
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced

degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive

license to archive, make accessible, and display my thesis or dissertation in whole or in part in all

forms of media, now or hereafter known, including display on the world wide web. I understand that

I may select some access restrictions as part of the online submission of this thesis or dissertation.

I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to

use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Santiago Montoya Blandon Date



Flexible Estimation Methods for Multivariate Fractional Outcomes

By

Santiago Montoya Blandon

Doctor of Philosophy

Economics

David Jacho-Chavez
Advisor

Elena Pesavento
Committee Member

Christoph Breunig
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date



Flexible Estimation Methods for Multivariate Fractional Outcomes

By

Santiago Montoya Blandon

M.A., Emory University, 2020
M.Sc., Universidad EAFIT, 2015
B.A., Universidad EAFIT, 2013

Advisor: David Jacho-Chavez, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Economics

2021



Abstract

Flexible Estimation Methods for Multivariate Fractional

Outcomes

By Santiago Montoya Blandon

Multivariate fractional outcomes are defined as vectors where each component is bounded to

the unit interval and together they add up to 1. This dissertation expands the available toolkit

for analyzing both univariate and multivariate fractional outcomes as well as their applications

to economics and other fields. As these variables arise naturally in several areas of applied

microeconomics, the focus is on cross-sectional and panel data. Emphasis is placed on providing

methods that are flexible and robust while exploring several approaches to modeling of these

outcomes in a variety of settings. In each chapter a different facet of multivariate fractional

outcomes is studied. The first chapter presents a semiparametric extension of a quasi-likelihood

estimator that is heavily used in applications with a univariate fractional outcome. As docu-

mented in the chapter, large biases can arise when the nonlinear link function is misspecified,

which can be countered by the use of our extension. The second chapter provides a unified

estimation methodology using copulas for multivariate fractional outcomes with a conditional

mean specification. This methodology satisfies the fractional and unit-sum constraints of the

outcomes, allows for cross-equation restrictions that are crucial in structural estimation, and

can handle variable selection. The final chapter extends both the existing and newly proposed

methods to a panel data setting, focusing on several robust alternatives and their numerical

implementations. All chapters use simulation exercises and applications to showcase the perfor-

mance of the proposed methods.
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1

Introduction

The analysis of multivariate fractional outcomes Y = (Y1, . . . , Yd)
′ is prevalent in several fields such

as biology, chemistry, economics, geology, and others (Aitchison, 2003; Kieschnick and McCullough,

2003). The nature of the outcomes implies that they are both fractional (i.e., bounded between

0 and 1) and satisfy a unit-sum constraint across the d shares. These types of observations are

known as compositional data in the statistics literature and are characterized as belonging to the

d-dimensional simplex

Sd =

(y1, . . . , yd) ∈ Rd : 0 ≤ yj ≤ 1, j = 1, . . . , d;
d∑
j=1

yj = 1

 . (1)

Fractional outcomes arise naturally in economic applications when estimating a demand system in

which the dependent variables are given as expenditure shares on d different categories of goods

(Woodland, 1979; Barnett and Serletis, 2008). They are also central in other contexts such as in

finance, where they can represent portfolio shares allocated to different stocks (Glassman and Rid-

dick, 1994; Stavrunova and Yerokhin, 2012; Mullahy, 2015), in industrial organization and manage-

ment when discussing market shares for different companies within a given industry (Morais et al.,

2018), or in social choice when analyzing voting patterns in elections with several candidates (Katz

and King, 1999). Other applications for these outcomes include time of use in health production

functions (Mullahy and Robert, 2010), dividends and firm analysis (Loudermilk, 2007; Ramalho

and Silva, 2009; Sosa, 2009; Sigrist and Stahel, 2011), psychology (Smithson and Verkuilen, 2006;

Johnson and Mislin, 2011), among others.

This dissertation focuses on cross-sectional and panel data settings, as most analysis involving

multivariate fractional outcomes rely on such data structures, leaving aside most time series con-
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cerns for future research.1 The concepts are addressed in ascending level of complexity with respect

to the outcome of interest. That is, the first chapter addresses a method for a univariate fractional

outcome in a cross-sectional setting, the second chapter focuses on multivariate systems of fractions

again within the cross-section, and the final chapter on multivariate fractional outcomes in panel

data.

Across the three chapters several estimation methods are introduced and emphasis is placed

on both flexibility and robustness. The first chapter presents a semiparametric extension of the

robust estimator introduced by Papke and Wooldridge (1996). As documented within this chapter,

when the link function for the conditional expectation is misspecified, a situation that can easily

occur in practice, large biases in estimating the conditional mean parameters are bound to arise.

In order to avoid such biases, a nonparametric kernel estimate of the link function is paired with

a quasi-likelihood approach to obtain estimates of the conditional mean parameters. In essence,

by consistently estimating a link function instead of assuming it known, we are able to avoid the

biases associated to misspecification. While this creates a more computationally intensive method,

we show that it produces sensible results in both simulations and an empirical application, while

inference remains largely unaffected.

Computational considerations largely prevent a working version of this semiparametric esti-

mator in a multivariate setting, although such extension would certainly be possible. Heading

in another direction, the second chapter introduces a more general parametric framework using

copulas to study models for fractional outcomes that arise in both structural and reduced form

microeconometric approaches. Within this framework, the paper presents an estimation procedure

that simultaneously accounts for the specific distributional concerns with multivariate fractional

variables; the conditional mean structures that arise in many empirical models; and that allows

for both variable selection and cross-equation restrictions that become necessary in certain struc-

tural scenarios. This approach yields several other features. First, the use of copulas allow for

efficiency gains compared to other approaches while still accommodating a degree of robustness to

dependence structure misspecification. Second, structural demand estimation models can create

the need for variable selection, particularly in the presence of big data, which is taken into the ac-

1In Chapter 3 that assumes access to panel data, autocorrelation and other time series behavior is either accounted
for by using standard errors robust to these possible patterns or directly modeled depending on the context.
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count. Third, this variable selection is handled using a Bayesian approach using regularization that

also guarantees correct inference. Finally, the paper presents a couple of technical contributions

in parametric copula models that arise when proving the consistency and asymptotic normality of

the resulting estimator.

The final chapter builds on the previous two and presents a comprehensive set of tools for the

analysis of multivariate fractional outcomes in a panel data context, which requires dealing with

unobserved heterogeneity in nonlinear models. It provides multivariate and panel extensions to

methods that are previously available in the literature and to those introduced in this dissertation.

Specifically, the paper presents several estimation procedures that should prove useful in differ-

ent situations. First, a maximum likelihood method that in at least two special cases allows for

identification and consistent estimation of conditional mean parameters and average partial effects.

Second, a multivariate probit estimator that provides excellent approximations to the average par-

tial effects, is computationally efficient, scales easily with the number of shares, and allows for

endogeneity. Finally, to deal with censoring introduced by structural zeros in the data, this chapter

introduces a Bayesian procedure using data augmentation. All these methods are tested in several

numerical exercises that showcase their applicability and robustness in different scenarios.
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Chapter 1

Semiparametric Quasi Maximum

Likelihood Estimation of the

Fractional Response Model

Note: The content in this chapter is reproduced from Montoya-Blandón, S., & Jacho-Chávez, D. T.

(2020). “Semiparametric quasi maximum likelihood estimation of the fractional response model.”

Economics Letters, 186, 108769.

In the context of univariate fractional outcomes, this chapter proposes a kernel-based semi-

parametric quasi-maximum likelihood estimator (SPQMLE) which adapts Papke and Wooldridge’s

(1996) estimator to an unknown link function. The proposed adaptation inherits the nice proper-

ties of the original estimator, such as dealing with boundary values—where the response variable

is allowed to take values exactly equal to 1 or 0—and it is robust to potential misspecification in

the link function. Furthermore, the asymptotic properties are derived allowing for data-dependent

smoothing parameters as well as possible random trimming. By deriving the exact formula of

the asymptotic variance-covariance matrix for the proposed SPQMLE it is shown that there is no

estimation effect from replacing the unknown link function by a consistent nonparametric kernel

estimator.

A Monte Carlo experiment provides evidence that our method performs well in small-sample

settings, and this performance is comparable to the performance achieved by a benchmark maxi-
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mum likelihood estimation method (MLE) and a correctly specified quasi-likelihood method, but

uniformly dominates methods with a misspecified link function. An empirical implementation of

the proposed estimator utilizing data from Papke and Wooldridge (1996) is also included. Our

point estimates are numerically smaller than those originally obtained in Papke and Wooldridge

(1996) and closer to the baseline linear regression model.

The remainder of the paper is organized as follows: Section 1.1 introduces the estimator along

with its asymptotic properties, Section 1.2 presents the results of our Monte Carlo simulation

comparing our method with other suitable candidates, while Section 1.3 presents the results of our

empirical application, and Section 1.4 concludes.

1.1 Estimator and Asymptotic Properties

1.1.1 Estimator

Assume one has access to an independent and identically distributed (i.i.d.) sample {y′i,x′
i}ni=1

from the joint distribution of (Y ′,X ′) where X and Y are k and d dimensional random vectors

respectively. We will assume that Y takes values in S2. Note that in this case, one can focus

the modeling strategy on one of the components of Y as the other will then be fully determined.

Specifically, we will center our attention on Y (1), which we will hereafter denote simply as Y . Given

the characteristics of the data discussed before, we introduce the SPQMLE framework. Let the

following index restriction holds almost surely (a.s.)

E[Yi|xi] = E[Yi|x′
iβ0] ≡ m(x′

iβ0) (1.1)

for some β0 ∈ B ⊂ Rp and xi ∈ X ⊂ Rp, where X represents the support of X. We assume f(x|z)

is the density of X conditional on z = X ′β with respect to a measure µ. Our estimator for β0 is

based on the semiparametric quasi-likelihood function

Ln(β) ≡
1

n

n∑
i=1

{yi log[m̂(x′
iβ)] + (1− yi) log[1− m̂(x′

iβ)]}t̂ni , (1.2)
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where m̂(x′
iβ) estimates the conditional mean M(x′

iβ) = E[m(x′
iβ0)|x′

iβ], using a (leave-one-out)

Nadaraya-Watson estimator as m̂(x′
iβ) = Ĝ(x′

iβ)/f̂(x
′
iβ), where Ĝ(x

′
iβ) ≡ 1

n

∑n
j ̸=i yjKĥn

(x′
jβ −

x′
iβ), f̂(x

′
iβ) ≡ 1

n

∑n
j ̸=iKĥn

(x′
jβ − x′

iβ) with Kh(v) = h−1K(v/h), K(·) a kernel function, and

ĥn a possibly data-dependent bandwidth. As the dependent variable in this setting is not binary

but a fraction, the likelihood defined in (1.2) is inherently misspecified (even with a correctly

specified fixed m(·) function), and thus consistent estimation is guaranteed by the index restriction

in (1.1) and the conditions given in Theorem 1.1 (see Papke and Wooldridge, 1996, for possible

optimality properties of this quasi-likelihood in the class of the linear exponential family). Let

I{·} be the indicator function that equals 1 when its argument is true, and 0 otherwise. Then,

t̂ni ≡ I{f̂(x′
iβ̃) ≥ τn} is a trimming function based on a preliminary consistent estimator of β0,

denoted by β̃, and τn → 0 as n → ∞ at a rate satisfying Assumption 1.8 below. This estimator

could be obtained, for example, by maximizing (1.2) using t̂ni = I{xi ∈ A}, where A ∈ X is a

compact subset. The proposed estimator is then given by

β̂ = argmax
β∈B

Ln(β) . (1.3)

1.1.2 Asymptotic Properties

We apply the results in Gourieroux et al. (1984) and Escanciano et al. (2014) to show that our

estimator of β0 in (1.1) defined by (1.2)–(1.3) is consistent and asymptotically normal. We begin by

listing the required assumptions, which set up the model and are needed to guarantee the properties

of kernel estimated functions. Throughout, C will denote a generic positive constant.

Assumption 1.1. Identification of β0: (i) there are no constant elements in x, (ii) the first

element of x, say x1 is continuous and its associated component of β0, say β1 = 1, and (iii) if

m(x′β1) = m(x′β2) a.s. (with respect to the measure µ) then β1 = β2 (these are standard in

single index models, see for example Ichimura, 1993; Klein and Spady, 1993 and Li and Racine,

2007, pp. 251–253).

The following four assumptions are standard and limit the general set up (Assumptions 1.2–

1.3), introduce a general rth-order kernel (Assumption 1.4) and control the bias present in the

nonparametric estimations (Assumption 1.5).
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Assumption 1.2. The observations {yi,x′
i}ni=1 are an i.i.d. sample from the joint distribution of

(Y,X ′), satisfying E[|Y |2+δ|X = x] <∞ for almost all x ∈ X and some δ > 0.

Assumption 1.3. B is a compact set, and β0 ∈ int(B).

Assumption 1.4. The kernel function K : R → R is bounded, symmetric, twice continuously

differentiable and satisfies:
∫
K(v)dv = 1,

∫
vlK(v)dv = 0 for 0 < l < r, and

∫
|vrK(v)|dv < ∞

for some r ≥ 2. Letting d(j)K(v)/dvj denote the jth derivative of K(·), we further assume that

for j = 1, 2, |d(j)K(v)/dvj | ≤ C, and for some s > 1, |d(j)K(v)/dvj | ≤ C|v|−s for |v| > Lj ,

0 < Lj <∞.

Assumption 1.5. For all β and x ∈ X , f(x′β), m(x′β), and f(x|z) are r-times continuously

differentiable in z = x′β, with all functions and derivatives being uniformly bounded.

Assumption 1.6. The possibly data-dependent bandwidth ĥn satisfies Pn(an ≤ ĥn ≤ bn) → 1 as

n→ ∞, for deterministic sequences of positive numbers an and bn such that bn → 0, b2rn n→ 0 and

a3nn/ log n→ ∞, for r as given by Assumption 1.4.

The final assumptions adapt those in Escanciano et al. (2014) (specifically, see their assump-

tions 5, B.7, B.8, and C.1) to guarantee uniform convergence of the estimated functions and their

derivatives while allowing for data-dependent bandwidths such as those obtained by plug-in rules

and cross-validation (Andrews, 1995), as well as deal with random trimming. Let t̂ni ≡ I{xi ∈ X̂n}

represent a trimming function where X̂n ⊂ X could potentially be the result of an estimation

procedure, such as a subset based on values of f̂ . Let Xn represent a deterministic set and define

tni ≡ I{xi ∈ Xn}, as well as the rate dn ≡ (max{log 1/an, log log n}/ann)1/2 + brn.

Assumption 1.7. The following two conditions are satisfied: (i) there is a sequence τn of positive

numbers satisfying τn ≤ infβ∈B,x∈Xn f(x
′β), d4nn/τ

6
n → 0 and dn/τn → 0; and (ii) Pn(Xi ∈ Xn) → 1

as n→ ∞ and E[|t̂ni − tni|] = o(n−1/2).

Finally, in order to ensure that the estimated conditional mean asymptotically belongs to a suffi-

ciently well-behaved class, we can further introduce dmn ≡ (max{log 1/an, log log n}/a3nn)1/2.

Assumption 1.8. The rate dmn is such that dmn = O(1).
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The main result of the paper is summarized by the following theorem (a corresponding outline

for the proof can be found in the supplemental material)

Theorem 1.1. Given Assumptions 1.1–1.8, β̂
p→ β0 and

√
n(β̂−β0)

d→ N(0,A−1BA−1), where

A = E

{
m′(X ′β0)

2

m(X ′β0)[1−m(X ′β0)]
(X − E[X|X ′β0])(X − E[X|X ′β0])

′
}
, (1.4)

B = E

{(
[yi −m(X ′β0)]m

′(X ′β0)

m(X ′β0)[1−m(X ′β0)]

)2

(X − E[X|X ′β0])(X − E[X|X ′β0])
′

}
. (1.5)

Notice that, although semiparametric estimation introduces a correction term when compared

to the parametric case, equations (1.4) and (1.5) show there is no estimation effect from replacing

the unknown link function with a consistent estimator as in Ichimura (1993) and Klein and Spady

(1993).

Following Theorem 1.1, one can estimate the asymptotic variance-covariance matrix of β̂ as

follows: define ŷi = m̂(x′
iβ̂), ûi = yi − ŷi, and ĝi = m̂′(x′

iβ̂). Obtain x̂i = Ê[Xi|x′
iβ̂] using

a Nadaraya-Watson kernel estimator and define x̃i = xi − x̂i. An estimate of the asymptotic

variance-covariance matrix of β̂ is given by ̂Asy. Var(β̂) = Â−1B̂Â−1, where

Â =
n∑
i=1

ĝ2i
ŷi(1− ŷi)

x̃ix̃
′
i and B̂ =

n∑
i=1

[
ûiĝi

ŷi(1− ŷi)

]2
x̃ix̃

′
i. (1.6)

1.2 Monte Carlo Experiment

The following simulation study is conducted. The true values for the coefficients were set at

β0 = (1, β) = (1,−0.5) so as to satisfy the identification restrictions. Two covariates were generated

from a N (0, 1) distribution using sample sizes of n ∈ {100, 200, 400, 800}. To generate fractional

responses satisfying (1.1), the response variable is drawn as yi ∼ Beta(m(x′
iβ0)ϕ, [1 −m(x′

iβ0)]ϕ)

for i = 1, . . . , n, where m(·) is the Logit link (Ferrari and Cribari-Neto, 2004; Simas et al.,

2010). We generate data for several variance configurations given by the precision parameter

ϕ ∈ {1, 5, 25, 50, 100}. Small values of ϕ allow us to introduce bimodality in the distribution of yi,

as well as instances where yi = 0 or yi = 1, for which standard methods can fail.

As a benchmark, we use the beta regression method of Simas et al. (2010); a correctly specified

MLE. This methodology allows for analytically correct standard errors, as well as estimation of
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ϕ (results are available upon request). We compare performance with our method and four other

estimators, which implement the quasi-maximum likelihood (QMLE) methodology of Papke and

Wooldridge (1996) with different link functions.

We simulate 1,000 data sets for each sample size and variance configuration. We focus our results

on β as the only free parameter in our semiparametric estimation. The results of our simulation

exercise are given in Table 1.1 and Figure 1.1. Table 1.1 presents the ratios of bias and standard

errors of all estimators with respect to the MLE benchmark. At modest sample sizes and variance

levels, as those with ϕ = 25 and n = 400, our method comes within 20% of the benchmark in all

performance measures. As expected, the correctly specified Logit link has remarkable performance.

This is in contrast to misspecified methods which perform poorly and remain biased regardless of

the sample size. We also note that inference is not greatly affected by our semiparametric method:

in some cases, standard errors can get to within 7% of those produced by the benchmark method.

Figure 1.1 gives a representation of the asymptotic normality approximation for estimators of

β. We observe how the estimator’s distribution grows closer to its asymptotic limit as the sample

size increases, for all variance configurations. Similar processes occur for the correctly specified link

estimator and the benchmark. The same cannot be said for the misspecified models, which fail to

correctly center and scale the distribution.

1.3 Empirical Application

This section reassesses the model in Papke and Wooldridge (1996) using the new SPQMLE intro-

duced in this paper. The authors use plan-level data on 401k accounts to estimate the effect of

the match rate (percentage of employees’ contributions matched by the firm) on the participation

rate of each plan (ratio of eligible to enrolled employees). Due to institutional considerations, the

match rate is not limited to 1 in the data set. The authors consider two separate estimations,

either restricting the sample by match rate or keeping the full sample; we only present the latter

here (restricted sample estimation can be found in the supplementary material subsection 1.C).

To control for plan and firm characteristics, the authors include as covariates the log of total firm

employment, age of the plan, their squares, and an indicator for whether the 401k was the sole plan

offered by the firm. The authors also show that non-linearities in the match rate are important
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when dealing with the full sample, and therefore include this variable squared.

We compute both the linear regression (OLS) and QMLE (with Logit link) estimates for the pre-

ferred specification. To make results more directly comparable to those of our introduced method,

we also estimate restricted QMLE models that mimic the identification conditions in Assumption

1.1: setting the intercept equal to 0 and the coefficient of a continuous variable, in this case age of

the plan, equal to 1. Finally, we compute the SPQMLE following the computational considerations

outlined in the supplemental material subsection 1.B.

Table 1.2 presents our results. We observe that both the OLS and unrestricted QMLE columns

correspond exactly to the results in Papke and Wooldridge (1996) for the appropriate specifications.

The restricted QMLE specification is not sensitive to the optimization method and resembles the

unrestricted model. Strikingly, we see that using the semiparametric approach actually leads to

results that are closer to OLS than to the QMLE proposed by the authors. Adding flexibility and

robustness to the specification through our method results in a move towards the baseline estimates.

This sheds light on the fact that assuming a specific link function in the QMLE approach might be

too restrictive and could potentially create bias problems such as those illustrated in our simulation

study.

To focus away from the coefficient estimates and into more intuitive and comparable results, the

table also present an estimate for the average partial effect (APE) of match rate on participation

rate. In general, we observe that the APEs remain fairly close to one another, with the QMLE

one being the largest. Using the results from our SPQMLE method, we observe that a change in

the match rate of 10 percentage points (10 cents for every dollar contributed by the employees)

increases participation in the plan by approximately 0.9 percentage points.

1.4 Conclusions

We proposed a semiparametric extension of the parametric QML estimator in Papke andWooldridge

(1996) that allows for flexible estimation of fractional response models and is robust to potential

misspecification of the link function. The main result in the paper proves the consistency and

asymptotic normality of the estimator allowing for data-driven smoothing parameter and random

trimming. We confirm through a Monte Carlo experiment that our estimator performs compar-
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Table 1.2: Empirical Results with Additional Methods

Dependent variable: OLS QMLE Rest. QMLEa Rest. QMLEb SPQMLE
Participation Rate (1) (2) (3) (4) (5)

Match Rate
0.143 1.665 1.660 1.655 0.188
(0.008) (0.104) (0.188) (0.179) (0.005)

Match Rate2
−0.029 −0.332 −0.335 −0.334 −0.039
(0.002) (0.026) (0.050) (0.049) (0.001)

log(Employment)
−0.099 −1.031 −1.079 −1.078 −0.100
(0.012) (0.110) (0.205) (0.031) (0.003)

log(Employment)2
0.0050 0.0536 0.0461 0.0460 0.0048
(0.0008) (0.0071) (0.0117) (0.0035) (0.0002)

Age
0.0056 0.0548 1.000 1.000 1.000
(0.0007) (0.0077) — — —

Age2
−0.00007 −0.00063 −0.01931 −0.01931 −0.01246
(0.00001) (0.00018) (0.00297) (0.00035) (0.00001)

Sole Plan
0.0066 0.0643 0.1552 0.1523 0.0162
(0.0051) (0.0498) (0.0785) (0.0785) (0.0042)

Constant
1.170 5.105

— — —
(0.042) (0.416)

Average Partial Effect
0.099 0.143 0.109 0.109 0.090

of Match Rate

R2 0.182 0.197 — — 0.215
Log-likelihood — — −2,571.0 −2,571.0 —

Note: Match rate is unrestricted, leaving 4,734 observations at the plan level. Heteroskedasticity-
robust standard errors are in parenthesis. Restricted QMLE methods impose a 0 constant term and
normalized the coefficient of Age to 1: a estimated using the augmented Lagrange optimization method
and b estimated by iteratively re-weighted least squares with an offset given by the Age variable.

atively well with respect to the parametric maximum likelihood and correctly specified quasi-

likelihood alternatives. As practitioners seldom know the correct form of the link function in

practice, our method offers a robust alternative to existing parametric methods.

Appendices

1.A Proof

Proof of Theorem 1.1 (Outline). First, consistency follows from an application of the uniform

consistency results for kernel estimators of Escanciano et al. (2014) as well as theorem 1 of Gourier-

oux et al. (1984). Note that our assumptions encompass those of Lemma B.4 of Escanciano et al.

(2014) and thus guarantee the convergence of m̂ uniformly over β and the bandwidth, therefore
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that of the maximizing function in (1.2). Since we similarly satisfy conditions a of Gourieroux et al.

(1984) for the resulting likelihood of the linear exponential family, and given our index restriction

imposed in (1.1) as well as the identification assumptions, we guarantee consistency of β̂ to β0.

For the asymptotic normality part, we use a combination of standard Taylor expansion methods

with the uniform convergence and uniform representation results. Consider the first order conditions

0 =
∂Ln
∂β

(β̂) =
1

n

n∑
i=1

[yi − m̂(x′
iβ̂)]ψ̂(x

′
iβ̂)t̂ni , (1.7)

where ψ̂(x′
iβ̂) ≡ {m̂(x′

iβ̂)[1 − m̂(x′
iβ̂)]}−1∂m̂(x′

iβ)/∂β|β=β̂, t̂ni = I{f̂(x′
iβ̃) ≥ τn}, τn → 0 as

n→ ∞ at a rate that satisfies Assumption 1.8, and β̃ is a preliminary consistent estimator for β0.

Performing a Taylor expansion yields

√
n(β̂ − β0) =H

−1
n

1√
n

n∑
i=1

[yi − m̂(x′
iβ0)]ψ̂(x

′
iβ0)t̂ni + op(1) ,

where

Hn = − ∂2Ln
∂β∂β′

∣∣∣∣
β=β̄

and |β̄ − β0| ≤ |β̂ − β0| .

Following the index restriction, consistency of β̂, the uniform representation theorem and uni-

form consistency results of kernel estimators in Escanciano et al. (2014), the results in Gourieroux

et al. (1984), as well as the continuous mapping theorem, it follows that Hn
p→ A as previously

defined and

1√
n

n∑
i=1

[yi − m̂(x′
iβ0)]ψ̂(x

′
iβ0)t̂ni =

1√
n

n∑
i=1

[yi −m(x′
iβ0)]ψ(x

′
iβ0) + op(1) , (1.8)

where ψ(x′
iβ0) = {m(x′

iβ0)[1−m(x′
iβ0)]}−1∂M(x′

iβ)/∂β|β=β0 . Note that

∂M(x′
iβ)

∂β

∣∣∣∣
β=β0

= m′(x′
iβ0)(xi − E[Xi|x′

iβ0]) , (1.9)

which can be found either by the chain rule (Newey, 1994) or by a couple of Taylor expansions.

An application of the Lindeberg-Levy CLT yields n−1/2
∑n

i=1[yi −m(x′
iβ0)]ψ(x

′
iβ0)

d→ N (0,B),
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so that finally,

√
n(β̂ − β0)

d→ N(0,A−1BA−1) .

1.B Computational Considerations

Since the SPQMLE has a similar structure to that of Klein and Spady (1993), for computation

purposes we will leverage the capacities of the np package in the R software (Hayfield and Racine,

2008). In particular, we make use of the npindex(..., method = ‘kleinspady’, ...) routine.

As a simplification, and to remain in line with the package’s computational strategy, estimation of

β0 will be performed jointly with the bandwidth ĥn, which is allowed by our method as a data-

dependent bandwidth, i.e., (β̂, ĥn) = argmaxβ∈B,hn∈R++ Ln(β, hn) (Hardle et al., 1993; Escanciano

et al., 2016). We modify the package to reflect the characteristics of our estimation method by

eliminating the requirement for binary data and correcting the variance-covariance estimator for-

mula in order to obtain valid statistical inference. All the numerical exercises in the paper make

use of this implementation.

1.C Empirical Application Table
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Table 1.C.1: Replication of Papke and Wooldridge (1996) with additional methods on restricted
sample

Dependent variable: OLS QMLE Rest. QMLEa Rest. QMLEb SPQMLE
Participation Rate (1) (2) (3) (4) (5)

Match Rate
0.156 1.390 1.167 1.165 0.148
(0.011) (0.108) (0.195) (0.190) (0.013)

log(Employment)
0.112 1.002 1.036 1.036 0.095
(0.013) (0.110) (0.199) (0.033) (0.004)

log(Employment)2
0.0057 0.0522 0.0434 0.0433 0.0048
(0.0009) (0.0071) (0.0114) (0.0037) (0.0003)

Age
0.0060 0.0501 1.000 1.000 1.000
(0.0009) (0.0088) — — —

Age2
0.00007 0.00052 0.02011 0.02011 0.01221
(0.00002) (0.00021) (0.00339) (0.00061) (0.00001)

Sole Plan
−0.0001 0.0079 0.1311 0.1302 0.0027
(0.0060) (0.0502) (0.0814) (0.0813) (0.0043)

Constant
1.213 5.058

— — —
(0.048) (0.421)

Average Partial Effect
0.156 0.173 0.111 0.111 0.126

of Match Rate

R2 0.143 0.152 — — 0.179
Log-likelihood — — −2,285.3 −2,285.3 —

Note: Match rate is limited to a maximum of 1, leaving 3,784 observations at the plan level.
Heteroskedasticity-robust standard errors in parenthesis. Restricted QMLE methods impose a 0 con-
stant term and the coefficient of Age being equal to 1: a estimated using the augmented Lagrange
optimization method and b estimated by iteratively reweighted least squares with an offset given by the
Age variable.
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Chapter 2

Copula Estimation and Variable

Selection with Multivariate Fractional

Outcomes

In microeconomics, multivariate fractional outcomes are salient in two strands of the literature:

structural microeconomics, specifically within demand system estimation, and reduced form re-

gression analysis. In both contexts, there are similar key model characteristics that need to be

taken into account.

First, most reduced form or structural models produce an estimating equation in the form of a

conditional mean such as

E[Y |X = x] =m(x,β) ,

where Y represents the outcomes that take values in Sd; X are some covariates such as price,

expenditure, and functions of these and other variables; β represents the parameters of interest

that may or may not have a structural interpretation; andm(x,β) = (m1(x,β), . . . ,md(x,β))
′ is a

vector of (possibly) nonlinear functions of covariates and parameters (Papke and Wooldridge, 1996,

2008). Example 1 in subsection 2.1.1 presents the conditional mean for the Almost Ideal Demand

(AID) model of Deaton and Muellbauer (1980), a widely used structural demand system. Exam-

ple 2 presents a multivariate fractional logit specification, which is a popular functional form for

regression analysis with multivariate fractional outcomes (Mullahy, 2015; Murteira and Ramalho,
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2016). This chapter starts from the conditional mean as the primary object and builds methods

that impose such specification while maintaining flexibility.

A second key fact is that variable selection can be crucial. For example, when the dimensionality

of the outcomes in structural demand systems is large or when many determinants of the allocations

are considered, selecting which effects remain important for determining household consumption

patterns is a variable selection issue. Additionally, there are meaningful ways in which the fit of

structural demand systems can be improved by considering polynomials to approximate certain

functions underlying the specification (Lewbel, 1991). The degrees of these polynomials would

then need to be selected from the data (Lewbel and Pendakur, 2009). Similarly, covariate selection

remains an important specification issue in reduced form models. It is thus necessary that the

methods used to estimate these models can also handle variable selection. Inference would then

need to be adjusted to account for the effect of selection, but this adjustment can be technically

complex (Knight and Fu, 2000; Chernozhukov et al., 2018). To address this issue, this chapter

employs Bayesian methods, which can incorporate selection via regularization in a similar way to

LASSO and its alternatives while inference remains simple (Park and Casella, 2008; Li and Lin,

2010; Leng et al., 2014).

Third, structural demand models usually impose constraints on the parameter vector β to satisfy

the economic regularity of the demand functions they produce. These are not only restrictions

within each equation of the conditional mean but may also include cross-equation restrictions

(Barnett, 2002). The AID model, for example, imposes homogeneity in expenditures and prices

as well as symmetry of the Slutsky matrix via these cross-equation restrictions, both of which are

important testable assumptions of the theory. Perhaps more important within this literature is the

idea of curvature that is encoded in the negative semidefiniteness of the Slutsky matrix (Blundell

et al., 2012; Chang and Serletis, 2014). Much of the research in demand estimation is thus dedicated

to introducing and analyzing the properties of different models that can both expand the theoretical

foundation of demand systems and capture important patterns in the data (Lewbel and Pendakur,

2009; Barnett and Serletis, 2008). In estimating these models, the first and third key facts are

considered at length in the literature, but the second fact is not generally taken into account. The

simplex nature of the multivariate fractional outcomes is also generally ignored by assuming an

unrestricted distribution for Y centered at m(x,β) (Barnett and Serletis, 2008). This chapter
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aims to correct this gap.

The main contribution of this chapter is to introduce a unified estimation procedure via copulas

that simultaneously incorporate all points discussed previously. That is, these methods impose the

fractional and unit-sum constraints of multivariate fractional outcomes, satisfy a conditional mean

regression structure, allow for variable selection with correct inference, and can incorporate cross-

equation restrictions. The use of copulas also broaden the possible dependence patterns between

each share in the system, which is a general concern in the compositional data literature (Aitchison,

2003). The chapter first presents two ways of constructing a likelihood using copulas. The marginal

distributions impose the conditional mean specification and satisfy the fractional restriction, while

the joint distribution captures the dependence structure and unit-sum constraint between shares.

The generality in constructing the likelihood functions allows for a unified way to estimate both

structural demand systems and reduced form models. As the maximum likelihood estimators

(MLE) arising from this construction are themselves contributions to the literature on multivariate

fractional outcome models, the chapter derives the asymptotic properties of these estimators in a

standard frequentist context before diving into a full Bayesian solution.

In order to handle model selection, the chapter then uses a general class of priors in a Bayesian

framework to augment the base estimators through the use of regularization (Park and Casella,

2008; Hans, 2009). This form of selection is also useful even in the case where the dimensionality of

the covariates is large or grows with the sample size (i.e., high-dimensional settings, see Li and Lin,

2010). Finally, the use of Bayesian methods guarantees that, even with a selection step, inference

is simple not only for the estimated parameters, but also for functions of interest computed from

these parameters. These include quantities such as average partial effects (APE) in reduced form

models or price and income elasticities after estimation of a demand system.

The chapter proceeds as follows. The next section introduces the specification of a parametric

likelihood constructed using copulas in two different ways. The properties of the resulting maximum

likelihood estimators are then analyzed. Section 2.2 introduces the class of prior distributions for

the coefficients of the conditional mean and outlines the Bayesian estimation algorithm. Numerical

exercises in Section 2.3 showcase the properties and flexibility of these estimators, as well as their

comparison with other methods available in the literature. Section 2.4 presents an application

of the proposed methods to the demand of transportation services in Canada from a structural
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demand system perspective. Section 2.5 presents the concluding remarks.

2.1 Methodological Framework

Existing methods for estimating models with compositional outcomes can be broadly categorized

into transformation and (possibly quasi-) likelihood-based methods. The former operate by taking

the shares in the simplex space Sd to an unrestricted domain and then fitting a regression on the

transformed outcomes. Aitchison (1982, 1983) considers a multivariate normal distribution on the

additive log-ratio transformation of the share system, resulting in a seemingly unrelated regression

(SUR) framework with transformed outcomes (Zellner, 1962; Allenby and Lenk, 1994). More general

transformations have been considered in the literature and include the centered log-ratio (Aitchison,

1983), isometric log-ratio (Egozcue et al., 2003), and α (Tsagris et al., 2011) transformations. The

problem with using these methods in econometric modeling is that they induce properties that

complicate the recovery of the conditional mean of Y on X. As noted previously, this is the object

of interest in a regression framework and cannot be obtained after these transformations unless

implausibly strong assumptions are imposed, even in the simpler univariate case (see, e.g., Papke

and Wooldridge, 1996).

The latter likelihood-based methods impose certain distributional assumptions — which may

or may not need to be correctly specified (Montoya-Blandón and Jacho-Chávez, 2020) — to esti-

mate the coefficients associated with the variables in a regression framework using link functions

(see, e.g., Papke and Wooldridge, 1996, 2008). These include multivariate normal (Barten, 1969;

Woodland, 1979), Dirichlet (Hijazi and Jernigan, 2009) and fractional multinomial (Mullahy, 2015;

Murteira and Ramalho, 2016) regression models. The methods in this paper stand between full dis-

tributional assumptions and the quasi-likelihood approach. In particular, the few distributions that

can fit data directly on Sd tend to have restrictive dependence structures between variables, such as

having all pairwise correlations be negative in the case of the Dirichlet distribution. Additionally,

while efficient if correctly specified, they are not guaranteed to be consistent if the distributional

assumption fails. On the other hand, quasi-likelihood estimation remains consistent while sacrific-

ing efficiency.1 Not having a correctly-specified likelihood also precludes the use of the Bayesian

1Some efficiency could be recovered by imposing higher-order moment conditions (Gourieroux et al., 1984; Mullahy,
2015).
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approach and its advantages. This is why this paper combines copulas — expanding the possi-

ble dependence structure allowed between shares while adding robustness — with a full-likelihood

approach in order to take advantage of Bayesian methods in estimation, selection and inference.

2.1.1 Likelihood and Identification

The rest of this section outlines the construction of the likelihood function using marginal distri-

butions on a bounded support, which are then combined via copulas. This is done in a way that

respects the unit-sum constraint and imposes the conditional mean specification. Let (Y ′,X ′)′

be a (d + p)-dimensional random-vector, where Y = (Y1, . . . , Yd)
′ takes values on Sd and X has

support X ⊂ Rp. Let H denote the true joint distribution of (Y ′,X ′)′ and PX denote the marginal

distribution of the covariates. Additionally, let HY |X denote the true conditional joint distribu-

tion of Y given X = x and HYj |X denote the associated conditional marginal distributions for

j = 1, . . . , d. For notational convenience, these will be written as H and Hj , respectively, with

their conditional nature made clear within their arguments. Each marginal distribution satisfies

the fractional restriction; i.e., Hj(yj |X = x) = 0 if yj < 0 and Hj(yj |X = x) = 1 if yj > 1 for

each j = 1,. . . , d and almost all x ∈ X . As mentioned previously, the following conditional mean

specification is assumed to hold throughout.

Assumption 2.1. The joint distribution of (Y ,X) satisfies

E[Yj |X = x] = mj(x,β0) , (2.1)

for almost all x ∈ X , some K-dimensional β0 ∈ B ⊂ RK , and known functions mj : Rp × Rk → R,

such that 0 < mj(x,β) < 1 for all x and β, j = 1, . . . , d.

Note that this is a restriction on the family of conditional marginal distributions of Y . In order to

obtain sensible predictions, one should place an additional unit-sum constraint on the expectations:∑d
j=1mj(x,β) = 1. The following examples present a couple of popular functional forms in both

structural and reduced form models that satisfy Assumption 2.1.

Example 1. (Demand Estimation) As noted before, the almost ideal demand (AID) system is a
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popular model in demand estimation with a conditional mean specification m(x,β) given by

mj(x,β) = αj +
d∑
l=1

γjl log pl + πj

{
log e− α0 −

d∑
l=1

αl log pl −
1

2

d∑
k=1

d∑
l=1

γkl log pk log pj

}
(2.2)

for all j = 1, . . . , d, where β = (α0, . . . , αd, π1, . . . , πd, γ11, . . . , γdd)
′ are the structural parameters

and x = (e,p′)′, so that the covariates represent total expenditures and prices. Additionally, the

following cross-equation restrictions are imposed to satisfy homogeneity of degree zero in prices

and total expenditure, as well as a symmetric Slutsky matrix:
∑d

j=1 αj = 1,
∑d

j=1 πj =
∑d

j=1 γjl =∑d
j=1 γlj = 0 and γjl = γlj . Other demand systems exist, which extend the theoretical properties

and provide a better fit to the data. The most popular in the literature are the quadratic AID

(Banks et al., 1997), Minflex Laurent (Barnett, 1983; Barnett and Lee, 1985), and recently the exact

affine Stone index (Lewbel and Pendakur, 2009). After estimating these models, price elasticities

and other quantities of interest are computed for which standard errors are required. Demand

systems also generally admit a fully linear approximation that reduces each component ofm(x,β)

to an identity link on a single-index. All of these models rely on imposing parameter restrictions

to satisfy the unit-sum constraint, while not imposing the fractional constraint of the outcomes.2

Example 2. (Reduced Form) A model that specifies each component of m(x,β) as a link func-

tion on a single-index can also arise from several different contexts. It is commonly used when

a researcher wants to explore the relationship between covariates and outcomes with no particu-

lar structural justification in mind. However, these specifications also arise from some structural

frameworks when additional assumptions are imposed (Considine and Mount, 1984; Dubin, 2007).

For example, a model could take the form of a multivariate fractional logit (Mullahy, 2015):

mj(x,β) =


exp(x′βj)

1+
∑j−1

l=1 exp(x′βl)
for j = 1, . . . , d− 1 ,

1

1+
∑j−1

l=1 exp(x′βl)
for j = d ,

(2.3)

where β = (β′
1, . . . ,β

′
d−1)

′. Perhaps more interesting in these types of nonlinear models is the

average partial effect of variable k on outcome j, given by ∂ E[Yj |X = x]/∂xk . Inference about

this object is thus of great importance in an applied setting.

2The fractional constraint also guarantees positivity, a restriction that is generally ignored or checked only after
estimating a particular demand system, and is not imposed in the estimation process.
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An application of Sklar’s (1959) theorem allows for a representation of H using copulas as

H(y1, . . . , yd|X = x) = C(H1(y1|X = x), . . . ,Hd(yd|X = x)), where C(·) is a copula function

linking together the conditional marginals with x common across all distributions. The following

assumption on the underlying distributions will be important.

Assumption 2.2. The marginals Hj , j = 1, . . . , d and the copula C admit density functions

conditional on X = x, which are denoted by hj , j = 1, . . . , d and c, respectively.

Given Assumption 2.2, the conditional joint density h(y1, . . . , yd|X = x) is well-defined as is the

unconditional density. Modeling can then take place in two steps. First, marginals Fj are selected

for each outcome yj , j = 1, . . . , d from the general class of distributions on the unit interval that

satisfy Assumption 2.1 (denoted here as F). Then, a copula CY can be chosen from class C. Taking

a parametric stance on the definition of the copula, the conditional joint can be expressed as

F1,...,d(y|X = x; δ,ψ) = CY (F1(y1|X = x; δ1), . . . , Fd(yd|X = x; δd);ψ) , (2.4)

where δ = (δ′1, . . . , δ
′
d)

′ ∈ ∆ are the parameters that govern the marginal distribution of each

component and ψ ∈ Ψ defines the dependence structure between the variables in the copula. These

parameters are defined on the spaces ∆ = ×d
j=1∆j ⊂ RDj , where Dj is the dimensionality of each

δj , j = 1, . . . , d, and Ψ ⊂ RS . However, note that some issues arise when dealing directly with the

object defined by (2.4) in this context. Due to the nature of the simplex, there is a redundancy in

the sense that one of the variables can always be obtained from the others (Murteira and Ramalho,

2016; Elfadaly and Garthwaite, 2017). To illustrate this fact, take d as a base category and let

W = Y1 + · · ·+ Yd−1. The distribution of Yd will then be given by

Fd(yd|X = x) = 1− FW (1− yd|X = x) , (2.5)

where

FW (w|X = x) = lim
wj→∞,j=2,...,d−1

Pr(Y1 + · · ·+ Yd−1 ≤ w, Y2 ≤ w2, . . . , Yd−1 ≤ wd−1|X = x) .

This probability is taken over the joint distribution of (Y1, . . . , Yd−1)
′ conditional on X = x, which
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could be obtained from a second application of Sklar’s theorem.3 Thus, Fd is completely determined

by the remaining components and a likelihood function based on this joint distribution would be

constant with respect to δd. As identifiability is a property of the likelihood, this implies that

δd would not be identifiable separately from (δ′1, . . . , δ
′
d−1)

′. In a frequentist context, nothing else

could be said about this remaining component. However, in a Bayesian framework, if there was

some prior information linking (δ′1, . . . , δ
′
d−1)

′ and δd together, it could be possible to achieve a

posterior updating of δd conditional on the data (Poirier, 1998).

As an example of this identification failure, consider specifying a Gaussian copula with Gaussian

marginals (forgetting for a moment about the fractional restriction). The unit-sum constraint

that yields (2.5) would imply a singular covariance matrix between the components of Y . In a

demand estimation context, Barten (1969) explores these effects, showing how to perform maximum

likelihood estimation (MLE) of the parameters of the resulting demand system by eliminating one

of the equations.

This paper considers two ways of imposing a copula on a D-dimensional object with D ≡ d− 1

in a way that both the unit-sum constraint from the simplex and the conditional mean specification

in (2.1) are satisfied. For this reason and to simplify notation, some D-dimensional objects will

be used interchangeably with their d-dimensional counterparts, but their distinctions will be made

clear when necessary.

Copula Specification on Y

Consider placing a copula similar to (2.4) except that the object of interest is the D-dimensional

vector Y−d = (Y1, . . . , YD)
′, where the d-th component is taken as the base and is thus eliminated:

F (y−d|X = x; δ,ψ) = CY (F1(y1|X = x; δ1), . . . , FD(yD|X = x; δD);ψ) . (2.6)

Now, while identification is no longer an issue, there is still the fact that F has support on [0, 1]D.

That is, it places some probability outside of the set T = {(y1, . . . , yD) ∈ RD : 0 ≤ yj ≤ 1, j =

1, . . . , d;
∑D

j=1 yj ≤ 1}, so that it does not correspond to a valid distribution on Sd after marginal-

3This particular formula arises by considering the inverse transformation Y1 = W − Y2 − · · · − Yd−1, Y2 =
V2, . . . , Yd−1 = Vd−1 and obtaining the marginal for W . Similar formulas would set Yj = W −Y1−· · ·−Yj−1−Yj+1−
· · · − Yd−1 for some j in 1, . . . , d− 1 and integrate over the remaining components.
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izing the last component. Additionally, generating values from the distribution in (2.6) would

yield draws that do not satisfy the unit-sum constraint with some probability. The amount of

density placed outside of T depends on the distribution of W as previously defined. The following

proposition gives the details of the general case from (2.5). All proofs can be found in Appendix

2.A.

Proposition 1. The cdf of W = Y1 + . . .+ YD conditional on X = x, δ, and ψ is given by

FW (w|X = x; δ,ψ) =

∫ w−D+l

0

∫ w−D+l−yD

0
· · ·
∫ w−D+l−

∑D
k=D−l+2 yk

0

∫ 1

0
· · ·
∫ 1

0

dF (y1, . . . , yD−l, yD−l+1, . . . , yD−1, yD|X = x; δ,ψ) ,

(2.7)

when w ∈ (D − l,D − l + 1] for l = 1, . . . , D.

Based on this characterization, we can find Pr(Y−d ∈ T |X = x; δ,ψ) = FW (1|X = x; δ,ψ). Under

the following assumption, it is possible to obtain a density on Y−d given by the truncation of the

copula density to the set T .

Assumption 2.3.A. The marginals Fj , j = 1, . . . , D and the copula CY admit density functions

conditional on X = x, which are denoted by fj , j = 1, . . . , D and cY , respectively.

Then, by Assumption 2.3.A,

f(y−d|X = x; δ,ψ; T ) =


f(y−d|X=x;δ,ψ)
FW (1|X=x;δ,ψ) if y−d ∈ T ,

0 if y−d /∈ T ,

= I(y−d ∈ T )
f(y−d|X = x; δ,ψ)

FW (1|X = x; δ,ψ)
, (2.8)

where I(·) is the indicator function that takes the value of 1 if its argument is true and 0 otherwise.

The nontruncated density is given by

f(y−d|X = x; δ,ψ) = cY (F1(y1|X = x; δ1), . . . , FD(yD|X = x; δD);ψ)
D∏
j=1

fj(yj |X = x; δj) .

While this method of constructing a likelihood function satisfies the conditional mean specification

and unit-sum constraints, the possibly high-dimensional integral can be a complicated computation.
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Some algorithms, such as the AEP of Arbenz et al. (2011), are devised for the specific purpose of

approximating the integral in (2.7). This is used in the numerical implementation of the algorithm

to drastically reduce the computational burden compared to general multivariate integration or

Monte Carlo methods.

Copula Specification on Z

With the drawbacks outlined in the previous subsection, a second way of constructing a likelihood

is considered here that does not suffer from such computational complexity. This is achieved

by introducing a transformation step for the vector Y in order to impose more structure. Most

transformations mapping Sd to Rd or Rd−1 have an inverse mapping with a closure structure; i.e.,

they take each vector component and divide it by the sum of the whole vector. The resulting

ratios make it so that recovering the conditional mean E[Y |X = x] from the transformation is

complicated and entails strong and implausible assumptions (Papke and Wooldridge, 1996). In

contrast, this paper employs a transformation that has a multiplicative structure for the inverse

mapping. That way, it is possible to obtain the conditional mean for Y on X. Assuming that

Yd is selected as the base variable again, the so-called stick-breaking transformation (Connor and

Mosimann, 1969) is used to produce new variables Z1, . . . , Zd, such that

Z1 = Y1, Zj =
Yj

1−
∑j−1

l=1 Yl
for j = 2, . . . , d− 1, and Zd = 1 . (2.9)

This mapping is denoted as s(Y ) = (s1(Y ), . . . , sD(Y ))′, where Zj = sj(Y ) for j = 1, . . . , D.

Note that after this transformation, Zd becomes fixed, which once again highlights the redundancy

problem in the original Y vector: it can be transformed into a lower-dimensional vector without

sacrificing information. Here, it is important to note that although any category can be chosen

as a base, subsequent analyses will depend on this base category. However, this failure to be

permutation invariant is generally not viewed as an issue in most of the econometric literature as

long as it is taken into consideration (Mullahy, 2015; Murteira and Ramalho, 2016).

Additionally, observe that Z = (Z1, . . . , ZD)
′ takes values in [0, 1]D. Thus, placing a copula

structure on Z analogous to (2.6) would not need to be truncated as it would always satisfy the

unit-sum constraint of the original Y for any marginals and dependence structure. Therefore, the
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following distribution is considered:

G(z1, . . . , zD|X = x;ω, ξ) = CZ(G1(z1|X = x;ω1), . . . , GD(zd|X = x;ωD); ξ) , (2.10)

where ω = (ω′
1, . . . ,ω

′
D)

′ ∈ Ω are the marginal parameters and ξ ∈ Ξ are the copula parameters.

Here, similar to (2.6), Gj , j = 1, . . . , D are marginals respecting the fractional constraint, Ω =

×D
j=1Ωj with each Ωj ⊂ ROj , and Ξ ⊂ RS . In order to satisfy the conditional mean specification in

(2.1), the restrictions given by the following proposition must be imposed on the conditional means

of Z.

Proposition 2. There exist conditional mean functions E[Zj |X = x] ≡ µj(x;β,ω, ξ) such that

the conditional mean for Y on X satisfies Assumption 2.1. In particular, any such objects that are

a solution to

µj(x;β,ω, ξ) +
E
[
Z̃j
∏j−1
l=1

(
1− Z̃l − µl(x;ω, ξ)

) ∣∣∣X = x
]

1−
∑j−1

l=1 ml(x,β)
=

mj(x,β)

1−
∑j−1

l=1 ml(x,β)
(2.11)

will satisfy E[Yj |X = x] = mj(x,β), where Z̃j ≡ Zj − E[Zj |X = x].

Thus, by Proposition 2, we can sequentially find the conditional mean for Z in a way that imposes

Assumption 2.1. This means that by setting up the moments of Z in a specific way, the copula

would place a dependence structure on Y that is flexible and satisfies all the requirements for a

multivariate fractional response model. This, of course, requires the existence of the necessary

moments for a given copula CZ . The challenging part of applying Proposition 2 comes from

computing these cross-moments of Z. However, in an important special case, given by the elliptical

copulas with correlation matrix R, such as the Gaussian or t copulas, it is possible to show that

all cross-moments depend only on the elements of R. This is due to Wick’s theorem for elliptical

distributions (Frahm et al., 2003) and the consequences are explored in the following example.

Example 3. (Gaussian Copula) Take a system with d = 3 shares and let CZ be a Gaussian

copula with correlation parameter ξ. Additionally, let both Z1 and Z2 have beta marginals in a

mean-precision parameterization with precisions ϕ1 and ϕ2, respectively. Write µj ≡ µj(x;β,ω, ξ).

Then, E[Z̃1Z̃2|X = x] = ξ
√

Var(Z1|X = x)Var(Z2|X = x) and the variance of a beta distribution
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in this parameterization is given by Var(Zj |X = x) = µj(1− µj)/(1 + ϕj). Equation (2.11) would

then take the form µ1 = m1(x,β) for j = 1. For j = 2, it reduces to µ2− b
√
µ2(1− µ2) = c, where

b ≡ (ξ/
√
(1 + ϕ1)(1 + ϕ2))

√
µ1/(1− µ1) and c ≡ m2(x,β)/[1−m1(x,β)]. This has the solution

µ2 =
b2 + 2c± b

√
b2 + 4c(1− c)

2(b2 + 1)
,

which exists in the real unit interval as long as c < 1, which in itself is guaranteed by the unit-sum

constraint of the conditional mean functions mj(·), j = 1, . . . , d. In this setting, we have ω1 =

(µ1, ϕ1) and ω2 = (µ2, ϕ1). This yields (2.1) for the Y transformed via the inverse transformation

(2.A.1).

This way of introducing dependency from the underlying Z to Y is quite flexible. Proposition

2 acts in a similar way to a method of moments approach; i.e., given the copula structure in (2.10),

the moments of Z are chosen to match those of Y . Thus, it is also possible to have additional

moments of each Yj be matched by those of the underlying marginals. The parameters in this

construction are then also written as δ. This implicit relationship depends on both the marginal

and copula parameters and is denoted by δ = v(x;β,ω, ξ). In a practical application, a researcher

might only want to match the marginal moments of each Yj and not impose a full copula structure.

In this case, one could assume the Z to be independent of each other, reducing the conditional

means to

µj(x;β,ω, ξ) =
mj(x,β)

1−
∑j−1

l=1 ml(x,β)
.

The other marginal moments can be matched given the simplification of independence. Even by

assuming this independence copula, the resulting Y are still correlated, although the patterns of

this correlation are reduced. Consider again Example 3 but with Z assumed to be independent.

If independent beta marginals are combined in this way, it is possible to recover the generalized

Dirichlet distribution on Y , which is a more flexible alternative to the Dirichlet used in practice

(Connor and Mosimann, 1969).

As the Jacobian of the stick-breaking transformation is given by
∏D
j=1 1/(1−

∑j−1
l=1 Yl), the next

assumption, which mimics Assumption 2.3.A, yields a distribution for Y .

Assumption 2.3.B. The marginals Gj , j = 1, . . . , D and the copula CZ admit density functions
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conditional on X = x, which are denoted by gj , j = 1, . . . , D and cZ , respectively.

Then, by Assumption 2.3.B and a change of variables from Z to Y ,

g(y|X = x; δ, ξ) = g(s(y)|X = x; δ, ξ)

= cZ(G1(s1(y)|X = x; δ1), . . . , GD(sD(y)|X = x; δD), ξ)×
D∏
j=1

gj(yj |X = x; δj)

1−
∑j−1

l=1 Yl
.

(2.12)

2.1.2 Frequentist Estimation and Asymptotic Properties

While the ultimate goal of this paper is to construct Bayesian estimators based on the joint distribu-

tions introduced in the previous subsection, to the best of my knowledge, the frequentist estimators

have not been previously explored in the literature. Therefore, for completeness and to present an

alternative to existing methods, the asymptotic properties of these estimators are derived in this

subsection and prior specifications are postponed until the next section.

The following assumptions are introduced in order to construct a likelihood function from both

(2.8) and (2.12).

Assumption 2.4. There is access to an independent and identically distributed (i.i.d.) sample of

size n from the joint distribution of (Y ′,X ′)′, given by {(y′i,x′
i)
′}ni=1.

Define θY = (δ′,ψ′)′ and θZ = (δ′, ξ′)′. The associated log-likelihoods are then given by

ℓY (θY ) =
1

n

n∑
i=1

{
log cY (F1(y1,i|X = xi; δ1), . . . , FD(yD,i|X = xi; δD);ψ)

+
d∑
j=1

log fj(yj,i|X = xi; δj)− logFW (1|X = xi; δ,ψ)

} (2.13)

and

ℓZ(θZ) =
1

n

n∑
i=1

{
log cZ [G1(s1(yi)|X = xi; δ1), . . . , GD(sD(yi)|X = xi; δD); ξ]

+

d∑
j=1

log gj(sj(yi)|X = xi; δj)

}
,

(2.14)
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where the Jacobian term in (2.14) is not included as it does not depend on θZ . Once these

likelihoods have been defined, a natural way to construct the estimators is

θ̂Y ≡ argmax
θY ∈∆×Ψ

ℓY (θY ) and θ̂Z ≡ argmax
θZ∈∆×Ξ

ℓZ(θZ) . (2.15)

The following assumptions guarantee identification and introduce correct specification of the mar-

ginals and copulas.

Assumption 2.5. (Identification)

1. Fj and Gj are absolutely continuous and globally identified for j = 1, . . . , D and the same is

true for CY and CZ ;

2. For j = 1, . . . , D (i) if mj(x,β1) = mj(x,β2) for almost all x ∈ X then β1 = β2, and (ii) X

must be such that Image(mj) = Range(mj).

Assumption 2.6.A. (Correct specification) (i) There exists ψ0 ∈ Ψ and δ0 = (δ′0,1, . . . , δ
′
0,D)

′ ∈ ∆,

such that h(·|X = x) = f(·|X = x; δ0,ψ0) for almost all x ∈ X ; (ii) Similarly, there exists

ξ0 ∈ Ξ and ω0 ∈ Ω, such that h(·|X = x) = g(·|X = x; δ0, ξ0) for almost all x ∈ X , where

δ0 = v(x;β0,ω0, ξ0).

While identification of δ depends solely on the marginals, the dependence structure parameter is

more sensitive to discontinuities. In particular, this identification can be compromised when the

covariates do not allow a wide range of the [0, 1]-domain to be covered in the regression structures

exploited in this paper (Genest and Nešlehová, 2007; Trivedi and Zimmer, 2017). Point masses

on the marginal distributions could potentially be accommodated by robust correction techniques

(Mart́ın-Fernández et al., 2003) or in a Bayesian setting by data augmentation (Smith and Khaled,

2012). All link functions usually considered in the literature satisfy Assumption 2.5.2.(i). These in-

clude functions on a single-index or those including additional parameters in reduced form models,

such as the nested logit or dogit models (Murteira and Ramalho, 2016). A simple way to guaran-

tee 2.5.2.(ii) is to have a continuous regressor with unbounded support and a nonzero coefficient

associated with it.

Combining all previous assumptions with the standard regularity conditions (see Appendix 2.B

and White, 1982) leads to one of the main results of the paper.
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Theorem 2.1. Under Assumptions 2.1–2.6.A and regularity conditions R1–R6, the resulting es-

timators θ̂Y and θ̂Z are consistent and asymptotically normal; i.e., for e ∈ {Y, Z}, θ̂e
p→ θe,0,

and
√
n(θ̂e − θe,0)

d→ N (0, I−1(θe,0)) , (2.16)

where I(θe,0) = −E[∂2ℓ(θe,0)
/
∂θe∂θ

′
e ] is the Fisher information matrix at the true parameter

vector.

Inference is easily obtained by plugging in −∂ℓ(θ̂e)/∂θe∂θ′e as an estimator for I(θe,0), where

e ∈ {Y,Z}. Now, as the focus of the paper is estimating the coefficients associated to the conditional

mean, the full strength of Assumption 2.6.A is not necessary to obtain consistency and asymptotic

normality of the estimator from the copula on Y . A modified version of Assumption 2.6.A is

introduced next.

Assumption 2.6.B. (Possibly misspecified copula) There exists δ0 = (δ′0,1, . . . , δ
′
0,D)

′ ∈ ∆ such

that Hj(·|X = x) = Fj(·|X = x; δ0,j) for all j = 1, . . . , d and almost all x ∈ X . However,

C(·) ̸= CY (·;ψ0) for all ψ0 ∈ Ψ.

The following lemma will be useful in proving an analog to Theorem 2.1 that uses Assumption 2.6.B

instead of 2.6.A. It presents a decomposition of the Kullback-Leibler (KL) divergence when dealing

with copula estimation, where the KL divergence between two distributions h and f , indexed by

some parameter vector θ, is defined as follows: KL(h, f ;θ) = Eh[log(h/f)], with Eh denoting that

the expectation is taken with respect to distribution h.

Lemma 2.1. (KL divergence for copula likelihoods) Under Assumptions 2.1–2.3.A and regularity

conditions R1 and R2, the KL divergence between the true distribution h, when f is defined by

(2.8), is given by

KL(h, f ;θY ) = Eh

[
log

c(H1(Y1|X = x), . . . ,HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);ψ)

]
+

D∑
j=1

KL(hj , fj ; δj) + Eh

[
log

FW (1|X = x;θY )

I(Y ∈ T )

]
.

(2.17)

The main message from Lemma 2.1 is that the KL divergence can be decomposed into three parts:

the first term represents a measure of the divergence between the true and the assumed copula;
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the second are the actual KL divergences between the true and assumed marginals; and the third

is the difference between the true and derived log-probability that y is in the set T . Using this

result, it is now possible to show that, as long as the marginals are correctly specified even if the

copula is not, the coefficients θY can be consistently recovered. In such a case, the δ̂ parameters

in the marginals converge to their true counterpart, while the dependence structure parameters ψ̂

converge to the pseudo-true values that minimize the KL divergence along that dimension. In this

sense, the proposed estimator is semiparametric with respect to the copula; i.e., robust to copula

misspecification.

Theorem 2.2. Under assumptions 2.1–2.3.A, 2.4–2.6.B and regularity conditions R1–R6, the

resulting estimator θ̂Y is consistent and asymptotically normal. In particular, δ̂
p→ δ0 and ψ̂

p→ ψ∗,

where ψ∗ is the value of ψ ∈ Ψ that minimizes the Kullback-Leibler divergence. Additionally,

√
n(θ̂Y − θ∗Y )

d→ N (0, I−1
h (θ∗Y )Jh(θ∗Y )I−1

h (θ∗Y )) , (2.18)

where θ∗Y = (δ′0,ψ
∗′)′ is the pseudo-true value, Ih(θ∗Y ) = Eh[∂

2 log f(yi|X = xi;θ
∗
Y ; T )

/
∂θY ∂θ

′
Y ]

and Jh(θ∗Y ) = Eh[∂ log f(yi|X = xi;θ
∗
Y ; T )/∂θY · ∂ log f(yi|X = xi;θ

∗
Y ; T )/∂θ′Y ].

Theorem 2.2 is a specialization of the results in White (1982), tackling misspecified maximum

likelihood estimation, and thus expected values are taken with respect to the true underlying joint

distribution h. This result represents an additional advantage in this context, as some copulas have

a truncation probability, FW (1|X = x; δ,ψ) in (2.13), which is easier to compute than others.

Using these copulas will still recover the underlying marginal parameters while ensuring that the

dependence parameters are consistent to a meaningful counterpart; the computational burden is

therefore reduced. Furthermore, in the copula estimation context, it is not generally the case that

Ih(θ∗Y ) has a block-diagonal structure, so that the full sandwich estimator is necessary to conduct

inference regarding β. Consistent estimators of these matrices can be computed in a standard
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fashion by using

Îh(θ̂Y ) =
1

n

n∑
i=1

∂2 log f(yi|X = xi; θ̂Y ; T )

∂θ∂θ′
,

Ĵh(θ̂Y ) =
1

n

n∑
i=1

∂ log f(yi|X = xi; θ̂Y ; T )

∂θ
· ∂ log f(yi|X = xi; θ̂Y ; T )

∂θ′
.

(2.19)

It is also simple to see why Theorem 2.2 does not apply to the estimator based on the copula on

Z. As Proposition 2 shows, the marginal parameters depend on the underlying copula parameters

ξ via δ = v(x;β,ω, ξ). If no ξ ∈ Ξ allows for a correct specification of the copula, the inferred

relationship cannot reflect the correct marginal structure. The preceding theorems introduce a

trade-off in the empirical analysis of copulas for demand estimation or reduced form models. While

the estimator of the copula on Y is robust to copula misspecification, it is more expensive to

compute. On the other hand, placing a copula on Z, particularly an elliptical copula, creates an

easier to compute model; however, it might be biased for computing the coefficients of interest.

This trade-off is explored numerically in Section 2.3 using Monte Carlo simulations.

This theorem also presents a powerful result whose proof is generally applicable to copula

estimation: correct marginals with misspecified dependence structure still leads to consistent and

asymptotically normal estimators. The result is formally stated in the next corollary.

Corollary 2.1. Let the support of Y be RD instead of Sd. Under Assumptions 2.2, 2.3.A, 2.4,

2.5.1, 2.6.B and regularity conditions R1–R6, an estimator θ̂ = (δ̂′, ψ̂′)′ based on (2.13) (without

the truncation probability) is consistent and has an asymptotically normal distribution as in (2.18).

This is a potentially overlooked result in the copula estimation literature, as most attention is cen-

tered on correctly modeling the dependence structure without focusing on the marginals.4 Corollary

2.1 presents a contrasting view: if the attention is shifted to the marginals, the copula specification

parameters become nuisance parameters and the marginals can be recovered.

The estimators introduced in this paper cover several important cases in the literature. Several

marginals can be chosen such that the regression structure given in (2.1) is preserved. Examples

include the beta with a reparametrization (Ferrari and Cribari-Neto, 2004; Simas et al., 2010),

4This view is one usually found in most financial or actuarial applications, while the opposite tends to be true in
economics and econometrics (Charpentier et al., 2007; Trivedi and Zimmer, 2007).
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Figure 2.1: Dependence Patterns in Copulas
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Note: (a) Beta marginals with δ1 = (0.5, 10), δ2 = (0.5, 10) and a normal copula with ψ = −0.5; (b) Beta
marginals with δ1 = (0.7, 10), δ2 = (0.2, 10) and a normal copula with ψ = −0.5; (c) Simplex marginals
with δ1 = (0.5, 1), δ2 = (0.5, 1) and a normal copula with ψ = 0.5; and (d) Beta marginals with δ1 =
(0.8, 10), δ2 = (0.8, 10) and a FGM copula with ψ = −0.5.

simplex (Song and Tan, 2000; Liu et al., 2020), truncated normals, and skew-normals (Mart́ınez-

Flórez et al., 2020). Furthermore, there are many methods to create new distributions on the

unit interval that satisfy this restriction (Rodrigues et al., 2020). Some distributions can even

be made to handle point masses at the extremes to deal with boundary values that can occur in

the data and that can be hard to introduce into a parametric analysis (Papke and Wooldridge,

1996; Mart́ın-Fernández et al., 2003; Smithson and Shou, 2017). Once these marginals are selected,

general copulas can be used to link them in a flexible way. As an example of this flexibility inherent

to the copula approach, Figure 2.1 plots the densities under several configurations of marginals,

copulas, and their parameters, obtaining a wide array of possible distributional shapes.

Example 1. (Continued) Now, as one of the objectives of the paper is to be able to deal with the

type of cross-equation restrictions that arise in the estimation of demand systems, it will be useful

to consider the more general estimator for e ∈ {Y, Z} given by

θ̃ ≡ argmax
θe∈Θe

ℓe(θ)

subject to Aβ = a and Bβ ≤ b ,
(2.20)

where ΘY = ∆ × Ψ and ΘZ = ∆ × Ξ. Implementation of these types of (possible) cross-equation

restrictions is simple in the full-likelihood estimation case. This is in contrast to the alternative

two-step approach known in the literature as inference functions for margins (IFM), which first
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estimates δ and then ψ or ξ (Joe and Xu, 1996). Imposition of cross-equation restrictions in this

framework is complicated and usually leads to larger efficiency losses (Joe, 2014). However, an

issue with the full estimator is numerical instability. The Bayesian approach can further aid in this

issue, as the introduction of prior information usually leads to posteriors that are less flat than the

likelihood in the regions of the parameter space that are of interest.5

2.2 Priors and Variable Selection

Armed with the likelihood function, prior distributions on the parameters can be imposed to carry

out Bayesian estimation, which produces posterior distributions for θ. Inference then follows from

a measure of uncertainty or from credible sets of these posterior distributions. Model selection

in a traditional sense would follow from the same probability rules and yield posterior model

probabilities that could be used for both selection and averaging. Instead, the objective of this

paper is to further augment the proposed estimators to handle covariate selection by introducing

regularization. This is done to leverage recent results on Bayesian analogs of the LASSO and

related estimation methods (Tibshirani, 1996). Furthermore, the Bayesian framework allows the

researcher to obtain statistical inference through simple numerical methods. Such a framework

would be useful even in contexts where the dimensionality of the covariate space is large or grows

with sample size, as occurs in high-dimensional settings (Li and Lin, 2010). In demand estimation,

this could correspond to approximating the indirect utility or cost functions to an arbitrarily large

degree of precision using polynomials and interaction terms, which can aid the performance and

economic regularity of the resulting models (Chang and Serletis, 2014). Additionally, a researcher

would need to obtain inference on functions of the parameters, such as the price elasticities in

demand estimation or average partial effects in reduced form models. Frequentist methods rely

on the Delta method or variants of bootstrapping to produce this inference, but they are either

computationally complex or not supported theoretically.6 On the other hand, Bayesian methods

can produce inference for these objects at no real additional computational cost apart from the

5This property of Bayesian methods have made them very popular in macroeconomic modeling (see, e.g., Sims
and Zha, 1998).

6For example, Koch (2015) and Mullahy (2015) deal with inference on the average partial effects for the multivariate
fractional logit by using different kinds of bootstrap methods. However, the validity of these bootstrap methods is
never assessed.
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estimation itself.

The driving idea behind this framework is that regularization can be applied to any globally

convex function, such as the negative of the log-likelihoods given in (2.13) and (2.14) (Zou and

Hastie, 2005; Tibshirani et al., 2012). Thus, to automatically include a selection step, the objective

function could be augmented to solve

argmin
θe∈Θe

{−ℓe(θe) + ρλ(β)} , (2.21)

where the covariates are now assumed to be standardized and ρλ(β) is a penalization term of the

regression coefficients that is indexed by a vector of regularization parameters λ = (λ1, . . . , λM )′. It

is assumed that only the β or a subset of them are penalized, as these coefficients directly interact

with the covariates to define the conditional mean.

Example 4. (LASSO and group LASSO) Useful forms of the penalty could be given by

ρλ(β) = λ||β||1 or ρλ(β) = λ
L∑
l=1

||βl||2 , (2.22)

where β = (β′
1, . . . ,β

′
L)

′ so that there is a partition of the coefficient vector into L groups and || · ||1

and || · ||2 are the L1 and L2 norms in Euclidean spaces, respectively. The first penalty is the usual

LASSO, whereas the second takes the form of the group LASSO (Yuan and Lin, 2006).

While frequentist methods can be used to solve (2.21), a Bayesian solution to this problem

is still attractive. Frequentist penalization methods act such as LASSO act by simultaneously

imposing shrinkage and selecting relevant features. The Bayesian framework can also naturally

impose shrinkage into estimation by virtue of prior information. Recent literature shows how

this pattern of Bayesian shrinkage can replicate those introduced by LASSO or its alternatives

and how selection can be achieved (Park and Casella, 2008; Li and Lin, 2010; Leng et al., 2014).

The connection between both methods was recognized at the onset of the penalized regression

literature and the introduction of the LASSO, which can be obtained from a Bayesian interpretation

(Tibshirani, 1996; Ročková and George, 2018).

However, the main consideration for adopting a Bayesian framework is its ability to obtain

inference through simple probabilistic concepts (Kyung et al., 2010). Frequentist methods initially
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focused on fast coefficient estimation and tuning of the penalty parameters, but were generally

unsuited for inference due to their nonstandard limiting distribution (Knight and Fu, 2000). Ad-

vancements in the literature have introduced different ways to circumvent this issue. These in-

clude approximations to the objective function (Tibshirani, 1996; Osborne et al., 2000; Wang and

Leng, 2007), bootstrap (Knight and Fu, 2000; Hansen and Liao, 2019), use of nonconcave penalties

(Fan and Li, 2001; Ning et al., 2017), inversion of Karush-Kuhn-Tucker conditions (also known as

“desparsification”, Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang and Zhang,

2014; Breunig et al., 2020), post-selection inference (Belloni et al., 2014, 2016; Lee et al., 2016), and

double or debiased machine learning (Athey et al., 2018; Chernozhukov et al., 2018).7 Most of these

advancements involve linear regression and instrumental variable models, while some cover up to

generalized linear models, which provide sufficient structure to the problem (Fan and Tang, 2013;

Ning et al., 2017). The regression structure with the likelihood functions considered in this paper

do not fall into these categories. Furthermore, the necessary technical conditions to adapt some

of the previous methods that are sufficiently general to cover this setting are still unknown and

left for future research. A Bayesian specification, on the other hand, is easy to establish without

additional technical considerations and provides statistical inference as a by-product of the esti-

mation algorithm. Additionally, the Bayesian framework can attach uncertainty to the estimates

of nonselected variables — those estimated to be 0 — whereas this cannot be done satisfactorily

under most methods in the frequentist approach. While this paper implements model selection

by using the class of priors defined below in (2.23), several alternatives exist within the Bayesian

literature (Chipman et al., 2001; Ishwaran and Rao, 2005; Yuan and Lin, 2006; Yen, 2011; Ročková

and George, 2018).

To complete a Bayesian specification of the problem, this paper considers a general class of priors

that implement regularization in an analog way to the usual frequentist solutions. For simplicity,

it is assumed hereafter that the marginals can be entirely described, conditional on X, by using

the vector of coefficients β and precision parameters ϕ = (ϕ1, . . . , ϕD) ∈ Φ ⊂ RD. That is, we can

write δj = (β′, ϕj)
′ for all j = 1, . . . , d, or δ = (β′,ϕ′)′. The ϕ are precision parameters such that

for a fixed mean, larger ϕ imply smaller variances and as ϕ → ∞, the distribution degenerates

7Double machine learning methods are also connected to resampling ideas, which can be given a Bayesian inter-
pretation (Smith and Gelfand, 1992).
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to the mean value (Ferrari and Cribari-Neto, 2004). This is the case for all marginal distributions

considered in the paper.

Most work on adapting the LASSO-type estimators to a Bayesian context shows that, essentially,

different penalties are implemented by changing the priors in a systematic way (Park and Casella,

2008; Hans, 2009; Kyung et al., 2010). Furthermore, different representations of the Bayesian

interpretation of the priors alters both the theoretical and computational properties of the solutions.

This idea leads to the following general class of priors π(β) to handle estimation and model selection

in this framework:

π(β) ∝ exp
{
− 1

2
ρλ(β)

}
. (2.23)

Example 4. (Continued) For the penalties in (2.22), these priors can be implemented using a

hierarchical Bayesian approach. For a LASSO penalty, the following hierarchy achieves the desired

results:

β|τ1, . . . , τK ∼ NK(0, Dτ ), Dτ = diag(τ1, . . . , τK) ,

τk|λ2 ∼ Exponential

(
λ2

2

)
, k = 1, . . . ,K ,

where NK represents a multivariate K-dimensional normal distribution, τ1, . . . , τK are hierarchical

parameters, and diag(τ1, . . . , τK) represents a K × K diagonal matrix with the diagonal given

by its arguments. This hierarchical structure borrows from the linear regression framework, but

its properties hold remarkably well in these nonlinear settings (Park and Casella, 2008). For the

group-LASSO penalty, a similar structure can implement this prior distribution:

βl|τl ∼ NLl
(0, τlILl

), l = 1, . . . , L ,

τl|λ2 ∼ Gamma

(
Ll + 1

2
,
λ2

2

)
, l = 1, . . . , L ,

where Ll is the number of elements of each group, there are a total of L groups, and ILl
is the

identity matrix of order Ll (Kyung et al., 2010; Leng et al., 2014).

Thus, the complete specification would yield π(β,ϕ,ψ) = π(β)π(ϕ)π(ψ). Priors on ϕ can be

placed in a standard fashion for each precision parameter; say, by choosing a flat Jeffrey’s prior, a
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Gamma distribution, or an adjusted Scaled-Beta2 distribution (Pérez et al., 2016; Ramı́rez-Hassan

and Montoya-Blandón, 2020). The prior on ξ, on the other hand, is dependent on the class of

copula functions considered. For example, for a Gaussian copula whose dependent structure is

characterized by a correlation matrix, a plausible prior could be given like the one in Lewandowski

et al. (2009). If d = 3 so that only D = 2 shares need to be modeled, the dependence reduces to

a single correlation parameter and flexible alternatives can be placed as priors, such as a diffuse

uniform distribution on the support [−1, 1] or (modified) beta distribution (LeSage, 2004; Smith

and Khaled, 2012). Additionally, in the Bayesian framework, the tuning parameters λ can either be

chosen by a suitable method such as the expectation-maximization (EM) algorithm or they can be

given hierarchical priors to remain fully consistent with the paradigm. Given the complex nonlinear

nature of the likelihood function constructed in this paper, it becomes simpler to tune a hyperprior

for λ. The most popular example sets a gamma prior on λ2 for both LASSO and group-LASSO

penalty parameters (Park and Casella, 2008; Kyung et al., 2010). Finally, although constraints can

be implemented in a frequentist solution to (2.21) as in Gaines et al. (2018), Bayesian constraints

are also consistently implemented as support restrictions on the prior distributions.8

Example 1. (Continued) There are meaningful ways in which sparsity and selection can play a role

in the estimation of structural demand models. Consider the matrix form of the AID equations

(2.2). Assuming that the expenditure and price variables are already defined in terms of their

logarithms, we can write ẽ ≡ e−α0 −α′p− (1/2)p′Γp so that m(x,β) = α+Γp+πẽ. One could

allow further flexibility into the model by allowing polynomials on ẽ of varying degrees, such as

Blundell et al. (1993), which includes a second degree term, or Lewbel and Pendakur (2009), which

empirically decide on including up to 5 terms.9 Incorporating these ideas, one could in general

write

m(x,β) = α+ Γp+
R∑
r=1

πrẽ
r , (2.24)

with β = (α0,α
′,Γ,π′

1, . . . ,π
′
R)

′. It is then apparent that choosing R is a model selection issue

8For example, in the context of demand estimation, curvature can be imposed via support restrictions in the AID
model (Geweke, 1989; Tiffin and Aguiar, 1995).

9While these models are derived from different structural assumptions compared to the AID system, this framework
is kept for simplicity.
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that could be undertaken using the penalties in (2.22). The group LASSO penalty is particularly

suitable as one would naturally select or exclude together the d-dimensional vectors πr from all

equations.

Example 2. (Continued) In a similar fashion, the reduced form approach outlined in (2.3) could

benefit from the feature selection accomplished by the class of priors considered in this paper. Let-

ting the dimensionality p of the covariate vector x be large and assuming there are some redundant

variables that should be excluded from the model, the penalized model will be more suitable. Fur-

thermore, this setup also naturally lends itself to a grouped penalty structure, as the coefficients

associated to the same variable in different equations can be placed together to form each group.

Furthermore, if the goal is to introduce a correlation between the selected coefficients in a more

structured manner, the fused-LASSO penalty of Tibshirani et al. (2005) could also be introduced.

In all cases, λ controls the strength of the regularization imposed into each penalty.

Based on previous considerations, the following steps summarize a way to estimate and obtain

inference for the Bayesian regularized copula regression model:

Step 1. Let F represent the class of marginal distributions satisfying the fractional and index

restrictions (2.1). Choose Fj , Gj ∈ F for all j = 1, . . . , D.

Step 2. Let CD represent a class of copula functions of dimension D. Choose CY , CZ ∈ C. Together

with the previous step, this allows us to find likelihood functions f(Y |X,β,ϕ,ψ) and

g(Y |X,β,ϕ, ξ) by (2.13) and (2.14).

Step 3. Choose a prior distribution π(θY ) and π(θZ) that belongs to the class outlined in (2.23).

If constraints of the form Aβ = a and Bβ ≤ b are present, the support of the prior

distribution should be modified to the set A such that these constraints hold. Include a

prior distribution for λ.

Step 4. Combine the likelihood function and the prior distribution via Bayes’s theorem to obtain

the posterior distribution π(β,ϕ,ψ|Y ,X) and π(β,ϕ, ξ|Y ,X). Point estimates θ̌ can be

obtained as the mean, median, or mode from the posterior.10 Inference can be obtained as

10The posterior mean is optimal in a decision-theoretic framework as it minimizes the squared loss. Similarly, the
median minimizes the absolute value loss and the posterior mode does so with a zero-one loss. In particular, most
Bayesian LASSO analogs target a mode interpretation to their frequentist counterparts but use the posterior mean
and median for simplicity.
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a credible set of the posterior; for example, using a highest posterior density interval of a

given probability coverage.

A second way to implement a Bayesian solution is through the use of a least squares approx-

imation (Wang and Leng, 2007; Leng et al., 2014). Given Assumptions 2.1–2.6.A, the likelihood

function can be approximated by a Taylor expansion as

ℓe(θe) ≈ L(θ̂e) +
1

2
(θe − θ̂e)′I(θ̂e)(θe − θ̂e) , (2.25)

where θ̂e is the MLE in (2.15) for e ∈ {Y, Z}. Employing the same algorithm outlined previously

with this expansion of the likelihood yields an approximate Bayesian solution for which closed

form conditionals exist. Thus, this procedure could be implemented via a simpler Gibbs-sampling

algorithm for which theoretical properties are readily available.

Furthermore, by virtue of Lemma 2.1 and standard results for parametric Bayesian estimators,

Bayes estimates θ̌ found from this algorithm are also consistent (Strasser, 1981; Bunke and Milhaud,

1998). For convenience, this is stated in the following theorem.

Theorem 2.3. (i) Under assumptions 2.1–2.6.A and regularity conditions R1–R3 and R7–R9,

then θ̌e, defined as a mean, median, or mode of the posterior distribution π(θe|Y ,X), is

consistent; i.e., θ̌e
p→ θe,0, for e ∈ {Y, Z}.

(ii) Under Assumptions 2.1–2.3.A, 2.4–2.6.B and regularity conditions R1–R3 and R7–R9, then

θ̌Y as defined above, is consistent to the minimizer of the Kullback-Leibler divergence; i.e.,

θ̌
p→ θ∗Y , where θ

∗
Y = (δ′0,ψ

∗′)′.

2.3 Monte Carlo Study

To test the performance of the estimator defined by (2.15) as well as the theoretical properties found

in the previous two sections, a range of numerical exercises is conducted. These follow the structure

of Examples 1 and 2, and change the form of the conditional mean function. Data are simulated

from several scenarios that maintain the conditional mean as correctly specified; link function

misspecification would be a source of bias distinct to likelihood misspecification (Montoya-Blandón
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and Jacho-Chávez, 2020). Numerical optimization of the log-likelihoods (2.13) and (2.14) produce

estimates θ̂e for e ∈ {Y,Z}. To simplify the exposition of the results, the main estimation method

used is one that assumes a Gaussian copula and beta marginals. That is, the copula density ce(·)

takes the form

ce(u1, . . . , uD) =
1√
detR

exp

−1

2

[
Φ−1(u1) · · · Φ−1(uD)

]
· (R−1 − ID) ·


Φ−1(u1)

...

Φ−1(uD)


 ,

where uj , j = 1, . . . , D are the pseudo-observations found by transforming the variables through a

distribution function, R is a D ×D correlation matrix with elements in the lower triangular block

given by the vector of copula parameters ψ, and Φ−1(·) is the quantile function for the standard

normal distribution. The pseudo-observations are computed using the marginal distributions; in

this case, a beta in a mean-precision parameterization so that for each j in 1, . . . , D, uj is given by

uj ≡
∫ yj

0

Γ(ϕj)

Γ[mj(x;βϕj)]Γ[[1−mj(x;β)]ϕj ]
tmj(x;β)ϕj (1− t)[1−mj(x;β)]ϕj dt ,

where Γ(·) is the gamma function. Additional combinations using different marginals and copulas,

along with other extensions, can be found in Appendix 2.C.

2.3.1 Reduced Form

Due to the ease of simulating from a reduced form setup, the paper focuses on this example first.

A multivariate fractional logit structure as in (2.3) is imposed for d = 3 shares; i.e.,

E[Y1|X = x] =
exp(x′β1)

1 + exp(x′β1) + exp(x′β2)
,

E[Y2|X = x] =
exp(x′β2)

1 + exp(x′β1) + exp(x′β2)
,

and E[Y3|X = x] = 1 − E[Y1|X = x] − E[Y2|X = x]. True coefficient values are set at

β1 = (−1, 0.5, 0) and β2 = (−1.5, 0, 0.5). Two covariates, x1 and x2, are generated independently

from a standard normal distribution. For the first exercise, beta marginals with a mean-precision

parameterization are used, setting ϕ1 = ϕ2 = 10. A Gaussian copula with a correlation parameter
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of ψ = 0.5 links the two free marginals together. Values for y are generated via rejection sampling

for sample sizes n ∈ {100, 200, 400, 800} and 1,000 simulations under this setting. No constraints

are set on β but the natural nonnegativity constraints on ϕ and ψ belonging to (−1, 1) are imposed

to guarantee numerical stability. Aside from the copula estimators introduced in this paper, several

competing estimation methods are implemented. First, the multivariate fractional quasi-likelihood

method (Mullahy, 2015; Murteira and Ramalho, 2016) is estimated as a flexible alternative and

multivariate generalization of the popular estimator proposed by Papke and Wooldridge (1996).

This estimator should remain consistent regardless of the generating distribution as it only relies

on a correctly specified conditional mean. The next method is a Dirichlet distribution using a pa-

rameterization similar to the beta (Hijazi and Jernigan, 2009; Murteira and Ramalho, 2016). As a

Dirichlet distribution is a special case of the beta marginals with a copula on Z, their performance

should be similar. Finally, the additive log-ratio transformation regression of Aitchison (1982) is

used as a simple alternative that requires no real modeling choice. This procedure is equivalent

to a SUR model on the transformed outcomes; given the assumption of common covariates across

shares, it further simplifies to estimating D equations by ordinary least squares (OLS). However,

as previously noted, this procedure will not recover the true conditional mean.

Results from this first exercise are presented in Table 2.1 in terms of the root mean squared

error (RMSE) across 1,000 simulations. We can observe the consistency of the proposed methods

as the RMSE shrinks at an expected rate. In general, the copula estimators outperform the other

likelihood-based methods and are chosen as preferable by the Akaike and Bayesian information

criteria (AIC and BIC, respectively). The logistic normal distribution remains inconsistent and

performs poorly in comparison to the other methods.

As a second exercise, consider what happens when, under a similar setting to before, the copula

function is changed from a Gaussian to a Farlie–Gumbel–Morgenstern (FGM) copula. As the FGM

copula generates relatively low amounts of dependence, its parameter is set to 0.9, which translates

to about a 0.3 correlation in a Gaussian distribution. The results are presented in Table 2.2. Now,

as expected from Theorem 2.2, the copula on Y remains a consistent estimator, while the copula

on Z (and similarly the Dirichlet distribution) are inconsistent and have a reduced performance.

Also as expected from the theoretical results, the copula parameter is not recovered in its original

scale and thus its RMSE remains high. However, as noted in Table 2.C.2, the estimated copula
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parameter is around 0.3, which is the true dependence within the range allowed by the Gaussian

copula. It is still the case that the copula model is selected by both information criteria regardless of

sample size. In this example, it becomes necessary to adjust inference to control for misspecification,

which is readily implemented in the numerical optimization routine used for the paper using (2.19).

Inference is not compromised using the estimation method introduced in the paper as standard

errors remain close or below those of comparable consistent methods (results on inference for this

exercise can be found in Table 2.C.2 in the Appendix).

Moving away from sampling directly from a correctly specified copula likelihood, the next

exercise in Table 2.3 draws observations from a Dirichlet distribution. As it is possible to maintain

the conditional mean intact under this parameterization, all methods should remain consistent.

One of the drawbacks from the Dirichlet distribution is that no pairwise correlation can be positive,

something that the previous examples allowed and that could in general occur in an applied setting.

This table does not present results for the correlation parameter or second precision parameters

as these have no true counterpart. However, in Table 2.C.3 in the Appendix, it is noticeable that

the model captures the negative correlation present in the data-generating process with a mean of

around −0.4 across the simulations. Once again, this is a manifestation of the theoretical properties

derived in Section 2.1.

To produce a Bayesian estimator into this setting, the following setup is used. To streamline

the results, only the copula on Y estimator is considered. As the Bayesian estimates are conditional

on data, a sample of n = 800 is drawn from the setting used in Table 2.1. A Gaussian copula with

beta marginals is given as a likelihood and the priors are of the form

β0,j ∼ Uniform(−∞,∞), j = 1, 2 ,

βk,j ∼ N (0, 5) for k = 1, 2 and j = 1, 2 ,

ϕj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The use of improper prior distributions for the constants is standard in Bayesian analysis and results

remain unchanged if a proper prior similar to the other coefficients is assigned. The estimation uses

the Hamiltonian Monte Carlo algorithm to sample from the posterior distribution in four chains
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Figure 2.2: Trace Plot of Bayesian Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

from random starting values (Carpenter et al., 2017). The chains pass all of the usual diagnostics

for assessing convergence to the target distribution (Brooks and Gelman, 1998; Vehtari et al., 2020).

The results, along with the corresponding MLE output on the same data, are presented in Table

2.4. As expected, both approaches capture the correct values closely and have small standard

errors that imply significant variables when they have a nonzero coefficient. However, note that for

β1,2 in this data set, the MLE estimates would imply that it is significantly different from 0 even

when this is not the case in the population model. This is not the case for the Bayesian estimates

that correctly single out the statistically insignificant coefficients. For further visual assessment,

Figures 2.2 and 2.3 present the trace and density plots of the chains, respectively, for the main

slope coefficients in β1 and β2. These combine the output from all four chains. We can see that the

draws tend to gather close to the true values and thus most of the density is concentrated around

these values as well.

In an applied setting, an important quantity of interest is the average partial effect (APE) of

variable xk on outcome yj , which can be computed as an estimate of ∂ E[Yj |X = x]/∂xk (see,

e.g., Appendix 1 in Mullahy, 2015). For notational convenience, this is written simply as APEk,j .
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Figure 2.3: Density Plot of Bayesian Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

While in frequentist methods you would need to use the Delta method or bootstrap for inference

on this object, in the Bayesian framework it comes as a by-product of the estimation process. By

simple probability arguments, calculating this quantity for each draw of the chain and obtaining

the resulting mean (or median) and standard deviation yields appropriate estimation and inference.

These results are presented in Table 2.5. The computed APEs are similar between all chains in

terms of both point estimate and standard error. They also approximate the true effect quite

well, where this true effect is simply the APE under the true coefficient vector. Figures 2.4 and

2.5 present the trace and density plots for the estimated APEs, showcasing the simplicity of the

Bayesian approach in obtaining point estimates and inference of these complicated functions.

Selection using a LASSO penalty and estimating a Gaussian copula with beta marginals solves
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Table 2.4: Bayesian and Frequentist Estimates for a Reduced Form Model

Parameter Chain 1 Chain 2 Chain 3 Chain 4 MLE

β0,1
−1.0603 −1.0598 −1.0620 −1.0611 −1.0614
(0.0299) (0.0293) (0.0295) (0.0298) (0.0293)

β1,1
0.4855 0.4859 0.4860 0.4866 0.4860
(0.0258) (0.0262) (0.0263) (0.0265) (0.0262)

β2,1
0.0001 0.0006 −0.0016 −0.0005 −0.0005
(0.0268) (0.0266) (0.0268) (0.0267) (0.0264)

β0,2
−1.5678 −1.5669 −1.5692 −1.5683 −1.5692
(0.0352) (0.0355) (0.0355) (0.0351) (0.0352)

β1,2
−0.0721 −0.0713 −0.0716 −0.0710 −0.0720
(0.0307) (0.0310) (0.0308) (0.0311) (0.0310)

β2,2
0.5276 0.5280 0.5258 0.5271 0.5276
(0.0314) (0.0310) (0.0312) (0.0314) (0.0312)

Note: Bayesian and MLE estimates from a Gaussian copula with beta
marginals specification. Standard errors are in parentheses (standard
deviations in each chain for Bayesian and asymptotic for MLE).

Table 2.5: Bayesian Estimates and Inference of APEs for a Reduced Form Model

Parameter Chain 1 Chain 2 Chain 3 Chain 4 True

APE1,1
0.0866 0.0866 0.0866 0.0867

0.0890
(0.0037) (0.0038) (0.0038) (0.0038)

APE2,1
−0.0159 −0.0158 −0.0161 −0.0160 −0.0165
(0.0039) (0.0039) (0.0039) (0.0039)

APE1,2
−0.0229 −0.0229 −0.0229 −0.0228 −0.0165
(0.0030) (0.0030) (0.0029) (0.0030)

APE2,2
0.0606 0.0607 0.0604 0.0606

0.0594
(0.0032) (0.0032) (0.0032) (0.0032)

Note: Bayesian estimates from a Gaussian copula with beta marginals
specification. Standard errors (standard deviation of each chain) are in
parentheses.
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Figure 2.4: Trace Plot of APE Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

the following optimization problem:

argmin
(β,ϕ,ψ)∈B×Φ×Ψ

{
− log cY (F1(y1|X = x;β, ϕ1), . . . , FD(yD|X = x;β, ϕD);ψ)

−
d∑
j=1

log fj(yj |X = x;β, ϕj) + logFW (1|X = x;β,ϕ,ψ) + λ||β||1

}
.

Obtaining solutions for different values of λ using the simulated data set shows the effect of reg-

ularization. In the frequentist case, it operates as shown in Figure 2.6, where the parameters are

moved towards 0 in absolute value and eventually set to 0 given a large enough penalty parameter

λ. The coefficient β2,1 does not appear in the picture as it is already estimated to be close to 0

even without regularization.

From a Bayesian perspective, to get a sense of the selection effect that the class of priors

discussed in (2.23) can possess, the previous simulation is extended to a setting with 10 variables.

The variables x1, . . . , x10 are drawn independently from a standard normal distribution and are

assigned coefficients as β1 = β2 = (−2, 1,−1, 1,−1, 1, 0, 0, 0, 0, 0), so that the last five variables are
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Figure 2.5: Density Plot of APE Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

redundant in the model. The following setup for priors allows for the implementation of a Bayesian

LASSO penalty on this simulated data set (which due to the symmetry of the setup, will also mimic

the behavior of the group-LASSO penalty):

β0,j ∼ Uniform(−∞,∞), j = 1, 2 ,

βk,j ∼ N (0, τ2k,j) for k = 1, . . . , 10 and j = 1, 2 ,

τ2k,j ∼ Exponential(λ2/2) for k = 1, . . . , 10 and j = 1, 2 ,

λ2 ∼ Exponential(1) ,

ϕj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The resulting point estimates and inference can be found in Table 2.C.8. As expected, these are

shrunk towards 0, which is a consequence of the LASSO penalty encoded in the prior distributions.

Table 2.6 shows the relevant selection aspects for these coefficients and APEs for each variable.

While Bayesian selection is in general not sharp, other methods such as the credible interval or scaled
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Figure 2.6: Frequentist LASSO in a Reduced Form Model with a Gaussian Copula and Beta
Marginals
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Note: Dotted line at 0. Optimization of the Gaussian copula with beta marginals likelihood over 25 equally
spaced values of λ from 0 to 1,000.

neighborhood criteria can be used to select variables based on estimates from this specification (Li

and Lin, 2010).11 The credible interval method sets a coefficient βk,j to 0 if its credible interval

at a given level l̄ (computed here as the highest posterior density interval) contains 0. On the

other hand, the scaled neighborhood method takes a dual approach by computing the posterior

probability within the interval defined by the standard errors (given by the standard deviation of the

chains) and excludes the variable if it surpasses a given threshold; i.e., Pr[(− sd(βk,j), sd(βk,j))] > p̄

for some p̄ ∈ (0, 1).

As can be seen in Table 2.6, the APEs are still precisely estimated. The very fact that it

is simple to obtain inference for this quantity after undertaking a selection step is one of the

virtues of regularization in the Bayesian framework. Additionally, the employed selection methods

seem to capture the effects for the significant variables, while dropping the irrelevant ones. The

scaled neighborhood method gets all of the variables right using a p̄ = 0.5, while there are some

11Other attractive methods exist, which combine the frequentist and Bayesian properties of selection. See, for
example, the method in Leng et al. (2014) that performs a frequentist penalized regression with each λ sample in the
chain and selects those variables which appear in 50 percent or more of the models.
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issues if l̄ = 0.5 is used for the credible interval approach. If the level is increased slightly, say to

l̄ = 0.55, then the method also successfully selects the correct model in this context. Importantly,

by including a prior distribution for λ, the mean or median posterior value for this quantity can be

used as a guidance for selecting the amount of regularization. In this example, both the mean and

median value for λ is around 1.79, indicating that only a slight amount of penalization is necessary

to exclude the redundant variables of this system.

Table 2.6: Bayesian APEs and Selection for an Extended Reduced Form Model

Variable True APEk,1 True APEk,2 APEk,1 APEk,2 CI y1 CI y2 SN y1 SN y2

x1 0.091 0.091
0.080 0.080

✓ ✓ ✓ ✓
(0.004) (0.004)

x2 −0.091 −0.091
−0.082 −0.076

✓ ✓ ✓ ✓
(0.004) (0.004)

x3 0.091 0.091
0.083 0.081

✓ ✓ ✓ ✓
(0.004) (0.004)

x4 −0.091 −0.091
−0.082 −0.084

✓ ✓ ✓ ✓
(0.004) (0.004)

x5 0.091 0.091
0.081 0.081

✓ ✓ ✓ ✓
(0.004) (0.004)

x6 0.000 0.000
−0.002 −0.003

✓ ✓ × ×
(0.003) (0.003)

x7 0.000 0.000
−0.004 0.004 × × × ×
(0.003) (0.003)

x8 0.000 0.000
−0.002 0.000 × × × ×
(0.003) (0.003)

x9 0.000 0.000
−0.004 0.001

✓ × × ×
(0.003) (0.003)

x10 0.000 0.000
−0.001 −0.003 × ✓ × ×
(0.003) (0.003)

Note: Bayesian estimates from a Gaussian copula with beta marginals specification. APEk,j denotes
the average partial effect for a variable on outcome j = 1, 2. Standard errors (the standard deviation
of each chain) are in parentheses. CI yj represents credible interval selection with l̄ = 0.5 and SN
yj represents the scaled neighborhood method with p̄ = 0.5; both regarding outcome j = 1, 2. “✓”
indicates that a variable is present in that outcome’s equation and “×” denotes its absence. The
Bayesian algorithm chooses a regularization parameter λ = 1.79.

2.3.2 Demand Estimation

To mimic some of the properties present in the empirical application of the next section, an almost

ideal demand system with d = 3 shares is simulated from (2.2) by choosing the following population



55

values for the parameters:

α0 = 0.675 , α =


0.929

0.297

−0.226

, Γ =


0.062 −0.033 −0.029

−0.033 −0.058 0.091

−0.029 0.091 −0.062

, π =


−0.064

−0.029

0.093

 .

These values satisfy the constraints of an AID system for homogeneity of degree one in prices and

expenditures, as well as the symmetry of the Slutsky matrix. In order to generate values from this

model, the following exercises use either a Gaussian copula with beta marginals or generate from

a multivariate normal distribution directly, while restricting the values to lie on Sd. Prices are

generated from a uniform distribution between 1.2 and 1.5 for all three simulated goods. Expen-

ditures were drawn from a log-normal distribution with a mean of 6 and a standard deviation of

0.25 in the log scale. For each generating exercise, there are 1,000 simulations. For now, the paper

examines the maximum likelihood estimation results, leaving the Bayesian results for the empirical

application, which will be conditional on the examined data.

For estimation purposes in the standard AID framework, there are only (d2 + 3d − 1)/2 free

parameters to estimate as the constraints allow us to eliminate one parameter each from α and π

and all but d(d − 1)/2 parameters from the Γ matrix. These can be recovered in each iteration

of the estimation algorithm, ensuring that the constraints are always satisfied. Furthermore, the

use of marginals that respect the fractional restriction encourages positivity on the system (all

predicted shares being greater than 0), as the likelihood is undefined if the underlying values lead

to predictions outside of this range.

The flexibility and robustness of the methodology introduced in the paper even in this context

is showcased in Tables 2.7 and 2.8. The main difference is in the generating marginal distributions.

In the first table, betas with mean-precision parameterization are used, whereas the second table

uses normal distributions. The tables estimate four of the same models as before: a copula on Y ,

a copula on Z, a multivariate fractional quasi-likelihood (it is no longer a logit as the conditional

mean specification changes), and a Dirichlet. The final method is a regular multivariate normal

distribution, where the ϕ parameters take on a precision interpretation for each marginal, and

ψ or ξ represents the correlation parameter. As a Gaussian copula with Gaussian marginals is
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equivalent to a multivariate normal distribution, this second exercise is closer to what is usually

used in practice, where no appropriate restriction on the estimating functional form is imposed.

The main features from the previous simulations are maintained in this setting as well. Both

the copula on Y and Z estimators are consistent due to their correctly-specified nature in Table

2.7. Both AIC and BIC select the copula on Y as the preferable estimator at all sample sizes,

with the regular AID coming in at a close second place in terms of performance. This is also

to be expected, as part of the attractive features of the normal distribution are that the normal

distribution is consistent under the same conditions as the multivariate fractional quasi-likelihood,

even under misspecification (Gourieroux et al., 1984). While this multivariate fractional distribution

is generally only used in conjunction with a logit link, this exercise also confirms its ability to remain

consistent only under correct conditional mean specifications. Table 2.8 presents a similar view;

however, the copula on Z estimator becomes less reliable. This is to be expected due to its failure

to be consistent under more general conditions than the copula on Y estimator. Surprisingly, the

normal AID system does not become much more dominant in this setting, which could be related

to the positivity argument discussed before, as the current configuration could try to pull the

parameters toward violating the fractional restriction on the outcomes.

To examine the role of a more flexible alternative to the AID system, the next two simulations

implement a setting similar to the previous one, except that polynomials on the deflated expen-

ditures are added as outlined in (2.24). Two extra terms are added to the generating process,

where the new population coefficients are just π2 = π2
1 and π3 = π3

1, with π1 being the original

coefficients in the first two simulation exercises. Tables 2.9 and 2.10 present the results for this

configuration. In general, the patterns observed in this iteration track the previous results very

closely. It is worth noting that the copula on Z estimator becomes even more erratic with the

inclusion of extra parameters, so that the copula on Y estimator remains a preferred choice. We

have seen throughout this Monte Carlo study, even in a Bayesian setting, that it has strong a

performance compared to the methods previously available in the literature.
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2.4 Empirical Application

As a complement and extension to the numerical study undertaken in the previous section, this

section puts into action the methods introduced in the paper. This empirical application uses the

data set in Chang and Serletis (2014) (hereafter referred to as CS), which collects information on

household transportation expenditures in Canada from the Canadian Survey of Household Spending

between the years of 1997 and 2009. Using these observations, CS fit an almost ideal demand system,

as well as its quadratic extension, and the Minflex Laurent model (Deaton and Muellbauer, 1980;

Barnett, 1983; Barnett and Lee, 1985; Banks et al., 1997). Focusing on the AID system, in the

language of this paper’s Example 1, it translates to fitting the following model for household i in

1, . . . , n:

E[Yi|ei,pi] = α+ Γpi + π[ei − α0 −α′pi − (1/2)p′iΓpi] . (2.26)

Using the notation developed thus far, there are expenditure shares for d = 3 goods, where y1

represents gasoline, y2 is local transportation, and y3 is intercity transportation. The base category

of analysis will be the same as used in CS, given by the third good. Prices of these goods are

normalized with 2002 serving as the base. To rule out the effect of possible unobserved heterogeneity,

CS assumes that households with similar demographic characteristics share similar consumption

patterns. Thus, instead of including these characteristics to complicate the structural model, CS

focus only on households between 25 and 64 years old, living in urban areas with a population

of at least 30,000 in English Canada. The authors also restrict the sample to households with a

larger than 0 expenditure on all three goods, to avoid the issue of boundary values. Furthermore,

the sample is split between three types of households: single-member households, married couples

without children, and married couples with one child. Summary statistics for the variables are

presented in Table 2.11. While this table uses the data in levels, prices and expenditures are

understood to have been transformed to natural logarithms for estimation purposes in (2.26).

For modeling purposes, CS assume that all observations are independent and identically dis-

tributed, which is a reasonable assumption as data is collected as repeated cross-sections at the

household level. The authors also acknowledge possible endogeneity issues, but given the use of
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Table 2.11: Summary Statistics for Data in Chang and Serletis (2014)

Variable Good Mean Std. Dev. Minimum Maximum

Single member households, 2,218 observations

Budget shares Gasoline 0.499 0.237 0.002 0.986
Local transportation 0.095 0.128 0.001 0.856
Intercity transportation 0.406 0.228 0.003 0.985

Prices Gasoline 1.157 0.269 0.726 1.751
Local transportation 1.038 0.131 0.801 1.307
Intercity transportation 1.011 0.132 0.755 1.233

Expenditures 2,430.7 1,703.0 161 24,620

Married couples without children, 3,326 observations

Budget shares Gasoline 0.524 0.234 0.005 0.990
Local transportation 0.083 0.114 0.000 0.866
Intercity transportation 0.392 0.224 0.003 0.985

Prices Gasoline 1.170 0.268 0.726 1.751
Local transportation 1.046 0.131 0.801 1.307
Intercity transportation 1.017 0.132 0.755 1.233

Expenditures 3,920.5 2,396.7 170 26,230

Married couples with one child, 6,141 observations

Budget shares Gasoline 0.575 0.237 0.002 0.997
Local transportation 0.092 0.117 0.000 0.886
Intercity transportation 0.333 0.229 0.002 0.980

Prices Gasoline 1.146 0.261 0.726 1.751
Local transportation 1.035 0.127 0.801 1.307
Intercity transportation 1.005 0.130 0.755 1.233

Expenditures 4,858.4 3,021.8 259 37,490

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken as the base
category.
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individual-level consumption instead of an aggregated level, it is likely that there is no simultaneity

bias in the determination of household consumption and yearly aggregate prices. Furthermore, even

when endogeneity is addressed by means of the generalized method of moments (GMM) or iterative

three-stage least squares (3SLS), estimates tend to be similar to the baseline ones. Therefore, the

conditional mean assumption in (2.1) is likely to be satisfied.

As seen in the Monte Carlo evidence from the previous section, the copula on Y estimator

stands out as a flexible alternative to model structural estimation in demand models. Table 2.12

presents the estimation results using beta marginals with Gaussian or FGM copulas. The two

represent widely-used copulas in applied research and belong to the two most important classes of

copulas: elliptical and Archimedean. The resulting estimates are quite similar within each of the

three population segments regardless of the copula — a consequence of Theorem 2.2 in action. The

only main differences for the parameters of the AID system are in α0, but this parameter is known

to be identified only up to a scale factor so that it tends to vary with any estimation procedure

(Deaton and Muellbauer, 1980). The estimates also align closely with those obtained in Table II of

CS and mimic other replications of their results (Velásquez-Giraldo et al., 2018). Interestingly, the

negative correlation between the two outcomes is reflected as a correlation coefficient in the Gaussian

distribution of about −0.4. As the FGM copula cannot produce as much negative dependence, the

estimates tend to be close to the lower bound of 1. Inference also remains quite similar between

both specifications.12 Standard errors are consistent with the magnitude and role of each parameter

and also closely resemble those previously found in the literature.

As a second exercise, an estimation can be done in the Bayesian framework, using similar

techniques as before. However, one of the issues with using Bayesian directly on the AID conditional

mean (2.26) is the scale of all parameters except for π. In the original scales, the Hamiltonian Monte

Carlo algorithm used to explore the parameter space and draw from the posterior can get stuck and

over-reject as many combinations of parameter values do not satisfy the positivity constraints. To

this end, a reparameterization similar to that in Lewbel and Pendakur (2009) becomes necessary.

The authors use the natural logarithm of the expenditure variable after having subtracted the

median of the log-transformed value; i.e., they define enew = e − median(e). In the AID system,

12As numerical optimization is done in an unrestricted domain, the standard errors for the precision and correlation
parameters are Delta method transformations.



64

Table 2.12: MLE Estimates of AID System using the Copula Y Estimator with Different Copulas
and Beta Marginals

Parameter
Single households Married couples Married with one child

Gaussian FGM Reparam. Gaussian FGM Reparam. Gaussian FGM Reparam.

α0
0.871 0.358 1.282 0.379 −0.401 0.216 0.655 1.599 0.961
(0.126) (0.083) (0.028) (0.507) (0.120) (0.073) (0.034) (0.461) (0.012)

α1
0.889 0.884 0.403 1.086 1.121 0.494 1.149 1.048 0.491
(0.071) (0.074) (0.016) (0.037) (0.054) (0.007) (0.038) (0.049) (0.007)

α2
0.247 0.273 0.073 0.259 0.286 0.080 0.246 0.239 0.075
(0.016) (0.017) (0.004) (0.018) (0.017) (0.002) (0.012) (0.014) (0.002)

γ1,1
0.057 0.056 0.086 0.002 0.007 0.045 −0.043 −0.028 0.007
(0.042) (0.043) (0.041) (0.034) (0.034) (0.031) (0.025) (0.025) (0.024)

γ2,1
−0.019 −0.014 −0.008 −0.023 −0.024 −0.010 −0.031 −0.031 −0.018
(0.012) (0.012) (0.012) (0.008) (0.009) (0.008) (0.007) (0.007) (0.007)

γ2,2
−0.032 −0.041 −0.028 0.053 0.052 0.057 0.052 0.042 0.056
(0.033) (0.032) (0.033) (0.025) (0.025) (0.025) (0.021) (0.021) (0.021)

π1
−0.060 −0.056 −0.060 −0.074 −0.072 −0.074 −0.076 −0.072 −0.076
(0.010) (0.010) (0.010) (0.008) (0.007) (0.007) (0.005) (0.005) (0.005)

π2
−0.022 −0.024 −0.022 −0.023 −0.024 −0.023 −0.020 −0.022 −0.020
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

ϕ1
3.551 3.589 3.551 3.718 3.769 3.718 3.498 3.505 3.498
(0.102) (0.099) (0.102) (0.083) (0.081) (0.082) (0.059) (0.058) (0.059)

ϕ2
7.313 7.367 7.313 7.881 7.987 7.881 7.382 7.357 7.382
(0.359) (0.353) (0.361) (0.297) (0.292) (0.297) (0.189) (0.183) (0.188)

ψ
−0.390 −0.999 −0.390 −0.400 −1.000 −0.400 −0.363 −0.995 −0.363
(0.026) (0.002) (0.026) (0.021) (0.001) (0.021) (0.017) (0.021) (0.017)

Log-lik. 3,352.7 3,330.1 3,352.7 5,660.6 5,635.6 5,660.6 9,734.5 9,677.5 9,734.4
Obs. 2,218 3,326 6,141

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken as the base category. Standard errors robust
to copula misspecification are in parentheses. The third column of each data set includes a reparameterized model with a Gaussian
copula.
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this reparameterization keeps π intact, while ensuring that α0, α, and Γ take on scales that are

more likely to respect the fractional restriction for the conditional mean. Table 2.12 includes a third

column for each data set where the AID system is estimated using enew instead of e. As expected,

the slope estimates π̂ remain the same, while other estimated parameters change in scale. Note,

for example, how the α̂ are now closer to the mean expenditure of each good.

With this reparameterization, the Bayesian algorithm becomes more accurate and can produce

results without needing many iterations. In particular, after around 300 tuning iterations, the

algorithm rarely produces rejections based on violations of positivity constraints. This is also due to

the beta marginals that — similar to the frequentist case — encourage parameter values that satisfy

the fractional restrictions of multivariate fractional outcomes. Within this new parameterization,

the following priors are imposed:

α0 ∼ N (0, 5) ,

αj ∼ N (0, 1), j = 1, 2 ,

γj,l ∼ N (0, 1), j = 1, 2, l ≤ j, ,

πj ∼ N (0, 1), j = 1, 2 ,

ϕj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The slightly tighter priors are useful in avoiding many proposal rejections in the posterior explo-

ration algorithm, as it is clear that larger values of the parameters are generally incompatible with

the fractional restriction. Table 2.13 presents the estimation results from a Bayesian perspective.

Estimates are the mean of the chains, where there are five chains, each providing 700 draws (after

the 300 tuning period). Similar to before, the chains are checked and pass the usual convergence

diagnostics. As can be observed, the results remain similar to the maximum likelihood ones, when

the reparameterization is considered. The Bayesian standard errors tend to be more narrow for the

α and Γ parameters, but slightly larger for the slopes π, which become statistically insignificant in

the first model. Figures 2.7 and 2.8 present the trace and density plots for the core AID parameters

in the data set for married couples with one child. As expected, the most variability is given in the
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chain for α0. There appears to be some possible auto-correlation in the other α parameter chains,

which can be solved by thinning the chain before computing estimates; this is done for the results

presented in Table 2.13.

Table 2.13: Bayesian Estimates of a Reparameterized AID System using the Copula Y Estimator
with a Gaussian Copula and Beta Marginals

Parameter Single households Married couples Married with one child

α0
0.651 0.697 0.928
(0.354) (0.368) (0.369)

α1
0.446 0.461 0.494
(0.021) (0.027) (0.028)

α2
0.086 0.069 0.076
(0.009) (0.009) (0.008)

γ1,1
−0.058 −0.073 −0.076
(0.008) (0.007) (0.005)

γ2,1
−0.022 −0.023 −0.020
(0.003) (0.002) (0.002)

γ2,2
0.050 0.034 0.005
(0.031) (0.027) (0.022)

π1
−0.004 −0.007 −0.017
(0.014) (0.010) (0.008)

π2
−0.017 0.045 0.045
(0.032) (0.025) (0.021)

ϕ1
3.563 3.725 3.503
(0.093) (0.081) (0.056)

ϕ2
7.339 7.890 7.386
(0.244) (0.207) (0.149)

ψ
−0.388 −0.399 −0.362
(0.018) (0.015) (0.011)

Obs. 2,218 3,326 6,141

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken
as the base category. Standard deviations for the chains are in parentheses.

Looking beyond the parameter estimates in the AID system, it is important to be able to

provide price and income elasticities, as well as inference with respect to these parameters. As

previously stated, this inference is simple in the Bayesian context. While these functions can be

complicated and highly nonlinear with respect to the parameters so as to make the application of

the Delta method challenging, computing them for a given set of estimates is simple. Table 2.16

presents the income and uncompensated price elasticities for the AID. Following CS, these are the

elasticities evaluated at the average prices and, given the parameterization necessary for a Bayesian

estimation, are at the average median-centered expenditure. These elasticities are slightly larger
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Figure 2.7: Trace Plot of Coefficient Chains in a Reparameterized Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 700 draws
each for a total of 3,500 draws.

than those in CS, but are for the most part consistent with economic theory. Note, however, the

large standard errors for elasticities associated to local transportation (Good 2). This phenomenon

most likely occurs because of a few outliers in the chains, combined with the generally small share

of the budget allocated to this good. As the predicted shares get closer to the lower bound of 0,

the computed elasticities can suffer from numerical issues. The fact that the mean remains close

to the expected values, however, is a sign this occurs only a few times throughout the chain.

In order to resolve some of these issues and improve the fit, the paper now considers an extension

of the AID system to account for polynomials on deflated real expenditures ẽ. In particular, the
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Table 2.14: Elasticity Estimates and Inference from a Bayesian AID System

Good
Elasticities

Income Price (1) Price (2) Price (3)

Single member households, 2,218 observations

(1)
0.991 −1.129 −0.049 0.188
(0.031) (0.027) (0.008) (0.023)

(2)
0.914 −0.221 −0.402 −0.291
(0.674) (0.507) (0.723) (0.828)

(3)
1.048 0.152 −0.065 −1.135
(0.076) (0.031) (0.068) (0.076)

Married couples without children, 3,326 observations

(1)
0.986 −1.154 −0.049 0.218
(0.021) (0.023) (0.006) (0.022)

(2)
−0.420 0.931 −1.218 0.708

(104.842) (85.301) (42.383) (61.464)

(3)
0.926 0.224 −0.017 −1.133
(0.051) (0.031) (0.055) (0.063)

Married couples with one child, 6,141 observations

(1)
0.966 −1.136 −0.038 0.207
(0.016) (0.017) (0.005) (0.016)

(2)
1.539 −0.531 −1.174 0.166

(52.174) (42.687) (16.385) (19.273)

(3)
0.941 0.235 0.036 −1.212
(0.046) (0.029) (0.049) (0.061)

Note: Elasticities are computed at the average median-normed expenditures and average prices for each
chain. Point estimates are given by the mean of the chains. Standard deviations for the chains are in
parentheses.
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Figure 2.8: Density Plot of Coefficient Chains in a Reparameterized Bayesian AID System

0.0 0.5 1.0 1.5 2.0

α0

D
en
si
ty

0.40 0.45 0.50 0.55

α1

0.05 0.06 0.07 0.08 0.09 0.10

α2

D
en

si
ty

−0.09 −0.08 −0.07 −0.06

γ1,1

−0.025 −0.020 −0.015

γ2,1

D
en

si
ty

−0.05 0.00 0.05 0.10

γ2,2

−0.05 −0.04 −0.03 −0.02 −0.01 0.00 0.01

π1

D
en

si
ty

0.00 0.05 0.10

π2

Note: Results for the data set on married couples with one child. Combination of 5 chains with 700 draws
each for a total of 3,500 draws.

following conditional mean obtained in one of the examples is used:

ẽnew,i ≡ enew,i − α0 −α′pi − (1/2)p′iΓpi ,

E[Yi|enew,i,pi] = α+ Γpi +
R∑
r=1

πrẽ
r
new,i .

The reparameterization of the model in terms of the median-centered expenditure also plays a

crucial role in this setting as it makes the magnitudes of the coefficients πr, r = 1, . . . , R, directly

comparable (Blundell et al., 1993; Lewbel and Pendakur, 2009). Having this standardized measure

of the covariates allows for selection to be both accurate and more meaningful. For simplicity, R is

set equal to 3, so that there is a third-degree polynomial on the conditional mean equation for each
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share. To implement the estimation and shrinkage of the coefficients using the LASSO penalty, the

following priors are assumed:

α0 ∼ N (0, 5) ,

αj ∼ N (0, 1), j = 1, 2 ,

γj,l ∼ N (0, 1), j = 1, 2, l ≤ j, ,

πr,j |τr,j ∼ N (0, τr,j), j = 1, 2, r = 1, 2, 3 ,

τr,j |λ2 ∼ Exponential

(
λ2

2

)
,

λ2 ∼ Exponential(1) ,

ϕj ∼ Gamma(1, 1), j = 1, 2 ,

ψ ∼ Uniform(−1, 1) .

The results for selection performance are given in Table 2.15. Using the credible interval and scaled

neighborhood approaches to selection in the Bayesian framework, it appears that a third-degree

polynomial on deflated expenditures is relevant for modeling the demand for gasoline. It does not

seem to be the case for local transportation, where the methods are dependent on the demographic

characteristics of the consumers. For example, while the second-order term is significant in the

single-member households, no polynomial is selected for the married without children households.

In the final population segment, both measures are inconclusive and this is the only instance in

which the methods disagree with one another.

Simultaneous to the selection step, the estimation of the extended AID coefficients is straight-

forward. Table 2.14 presents the results for the income and price elasticities in this model, which

are simple to obtain due to the Bayesian approach. Furthermore, it appears that the inclusion of

the polynomial terms not only makes the model more flexible, but it also stabilizes the values and

inference for these elasticities. The signs are in concordance with economic theory: all of the goods

are normal with a relatively large income elasticity that is close to unity. The own-price elasticities

are all negative and suggest that gasoline and intercity transportation are slightly elastic, whereas

local transport is somewhat inelastic. The magnitudes also vary across the demographic groups,

with married couples with one child having the largest price reactions. As these elasticities are
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Table 2.15: Selection of Polynomial Terms in an Extended Bayesian AID System

Polynomial CI (1) CI (2) SN (1) SN (2)

Single member households, 2,218 observations

ẽ ✓ ✓ ✓ ✓
ẽ2 × ✓ × ✓
ẽ3 ✓ × ✓ ×

Married couples without children, 3,326 observations

ẽ ✓ ✓ ✓ ✓
ẽ2 ✓ × ✓ ×
ẽ3 ✓ × ✓ ×

Married couples with one child, 6,141 observations

ẽ ✓ ✓ ✓ ✓
ẽ2 ✓ ✓ ✓ ×
ẽ3 × ✓ × ✓

Note: CI (1) and CI (2) represents credible interval selection with l̄ = 0.5 for each good’s equation. SN
(1) and SN (2) uses the scaled neighborhood method with p̄ = 0.5; “✓” indicates a variable is present in
that outcome’s equation; and “×” denotes its absence. The Bayesian algorithm chooses a regularization
parameter λ = 1.97 for the first sample; λ = 1.95 for the second and third.

uncompensated, the possibility of these households reacting to price variations might bear some

correlation with income or other socioeconomic variables. These interactions might not be fully ac-

counted for by the use of different estimation samples. The cross-price elasticities are slightly more

erratic, as they suggest some substitution effect between gasoline and intercity transportation, but

the complementary nature of gasoline and local transport is maintained (as is seen in CS). Figures

2.9 and 2.10 present the trace and density plots for these elasticities, respectively.

2.5 Conclusion

The paper introduces several estimation procedures for multivariate fractional outcomes, which are

useful in both structural and reduced form contexts. A likelihood function is constructed using

copulas in two ways, one of which is found to be robust to deviations from the model assumptions.

These likelihoods also allow for more flexibility in the dependence structure between shares than

the usual joint distributions assumed on outcomes in the unit-simplex. Both of the introduced

methods allow the researcher to satisfy the main characteristic that comes with multivariate frac-

tional responses — a conditional mean specification and the fractional and unit-sum restrictions

in the outcomes — and allows for the inclusion of cross-equation restrictions. The latter point is
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Table 2.16: Elasticity Estimates and Inference from an Extended Bayesian AID System

Good
Elasticities

Income Price (1) Price (2) Price (3)

Single member households, 2,218 observations

(1)
0.966 −1.226 −0.009 0.270
(0.012) (0.053) (0.050) (0.062)

(2)
1.056 −0.094 −0.804 −0.158
(0.053) (0.252) (0.057) (0.272)

(3)
1.023 0.228 −0.023 −1.227
(0.016) (0.065) (0.052) (0.112)

Married couples without children, 3,326 observations

(1)
0.958 −1.247 −0.041 0.331
(0.010) (0.067) (0.040) (0.082)

(2)
1.049 −0.323 −0.890 0.164
(0.083) (0.294) (0.083) (0.333)

(3)
1.035 0.278 0.025 −1.338
(0.019) (0.060) (0.048) (0.099)

Married couples with one child, 6,141 observations

(1)
0.956 −1.321 −0.101 0.466
(0.013) (0.090) (0.033) (0.119)

(2)
0.943 −0.614 −1.020 0.692
(0.057) (0.221) (0.059) (0.258)

(3)
1.057 0.438 0.110 −1.605
(0.018) (0.057) (0.040) (0.086)

Note: Elasticities are computed at the average median-normed expenditures and average prices for each
chain. Point estimates are given by the mean of the chains. Standard deviations for the chains are in
parentheses.
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of particular importance in structural demand estimation models where these restrictions are at

the heart of guaranteeing economic regularity of the underlying demand functions. The paper also

shows how Bayesian methods can be crucial in this setting by showing how the methods can be

augmented to handle covariate selection using a Bayesian analog of regularization. Inference is still

simple in this framework, even after performing a selection step, which can be hard to accomplish

in frequentist settings. As the objects of interest in applied research are complicated functions of

the parameters, the Bayesian approach allows for a natural way to handle inference of these quan-

tities as well. Numerical exercises and an empirical application of a structural demand system to

transportation expenditures in Canada showcase the flexibility of the proposed methods and their

usefulness in an applied setting.

As a matter of future research, it would be interesting to extend this kind of Bayesian copula

estimation to broader settings apart from the multivariate fractional outcome context. While

Bayesian methods, regularization, and copulas are popular topics in econometrics and statistics, the

combination of all of these elements could prove to be valuable in adding flexibility while preserving

structure in different modeling problems. Additionally, it would be interesting to bring these tools

to more applications in which multivariate fractional outcomes naturally arise. Examples include

data for market shares on a given industry, portfolio shares in financial econometrics, industrial

organization and firm analysis, among many others.

Appendices

2.A Proof of Main Results

Proof of Proposition 1. This is a specialized version of the formulas in Gijbels and Herrmann

(2014). As

FW (w|X; δ,η) =

∫
Tw
dF1,...,D(y1, . . . , yD|X; δ,η) ,

where Tw = {(y1, . . . , yD) ∈ RD : 0 ≤ yj ≤ 1, j = 1, . . . , d;
∑D

j=1 yj ≤ w}, then the set Tw can be

expressed using multiple integrals corresponding to (2.7).
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Proof of Proposition 2. The existence of a solution is guaranteed if
∑d

j=1mj(x,β) = 1 is imposed,

as the right-hand term of (2.11) will always be less than 1. To obtain a solution, first note that the

inverse mapping for the stick-breaking transformation (2.9), Y = s−1(Z), is given by

Y1 = Z1, Yj = Zj

j−1∏
l=1

(1− Zl) for j = 2, . . . , d . (2.A.1)

Additionally, this mapping satisfies the following property:

j∏
l=1

(1− Zl) = 1−
j∑
l=1

Yl , (2.A.2)

for j = 1, . . . , D. First, set µ1(x;γ,ψ) = m1(x,β). For j = 2, . . . , D, take the definition of Yj in

(2.A.1), replace Zj = Z̃j +mj(x,βj), and take conditional expectations on both sides. This results

in

mj(x,β) = E

[
Z̃j

j−1∏
l=1

(
1− Z̃l − µl(x;γ,ψ)

) ∣∣∣∣∣X = x

]
+ µj(x;γ,ψ) · E

[
j−1∏
l=1

(1− Zl)

∣∣∣∣∣X = x

]

While the first expectation cannot be reduced, the second can be replaced by taking conditional

expectations of (2.A.2) for j − 1. Dividing by this term gives the desired result.

Proof of Theorem 2.1. For θ̂Y , the only non-standard part of the likelihood is the integral corre-

sponding to the probability of set T , given by Prf (Y−d ∈ T |X = xi;θY ), where the subscript

emphasizes that the probability is taken with respect to the assumed joint distribution. However,

since θY,0 satisfies H(·|X) = F (·|X;θY,0) by Assumption 2.6.A, the relevant probability becomes

Prh(Y−d ∈ T |X = xi), where the notation emphasizes that it is taken with respect to the true

H. This probability equals 1, as it is assumed that H is a joint distribution with support in Sd.

Thus, the log of this probability equals 0 and the term is irrelevant in the population. The usual

argument would then guarantee consistency in light of Assumption 2.5; the same is true for θ̂Z .

The rest of the argument for asymptotic normally is standard as outlined; e.g., in Joe (2014), pp.

227.
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Proof of Lemma 2.1. First, note that since PX (the marginal distribution of X) is given, we have

KL(h, f ;θY ) = EP [KL(hY |X , fY |X ;θY )] , (2.A.3)

where EP means that the expectation is taken with respect to X ∼ PX and KL(hY |X , fY |X ;θY ) is

the KL divergence between the conditional distributions h(Y |X = x) and f(Y |X = x;θY ). Thus,

we only need to focus on the conditional KL divergence. This can be derived as follows:

log

[
h(Y |X = x)

f(Y |X = x;θY )

]
= log

[
c(H1(Y1|X = x), . . . ,HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);η)
×

D∏
j=1

hj(Yj |X = x)

fj(YD|X = x; δj)
× FW (1|X = x;θY )

I(Y ∈ T )

]

= log

[
c(H1(Y1|X = x), . . . ,HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);η)

]
+

D∑
j=1

log

[
hj(Yj |X = x)

fj(YD|X = x; δj)

]
+ log

[
FW (1|X = x;θY )

I(Y ∈ T )

]
.

Taking conditional expectations with respect to h(Y |X = x) yields KL(hY |X , fY |X ;θY ). Due to

(2.A.3), another expectation — this time with respect to PX — gives the desired result.

Proof of Theorem 2.2. From Lemma 2.1, we can write the KL divergence as

KL(h, f ;θY ) = Eh

[
log

c(H1(Y1|X = x), . . . ,HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);ψ)

]
︸ ︷︷ ︸

T1

+

D∑
j=1

KL(hj , fj ; δj)︸ ︷︷ ︸
T2

+Eh

[
log

FW (1|X = x;θY )

I(Y ∈ T )

]
︸ ︷︷ ︸

T3

,

where there are three terms, T1, T2, and T3, each representing a divergence measure between

either the copulas, marginals, or truncation probability. Similar to the proof of Theorem 2.1,

Eh[log I(Y ∈ T )] = 0 under the true density. Furthermore, as long as f(·) places a positive amount

of density in T , the numerator of the T3 term will be well-defined.

Now, based on Assumptions 2.5 and 2.6.B, there exists a true δ0 that correctly specifies all the
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marginals, but no η that does so for the copula. Evaluating T2 at δ0 shows that KL(hj , fj ; δj,0) =

KL(hj , hj) = 0, j = 1, . . . , D. Similarly, evaluating T1 at δ0 yields

Eh

[
log

c(H1(Y1|X = x), . . . ,HD(YD|X = x))

cY (H1(Y1|X = x), . . . , FD(YD|X = x);ψ)

]
,

so that T1 reduces to the KL divergence based solely on the dependence structure. Thus, consistency

of the subvector δ̂ in θ̂Y to δ0 is guaranteed by Theorem 2.2 in White (1982). Consistency of η̂

is guaranteed to η∗, which is the minimizer of T1 and the maximizer of T3 given δ0. Asymptotic

normality follows from Theorem 3.2 in White (1982) and requires the full sandwich covariance

matrix as there is no diagonality in either Ih or Jh to exploit in the copula estimation (see Joe,

2014, pp. 228).

Proof of Corollary 2.1. In this setting, similar to Theorem 2.2, the KL divergence can be split into

two terms:

KL(h, f ;θY ) = Eh

[
log

c(H1(Y1|X = x), . . . ,HD(YD|X = x))

cY (F1(Y1|X = x; δ1), . . . , FD(YD|X = x; δD);ψ)

]
︸ ︷︷ ︸

T1

+
D∑
j=1

KL(hj , fj ; δj)︸ ︷︷ ︸
T2

.

As T2 vanishes when evaluated at δ0 and T1 becomes the KL divergence between the copula depen-

dence structures, the proof can follow the same steps as that of Theorem 2.2 to show consistency

and asymptotic normality.

Proof of Theorem 2.3. (i) Note that the assumptions plus the additional regularity conditions

are stronger than those needed for correctly specified Bayesian posteriors (see, e.g., Theorem

2.3 in Strasser, 1981). This guarantees consistency of the posterior distribution as a whole in

neighborhoods around θe,0 for e ∈ {Y,Z}. That is, for any open set U containing θe,0,

lim
n→∞

π(U|Y ,X) = 1 , (2.A.4)
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where π(U|Y ,X) is defined as the posterior probability in set U ; i.e.,

π(U|Y ,X) =

∫
U
π(θe|Y ,X) dθe =

∫
U

ℓe(θe)π(θe)∫
Θe
ℓe(θe)

dθe .

(ii) Similarly, under the established assumptions and regularity conditions, the Bayesian posterior

are consistent in a KL divergence sense. Formally, this implies that consistency is not to θY,0,

but to the KL pseudo-true values (minimizers of the KL divergence). Thus, (2.A.4) holds for

open sets U containing θ∗Y (see, e.g., Theorem 2.1 in Bunke and Milhaud, 1998).

Establishing posterior consistency yields mean and mode consistency of the posteriors, so that (i)

θ̌e
p→ θe,0 for e ∈ {Y, Z} and (ii) θ̌Y

p→ θ∗Y . The median can also be shown to hold this property

(see Remarks 3, 4, and 5 in Bunke and Milhaud, 1998).

2.B Regularity Conditions

This is a list of the necessary regularity conditions required for the paper’s proofs. It essentially

reproduces the assumptions in White (1982) and Bunke and Milhaud (1998) that are not implied

by Assumptions 2.1–2.6.B. To simplify notation, let U = (Y ′,X ′)′ ⊂ Sd×X = Υ. Then, for u ∈ Υ

write F (u,θY ) = F (y|X = x;θY )PX(x) and let f(u,θY ) be its associated density. The density

g(u,θZ) is defined analogously. Both of these densities are assumed to be obtained with respect to

a measure ν.

Assumption R1. The densities f(u,θY ) and g(u,θZ) are measurable in u for all θY ∈ ΘY and

θZ ∈ ΘZ , as well as continuous in θY and θZ for all u ∈ Υ. ΘY and ΘZ are also assumed to be

compact.

Assumption R2. (i) The expectation E[log h(U)] exists and both log f(u,θY ) and log g(u,θZ)

are dominated by functions integrable with respect to H. (ii) KL(h, f ;θY ) has a unique minimum

at ψ∗ ∈ Ψ given δ0.

Assumption R3. The gradients ∂ log f(u,θY )/∂θY and ∂ log g(u,θZ)/∂θZ are measurable func-

tions of u for each θe ∈ Θe and continuously differentiable functions of θe for each u ∈ Υ, where

e ∈ {Y,Z}.
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Assumption R4. These derivatives
∥∥∂2 log f(u,θY )/∂θY ∂θ′Y ∥∥2, ∥∥∂2 log g(u,θZ)/∂θZ∂θ′Z ∥∥2,

∥∂ log f(u,θY )/∂θY · ∂ log f(u,θY )/∂θ′Y ∥2 and ∥∂ log g(u,θZ)/∂θZ · ∂ log g(u,θZ)/∂θ′ ∥2 are

dominated by functions integrable with respect to H for all u ∈ Υ, θY ∈ ΘY and θZ ∈ ΘZ .

Assumption R5. For the information equality, ∥∂[∂ log f(u,θY )/∂θY · f(u,θY )]/∂θY ∥2 and

∥∂[∂ log g(u,θZ)/∂θZ · g(u,θZ)]/∂θZ ∥2 are dominated by functions integrable with respect to ν

for all θY ∈ ΘY and θZ ∈ ΘZ .

Assumption R6. (i) θY,0,θ
∗
Y ∈ int(ΘY ) and θZ,0 ∈ int(ΘZ); (ii) I(θY,0), I(θZ,0) and I(θ∗Y ) have

constant rank in a neighborhood of their arguments; (iii) Jh(θ∗Y ) is nonsingular.

Assumption R7. There are positive constants c, b0 such that for all θY ∈ ΘY

∫ ∥∥∥∥∂ log f(u,θY )∂θY

∥∥∥∥4(|ΘY |+1)

2

f(u,θY )ν(du) < c(1 + ∥θY ∥b0) ,

where |ΘY | is the dimensionality of ΘY . The same condition holds for g(u,θZ).

Assumption R8. For some positive constant b1,
∫
[f(u,θY )h(u)]

1/2ν(du) < c∥θY ∥−b1 and∫
[g(u,θZ)h(u)]

1/2ν(du) < c∥θZ∥−b1 , for all θY ∈ ΘY and θZ ∈ ΘZ .

Assumption R9. Take e ∈ {Y,Z} and let S(θe, r) represent a ball centered at θe with radius r.

Then, π(θe) assigns probability π(S(θe, r)) > 0 for all θe ∈ Θe and r > 0, and there are positive

constants b2 and b3 so that for all θe ∈ Θe and r > 0 it holds that

π(S(θe, r)) ≤ c · rb2 [1 + (∥θe∥+ r)b3 ] .

2.C Additional Numerical Exercises
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Table 2.C.1: Estimates and Standard Errors in a Reduced Form Model from a Gaussian Copula with Beta
Marginals

Method β0,1 β1,1 β2,1 β0,2 β1,2 β2,2 ϕ1 ϕ2 ψ|ξ
n = 100

Copula Y
−1.027 0.492 −0.013 −1.538 −0.018 0.495 10.809 10.947 0.486
(0.085) (0.079) (0.079) (0.103) (0.090) (0.089) (1.503) (1.585) (0.124)

Copula Z
−1.015 0.481 −0.014 −1.490 −0.062 0.483 10.802 5.268 0.625
(0.084) (0.080) (0.080) (0.098) (0.088) (0.090) (1.515) (0.744) (0.111)

MF Logit
−1.024 0.487 −0.017 −1.536 −0.026 0.490

— — —
(0.085) (0.084) (0.083) (0.103) (0.098) (0.1)

Dirichlet
−0.950 0.480 0.000 −1.430 −0.003 0.476 8.473

— —
(0.079) (0.078) (0.078) (0.091) (0.086) (0.086) (0.825)

Logistic Norm.
−1.153 0.621 −0.017 −1.862 −0.068 0.736

— — —
(0.108) (0.108) (0.108) (0.141) (0.142) (0.142)

n = 200

Copula Y
−1.026 0.493 −0.009 −1.535 −0.018 0.497 10.614 10.711 0.484
(0.060) (0.056) (0.056) (0.073) (0.063) (0.063) (1.042) (1.097) (0.088)

Copula Z
−1.014 0.480 −0.010 −1.486 −0.064 0.484 10.610 5.138 0.621
(0.059) (0.056) (0.056) (0.070) (0.062) (0.063) (1.044) (0.506) (0.078)

MF Logit
−1.023 0.487 −0.015 −1.532 −0.026 0.491

— — —
(0.060) (0.060) (0.059) (0.073) (0.070) (0.071)

Dirichlet
−0.949 0.481 0.003 −1.427 −0.003 0.478 8.304

— —
(0.056) (0.055) (0.055) (0.064) (0.060) (0.061) (0.571)

Logistic Norm.
−1.155 0.623 −0.014 −1.864 −0.069 0.740

— — —
(0.076) (0.077) (0.077) (0.101) (0.101) (0.101)

n = 400

Copula Y
−1.026 0.494 −0.009 −1.535 −0.015 0.498 10.522 10.637 0.483
(0.042) (0.039) (0.039) (0.051) (0.045) (0.044) (0.730) (0.770) (0.062)

Copula Z
−1.015 0.482 −0.010 −1.485 −0.061 0.485 10.520 5.095 0.620
(0.042) (0.040) (0.039) (0.050) (0.044) (0.045) (0.739) (0.361) (0.056)

MF Logit
−1.023 0.489 −0.014 −1.532 −0.023 0.492

— — —
(0.043) (0.042) (0.042) (0.052) (0.049) (0.050)

Dirichlet
−0.949 0.482 0.004 −1.426 0.000 0.479 8.243

— —
(0.039) (0.039) (0.038) (0.045) (0.043) (0.043) (0.401)

Logistic Norm.
−1.157 0.626 −0.014 −1.865 −0.065 0.742

— — —
(0.054) (0.054) (0.054) (0.071) (0.071) (0.071)

n = 800

Copula Y
−1.026 0.494 −0.009 −1.534 −0.013 0.498 10.465 10.566 0.480
(0.030) (0.028) (0.028) (0.036) (0.032) (0.031) (0.514) (0.541) (0.044)

Copula Z
−1.012 0.483 −0.009 −1.482 −0.058 0.485 10.469 5.056 0.618
(0.032) (0.029) (0.029) (0.039) (0.031) (0.032) (0.560) (0.257) (0.041)

MF Logit
−1.023 0.489 −0.014 −1.531 −0.022 0.491

— — —
(0.030) (0.030) (0.030) (0.037) (0.035) (0.035)

Dirichlet
−0.948 0.482 0.003 −1.425 0.001 0.479 8.190

— —
(0.028) (0.028) (0.027) (0.032) (0.030) (0.030) (0.281)

Logistic Norm.
−1.156 0.626 −0.015 −1.865 −0.063 0.741

— — —
(0.038) (0.038) (0.038) (0.051) (0.050) (0.051)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for each estimation
procedure. Data are generated from a Gaussian copula with beta marginals. “—” implies the parameter is not
part of the model.
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Table 2.C.2: Estimates and Standard Errors in a Reduced Form Model from a FGM Copula with Beta
Marginals

Method β0,1 β1,1 β2,1 β0,2 β1,2 β2,2 ϕ1 ϕ2 ψ|ξ
n = 100

Copula Y
−1.014 0.498 −0.004 −1.518 −0.007 0.501 10.646 10.626 0.283
(0.082) (0.077) (0.077) (0.099) (0.087) (0.087) (1.437) (1.491) (0.126)

Copula Z
−1.000 0.496 0.008 −1.475 −0.036 0.505 10.629 5.686 0.472
(0.084) (0.079) (0.078) (0.105) (0.087) (0.087) (1.465) (0.953) (0.121)

MF Logit
−1.013 0.499 −0.006 −1.517 −0.010 0.499

— — —
(0.084) (0.083) (0.081) (0.102) (0.097) (0.098)

Dirichlet
−0.957 0.493 0.008 −1.441 0.006 0.490 8.848

— —
(0.078) (0.077) (0.076) (0.089) (0.085) (0.085) (0.863)

Logistic Norm.
−1.153 0.631 −0.006 −1.857 −0.052 0.742

— — —
(0.103) (0.104) (0.104) (0.137) (0.137) (0.137)

n = 200

Copula Y
−1.013 0.498 −0.004 −1.515 −0.008 0.500 10.413 10.394 0.280
(0.058) (0.055) (0.054) (0.070) (0.062) (0.062) (1.007) (1.040) (0.090)

Copula Z
−0.973 0.518 0.040 −1.441 −0.008 0.534 10.264 5.487 0.485
(0.066) (0.061) (0.064) (0.084) (0.069) (0.068) (1.076) (0.698) (0.091)

MF Logit
−1.012 0.498 −0.006 −1.514 −0.011 0.498

— — —
(0.059) (0.059) (0.058) (0.072) (0.069) (0.070)

Dirichlet
−0.956 0.493 0.007 −1.438 0.006 0.489 8.666

— —
(0.055) (0.054) (0.054) (0.063) (0.060) (0.060) (0.597)

Logistic Norm.
−1.154 0.632 −0.008 −1.860 −0.052 0.744

— — —
(0.073) (0.073) (0.074) (0.097) (0.097) (0.098)

n = 400

Copula Y
−1.011 0.497 −0.005 −1.513 −0.007 0.499 10.272 10.275 0.280
(0.045) (0.040) (0.041) (0.054) (0.046) (0.045) (0.740) (0.776) (0.067)

Copula Z
−0.958 0.536 0.065 −1.421 0.016 0.561 10.170 5.392 0.493
(0.050) (0.048) (0.050) (0.062) (0.054) (0.055) (0.799) (0.544) (0.067)

MF Logit
−1.011 0.495 −0.007 −1.512 −0.011 0.496

— — —
(0.042) (0.042) (0.041) (0.051) (0.049) (0.049)

Dirichlet
−0.954 0.491 0.007 −1.434 0.007 0.488 8.547

— —
(0.039) (0.039) (0.038) (0.045) (0.042) (0.042) (0.416)

Logistic Norm.
−1.154 0.631 −0.009 −1.861 −0.054 0.745

— — —
(0.052) (0.052) (0.052) (0.069) (0.069) (0.069)

n = 800

Copula Y
−1.011 0.497 −0.005 −1.514 −0.007 0.499 10.224 10.219 0.277
(0.029) (0.028) (0.027) (0.035) (0.031) (0.031) (0.497) (0.515) (0.045)

Copula Z
−0.951 0.540 0.068 −1.408 0.021 0.561 10.176 5.411 0.485
(0.036) (0.036) (0.034) (0.046) (0.039) (0.038) (0.595) (0.397) (0.051)

MF Logit
−1.010 0.495 −0.007 −1.512 −0.012 0.496

— — —
(0.030) (0.030) (0.029) (0.036) (0.035) (0.035)

Dirichlet
−0.953 0.492 0.008 −1.435 0.006 0.488 8.512

— —
(0.028) (0.027) (0.027) (0.032) (0.030) (0.030) (0.293)

Logistic Norm.
−1.155 0.632 −0.009 −1.863 −0.055 0.746

— — —
(0.037) (0.037) (0.037) (0.049) (0.049) (0.049)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for each estimation
procedure. Data are generated from a Farlie–Gumbel–Morgenstern copula with beta marginals. “—” implies
the parameter is not part of the model.
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Table 2.C.3: Estimates and Standard Errors in a Reduced Form Model from a Dirichlet

Method β0,1 β1,1 β2,1 β0,2 β1,2 β2,2 ϕ1
n = 100

Copula Y
−1.004 0.498 0.000 −1.508 0.006 0.500 10.368
(0.075) (0.072) (0.072) (0.091) (0.080) (0.080) (1.409)

Copula Z
−1.004 0.492 −0.001 −1.510 −0.025 0.504 10.366
(0.075) (0.072) (0.071) (0.091) (0.080) (0.080) (1.410)

MF Logit
−1.004 0.498 −0.001 −1.508 0.003 0.501

—
(0.076) (0.076) (0.075) (0.093) (0.089) (0.090)

Dirichlet
−1.004 0.497 −0.001 −1.505 0.005 0.498 10.319
(0.073) (0.073) (0.072) (0.085) (0.081) (0.081) (1.011)

Logistic Norm.
−1.180 0.620 −0.017 −1.885 −0.048 0.734

—
(0.091) (0.091) (0.092) (0.123) (0.124) (0.124)

n = 200

Copula Y
−1.003 0.499 0.000 −1.508 0.003 0.500 10.168
(0.053) (0.052) (0.051) (0.064) (0.057) (0.057) (0.987)

Copula Z
−1.003 0.493 0.000 −1.510 −0.030 0.504 10.166
(0.053) (0.051) (0.050) (0.065) (0.057) (0.057) (0.987)

MF Logit
−1.003 0.499 0.000 −1.508 0.000 0.500

—
(0.054) (0.054) (0.053) (0.066) (0.063) (0.064)

Dirichlet
−1.003 0.498 −0.001 −1.505 0.002 0.498 10.156
(0.052) (0.051) (0.051) (0.060) (0.057) (0.057) (0.703)

Logistic Norm.
−1.181 0.623 −0.018 −1.890 −0.053 0.736

—
(0.065) (0.065) (0.065) (0.088) (0.088) (0.088)

n = 400

Copula Y
−1.003 0.499 0.000 −1.505 0.002 0.500 10.100
(0.038) (0.037) (0.036) (0.046) (0.040) (0.041) (0.698)

Copula Z
−1.003 0.493 0.000 −1.507 −0.031 0.505 10.098
(0.038) (0.036) (0.036) (0.046) (0.041) (0.040) (0.698)

MF Logit
−1.003 0.499 −0.001 −1.505 0.000 0.500

—
(0.038) (0.039) (0.038) (0.047) (0.045) (0.045)

Dirichlet
−1.003 0.498 −0.001 −1.503 0.001 0.499 10.092
(0.037) (0.036) (0.036) (0.043) (0.040) (0.040) (0.494)

Logistic Norm.
−1.182 0.623 −0.018 −1.887 −0.055 0.737

—
(0.046) (0.046) (0.046) (0.062) (0.062) (0.062)

n = 800

Copula Y
−1.001 0.501 0.000 −1.502 0.001 0.501 10.066
(0.027) (0.026) (0.025) (0.032) (0.029) (0.029) (0.493)

Copula Z
−1.001 0.494 0.000 −1.505 −0.032 0.505 10.062
(0.027) (0.026) (0.025) (0.032) (0.029) (0.029) (0.493)

MF Logit
−1.001 0.501 −0.001 −1.501 0.001 0.499

—
(0.027) (0.027) (0.027) (0.033) (0.032) (0.032)

Dirichlet
−1.001 0.501 −0.001 −1.501 0.001 0.499 10.054
(0.026) (0.026) (0.025) (0.030) (0.028) (0.028) (0.348)

Logistic Norm.
−1.180 0.625 −0.018 −1.886 −0.056 0.737

—
(0.032) (0.032) (0.032) (0.044) (0.044) (0.044)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for
each estimation procedure. Data are generated from a Dirichlet distribution. “—” implies
the parameter is not part of the model.
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Table 2.C.4: Estimates and Standard Errors in a Structural Demand Model from a Gaussian Copula with
Beta Marginals

Method α0 α1 α2 γ1,1 γ2,1 γ2,2 π1 π2 ϕ1 ϕ2 ψ|ξ
n = 100

Copula Y
0.665 0.806 0.205 0.069 −0.028 −0.051 −0.046 −0.017 13.685 15.320 0.322
(7.458) (0.435) (0.221) (0.147) (0.079) (0.084) (0.052) (0.030) (1.873) (2.203) (0.134)

Copula Z
0.900 0.804 0.196 0.072 −0.030 −0.048 −0.047 −0.012 13.667 2.848 0.621
(7.172) (0.439) (0.218) (0.157) (0.083) (0.089) (0.051) (0.029) (1.876) (0.361) (0.112)

MF Logit
0.626 0.816 0.197 0.063 −0.031 −0.046 −0.046 −0.014

— — —
(1.775) (0.307) (0.194) (0.161) (0.084) (0.106) (0.052) (0.031)

Dirichlet
0.677 0.795 0.225 0.056 −0.030 −0.046 −0.042 −0.017 8.947

— —
(8.472) (0.495) (0.272) (0.196) (0.115) (0.123) (0.060) (0.039) (0.861)

AID
0.839 0.790 0.150 0.069 −0.027 0.121 −0.046 −0.052 59.029 164.150 0.280
(2.711) (0.378) (0.238) (0.167) (0.089) (0.123) (0.052) (0.053) (7.756) (24.731) (0.128)

n = 200

Copula Y
0.632 0.812 0.204 0.074 −0.027 −0.048 −0.047 −0.017 13.299 15.016 0.320
(5.918) (0.315) (0.155) (0.103) (0.056) (0.059) (0.037) (0.021) (1.285) (1.523) (0.095)

Copula Z
0.513 0.822 0.192 0.075 −0.030 −0.044 −0.047 −0.012 13.270 2.804 0.618
(5.514) (0.293) (0.138) (0.106) (0.058) (0.063) (0.036) (0.021) (1.286) (0.250) (0.079)

MF Logit
0.697 0.812 0.192 0.070 −0.029 −0.042 −0.047 −0.014

— — —
(1.842) (0.290) (0.126) (0.117) (0.059) (0.075) (0.038) (0.023)

Dirichlet
0.714 0.805 0.227 0.065 −0.028 −0.044 −0.044 −0.017 8.724

— —
(6.598) (0.345) (0.181) (0.139) (0.082) (0.087) (0.042) (0.027) (0.593)

AID
0.772 0.804 0.287 0.069 −0.042 −0.462 −0.046 −0.064 57.271 160.672 0.276
(2.3) (0.262) (0.177) (0.108) (0.063) (0.085) (0.037) (0.032) (5.414) (16.808) (0.091)

n = 400

Copula Y
0.626 0.817 0.207 0.074 −0.027 −0.046 −0.048 −0.017 13.200 14.802 0.321
(4.904) (0.237) (0.108) (0.072) (0.039) (0.041) (0.026) (0.015) (0.901) (1.061) (0.067)

Copula Z
0.808 0.820 0.195 0.076 −0.029 −0.042 −0.049 −0.012 13.217 2.798 0.616
(3.599) (0.177) (0.081) (0.074) (0.040) (0.044) (0.025) (0.015) (0.9) (0.176) (0.056)

MF Logit
0.774 0.807 0.187 0.069 −0.028 −0.039 −0.048 −0.014

— — —
(2.687) (0.145) (0.121) (0.082) (0.041) (0.055) (0.027) (0.016)

Dirichlet
0.726 0.804 0.226 0.065 −0.028 −0.041 −0.044 −0.017 8.628

— —
(5.437) (0.252) (0.127) (0.097) (0.058) (0.062) (0.030) (0.019) (0.415)

AID
0.751 0.809 0.141 0.072 −0.027 0.097 −0.047 −0.028 57.251 158.636 0.274
(1.043) (0.162) (0.103) (0.074) (0.043) (0.079) (0.026) (0.020) (3.785) (11.754) (0.064)

n = 800

Copula Y
0.582 0.817 0.206 0.076 −0.027 −0.044 −0.047 −0.016 13.141 14.684 0.322
(3.671) (0.173) (0.069) (0.050) (0.027) (0.029) (0.018) (0.010) (0.635) (0.744) (0.047)

Copula Z
0.732 0.817 0.186 0.076 −0.028 −0.040 −0.048 −0.011 13.208 2.818 0.612
(2.451) (0.122) (0.056) (0.051) (0.028) (0.031) (0.018) (0.010) (0.631) (0.124) (0.039)

MF Logit
0.769 0.811 0.190 0.070 −0.028 −0.036 −0.047 −0.013

— — —
(1.490) (0.180) (0.063) (0.066) (0.031) (0.038) (0.021) (0.012)

Dirichlet
0.549 0.806 0.225 0.066 −0.028 −0.038 −0.044 −0.017 8.558

— —
(3.885) (0.178) (0.085) (0.069) (0.041) (0.044) (0.021) (0.014) (0.291)

AID
0.746 0.803 0.192 0.070 −0.028 0.064 −0.046 −0.030 56.618 158.493 0.275
(2.384) (0.180) (0.112) (0.055) (0.032) (0.040) (0.021) (0.014) (2.761) (8.499) (0.046)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for each estimation procedure. Data are
generated from a Gaussian copula with beta marginals. “—” implies the parameter is not part of the model.
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Table 2.C.5: Estimates and Standard Errors in a Structural Demand Model from a Gaussian Distribution

Method α0 α1 α2 γ1,1 γ2,1 γ2,2 π1 π2 ϕ1 ϕ2 ψ|ξ
n = 100

Copula Y
0.370 0.655 0.157 0.021 −0.010 −0.022 −0.025 0.003 5.473 7.388 −0.166
(2.678) (0.562) (0.384) (0.272) (0.155) (0.167) (0.078) (0.050) (0.826) (0.989) (0.142)

Copula Z
0.573 0.682 0.158 0.033 −0.016 −0.013 −0.028 0.003 5.462 2.336 0.331
(5.345) (0.850) (0.473) (0.293) (0.171) (0.179) (0.092) (0.054) (0.846) (0.291) (0.129)

MF Logit
0.708 0.626 0.163 0.022 −0.013 −0.015 −0.025 0.004

— — —
(2.209) (0.451) (0.316) (0.248) (0.149) (0.170) (0.076) (0.051)

Dirichlet
0.799 0.597 0.184 0.019 −0.006 −0.016 −0.022 0.004 4.963

— —
(13.099) (0.788) (0.549) (0.266) (0.174) (0.194) (0.077) (0.058) (0.455)

AID
0.556 0.622 0.165 0.026 −0.014 −0.018 −0.025 0.005 27.346 61.059 −0.200

(13.008) (0.730) (0.524) (0.250) (0.152) (0.170) (0.077) (0.052) (3.876) (8.652) (0.139)

n = 200

Copula Y
1.154 0.592 0.177 0.038 −0.011 −0.012 −0.023 0.002 5.345 7.183 −0.164
(2.237) (0.369) (0.208) (0.183) (0.103) (0.116) (0.056) (0.036) (0.592) (0.689) (0.103)

Copula Z
0.433 0.651 0.184 0.035 −0.016 −0.009 −0.027 0.001 5.329 2.331 0.324
(5.505) (0.579) (0.340) (0.207) (0.117) (0.125) (0.057) (0.038) (0.603) (0.206) (0.091)

MF Logit
0.759 0.614 0.171 0.033 −0.012 −0.009 −0.023 0.003

— — —
(1.274) (0.304) (0.196) (0.174) (0.104) (0.120) (0.054) (0.037)

Dirichlet
0.532 0.615 0.196 0.025 −0.010 −0.008 −0.020 0.003 4.854

— —
(11.215) (0.495) (0.320) (0.179) (0.119) (0.133) (0.054) (0.041) (0.314)

AID
1.458 0.588 0.170 0.041 −0.014 −0.011 −0.023 0.003 26.854 59.740 −0.200

(10.167) (0.474) (0.271) (0.174) (0.104) (0.118) (0.054) (0.037) (2.689) (5.981) (0.098)

n = 400

Copula Y
0.098 0.643 0.167 0.044 −0.011 −0.012 −0.025 0.002 5.299 7.111 −0.165
(3.932) (0.405) (0.170) (0.133) (0.072) (0.082) (0.040) (0.026) (0.425) (0.489) (0.073)

Copula Z
0.837 0.635 0.191 0.061 −0.024 −0.008 −0.029 −0.001 5.293 2.439 0.315
(2.038) (0.242) (0.140) (0.139) (0.076) (0.101) (0.038) (0.025) (0.496) (0.199) (0.081)

MF Logit
0.686 0.627 0.170 0.041 −0.012 −0.008 −0.025 0.003

— — —
(7.470) (0.649) (0.363) (0.141) (0.083) (0.099) (0.041) (0.031)

Dirichlet
0.615 0.619 0.190 0.034 −0.010 −0.007 −0.023 0.003 4.821

— —
(8.601) (0.309) (0.195) (0.125) (0.084) (0.094) (0.039) (0.029) (0.220)

AID
0.495 0.629 0.177 0.046 −0.014 −0.012 −0.025 0.004 26.662 59.123 −0.202
(7.506) (0.295) (0.183) (0.120) (0.073) (0.083) (0.038) (0.026) (1.887) (4.182) (0.069)

n = 800

Copula Y
1.705 0.596 0.176 0.052 −0.012 −0.011 −0.025 0.002 5.258 7.064 −0.164
(1.620) (0.138) (0.094) (0.085) (0.051) (0.058) (0.028) (0.018) (0.3) (0.343) (0.052)

Copula Z
0.706 0.648 0.195 0.054 −0.024 −0.009 −0.031 −0.001 5.260 2.480 0.313
(1.471) (0.162) (0.098) (0.089) (0.053) (0.058) (0.026) (0.018) (0.303) (0.107) (0.046)

MF Logit
0.587 0.627 0.172 0.046 −0.012 −0.008 −0.025 0.003

— — —
(12.234) (0.413) (0.236) (0.109) (0.059) (0.063) (0.030) (0.019)

Dirichlet
0.560 0.624 0.193 0.041 −0.012 −0.007 −0.023 0.003 4.786

— —
(5.204) (0.176) (0.119) (0.088) (0.059) (0.066) (0.027) (0.021) (0.154)

AID
0.416 0.632 0.168 0.051 −0.014 −0.012 −0.025 0.003 26.487 58.691 −0.201
(4.932) (0.182) (0.108) (0.084) (0.051) (0.059) (0.027) (0.018) (1.325) (2.938) (0.049)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for each estimation procedure. Data are
generated from a multivariate Gaussian distribution. “—” implies the parameter is not part of the model.
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Table 2.C.8: Bayesian Point Estimates and Inference for an Extended Reduced Form Model

Variable Outcome 1 Outcome 2

Constant
−2.002 −2.033
(0.041) (0.043)

x1
0.841 0.848
(0.042) (0.043)

x2
−0.846 −0.828
(0.041) (0.042)

x3
0.869 0.871
(0.042) (0.043)

x4
−0.867 −0.892
(0.042) (0.042)

x5
0.849 0.861
(0.042) (0.043)

x6
−0.023 −0.026
(0.030) (0.031)

x7
−0.020 0.023
(0.030) (0.031)

x8
−0.015 −0.006
(0.029) (0.030)

x9
−0.026 −0.001
(0.031) (0.031)

x10
−0.018 −0.023
(0.030) (0.030)

Note: Bayesian estimates from a Gaussian copula with beta marginals specification. Entries denote coef-
ficient of the associated variable in each of the outcome equations. Standard errors (standard deviation of
the chains) in parentheses.
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Figure 2.9: Trace Plot of Elasticity Chains in an Extended Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 800 draws
each for a total of 4,000 draws.
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Figure 2.10: Density Plot of Elasticity Chains in an Extended Bayesian AID System
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each for a total of 4,000 draws.



89

Chapter 3

Multivariate Fractional Panel Data

Methods

While there have been many developments in creating modeling strategies for multivariate fractional

outcomes in a cross-sectional context or for univariate fractions in a panel data setting (Papke and

Wooldridge, 1996, 2008; Murteira and Ramalho, 2016), there are currently no comprehensive and

flexible ways of modeling multivariate fractions in a panel data setting. That is, strategies that

simultaneously take into account the inherent nonlinearity in the partial effects from covariates,

unobserved heterogeneity that is potentially correlated to these covariates, and that impose the

unit-sum restriction present across the multivariate outcomes. Additionally, we would expect that

such a framework would allow to control for further endogeneity issues that are not captured by

unobserved heterogeneity and also allow for structural zeros in the data.1

The main contribution of the chapter is then to expand the available toolkit for modeling

multivariate fractional outcomes using panel data in applied microeconomic settings. Recognizing

that different applications are conceived with different objectives in mind, the chapter introduces

a wide range of methods that are suitable in a variety of settings. To this end, I extend currently

available approaches for cross-sectional multivariate fractional outcomes to a panel data setting

and bring panel data methods that operate on univariate fractions to the multivariate case. This

is done in a way that emphasizes robustness and flexibility, while maintaining the advantages of

1For example, in the demand estimation setting by allowing some households to spend none of their income on a
particular good.
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each framework.

The first method is maximum likelihood estimation that allows for identification of the param-

eters in a conditional mean model (Hartzel et al., 2001). This method draws on the statistical

literature on generalized (non)linear mixed models for multivariate responses (for a review, see for

example Davidian and Giltinan, 1995). This method will be particularly useful when an application

requires consistent estimation of the parameters, not just the signs or average partial effects. Of

course, given consistent estimation of the parameters, these other quantities can be consistently

estimated. It also has the potential of being efficient in comparison to the other methods intro-

duced in the chapter. While many available likelihood-based approaches allow the specification

of a distribution on the multivariate fractional outcomes, they can be restrictive or not generalize

well to allow for unobserved heterogeneity. For example, transformation methods that take the

multivariate fractions to an unbounded space before imposing a distributional assumption, such

as the additive log-ratio (Aitchison and Shen, 1980), centered log-ratio (Aitchison, 1983), centered

log-ratio (Egozcue et al., 2003), or α (Tsagris et al., 2011) transformations require strong indepen-

dence assumptions to recover the parameters of a conditional mean model defined directly on the

share components (Papke and Wooldridge, 1996). Other distributions might allow for a regression

structure but will generally not be robust to misspecification (Hijazi and Jernigan, 2009; Scealy

and Welsh, 2011). The maximum likelihood methods considered in this chapter will allow for di-

rect specification of a conditional mean and at least some degree of robustness to distributional

misspecification, if not full robustness.

The second method extends Papke and Wooldridge (2008) to a multivariate fractional setting by

using pooled multivariate nonlinear least squares with a probit link. While this approach might be

potentially misspecified and thus not consistently estimate the parameters of the conditional mean

(up to a scale factor), it provides the best mean squared error approximation to these quantities that

is afforded by the probit link. Furthermore, if these approximations are believed to be accurate (and

numerical simulation results in Section 3.2 show that this tends to be the case), this approach would

allow for the identification and estimation of average partial effects, the inclusion of continuous

endogenous covariates, and inference can be made fully robust to the potential misspecification

of the conditional mean. Additionally, this method is not impeded by zeros in the underlying

multivariate fractions and can be scaled to handle a large amount of shares without much additional
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computational burden.

I then discuss a latent dependent variable formulation that accounts for censoring, given by

structural zeros in the multivariate fractions. Using the simple transformation in Wales and Wood-

land (1983), I extend the Bayesian approach of Kasteridis et al. (2011) to account for panel data

and correlated random effects using a data augmentation algorithm that accounts for censoring

(Albert and Chib, 1993). Accounting for unobserved heterogeneity in this method is then also

a multivariate generalization to Loudermilk (2007). The simplicity of this resulting approach is

in line with previous literature where the Bayesian paradigm tends to be preferred to frequentist

simulation-based approaches given their simplicity in dealing with the latent variables (McCulloch

et al., 2000). Still, simulation methods such as the methods of simulated moments (McFadden,

1989) or simulated scores (Hajivassiliou and McFadden, 1998) would remain valid given this setting

and their exploration in this context could be a potential avenue for further research. Additionally,

it is important to note that the Bayesian estimator allows for potential endogeneity that is not

captured by the unobserved heterogeneity, similar to the probit method (Ramı́rez-Hassan, 2021).

This approach also directly accounts for the presence of zeros in the multivariate fractions. Other

methods that allow for zeros usually take these as possible detection errors, and thus create impu-

tation methods in some optimal way to minimize the ad hoc nature of this operation (Fry et al.,

2000; Mart́ın-Fernández et al., 2003). Furthermore, some transformation and likelihood-based ap-

proaches can also deal with zeros, but they can suffer from similar caveats as those mentioned

before (Stewart and Field, 2011; Tsagris and Stewart, 2018).

The remaining of the chapter proceeds as follows. Section 3.1 reviews the general assumptions

and theory that supports the estimation methods that are then introduced. Special emphasis is

made in implementation of the methods using fully robust inference. Section 3.2 presents several

Monte Carlo exercises that showcase the comparative advantages of each of the methods, their

possible weaknesses and robustness, as well as specific cases where they will be most useful. Finally,

Section 3.3 presents the concluding remarks.
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3.1 Methodology

I begin by stating the general assumptions that hold for all the methods considered in the paper.

Let Y be a multivariate fractional outcome of d shares. For each share Yj , I assume that we have a

Kj-dimensional vector of covariates denoted byXj . Similarly, as is customary in panel data models,

I allow for the presence of unobserved heterogeneity that is potentially correlated to the covariates,

which is denoted by C. The following assumption summarizes the type of panel data structures

that are within the scope of this paper and which arise frequently in applied microeconomics.

Assumption 3.1 (Panel data).

1. Let (Y ′,X ′,C)′ be a (2d +K)-dimensional random-vector with true distribution H, where

Y = (Y1, . . . , Yd)
′ takes values on Sd, X = (X ′

1, . . . ,X
′
j)

′ has support X ⊂ RK1+···+KD with

K = K1 + · · ·+Kd, and C = (C1, . . . , Cd)
′.

2. There is access to a random sample of size n fromH in the cross section, given by {Y ′
i ,X

′
i}ni=1,

where Yi ∈ ×Ti
t=1Sd. That is, for each random draw i there are Ti time periods, and within

each i and time period t, the outcomes are multivariate fractional.

The first part of Assumption 3.1 introduces unobserved heterogeneity as part of the true distribu-

tion that defines the population of interest. Emphasizing this true distribution will also allow us

to discuss inference that takes into account possible misspecification in the maximum likelihood

method that is presented shortly. From the second part, note that the paper is sufficiently general

as to allow for unbalanced panels, but it does assume that the reason for the unbalance is com-

pletely at random. In this sense, the methods introduced in the paper will not remain valid under

possible issues of attrition or other sample selection rules that are dependent on the covariates.

Of course, since C is unobserved by definition, it does not show up in the information available

to the econometrician for estimation and inference. Additionally, at this point I note that all the

asymptotic results in the paper rely on short panels; i.e., where Ti is taken as fixed while the cross

section n goes to infinity. The dimensionality of the simplex given by d is not restricted and we

will introduce methods that allow for d to be large, which might occur, for example, in a demand

estimation problem with many goods in consideration. With this in mind, I now consider the fol-

lowing estimation procedures that will contain some more specialized assumptions conditional on
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the inferencial goal of each method.

3.1.1 Maximum Likelihood Estimator

For this and the next subsection, we need to assume a conditional mean model that relates the

multivariate fractional outcome Y to the covariates X and the unobserved heterogeneity C. One

possibility would be to assume for each i = 1, . . . , n, t = 1, . . . , Ti, and j = 1, . . . , d,

E[Yitj |Xitj = xitj , Cij = cij ] = mj(x
′
itjβ0,j + cij) ,

for some β0,j ∈ Bj ⊂ RKj , where cij represents time-invariant unobserved heterogeneity for each

individual i in outcome equation j, and the functions mj(·) would satisfy 0 < mj(z) < 1 and∑d
j=1mj(z) = 1 for all z ∈ R, j = 1, . . . , d. However, the unit-sum restriction on the link functions

and the outcome shares creates an identification problem that prevents us from proceeding with this

approach. As noted by Montoya-Blandón (2021), the fact that the outcome variables are supported

on Sd prevents the recovery of one of the parameter vectors β0,j , j = 1, . . . , d as all information

about one of the outcomes can be obtained from the distribution of the others. To address this

issue, we will instead work with the D ≡ d − 1 dimensional system by setting a base category,

assumed to be d hereafter. This conditional mean would also miss an interesting possibility that I

use as the basis for the two special cases of a maximum likelihood estimator in this setting. Thus,

I instead introduce the following assumption.

Assumption 3.2 (Conditional mean). For each i = 1, . . . , n, t = 1, . . . , Ti, and j = 1, . . . , d,

E[Yitj |Xit, ci] = mj(Xitβ0 + ci) , (3.1.1)

for some β0 = (β′
1, . . . ,β

′
D)

′ ∈ B ⊂ RK , where K =
∑D

j=1Kj , ci = (ci1, . . . , ciD)
′, and the

link functions are defined for all j = 1, . . . , d as mj : RD → R to satisfy 0 < mj(z) < 1 and
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∑d
j=1mj(z) = 1 for all z ∈ RD. Finally, Xit is a D ×K matrix defined as

Xit =


x′
it1 · · · 01×KD

...
. . .

...

01×K1 · · · x′
itD


This assumption introduces a few key ideas. First, as is usual in panel data models, dealing

with ci will be one of the main challenges of obtaining reliable estimators (Wooldridge, 2010,

section 10). Second, we have a family of link functions mj(·) where each outcome can potentially

depend on the covariates and unobserved heterogeneity of all other outcomes, allowing for very

rich dependence between shares. Third, note that it is assumed there is a true β0 such that the

conditional mean assumption holds for all outcomes. Finally, note that (3.1.1) is general enough

to allow for outcome-specific intercepts, time effects and covariates, while allowing for the same

covariates to enter different share equations and having possibly time-invariant covariates. It is

also assumed that xitj contains a 1 at the beginning of the vector for each j = 1, . . . , D.

Throughout the paper, we will need stacked versions of (3.1.1) across outcomes and time. These

are given by

E[Yit|Xit, ci] =m(Xitβ + ci) (3.1.2)

and

E[Yi|Xi, ci] =mTi(Xiβ, ci) , (3.1.3)

where Yit = (Yit1, . . . , YitD)
′ and m(Xitβ + ci) = (m1(Xitβ + ci), . . . ,mD(Xitβ + ci))

′ are D-

dimensional vectors, Yi = (Y ′
i1, . . . ,Y

′
iTi

)′ andmTi(Xiβ, ci) = (m(Xi1β+ci)
′, . . . ,m(XiTiβ+ci)

′)′

are DTi-dimensional vectors, and Xi = [X ′
i1 · · · X ′

iTi
]′ is a DTi ×K matrix.

As noted by Papke and Wooldridge (2008), assumptions 3.1 and 3.2 on their own are not enough

to carry out estimation of the conditional mean parameters . To this end, I make two additional

assumptions.
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Assumption 3.3 (Strict exogeneity). For all i = 1, . . . , n, and j = 1, . . . , d,

E[Yitj |Xi, ci] ≡ E[Yitj |Xi1, . . . ,XiTi , ci] = E[Yitj |Xit, ci] .

Assumption 3.4 (Mundlak device). For all i = 1, . . . , n,

ci|Xi1, . . . ,XiTi ∼ N (X̄iξ,Γ) , (3.1.4)

where X̄i = (1/Ti)
∑Ti

t=1Xit are the time averages for the time-varying covariates, ξ is a K-

dimensional coefficient vector and Γ is a D ×D covariance matrix.

Assumption 3.3 is standard and simply states that, conditional on unobserved heterogeneity, the

covariates are uncorrelated to time-varying unobservables. It also rules out the use of lagged depen-

dent variables as covariates or explanatory variables that correlate to paste values of the outcome

variables (Papke and Wooldridge, 2008). Assumption 3.4 is a correlated random effect (CRE) as-

sumption that uses Mundlak’s (1978) device for specifying the relationship between covariates and

unobserved heterogeneity. Note that under a pure random effects assumption, ξ = 0 and there

would be no need to worry about correlation with unobserved heterogeneity. Of course, a more

flexible model such as that by Chamberlain (1980) could be allowed, at the expense of slightly more

complex models. The use of (3.1.4) is made for convenience and to allow for particularly simple

estimation methods for β. Other non or semiparametric alternatives that assume less structure on

the distribution of ci conditional on Xi1, . . . ,XiTi are also available, again at the expense of more

intensive computations (Hartzel et al., 2001). As the maximum likelihood method to be introduced

shortly can already be computationally demanding, this paper maintains (3.1.4) for simplicity. Fi-

nally, the paper does not consider fixed effects transformations to eliminate ci, as these require

correct specification (of both H and m) and are only available for a handful of distributions with

special forms and sufficient statistics (see, e.g., Magnac, 2004).

Note that, given (3.1.4), we can write ci = X̄iξ + bi, where bi|Xi1, . . . ,XiTi ∼ N (0,Γ). Re-

placing this into (3.1.2) and using Assumption 3.3 yields

E[Yit|Xi, ci] =m(Xitβ + X̄iξ + bi) .
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Writing X̃it = [Xit X̄i] and α = (β′, ξ′)′, we can then find

E[Yit|Xi, ci] =m(X̃itα+ bi) , (3.1.5)

with bi independent of X̃it. This is of the same form as (3.1.2) but with bi representing unobserved

heterogeneity that is uncorrelated from the covariates. For notational simplicity, the remaining of

the paper assumes that (3.1.2) (and thus 3.1.3) represents a random effects specification, so that

ci can be taken as independent from covariates Xit. Keep in mind that this will only be true

after the transformation given by (3.1.5) if the original covariates are thought to be correlated to

unobserved heterogeneity, which is usually the case in most applications. A subtle point is that

for the computation of average partial effects, or any derivation that follows from the original

conditional mean model in (3.1.1), X̄i needs to be integrated out for each t = 1, . . . , Ti (Papke and

Wooldridge, 2008).

Armed with Assumptions 3.1 through 3.4, I can now present the general maximum likelihood

estimator for multivariate fractional outcomes and two interesting special cases. Let F (·;β) denote

a D-dimensional distribution for Yit|Xit, ci that satisfies (3.1.2). As the random effects ci (or bi

after the transformation in 3.1.5) are unobserved, we need to integrate over them in the definition

of the likelihood. Assuming conditional independence across t, we can define the log-likelihood

contribution for each i in this problem as

ℓ
(ind)
i (β,Γ) = log

∫ ∞

−∞
· · ·
∫ ∞

−∞

[
Ti∏
t=1

F (Yit|Xit, ci;β)

]
ϕD(ci;0D×1,Γ) dci , (3.1.6)

where ϕD(·;µ,Σ) is the density of a D-dimensional normal distribution with mean vector µ and

covariance matrix Σ. A second approach that does not impose conditional independence across

time, is given by the pooled likelihood approach

ℓ
(pool)
i (β,Γ) =

Ti∑
t=1

log

∫ ∞

−∞
· · ·
∫ ∞

−∞
F (Yit|Xit, ci;β)ϕD(ci;0D×1,Γ) dci . (3.1.7)

Writing θ = (β′, vech(Γ)′)′, where vech(·) is the half-vectorization operator that selects the lower

triangular portion of a square matrix, we have that a general maximum likelihood estimator based
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on either (3.1.6) or (3.1.7) is given by

θ̂l ≡ argmax
θ

1

n

n∑
i=1

ℓ
(l)
i (θ), l ∈ {ind, pool} . (3.1.8)

For l ∈ {ind,pool}, if we do not assume correct specification of F , general quasi-likelihood theory,

such as that in White (1982), yields consistency of θ̂l to the minimizer of the Kullback-Leibler

divergence between F and H, denoted as θ∗l . Furthermore, if F is chosen to be a member of

the linear exponential family, as long as the link function m is correctly specified, then the β∗

component of θ∗l will equal the β0 specified in Assumption 3.2 (Gourieroux et al., 1984). This is

the basis for one of the special cases introduced as Estimator 1. The second special case, Estimator

2, specifies F using a copula approach. Following the results in Montoya-Blandón (2021), we observe

that as long as the marginals in F are correctly specified (which again requires correct specification

of the link), even if the dependence structure is not, then β∗ = β0 also holds. In both of these

cases, we can thus guarantee consistent estimation of the underlying conditional mean parameters

β0.

Once consistency is established, the results in the previously mentioned literature can be used

to obtain asymptotic normality of
√
n(θ̂l − θ∗l ) with asymptotic variance given by

Asy.Var(
√
n(θ̂l − θ∗l )) = A−1

l BlA
−1
l , (3.1.9)

where Al = EH [∂
2ℓ

(l)
i (θ)/∂θ∂θ′] is the Hessian matrix of the log-likelihood contributions, Bl =

EH [∂ℓ
(l)
i (θ)/∂θ · ∂ℓ(l)i (θ)/∂θ′] is the outer product of the scores, and the notation EH emphasizes

that the expectation is taken with respect to the true distribution. Inference that is fully robust

to possible distributional misspecification (and to autocorrelation in the scores in the case of the

pooled log-likelihood approach) follows from using

Âl =
1

n

n∑
i=1

∂2ℓ
(l)
i (θ̂l)

∂θ∂θ′
and B̂l =

1

n

n∑
i=1

∂ℓ
(l)
i (θ̂l)

∂θ
·
∂ℓ

(l)
i (θ̂l)

∂θ′
, (3.1.10)

to estimate the asymptotic variance in (3.1.9). The way this model is specified is similar to nonlinear

mixed models (or generalized mixed models if F is assumed to be a distribution from the linear

exponential family) used heavily in the statistics literature (Davidian and Giltinan, 1995). Pinheiro
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and Bates (1995) is a standard reference for computation of the integrals in (3.1.6) or (3.1.7). For

adaptive (Liu and Pierce, 1994) or nonadaptive (Jäckel, 2005) quadrature, Appendix 3.A presents

some general formulas to compute these integrals. Whereas the literature tends to favor Laplace

approximations to these integrals, quadrature or Monte Carlo methods should be used in this case,

as we will usually want to assume a distribution that is not necessarily correctly specified. A

Laplace approximation to an already misspecified distribution would likely introduce larger bias

into the estimation process. Quadrature methods will also be reliable only for a small dimension

D as the number of evaluations grows exponentially with D. For larger dimensions, one could use

an expectation-maximization (EM) algorithm as outlined in Hartzel et al. (2001). When deciding

between each method it is also important to keep in mind that the pooled approach requires more

integral evaluations; (3.1.6) requires n integrals to be computed, while (3.1.7) requires
∑n

i=1 Ti of

them (or nT for a balanced panel).

Based on the previous formulas, the paper proposes two special cases that will be of particular

interest in applications. Both start from a multinomial logit conditional mean as it satisfies the

unit-sum restriction given in Assumption 3.2. That is, these estimators take m(·) as

m(X ′
itβ + ci) =


exp(x′

itjβj+cij)
1+

∑D
p=1 exp(x′

itpβp+cip)
for j = 1, . . . , D ,

1
1+

∑D
p=1 exp(x′

itpβp+cip)
for j = d .

(3.1.11)

Estimator 1 (Multinomial Logit QMLE).

1. Use

F (Yit|Xit, ci;β) =

d∏
j=1

m
yijt
ijt ,

in either (3.1.6) or (3.1.7) with mitj ≡ mj(X
′
itβ+ ci) according to the multinomial logit link.

2. Estimate θ̂ as in (3.1.8) computing the integrals as in Appendix 3.A.

3. As the multinomial likelihood is inherently misspecified, use the fully robust estimators given

in (3.1.10).

Appendix 3.B contains a formula for the score ∂ℓ
(l)
i (θ)/∂θ that can be used to motivate a
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quasi-Newton algorithm as in Hartzel et al. (2001) and also to obtain the fully robust variance

estimator. As in Papke and Wooldridge (1996), this estimator, while being inherently misspecified,

should achieve some optimality properties in the class of linear exponential families for this problem.

Another possible approach would be to specify a population-averaged estimator that uses general

estimating equations (GEE) to gain efficiency (Liang and Zeger, 1986). These would start by

specifying E[Yitj |Xit] directly as in (3.1.1), perhaps using a multinomial logit link. Note that no

model would actually correspond to this link after integration of the random effects. Additionally,

given that the multinomial distribution is inherently misspecified, it might not be worthwhile to

attempt to gain more efficiency by correctly specifying other features of the distribution. Thus, I

recommend the use of the fully robust approach as noted Estimator 1.

If efficiency is a concern, there is another route. As shown in Montoya-Blandón (2021), copulas

can be used to model multivariate fractional outcomes in a way that achieves flexibility in the

dependence patterns between shares, while retaining some robustness to distributional misspecifi-

cation. Furthermore, if the copula and marginals are correctly specified, this leads to an efficient

maximum likelihood approach. This is summarized in the following procedure.

Estimator 2 (Multinomial Logit Copula).

1. Choose marginals Gj(·;β, ϕj), j = 1, . . . , D that satisfy (3.1.11), such as beta distributions,

and copula G(·;ψ), for example a Gaussian copula. Then, use

F (Yit|Xit, ci;β,ϕ,ψ) = g(G1(yit1|Xit;β, ϕ1), . . . , GD(yitD|Xit;β, ϕD);ψ)

×
D∏
j=1

gj(yitj |Xit;β, ϕj) ,

in either (3.1.6) or (3.1.7). The copula approach adds some additional precision parameters

for the marginals and dependence parameters for the copula (which can be misspecified).

Compute the integrals as in Appendix 3.A.

2. Estimate (θ′,ϕ′,ψ′) as in (3.1.8).

3. If the copula is potentially correctly specified, use Â−1
l as the estimator for the asymptotic

variance in (3.1.9). Otherwise, use the fully robust (3.1.10).
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Estimator 2 also encompasses the use of a Dirichlet joint distribution with a multinomial logit

link, as this can be expressed using an independent copula with beta marginals after a transfor-

mation (Connor and Mosimann, 1969; Hijazi and Jernigan, 2009). If there is no reason to believe

that the copula might be correctly specified, then by using the fully robust asymptotic variance

estimator in both the multinomial logit and copula models, we would usually expect Estimator 1

to actually be more efficient, as it has to estimate less parameters to arrive at a solution. This is

studied numerically in Section 3.2.

As a final consideration, recall that these estimators can recover the conditional mean parame-

ters (and random effects variance) that can then be used to estimate the average partial effects by

estimating the derivatives of covariates with respect to (3.1.11). However, if our only goal was to

consistently estimate these partial effects, you could simply estimate a multinomial logit link via

quasi-maximum likelihood and obtain average partial effects as noted in Wooldridge (2005), which

requires no integration. While this is a perfectly valid approach, this method would not generalize

well to the inclusion of possible endogenous covariates. Thus, we instead consider the probit link

version of this issue in the next subsection, that does allow for simple inclusion of endogeneity.

3.1.2 Probit Estimator

With the notation and assumptions outlined in the previous subsection, it becomes easy to define

a very simple estimator that parallels that in Papke and Wooldridge (2008). This time, instead of

a multinomial logit link, assume a probit link for each share:

E[Yit|Xit, ci] =m(Xitβ + ci) =


Φ(x′

it1β1 + ci1)

...

Φ(x′
itDβD + ciD)

 ,

where Φ(·) is the standard normal cumulative distribution function (CDF). Using the properties of

the normal CDF, we can readily integrate the unobserved heterogeneity from the conditional mean
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function to arrive at

E[Yit|Xit] =


Φ

(
x′
it1

(
β1√
1+γ21

))
...

Φ

(
x′
it1

(
βD√
1+γ2D

))
 =


Φ(x′

it1β1c)

...

Φ(x′
itDβDc)

 , (3.1.12)

where for j = 1, . . . , D, βcj = βj/(1 + γ2j )
1/2 and γ2j is the j-th diagonal element of Γ. Thus,

similarly to Papke and Wooldridge (2008), identification of the conditional mean parameters is

no longer possible (and the same is true for Γ) but the average partial effects are still identified.

Indeed, as shown by Wooldridge (2005), the average partial effect of covariate xitjk on outcome yitj

is given as the derivative or difference (if it is categorical) of

Ex̄ij [Φ(x
′
itjβcj + x̄

′
ijξcj)] (3.1.13)

where ξcj = ξj/(1+γ
2
j )

1/2 and I explicitly include x̄ij to emphasize that it is being integrated out of

this unconditional expectation. Then, given a consistent estimator of the scaled parameters of the

probit link, the average partial effects can be identified. In obtaining this consistent estimator, how-

ever, we run into an important issue: the probit link itself does not necessarily satisfy Assumption

3.2. Specifically, definemd(Xitβ+ci) = 1−
∑D

j=1Φ(x
′
itjβj+cij). Then it is not necessarily the case

that md(Xitβ + ci) > 0, as the probit link does not collectively impose
∑D

j=1Φ(x
′
itjβj + cij) < 1

as is done by the multinomial logit link. This would imply that the conditional mean might not be

correctly specified, and thus estimating βc from (3.1.12) might not consistently estimate β0c.

However, it is important to note that this method would still provide the best probit link ap-

proximation to each of the conditional mean functions for each fraction separately. By also taking

into account the correlation between each share in the system, it operates in a way similar to a

seemingly unrelated regressions (SUR) approach. That is, imagine fitting a probit link conditional

expectation to each fractional outcome Yitj using panel methods, where the base category is taken

to be 1 − Yitj . If we expect this to be a correctly specified model, then we would be consistently

estimating β0,j . If we repeat this thought experiment for each j = 1, . . . , D, and accept the probit

link as a correctly specified link at each step, then the multivariate solution that approximates
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each of the conditional means while taking into account the correlation between shares should be

a good approximation to the system as a whole. Finally, the method provides this approximation

for the coefficients and partial effects in a way that is simple, computationally fast, and can in-

corporate continuous endogenous covariates using standard control function arguments (Papke and

Wooldridge, 2008). We can also proceed with estimation by multivariate nonlinear least squares

and adjust inference for the use of a potentially misspecified conditional mean function.

Formally, writing αc = (βc, ξc) and given the objective function contribution

qi(αc) ≡ q(Yi,Xi;αc) =
1

2
[Yi −mTi(X̃iαc)]

′[Yi −mTi(X̃iαc)] (3.1.14)

the pooled multivariate nonlinear least squares estimator of αc = (βc, ξc) with the probit link is

found as

α̂c ≡ argmin
αc

1

2

n∑
i=1

Ti∑
t=1

[Yit −m(X̃itαc)]
′[Yit −m(X̃itαc)]

= argmin
αc

1

2

n∑
i=1

Ti∑
t=1

D∑
j=1

[yitj − Φ(x̃′
itjαcj)]

2 (3.1.15)

where the definitions of x̃ and α come from (3.1.5). Thus, as outlined in White (1981) and section

12.3 of Wooldridge (2010), even if the probit link is potentially misspecified as a conditional mean

for the multivariate fractions, α̂c is consistent to the value α∗
c that creates the best probit link

approximation, in a mean squared error sense, to the true conditional mean E[Yit|Xit]. Further-

more, if
∑D

j=1Φ(x̃
′
itjα̂cj) < 1 for all i and t, we have no reason to expect that the probit link

approximation would be a poor one.

Asymptotic normality centered around α∗
c also holds, so that

√
n(α̂c − α∗

c) is asymptotically

normal with asymptotic variance given by

Asy.Var(
√
n(α̂c −α∗

c)) = A−1BA−1 , (3.1.16)

where, similar to the previous subsection, A = EH [∂
2qi(αc)/∂αc∂α

′
c] is the Hessian matrix of

the objective contributions and B = EH [∂qi(αc)/∂αc · ∂qi(αc)/∂α′
c] is the outer product of the

scores. By using the full Hessian that does not assume EH [Yi−mTi(X̃iαc)] = 0, inference is made
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robust to the possible misspecification of the probit link, as well as autocorrelation in the scores.

Estimation of the asymptotic variance in (3.1.16) follows as

Â =
1

n

n∑
i=1

∂2qi(α̂c)

∂αc∂α′
c

and B̂ =
1

n

n∑
i=1

∂qi(α̂c)

∂αc
· ∂qi(α̂c)

∂αc

′
. (3.1.17)

Given that the probit link is a simple special case, formulas for both the scores and Hessian are

available; these are given in Appendix 3.B. This procedure is summarized as follows.

Estimator 3 (Probit pooled multivariate NLS).

1. Estimate αc from (3.1.15) by pooling across observations, time and outcome equations with

the probit link.

2. For fully robust inference, estimate the covariance matrix for α̂c from (3.1.17) using the

formulas in Appendix 3.B.

If the probit link is deemed to be a good approximation, a possible next step to gain efficiency

is to use a two-step estimator that specifies a weighted adjustment to the objective function in

(3.1.14). As the estimator defined in (3.1.15) is also a generalized method of moments (GMM)

estimator with an identity weighting matrix, the two-step choice could be implemented by using

a different weight matrix choice. While the identity choice does not incorporate the correlation

structure between the shares, this correlation is accounted for in the inference step when using the

estimators (3.1.17). Furthermore, both consistency and asymptotic normality is unaffected; the

choice of weighting matrix should only affect efficiency concerns. Given that there is a potential

misspecification problem, once again it does not seem worthwhile to pursue larger efficiency gains

if a crucial part of the distribution might not be correct. For more details, see, e.g., section 12.4 in

Wooldridge (2010).

3.1.3 Bayesian Latent Variable Estimator

While the previous methods are able to handle zeros in the data naturally, they do not account

for the possibly large probability that might accumulate at 0 for some fractions (Liu et al., 2020).

There is now abundant research in ways to deal with these zeros in multivariate fractional out-

comes. However, to account for non-trivial probability at zero; i.e., censoring for corner outcomes,
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the literature usually focuses on limited dependent variable approaches. To this end, I maintain

Assumptions 3.1, 3.3 and 3.4.2 I will assume the following limited dependent variable (LDV) model

holds for all i, t, and j:

y∗itj = x
′
itjβj + cij + εitj .

Here, y∗itj is an unobservable latent variable. We can stack the previous model as before, to obtain

Y ∗
i =X ′

iβ +Wici + εi ,

where the definitions mimic those in (3.1.3) with the addition of Wi = ιTi ⊗ ID, a DTi × D

matrix, where ιTi is a Ti-dimensional vector of ones and ITi is a Ti × Ti identity matrix. To

allow for possible autocorrelation and contemporaneous correlation between outcomes, I assume

εi ∼ NDTi(0DTi×1, λ
−1
i (Ωi ⊗ Σ)). In this specification Σ is a D × D contemporaneous covariance

matrix that is left unrestricted, Ωi is assumed to be known or to be the result of a specific VARMA

process whose parameters need to be estimated, and λ−1
i is a precision parameter. As outlined by

Chib (2008), if λi is given a gamma G(ν/2, ν/2) prior and integrated out, then εi would have a

marginal multivariate t distribution with ν degrees of freedom and scale matrix Ωi ⊗ Σ. That is,

we can allow for robust non-normal errors by giving the precision parameter an appropriate prior.

Now, in contrast to a usual probit or Tobit LDVs, there is no unified way to map the latent

variables Y ∗
it to the simplex Sd and obtain its inverse transformation. Even when focusing to those

that allow for zeros, there have been several proposals in the literature, such as re-scaling the sum

of the positive Y ∗
it (Wales and Woodland, 1983), via Box-Cox transformations of ratios of variables

(Fry et al., 2000; Tsagris et al., 2011), by minimizing the Euclidean distance from Y ∗
it to Sd (Butler

and Glasbey, 2008), among others. Due to the computational simplicity of the resulting simulation

scheme, I focus on the scaling transformation given by (Wales and Woodland, 1983) and described

as part of a Bayesian cross-sectional approach in Kasteridis et al. (2011).

This approach fixes the sum of the underlying latent variables to 1, and transforms to observable

2As noted by Chib (2008), Bayesian estimation can usually relax the strict exogeneity assumption for one of
sequential exogeneity, given the distributional assumptions and dynamic completeness of the resulting likelihoods.
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variables supported on Sd by using

yitj =
max{y∗itj , 0}

1−
∑

(t,p)∈Ei
y∗itp

, (3.1.18)

for all i, t, and j, where Ei = {1 ≤ t ≤ Ti, 1 ≤ j ≤ D : y∗itj ≤ 0}. The censored set is defined in this

way given that εi is not necessarily independent over time and thus both temporal and contempo-

raneous correlations will influence whether a particular latent observation falls into the censoring

set or not. It will also be necessary for the simulation algorithm to be introduced shortly. Note

that fixing the sum is related to the identification issue mentioned previously, as not constraining

the support of Y ∗
it results in infinitely many solutions to the inverse problem of finding the Y ∗

it that

generate a particular observable Yit.

The Bayesian paradigm recognizes that Assumption 3.4 is simply a prior distribution on the

correlated random effects. For simplicity, I once again assume that ci directly represents a random

effect, as would occur after employing the Mundlak device. By assigning prior distributions to the

remaining parameters over which there is uncertainty, we can combine them with the likelihood im-

plied by the normality assumption on εi to produce a posterior distribution. I assume the following

normal and inverse Wishart conjugate prior distributions on the remaining model parameters:

β ∼ N (β0,B0) ,

Γ ∼ IW(νΓ,RΓ) ,

Σ ∼ IW(νΣ,RΣ) .

(3.1.19)

The data augmentation approach due to Albert and Chib (1993) that is common in Bayesian

estimation of LDVs includes the Y ∗
i as parameters (McCulloch et al., 2000). Thus, with these prior

distributions in place, the posterior for all the parameters β, Y = (Y ∗′
1 , . . . ,Y ∗′

n )′, c = (c′1, . . . , c
′
n)

′,

Γ, Σ, and λ = (λ1, . . . , λn) conditional on data Y = (Y ′
1 , . . . ,Y

′
n)

′, X = (X ′
1, . . . ,X

′
n)

′, and
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W = (W ′
1, . . . ,W

′
n)

′, denoted by π(·|·) yields

π(β,Y ∗, c,Γ,Σ,λ|Y ,X,W ) ∝
n∏
i=1

{[
Ti∏
t=1

D∏
j=1

I(yitj = 0)I(y∗itj ≤ 0)

+ I(yitj > 0)I

(
yitj =

y∗itj
1−

∑
(t,p)∈Ei

y∗itp

)]

× ϕDTi(Y
∗
i ;X

′
iβ +Wici;λ

−1
i (Ωi ⊗Σ))

}

× π(β)π(c)π(λ)π(Γ)π(Σ) .

(3.1.20)

In this equation, π(·) for each parameter refers to their assumed prior distribution and I(·) denotes

an indicator function that is equal to 1 when its argument is true and 0 otherwise. Note that for

all i, t and j such that yitj = 0, the posterior implies a normal distribution for y∗itj truncated to

(−∞, 0]. For all positive parameters, the distribution is singular and puts all mass at the inversely

transformed values given by

y∗itj = yitj

(
1−

∑
(t,p)∈Ei

y∗itp

)
. (3.1.21)

From (3.1.20), we can obtain the conditional distribution of each parameter on all other model

parameters and the data to propose a Gibbs sampling scheme to simulate from the posterior. This

is summarized in the following procedure and uses the usual Bayesian updates with conjugate priors

under normality (see, e.g., Chib, 2008).

Estimator 4 (Bayesian LDV estimator). For simplicity, this assumes that λ = ιn and Ωi = ITi

but incorporating other structures is simple. At the s-th simulation step:

1. For each i, draw y
∗(s)
itj for all those (t, j) ∈ Ei from

T N (−∞,0](µitj|−(tj), σ
2
itj|−(tj)) ,

where T N represents a truncated normal distribution with mean given by µitj|−(tj) = E
[
y∗itj |

Y
∗(s−1)
i,−(tj) ,β,Γ,Σ

]
, variance σ2itj|−(tj) = Var(y∗itj |Y

∗(s−1)
i,−(tj) ,β,Γ,Σ), and where Y ∗

i,−(tj) denotes

the vector Y ∗
i excluding the tj component. Calculate the remaining components of Y

∗(s)
i

with (t, j) /∈ Ei via (3.1.21).
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2. Draw β(s)|Y ∗(s),Γ(s−1),Σ(s−1) ∼ N (β̄(s), B̄(s)) where

B̄(s) =

(
B−1

0 +
n∑
i=1

X ′
iV

−1(s−1)
i Xi

)−1

,

β̄(s) = B̄(s)

(
β−1
0 +

n∑
i=1

X ′
iV

−1(s−1)
i Y

∗(s)
i

)−1

,

V
(s−1)
i = (ITi ⊗Σ(s−1)) +WiΓ

(s−1)W ′
i .

3. For each i, draw c
(s)
i |Y ∗(s),β(s),Γ(s−1),Σ(s−1) ∼ N (c̄

(s)
i , Γ̄

(s)
i ) where

Γ̄i =
[
Γ−1(s−1) +W ′

i (ITi ⊗Σ−1(s−1))Wi

]−1
,

c̄i = Γ̄iW
′
i (ITi ⊗Σ−1(s−1))(Y

∗(s)
i −Xiβ

(s)) .

4. Draw Γ̄(s)|c(s)i ∼ IW(ν̄, R̄
(s)
Γ ) where

ν̄Γ = νΓ + n ,

R̄
(s)
Γ = RΓ +

n∑
i=1

c
(s)
i c

′(s)
i .

5. Draw Σ̄(s)|c(s)i ∼ IW(ν̄, R̄
(s)
Σ ) where

ν̄Σ = νΣ +

n∑
i=1

Ti ,

R̄
(s)
Γ = RΓ +

n∑
i=1

e
′(s)
i e

(s)
i ,

and ϵ
(s)
i is a Ti × D matrix such that vec(e

′(s)
i ) = Y

∗(s)
i − Xiβ

(s) − Wic
(s)
i ; i.e., the i-

th residuals in matrix form. This is perhaps the only nonstandard update that arises

from the connection between the vector representation of the distribution for εi with the

matricvariate representation (see section A.1.12 of Greenberg, 2012). That is, given that

εi ∼ NDTi(0DTi×1, ITi ⊗Σ), then define the Ti ×D random matrix ϵi such that vec(ϵ′i) = εi.

Then ϵi ∼ NTi×D(0Ti×D,Ωi,Σ) is matricvariate normal.
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An important final observation is that, just as the LDV approach recognizes the use of Assump-

tion 3.4 as a prior distribution, the same could be done for the maximum likelihood approach in

Section 3.1.1. While the main deterrent from using Bayesian analysis for this class of generalized

or nonlinear mixed effects models has been computational, there are now many available tools that

allow for simulating the posterior of a system using priors (3.1.19) along with the likelihoods given

in (3.1.6) or (3.1.7). Furthermore, as Fong et al. (2010) point out, the use of priors for the covari-

ance matrix of the random effects allows for a more realistic inclusion of the uncertainty of these

estimates in contrast to the use of a single estimate. This would be reflected as more believable

standard errors for the estimated panel coefficients.

3.2 Numerical Exercises

To test the performance and comparative advantages of each method, I present several Monte Carlo

exercises. To ensure that each method satisfies the assumptions laid out in the previous section and

to test them under distinct conditions that might be found in practice, I use several data-generating

processes to test each estimator. Some of these should be well-suited to the specifics of each method

while others will test their robustness to possible misspecification. To keep matters concise, I will

be focusing specifically on the procedures outline in Estimators 1 through 4.

3.2.1 Copula Data-Generating Process

Given that the multinomial logit is a misspecified distribution by construction, it does not allow for

the generation of data that could be used to test the behavior of Estimators 1 and 2 under correct

specification. Therefore, the first Monte Carlo exercise draws variables from a copula model as

that in Montoya-Blandón (2021). Specifically, I will use a Gaussian copula with beta marginals

and a multinomial logit link, which was found to be one of the most numerically stable and robust

methods both for generation and estimation. To this end, I draw pseudo observations u1, . . . uD
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from the Gaussian copula density

c(u1, . . . , uD) =
1√
detR

exp

−1

2

[
Φ−1(u1) · · · Φ−1(uD)

]
· (R−1 − ID) ·


Φ−1(u1)

...

Φ−1(uD)


 ,

with D × D correlation matrix R, where Φ−1(·) is the quantile function for the standard normal

distribution. I then use the probability integral transform to guarantee that the draws are from beta

marginals in a mean-precision parameterization. Thus, for each j in 1, . . . , D, uj is transform by

the inverse of the cumulative distribution function of the beta density with mean mj and precision

ϕj , which is given as

Γ(ϕj)

Γ(mj)Γ[(1−mj)ϕj ]
y
mjϕj
j (1− yj)

[1−mj ]ϕj ,

for 0 < yj < 1. In this first scenario, I draw D = 2 shares (yit1, yit2) for i = 1, . . . , n individuals

with n ∈ {100, 200} and t = 1, 2 time periods for a total of 200 or 400 observations on each

share. The third share yit3 is set to 1 − yit1 − yit2 for all i and t. I set β0 = (β′
1,β

′
2)

′ with

β1 = (−1, 0.5, 0)′ and β2 = (−1.5, 0, 0.5)′. Two covariates xit1 and xit2 are drawn from standard

normal distributions and unobserved heterogeneity is added in the form of a random effect ci drawn

from a multivariate normal distribution with zero mean and covariance matrix Γ with Γ11 = Γ22 = 1

and Γ12 = Γ21 = 0.5. I assume a multinomial logit link as that given in (3.1.11) for the means

mit1 and mit2 of each beta distribution. The precision parameters are set to ϕ1 = ϕ2 = 10 and a

correlation of ρ = 0.5 is used to form matrix R for use in the Gaussian copula density.

Across 500 Monte Carlo simulations with the previous baseline scenarios, the multinomial quasi-

maximum likelihood (QMLE) and the copula maximum likelihood estimators were calculated using

the conditionally independent version of the likelihood, as in (3.1.6) and use nonadaptive quadrature

with 10 evaluation points in each dimension. For a given application, I would recommend using the

nonadaptive version with a larger number of evaluation points as a starting point to then use the

adaptive version with relatively fewer until the differences are not noticeable between successive

estimates. The probit pooled multivariate nonlinear least squares (PMNLS) is by far the most

efficient method, as it has no need for evaluating integrals and the availability of scores and Hessian
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greatly simplify the computation of robust inference.

Table 3.1: RMSE for Coefficients in a from a Gaussian Copula with Beta Marginals and
Multinomial Logit Link

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE 0.113 0.095 0.084 0.114 0.088 0.094
Copula MLE 0.187 0.080 0.082 0.190 0.086 0.088
Probit PMNLS 0.277 0.248 0.084 0.452 0.101 0.258

nT = 400

Multinomial QMLE 0.079 0.068 0.061 0.098 0.077 0.064
Copula MLE 0.153 0.057 0.059 0.161 0.065 0.059
Probit PMNLS 0.277 0.250 0.077 0.451 0.093 0.258

Note: RMSE across 500 simulations for each estimation procedure when
data are generated from a Gaussian copula with beta marginals.

The results from using Estimators 1 through 3 are given in Table 3.1 in the forms of root

mean squared errors (RMSE) from the true parameters. The analysis focuses on the conditional

mean coefficients β.3 As expected, given a correctly specified link function, the estimates remain

consistent to the true parameters, as evidenced by the declining RMSE at an expected rate. Both

the multinomial QMLE and copula estimators compete in terms of RMSE but it is not surprising

that the copula estimator tends to be slightly better, given that it is a correctly specified MLE.

The probit estimator, on the other hand, remains inconsistent, which is to be expected given the

incorrect link. As observed by Montoya-Blandón and Jacho-Chávez (2020), link misspecification

can cause large biases even when two relatively similar links such as the logit and probit are used

in one specification. However, the RMSE information hides an important point. We know from the

theory in the previous section that when unobserved heterogeneity is involved, the probit would

not even identify the correct coefficients, so its inconsistency for the true β0 is not surprising.

A more complete depiction is given in the following set of results, found in Table 3.2. This table

presents the mean coefficients and standard errors across the 500 Monte Carlo simulations. First,

note that once again the multinomial QMLE and copula MLE are quite close in their performance,

both in terms of mean coefficients and standard errors. This is interesting given that the copula

standard errors rely on the correctly specified variance covariance matrix, while the multinomial

QMLE uses the fully robust formulas (see 3.1.9). Thus, as expected, the fact that the copula

3The results for the complete parameters are available upon request.
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model estimates a larger number of parameters likely diminishes the possible efficiency gains from

correctly specifying the distribution. Now, as mentioned before, while the probit PMNLS is not

correctly capturing the underlying conditional mean coefficients, it should provide the best probit

link approximation to the scaled coefficients. Since we know that both true unobserved hetero-

geneity variances equal 1, this will mean that the probit will identify and consistently estimate

β∗/
√
2. We note this value under the true conditional mean coefficients in Table 3.2. As can be

observed, the probit PMNLS approach is indeed quite close to these values. The remaining bias

is likely explained by the link misspecification and small sample sizes. Still, this implies that the

average partial effects recovered from using these scaled coefficients will likely be close to the true

effects, or at least as close as the marginal effects from a multinomial and probit specification can

be. As an example, the true average partial effect of xit1 on yit1 evaluated at xit1 = xit2 = 0 using

the multinomial logit link is 0.088. Averaging across the Monte Carlo simulations, I find that this

effect is estimated to be 0.084 on average from the multinomial logit link, and 0.077 from the probit

approximations, where both examples use the full 400 observations.

Table 3.2: Coefficients from a Multinomial Logit Link in a Gaussian Copula with Beta Marginals

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE
−1.033 0.459 −0.021 −1.524 −0.020 0.462
(0.107) (0.084) (0.084) (0.118) (0.093) (0.094)

Copula MLE
−1.122 0.500 −0.022 −1.628 −0.013 0.494
(0.115) (0.074) (0.074) (0.124) (0.082) (0.082)

Probit PMNLS
−0.729 0.257 −0.071 −1.052 −0.088 0.247
(0.054) (0.046) (0.044) (0.056) (0.046) (0.050)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

nT = 400

Multinomial QMLE
−1.027 0.444 −0.036 −1.555 −0.051 0.461
(0.073) (0.059) (0.059) (0.084) (0.067) (0.068)

Copula MLE
−1.113 0.495 −0.020 −1.627 −0.017 0.490
(0.083) (0.053) (0.052) (0.089) (0.058) (0.058)

Probit PMNLS
−0.726 0.252 −0.071 −1.051 −0.086 0.245
(0.038) (0.033) (0.031) (0.040) (0.033) (0.036)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

Note: Average coefficients and standard errors across 500 simulations for each estima-
tion procedure when data are generated from a Gaussian copula with beta marginals.
Standard errors are in parenthesis. For multinomial QMLE and probit PMNLS these
are robust to distributional misspecification in each iteration.
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3.2.2 Probit Data-Generating Process

To test an opposing situation to the one in the previous subsection, I now generate values from the

probit PMNLS model. To this end, I generate values of yitj , j = 1, 2 according to

yitj = Φ

(
x′
itj

βj√
2

)
+ ritj

where ritj ∼ N (0, 0.01) is an additional error term that is independent across units, time and

shares. The variance is set low enough so that the multivariate fractions stay within the unit

interval with sufficiently large probability after generation. This generation scheme assumes the

probit link has already integrated out the underlying unobserved heterogeneity and so it generates

directly from the conditional mean of Yitj given xitj . All remaining values stay the same as in the

previous scenario. Using this data-generating process, the values for RMSE can be found in Table

3.3 and the coefficients with associated standard errors in Table 3.4.

Table 3.3: RMSE for Coefficients from a Multivariate Nonlinear Least Squares with Probit Link

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE 0.207 0.270 0.157 0.266 0.208 0.193
Copula MLE 0.501 0.224 0.138 0.444 0.199 0.140
Probit PMNLS 0.033 0.038 0.021 0.100 0.026 0.087

nT = 400

Multinomial QMLE 0.168 0.298 0.162 0.230 0.265 0.206
Copula MLE 0.504 0.217 0.130 0.442 0.193 0.130
Probit PMNLS 0.029 0.034 0.016 0.098 0.018 0.083

Note: RMSE across 500 simulations for each estimation procedure when
data are generated from a multivariate nonlinear least squares conditional
mean with additive error.

As expected, the situation has reversed in comparison to the previous scenario. In this setting,

the likelihood-based methods no longer remain consistent to the new true value of the parameters

β0/
√
2. Their RMSE is erratic and their coefficients remain biased regardless of the sample size.

The standard errors for all approaches are also lower than in the previous scenarios, likely due to

the reduced variation introduced by the ritj additive errors in comparison to that from the copula

generating mechanism. On the other hand, the probit estimator now appears to be consistent with

RMSE decreasing with larger sample size. The estimates remain much closer to the true value in
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comparison to before, reflecting the correct specification assumption. Interestingly, using a similar

example as before, it appears that the probit link approximates the average partial effects much

better even when misspecified. In the previous example, the approximation was fairly close to

the averaged estimates from the multinomial QMLE APEs. This does not seem to occur in this

reverse scenario. Now, the true average partial effect of xit1 on yit1 evaluated at xit1 = xit2 = 0

using the probit link is 0.109. The average of the estimated APEs from the correctly specified

probit is 0.102, but the approximation by the multinomial logit is 0.084, which remains essentially

unchanged from the previous scenario. Thus, while it seems that the probit link adapts quite well

when it is misspecified, this does not seem to be the case for the multinomial logit QMLE.

Table 3.4: Coefficients from a Multivariate Nonlinear Least Squares with Probit Link

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Multinomial QMLE
−0.907 0.619 0.149 −1.319 0.198 0.538
(0.047) (0.049) (0.048) (0.057) (0.057) (0.058)

Copula MLE
−1.199 0.569 0.128 −1.497 0.188 0.477
(0.081) (0.056) (0.055) (0.094) (0.063) (0.062)

Probit PMNLS
−0.683 0.323 0.000 −0.964 −0.004 0.272
(0.023) (0.023) (0.022) (0.026) (0.024) (0.028)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

nT = 400

Multinomial QMLE
−0.868 0.635 0.126 −1.273 0.236 0.550
(0.033) (0.035) (0.034) (0.04) (0.041) (0.040)

Copula MLE
−1.209 0.568 0.124 −1.500 0.188 0.476
(0.056) (0.039) (0.038) (0.066) (0.044) (0.044)

Probit PMNLS
−0.682 0.324 −0.001 −0.964 −0.004 0.273
(0.016) (0.017) (0.015) (0.019) (0.017) (0.020)

β0/
√
2 −0.707 0.354 0.000 −1.061 0.000 0.354

Note: Average coefficients and standard errors across 500 simulations for each esti-
mation procedure when data are generated from a multivariate nonlinear least squares
conditional mean with additive error. Standard errors are in parenthesis. Maximum
likelihood methods use the fully robust standard errors.

3.2.3 Censored Data-Generating Process

Finally, consider a scenario that takes into account the possibility of having corner solutions ex-

pressed as structural zeros within the data:

y∗itj = x
′
itjβj + cij + εitj . (3.2.1)
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This creates the need to adjust the values previously used for generation, as the underlying latent

variable model (3.2.1) tends to yield too many zeros if the linear index induces a lot of variance on

Y ∗. Thus, I adjust the population values of the coefficients to β1 = (−0.2, 0.15,−0.2)′ and β2 =

(−0.15,−0.2, 0.15)′ and it is now assumed that the variances for both the unobserved heterogeneity

and the additive errors εitj are given by Γ = Σ with the diagonal components equal to 0.02 and

covariance 0.01. Furthermore, the covariates are generated from normal distributions with mean

equal to 3.5 and standard deviation equal to 0.25. Generating (y∗it1, y
∗
it2) and mapping to observable

multivariate fractions via (3.1.18) was found to produce approximately 20% censoring in the data.

This large proportion of zeros can be taken into account by using the Bayesian alternative given in

Estimator 4.

Table 3.5: Coefficients from a Bayesian Latent Dependent Variable Model

Method β1,0 β1,1 β1,2 β2,0 β2,1 β2,2
nT = 200

Mean −0.178 0.139 −0.191 −0.137 −0.222 0.175
Median −0.177 0.138 −0.190 −0.136 −0.221 0.174
Std. Dev. (0.058) (0.041) (0.046) (0.051) (0.04) (0.043)

nT = 400

Mean −0.197 0.141 −0.215 −0.121 −0.217 0.165
Median −0.194 0.140 −0.213 −0.120 −0.215 0.164
Std. Dev. (0.038) (0.029) (0.030) (0.035) (0.028) (0.029)

Note: Average posterior mean and medians across 500 simulations from a
latent dependent variable model. Standard errors are given as the standard
deviation of the chains.

For estimation purposes, given the conjugate priors outlined for the Bayesian estimator in

Section 3.1.3, all that remains is to specify the hyperparameters of these distributions. I choose

standard uninformative priors for the coefficients by setting β0 = 0K×1, B0 = 1,000IK , νΓ =

νΣ = D + 1 and RΓ = RΣ = ID. With these values, I executed the Gibbs sampling algorithm

outlined in Estimator 4 to find the posterior mean and median across from 5000 simulations after

a burn-in period of 1000. The results for the mean of these Bayesian estimates across 500 Monte

Carlo simulations can be found in Table 3.5. The parameter values can be seen to be close to the

appropriate starting values and get better with a larger sample size. Furthermore, the standard

errors, as measured by the standard deviation across the simulation chains is seen to also decrease

with sample size, as expected. These simulations showcase the simplicity of dealing with censoring
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using a Bayesian perspective with a data augmentation scheme.

Finally, Figures 3.1 and 3.2 give a graphical depiction of the posterior chains for the coefficients

in a single Monte Carlo draw. One of the major advantages of the Bayesian approach is its ability to

produce a complete distribution for each parameter of interest from which all proceeding information

is derived. As observed in the figures, the distribution of the coefficients centers around their true

values and most sampling steps are taken close to the median. Using the usual diagnostics, I also

confirmed that the chains satisfy the criteria for convergence to their stationary distribution.

3.3 Conclusion

Multivariate fractional outcomes can arise from many interesting applied economic problems. As

the literature has expanded to cover many interesting use of this data in statistics and econometrics,

there have not been many developments that are useful in a panel data context. This paper attempts

to fill that gap by introducing a wide range of methods for dealing with multivariate fractions in

a way that deals with the specific issues surrounding these limited dependent variables, while also

remaining flexible and robust enough to be widely applicable. First, a general maximum likelihood

estimator that allows for correlated random effects was introduced, and noted that it remains robust

to distributional misspecification. A second approach, and perhaps the one that will be most useful,

is a multivariate nonlinear least squares estimator with a probit link that allows for identification

of average partial effects and can incorporate endogeneity, arguably some of the most interesting

challenges in any particular application. A final approach that allows for directly incorporating

the zeros and accounting for this censoring was presented. In line with the literature of limited

dependent variable models, a Bayesian solution is found to be flexible and computationally feasible

comparative to other simulation-based alternatives.

As avenues for future research, it would be interesting to push the limits of these methods,

particularly for applications with many shares, such as budget share allocations across many goods.

Furthermore, it would be interesting to take these method to richer data sets that would allow to

explore additional possibilities for estimation and inference, while providing important answers to

problems where multivariate fractional outcomes can arise.
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Figure 3.1: Trace Plot of Coefficients for Latent Dependent Variable Model
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Note: Results from 5,000 simulations after a burn-in period of 1,000. The draws on the coefficients
integrate out the unobserved heterogeneity.

Note:
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Figure 3.2: Density Plot of Coefficients for Latent Dependent Variable Model
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Appendices

3.A Details on Integration Methods for MLE

The integrals given by the conditionally independent (3.1.6) and pooled (3.1.7) likelihoods can

be cast in a general way as the problem of numerically evaluating the following integral for some

function f : RD × Rp → R:

V ≡
∫ ∞

−∞
· · ·
∫ ∞

−∞
f(c, z)ϕD(c;0D×1,Γ) dc , (3.A.1)

where z ∈ Rp represents other possible arguments to the function. From Liu and Pierce (1994),

recall that the Gauss-Hermite quadrature allows one to evaluate the one-dimensional integral

∫ ∞

−∞
g(c, z) exp

(
−c2

)
dc ≈

S∑
s=1

wsg(as, z) , (3.A.2)

where g : R×Rp → R, the abscissas as denote the zeros of the S-th order Hermite polynomial and

ws are their corresponding weights.

3.A.1 Adaptive Quadrature

The adaptive approach to evaluate the multidimensional integral in (3.A.1) begins by transforming

the integrand as ∫ ∞

−∞
· · ·
∫ ∞

−∞

[
f(c, z)ϕD(c;0D×1,Γ)

ϕD(c;ω,Q)

]
ϕD(c;ω,Q) dc ,

By a substitution u = (2Q)−1/2(c− ω), this integral becomes

∫ ∞

−∞
· · ·
∫ ∞

−∞
2

D
2 |Q|

1
2 exp

(
u′u

)
f(c(u), z)ϕD(c(u);0D×1,Γ) exp

(
−u′u

)
du ,

where c(u) = ω +
√
2Q1/2u, Q1/2 is the matrix resulting from a Cholesky decomposition of Q

and |Q| is the determinant of Q. Defining the function h(c) = log f(c, z) + log ϕD(c;0D×1,Γ),

the adaptive approach estimates ω and Q as the mode and curvature at the mode, respectively, of
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h(c); i.e.,

ω̂ = argmax
c

h(c) ,

Q̂ =
∂2h(c)

∂c∂c′

∣∣∣∣
c=ω̂

.

Given that f(·) is taken to be a (potentially misspecified) distribution for the multivariate fractions

Y , then ω̂ can be interpreted as the posterior mode of c using likelihood f and a Gaussian prior

centered at 0. As noted by Liu and Pierce (1994), these estimators ensure that the log of the chosen

Gaussian density has the same scores and Hessian as f(c, z)ϕD(c;0D×1,Γ). It is in this sense that

this method is adaptive to the specific integrand.

Let as = (as1 , . . . , asD) and compute a∗s = ω̂+
√
2Q̂(1/2)as. As exp(−u′u) = exp

(
−u21

)
× · · · ×

exp
(
−u2D

)
, we can apply the univariate Gauss-Hermite quadrature process D times to solve the

multivariate integral yielding

Vadaptive ≈ 2
D
2 |Q̂|

1
2

S∑
s1=1

· · ·
S∑

sD=1

D∏
j=1

wsj exp
(
a′sas

)
f(a∗s, z)ϕD(a

∗
s;0D×1,Γ) (3.A.3)

3.A.2 Nonadaptive Quadrature

This method operates by noting that, since we are already starting from a function times a Gaus-

sian density in (3.A.1), we only need to deal with the correlation between unobserved heterogeneity

values before using Gauss-Hermite quadrature in each dimension. While there is no generally best

way of incorporating this correlation structure into the Gauss-Hermite procedure, Jäckel (2005)

describes one of the most numerically robust methods as follows. Using a singular value decom-

position, find U and Λ such that of Γ = UΛU ′. By a similar substitution to before, define

u = R′(2Λ)−1/2U ′c, where R is the resulting matrix from multiplying together (D − 1) planar

rotation matrices of 45° degrees each. Then, (3.A.1) becomes

∫ ∞

−∞
· · ·
∫ ∞

−∞
π−

D
2 f(c(u), z) exp

(
−u′u

)
du ,
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with c(u) =
√
2UΛ1/2Ru. This time, compute a∗s =

√
2UΛ1/2Ras. Thus, the desired approxi-

mation is given by

Vnonadaptive ≈ π−
D
2

S∑
s1=1

· · ·
S∑

sD=1

D∏
j=1

wsjf(a
∗
s, z) . (3.A.4)

3.A.3 Pruning

One final issue that is of interest for the computation of both (3.A.3) and (3.A.4) is the use of

pruning. Since some of the evaluation points will be given very small weights that might not

contribute much to the value of the integral, one can set these to 0 and decrease the amount

of function evaluations needed without sacrificing much precision. As the individual weights are

always multiplied together for any approximation, set ws =
∏D
j=1wsj . Given a threshold τS , the

idea of pruning is to use weights

w∗
s = wsI(ws > τS) ,

in each evaluation. While τS can be chosen to be any arbitrary constant designed to reduce

computational intensity without sacrificing numerical precision, Jäckel (2005) recommends using

τS = min
s

{ws}D−1 ·max
s

{ws} .

This is the value that I use throughout the paper for all integral evaluations.

3.B Derivatives for MLE and Probit Estimators

3.B.1 Scores for Independent and Pooled MLE

Starting from (3.1.6) or (3.1.7), replace the multinomial logit link (3.1.11) into F (Yit|Xit, ci;β)

and take logs to obtain

logF (Yit|Xit, ci;β) =

d∑
j=1

ytij

x′
itjβj + cij − log

1 +

D∑
p=1

exp
(
x′
itpβp + cip

) .
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Differentiating this equation with respect to some βk yields the usual multinomial score

∂ logF (Yit|Xit, ci;β)

∂βk
=

d∑
j=1

ytij [I(j = k)−mitk]xitk ,

= (yitk −mitk)xitk ,

where the last step follows from Yit ∈ Sd. We now have the derivative that would apply to the

logarithm of the integrand. Exchanging differentiation and integration, we then have

∂ℓ
(ind)
i (β,Γ)

∂βk
= L

(ind)
i (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ Ti∏
t=1

d∏
j=1

m
yijt
ijt

[ Ti∑
t=1

(yitk −mitk)xitk

]

× ϕD(ci;0D×1,Γ)

}
dci ,

(3.B.1)

for the likelihood assuming conditional independence and

∂ℓ
(pool)
i (β,Γ)

∂Γ
=

Ti∑
t=1

L
(pool)
it (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ d∏
j=1

m
yijt
ijt

 (yitk −mitk)xitk

× ϕD(ci;0D×1,Γ)

}
dci ,

(3.B.2)

for the pooled likelihood. The terms L
(ind)
i (β,Γ) and L

(pool)
it (β,Γ) represent the likelihood before

taking logarithms; i.e., the complete integrals. Stacking across all k = 1, . . . , D yields the total

score. The scores for Γ are similar and rely on the score for the normal distribution and the matrix

derivatives of Γ. They are given as

∂ℓ
(ind)
i (β,Γ)

∂Γ
= L

(ind)
i (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ Ti∏
t=1

d∏
j=1

m
yijt
ijt

Γ−1(ID − cic′iΓ−1)

× ϕD(ci;0D×1,Γ)

}
dci ,

(3.B.3)



122

for the likelihood assuming conditional independence and

∂ℓ
(pool)
i (β,Γ)

∂βk
=

Ti∑
t=1

L
(pool)
it (β,Γ)

∫ ∞

−∞
· · ·
∫ ∞

−∞

{ d∏
j=1

m
yijt
ijt

Γ−1(ID − cic′iΓ−1)

× ϕD(ci;0D×1,Γ)

}
dci ,

(3.B.4)

for the pooled likelihood.

3.B.2 Score and Hessian for Probit NLS

Starting from the objective function (3.1.14), we see that it can be written as a summation across

both t and j, such that

qi(αc) =
1

2

Ti∑
t=1

D∑
j=1

[yitj − Φ(x̃′
itjαjc)]

2 .

Taking the derivative with respect to some αkc yields

∂qi(αc)

∂αkc
= −

Ti∑
t=1

ϕ(x̃′
itkαkc)[yitk − Φ(x̃′

itkαkc)]x̃itk .

Stacking across k = 1, . . . , D gives the score as

∂qi(αc)

∂αc
= −

Ti∑
t=1


ϕ(x̃′

it1α1c)[yit1 − Φ(x̃′
it1α1c)]x̃it1

...

ϕ(x̃′
itDαDc)[yitD − Φ(x̃′

itDαDc)]x̃itD

 . (3.B.5)

Note that each element depends only on its respective coefficient and so ∂2qi(αc)
/
∂αkc∂αjc = 0

for j ̸= k. This then implies that the Hessian will be a diagonal matrix. Taking another derivative

with respect to some αkc and using dϕ(z)/dz = −zϕ(z) for any z ∈ R, we have that each diagonal

term will be of the form

∂2qi(αc)

∂αkc∂αkc
=

Ti∑
t=1

ϕ(x̃′
itkαkc){ϕ(x̃′

itkαkc) + x̃
′
itkαkc[yitk − Φ(x̃′

itkαkc)]}x̃itkx̃′
itk , (3.B.6)

for all k = 1, . . . , D.
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