U.S. 

during normal, non-pandemic times. For comparison of our survey results collected during the pandemic 

to pre-pandemic norms, we resorted to using computationally inferred contact matrices projected from 

European data onto the U.S. demographic distribution60. A broad, representative survey of contact rates in 

the U.S. during non-pandemic times would serve as a baseline for future outbreaks and would be highly 

informative to modeling efforts for a range of infectious diseases.  

The COVIDVu cohort used for the analysis in Aim 1 generated valuable insights on behavioral change 

during the COVID-19 pandemic; however, the scale of the pandemic may make our findings less 

generalizable to more common, more localized, and less severe and politicized outbreaks of infections 
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such as influenza, norovirus, measles, and diphtheria. Contact rates collected through single cross-

sectional surveys during non-outbreak periods, as is frequently done, are an incomplete snapshot of 

behavior. Repeated, frequent samples of contact on the same individuals throughout the course of an 

outbreak and through illness and non-illness episodes would provide information on critical windows 

where shifting behavior is most likely to impact outbreak timing and size. Insights gained from previous 

work, including this study, would facilitate the rapid deployment of survey activities necessary to capture 

fluctuating contact rates during emerging outbreaks. Not only will such data be important for analyzing 

behavior change during outbreaks, but it can also be leveraged to calculate real-time estimates of 

heterogeneities in transmission355 and effectively inform public health measures.  

Lastly, there has been increasing interest in the explicit integration of social and behavioral feedback 

loops into mathematical models. One such framework incorporates game theory as an exogenous factor 

that modifies social interactions113,114,356. In these frameworks, individuals are assumed to make rational 

decisions by weighing tradeoffs of riskier behavior and potential loss of health357. For example, increasing 

disease prevalence can change an individual’s perceived risk and prompt modifications to social 

interactions. The extent of coupling between disease prevalence, perceived risk and changes to social 

contact is then parameterized through optimizing mathematical representations of competing costs and 

benefits. Recently, novel theoretical work showed that a “behavioral-epidemiological model” coupling a 

simple model of human behavior into an SIR model for infectious diseases reproduced sharp peaks and 

lengthy periods of plateaus in between COVID-19 waves358,359, a feature of the pandemic that was 

difficult to replicate through the traditional SIR framework alone Infectious disease modeling frameworks 

that incorporate behavior typically assume perfectly rational human behavior. Future work can quantify 

the extent that other drivers of perceived risk, such as awareness of infections within one’s social network 

or information on changing incidence, impacts contact rates in the real world where human behavior is 

less predictable.  
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6.2.2 Aim 2 

In Aim 2, we focused on inferring spatial patterns of SARS-CoV-2 transmission across counties in 

Georgia, USA through a novel metapopulation framework with a multilayered transmission process and 

informed by spatiotemporally resolved data on social contact, human mobility, and vaccination. We find 

that in counties with smaller populations, lower contact rates and higher vaccination coverage, 

intercounty mobility contributes to a higher proportion of onward transmission. In addition, analysis of 

pairwise counties showed that the net infection flow is from counties with lower mitigation to counties 

with higher mitigation and from counties with smaller population to counties with larger population. 

Identifying sources and sinks of transmission and their correlates is useful to guiding more localized 

interventions and assist in the mitigation of infection spread.   

We advance on existing metapopulation modeling frameworks151,152,157,158,242,360–362 by decomposing the 

transmission process into household and non-household components and by adding a layer of age-specific 

mixing. We configured the model to readily incorporate spatiotemporally resolved data on behavior and 

vaccination, improving model fidelity to changing behavior and immunity levels across multiple waves of 

the COVID-19 pandemic. More individualized representation of the infection process have been achieved 

through highly intricate agent-based models representing millions of individuals99,363–366 partitioned into 

multiple interacting layers of residential locations, work locations and age groups. However, such models 

are computationally intensive and require highly granular data on individual-level behavior, infection, and 

disease progression. Our model attempts to balance representing key heterogeneities in transmission 

across space, time, and age group, while minimizing computational resources and data needs.  

Advancements from our model can be used to improve the understanding of spatial patterns of 

transmission in future emerging outbreaks and to conduct forward simulations to assess the impact of 

spatially targeted interventions. Metapopulation models are uniquely able to guide the coordination of 

intervention activities across different administrative boundaries. During the COVID-19 pandemic, 

coordination of the timing, duration and details of intervention strategies across administrative boundaries 



188 

188 

 

in Georgia or the U.S. was limited. Increased coordination could have maximized resources while 

minimizing the public health impact of the pandemic and disruptions to daily life145. In more resource 

limited settings,  spatially-targeted interventions of social distancing restrictions or intensified vaccination 

campaigns have been considered for outbreaks of measles367–369, Ebola370 and diphtheria371, among others. 

Recently, in response to an unexpected diphtheria outbreak in Nigeria in 2023, reactive catch-up 

vaccination campaigns were quickly mobilized371–374. However, a shortfall in available vaccine doses in-

country required prioritization around space and age where targeting could be either wider in age range 

and narrower in geographical scope or vice versa. Future work can explore the value of applying an age- 

and space-stratified model that readily integrates local behavior and immunity for outbreaks of other 

infections, particularly to practical questions around intervention allocation under resource constraints.  

A key challenge in the parameterization of spatially explicit mathematical models is the dearth of 

spatially resolved data to accurately inform disease dynamics at the level of each spatial unit represented 

in the model. In the U.S., while reported cases can usually be disaggregated to at least the county level, 

the availability of spatially disaggregated data on correlates of immunity or behavior is uncommon. 

County-level SARS-CoV-2 seroprevalence estimates would have significantly enhanced our 

understanding of heterogeneities in county-level underreporting and infection burden. However, the 

sample size and additional resources required to obtain representative county-level seroprevalence data 

prevent their feasibility. Moreover, the large sample size and daily survey frequency of the COVID-19 

Trends and Impact Survey (CTIS) uniquely enabled the characterization of contact rates at a detailed 

spatiotemporal level. Using CTIS data to parameterize our model, we found that contact rates were the 

lowest in metro-Atlanta and the highest in certain rural areas, broadly corroborating both observed and 

modeled disease incidence rates. Whether these differences persist outside pandemic conditions remains 

unanswered, underscoring the need for continued monitoring of spatial heterogeneities in social contact 

behavior. The discontinuation of CTIS in June 2022 is a loss of an important national-level data source on 

behavior. Future endeavors should explore possibilities to leverage existing social media or marketing 
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platforms to survey behavior on a geographically representative scale during both outbreak and non-

outbreak periods.  

Lastly, although mobility data presents new opportunities for parameterizing spatially explicit models, 

they are limited in their representativeness. Notably, GPS app-based mobility data underrepresents those 

without smartphone who are more likely to be children, older adults and individuals of lower 

socioeconomic classes61,63, demographic groups who often experience disproportionate disease burden. A 

key critique of available mobility data is the lack of transparency around who is actually represented. 

Ethical and privacy considerations may prevent mobile data aggregators (i.e. Safegraph, Cuebiq or 

Google mobility) from being forthcoming with additional information. Future efforts may include 

collaborating with mobile data aggregators for additional disaggregation of mobility information by 

sociodemographic factors of the device holder, while maintaining adequate privacy.  Such information 

would enable the stratification of mobility patterns by key determinants of behavior and transmission such 

as age group and socio-economic status, permitting parameterization of movement specific to key 

demographic groups. 

6.2.3 Aim 3 

In Aim 3, we assessed the utility of guiding the timing of future COVID-19 re-vaccination strategies with 

serological surveillance for SARS-CoV-2 in Mozambique over a ten-year horizon. We simulated using 

population-level seroprevalence thresholds to trigger the timing of re-vaccination campaigns among older 

adults and compared this approach to re-vaccination at fixed time intervals. We find that serology-

triggered vaccination strategies are unlikely to minimize both deaths and NNV compared to fixed-time 

strategies. Monitoring changing immunity for SARS-CoV-2 to trigger subsequent rounds of booster 

vaccines was previously proposed for COVID-19 control191. The results from this aim were presented to 

the WHO Immunization and vaccines related implementation research advisory committee (WHO IVIR-

AC) and informed their decision to not recommend using seroprevalence as an indicator to guide re-

vaccination strategies for COVID-19. In addition, our analysis demonstrated, that in the context of 
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durable hybrid immunity against severe outcomes, using a serological marker with slower waning to 

trigger re-vaccination is likely to be more efficient against fixed-time strategies. These considerations are 

further applicable to other infectious diseases that can benefit from leveraging serosurveillance to inform 

public health interventions301,302. 

Mathematical models that assess the relative impact of counterfactual interventions have played a crucial 

role in informing guidelines for infectious disease prevention and control in high-income countries (HIC)s 

and at international organizations such as the WHO375. Challenges at the intersection of modeling and 

policy are well-documented375–378 and there have been calls for closer collaboration between modelers and 

policymakers. Among African countries, the explicit use of modeling to guide policies varies by 

country379. Improved localization of modeling efforts would likely improve their utility379.  

Challenges faced by efforts to localize modeling in some African countries have included the lack of local 

data on non-disease parameters and limited familiarity with modeling among public health officials379,380. 

For the former, a systematic review of SARS-CoV-2 modeling efforts for African countries found that, 

while the majority fitted models to local disease data, only 9 of 74 (12%) used either local demographic 

or contact data to represent the local population and their patterns of interaction381. Our model was 

fortunately informed by local contact and serology data collected during the pandemic. Future modeling 

efforts in African countries could improve their parameterization with localized information on 

demographic characteristics, behavior, and immunity. If such data are missing, modeling work could be 

complemented by data collection activities.   

To improve the utility of our work, we actively engaged with our research collaborators in Mozambique 

and with members of the national COVID-19 vaccination task force including the Instituto Nacional de 

Saude, United Nations Children’s Fund (UNICEF)’s and WHO’s Mozambique Office. We listened to 

operational, ground-level concerns on vaccine rollout and decision-making needs and sought to convert 

them into tractable and testable scenarios suitable for modeling and simultaneously useful for decision-
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makers. Yet the gap in knowledge on modeling at times limited more extensive feedback during model 

development and interpretation, engagement we hoped would both improve model realism and ensure the 

model was practically informative.  

A separate, frequently documented issue is the disproportionate amount of scientific research on Low-and 

Middle-Income Countries (LMICs) exclusively led by researchers from HICs, raising valid concerns of 

research equity380. The identification of this issue has prompted new training and funding such as efforts 

to expand the technical training of modelers from the African continent382. Of similar importance is the 

capacity of the local public health workforce to interpret, critique and engage with mathematical models. 

Future research work should ideally strive to better integrate engagement with local decision-makers and 

building their capacity into the scientific agenda, particularly in countries that have historically lacked the 

resources to build modeling knowledge.  

6.3 Reflections 

Training in infectious disease epidemiology and modeling during the COVID-19 pandemic presented 

many unique opportunities. In the spring of 2020, collaborations between our research group and public 

health departments and local administrative entities quickly formed and I was extraordinarily fortunate to 

have been invited to join various modeling and public health response efforts. These opportunities gave 

me a front row seat on the types of questions that were practically important for responding to a pandemic 

infringing on every aspect of daily life and on the ways that scientific work could advance our 

understanding of the local epidemiology and guide response. Our research group’s planned studies on 

social contact patterns quickly took on a new form of urgency. These data collection activities were 

rapidly pivoted to capture social contact behavior and sentiments during the height of NPIs implemented 

to curb transmission, an effort I contributed to and crucially shaped my thinking around this dissertation. 

Lastly, I gained an opportunity to propose, develop and present policy-relevant modeling work to the 

World Health Organization, an unlikely experience in more normal circumstances.    
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Completing a PhD during the pandemic also presented unique challenges. The speed and quality of the 

scientific work led by renowned experts in our field was immensely important for formulating effective 

response. However, the depth and breadth of existing work presented challenges for a trainee to angle into 

a crowded field. Moreover, social distancing policies inadvertently isolated many of us from the broader 

scientific community, especially beyond our own institutions. Four years into my training, I attended my 

first ever scientific conference in-person and realized I had missed out on opportunities to discuss 

infectious disease research and exchange ideas with many brilliant minds earlier in my training.  

I have always dreamed of leading a career at the intersection of hands-on epidemiological work in global 

health and mathematical modeling, ideally in the humanitarian sector. I thought it unlikely that I would 

achieve my ideal scenario during my doctoral training. I thus decided that if I was unable to do both, I 

was going to take full advantage of available resources and challenge myself to push the boundaries of 

complexity in mathematical modeling. I hoped that in doing so, I could walk away feeling confident in 

my ability to independently implement mathematical models for future, more applied chapters in my 

public health career. It is safe to say that I have been greatly humbled but also equally inspired by the 

effort it takes to design, build, run, analyze, and interpret a mathematical model. I have learned some 

valuable lessons and acquired skillsets, many of which surpass what I anticipated gaining from my 

doctoral training, all of which will inform my analytical and scientific work in the future.  

Throughout this dissertation process, I have often ruminated over questions on the added value of these 

modeling exercises. Do the assumptions necessary to parameterize the model inherently undermine the 

public health significance? Did the thousands of hours of work justify the added value of the resulting 

scientific output? In other words, could we have come to a similar conclusion without a cumbersome, 

time-consuming model? Every trainee who has delved into infectious disease modeling knows the famous 

mantra “All models are wrong, but some are useful”.  I suppose time and the scientific and public health 

communities will ultimately judge the actual utility of the modeling work undertaken by this dissertation. 
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What I am certain of is, that they were indeed useful for my own training and, hopefully, for attaining this 

degree.  
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CHAPTER 8 APPENDIX 

8.1 Abbreviations 

ABC Approximate Bayesian Computation 

BIC Bayesian Information Criteria 

BICS Berkeley Interpersonal Contact Study 

CBG Census Block Group 

CDC Center for Disease Control and Prevention 

CDR Call Data Records 

CI Confidence Interval 

CISM Centro de investigação de Saúde de Manhiça 

COVID-19 Coronavirus Disease 2019 

CTIS COVID-19 Trends and Impact Survey 

FOI Force of Infection 

GDPH Georgia Department of Health and Human Services 

GLMM Generalized Linear Mixed Model 

GRITS Georgia Immunization Registry 

GPS Global Positioning System 

IQR Interquartile Range 

LCA Latent Class Analysis 

LHS Latin Hypercube Sampling 

LMIC Low- and Middle- Income Countries 

mRNA Messenger Ribonucleic Acid 
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NGM Next Generation Matrix 

NNV Number Needed to Vaccinate to Avert One Death 

NPI Non-Pharmaceutical Interventions 

O-D matrix Origin-to-Destination matrix 

OSI Oxford Stringency Index 

POI Points of Interest 

R0 Basic Reproduction Number 

RT-PCR Reverse-transcription polymerase chain reaction 

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 

SD Standard Deviation 

SEIR Susceptible-Exposed-Infectious-Recovered 

SendSS State Electronic Notifiable Disease Surveillance System 

UK United Kingdom 

U.S. United States 

VE Vaccine Effectiveness 

WHO World Health Organization 

 

8.2 Publications, presentations, and funding-related activities 

In addition to my dissertation work, I have also had the opportunity to work on a number of other projects 

during my time at Emory University as a PhD student. The publications, presentations and grants that 

resulted from these projects, along with my dissertation research, are listed below. 
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