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Abstract

Flexible Estimation Methods for Multivariate Fractional
Outcomes

By Santiago Montoya Blandon

Multivariate fractional outcomes are defined as vectors where each component is bounded to
the unit interval and together they add up to 1. This dissertation expands the available toolkit
for analyzing both univariate and multivariate fractional outcomes as well as their applications
to economics and other fields. As these variables arise naturally in several areas of applied
microeconomics, the focus is on cross-sectional and panel data. Emphasis is placed on providing
methods that are flexible and robust while exploring several approaches to modeling of these
outcomes in a variety of settings. In each chapter a different facet of multivariate fractional
outcomes is studied. The first chapter presents a semiparametric extension of a quasi-likelihood
estimator that is heavily used in applications with a univariate fractional outcome. As docu-
mented in the chapter, large biases can arise when the nonlinear link function is misspecified,
which can be countered by the use of our extension. The second chapter provides a unified
estimation methodology using copulas for multivariate fractional outcomes with a conditional
mean specification. This methodology satisfies the fractional and unit-sum constraints of the
outcomes, allows for cross-equation restrictions that are crucial in structural estimation, and
can handle variable selection. The final chapter extends both the existing and newly proposed
methods to a panel data setting, focusing on several robust alternatives and their numerical
implementations. All chapters use simulation exercises and applications to showcase the perfor-

mance of the proposed methods.
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Introduction

The analysis of multivariate fractional outcomes Y = (Y7,...,Yy) is prevalent in several fields such
as biology, chemistry, economics, geology, and others (Aitchison, 2003; Kieschnick and McCullough,
2003). The nature of the outcomes implies that they are both fractional (i.e., bounded between
0 and 1) and satisfy a unit-sum constraint across the d shares. These types of observations are
known as compositional data in the statistics literature and are characterized as belonging to the

d-dimensional simplex

d
S'={ () ERT0O<y; < Lj=1,...,d) yi=1p. (1)
j=1

Fractional outcomes arise naturally in economic applications when estimating a demand system in
which the dependent variables are given as expenditure shares on d different categories of goods
(Woodland, 1979; Barnett and Serletis, 2008). They are also central in other contexts such as in
finance, where they can represent portfolio shares allocated to different stocks (Glassman and Rid-
dick, 1994; Stavrunova and Yerokhin, 2012; Mullahy, 2015), in industrial organization and manage-
ment when discussing market shares for different companies within a given industry (Morais et al.,
2018), or in social choice when analyzing voting patterns in elections with several candidates (Katz
and King, 1999). Other applications for these outcomes include time of use in health production
functions (Mullahy and Robert, 2010), dividends and firm analysis (Loudermilk, 2007; Ramalho
and Silva, 2009; Sosa, 2009; Sigrist and Stahel, 2011), psychology (Smithson and Verkuilen, 2006;
Johnson and Mislin, 2011), among others.

This dissertation focuses on cross-sectional and panel data settings, as most analysis involving

multivariate fractional outcomes rely on such data structures, leaving aside most time series con-



cerns for future research.! The concepts are addressed in ascending level of complexity with respect
to the outcome of interest. That is, the first chapter addresses a method for a univariate fractional
outcome in a cross-sectional setting, the second chapter focuses on multivariate systems of fractions
again within the cross-section, and the final chapter on multivariate fractional outcomes in panel
data.

Across the three chapters several estimation methods are introduced and emphasis is placed
on both flexibility and robustness. The first chapter presents a semiparametric extension of the
robust estimator introduced by Papke and Wooldridge (1996). As documented within this chapter,
when the link function for the conditional expectation is misspecified, a situation that can easily
occur in practice, large biases in estimating the conditional mean parameters are bound to arise.
In order to avoid such biases, a nonparametric kernel estimate of the link function is paired with
a quasi-likelihood approach to obtain estimates of the conditional mean parameters. In essence,
by consistently estimating a link function instead of assuming it known, we are able to avoid the
biases associated to misspecification. While this creates a more computationally intensive method,
we show that it produces sensible results in both simulations and an empirical application, while
inference remains largely unaffected.

Computational considerations largely prevent a working version of this semiparametric esti-
mator in a multivariate setting, although such extension would certainly be possible. Heading
in another direction, the second chapter introduces a more general parametric framework using
copulas to study models for fractional outcomes that arise in both structural and reduced form
microeconometric approaches. Within this framework, the paper presents an estimation procedure
that simultaneously accounts for the specific distributional concerns with multivariate fractional
variables; the conditional mean structures that arise in many empirical models; and that allows
for both variable selection and cross-equation restrictions that become necessary in certain struc-
tural scenarios. This approach yields several other features. First, the use of copulas allow for
efficiency gains compared to other approaches while still accommodating a degree of robustness to
dependence structure misspecification. Second, structural demand estimation models can create

the need for variable selection, particularly in the presence of big data, which is taken into the ac-

'In Chapter 3 that assumes access to panel data, autocorrelation and other time series behavior is either accounted
for by using standard errors robust to these possible patterns or directly modeled depending on the context.



count. Third, this variable selection is handled using a Bayesian approach using regularization that
also guarantees correct inference. Finally, the paper presents a couple of technical contributions
in parametric copula models that arise when proving the consistency and asymptotic normality of
the resulting estimator.

The final chapter builds on the previous two and presents a comprehensive set of tools for the
analysis of multivariate fractional outcomes in a panel data context, which requires dealing with
unobserved heterogeneity in nonlinear models. It provides multivariate and panel extensions to
methods that are previously available in the literature and to those introduced in this dissertation.
Specifically, the paper presents several estimation procedures that should prove useful in differ-
ent situations. First, a maximum likelihood method that in at least two special cases allows for
identification and consistent estimation of conditional mean parameters and average partial effects.
Second, a multivariate probit estimator that provides excellent approximations to the average par-
tial effects, is computationally efficient, scales easily with the number of shares, and allows for
endogeneity. Finally, to deal with censoring introduced by structural zeros in the data, this chapter
introduces a Bayesian procedure using data augmentation. All these methods are tested in several

numerical exercises that showcase their applicability and robustness in different scenarios.



Chapter 1

Semiparametric Quasi Maximum
Likelihood Estimation of the

Fractional Response Model

Note: The content in this chapter is reproduced from Montoya-Blandén, S., & Jacho-Chavez, D. T.
(2020). “Semiparametric quasi maximum likelihood estimation of the fractional response model.”
Economics Letters, 186, 108769.

In the context of univariate fractional outcomes, this chapter proposes a kernel-based semi-
parametric quasi-maximum likelihood estimator (SPQMLE) which adapts Papke and Wooldridge’s
(1996) estimator to an unknown link function. The proposed adaptation inherits the nice proper-
ties of the original estimator, such as dealing with boundary values—where the response variable
is allowed to take values exactly equal to 1 or 0—and it is robust to potential misspecification in
the link function. Furthermore, the asymptotic properties are derived allowing for data-dependent
smoothing parameters as well as possible random trimming. By deriving the exact formula of
the asymptotic variance-covariance matrix for the proposed SPQMLE it is shown that there is no
estimation effect from replacing the unknown link function by a consistent nonparametric kernel
estimator.

A Monte Carlo experiment provides evidence that our method performs well in small-sample

settings, and this performance is comparable to the performance achieved by a benchmark maxi-



mum likelihood estimation method (MLE) and a correctly specified quasi-likelihood method, but
uniformly dominates methods with a misspecified link function. An empirical implementation of
the proposed estimator utilizing data from Papke and Wooldridge (1996) is also included. Our
point estimates are numerically smaller than those originally obtained in Papke and Wooldridge
(1996) and closer to the baseline linear regression model.

The remainder of the paper is organized as follows: Section 1.1 introduces the estimator along
with its asymptotic properties, Section 1.2 presents the results of our Monte Carlo simulation
comparing our method with other suitable candidates, while Section 1.3 presents the results of our

empirical application, and Section 1.4 concludes.

1.1 Estimator and Asymptotic Properties

1.1.1 Estimator

Assume one has access to an independent and identically distributed (i.i.d.) sample {y}, a;}"
from the joint distribution of (Y’, X’) where X and Y are k and d dimensional random vectors
respectively. We will assume that Y takes values in S2. Note that in this case, one can focus
the modeling strategy on one of the components of Y as the other will then be fully determined.
Specifically, we will center our attention on Y'(V), which we will hereafter denote simply as Y. Given
the characteristics of the data discussed before, we introduce the SPQMLE framework. Let the

following index restriction holds almost surely (a.s.)
E[Y|z:] = E[Y;|@;80] = m(zBo) (1.1)

for some By € B C RP and x; € X C RP, where & represents the support of X. We assume f(x|z)
is the density of X conditional on z = X’ with respect to a measure p. Our estimator for By is

based on the semiparametric quasi-likelihood function

£a(8) =~ S {usloal(@iB)] + (1 — o) log[1 — ()]} (12)
=1



where m(x}3) estimates the conditional mean M (xz}3) = E[m(x}B)|x;3], using a (leave-one-out)
Nadaraya-Watson estimator as m(x;3) = @(wéﬁ)/ﬂmg,@), where é(m;ﬁ) =1 T uiiG (@B —

~

z,8), f(z8) = L i G (@B — B) with Kj(v) = h='K(v/h), K(-) a kernel function, and
/ﬁn a possibly data-dependent bandwidth. As the dependent variable in this setting is not binary
but a fraction, the likelihood defined in (1.2) is inherently misspecified (even with a correctly
specified fixed m(-) function), and thus consistent estimation is guaranteed by the index restriction
in (1.1) and the conditions given in Theorem 1.1 (see Papke and Wooldridge, 1996, for possible
optimality properties of this quasi-likelihood in the class of the linear exponential family). Let
I{-} be the indicator function that equals 1 when its argument is true, and 0 otherwise. Then,
ti = H{f(a:fLB) > 7,} is a trimming function based on a preliminary consistent estimator of Sy,
denoted by 5, and 7, — 0 as n — oo at a rate satisfying Assumption 1.8 below. This estimator

could be obtained, for example, by maximizing (1.2) using t,; = I{a; € A}, where A € X is a

compact subset. The proposed estimator is then given by
3= a ax L . 1.3
ﬁ rg m6 X Ly (,8) ( )

1.1.2 Asymptotic Properties

We apply the results in Gourieroux et al. (1984) and Escanciano et al. (2014) to show that our
estimator of By in (1.1) defined by (1.2)—(1.3) is consistent and asymptotically normal. We begin by
listing the required assumptions, which set up the model and are needed to guarantee the properties

of kernel estimated functions. Throughout, C' will denote a generic positive constant.

Assumption 1.1. Identification of By: (i) there are no constant elements in @, (ii) the first
element of x, say x; is continuous and its associated component of By, say 81 = 1, and (iii) if
m(x'B1) = m(x'Bs) a.s. (with respect to the measure u) then 31 = (B2 (these are standard in
single index models, see for example Ichimura, 1993; Klein and Spady, 1993 and Li and Racine,

2007, pp. 251-253).

The following four assumptions are standard and limit the general set up (Assumptions 1.2—
1.3), introduce a general rth-order kernel (Assumption 1.4) and control the bias present in the

nonparametric estimations (Assumption 1.5).



Assumption 1.2. The observations {y;, «;}" ; are an i.i.d. sample from the joint distribution of

(Y, X'), satisfying E[|Y|?*%| X = x| < oo for almost all z € X’ and some § > 0.
Assumption 1.3. B is a compact set, and 3y € int(B).

Assumption 1.4. The kernel function K : R — R is bounded, symmetric, twice continuously
differentiable and satisfies: [ K(v)dv = 1, [v'K(v)dv = 0 for 0 < I < 7, and [ [v"K (v)|dv < 00
for some r > 2. Letting dY) K (v)/dv’ denote the jth derivative of K(-), we further assume that
for j = 1,2, |dVK(v)/dv| < C, and for some s > 1, |[dVK(v)/dv7| < Clo|~* for |v| > Lj,

0<Lj<OO.

Assumption 1.5. For all 8 and = € X, f(2'3), m(«’8), and f(x|z) are r-times continuously

differentiable in z = x’(3, with all functions and derivatives being uniformly bounded.

Assumption 1.6. The possibly data-dependent bandwidth ﬁn satisfies P, (a, < ﬁn <b,) —1as
n — 0o, for deterministic sequences of positive numbers a,, and b,, such that b, — 0, b>"n — 0 and

a’n/logn — oo, for r as given by Assumption 1.4.

The final assumptions adapt those in Escanciano et al. (2014) (specifically, see their assump-
tions 5, B.7, B.8, and C.1) to guarantee uniform convergence of the estimated functions and their
derivatives while allowing for data-dependent bandwidths such as those obtained by plug-in rules
and cross-validation (Andrews, 1995), as well as deal with random trimming. Let t,,; = I{x; € ./‘?n}
represent a trimming function where i’\n C X could potentially be the result of an estimation
procedure, such as a subset based on values of J? Let X, represent a deterministic set and define

tni = {x; € A, }, as well as the rate d,, = (max{log1/ay,,loglog n}/ann)1/2 + 0.

Assumption 1.7. The following two conditions are satisfied: (i) there is a sequence 7, of positive
numbers satisfying 7, < infgep zex, f(@'B), din/8 — 0and d,, /7, — 0; and (ii) P,(X; € X)) — 1

as n — oo and E[[tn; — tni|] = o(n=1/2).

Finally, in order to ensure that the estimated conditional mean asymptotically belongs to a suffi-

ciently well-behaved class, we can further introduce d,, = (max{log1/a,,loglogn}/a3n)/?.

Assumption 1.8. The rate d,,,, is such that d,,, = O(1).



The main result of the paper is summarized by the following theorem (a corresponding outline

for the proof can be found in the supplemental material)
Theorem 1.1. Given Assumptions 1.1-1.8, ,é\ 2 By and \/ﬁ(fj\— Bo) LS N(0,A~1BA~Y), where

B m/(X/,@())2
A‘E{ (X7Bo)[1 — m(X'Bo)]
(

/ b & 2
B-E { (e e ) ) (X = BLXIX Bl X - E[XIX’Bo])’} . as)

(X — BIX|X'Bo])(X — E[X!X’ﬂo])'} , (1.4)

Notice that, although semiparametric estimation introduces a correction term when compared
to the parametric case, equations (1.4) and (1.5) show there is no estimation effect from replacing
the unknown link function with a consistent estimator as in Ichimura (1993) and Klein and Spady
(1993).

Following Theorem 1.1, one can estimate the asymptotic variance-covariance matrix of ,@ as
follows: define §; = m(«3), U; = y; — i, and §; = M/ (z}B). Obtain & = BE[X;|!3] using

a Nadaraya-Watson kernel estimator and define @; = @; — ;. An estimate of the asymptotic

)
)
)
)

variance-covariance matrix of B is given by Aﬁar(,@) = A"'BA~! where
Z P wa ad B {A, G _ ] i, (16)
)" -

1.2 Monte Carlo Experiment

The following simulation study is conducted. The true values for the coefficients were set at
Bo = (1,8) = (1,—0.5) so as to satisfy the identification restrictions. Two covariates were generated
from a N (0, 1) distribution using sample sizes of n € {100,200,400,800}. To generate fractional
responses satisfying (1.1), the response variable is drawn as y; ~ Beta(m(x,80)¢, [1 — m(x;B0)]¢)
for i = 1,...,n, where m(-) is the Logit link (Ferrari and Cribari-Neto, 2004; Simas et al.,
2010). We generate data for several variance configurations given by the precision parameter
¢ € {1,5,25,50,100}. Small values of ¢ allow us to introduce bimodality in the distribution of y;,
as well as instances where y; = 0 or y; = 1, for which standard methods can fail.

As a benchmark, we use the beta regression method of Simas et al. (2010); a correctly specified

MLE. This methodology allows for analytically correct standard errors, as well as estimation of



¢ (results are available upon request). We compare performance with our method and four other
estimators, which implement the quasi-maximum likelihood (QMLE) methodology of Papke and
Wooldridge (1996) with different link functions.

We simulate 1,000 data sets for each sample size and variance configuration. We focus our results
on [ as the only free parameter in our semiparametric estimation. The results of our simulation
exercise are given in Table 1.1 and Figure 1.1. Table 1.1 presents the ratios of bias and standard
errors of all estimators with respect to the MLE benchmark. At modest sample sizes and variance
levels, as those with ¢ = 25 and n = 400, our method comes within 20% of the benchmark in all
performance measures. As expected, the correctly specified Logit link has remarkable performance.
This is in contrast to misspecified methods which perform poorly and remain biased regardless of
the sample size. We also note that inference is not greatly affected by our semiparametric method:
in some cases, standard errors can get to within 7% of those produced by the benchmark method.

Figure 1.1 gives a representation of the asymptotic normality approximation for estimators of
5. We observe how the estimator’s distribution grows closer to its asymptotic limit as the sample
size increases, for all variance configurations. Similar processes occur for the correctly specified link
estimator and the benchmark. The same cannot be said for the misspecified models, which fail to

correctly center and scale the distribution.

1.3 Empirical Application

This section reassesses the model in Papke and Wooldridge (1996) using the new SPQMLE intro-
duced in this paper. The authors use plan-level data on 401k accounts to estimate the effect of
the match rate (percentage of employees’ contributions matched by the firm) on the participation
rate of each plan (ratio of eligible to enrolled employees). Due to institutional considerations, the
match rate is not limited to 1 in the data set. The authors consider two separate estimations,
either restricting the sample by match rate or keeping the full sample; we only present the latter
here (restricted sample estimation can be found in the supplementary material subsection 1.C).
To control for plan and firm characteristics, the authors include as covariates the log of total firm
employment, age of the plan, their squares, and an indicator for whether the 401k was the sole plan

offered by the firm. The authors also show that non-linearities in the match rate are important
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when dealing with the full sample, and therefore include this variable squared.

We compute both the linear regression (OLS) and QMLE (with Logit link) estimates for the pre-
ferred specification. To make results more directly comparable to those of our introduced method,
we also estimate restricted QMLE models that mimic the identification conditions in Assumption
1.1: setting the intercept equal to 0 and the coefficient of a continuous variable, in this case age of
the plan, equal to 1. Finally, we compute the SPQMLE following the computational considerations
outlined in the supplemental material subsection 1.B.

Table 1.2 presents our results. We observe that both the OLS and unrestricted QMLE columns
correspond exactly to the results in Papke and Wooldridge (1996) for the appropriate specifications.
The restricted QMLE specification is not sensitive to the optimization method and resembles the
unrestricted model. Strikingly, we see that using the semiparametric approach actually leads to
results that are closer to OLS than to the QMLE proposed by the authors. Adding flexibility and
robustness to the specification through our method results in a move towards the baseline estimates.
This sheds light on the fact that assuming a specific link function in the QMLE approach might be
too restrictive and could potentially create bias problems such as those illustrated in our simulation
study.

To focus away from the coeflicient estimates and into more intuitive and comparable results, the
table also present an estimate for the average partial effect (APE) of match rate on participation
rate. In general, we observe that the APEs remain fairly close to one another, with the QMLE
one being the largest. Using the results from our SPQMLE method, we observe that a change in
the match rate of 10 percentage points (10 cents for every dollar contributed by the employees)

increases participation in the plan by approximately 0.9 percentage points.

1.4 Conclusions

We proposed a semiparametric extension of the parametric QML estimator in Papke and Wooldridge
(1996) that allows for flexible estimation of fractional response models and is robust to potential
misspecification of the link function. The main result in the paper proves the consistency and
asymptotic normality of the estimator allowing for data-driven smoothing parameter and random

trimming. We confirm through a Monte Carlo experiment that our estimator performs compar-



Table 1.2: Empirical Results with Additional Methods
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Dependent variable: OLS QMLE  Rest. QMLE®* Rest. QMLE? SPQMLE
Participation Rate (1) (2) (3) (4) (5)
0.143 1.665 1.660 1.655 0.188
Match Rate (0.008)  (0.104) (0.188) (0.179) (0.005)
—0.020  —0.332 —0.335 —0.334 —0.039
2
Match Rate (0.002)  (0.026) (0.050) (0.049) (0.001)
log(Emmployment) —0.099  —1.031 ~1.079 ~1.078 —0.100
BUHIPIY (0.012)  (0.110) (0.205) (0.031) (0.003)
log(Employment)’ 0.0050  0.0536 0.0461 0.0460 0.0048
BUHIPIY (0.0008)  (0.0071) (0.0117) (0.0035) (0.0002)
Ao 0.0056  0.0548 1.000 1.000 1.000
& (0.0007)  (0.0077) — — —
Aoe? —0.00007 —0.00063  —0.01931 —0.01931  —0.01246
& (0.00001)  (0.00018)  (0.00297) (0.00035)  (0.00001)
Sole Plan 0.0066  0.0643 0.1552 0.1523 0.0162
(0.0051)  (0.0498) (0.0785) (0.0785) (0.0042)
1.170 5.105
Constant (0.042)  (0.416) o o o
Average Partial Effect
PR 0.099 0.143 0.109 0.109 0.090
R? 0.182 0.197 — — 0.215
Log-likelihood — — —2,571.0 —2,571.0 —

Note: Match rate is unrestricted, leaving 4,734 observations at the plan level. Heteroskedasticity-
robust standard errors are in parenthesis. Restricted QMLE methods impose a 0 constant term and
normalized the coefficient of Age to 1: ¢ estimated using the augmented Lagrange optimization method
and ? estimated by iteratively re-weighted least squares with an offset given by the Age variable.

atively well with respect to the parametric maximum likelihood and correctly specified quasi-

likelihood alternatives.

practice, our method offers a robust alternative to existing parametric methods.

Appendices

1.A Proof

As practitioners seldom know the correct form of the link function in

Proof of Theorem 1.1 (Outline). First, consistency follows from an application of the uniform

consistency results for kernel estimators of Escanciano et al. (2014) as well as theorem 1 of Gourier-

oux et al. (1984). Note that our assumptions encompass those of Lemma B.4 of Escanciano et al.

(2014) and thus guarantee the convergence of m uniformly over 8 and the bandwidth, therefore
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that of the maximizing function in (1.2). Since we similarly satisfy conditions a of Gourieroux et al.

(1984) for the resulting likelihood of the linear exponential family, and given our index restriction

imposed in (1.1) as well as the identification assumptions, we guarantee consistency of B to Bo.
For the asymptotic normality part, we use a combination of standard Taylor expansion methods

with the uniform convergence and uniform representation results. Consider the first order conditions

0= ng 1 Z[y — (@, B)] (a8 (1.7)

where ¢ (z;8) = {M(x;B)[1 — M(z;B)]}~0m(x;B)/08|5_z, tni = H{F(@B) > T}, 70 — 0 as
n — 0o at a rate that satisfies Assumption 1.8, and B is a preliminary consistent estimator for By.

Performing a Taylor expansion yields

V(B — Bo) = Hjﬁ S (i — 7 (2,B0)]B (o) + 0p(1)
=1

where

0L,
0BIB |5_p

H, =—- and |8 — Bo| < |8 — Bol.

Following the index restriction, consistency of B, the uniform representation theorem and uni-
form consistency results of kernel estimators in Escanciano et al. (2014), the results in Gourieroux
et al. (1984), as well as the continuous mapping theorem, it follows that H, 5 A as previously
defined and

IZ B0)|P(;30) i = Z Bo)lv(x}Bo) + 0p(1) (1.8)

%\

where (2} B0) = {m(xBo)[1 — m(z;Bo)]} 10M(x.B)/98|s=p,- Note that

OM (z3)

b, =) B, (19)

which can be found either by the chain rule (Newey, 1994) or by a couple of Taylor expansions.
An application of the Lindeberg-Levy CLT yields n=/2 3" | [y; — m(2}80)]¢ (' B0) A N(0,B),
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so that finally,

V(B - Bo) 5 N(0,A7'BA™Y). O

1.B Computational Considerations

Since the SPQMLE has a similar structure to that of Klein and Spady (1993), for computation
purposes we will leverage the capacities of the np package in the R software (Hayfield and Racine,
2008). In particular, we make use of the npindex (..., method = ‘kleinspady’, ...) routine.
As a simplification, and to remain in line with the package’s computational strategy, estimation of
Bo will be performed jointly with the bandwidth ﬁn, which is allowed by our method as a data-
dependent bandwidth, i.e., (B, /l{n) = argmaxges h,eryy Ln(B, hn) (Hardle et al., 1993; Escanciano
et al., 2016). We modify the package to reflect the characteristics of our estimation method by
eliminating the requirement for binary data and correcting the variance-covariance estimator for-
mula in order to obtain valid statistical inference. All the numerical exercises in the paper make

use of this implementation.

1.C Empirical Application Table
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Table 1.C.1: Replication of Papke and Wooldridge (1996) with additional methods on restricted

sample
Dependent variable: OLS QMLE  Rest. QMLE® Rest. QMLE? SPQMLE
Participation Rate (1) (2) (3) (4) (5)
0.156 1.390 1.167 1.165 0.148
Match Rate (0.011)  (0.108) (0.195) (0.190) (0.013)
log(Employment) 0.112 1.002 1.036 1.036 0.095
(0.013)  (0.110) (0.199) (0.033) (0.004)
log(Employment)2 0.0057 0.0522 0.0434 0.0433 0.0048
(0.0009)  (0.0071) (0.0114) (0.0037) (0.0003)
Age 0.0060 0.0501 1.000 1.000 1.000
(0.0009)  (0.0088) — — —
Age? 0.00007 0.00052 0.02011 0.02011 0.01221
(0.00002)  (0.00021)  (0.00339) (0.00061)  (0.00001)
Sole Plan —0.0001 0.0079 0.1311 0.1302 0.0027
(0.0060)  (0.0502) (0.0814) (0.0813) (0.0043)
1.213 5.058
Constant — — —

(0.048) (0.421)
Average Partial Effect

of Match Rate 0.156 0.173 0.111 0.111 0.126
R2 0.143 0.152 — — 0.179
Log-likelihood — — —2,285.3 —2,285.3 —

Note: Match rate is limited to a maximum of 1, leaving 3,784 observations at the plan level.
Heteroskedasticity-robust standard errors in parenthesis. Restricted QMLE methods impose a 0 con-
stant term and the coefficient of Age being equal to 1: ¢ estimated using the augmented Lagrange
optimization method and ® estimated by iteratively reweighted least squares with an offset given by the
Age variable.
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Chapter 2

Copula Estimation and Variable
Selection with Multivariate Fractional

Outcomes

In microeconomics, multivariate fractional outcomes are salient in two strands of the literature:
structural microeconomics, specifically within demand system estimation, and reduced form re-
gression analysis. In both contexts, there are similar key model characteristics that need to be
taken into account.

First, most reduced form or structural models produce an estimating equation in the form of a

conditional mean such as

EY[X = x| = m(z, 8),

where Y represents the outcomes that take values in S¢; X are some covariates such as price,
expenditure, and functions of these and other variables; B represents the parameters of interest
that may or may not have a structural interpretation; and m(x, 3) = (my(x, 8),...,mgq(x,B3)) is a
vector of (possibly) nonlinear functions of covariates and parameters (Papke and Wooldridge, 1996,
2008). Example 1 in subsection 2.1.1 presents the conditional mean for the Almost Ideal Demand
(AID) model of Deaton and Muellbauer (1980), a widely used structural demand system. Exam-
ple 2 presents a multivariate fractional logit specification, which is a popular functional form for

regression analysis with multivariate fractional outcomes (Mullahy, 2015; Murteira and Ramalho,
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2016). This chapter starts from the conditional mean as the primary object and builds methods
that impose such specification while maintaining flexibility.

A second key fact is that variable selection can be crucial. For example, when the dimensionality
of the outcomes in structural demand systems is large or when many determinants of the allocations
are considered, selecting which effects remain important for determining household consumption
patterns is a variable selection issue. Additionally, there are meaningful ways in which the fit of
structural demand systems can be improved by considering polynomials to approximate certain
functions underlying the specification (Lewbel, 1991). The degrees of these polynomials would
then need to be selected from the data (Lewbel and Pendakur, 2009). Similarly, covariate selection
remains an important specification issue in reduced form models. It is thus necessary that the
methods used to estimate these models can also handle variable selection. Inference would then
need to be adjusted to account for the effect of selection, but this adjustment can be technically
complex (Knight and Fu, 2000; Chernozhukov et al., 2018). To address this issue, this chapter
employs Bayesian methods, which can incorporate selection via regularization in a similar way to
LASSO and its alternatives while inference remains simple (Park and Casella, 2008; Li and Lin,
2010; Leng et al., 2014).

Third, structural demand models usually impose constraints on the parameter vector 3 to satisfy
the economic regularity of the demand functions they produce. These are not only restrictions
within each equation of the conditional mean but may also include cross-equation restrictions
(Barnett, 2002). The AID model, for example, imposes homogeneity in expenditures and prices
as well as symmetry of the Slutsky matrix via these cross-equation restrictions, both of which are
important testable assumptions of the theory. Perhaps more important within this literature is the
idea of curvature that is encoded in the negative semidefiniteness of the Slutsky matrix (Blundell
et al., 2012; Chang and Serletis, 2014). Much of the research in demand estimation is thus dedicated
to introducing and analyzing the properties of different models that can both expand the theoretical
foundation of demand systems and capture important patterns in the data (Lewbel and Pendakur,
2009; Barnett and Serletis, 2008). In estimating these models, the first and third key facts are
considered at length in the literature, but the second fact is not generally taken into account. The
simplex nature of the multivariate fractional outcomes is also generally ignored by assuming an

unrestricted distribution for Y centered at m(x,3) (Barnett and Serletis, 2008). This chapter
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aims to correct this gap.

The main contribution of this chapter is to introduce a unified estimation procedure via copulas
that simultaneously incorporate all points discussed previously. That is, these methods impose the
fractional and unit-sum constraints of multivariate fractional outcomes, satisfy a conditional mean
regression structure, allow for variable selection with correct inference, and can incorporate cross-
equation restrictions. The use of copulas also broaden the possible dependence patterns between
each share in the system, which is a general concern in the compositional data literature (Aitchison,
2003). The chapter first presents two ways of constructing a likelihood using copulas. The marginal
distributions impose the conditional mean specification and satisfy the fractional restriction, while
the joint distribution captures the dependence structure and unit-sum constraint between shares.
The generality in constructing the likelihood functions allows for a unified way to estimate both
structural demand systems and reduced form models. As the maximum likelihood estimators
(MLE) arising from this construction are themselves contributions to the literature on multivariate
fractional outcome models, the chapter derives the asymptotic properties of these estimators in a
standard frequentist context before diving into a full Bayesian solution.

In order to handle model selection, the chapter then uses a general class of priors in a Bayesian
framework to augment the base estimators through the use of regularization (Park and Casella,
2008; Hans, 2009). This form of selection is also useful even in the case where the dimensionality of
the covariates is large or grows with the sample size (i.e., high-dimensional settings, see Li and Lin,
2010). Finally, the use of Bayesian methods guarantees that, even with a selection step, inference
is simple not only for the estimated parameters, but also for functions of interest computed from
these parameters. These include quantities such as average partial effects (APE) in reduced form
models or price and income elasticities after estimation of a demand system.

The chapter proceeds as follows. The next section introduces the specification of a parametric
likelihood constructed using copulas in two different ways. The properties of the resulting maximum
likelihood estimators are then analyzed. Section 2.2 introduces the class of prior distributions for
the coefficients of the conditional mean and outlines the Bayesian estimation algorithm. Numerical
exercises in Section 2.3 showcase the properties and flexibility of these estimators, as well as their
comparison with other methods available in the literature. Section 2.4 presents an application

of the proposed methods to the demand of transportation services in Canada from a structural
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demand system perspective. Section 2.5 presents the concluding remarks.

2.1 Methodological Framework

Existing methods for estimating models with compositional outcomes can be broadly categorized
into transformation and (possibly quasi-) likelihood-based methods. The former operate by taking
the shares in the simplex space S¢ to an unrestricted domain and then fitting a regression on the
transformed outcomes. Aitchison (1982, 1983) considers a multivariate normal distribution on the
additive log-ratio transformation of the share system, resulting in a seemingly unrelated regression
(SUR) framework with transformed outcomes (Zellner, 1962; Allenby and Lenk, 1994). More general
transformations have been considered in the literature and include the centered log-ratio (Aitchison,
1983), isometric log-ratio (Egozcue et al., 2003), and « (Tsagris et al., 2011) transformations. The
problem with using these methods in econometric modeling is that they induce properties that
complicate the recovery of the conditional mean of Y on X. As noted previously, this is the object
of interest in a regression framework and cannot be obtained after these transformations unless
implausibly strong assumptions are imposed, even in the simpler univariate case (see, e.g., Papke
and Wooldridge, 1996).

The latter likelihood-based methods impose certain distributional assumptions — which may
or may not need to be correctly specified (Montoya-Blandén and Jacho-Chévez, 2020) — to esti-
mate the coefficients associated with the variables in a regression framework using link functions
(see, e.g., Papke and Wooldridge, 1996, 2008). These include multivariate normal (Barten, 1969;
Woodland, 1979), Dirichlet (Hijazi and Jernigan, 2009) and fractional multinomial (Mullahy, 2015;
Murteira and Ramalho, 2016) regression models. The methods in this paper stand between full dis-
tributional assumptions and the quasi-likelihood approach. In particular, the few distributions that
can fit data directly on S? tend to have restrictive dependence structures between variables, such as
having all pairwise correlations be negative in the case of the Dirichlet distribution. Additionally,
while efficient if correctly specified, they are not guaranteed to be consistent if the distributional
assumption fails. On the other hand, quasi-likelihood estimation remains consistent while sacrific-

ing efficiency.! Not having a correctly-specified likelihood also precludes the use of the Bayesian

1Some efficiency could be recovered by imposing higher-order moment conditions (Gourieroux et al., 1984; Mullahy,
2015).
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approach and its advantages. This is why this paper combines copulas — expanding the possi-
ble dependence structure allowed between shares while adding robustness — with a full-likelihood

approach in order to take advantage of Bayesian methods in estimation, selection and inference.

2.1.1 Likelihood and Identification

The rest of this section outlines the construction of the likelihood function using marginal distri-
butions on a bounded support, which are then combined via copulas. This is done in a way that
respects the unit-sum constraint and imposes the conditional mean specification. Let (Y', X')’
be a (d + p)-dimensional random-vector, where Y = (Y7,...,Yy)’ takes values on S? and X has
support X C RP. Let H denote the true joint distribution of (Y”, X')" and Px denote the marginal
distribution of the covariates. Additionally, let Hy|x denote the true conditional joint distribu-
tion of ¥ given X = x and Hy,x denote the associated conditional marginal distributions for
j = 1,...,d. For notational convenience, these will be written as H and Hj, respectively, with
their conditional nature made clear within their arguments. Each marginal distribution satisfies
the fractional restriction; i.e., H;(y;|X = ) = 0if y; < 0 and H;(y;|X =) =1 if y; > 1 for
each j = 1,...,d and almost all x € X. As mentioned previously, the following conditional mean

specification is assumed to hold throughout.

Assumption 2.1. The joint distribution of (Y, X) satisfies
ElYj|X = z] = m;(=, Bo) (2.1)
for almost all € X, some K-dimensional By € B € R, and known functions m; : RP x RE & R,

such that 0 < mj(x,B8) <1lforallx and 8, j=1,...,d.

Note that this is a restriction on the family of conditional marginal distributions of Y. In order to
obtain sensible predictions, one should place an additional unit-sum constraint on the expectations:
Z;l:l mj(x,B) = 1. The following examples present a couple of popular functional forms in both

structural and reduced form models that satisfy Assumption 2.1.

Example 1. (Demand Estimation) As noted before, the almost ideal demand (AID) system is a
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popular model in demand estimation with a conditional mean specification m(x, 3) given by

d d d d
1
mj(z,B) = aj + Y _ yulogp + {loge—ao — Y aulogp — 3 > > i log pi logpg} (2.2)

=1 =1 k=1 I1=1

for all j = 1,...,d, where B8 = (ag,...,Qq4,T1,. .., Tdy V11, - -,Vad) are the structural parameters
and = (e,p’)’, so that the covariates represent total expenditures and prices. Additionally, the
following cross-equation restrictions are imposed to satisfy homogeneity of degree zero in prices
and total expenditure, as well as a symmetric Slutsky matrix: Z;.lzl aj =1, Z?:l T = 2?21 Vit =
Z?Zl vj = 0 and vj; = ;. Other demand systems exist, which extend the theoretical properties
and provide a better fit to the data. The most popular in the literature are the quadratic AID
(Banks et al., 1997), Minflex Laurent (Barnett, 1983; Barnett and Lee, 1985), and recently the exact
affine Stone index (Lewbel and Pendakur, 2009). After estimating these models, price elasticities
and other quantities of interest are computed for which standard errors are required. Demand
systems also generally admit a fully linear approximation that reduces each component of m(x, 3)
to an identity link on a single-index. All of these models rely on imposing parameter restrictions

to satisfy the unit-sum constraint, while not imposing the fractional constraint of the outcomes.?

Example 2. (Reduced Form) A model that specifies each component of m(x,3) as a link func-
tion on a single-index can also arise from several different contexts. It is commonly used when
a researcher wants to explore the relationship between covariates and outcomes with no particu-
lar structural justification in mind. However, these specifications also arise from some structural
frameworks when additional assumptions are imposed (Considine and Mount, 1984; Dubin, 2007).

For example, a model could take the form of a multivariate fractional logit (Mullahy, 2015):

—op@Bi) ___ for j=1 d—1
j—1 ’ .7 It I I
mj(w, B) = { i @B (2:3)
1

S T ep@ay  ori=d

where 8 = (B],...,08/_,)". Perhaps more interesting in these types of nonlinear models is the
average partial effect of variable k on outcome j, given by JE[Y;|X = x|/0z),. Inference about

this object is thus of great importance in an applied setting.

2The fractional constraint also guarantees positivity, a restriction that is generally ignored or checked only after
estimating a particular demand system, and is not imposed in the estimation process.
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An application of Sklar’s (1959) theorem allows for a representation of H using copulas as
H(yi,...,v4|X = x) = C(Hi(y1|X = x),...,Hq(ya| X = x)), where C(-) is a copula function
linking together the conditional marginals with & common across all distributions. The following

assumption on the underlying distributions will be important.

Assumption 2.2. The marginals H;,7 = 1,...,d and the copula C' admit density functions

conditional on X = x, which are denoted by h;,j = 1,...,d and c, respectively.

Given Assumption 2.2, the conditional joint density h(yi,...,yq|X = x) is well-defined as is the
unconditional density. Modeling can then take place in two steps. First, marginals F; are selected
for each outcome y;,j = 1,...,d from the general class of distributions on the unit interval that
satisfy Assumption 2.1 (denoted here as F). Then, a copula Cy can be chosen from class C. Taking

a parametric stance on the definition of the copula, the conditional joint can be expressed as
B a(ylX =2;6,¢) = Cy (Fi(y1| X = x;61), ..., Fa(yal X = 25 684); ), (2.4)

where 6 = (d7,...,0,)" € A are the parameters that govern the marginal distribution of each

component and 1 € ¥ defines the dependence structure between the variables in the copula. These

D

parameters are defined on the spaces A = x;-lzlAj C Ry,

where D; is the dimensionality of each
6;,j=1,...,d,and ¥ C RS. However, note that some issues arise when dealing directly with the
object defined by (2.4) in this context. Due to the nature of the simplex, there is a redundancy in
the sense that one of the variables can always be obtained from the others (Murteira and Ramalho,

2016; Elfadaly and Garthwaite, 2017). To illustrate this fact, take d as a base category and let

W =Y1+ -+ Yy 1. The distribution of Y; will then be given by
Fiyal X =) =1—Fy(1 —yq| X = x), (2.5)
where
Fy(w| X =x) = wjaoo,ljhznz,...,d—lpr(yl ++ Y <w Yo <ws, ..., Y1 Swg|X =x).

This probability is taken over the joint distribution of (Y7,...,Y; 1)’ conditional on X = @, which
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could be obtained from a second application of Sklar’s theorem.? Thus, F}; is completely determined
by the remaining components and a likelihood function based on this joint distribution would be
constant with respect to d4. As identifiability is a property of the likelihood, this implies that
d4 would not be identifiable separately from (87,...,d)_;)". In a frequentist context, nothing else
could be said about this remaining component. However, in a Bayesian framework, if there was
some prior information linking (d7,...,8/ ;)" and 84 together, it could be possible to achieve a
posterior updating of 4 conditional on the data (Poirier, 1998).

As an example of this identification failure, consider specifying a Gaussian copula with Gaussian
marginals (forgetting for a moment about the fractional restriction). The unit-sum constraint
that yields (2.5) would imply a singular covariance matrix between the components of Y. In a
demand estimation context, Barten (1969) explores these effects, showing how to perform maximum
likelihood estimation (MLE) of the parameters of the resulting demand system by eliminating one
of the equations.

This paper considers two ways of imposing a copula on a D-dimensional object with D =d —1
in a way that both the unit-sum constraint from the simplex and the conditional mean specification
in (2.1) are satisfied. For this reason and to simplify notation, some D-dimensional objects will
be used interchangeably with their d-dimensional counterparts, but their distinctions will be made

clear when necessary.

Copula Specification on Y

Consider placing a copula similar to (2.4) except that the object of interest is the D-dimensional

vector Y_g = (Y7,...,Yp)’, where the d-th component is taken as the base and is thus eliminated:

F(y_alX =z;6,¢) = Oy (F1(y1|X = x;61),..., Fp(yp|X = x;0p); ) . (2.6)

Now, while identification is no longer an issue, there is still the fact that F' has support on [0, 1]D .

That is, it places some probability outside of the set 7 = {(y1,...,yp) € RP : 0 < y; < 1,5 =

1,....,d; ijzl y;j < 1}, so that it does not correspond to a valid distribution on S¢ after marginal-
3This particular formula arises by considering the inverse transformation Y7 = W — Yo — .-+ — Yy_1,Ys =
Va,..., Y41 = Vg_1 and obtaining the marginal for W. Similar formulas would set Y; =W -Y; —---—=Y;_1 — Y41 —

-+ —Y4_; for some jin 1,...,d — 1 and integrate over the remaining components.



25

izing the last component. Additionally, generating values from the distribution in (2.6) would
yield draws that do not satisfy the unit-sum constraint with some probability. The amount of
density placed outside of 7 depends on the distribution of W as previously defined. The following
proposition gives the details of the general case from (2.5). All proofs can be found in Appendix

2.A.

Proposition 1. The cdf of W = Y1 + ...+ Yp conditional on X = x,68, and ¢ is given by

w—D+l pw—D+l—yp w—D+-Y1_p o yk 1 1
et X o) = [ [ - e
0 0 0 0 0 (2'7)

dF(y1,. ., YD—1-YD—1+1,-- - YD—1,Yp| X = x;0,9) ,

when w € (D —1,D—1+1] forl=1,...,D.

Based on this characterization, we can find Pr(Y_4 € T|X = x;0,%) = Fiy (1| X = x;4,1). Under
the following assumption, it is possible to obtain a density on Y_, given by the truncation of the

copula density to the set 7.

Assumption 2.3.A. The marginals F},j = 1,..., D and the copula Cy admit density functions

conditional on X = x, which are denoted by f;,7 =1,...,D and cy, respectively.

Then, by Assumption 2.3.A,

y-aX=w:84)
Fy (1| X =39, fyq€T,
Pyl X = z;6,9;T) = { WX

0 ify ¢ T,

fy—i| X =x;0,9)
Fy (1 X = z;8,4)

=ly-acT) (2.8)

where I(-) is the indicator function that takes the value of 1 if its argument is true and 0 otherwise.

The nontruncated density is given by
D
Fy—alX = 2;6,9) = ey (FL(pn| X = a;81),..., Fp(yp|X = x;6p);9) [ [ £;(;1X = =)
j=1

While this method of constructing a likelihood function satisfies the conditional mean specification

and unit-sum constraints, the possibly high-dimensional integral can be a complicated computation.
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Some algorithms, such as the AEP of Arbenz et al. (2011), are devised for the specific purpose of
approximating the integral in (2.7). This is used in the numerical implementation of the algorithm
to drastically reduce the computational burden compared to general multivariate integration or

Monte Carlo methods.

Copula Specification on Z

With the drawbacks outlined in the previous subsection, a second way of constructing a likelihood
is considered here that does not suffer from such computational complexity. This is achieved
by introducing a transformation step for the vector Y in order to impose more structure. Most
transformations mapping S to R% or R?~! have an inverse mapping with a closure structure; i.e.,
they take each vector component and divide it by the sum of the whole vector. The resulting
ratios make it so that recovering the conditional mean E[Y|X = ] from the transformation is
complicated and entails strong and implausible assumptions (Papke and Wooldridge, 1996). In
contrast, this paper employs a transformation that has a multiplicative structure for the inverse
mapping. That way, it is possible to obtain the conditional mean for Y on X. Assuming that

Yy is selected as the base variable again, the so-called stick-breaking transformation (Connor and

Mosimann, 1969) is used to produce new variables Z1, ..., Zy, such that
Zv=Yy, Z Y for j =2 d—1 d Z;=1 (2.9)
1= X, = T —i 1., orjg=2s,...,a—1, an d=1. .
-y

This mapping is denoted as s(Y) = (s1(Y),...,sp(Y))’, where Z; = s;(Y) for j = 1,...,D.
Note that after this transformation, Z; becomes fixed, which once again highlights the redundancy
problem in the original Y vector: it can be transformed into a lower-dimensional vector without
sacrificing information. Here, it is important to note that although any category can be chosen
as a base, subsequent analyses will depend on this base category. However, this failure to be
permutation invariant is generally not viewed as an issue in most of the econometric literature as
long as it is taken into consideration (Mullahy, 2015; Murteira and Ramalho, 2016).

Additionally, observe that Z = (Z1,...,Zp)" takes values in [0,1]”. Thus, placing a copula
structure on Z analogous to (2.6) would not need to be truncated as it would always satisfy the

unit-sum constraint of the original Y for any marginals and dependence structure. Therefore, the
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following distribution is considered:

G(z1,...,2p| X = w;w, &) = Cz(Gi (1| X = z;w1),...,Gp(2| X = x;wp); §) (2.10)
where w = (wi,...,wp)" € Q are the marginal parameters and £ € = are the copula parameters.
Here, similar to (2.6), Gj,j5 = 1,..., D are marginals respecting the fractional constraint, 2 =

X ]:1(2]- with each §; C Rjo, and = C R®. In order to satisfy the conditional mean specification in
.1), the restrictions given e following proposition must be imposed on the conditional means
2.1), th trictions gi by the following propositi t be imposed on th ditional

of Z.

Proposition 2. There ezist conditional mean functions E[Z;|X = x| = p;(x; 8,w,§) such that
the conditional mean for Y on X satisfies Assumption 2.1. In particular, any such objects that are

a solution to

[ZH <1—Zl m(:cwﬁ)‘X—:c}_ m;(z, B)

pi(x; B, w, &) + 1> Lony(z, B) 1— 37" my(, B)

(2.11)

will satisfy E[Y;| X = x| = m;(x, B), where Zj =7, - E[Z;| X = x|

Thus, by Proposition 2, we can sequentially find the conditional mean for Z in a way that imposes
Assumption 2.1. This means that by setting up the moments of Z in a specific way, the copula
would place a dependence structure on Y that is flexible and satisfies all the requirements for a
multivariate fractional response model. This, of course, requires the existence of the necessary
moments for a given copula Cz. The challenging part of applying Proposition 2 comes from
computing these cross-moments of Z. However, in an important special case, given by the elliptical
copulas with correlation matrix R, such as the Gaussian or t copulas, it is possible to show that
all cross-moments depend only on the elements of R. This is due to Wick’s theorem for elliptical

distributions (Frahm et al., 2003) and the consequences are explored in the following example.

Example 3. (Gaussian Copula) Take a system with d = 3 shares and let Cz be a Gaussian
copula with correlation parameter £. Additionally, let both Z; and Zs have beta marginals in a

mean-precision parameterization with precisions ¢; and ¢o, respectively. Write p; = pj(x; 8, w, §).

Then, E[Z1Z3| X = x] = £\/Var(Z1|X = a)Var(Z3|X = x) and the variance of a beta distribution
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in this parameterization is given by Var(Z;|X = x) = p;(1 — p;)/(1 + ¢;). Equation (2.11) would
then take the form p; = mq(, 3) for j = 1. For j = 2, it reduces to pg — by/u2(1 — p2) = ¢, where
b= (¢// 1+ 1)1+ ¢2)) /i1 /(1 — p1) and ¢ = ma(z, B)/[1 — my(x,B)]. This has the solution

W+ 2+ b/b? + 4c(1 —¢)
H2 = 202 + 1)

which exists in the real unit interval as long as ¢ < 1, which in itself is guaranteed by the unit-sum
constraint of the conditional mean functions m;(-),j = 1,...,d. In this setting, we have w; =
(p1, 1) and wy = (2, ¢1). This yields (2.1) for the Y transformed via the inverse transformation
(2.A.1).

This way of introducing dependency from the underlying Z to Y is quite flexible. Proposition
2 acts in a similar way to a method of moments approach; i.e., given the copula structure in (2.10),
the moments of Z are chosen to match those of Y. Thus, it is also possible to have additional
moments of each Y; be matched by those of the underlying marginals. The parameters in this
construction are then also written as 8. This implicit relationship depends on both the marginal
and copula parameters and is denoted by § = v(x; 3,w, £). In a practical application, a researcher
might only want to match the marginal moments of each Y; and not impose a full copula structure.
In this case, one could assume the Z to be independent of each other, reducing the conditional

means to
mj( ,8) '
1- Zl 1 ml( )

The other marginal moments can be matched given the simplification of independence. Even by

M](xaﬁaw7€)

assuming this independence copula, the resulting Y are still correlated, although the patterns of
this correlation are reduced. Consider again Example 3 but with Z assumed to be independent.
If independent beta marginals are combined in this way, it is possible to recover the generalized
Dirichlet distribution on Y, which is a more flexible alternative to the Dirichlet used in practice
(Connor and Mosimann, 1969).

As the Jacobian of the stick-breaking transformation is given by H?:l 1/(1 Z Y}), the next

assumption, which mimics Assumption 2.3.A, yields a distribution for Y.

Assumption 2.3.B. The marginals G;,j = 1,..., D and the copula Cz admit density functions
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conditional on X = x, which are denoted by g;,7 = 1,..., D and cz, respectively.

Then, by Assumption 2.3.B and a change of variables from Z to Y,

9yl X =x;6,€) = g(s(y)| X = x;4,&)

=cz(G1(s1(y)| X = x;61),...,Gp(sp(y)| X =x;0p), €) X

ﬁ 9;(y;| X = z:9;) (2.12)

1
=1 - 21 Vi

2.1.2 Frequentist Estimation and Asymptotic Properties

While the ultimate goal of this paper is to construct Bayesian estimators based on the joint distribu-
tions introduced in the previous subsection, to the best of my knowledge, the frequentist estimators
have not been previously explored in the literature. Therefore, for completeness and to present an
alternative to existing methods, the asymptotic properties of these estimators are derived in this
subsection and prior specifications are postponed until the next section.

The following assumptions are introduced in order to construct a likelihood function from both

(2.8) and (2.12).

Assumption 2.4. There is access to an independent and identically distributed (i.i.d.) sample of

size n from the joint distribution of (Y, X')’, given by {(y., z})'}1 ;.

Define Oy = (&',7')" and 87 = (§',&")’. The associated log-likelihoods are then given by

1
ty(8y) = > { log ey (Fi(y1,:| X = @i;61), ..., Fp(yp,i|X = xi;0p); )
i=1

. (2.13)
+ ) log f(y;il X = @i;8;) — log Fw (1| X = l’z‘;tsﬂ/’)}
j=1
and
lz(87) = %Z { log cz[G1(s1(:)| X = xi;01),...,Gp(sp(4:)| X = 2i;6p); €]
i=1
(2.14)

d
+ ) log g;(s; (y:)| X = ms; 5j)} ,

j=1
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where the Jacobian term in (2.14) is not included as it does not depend on 6z. Once these

likelihoods have been defined, a natural way to construct the estimators is

Oy = arg max (y (6y) and 6, = arg max/{z(0z). (2.15)
By EAXV 6,€AXE

The following assumptions guarantee identification and introduce correct specification of the mar-

ginals and copulas.
Assumption 2.5. (Identification)

1. F; and G are absolutely continuous and globally identified for j = 1,..., D and the same is

true for Cy and Cy;

2. For j=1,...,D (i) if mj(z, B1) = m;(x, B2) for almost all x € X then B; = B2, and (ii) X

must be such that Image(m;) = Range(m;).

Assumption 2.6.A. (Correct specification) (i) There exists ¢g € ¥ and § = (d,...,0, p) € A,
such that h(-|X = x) = f(-|X = x;d0,1%0) for almost all x € X; (ii) Similarly, there exists
& € Z and wy € Q, such that h(:|X = x) = g(-|X = x;d0,&) for almost all x € X, where

50 - U($;,60,W0,€0).

While identification of d depends solely on the marginals, the dependence structure parameter is
more sensitive to discontinuities. In particular, this identification can be compromised when the
covariates do not allow a wide range of the [0, 1]-domain to be covered in the regression structures
exploited in this paper (Genest and Neslehova, 2007; Trivedi and Zimmer, 2017). Point masses
on the marginal distributions could potentially be accommodated by robust correction techniques
(Martin-Ferndndez et al., 2003) or in a Bayesian setting by data augmentation (Smith and Khaled,
2012). All link functions usually considered in the literature satisfy Assumption 2.5.2.(i). These in-
clude functions on a single-index or those including additional parameters in reduced form models,
such as the nested logit or dogit models (Murteira and Ramalho, 2016). A simple way to guaran-
tee 2.5.2.(ii) is to have a continuous regressor with unbounded support and a nonzero coefficient
associated with it.

Combining all previous assumptions with the standard regularity conditions (see Appendix 2.B

and White, 1982) leads to one of the main results of the paper.



31

Theorem 2.1. Under Assumptions 2.1-2.6.A and reqularity conditions R1-R6, the resulting es-

timators é\y and §Z are consistent and asymptotically normal; i.e., for e € {Y,Z}, 5@ TN 0.0,

and
-~ d _
V(e — 0.0) 5 N(0,271(8.0)), (2.16)
where Z(0cp) = —E[0%0(0.,0)/00.00.] is the Fisher information matriz at the true parameter
vector.

~

Inference is easily obtained by plugging in —0¢(0.)/00.00. as an estimator for Z(6.(), where
e € {Y, Z}. Now, as the focus of the paper is estimating the coefficients associated to the conditional
mean, the full strength of Assumption 2.6.A is not necessary to obtain consistency and asymptotic
normality of the estimator from the copula on Y. A modified version of Assumption 2.6.A is

introduced next.

Assumption 2.6.B. (Possibly misspecified copula) There exists dg = (5671, e ,56’ p) € A such
that H;(:|X = x) = F;(:|X = x;6p;) for all j = 1,...,d and almost all x € X. However,
C(-) # Cy (+3%o) for all ¢y € 0.

The following lemma will be useful in proving an analog to Theorem 2.1 that uses Assumption 2.6.B
instead of 2.6.A. It presents a decomposition of the Kullback-Leibler (KL) divergence when dealing
with copula estimation, where the KL divergence between two distributions h and f, indexed by
some parameter vector 0, is defined as follows: KL(h, f;0) = Ep[log(h/f)], with E; denoting that

the expectation is taken with respect to distribution h.

Lemma 2.1. (KL divergence for copula likelihoods) Under Assumptions 2.1-2.3.A and reqularity
conditions R1 and R2, the KL divergence between the true distribution h, when f is defined by

(2.8), is given by

log c(HWM|X ==),.... Hp(Yp|X = z))
cy(Fi(V1|X = x;61),..., Fp(Yp|X = x;6p); )

Fw(1]X = w;oy>] |

KL(h, f;8y) = Ep

_l’_

(2.17)

D
ZKL(hj, fj:0;) + Ep | log

= (Y eT)

The main message from Lemma 2.1 is that the KL divergence can be decomposed into three parts:

the first term represents a measure of the divergence between the true and the assumed copula;
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the second are the actual KL divergences between the true and assumed marginals; and the third
is the difference between the true and derived log-probability that y is in the set 7. Using this
result, it is now possible to show that, as long as the marginals are correctly specified even if the
copula is not, the coefficients @y can be consistently recovered. In such a case, the 5 parameters
in the marginals converge to their true counterpart, while the dependence structure parameters Q//;
converge to the pseudo-true values that minimize the KL divergence along that dimension. In this
sense, the proposed estimator is semiparametric with respect to the copula; i.e., robust to copula

misspecification.

Theorem 2.2. Under assumptions 2.1-2.3.A, 2.4-2.6.B and regularity conditions RI1-R6, the
resulting estimator gy 1s consistent and asymptotically normal. In particular, PN oo and '@ 2 P*,

where ¥* is the value of 1 € ¥ that minimizes the Kullback-Leibler divergence. Additionally,
n * d — * * — *
Vit(By — 03) 4 N0, 7, (03) (07, (65)) (2.18)

where 0% = (8(,¥*') is the pseudo-true value, I,(05) = E,[0%log f(y:| X = x;;03;T) /060y 064, |
and Jp(03) = Ep[0log f(yi| X = x;;05;T)/00y - 0log f(yi| X = x;;05;T)/00% .

Theorem 2.2 is a specialization of the results in White (1982), tackling misspecified maximum
likelihood estimation, and thus expected values are taken with respect to the true underlying joint
distribution h. This result represents an additional advantage in this context, as some copulas have
a truncation probability, Fy (1|X = x;d,v) in (2.13), which is easier to compute than others.
Using these copulas will still recover the underlying marginal parameters while ensuring that the
dependence parameters are consistent to a meaningful counterpart; the computational burden is
therefore reduced. Furthermore, in the copula estimation context, it is not generally the case that
7,(65 ) has a block-diagonal structure, so that the full sandwich estimator is necessary to conduct

inference regarding (3. Consistent estimators of these matrices can be computed in a standard
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fashion by using

o~ 1 o 92 log f(yi| X = x4;0y;T)
Tn(Ov) =3 960" ’

11?61 Flyil X 0v;T) 0Olog f(yilX 0v;T) Y
PN og f(yi| X = x;;0y; 0g J\Yil A = Ti; Oy’;

=1

It is also simple to see why Theorem 2.2 does not apply to the estimator based on the copula on
Z. As Proposition 2 shows, the marginal parameters depend on the underlying copula parameters
& via § = v(x; B,w,€). If no & € E allows for a correct specification of the copula, the inferred
relationship cannot reflect the correct marginal structure. The preceding theorems introduce a
trade-off in the empirical analysis of copulas for demand estimation or reduced form models. While
the estimator of the copula on Y is robust to copula misspecification, it is more expensive to
compute. On the other hand, placing a copula on Z, particularly an elliptical copula, creates an
easier to compute model; however, it might be biased for computing the coefficients of interest.
This trade-off is explored numerically in Section 2.3 using Monte Carlo simulations.

This theorem also presents a powerful result whose proof is generally applicable to copula
estimation: correct marginals with misspecified dependence structure still leads to consistent and

asymptotically normal estimators. The result is formally stated in the next corollary.

Corollary 2.1. Let the support of Y be RP instead of S®. Under Assumptions 2.2, 2.3.A, 2.4,
2.5.1, 2.6.B and regularity conditions R1-R6, an estimator 6 = (8',4') based on (2.13) (without

the truncation probability) is consistent and has an asymptotically normal distribution as in (2.18).

This is a potentially overlooked result in the copula estimation literature, as most attention is cen-
tered on correctly modeling the dependence structure without focusing on the marginals.* Corollary
2.1 presents a contrasting view: if the attention is shifted to the marginals, the copula specification
parameters become nuisance parameters and the marginals can be recovered.

The estimators introduced in this paper cover several important cases in the literature. Several
marginals can be chosen such that the regression structure given in (2.1) is preserved. Examples

include the beta with a reparametrization (Ferrari and Cribari-Neto, 2004; Simas et al., 2010),

4This view is one usually found in most financial or actuarial applications, while the opposite tends to be true in
economics and econometrics (Charpentier et al., 2007; Trivedi and Zimmer, 2007).
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Figure 2.1: Dependence Patterns in Copulas

(a) (b) (c) (d)
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Note: (a) Beta marginals with §; = (0.5, 10),d2 = (0.5,10) and a normal copula with ¢y = —0.5; (b) Beta
marginals with ; = (0.7,10),d2 = (0.2,10) and a normal copula with ¢» = —0.5; (¢) Simplex marginals
with 8, = (0.5,1),0, = (0.5,1) and a normal copula with ¢» = 0.5; and (d) Beta marginals with §; =
(0.8,10),82 = (0.8,10) and a FGM copula with ¢ = —0.5.

simplex (Song and Tan, 2000; Liu et al., 2020), truncated normals, and skew-normals (Martinez-
Florez et al., 2020). Furthermore, there are many methods to create new distributions on the
unit interval that satisfy this restriction (Rodrigues et al., 2020). Some distributions can even
be made to handle point masses at the extremes to deal with boundary values that can occur in
the data and that can be hard to introduce into a parametric analysis (Papke and Wooldridge,
1996; Martin-Fernandez et al., 2003; Smithson and Shou, 2017). Once these marginals are selected,
general copulas can be used to link them in a flexible way. As an example of this flexibility inherent

to the copula approach, Figure 2.1 plots the densities under several configurations of marginals,

copulas, and their parameters, obtaining a wide array of possible distributional shapes.

Example 1. (Continued) Now, as one of the objectives of the paper is to be able to deal with the
type of cross-equation restrictions that arise in the estimation of demand systems, it will be useful

to consider the more general estimator for e € {Y, Z} given by

6 = arg max (,(9)
0.€0. (2.20)

subject to AB =a and BB < b,

where Oy = A X ¥ and Oz = A x Z. Implementation of these types of (possible) cross-equation
restrictions is simple in the full-likelihood estimation case. This is in contrast to the alternative

two-step approach known in the literature as inference functions for margins (IFM), which first
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estimates d and then 1 or & (Joe and Xu, 1996). Imposition of cross-equation restrictions in this
framework is complicated and usually leads to larger efficiency losses (Joe, 2014). However, an
issue with the full estimator is numerical instability. The Bayesian approach can further aid in this
issue, as the introduction of prior information usually leads to posteriors that are less flat than the

likelihood in the regions of the parameter space that are of interest.”?

2.2 Priors and Variable Selection

Armed with the likelihood function, prior distributions on the parameters can be imposed to carry
out Bayesian estimation, which produces posterior distributions for 8. Inference then follows from
a measure of uncertainty or from credible sets of these posterior distributions. Model selection
in a traditional sense would follow from the same probability rules and yield posterior model
probabilities that could be used for both selection and averaging. Instead, the objective of this
paper is to further augment the proposed estimators to handle covariate selection by introducing
regularization. This is done to leverage recent results on Bayesian analogs of the LASSO and
related estimation methods (Tibshirani, 1996). Furthermore, the Bayesian framework allows the
researcher to obtain statistical inference through simple numerical methods. Such a framework
would be useful even in contexts where the dimensionality of the covariate space is large or grows
with sample size, as occurs in high-dimensional settings (Li and Lin, 2010). In demand estimation,
this could correspond to approximating the indirect utility or cost functions to an arbitrarily large
degree of precision using polynomials and interaction terms, which can aid the performance and
economic regularity of the resulting models (Chang and Serletis, 2014). Additionally, a researcher
would need to obtain inference on functions of the parameters, such as the price elasticities in
demand estimation or average partial effects in reduced form models. Frequentist methods rely
on the Delta method or variants of bootstrapping to produce this inference, but they are either
computationally complex or not supported theoretically.® On the other hand, Bayesian methods

can produce inference for these objects at no real additional computational cost apart from the

5This property of Bayesian methods have made them very popular in macroeconomic modeling (see, e.g., Sims
and Zha, 1998).

SFor example, Koch (2015) and Mullahy (2015) deal with inference on the average partial effects for the multivariate
fractional logit by using different kinds of bootstrap methods. However, the validity of these bootstrap methods is
never assessed.
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estimation itself.

The driving idea behind this framework is that regularization can be applied to any globally
convex function, such as the negative of the log-likelihoods given in (2.13) and (2.14) (Zou and
Hastie, 2005; Tibshirani et al., 2012). Thus, to automatically include a selection step, the objective

function could be augmented to solve

arg min{—(c(6.) + pa(8)} (2.21)
0.€0.

where the covariates are now assumed to be standardized and px(8) is a penalization term of the
regression coefficients that is indexed by a vector of regularization parameters A = (Ay,...,\y) . It
is assumed that only the B or a subset of them are penalized, as these coefficients directly interact

with the covariates to define the conditional mean.

Example 4. (LASSO and group LASSO) Useful forms of the penalty could be given by

L
pA(B) = (Bl or pA(B) =AY _ 1Bl (2.22)

=1
where 8 = (831, ...,8}) so that there is a partition of the coefficient vector into L groups and |- ||
and || -||2 are the L' and L? norms in Euclidean spaces, respectively. The first penalty is the usual

LASSO, whereas the second takes the form of the group LASSO (Yuan and Lin, 2006).

While frequentist methods can be used to solve (2.21), a Bayesian solution to this problem
is still attractive. Frequentist penalization methods act such as LASSO act by simultaneously
imposing shrinkage and selecting relevant features. The Bayesian framework can also naturally
impose shrinkage into estimation by virtue of prior information. Recent literature shows how
this pattern of Bayesian shrinkage can replicate those introduced by LASSO or its alternatives
and how selection can be achieved (Park and Casella, 2008; Li and Lin, 2010; Leng et al., 2014).
The connection between both methods was recognized at the onset of the penalized regression
literature and the introduction of the LASSO, which can be obtained from a Bayesian interpretation
(Tibshirani, 1996; Rockova and George, 2018).

However, the main consideration for adopting a Bayesian framework is its ability to obtain

inference through simple probabilistic concepts (Kyung et al., 2010). Frequentist methods initially
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focused on fast coefficient estimation and tuning of the penalty parameters, but were generally
unsuited for inference due to their nonstandard limiting distribution (Knight and Fu, 2000). Ad-
vancements in the literature have introduced different ways to circumvent this issue. These in-
clude approximations to the objective function (Tibshirani, 1996; Osborne et al., 2000; Wang and
Leng, 2007), bootstrap (Knight and Fu, 2000; Hansen and Liao, 2019), use of nonconcave penalties
(Fan and Li, 2001; Ning et al., 2017), inversion of Karush-Kuhn-Tucker conditions (also known as
“desparsification”, Javanmard and Montanari, 2014; van de Geer et al., 2014; Zhang and Zhang,
2014; Breunig et al., 2020), post-selection inference (Belloni et al., 2014, 2016; Lee et al., 2016), and
double or debiased machine learning (Athey et al., 2018; Chernozhukov et al., 2018).” Most of these
advancements involve linear regression and instrumental variable models, while some cover up to
generalized linear models, which provide sufficient structure to the problem (Fan and Tang, 2013;
Ning et al., 2017). The regression structure with the likelihood functions considered in this paper
do not fall into these categories. Furthermore, the necessary technical conditions to adapt some
of the previous methods that are sufficiently general to cover this setting are still unknown and
left for future research. A Bayesian specification, on the other hand, is easy to establish without
additional technical considerations and provides statistical inference as a by-product of the esti-
mation algorithm. Additionally, the Bayesian framework can attach uncertainty to the estimates
of nonselected variables — those estimated to be 0 — whereas this cannot be done satisfactorily
under most methods in the frequentist approach. While this paper implements model selection
by using the class of priors defined below in (2.23), several alternatives exist within the Bayesian
literature (Chipman et al., 2001; Ishwaran and Rao, 2005; Yuan and Lin, 2006; Yen, 2011; Rockové
and George, 2018).

To complete a Bayesian specification of the problem, this paper considers a general class of priors
that implement regularization in an analog way to the usual frequentist solutions. For simplicity,
it is assumed hereafter that the marginals can be entirely described, conditional on X, by using
the vector of coefficients 3 and precision parameters ¢ = (¢1,...,¢p) € ® C RP. That is, we can
write 8; = (B',¢;) forall j =1,...,d, or § = (3,¢')". The ¢ are precision parameters such that

for a fixed mean, larger ¢ imply smaller variances and as ¢ — oo, the distribution degenerates

"Double machine learning methods are also connected to resampling ideas, which can be given a Bayesian inter-
pretation (Smith and Gelfand, 1992).
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to the mean value (Ferrari and Cribari-Neto, 2004). This is the case for all marginal distributions
considered in the paper.

Most work on adapting the LASSO-type estimators to a Bayesian context shows that, essentially,
different penalties are implemented by changing the priors in a systematic way (Park and Casella,
2008; Hans, 2009; Kyung et al., 2010). Furthermore, different representations of the Bayesian
interpretation of the priors alters both the theoretical and computational properties of the solutions.
This idea leads to the following general class of priors m(3) to handle estimation and model selection

in this framework:

7(B) xcexp{ ~ 5a(8)} . (2.23)

Example 4. (Continued) For the penalties in (2.22), these priors can be implemented using a

hierarchical Bayesian approach. For a LASSO penalty, the following hierarchy achieves the desired

results:
B, ..., 7k ~ Nk(0,D,), D, = diag(ry,...,7TK),
)\2
74| A2 ~ Exponential <2> k=1,... K,
where N represents a multivariate K-dimensional normal distribution, 71, ..., Tk are hierarchical
parameters, and diag(7y,...,7x) represents a K x K diagonal matrix with the diagonal given

by its arguments. This hierarchical structure borrows from the linear regression framework, but
its properties hold remarkably well in these nonlinear settings (Park and Casella, 2008). For the

group-LASSO penalty, a similar structure can implement this prior distribution:

Bl ~ N, (0,7Ir,),l=1,...,L,

Li+1 N
77|)\2~Gamma( 1+ ),lzl,...,L,

2 72

where L; is the number of elements of each group, there are a total of L groups, and Iy, is the

identity matrix of order L; (Kyung et al., 2010; Leng et al., 2014).

Thus, the complete specification would yield 7(3, ¢, ) = w(8)7(¢)m(1)). Priors on ¢ can be

placed in a standard fashion for each precision parameter; say, by choosing a flat Jeffrey’s prior, a
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Gamma distribution, or an adjusted Scaled-Beta2 distribution (Pérez et al., 2016; Ramirez-Hassan
and Montoya-Blandén, 2020). The prior on &, on the other hand, is dependent on the class of
copula functions considered. For example, for a Gaussian copula whose dependent structure is
characterized by a correlation matrix, a plausible prior could be given like the one in Lewandowski
et al. (2009). If d = 3 so that only D = 2 shares need to be modeled, the dependence reduces to
a single correlation parameter and flexible alternatives can be placed as priors, such as a diffuse
uniform distribution on the support [—1,1] or (modified) beta distribution (LeSage, 2004; Smith
and Khaled, 2012). Additionally, in the Bayesian framework, the tuning parameters A can either be
chosen by a suitable method such as the expectation-maximization (EM) algorithm or they can be
given hierarchical priors to remain fully consistent with the paradigm. Given the complex nonlinear
nature of the likelihood function constructed in this paper, it becomes simpler to tune a hyperprior
for A. The most popular example sets a gamma prior on A\? for both LASSO and group-LASSO
penalty parameters (Park and Casella, 2008; Kyung et al., 2010). Finally, although constraints can
be implemented in a frequentist solution to (2.21) as in Gaines et al. (2018), Bayesian constraints

are also consistently implemented as support restrictions on the prior distributions.®

Example 1. (Continued) There are meaningful ways in which sparsity and selection can play a role
in the estimation of structural demand models. Consider the matrix form of the AID equations
(2.2). Assuming that the expenditure and price variables are already defined in terms of their
logarithms, we can write € = e — ag — o&’p — (1/2)p'T'p so that m(x,3) = a + I'p + wé. One could
allow further flexibility into the model by allowing polynomials on é of varying degrees, such as
Blundell et al. (1993), which includes a second degree term, or Lewbel and Pendakur (2009), which

empirically decide on including up to 5 terms.? Incorporating these ideas, one could in general

write
R
m(z,B) =a+Tp+ > mé, (2.24)
r=1
with 8 = (ap, o/, T, 7}, ..., 7). It is then apparent that choosing R is a model selection issue

8For example, in the context of demand estimation, curvature can be imposed via support restrictions in the AID
model (Geweke, 1989; Tiffin and Aguiar, 1995).

9While these models are derived from different structural assumptions compared to the AID system, this framework
is kept for simplicity.



40

that could be undertaken using the penalties in (2.22). The group LASSO penalty is particularly
suitable as one would naturally select or exclude together the d-dimensional vectors m, from all

equations.

Example 2. (Continued) In a similar fashion, the reduced form approach outlined in (2.3) could
benefit from the feature selection accomplished by the class of priors considered in this paper. Let-
ting the dimensionality p of the covariate vector x be large and assuming there are some redundant
variables that should be excluded from the model, the penalized model will be more suitable. Fur-
thermore, this setup also naturally lends itself to a grouped penalty structure, as the coefficients
associated to the same variable in different equations can be placed together to form each group.
Furthermore, if the goal is to introduce a correlation between the selected coefficients in a more
structured manner, the fused-LASSO penalty of Tibshirani et al. (2005) could also be introduced.

In all cases, A controls the strength of the regularization imposed into each penalty.

Based on previous considerations, the following steps summarize a way to estimate and obtain

inference for the Bayesian regularized copula regression model:

Step 1. Let F represent the class of marginal distributions satisfying the fractional and index

restrictions (2.1). Choose Fj,Gj € F forall j=1,...,D.

Step 2. Let Cp represent a class of copula functions of dimension D. Choose Cy,Cyz € C. Together
with the previous step, this allows us to find likelihood functions f(Y'|X, 3, ¢,%) and
G(Y|X,B,6,€) by (2.13) and (2.14).

Step 3. Choose a prior distribution 7(0y) and 7(0z) that belongs to the class outlined in (2.23).
If constraints of the form AB = a and B3 < b are present, the support of the prior
distribution should be modified to the set A such that these constraints hold. Include a

prior distribution for A.

Step 4. Combine the likelihood function and the prior distribution via Bayes’s theorem to obtain
the posterior distribution 7(8, ¢, %|Y, X) and (3, ¢, £|Y, X). Point estimates  can be

obtained as the mean, median, or mode from the posterior.'? Inference can be obtained as

19The posterior mean is optimal in a decision-theoretic framework as it minimizes the squared loss. Similarly, the
median minimizes the absolute value loss and the posterior mode does so with a zero-one loss. In particular, most
Bayesian LASSO analogs target a mode interpretation to their frequentist counterparts but use the posterior mean
and median for simplicity.
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a credible set of the posterior; for example, using a highest posterior density interval of a

given probability coverage.

A second way to implement a Bayesian solution is through the use of a least squares approx-
imation (Wang and Leng, 2007; Leng et al., 2014). Given Assumptions 2.1-2.6.A, the likelihood

function can be approximated by a Taylor expansion as
~ 1 ~ ~ ~
le(0e) =~ L(6,) + 5(6’e —0.)Z(6.)(0. —8.), (2.25)

where 0, is the MLE in (2.15) for e € {Y, Z}. Employing the same algorithm outlined previously
with this expansion of the likelihood yields an approximate Bayesian solution for which closed
form conditionals exist. Thus, this procedure could be implemented via a simpler Gibbs-sampling
algorithm for which theoretical properties are readily available.

Furthermore, by virtue of Lemma 2.1 and standard results for parametric Bayesian estimators,
Bayes estimates 6 found from this algorithm are also consistent (Strasser, 1981; Bunke and Milhaud,

1998). For convenience, this is stated in the following theorem.

Theorem 2.3. (i) Under assumptions 2.1-2.6.A and regularity conditions R1-R3 and R7-RY,
then 6., defined as a mean, median, or mode of the posterior distribution m(0.|Y,X), is

consistent; i.e., 0, 2 0.0, foreec{Y,Z}.

(i) Under Assumptions 2.1-2.3.A, 2.4-2.6.B and regularity conditions R1-R3 and R7-R9, then
Oy as defined above, is consistent to the minimizer of the Kullback-Leibler divergence; i.e.,

6 % 05, where 0% = (8}, ")

2.3 Monte Carlo Study

To test the performance of the estimator defined by (2.15) as well as the theoretical properties found
in the previous two sections, a range of numerical exercises is conducted. These follow the structure
of Examples 1 and 2, and change the form of the conditional mean function. Data are simulated
from several scenarios that maintain the conditional mean as correctly specified; link function

misspecification would be a source of bias distinct to likelihood misspecification (Montoya-Blandén
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and Jacho-Chavez, 2020). Numerical optimization of the log-likelihoods (2.13) and (2.14) produce
estimates 56 for e € {Y, Z}. To simplify the exposition of the results, the main estimation method
used is one that assumes a Gaussian copula and beta marginals. That is, the copula density c.(+)

takes the form

‘I)fl(ul)
1
ce(U1,...,up) = exp | — 1 1 R'—-1 ,
<I>_1(UD)
where u;,j = 1,..., D are the pseudo-observations found by transforming the variables through a

distribution function, R is a D x D correlation matrix with elements in the lower triangular block
given by the vector of copula parameters v, and ®~!(-) is the quantile function for the standard
normal distribution. The pseudo-observations are computed using the marginal distributions; in

this case, a beta in a mean-precision parameterization so that for each jin 1,..., D, u; is given by

Yi F((Z)J) m;(x;8)0; (1 _ \[1—m;(x;8)]0; d
/o L[mj(z; B;)IT[[1 - mj(w;/@)]@]t 4= b

UjE

where I'(+) is the gamma function. Additional combinations using different marginals and copulas,

along with other extensions, can be found in Appendix 2.C.

2.3.1 Reduced Form

Due to the ease of simulating from a reduced form setup, the paper focuses on this example first.

A multivariate fractional logit structure as in (2.3) is imposed for d = 3 shares; i.e.,

o exp(z'B1)
EM|X =] =4 +exp(a'f1) + exp(a/'Ba) ’
E[Y2| X = x] = D s

1 +exp(a/B1) + exp(x/Bz) ’

and E[Y3|X = «] = 1 - E}1|X = z] — E[Y2|X = z]. True coefficient values are set at
B1 = (—1,0.5,0) and B2 = (—1.5,0,0.5). Two covariates, z; and x3, are generated independently
from a standard normal distribution. For the first exercise, beta marginals with a mean-precision

parameterization are used, setting ¢ = ¢o = 10. A Gaussian copula with a correlation parameter
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of ¢ = 0.5 links the two free marginals together. Values for y are generated via rejection sampling
for sample sizes n € {100, 200,400,800} and 1,000 simulations under this setting. No constraints
are set on B but the natural nonnegativity constraints on ¢ and 1 belonging to (—1, 1) are imposed
to guarantee numerical stability. Aside from the copula estimators introduced in this paper, several
competing estimation methods are implemented. First, the multivariate fractional quasi-likelihood
method (Mullahy, 2015; Murteira and Ramalho, 2016) is estimated as a flexible alternative and
multivariate generalization of the popular estimator proposed by Papke and Wooldridge (1996).
This estimator should remain consistent regardless of the generating distribution as it only relies
on a correctly specified conditional mean. The next method is a Dirichlet distribution using a pa-
rameterization similar to the beta (Hijazi and Jernigan, 2009; Murteira and Ramalho, 2016). As a
Dirichlet distribution is a special case of the beta marginals with a copula on Z, their performance
should be similar. Finally, the additive log-ratio transformation regression of Aitchison (1982) is
used as a simple alternative that requires no real modeling choice. This procedure is equivalent
to a SUR model on the transformed outcomes; given the assumption of common covariates across
shares, it further simplifies to estimating D equations by ordinary least squares (OLS). However,
as previously noted, this procedure will not recover the true conditional mean.

Results from this first exercise are presented in Table 2.1 in terms of the root mean squared
error (RMSE) across 1,000 simulations. We can observe the consistency of the proposed methods
as the RMSE shrinks at an expected rate. In general, the copula estimators outperform the other
likelihood-based methods and are chosen as preferable by the Akaike and Bayesian information
criteria (AIC and BIC, respectively). The logistic normal distribution remains inconsistent and
performs poorly in comparison to the other methods.

As a second exercise, consider what happens when, under a similar setting to before, the copula
function is changed from a Gaussian to a Farlie-Gumbel-Morgenstern (FGM) copula. As the FGM
copula generates relatively low amounts of dependence, its parameter is set to 0.9, which translates
to about a 0.3 correlation in a Gaussian distribution. The results are presented in Table 2.2. Now,
as expected from Theorem 2.2, the copula on Y remains a consistent estimator, while the copula
on Z (and similarly the Dirichlet distribution) are inconsistent and have a reduced performance.
Also as expected from the theoretical results, the copula parameter is not recovered in its original

scale and thus its RMSE remains high. However, as noted in Table 2.C.2, the estimated copula
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parameter is around 0.3, which is the true dependence within the range allowed by the Gaussian
copula. It is still the case that the copula model is selected by both information criteria regardless of
sample size. In this example, it becomes necessary to adjust inference to control for misspecification,
which is readily implemented in the numerical optimization routine used for the paper using (2.19).
Inference is not compromised using the estimation method introduced in the paper as standard
errors remain close or below those of comparable consistent methods (results on inference for this
exercise can be found in Table 2.C.2 in the Appendix).

Moving away from sampling directly from a correctly specified copula likelihood, the next
exercise in Table 2.3 draws observations from a Dirichlet distribution. As it is possible to maintain
the conditional mean intact under this parameterization, all methods should remain consistent.
One of the drawbacks from the Dirichlet distribution is that no pairwise correlation can be positive,
something that the previous examples allowed and that could in general occur in an applied setting.
This table does not present results for the correlation parameter or second precision parameters
as these have no true counterpart. However, in Table 2.C.3 in the Appendix, it is noticeable that
the model captures the negative correlation present in the data-generating process with a mean of
around —0.4 across the simulations. Once again, this is a manifestation of the theoretical properties
derived in Section 2.1.

To produce a Bayesian estimator into this setting, the following setup is used. To streamline
the results, only the copula on Y estimator is considered. As the Bayesian estimates are conditional
on data, a sample of n = 800 is drawn from the setting used in Table 2.1. A Gaussian copula with

beta marginals is given as a likelihood and the priors are of the form

Bo,; ~ Uniform(—oo,00),j = 1,2,
Bk, ~N(0,5) for k=1,2and j=1,2,
¢j ~ Gamma(l,1),j =1,2,

¥ ~ Uniform(—1,1).

The use of improper prior distributions for the constants is standard in Bayesian analysis and results
remain unchanged if a proper prior similar to the other coefficients is assigned. The estimation uses

the Hamiltonian Monte Carlo algorithm to sample from the posterior distribution in four chains
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Figure 2.2: Trace Plot of Bayesian Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

from random starting values (Carpenter et al., 2017). The chains pass all of the usual diagnostics
for assessing convergence to the target distribution (Brooks and Gelman, 1998; Vehtari et al., 2020).
The results, along with the corresponding MLE output on the same data, are presented in Table
2.4. As expected, both approaches capture the correct values closely and have small standard
errors that imply significant variables when they have a nonzero coefficient. However, note that for
P12 in this data set, the MLE estimates would imply that it is significantly different from 0 even
when this is not the case in the population model. This is not the case for the Bayesian estimates
that correctly single out the statistically insignificant coefficients. For further visual assessment,
Figures 2.2 and 2.3 present the trace and density plots of the chains, respectively, for the main
slope coefficients in 31 and By. These combine the output from all four chains. We can see that the
draws tend to gather close to the true values and thus most of the density is concentrated around
these values as well.

In an applied setting, an important quantity of interest is the average partial effect (APE) of
variable xj on outcome y;, which can be computed as an estimate of OE[Y;| X = x]|/0z} (see,

e.g., Appendix 1 in Mullahy, 2015). For notational convenience, this is written simply as APE ;.



49

Figure 2.3: Density Plot of Bayesian Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

While in frequentist methods you would need to use the Delta method or bootstrap for inference
on this object, in the Bayesian framework it comes as a by-product of the estimation process. By
simple probability arguments, calculating this quantity for each draw of the chain and obtaining
the resulting mean (or median) and standard deviation yields appropriate estimation and inference.
These results are presented in Table 2.5. The computed APEs are similar between all chains in
terms of both point estimate and standard error. They also approximate the true effect quite
well, where this true effect is simply the APE under the true coefficient vector. Figures 2.4 and
2.5 present the trace and density plots for the estimated APEs, showcasing the simplicity of the
Bayesian approach in obtaining point estimates and inference of these complicated functions.

Selection using a LASSO penalty and estimating a Gaussian copula with beta marginals solves



Table 2.4: Bayesian and Frequentist Estimates for a Reduced Form Model

Parameter Chain 1 Chain 2 Chain 3 Chain 4 MLE
~1.0603 —1.0598 —1.0620 —1.0611 —1.0614

Foa (0.0299)  (0.0293) (0.0295) (0.0298) (0.0293)
0.4855  0.4859  0.4860  0.4866  0.4860

fra (0.0258) (0.0262) (0.0263) (0.0265) (0.0262)
0.0001  0.0006 —0.0016 —0.0005 —0.0005

Pz (0.0268)  (0.0266) (0.0268) (0.0267) (0.0264)
—~1.5678 —1.5669 —1.5692 —1.5683 —1.5692

Poz (0.0352) (0.0355) (0.0355) (0.0351) (0.0352)
—0.0721 —0.0713 —0.0716 —0.0710 —0.0720

Pz (0.0307)  (0.0310) (0.0308) (0.0311) (0.0310)
0.5276  0.5280  0.5258  0.5271  0.5276

P22 (0.0314)  (0.0310) (0.0312) (0.0314) (0.0312)

Note: Bayesian and MLE estimates from a Gaussian copula with beta
marginals specification. Standard errors are in parentheses (standard
deviations in each chain for Bayesian and asymptotic for MLE).

Table 2.5: Bayesian Estimates and Inference of APEs for a Reduced Form Model

Parameter Chain 1 Chain 2 Chain 3 Chain 4 True
APELL oony ooss) (0003) (ooose) OO
APE2 goom) (00039) (00030) (oooas) O
APEi Toooan) (00030) (0002) (000s0) 010
APE; (8:8322) (giggg;) (8:83(3);1) (gigggg) 0.0594

Note: Bayesian estimates from a Gaussian copula with beta marginals
specification. Standard errors (standard deviation of each chain) are in
parentheses.

50
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Figure 2.4: Trace Plot of APE Chains in a Reduced Form Model
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the following optimization problem:

arg min { —logey (F1(y1| X = =:8,¢1), ..., Fp(yp| X = x;8,¢p); )
(B,0,0)EBXDPXT

d
= log f(y;| X = a3 8, ¢;) + log Fy (11X = a3 8, %) + >\||ﬂ||1} :

J=1

Obtaining solutions for different values of A using the simulated data set shows the effect of reg-
ularization. In the frequentist case, it operates as shown in Figure 2.6, where the parameters are
moved towards 0 in absolute value and eventually set to 0 given a large enough penalty parameter
A. The coefficient 521 does not appear in the picture as it is already estimated to be close to 0
even without regularization.

From a Bayesian perspective, to get a sense of the selection effect that the class of priors
discussed in (2.23) can possess, the previous simulation is extended to a setting with 10 variables.
The variables x1,...,x19 are drawn independently from a standard normal distribution and are

assigned coefficients as 8; = B2 = (—2,1,—1,1,—1,1,0,0,0,0,0), so that the last five variables are
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Figure 2.5: Density Plot of APE Chains in a Reduced Form Model
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Note: Combination of 4 chains, each of 5,000 draws. The dotted line shows the true value.

redundant in the model. The following setup for priors allows for the implementation of a Bayesian
LASSO penalty on this simulated data set (which due to the symmetry of the setup, will also mimic

the behavior of the group-LASSO penalty):

Bo,j ~ Uniform(—oc, 00),j = 1,2,

Bk, NN(O,TEJ) fork=1,...,10 and j =1,2,

T,ij ~ Exponential(A\?/2) for k =1,...,10 and j = 1,2,
A% ~ Exponential(1),
¢j ~ Gamma(l,1),j =1,2,

¢ ~ Uniform(—1,1).

The resulting point estimates and inference can be found in Table 2.C.8. As expected, these are
shrunk towards 0, which is a consequence of the LASSO penalty encoded in the prior distributions.
Table 2.6 shows the relevant selection aspects for these coefficients and APEs for each variable.

While Bayesian selection is in general not sharp, other methods such as the credible interval or scaled
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Figure 2.6: Frequentist LASSO in a Reduced Form Model with a Gaussian Copula and Beta
Marginals
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Note: Dotted line at 0. Optimization of the Gaussian copula with beta marginals likelihood over 25 equally
spaced values of A from 0 to 1,000.

neighborhood criteria can be used to select variables based on estimates from this specification (Li
and Lin, 2010).' The credible interval method sets a coefficient Br,; to 0 if its credible interval
at a given level [ (computed here as the highest posterior density interval) contains 0. On the
other hand, the scaled neighborhood method takes a dual approach by computing the posterior
probability within the interval defined by the standard errors (given by the standard deviation of the
chains) and excludes the variable if it surpasses a given threshold; i.e., Pr[(—sd(8;),sd(Bk,;))] > D
for some p € (0,1).

As can be seen in Table 2.6, the APEs are still precisely estimated. The very fact that it
is simple to obtain inference for this quantity after undertaking a selection step is one of the
virtues of regularization in the Bayesian framework. Additionally, the employed selection methods
seem to capture the effects for the significant variables, while dropping the irrelevant ones. The

scaled neighborhood method gets all of the variables right using a p = 0.5, while there are some

" Other attractive methods exist, which combine the frequentist and Bayesian properties of selection. See, for
example, the method in Leng et al. (2014) that performs a frequentist penalized regression with each A sample in the
chain and selects those variables which appear in 50 percent or more of the models.
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issues if [ = 0.5 is used for the credible interval approach. If the level is increased slightly, say to

[ = 0.55, then the method also successfully selects the correct model in this context. Importantly,

by including a prior distribution for A\, the mean or median posterior value for this quantity can be

used as a guidance for selecting the amount of regularization. In this example, both the mean and

median value for A is around 1.79, indicating that only a slight amount of penalization is necessary

to exclude the redundant variables of this system.

Table 2.6: Bayesian APEs and Selection for an Extended Reduced Form Model

Variable True APE;; True APE;, APE;; APEp, Cly; Clys SNy SNy
= 0.091 0.091 (8:852) (8:83% v v
T —0.091 —0.091 _(8:83121) _(8:8(7)2) v v v v
3 0.091 0.091 (8:832) (8:8331) v v
T4 —0.091 —0.091 _(8:832) _(8:833) v v v v
noom oo SBLO OB
T 0.000 0.000 _(888?)) _(8:883) v v X X
x7 0.000 0.000 _(8:88; (8:88;1) X X X X
T8 0.000 0.000 _(8:883) (()698(())3) X X X X
Ty 0.000 0.000 _(8:88;1) (8:88;,) v X X X
T10 0.000 0.000 _(8:8821,)) _(8:882) X v X X

Note: Bayesian estimates from a Gaussian copula with beta marginals specification. APE ; denotes
the average partial effect for a variable on outcome j = 1,2. Standard errors (the standard deviation
of each chain) are in parentheses. CI y; represents credible interval selection with I = 0.5 and SN
1; represents the scaled neighborhood method with p = 0.5; both regarding outcome j = 1,2. “v”
indicates that a variable is present in that outcome’s equation and “x” denotes its absence. The
Bayesian algorithm chooses a regularization parameter A = 1.79.

2.3.2 Demand Estimation

To mimic some of the properties present in the empirical application of the next section, an almost

ideal demand system with d = 3 shares is simulated from (2.2) by choosing the following population



95

values for the parameters:

0.929 0.062 —0.033 —0.029 —0.064
ap = 0.675, a=|0.297 |, I'=1-0.033 —0.058 0.091 |, ™= |—-0.029
—0.226 —0.029 0.091 —0.062 0.093

These values satisfy the constraints of an AID system for homogeneity of degree one in prices and
expenditures, as well as the symmetry of the Slutsky matrix. In order to generate values from this
model, the following exercises use either a Gaussian copula with beta marginals or generate from
a multivariate normal distribution directly, while restricting the values to lie on S?. Prices are
generated from a uniform distribution between 1.2 and 1.5 for all three simulated goods. Expen-
ditures were drawn from a log-normal distribution with a mean of 6 and a standard deviation of
0.25 in the log scale. For each generating exercise, there are 1,000 simulations. For now, the paper
examines the maximum likelihood estimation results, leaving the Bayesian results for the empirical
application, which will be conditional on the examined data.

For estimation purposes in the standard AID framework, there are only (d? + 3d — 1)/2 free
parameters to estimate as the constraints allow us to eliminate one parameter each from « and 7
and all but d(d — 1)/2 parameters from the I' matrix. These can be recovered in each iteration
of the estimation algorithm, ensuring that the constraints are always satisfied. Furthermore, the
use of marginals that respect the fractional restriction encourages positivity on the system (all
predicted shares being greater than 0), as the likelihood is undefined if the underlying values lead
to predictions outside of this range.

The flexibility and robustness of the methodology introduced in the paper even in this context
is showcased in Tables 2.7 and 2.8. The main difference is in the generating marginal distributions.
In the first table, betas with mean-precision parameterization are used, whereas the second table
uses normal distributions. The tables estimate four of the same models as before: a copula on Y,
a copula on Z, a multivariate fractional quasi-likelihood (it is no longer a logit as the conditional
mean specification changes), and a Dirichlet. The final method is a regular multivariate normal
distribution, where the ¢ parameters take on a precision interpretation for each marginal, and

1 or & represents the correlation parameter. As a Gaussian copula with Gaussian marginals is
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equivalent to a multivariate normal distribution, this second exercise is closer to what is usually
used in practice, where no appropriate restriction on the estimating functional form is imposed.

The main features from the previous simulations are maintained in this setting as well. Both
the copula on Y and Z estimators are consistent due to their correctly-specified nature in Table
2.7. Both AIC and BIC select the copula on Y as the preferable estimator at all sample sizes,
with the regular AID coming in at a close second place in terms of performance. This is also
to be expected, as part of the attractive features of the normal distribution are that the normal
distribution is consistent under the same conditions as the multivariate fractional quasi-likelihood,
even under misspecification (Gourieroux et al., 1984). While this multivariate fractional distribution
is generally only used in conjunction with a logit link, this exercise also confirms its ability to remain
consistent only under correct conditional mean specifications. Table 2.8 presents a similar view;
however, the copula on Z estimator becomes less reliable. This is to be expected due to its failure
to be consistent under more general conditions than the copula on Y estimator. Surprisingly, the
normal AID system does not become much more dominant in this setting, which could be related
to the positivity argument discussed before, as the current configuration could try to pull the
parameters toward violating the fractional restriction on the outcomes.

To examine the role of a more flexible alternative to the AID system, the next two simulations
implement a setting similar to the previous one, except that polynomials on the deflated expen-
ditures are added as outlined in (2.24). Two extra terms are added to the generating process,
where the new population coefficients are just o = 7% and w3 = 7, with m; being the original
coefficients in the first two simulation exercises. Tables 2.9 and 2.10 present the results for this
configuration. In general, the patterns observed in this iteration track the previous results very
closely. It is worth noting that the copula on Z estimator becomes even more erratic with the
inclusion of extra parameters, so that the copula on Y estimator remains a preferred choice. We
have seen throughout this Monte Carlo study, even in a Bayesian setting, that it has strong a

performance compared to the methods previously available in the literature.
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2.4 Empirical Application

As a complement and extension to the numerical study undertaken in the previous section, this
section puts into action the methods introduced in the paper. This empirical application uses the
data set in Chang and Serletis (2014) (hereafter referred to as CS), which collects information on
household transportation expenditures in Canada from the Canadian Survey of Household Spending
between the years of 1997 and 2009. Using these observations, CS fit an almost ideal demand system,
as well as its quadratic extension, and the Minflex Laurent model (Deaton and Muellbauer, 1980;
Barnett, 1983; Barnett and Lee, 1985; Banks et al., 1997). Focusing on the AID system, in the
language of this paper’s Example 1, it translates to fitting the following model for household 7 in

1,...,n:

ElYi|e;,pi] = a+I'p; + wle; — ap — a'p; — (1/2)piT'pi] . (2.26)

Using the notation developed thus far, there are expenditure shares for d = 3 goods, where ¥
represents gasoline, y» is local transportation, and ys is intercity transportation. The base category
of analysis will be the same as used in CS, given by the third good. Prices of these goods are
normalized with 2002 serving as the base. To rule out the effect of possible unobserved heterogeneity,
CS assumes that households with similar demographic characteristics share similar consumption
patterns. Thus, instead of including these characteristics to complicate the structural model, CS
focus only on households between 25 and 64 years old, living in urban areas with a population
of at least 30,000 in English Canada. The authors also restrict the sample to households with a
larger than 0 expenditure on all three goods, to avoid the issue of boundary values. Furthermore,
the sample is split between three types of households: single-member households, married couples
without children, and married couples with one child. Summary statistics for the variables are
presented in Table 2.11. While this table uses the data in levels, prices and expenditures are
understood to have been transformed to natural logarithms for estimation purposes in (2.26).

For modeling purposes, CS assume that all observations are independent and identically dis-
tributed, which is a reasonable assumption as data is collected as repeated cross-sections at the

household level. The authors also acknowledge possible endogeneity issues, but given the use of



Table 2.11: Summary Statistics for Data in Chang and Serletis (2014)

Variable Good Mean  Std. Dev. Minimum Maximum
Single member households, 2,218 observations

Budget shares Gasoline 0.499 0.237 0.002 0.986
Local transportation 0.095 0.128 0.001 0.856
Intercity transportation  0.406 0.228 0.003 0.985

Prices Gasoline 1.157 0.269 0.726 1.751
Local transportation 1.038 0.131 0.801 1.307
Intercity transportation  1.011 0.132 0.755 1.233

Expenditures 2,430.7 1,703.0 161 24,620
Married couples without children, 3,326 observations

Budget shares Gasoline 0.524 0.234 0.005 0.990
Local transportation 0.083 0.114 0.000 0.866
Intercity transportation  0.392 0.224 0.003 0.985

Prices Gasoline 1.170 0.268 0.726 1.751
Local transportation 1.046 0.131 0.801 1.307
Intercity transportation  1.017 0.132 0.755 1.233

Expenditures 3,920.5 2,396.7 170 26,230

Married couples with one child, 6,141 observations

Budget shares Gasoline 0.575 0.237 0.002 0.997
Local transportation 0.092 0.117 0.000 0.886
Intercity transportation  0.333 0.229 0.002 0.980

Prices Gasoline 1.146 0.261 0.726 1.751
Local transportation 1.035 0.127 0.801 1.307
Intercity transportation  1.005 0.130 0.755 1.233

Expenditures 4.858.4  3,021.8 259 37,490

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken as the base
category.
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individual-level consumption instead of an aggregated level, it is likely that there is no simultaneity
bias in the determination of household consumption and yearly aggregate prices. Furthermore, even
when endogeneity is addressed by means of the generalized method of moments (GMM) or iterative
three-stage least squares (3SLS), estimates tend to be similar to the baseline ones. Therefore, the
conditional mean assumption in (2.1) is likely to be satisfied.

As seen in the Monte Carlo evidence from the previous section, the copula on Y estimator
stands out as a flexible alternative to model structural estimation in demand models. Table 2.12
presents the estimation results using beta marginals with Gaussian or FGM copulas. The two
represent widely-used copulas in applied research and belong to the two most important classes of
copulas: elliptical and Archimedean. The resulting estimates are quite similar within each of the
three population segments regardless of the copula — a consequence of Theorem 2.2 in action. The
only main differences for the parameters of the AID system are in «g, but this parameter is known
to be identified only up to a scale factor so that it tends to vary with any estimation procedure
(Deaton and Muellbauer, 1980). The estimates also align closely with those obtained in Table II of
CS and mimic other replications of their results (Veldsquez-Giraldo et al., 2018). Interestingly, the
negative correlation between the two outcomes is reflected as a correlation coefficient in the Gaussian
distribution of about —0.4. As the FGM copula cannot produce as much negative dependence, the
estimates tend to be close to the lower bound of 1. Inference also remains quite similar between
both specifications.'? Standard errors are consistent with the magnitude and role of each parameter
and also closely resemble those previously found in the literature.

As a second exercise, an estimation can be done in the Bayesian framework, using similar
techniques as before. However, one of the issues with using Bayesian directly on the AID conditional
mean (2.26) is the scale of all parameters except for 7. In the original scales, the Hamiltonian Monte
Carlo algorithm used to explore the parameter space and draw from the posterior can get stuck and
over-reject as many combinations of parameter values do not satisfy the positivity constraints. To
this end, a reparameterization similar to that in Lewbel and Pendakur (2009) becomes necessary.
The authors use the natural logarithm of the expenditure variable after having subtracted the

median of the log-transformed value; i.e., they define eneyy, = ¢ — median(e). In the AID system,

12 As numerical optimization is done in an unrestricted domain, the standard errors for the precision and correlation
parameters are Delta method transformations.



Table 2.12:
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MLE Estimates of AID System using the Copula Y Estimator with Different Copulas
and Beta Marginals

Parameter Single households Married couples Married with one child

Gaussian FGM Reparam.  Gaussian FGM Reparam.  Gaussian FGM Reparam.
o 0.871 0.358 1.282 0.379 —0.401 0.216 0.655 1.599 0.961
0 (0.126) (0.083) (0.028) (0.507) (0.120) (0.073) (0.034) (0.461) (0.012)
0.889 0.884 0.403 1.086 1.121 0.494 1.149 1.048 0.491

o (0.071) (0.074) (0.016) (0.037) (0.054) (0.007) (0.038) (0.049) (0.007)
0.247 0.273 0.073 0.259 0.286 0.080 0.246 0.239 0.075

a2 (0.016)  (0.017)  (0.004) (0.018)  (0.017)  (0.002) (0.012)  (0.014)  (0.002)
0.057 0.056 0.086 0.002 0.007 0.045 —0.043 —0.028 0.007

M (0.042)  (0.043)  (0.041) (0.034)  (0.034)  (0.031) (0.025)  (0.025)  (0.024)
—0.019 —-0.014 —0.008 —0.023 —0.024 —0.010 —0.031 —0.031 —0.018

2.1 (0.012) (0.012) (0.012) (0.008) (0.009) (0.008) (0.007) (0.007) (0.007)
—0.032 —0.041 —0.028 0.053 0.052 0.057 0.052 0.042 0.056

22 (0.033)  (0.032)  (0.033) (0.025)  (0.025)  (0.025) (0.021)  (0.021)  (0.021)
7T1 —0.060 —0.056 —0.060 —0.074 —0.072 —0.074 —0.076 —0.072 —0.076
(0.010) (0.010) (0.010) (0.008) (0.007) (0.007) (0.005) (0.005) (0.005)
7r2 —0.022 —0.024 —0.022 —0.023 —0.024 —0.023 —0.020 —0.022 —0.020
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001)
3.551 3.589 3.551 3.718 3.769 3.718 3.498 3.505 3.498

2 (0.102)  (0.099)  (0.102) (0.083)  (0.081)  (0.082) (0.059)  (0.058)  (0.059)
7.313 7.367 7.313 7.881 7.987 7.881 7.382 7.357 7.382

92 (0.359)  (0.353)  (0.361) (0.297)  (0.292)  (0.297) (0.189)  (0.183)  (0.188)
—0.390 —0.999 —0.390 —0.400 —1.000 —0.400 —0.363 —0.995 —0.363

¥ (0.026)  (0.002)  (0.026) (0.021)  (0.001)  (0.021) (0.017)  (0.021)  (0.017)
Log-lik. 3,352.7 3,330.1 3,352.7 5,660.6 5,635.6 5,660.6 9,734.5 9,677.5 9,734.4

Obs. 2,218 3,326 6,141

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken as the base category. Standard errors robust
to copula misspecification are in parentheses. The third column of each data set includes a reparameterized model with a Gaussian

copula.
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this reparameterization keeps 7 intact, while ensuring that ag, a, and T' take on scales that are
more likely to respect the fractional restriction for the conditional mean. Table 2.12 includes a third
column for each data set where the AID system is estimated using eney instead of e. As expected,
the slope estimates 7 remain the same, while other estimated parameters change in scale. Note,
for example, how the & are now closer to the mean expenditure of each good.

With this reparameterization, the Bayesian algorithm becomes more accurate and can produce
results without needing many iterations. In particular, after around 300 tuning iterations, the
algorithm rarely produces rejections based on violations of positivity constraints. This is also due to
the beta marginals that — similar to the frequentist case — encourage parameter values that satisfy
the fractional restrictions of multivariate fractional outcomes. Within this new parameterization,

the following priors are imposed:

ag ~N(0,5),

a;j ~N(0,1),5=1,2,

Vi ~N(0,1),5=1,2,1 < 3, ,
;i ~N(0,1),j=1,2,

¢j ~ Gamma(1,1),j = 1,2,

1 ~ Uniform(—1,1).

The slightly tighter priors are useful in avoiding many proposal rejections in the posterior explo-
ration algorithm, as it is clear that larger values of the parameters are generally incompatible with
the fractional restriction. Table 2.13 presents the estimation results from a Bayesian perspective.
Estimates are the mean of the chains, where there are five chains, each providing 700 draws (after
the 300 tuning period). Similar to before, the chains are checked and pass the usual convergence
diagnostics. As can be observed, the results remain similar to the maximum likelihood ones, when
the reparameterization is considered. The Bayesian standard errors tend to be more narrow for the
a and I' parameters, but slightly larger for the slopes 7r, which become statistically insignificant in
the first model. Figures 2.7 and 2.8 present the trace and density plots for the core AID parameters

in the data set for married couples with one child. As expected, the most variability is given in the
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chain for ay. There appears to be some possible auto-correlation in the other ¢ parameter chains,
which can be solved by thinning the chain before computing estimates; this is done for the results

presented in Table 2.13.

Table 2.13: Bayesian Estimates of a Reparameterized AID System using the Copula Y Estimator
with a Gaussian Copula and Beta Marginals

Parameter Single households Married couples Married with one child

0.651 0.697 0.928

@o (0.354) (0.368) (0.369)

0.446 0.461 0.494

a (0.021) (0.027) (0.028)

0.086 0.069 0.076

a2 (0.009) (0.009) (0.008)

—0.058 —0.073 —0.076

g (0.008) (0.007) (0.005)

—0.022 —0.023 —0.020

121 (0.003) (0.002) (0.002)

0.050 0.034 0.005

2.2 (0.031) (0.027) (0.022)

—0.004 —0.007 —0.017

m (0.014) (0.010) (0.008)

- —0.017 0.045 0.045

(0.032) (0.025) (0.021)

3.563 3.725 3.503

o1 (0.093) (0.081) (0.056)

7.339 7.890 7.386

02 (0.244) (0.207) (0.149)

—0.388 —0.399 —0.362

v (0.018) (0.015) (0.011)
Obs. 2,218 3,326 6,141

Note: Sample covers the period from 1997 to 2009. Intercity transportation is taken
as the base category. Standard deviations for the chains are in parentheses.

Looking beyond the parameter estimates in the AID system, it is important to be able to
provide price and income elasticities, as well as inference with respect to these parameters. As
previously stated, this inference is simple in the Bayesian context. While these functions can be
complicated and highly nonlinear with respect to the parameters so as to make the application of
the Delta method challenging, computing them for a given set of estimates is simple. Table 2.16
presents the income and uncompensated price elasticities for the AID. Following CS, these are the
elasticities evaluated at the average prices and, given the parameterization necessary for a Bayesian

estimation, are at the average median-centered expenditure. These elasticities are slightly larger
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Figure 2.7: Trace Plot of Coefficient Chains in a Reparameterized Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 700 draws
each for a total of 3,500 draws.

than those in CS, but are for the most part consistent with economic theory. Note, however, the
large standard errors for elasticities associated to local transportation (Good 2). This phenomenon
most likely occurs because of a few outliers in the chains, combined with the generally small share
of the budget allocated to this good. As the predicted shares get closer to the lower bound of 0,
the computed elasticities can suffer from numerical issues. The fact that the mean remains close
to the expected values, however, is a sign this occurs only a few times throughout the chain.

In order to resolve some of these issues and improve the fit, the paper now considers an extension

of the AID system to account for polynomials on deflated real expenditures €. In particular, the
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Table 2.14: Elasticity Estimates and Inference from a Bayesian AID System

Elasticities
Income  Price (1) Price (2) Price (3)
Single member households, 2,218 observations

Good

(1) 0.991 —1.129 —0.049 0.188
(0.031) (0.027) (0.008) (0.023)

) 0.914 —0.221 —0.402 —0.291
(0.674) (0.507) (0.723) (0.828)

(3) 1.048 0.152 —0.065 —1.135
(0.076) (0.031) (0.068) (0.076)

Married couples without children, 3,326 observations
(1) 0.986 —1.154 —0.049 0.218
(0.021) (0.023) (0.006) (0.022)

2) —0.420 0.931 —1.218 0.708
(104.842)  (85.301)  (42.383) (61.464)

(3) 0.926 0.224 —0.017 —1.133
(0.051) (0.031) (0.055) (0.063)

Married couples with one child, 6,141 observations
(1) 0.966 —1.136 —0.038 0.207
(0.016) (0.017) (0.005) (0.016)

) 1.539 —0.531 —1.174 0.166
(52.174)  (42.687)  (16.385) (19.273)

(3) 0.941 0.235 0.036 —1.212
(0.046) (0.029) (0.049) (0.061)

Note: Elasticities are computed at the average median-normed expenditures and average prices for each
chain. Point estimates are given by the mean of the chains. Standard deviations for the chains are in
parentheses.
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Figure 2.8: Density Plot of Coefficient Chains in a Reparameterized Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 700 draws
each for a total of 3,500 draws.

following conditional mean obtained in one of the examples is used:

énew,i = €new,i — Q0 — Oﬂ,pi - (1/2)p;Fp’L 5

R
E[}fi‘enew,iapi} =o+ Fpi + Z 7TTégew,i .

r=1

The reparameterization of the model in terms of the median-centered expenditure also plays a
crucial role in this setting as it makes the magnitudes of the coefficients 7., 7 = 1,..., R, directly
comparable (Blundell et al., 1993; Lewbel and Pendakur, 2009). Having this standardized measure
of the covariates allows for selection to be both accurate and more meaningful. For simplicity, R is

set equal to 3, so that there is a third-degree polynomial on the conditional mean equation for each
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share. To implement the estimation and shrinkage of the coefficients using the LASSO penalty, the

following priors are assumed:

(7)) NN(0,5),
O[]NN(O,l),j:].,Q,
’Yj,l"’N(Oal),j: 1727l§j77

WT,j’T"":j NN(()?TTJ)’]. = 1?27T = 172737

)\2
Tryj|)\2 ~ Exponential <2> ,

A% ~ Exponential(1),
¢j ~ Gamma(1,1),j = 1,2,

¢ ~ Uniform(—1,1).

The results for selection performance are given in Table 2.15. Using the credible interval and scaled
neighborhood approaches to selection in the Bayesian framework, it appears that a third-degree
polynomial on deflated expenditures is relevant for modeling the demand for gasoline. It does not
seem to be the case for local transportation, where the methods are dependent on the demographic
characteristics of the consumers. For example, while the second-order term is significant in the
single-member households, no polynomial is selected for the married without children households.
In the final population segment, both measures are inconclusive and this is the only instance in
which the methods disagree with one another.

Simultaneous to the selection step, the estimation of the extended AID coefficients is straight-
forward. Table 2.14 presents the results for the income and price elasticities in this model, which
are simple to obtain due to the Bayesian approach. Furthermore, it appears that the inclusion of
the polynomial terms not only makes the model more flexible, but it also stabilizes the values and
inference for these elasticities. The signs are in concordance with economic theory: all of the goods
are normal with a relatively large income elasticity that is close to unity. The own-price elasticities
are all negative and suggest that gasoline and intercity transportation are slightly elastic, whereas
local transport is somewhat inelastic. The magnitudes also vary across the demographic groups,

with married couples with one child having the largest price reactions. As these elasticities are
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Table 2.15: Selection of Polynomial Terms in an Extended Bayesian AID System

Polynomial CI (1) CI (2) SN (1) SN (2)
Single member households, 2,218 observations

€ v v v v
é2 X v N v
és v X v X
Married couples without children, 3,326 observations
€ v v v v
é? v X v X
él v X v X
Married couples with one child, 6,141 observations
é v v v v
é? v v v X
él X v X v

Note: CI (1) and CI (2) represents credible interval selection with [ = 0.5 for each good’s equation. SN
(1) and SN (2) uses the scaled neighborhood method with p = 0.5; “v”” indicates a variable is present in
that outcome’s equation; and “x” denotes its absence. The Bayesian algorithm chooses a regularization
parameter \ = 1.97 for the first sample; A = 1.95 for the second and third.

uncompensated, the possibility of these households reacting to price variations might bear some
correlation with income or other socioeconomic variables. These interactions might not be fully ac-
counted for by the use of different estimation samples. The cross-price elasticities are slightly more
erratic, as they suggest some substitution effect between gasoline and intercity transportation, but

the complementary nature of gasoline and local transport is maintained (as is seen in CS). Figures

2.9 and 2.10 present the trace and density plots for these elasticities, respectively.

2.5 Conclusion

The paper introduces several estimation procedures for multivariate fractional outcomes, which are
useful in both structural and reduced form contexts. A likelihood function is constructed using
copulas in two ways, one of which is found to be robust to deviations from the model assumptions.
These likelihoods also allow for more flexibility in the dependence structure between shares than
the usual joint distributions assumed on outcomes in the unit-simplex. Both of the introduced
methods allow the researcher to satisfy the main characteristic that comes with multivariate frac-
tional responses — a conditional mean specification and the fractional and unit-sum restrictions

in the outcomes — and allows for the inclusion of cross-equation restrictions. The latter point is
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Table 2.16: Elasticity Estimates and Inference from an Extended Bayesian AID System

Elasticities
Income  Price (1)  Price (2)  Price (3)
Single member households, 2,218 observations

Good

n 0.966  —1.226  —0.009 0.270
(0.012)  (0.053) (0.050) (0.062)
@ 1.056  —0.094  —0.804  —0.158
(0.053)  (0.252) (0.057) (0.272)

(3) 1.023 0.228 —0.023 —1.227
(0.016) (0.065) (0.052) (0.112)
Married couples without children, 3,326 observations

) 0.958  —1.247  —0.041 0.331
(0.010)  (0.067) (0.040) (0.082)

@ 1.049  —0.323  —0.890 0.164
(0.083)  (0.294) (0.083) (0.333)

1.035 0.278 0.025  —1.338

(3) (0.019) (0.060) (0.048) (0.099)
Married couples with one child, 6,141 observations

n 0956  —1.321  —0.101 0.466
(0.013)  (0.090) (0.033) (0.119)

@ 0943  —0.614  —1.020 0.692
(0.057)  (0.221) (0.059) (0.258)

1.057 0.438 0110  —1.605

(3) (0.018)  (0.057) (0.040) (0.086)

Note: Elasticities are computed at the average median-normed expenditures and average prices for each
chain. Point estimates are given by the mean of the chains. Standard deviations for the chains are in
parentheses.
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of particular importance in structural demand estimation models where these restrictions are at
the heart of guaranteeing economic regularity of the underlying demand functions. The paper also
shows how Bayesian methods can be crucial in this setting by showing how the methods can be
augmented to handle covariate selection using a Bayesian analog of regularization. Inference is still
simple in this framework, even after performing a selection step, which can be hard to accomplish
in frequentist settings. As the objects of interest in applied research are complicated functions of
the parameters, the Bayesian approach allows for a natural way to handle inference of these quan-
tities as well. Numerical exercises and an empirical application of a structural demand system to
transportation expenditures in Canada showcase the flexibility of the proposed methods and their
usefulness in an applied setting.

As a matter of future research, it would be interesting to extend this kind of Bayesian copula
estimation to broader settings apart from the multivariate fractional outcome context. While
Bayesian methods, regularization, and copulas are popular topics in econometrics and statistics, the
combination of all of these elements could prove to be valuable in adding flexibility while preserving
structure in different modeling problems. Additionally, it would be interesting to bring these tools
to more applications in which multivariate fractional outcomes naturally arise. Examples include
data for market shares on a given industry, portfolio shares in financial econometrics, industrial

organization and firm analysis, among many others.

Appendices

2.A Proof of Main Results

Proof of Proposition 1. This is a specialized version of the formulas in Gijbels and Herrmann

(2014). As

FW(w’X767n):/ dFl,...,D(y17'-'7yD|X;67n)7

w

where To, = {(y1,...,yp) € RP : 0 < y; < 1,5 = 1,...,d;ZJD:1yj < w}, then the set Ty, can be

expressed using multiple integrals corresponding to (2.7). O
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Proof of Proposition 2. The existence of a solution is guaranteed if Z;-lzl mj(x,B) = 1 is imposed,
as the right-hand term of (2.11) will always be less than 1. To obtain a solution, first note that the

inverse mapping for the stick-breaking transformation (2.9), Y = s~1(Z), is given by
j—1
i=2, Yi=2Z[0-2) forj=2,...,d. (2.A.1)

=1

Additionally, this mapping satisfies the following property:

J
[1a-2) _1—ZYZ, (2.A.2)
=1

for j =1,...,D. First, set pi(x;v,%) = mi(x,B). For j =2,...,D, take the definition of Y in

(2.A.1), replace Z; = Zj +m;(x, B;), and take conditional expectations on both sides. This results

j—1 Jj—1
m;(x,B) = H(l_Zl pu (e VYJP))‘X: +Mj($;’7,¢)'E!H(1—Zl)X:iU]
=1 =1

While the first expectation cannot be reduced, the second can be replaced by taking conditional

expectations of (2.A.2) for j — 1. Dividing by this term gives the desired result. O

Proof of Theorem 2.1. For gy, the only non-standard part of the likelihood is the integral corre-
sponding to the probability of set 7, given by Pry(Y_4; € T|X = a;;6y), where the subscript
emphasizes that the probability is taken with respect to the assumed joint distribution. However,
since Oy satisfies H(:|X) = F(-|X;0y,) by Assumption 2.6.A, the relevant probability becomes
Prp(Y_4 € T|X = «;), where the notation emphasizes that it is taken with respect to the true
H. This probability equals 1, as it is assumed that H is a joint distribution with support in S¢.
Thus, the log of this probability equals 0 and the term is irrelevant in the population. The usual
argument would then guarantee consistency in light of Assumption 2.5; the same is true for 52.
The rest of the argument for asymptotic normally is standard as outlined; e.g., in Joe (2014), pp

227. U
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Proof of Lemma 2.1. First, note that since Py (the marginal distribution of X)) is given, we have

KL(h, f;0y) = Ep[KL(hy|x, fy|x;0v)], (2.A.3)

where Ep means that the expectation is taken with respect to X ~ Px and KL(hy|x, fy|x;6y) is

the KL divergence between the conditional distributions h(Y'|X = @) and f(Y|X = x;60y). Thus,

we only need to focus on the conditional KL divergence. This can be derived as follows:
c(HW|X =x),..., Hp(Yp|X = x))

ey (Fi(V1|X ==x;61),..., Fp(Yp|X =2;6p);n)

f[ WX =2)  Fy(X = m;ey)]

X

hY|X = ) ]
FY|X = 2;0y)

YD\X—:C,(SJ) X (Y eT)
= log [ c(HHV1|X =x),...,Hp(Yp|X =x)) ] .

R ]

Taking conditional expectations with respect to h(Y|X = ) yields KL(hyx, fy|x;6y). Due to

(2.A.3), another expectation — this time with respect to Px — gives the desired result. O]

Proof of Theorem 2.2. From Lemma 2.1, we can write the KL divergence as

C(Hl(Yl‘X = :I}), e ,HD(YD’X = .’1‘,‘))

KL(h’ f; GY) - Eh llog Cy(Fl(YllX = w;&l), . ,FD(YD‘X = a:;dD);d)) +
T
iKL(h» £i18,) +Ep | log W(”X:m;aY)]
~ 32352 9j (Y €7) )
T T3

where there are three terms, 77, 75, and T3, each representing a divergence measure between
either the copulas, marginals, or truncation probability. Similar to the proof of Theorem 2.1,
Expllogl(Y € T)] = 0 under the true density. Furthermore, as long as f(-) places a positive amount
of density in 7T, the numerator of the T3 term will be well-defined.

Now, based on Assumptions 2.5 and 2.6.B, there exists a true dp that correctly specifies all the
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marginals, but no 1 that does so for the copula. Evaluating T at §p shows that KL(h;, f;;6,0) =
KL(hj,hj) =0,7=1,...,D. Similarly, evaluating T} at &y yields

c(H\(Y1|X = z),..., Hp(Yp|X = z))

E; | lo ,
" e (B X =), Fp(Yp| X = 2); %)

so that T reduces to the KL divergence based solely on the dependence structure. Thus, consistency
of the subvector & in By to do is guaranteed by Theorem 2.2 in White (1982). Consistency of 7
is guaranteed to 1*, which is the minimizer of 77 and the maximizer of T3 given dg. Asymptotic
normality follows from Theorem 3.2 in White (1982) and requires the full sandwich covariance
matrix as there is no diagonality in either Z;, or J} to exploit in the copula estimation (see Joe,

2014, pp. 228). O

Proof of Corollary 2.1. In this setting, similar to Theorem 2.2, the KL divergence can be split into

two terms:

(H\(Vi|X = ),...,Hp(Yp|X = z)) -
+ KL(h;, fi:6;) .
cy(FL(Y1|X = x;61),...,Fp(Yp|X = x;6p); ) ; (hj 153 95)

KL(h, f;8y) = Ey | log

Ty T

As T5 vanishes when evaluated at dg and 17 becomes the KL divergence between the copula depen-
dence structures, the proof can follow the same steps as that of Theorem 2.2 to show consistency

and asymptotic normality. O

Proof of Theorem 2.3. (i) Note that the assumptions plus the additional regularity conditions
are stronger than those needed for correctly specified Bayesian posteriors (see, e.g., Theorem
2.3 in Strasser, 1981). This guarantees consistency of the posterior distribution as a whole in
neighborhoods around 6. for e € {Y, Z}. That is, for any open set U containing 6, o,

lim 7(U|Y,X) =1, (2.A.4)

n—oo
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where m(U|Y, X) is defined as the posterior probability in set U; i.e.,

w(L[!Y,X):/uvr(96|Y,X) dee:L% do. .

(ii) Similarly, under the established assumptions and regularity conditions, the Bayesian posterior
are consistent in a KL divergence sense. Formally, this implies that consistency is not to 8y,
but to the KL pseudo-true values (minimizers of the KL divergence). Thus, (2.A.4) holds for

open sets U containing 63 (see, e.g., Theorem 2.1 in Bunke and Milhaud, 1998).

Establishing posterior consistency yields mean and mode consistency of the posteriors, so that (i)
6. 2 0. for e € {Y,Z} and (ii) Oy % 6%. The median can also be shown to hold this property

(see Remarks 3, 4, and 5 in Bunke and Milhaud, 1998). O

2.B Regularity Conditions

This is a list of the necessary regularity conditions required for the paper’s proofs. It essentially
reproduces the assumptions in White (1982) and Bunke and Milhaud (1998) that are not implied
by Assumptions 2.1-2.6.B. To simplify notation, let U = (Y', X’) € S x X = Y. Then, foru e T
write F(u,0y) = F(y|X = z;0y)Px(x) and let f(u,0y) be its associated density. The density
g(u, 07) is defined analogously. Both of these densities are assumed to be obtained with respect to

a measure v.

Assumption R1. The densities f(u,0y) and g(u,0z) are measurable in u for all 6y € ©y and
0, € Oy, as well as continuous in Oy and 8y for all w € T. Oy and Oy are also assumed to be

compact.

Assumption R2. (i) The expectation E[log h(U)] exists and both log f(u,8y) and log g(u,8z)
are dominated by functions integrable with respect to H. (ii) KL(h, f; 8y ) has a unique minimum

at ¢* € U given §.

Assumption R3. The gradients 0log f(u, 8y )/00y and 0logg(u,0;)/067 are measurable func-
tions of u for each 8, € ©, and continuously differentiable functions of 8. for each w € T, where

eec{Y, Z}.
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Assumption R4. These derivatives H 92 log f(u,By) / 00y 005,

9%log g(u,0z) /060,00,

I+ [

|0log f(u,8y)/00y - Olog f(u,B0y)/06y |, and ||0log g(u,07)/007 - Olog g(u,07)/00'||, are

dominated by functions integrable with respect to H for all uw € T, 8y € Oy and 05 € O.

Assumption R5. For the information equality, ||0[0log f(u,8y)/00y - f(u,8y)]/00y |, and
|0[0log g(u,02)/00z - g(u,0%)]/00z ||, are dominated by functions integrable with respect to v
for all 8y € ©y and 05 € O.

Assumption R6. (i) Oy, 05 € int(Oy) and Oz € int(Oz); (ii) Z(0y,0), Z(0z,0) and Z(65 ) have

constant rank in a neighborhood of their arguments; (iii) J,(605-) is nonsingular.

Assumption R7. There are positive constants ¢, by such that for all 8y € Oy

/ 8logf (u, By
00y

where |Oy| is the dimensionality of ©y. The same condition holds for g(u,8z).

4(loy|+1) b
fu, Oy)v(du) < c(1+[0y[™),

2

Assumption R8. For some positive constant by, [[f(u,8y)h(w)]"/?v(du) < c||6y |~ and

[lg(w, 02)h(w)]?v(du) < ¢||0z] ", for all By € Oy and 07 € O .

Assumption R9. Take e € {Y, Z} and let S(0,,r) represent a ball centered at 8. with radius r.
Then, 7(6.) assigns probability 7(S(6.,r)) > 0 for all 8, € ©, and r > 0, and there are positive

constants by and b3 so that for all 8, € O, and r > 0 it holds that

T(S(8e,)) < ¢ P21+ ([|6e]| + )]

2.C Additional Numerical Exercises
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Table 2.C.1: Estimates and Standard Errors in a Reduced Form Model from a Gaussian Copula with Beta

Marginals
Method Bo B1,1 B2 Bo2 B1,2 P22 ¢ P2 Y€
n = 100
Copula Y —1.027 0.492 —-0.013 —-1.538 —0.018 0.495 10.809 10.947 0.486
(0.085) (0.079) (0.079) (0.103) (0.090) (0.089) (1.503) (1.585) (0.124)
Copula Z —1.015 0.481 —0.014 —-1.490 —-0.062 0.483 10.802 5.268 0.625
(0.084) (0.080) (0.080) (0.098) (0.088) (0.090) (1.515) (0.744) (0.111)
MF Logit ~1.024 0487 —0017 —1536 -0.026 0490
(0.085) (0.084) (0.083) (0.103) (0.098) (0.1)
.. —0.950 0.480 0.000 —1.430 —0.003 0.476 8.473
Dirichlet 7 o

(0.079) (0.078) (0.078) (0.091) (0.086) (0.086) (0.825)
Losistic Nopy,  —L183  0.621 —0.017 —1862 —0.068 0736 B B
& " (0.108) (0.108) (0.108) (0.141) (0.142) (0.142)
n = 200

—1.026 0.493 —-0.009 —-1.535 —0.018 0.497 10.614 10.711 0.484

Copula Y (0.060) (0.056) (0.056) (0.073) (0.063) (0.063) (1.042) (1.097) (0.088)

Copula Z ~1.014 0480 —0.010 —1.486 —0.064 0484 10.610 5.138 0.621
(0.059)  (0.056) (0.056) (0.070) (0.062) (0.063) (1.044) (0.506) (0.078)

MF Logit ~1.023 0487 —0.015 —1.532 —0.026 0491 B B
(0.060) (0.060) (0.059) (0.073) (0.070) (0.071)

. —0.949 0481  0.003 —1.427 —0.003 0478 8.304

Dirichlet o o

(0.056) (0.055) (0.055) (0.064) (0.060) (0.061) (0.571)
Lowistic Nopy, —1155 0623 —0014 —1.864 —0.069  0.740 B B
& ©(0.076) (0.077) (0.077) (0.101) (0.101) (0.101)
n = 400

—1.026 0.494 -0.009 —-1.535 —0.015 0.498 10.522 10.637  0.483

Copula Y (0.042)  (0.039) (0.039) (0.051) (0.045) (0.044) (0.730) (0.770) (0.062)

Copula Z ~1.015 0482 —0.010 -1.485 —0.061 0485 10.520 5.095 0.620
(0.042) (0.040) (0.039) (0.050) (0.044) (0.045) (0.739) (0.361) (0.056)

MF Logit ~1.023 0489 —0.014 —1532 —0.023 0492 B B
(0.043) (0.042) (0.042) (0.052) (0.049) (0.050)

. —0.949 0482  0.004 —1.426  0.000 0479  8.243

Dirichlet — —

(0.039) (0.039) (0.038) (0.045) (0.043) (0.043) (0.401)
Losistic Nop, ~ L1157 0626 —0.014 1865 —0.065  0.742 B B
& " (0.054) (0.054) (0.054) (0.071) (0.071) (0.071)
n = 800

—1.026 0.494 -0.009 -—-1.534 -0.013 0.498 10.465 10.566  0.480

Copula Y (0.030) (0.028) (0.028) (0.036) (0.032) (0.031) (0.514) (0.541) (0.044)

Copula Z ~1.012 0483 —0.009 —1482 —0.058 0485 10469 5.056 0.618
(0.032) (0.029) (0.029) (0.039) (0.031) (0.032) (0.560) (0.257) (0.041)

MF Logit ~1.023 0489 —0.014 —1531 —0.022 0491 B B
(0.030) (0.030) (0.030) (0.037) (0.035) (0.035)

. —0.948 0482  0.003 —1425 0001 0479  8.190

Dirichlet — —

(0.028) (0.028) (0.027) (0.032) (0.030) (0.030) (0.281)

Losistic Nop, |~ 1136 0626 —0.015 1865 —0.063  0.741 B B
& " (0.038) (0.038) (0.038) (0.051) (0.050) (0.051)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for each estimation
procedure. Data are generated from a Gaussian copula with beta marginals. “—” implies the parameter is not
part of the model.
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Table 2.C.2: Estimates and Standard Errors in a Reduced Form Model from a FGM Copula with Beta

Marginals
Method Bo,1 B1,1 P21 Bo,2 B1,2 P22 ®1 P2 YI€
n = 100
Copula Y —1.014 0.498 —0.004 -—1.518 —0.007 0.501 10.646 10.626 0.283
(0.082) (0.077) (0.077) (0.099) (0.087) (0.087) (1.437) (1.491) (0.126)
Copula Z —1.000 0.496 0.008 —1.475 —0.036 0.505 10.629 5.686 0.472
(0.084) (0.079) (0.078) (0.105) (0.087) (0.087) (1.465) (0.953) (0.121)
MF Logit —1.013 0.499 —-0.006 -—1.517 —0.010 0.499 - o -
(0.084) (0.083) (0.081) (0.102) (0.097) (0.098)
Dirichlet —0.957 0.493 0.008 —1.441 0.006 0.490 8.848 o o
(0.078) (0.077) (0.076) (0.089) (0.085) (0.085) (0.863)
Logistic Norm. —1.153 0.631 —0.006 —1.857 —0.052 0.742 - o -
(0.103) (0.104) (0.104) (0.137) (0.137) (0.137)
n = 200
Copula Y —1.013 0.498 —0.004 —1.515 —0.008 0.500 10.413 10.394 0.280
(0.058) (0.055) (0.054) (0.070) (0.062) (0.062) (1.007) (1.040) (0.090)
Copula Z —0.973 0.518 0.040 —1.441 —0.008 0.534 10.264 5.487 0.485
(0.066) (0.061) (0.064) (0.084) (0.069) (0.068) (1.076) (0.698) (0.091)
MF Logit —1.012 0.498 —0.006 —1.514 —-0.011 0.498 o - -
(0.059) (0.059) (0.058) (0.072) (0.069) (0.070)
Dirichlet —0.956 0.493 0.007 —1.438 0.006 0.489 8.666 - -
(0.055) (0.054) (0.054) (0.063) (0.060) (0.060) (0.597)
Logistic Norm. —1.154 0.632 —0.008 —1.860 —0.052 0.744 o - -
(0.073) (0.073) (0.074) (0.097) (0.097) (0.098)
n = 400
Copula Y —1.011 0.497 —0.005 —1.513 —0.007 0.499 10.272 10.275 0.280
(0.045) (0.040) (0.041) (0.054) (0.046) (0.045) (0.740) (0.776) (0.067)
Copula Z —0.958 0.536 0.065 —1.421 0.016 0.561 10.170 5.392 0.493
(0.050) (0.048) (0.050) (0.062) (0.054) (0.055) (0.799) (0.544) (0.067)
MF Logit ~1011 0495 —0.007 —1512 —0.011 0496
(0.042) (0.042) (0.041) (0.051) (0.049) (0.049)
Dirichlet —0.954 0.491 0.007 —1.434 0.007 0.488 8.547 - -
(0.039) (0.039) (0.038) (0.045) (0.042) (0.042) (0.416)
Logistic Nopm, 1151 0631 0000 —L861 0054 0745
(0.052) (0.052) (0.052) (0.069) (0.069) (0.069)
n = 800
Copula Y —1.011 0.497 —-0.005 —1.514 —0.007 0.499 10.224 10.219 0.277
(0.029) (0.028) (0.027) (0.035) (0.031) (0.031) (0.497) (0.515) (0.045)
Copula Z —0.951 0.540 0.068 —1.408 0.021 0.561 10.176 5.411 0.485
(0.036) (0.036) (0.034) (0.046) (0.039) (0.038) (0.595) (0.397) (0.051)
MF Logit ~1.010 0495 —0.007 —1512 —0.012 049
(0.030) (0.030) (0.029) (0.036) (0.035) (0.035)
Dirichlet —0.953 0.492 0.008 —1.435 0.006 0.488 8.512 o
(0.028) (0.027) (0.027) (0.032) (0.030) (0.030) (0.293)
Logistic Norm —1.155 0.632 —0.009 —-1.863 —0.055 0.746 o - -
" (0.037) (0.037) (0.037) (0.049) (0.049) (0.049)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for
procedure. Data are generated from a Farlie-Gumbel-Morgenstern copula with beta marginals.

the parameter is not part of the model.

each estimation
W »

implies



Table 2.C.3: Estimates and Standard Errors in a Reduced Form Model from a Dirichlet

Method Bo, P11 P21 Bo,2 B1,2 B2,2 ®1
n = 100
Copula Y —1.004 0.498 0.000 —1.508 0.006 0.500 10.368
(0.075)  (0.072) (0.072) (0.091) (0.080) (0.080) (1.409)
Copula Z —1.004 0.492 —-0.001 -1.510 -—-0.025 0.504 10.366
(0.075) (0.072) (0.071) (0.091) (0.080) (0.080) (1.410)
MF Logit —1.004 0.498 —0.001 —1.508 0.003 0.501 -
(0.076) (0.076) (0.075) (0.093) (0.089) (0.090)
Dirichlet —1.004 0.497 —0.001 —1.505 0.005 0.498 10.319
(0.073) (0.073) (0.072) (0.085) (0.081) (0.081) (1.011)
Logistic Norm. —1.180 0.620 —0.017 —1.885 —0.048 0.734 o
(0.091) (0.091) (0.092) (0.123) (0.124) (0.124)
n = 200
Copula Y —1.003 0.499 0.000 —1.508 0.003 0.500 10.168
(0.053) (0.052) (0.051) (0.064) (0.057) (0.057) (0.987)
Copula Z —1.003 0.493 0.000 —1.510 —0.030 0.504 10.166
(0.053) (0.051) (0.050) (0.065) (0.057) (0.057) (0.987)
MF Logit —1.003 0.499 0.000 —1.508 0.000 0.500 o
(0.054) (0.054) (0.053) (0.066) (0.063) (0.064)
Dirichlet —1.003 0.498 —0.001 —1.505 0.002 0.498 10.156
(0.052) (0.051) (0.051) (0.060) (0.057) (0.057) (0.703)
Logistic Norm —1.181 0.623 —0.018 —1.890 —0.053 0.736 -
" (0.065) (0.065) (0.065) (0.088) (0.088) (0.088)
n = 400
Copula Y —1.003 0.499 0.000 —1.505 0.002 0.500 10.100
(0.038) (0.037) (0.036) (0.046) (0.040) (0.041) (0.698)
Copula Z —1.003 0.493 0.000 —1.507 -—0.031 0.505 10.098
(0.038) (0.036) (0.036) (0.046) (0.041) (0.040) (0.698)
MF Logit —1.003 0.499 —-0.001 —-1.505 0.000 0.500 -
(0.038) (0.039) (0.038) (0.047) (0.045) (0.045)
Dirichlet —1.003 0.498 —0.001 —-1.503 0.001 0.499 10.092
(0.037) (0.036) (0.036) (0.043) (0.040) (0.040) (0.494)
Logistic Norm. —1.182 0.623 —0.018 —1.887 —0.055 0.737 -
(0.046) (0.046) (0.046) (0.062) (0.062) (0.062)
n = 800
Copula Y —1.001 0.501 0.000 —1.502 0.001 0.501 10.066
(0.027) (0.026) (0.025) (0.032) (0.029) (0.029) (0.493)
Copula Z —1.001 0.494 0.000 —1.505 —0.032 0.505 10.062
(0.027) (0.026) (0.025) (0.032) (0.029) (0.029) (0.493)
MF Logit —1.001 0.501 —0.001 —1.501 0.001 0.499 o
(0.027) (0.027) (0.027) (0.033) (0.032) (0.032)
Dirichlet —1.001 0.501 —-0.001 -—1.501 0.001 0.499 10.054
(0.026) (0.026) (0.025) (0.030) (0.028) (0.028) (0.348)
Logistic Norm. —1.180 0.625 —0.018 —1.886 —0.056 0.737 -
(0.032) (0.032) (0.032) (0.044) (0.044) (0.044)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for

each estimation procedure. Data are generated from a Dirichlet distribution.

the parameter is not part of the model.

“ kb

implies
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Table 2.C.4: Estimates and Standard Errors in a Structural Demand Model from a Gaussian Copula with
Beta Marginals

Method ag a ap 7,1 V2,1 V2,2 45! T o1 o2 Y|€
n = 100
Copula Y 0.665 0.806 0.205 0.069 —0.028 —0.051 —-0.046 —0.017 13.685 15.320 0.322
(7.458) (0.435) (0.221) (0.147) (0.079) (0.084) (0.052) (0.030) (1.873) (2.203) (0.134)
Copula Z 0.900 0.804 0.196 0.072 —0.030 —0.048 —0.047 —0.012 13.667 2.848 0.621
(7.172) (0.439) (0.218) (0.157) (0.083) (0.089) (0.051) (0.029) (1.876) (0.361) (0.112)
MF Logit 0.626 0.816 0.197 0.063 —0.031 —-0.046 —-0.046 —-0.014 - - -
(1.775) (0.307) (0.194) (0.161) (0.084) (0.106) (0.052) (0.031)
Dirichlet 0.677 0.795 0.225 0.056 —0.030 —-0.046 —0.042 —-0.017 8.947
(8.472) (0.495) (0.272) (0.196) (0.115) (0.123) (0.060) (0.039) (0.861)
AID 0.839 0.790 0.150 0.069 —0.027 0.121 —0.046 —0.052 59.029 164.150 0.280
(2.711) (0.378) (0.238) (0.167) (0.089) (0.123) (0.052) (0.053) (7.756) (24.731) (0.128)
n = 200
Copula Y 0.632 0.812 0.204 0.074 —-0.027 —-0.048 -0.047 -0.017 13.299 15.016 0.320
(5.918) (0.315) (0.155) (0.103) (0.056) (0.059) (0.037) (0.021) (1.285) (1.523) (0.095)
Copula Z 0.513 0.822 0.192 0.075 —0.030 —-0.044 —-0.047 —-0.012 13.270 2.804 0.618
(5.514) (0.293) (0.138) (0.106) (0.058) (0.063) (0.036) (0.021) (1.286) (0.250) (0.079)
MF Logit 0.697 0.812 0.192 0.070 —0.029 —-0.042 —-0.047 —-0.014 - - -
(1.842) (0.290) (0.126) (0.117) (0.059) (0.075) (0.038) (0.023)
Dirichlet 0.714 0.805 0.227 0.065 —0.028 —0.044 —-0.044 -0.017 8.724 o o
(6.598) (0.345) (0.181) (0.139) (0.082) (0.087) (0.042) (0.027) (0.593)
AID 0.772 0.804 0.287 0.069 —0.042 —0.462 —-0.046 —0.064 57.271 160.672 0.276
(2.3) (0.262) (0.177) (0.108) (0.063) (0.085) (0.037) (0.032) (5.414) (16.808) (0.091)
n = 400
Copula Y 0.626 0.817 0.207 0.074 —-0.027 —-0.046 —-0.048 —0.017 13.200 14.802 0.321
(4.904) (0.237) (0.108) (0.072) (0.039) (0.041) (0.026) (0.015) (0.901) (1.061) (0.067)
Copula Z 0.808 0.820 0.195 0.076 —0.029 —-0.042 —-0.049 —-0.012 13.217 2.798 0.616
(3.599) (0.177) (0.081) (0.074) (0.040) (0.044) (0.025) (0.015) (0.9) (0.176) (0.056)
MF Logit 0.774 0.807 0.187 0.069 —0.028 —-0.039 —-0.048 —-0.014 - - -
(2.687) (0.145) (0.121) (0.082) (0.041) (0.055) (0.027) (0.016)
Dirichlet 0.726 0.804 0.226 0.065 —0.028 —0.041 -0.044 -0.017 8.628 - o
(5.437) (0.252) (0.127) (0.097) (0.058) (0.062) (0.030) (0.019) (0.415)
AID 0.751 0.809 0.141 0.072 —-0.027 0.097 —-0.047 —0.028 57.251 158.636 0.274
(1.043) (0.162) (0.103) (0.074) (0.043) (0.079) (0.026) (0.020) (3.785) (11.754) (0.064)
n = 800
Copula Y 0.582 0.817 0.206 0.076 —0.027 —-0.044 —-0.047 —-0.016 13.141 14.684 0.322
(3.671) (0.173) (0.069) (0.050) (0.027) (0.029) (0.018) (0.010) (0.635) (0.744) (0.047)
Copula Z 0.732 0.817 0.186 0.076 —0.028 —0.040 —-0.048 —0.011 13.208 2.818 0.612
(2.451) (0.122) (0.056) (0.051) (0.028) (0.031) (0.018) (0.010) (0.631) (0.124) (0.039)
MF Logit 0.769 0.811 0.190 0.070 —0.028 —0.036 —0.047 —-0.013
(1.490) (0.180) (0.063) (0.066) (0.031) (0.038) (0.021) (0.012)
Dirichlet 0.549 0.806 0.225 0.066 —0.028 —0.038 —-0.044 -0.017 8.558 - -
(3.885) (0.178) (0.085) (0.069) (0.041) (0.044) (0.021) (0.014) (0.291)
AID 0.746 0.803 0.192 0.070 —0.028 0.064 —0.046 —0.030 56.618 158.493 0.275
(2.384) (0.180) (0.112) (0.055) (0.032) (0.040) (0.021) (0.014) (2.761) (8.499) (0.046)
Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for each estimation procedure. Data are

generated from a Gaussian copula with beta marginals. “—

“_»

implies the parameter is not part of the model.
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Table 2.C.5: Estimates and Standard Errors in a Structural Demand Model from a Gaussian Distribution

Method ag ay ag V1,1 V2,1 V2,2 m o 1 P2 Y€
n = 100
0.370 0.655 0.157 0.021 —-0.010 —-0.022 —0.025 0.003 5.473 7.388 —0.166
Copula Y

(2.678) (0.562) (0.384) (0.272) (0.155) (0.167) (0.078) (0.050) (0.826) (0.989) (0.142)
0573 0682 0158 0.033 —0.016 -0.013 —0.028 0003 5462 2336  0.331

CopulaZ 5 545) (0.850) (0.473) (0.293) (0471) (0.179) (0.092) (0.054) (0.846) (0.291) (0.129)
MF Logit 0708 0626 0163 0022 —0013 0015 —002 0004 B B
(2.209) (0.451) (0.316) (0.248) (0.149) (0.170) (0.076) (0.051)
Diiclet 0799 0597 0184 0019 —0.006 —0.016 —-0.022  0.004 4963 B
(13.099) (0.788) (0.549) (0.266) (0.174) (0.194) (0.077) (0.058) (0.455)
ADD 0556  0.622 0165 0026 —0.014 —0018 —0.025  0.005 27.346 61.059 —0.200
(13.008) (0.730) (0.524) (0.250) (0.152) (0.170) (0.077) (0.052) (3.876) (8.652) (0.139)
n = 200
Copulay  L150  0592  OI77 0038 001 —0012 —0023 0002  53i5  7.183 —0.164
(2.237)  (0.369) (0.208) (0.183) (0.103) (0.116) (0.056) (0.036) (0.592) (0.689) (0.103)
Copulaz 0433 0651 0184 0035 0016 —0009 0027 0001 5329 2331 032
(5.505) (0.579) (0.340) (0.207) (0.117) (0.125) (0.057) (0.038) (0.603) (0.206) (0.091)
MF Logit 0799 0614 0171 0033 —0012 0009 0023 0003 B B
(1.274)  (0.304) (0.196) (0.174) (0.104) (0.120) (0.054) (0.037)
Diicle 0932 0615 0196 0.025 —0010 —0.008 —0.020  0.003 4854 B
(11.215) (0.495) (0.320) (0.179) (0.119) (0.133) (0.054) (0.041) (0.314)
ADD 1458 0588 0170  0.041 —0.014 —0.011 —0.023  0.003 26.854 59.740 —0.200
(10.167) (0.474) (0.271) (0.174) (0.104) (0.118) (0.054) (0.037) (2.689) (5.981) (0.098)
n = 400
Copulay 009 0643 0167 0044 0011 0012 —002% 0002 5209 711 0165
(3.932) (0.405) (0.170) (0.133) (0.072) (0.082) (0.040) (0.026) (0.425) (0.489) (0.073)
Copulaz 0837 0635 0191 0061 0024 —0008 0020 —0001 5203 2439 0315
(2.038) (0.242) (0.140) (0.139) (0.076) (0.101) (0.038) (0.025) (0.496) (0.199) (0.081)
MF Logit 0086 0627 0170 0041 —0.012 0008 —0.025 0003 B B
(7.470)  (0.649) (0.363) (0.141) (0.083) (0.099) (0.041) (0.031)
Diicle 0615 0619 0190 0.034 —0010 —0.007 —0.023  0.003 4821 B
(8.601) (0.309) (0.195) (0.125) (0.084) (0.094) (0.039) (0.029) (0.220)
AID 0495 0629 0177  0.046 —0.014 —0.012 —0.025 0.004 26.662 59.123 —0.202
(7.506) (0.295) (0.183) (0.120) (0.073) (0.083) (0.038) (0.026) (1.887) (4.182) (0.069)
n = 800
Copulay 1705 0596 017 0052 0012 —0011 0025 0002 5258 7064 0164
(1.620) (0.138) (0.094) (0.085) (0.051) (0.058) (0.028) (0.018) (0.3)  (0.343) (0.052)
Copulaz 0706 0648 0195 0054 0024 —0009 0031 —0.001 5260 2480 0313
(1.471)  (0.162) (0.098) (0.089) (0.053) (0.058) (0.026) (0.018) (0.303) (0.107) (0.046)
MF Logit | 0987 0627 0172 0046 —0.012 0008 —0.025 0003 B B
(12.234) (0.413) (0.236) (0.109) (0.059) (0.063) (0.030) (0.019)
Diicle 0960 0624 0193 0.041 —0012 —0.007 —0.023  0.003 478 B
(5.204) (0.176) (0.119) (0.088) (0.059) (0.066) (0.027) (0.021) (0.154)
AID 0416 0632 0168 0051 —0.014 —0.012 —0.025 0003 26487 58.691 —0.201

(4.932) (0.182) (0.108) (0.084) (0.051) (0.059) (0.027) (0.018) (1.325) (2.938) (0.049)

Note: MLE estimates and (copula misspecification robust) asymptotic standard errors for each estimation procedure. Data are
generated from a multivariate Gaussian distribution. “—” implies the parameter is not part of the model.
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Table 2.C.8: Bayesian Point Estimates and Inference for an Extended Reduced Form Model

Variable Outcome 1 Outcome 2

Constant 2002 —2.033
(0.041) (0.043)

. 0.841 0.848
(0.042) (0.043)

—0.846 —0.828
2 (0.041) (0.042)
. 0.869 0.871
3 (0.042) (0.043)
. —0.867 —0.892
4 (0.042) (0.042)
. 0.849 0.861
> (0.042) (0.043)
—0.023 —0.026
6 (0.030) (0.031)
. —0.020 0.023
7 (0.030) (0.031)
) ~0.015 —0.006
8 (0.029) (0.030)
) —0.026 —0.001
9 (0.031) (0.031)
—0.018 ~0.023
10 (0.030) (0.030)

Note: Bayesian estimates from a Gaussian copula with beta marginals specification. Entries denote coef-
ficient of the associated variable in each of the outcome equations. Standard errors (standard deviation of
the chains) in parentheses.
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Figure 2.9: Trace Plot of Elasticity Chains in an Extended Bayesian AID System
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Note: Results for the data set on married couples with one child. Combination of 5 chains with 800 draws
each for a total of 4,000 draws.



Figure 2.10: Density Plot of Elasticity Chains in an Extended Bayesian AID System
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Chapter 3

Multivariate Fractional Panel Data

Methods

While there have been many developments in creating modeling strategies for multivariate fractional
outcomes in a cross-sectional context or for univariate fractions in a panel data setting (Papke and
Wooldridge, 1996, 2008; Murteira and Ramalho, 2016), there are currently no comprehensive and
flexible ways of modeling multivariate fractions in a panel data setting. That is, strategies that
simultaneously take into account the inherent nonlinearity in the partial effects from covariates,
unobserved heterogeneity that is potentially correlated to these covariates, and that impose the
unit-sum restriction present across the multivariate outcomes. Additionally, we would expect that
such a framework would allow to control for further endogeneity issues that are not captured by
unobserved heterogeneity and also allow for structural zeros in the data.l

The main contribution of the chapter is then to expand the available toolkit for modeling
multivariate fractional outcomes using panel data in applied microeconomic settings. Recognizing
that different applications are conceived with different objectives in mind, the chapter introduces
a wide range of methods that are suitable in a variety of settings. To this end, I extend currently
available approaches for cross-sectional multivariate fractional outcomes to a panel data setting
and bring panel data methods that operate on univariate fractions to the multivariate case. This

is done in a way that emphasizes robustness and flexibility, while maintaining the advantages of

!For example, in the demand estimation setting by allowing some households to spend none of their income on a
particular good.
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each framework.

The first method is maximum likelihood estimation that allows for identification of the param-
eters in a conditional mean model (Hartzel et al., 2001). This method draws on the statistical
literature on generalized (non)linear mixed models for multivariate responses (for a review, see for
example Davidian and Giltinan, 1995). This method will be particularly useful when an application
requires consistent estimation of the parameters, not just the signs or average partial effects. Of
course, given consistent estimation of the parameters, these other quantities can be consistently
estimated. It also has the potential of being efficient in comparison to the other methods intro-
duced in the chapter. While many available likelihood-based approaches allow the specification
of a distribution on the multivariate fractional outcomes, they can be restrictive or not generalize
well to allow for unobserved heterogeneity. For example, transformation methods that take the
multivariate fractions to an unbounded space before imposing a distributional assumption, such
as the additive log-ratio (Aitchison and Shen, 1980), centered log-ratio (Aitchison, 1983), centered
log-ratio (Egozcue et al., 2003), or a (Tsagris et al., 2011) transformations require strong indepen-
dence assumptions to recover the parameters of a conditional mean model defined directly on the
share components (Papke and Wooldridge, 1996). Other distributions might allow for a regression
structure but will generally not be robust to misspecification (Hijazi and Jernigan, 2009; Scealy
and Welsh, 2011). The maximum likelihood methods considered in this chapter will allow for di-
rect specification of a conditional mean and at least some degree of robustness to distributional
misspecification, if not full robustness.

The second method extends Papke and Wooldridge (2008) to a multivariate fractional setting by
using pooled multivariate nonlinear least squares with a probit link. While this approach might be
potentially misspecified and thus not consistently estimate the parameters of the conditional mean
(up to a scale factor), it provides the best mean squared error approximation to these quantities that
is afforded by the probit link. Furthermore, if these approximations are believed to be accurate (and
numerical simulation results in Section 3.2 show that this tends to be the case), this approach would
allow for the identification and estimation of average partial effects, the inclusion of continuous
endogenous covariates, and inference can be made fully robust to the potential misspecification
of the conditional mean. Additionally, this method is not impeded by zeros in the underlying

multivariate fractions and can be scaled to handle a large amount of shares without much additional
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computational burden.

I then discuss a latent dependent variable formulation that accounts for censoring, given by
structural zeros in the multivariate fractions. Using the simple transformation in Wales and Wood-
land (1983), I extend the Bayesian approach of Kasteridis et al. (2011) to account for panel data
and correlated random effects using a data augmentation algorithm that accounts for censoring
(Albert and Chib, 1993). Accounting for unobserved heterogeneity in this method is then also
a multivariate generalization to Loudermilk (2007). The simplicity of this resulting approach is
in line with previous literature where the Bayesian paradigm tends to be preferred to frequentist
simulation-based approaches given their simplicity in dealing with the latent variables (McCulloch
et al., 2000). Still, simulation methods such as the methods of simulated moments (McFadden,
1989) or simulated scores (Hajivassiliou and McFadden, 1998) would remain valid given this setting
and their exploration in this context could be a potential avenue for further research. Additionally,
it is important to note that the Bayesian estimator allows for potential endogeneity that is not
captured by the unobserved heterogeneity, similar to the probit method (Ramirez-Hassan, 2021).
This approach also directly accounts for the presence of zeros in the multivariate fractions. Other
methods that allow for zeros usually take these as possible detection errors, and thus create impu-
tation methods in some optimal way to minimize the ad hoc nature of this operation (Fry et al.,
2000; Martin-Fernandez et al., 2003). Furthermore, some transformation and likelihood-based ap-
proaches can also deal with zeros, but they can suffer from similar caveats as those mentioned
before (Stewart and Field, 2011; Tsagris and Stewart, 2018).

The remaining of the chapter proceeds as follows. Section 3.1 reviews the general assumptions
and theory that supports the estimation methods that are then introduced. Special emphasis is
made in implementation of the methods using fully robust inference. Section 3.2 presents several
Monte Carlo exercises that showcase the comparative advantages of each of the methods, their
possible weaknesses and robustness, as well as specific cases where they will be most useful. Finally,

Section 3.3 presents the concluding remarks.
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3.1 Methodology

I begin by stating the general assumptions that hold for all the methods considered in the paper.
Let Y be a multivariate fractional outcome of d shares. For each share Y}, I assume that we have a
Kj-dimensional vector of covariates denoted by X ;. Similarly, as is customary in panel data models,
I allow for the presence of unobserved heterogeneity that is potentially correlated to the covariates,
which is denoted by C'. The following assumption summarizes the type of panel data structures

that are within the scope of this paper and which arise frequently in applied microeconomics.

Assumption 3.1 (Panel data).

1. Let (Y, X', C) be a (2d + K)-dimensional random-vector with true distribution H, where
Y = (Y1,...,Yy) takes values on 8¢, X = (X1, ... , X )" has support X' C RE+-+EKD with

K=K +- -+ Kjg, andC’:(Cl,...,Cd)’.

2. There is access to a random sample of size n from H in the cross section, given by {Y/, X/} .
where Y; € X,ST;'lSd. That is, for each random draw i there are T; time periods, and within

each 7 and time period ¢, the outcomes are multivariate fractional.

The first part of Assumption 3.1 introduces unobserved heterogeneity as part of the true distribu-
tion that defines the population of interest. Emphasizing this true distribution will also allow us
to discuss inference that takes into account possible misspecification in the maximum likelihood
method that is presented shortly. From the second part, note that the paper is sufficiently general
as to allow for unbalanced panels, but it does assume that the reason for the unbalance is com-
pletely at random. In this sense, the methods introduced in the paper will not remain valid under
possible issues of attrition or other sample selection rules that are dependent on the covariates.
Of course, since C' is unobserved by definition, it does not show up in the information available
to the econometrician for estimation and inference. Additionally, at this point I note that all the
asymptotic results in the paper rely on short panels; i.e., where T; is taken as fixed while the cross
section n goes to infinity. The dimensionality of the simplex given by d is not restricted and we
will introduce methods that allow for d to be large, which might occur, for example, in a demand
estimation problem with many goods in consideration. With this in mind, I now consider the fol-

lowing estimation procedures that will contain some more specialized assumptions conditional on
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the inferencial goal of each method.

3.1.1 Maximum Likelihood Estimator

For this and the next subsection, we need to assume a conditional mean model that relates the
multivariate fractional outcome Y to the covariates X and the unobserved heterogeneity C. One

possibility would be to assume for each i =1,...,n,t=1,...,T;,and j =1,...,d,
E[Yit;| Xitj = @i, Cij = cij] = m;(@iy;80,5 + cij)

for some By ; € B; C R%i, where ci; represents time-invariant unobserved heterogeneity for each
individual 7 in outcome equation j, and the functions m;(-) would satisfy 0 < m;(z) < 1 and
Z;l:l mj(z) =1forall z € R, j =1,...,d. However, the unit-sum restriction on the link functions
and the outcome shares creates an identification problem that prevents us from proceeding with this
approach. As noted by Montoya-Blandén (2021), the fact that the outcome variables are supported
on S¢ prevents the recovery of one of the parameter vectors Boj,j = 1,...,d as all information
about one of the outcomes can be obtained from the distribution of the others. To address this
issue, we will instead work with the D = d — 1 dimensional system by setting a base category,
assumed to be d hereafter. This conditional mean would also miss an interesting possibility that I
use as the basis for the two special cases of a maximum likelihood estimator in this setting. Thus,

I instead introduce the following assumption.

Assumption 3.2 (Conditional mean). For each i =1,...,n,t=1,...,T;,and j =1,...,d,
E[Yi;[ Xit, e;] = mj(XuBo + ¢i) , (3.1.1)

for some By = (B),...,8p) € B C RE where K = Zj]?:lKj, ¢ = (¢i1,-..,¢p), and the

link functions are defined for all j = 1,...,d as m; : RP? — R to satisfy 0 < m;(z) < 1 and
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Z;-lzl mj(z) =1 for all z € RP. Finally, X;; is a D x K matrix defined as
Ty 0 Oixkp

/
Oixry -+ Typ

This assumption introduces a few key ideas. First, as is usual in panel data models, dealing
with ¢; will be one of the main challenges of obtaining reliable estimators (Wooldridge, 2010,
section 10). Second, we have a family of link functions m;(-) where each outcome can potentially
depend on the covariates and unobserved heterogeneity of all other outcomes, allowing for very
rich dependence between shares. Third, note that it is assumed there is a true By such that the
conditional mean assumption holds for all outcomes. Finally, note that (3.1.1) is general enough
to allow for outcome-specific intercepts, time effects and covariates, while allowing for the same
covariates to enter different share equations and having possibly time-invariant covariates. It is
also assumed that x;;; contains a 1 at the beginning of the vector for each j =1,...,D.
Throughout the paper, we will need stacked versions of (3.1.1) across outcomes and time. These

are given by

ElYi| X, ¢i] = m(XuB + ¢;) (3.1.2)
and

ElY;[X;, ¢;i] = mp, (X0, ¢i), (3.1.3)

where Y = (Yin,...,Yip) and m(Xu8 + ¢;) = (mi(XuB + ¢i),...,mp(XiuB + ¢;)) are D-
dimensional vectors, Y; = (Y}},...,Y;) and mr, (X8, ¢;) = (m(XuB+c), ..., m(Xir,B+¢;))
are DT;-dimensional vectors, and X; = [ X/, --- X;Ti]’ is a DT; x K matrix.

As noted by Papke and Wooldridge (2008), assumptions 3.1 and 3.2 on their own are not enough
to carry out estimation of the conditional mean parameters . To this end, I make two additional

assumptions.
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Assumption 3.3 (Strict exogeneity). For alli =1,...,n,and j =1,...,d,
EYi| X, ¢i] = E[Yi;| X1, ..., Xir, ¢i] = E[Yij| X3, ¢ .
Assumption 3.4 (Mundlak device). For all i = 1,...,n,
ci|Xit, ..., Xir, ~ N(X;€,T), (3.1.4)

where X; = (1/T;) EtT;l X are the time averages for the time-varying covariates, € is a K-

dimensional coefficient vector and I is a D x D covariance matrix.

Assumption 3.3 is standard and simply states that, conditional on unobserved heterogeneity, the
covariates are uncorrelated to time-varying unobservables. It also rules out the use of lagged depen-
dent variables as covariates or explanatory variables that correlate to paste values of the outcome
variables (Papke and Wooldridge, 2008). Assumption 3.4 is a correlated random effect (CRE) as-
sumption that uses Mundlak’s (1978) device for specifying the relationship between covariates and
unobserved heterogeneity. Note that under a pure random effects assumption, & = 0 and there
would be no need to worry about correlation with unobserved heterogeneity. Of course, a more
flexible model such as that by Chamberlain (1980) could be allowed, at the expense of slightly more
complex models. The use of (3.1.4) is made for convenience and to allow for particularly simple
estimation methods for 3. Other non or semiparametric alternatives that assume less structure on
the distribution of ¢; conditional on X1, ..., X;r, are also available, again at the expense of more
intensive computations (Hartzel et al., 2001). As the maximum likelihood method to be introduced
shortly can already be computationally demanding, this paper maintains (3.1.4) for simplicity. Fi-
nally, the paper does not consider fixed effects transformations to eliminate c;, as these require
correct specification (of both H and m) and are only available for a handful of distributions with
special forms and sufficient statistics (see, e.g., Magnac, 2004).

Note that, given (3.1.4), we can write ¢; = X;€ + b;, where b;| X;1,..., X1, ~ N(0,T). Re-

placing this into (3.1.2) and using Assumption 3.3 yields

E[Yi| X, ci]l = m(XuB + X+ b;).
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Writing X;; = [ X X;] and o = (3,¢')’, we can then find
E[Yy| X, ¢i] = m(Xira + bi) (3.1.5)

with b; independent of X;;. This is of the same form as (3.1.2) but with b; representing unobserved
heterogeneity that is uncorrelated from the covariates. For notational simplicity, the remaining of
the paper assumes that (3.1.2) (and thus 3.1.3) represents a random effects specification, so that
c; can be taken as independent from covariates X;;. Keep in mind that this will only be true
after the transformation given by (3.1.5) if the original covariates are thought to be correlated to
unobserved heterogeneity, which is usually the case in most applications. A subtle point is that
for the computation of average partial effects, or any derivation that follows from the original
conditional mean model in (3.1.1), X; needs to be integrated out for each ¢t =1, ..., T; (Papke and
Wooldridge, 2008).

Armed with Assumptions 3.1 through 3.4, I can now present the general maximum likelihood
estimator for multivariate fractional outcomes and two interesting special cases. Let F'(-; 3) denote
a D-dimensional distribution for Yj;| X, ¢; that satisfies (3.1.2). As the random effects ¢; (or b;
after the transformation in 3.1.5) are unobserved, we need to integrate over them in the definition
of the likelihood. Assuming conditional independence across t, we can define the log-likelihood

contribution for each ¢ in this problem as

(9 (g ) — log / /

where ¢p(-; u, ) is the density of a D-dimensional normal distribution with mean vector g and

T,
H z‘t\XmCi;ﬂ)] ¢p(ci;0px1,T') de; (3.1.6)
=1

covariance matrix 3. A second approach that does not impose conditional independence across

time, is given by the pooled likelihood approach

(> (8,1 Zlog / / (Yal Xit, i )6p (€ 0pt, T de; . (3.1.7)

Writing 8 = (3, vech(T')’")’, where vech(-) is the half-vectorization operator that selects the lower

triangular portion of a square matrix, we have that a general maximum likelihood estimator based
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on either (3.1.6) or (3.1.7) is given by

n
6, = arg max 1 Zﬁg”(@),l € {ind, pool} . (3.1.8)
L

For [ € {ind, pool}, if we do not assume correct specification of F', general quasi-likelihood theory,
such as that in White (1982), yields consistency of él to the minimizer of the Kullback-Leibler
divergence between F' and H, denoted as 6. Furthermore, if F' is chosen to be a member of
the linear exponential family, as long as the link function m is correctly specified, then the 3*
component of 8] will equal the By specified in Assumption 3.2 (Gourieroux et al., 1984). This is
the basis for one of the special cases introduced as Estimator 1. The second special case, Estimator
2, specifies F' using a copula approach. Following the results in Montoya-Blandén (2021), we observe
that as long as the marginals in F' are correctly specified (which again requires correct specification
of the link), even if the dependence structure is not, then 8* = By also holds. In both of these
cases, we can thus guarantee consistent estimation of the underlying conditional mean parameters

Bo-
Once consistency is established, the results in the previously mentioned literature can be used

to obtain asymptotic normality of \/ﬁ(él — 6;) with asymptotic variance given by
Asy. Var(v/n(0) — 67)) = AT BATY (3.1.9)

where A; = Ep [8261@(9) /0000'] is the Hessian matrix of the log-likelihood contributions, B; =
En [855»”(0)/80 : 855»”(9)/80’] is the outer product of the scores, and the notation Ex emphasizes
that the expectation is taken with respect to the true distribution. Inference that is fully robust
to possible distributional misspecification (and to autocorrelation in the scores in the case of the

pooled log-likelihood approach) follows from using

1.1 " 920 (6)

100" 8) 00" ()
' n & 0006

B == 1.1
and 1= 2 50 50 (3.1.10)

to estimate the asymptotic variance in (3.1.9). The way this model is specified is similar to nonlinear
mixed models (or generalized mixed models if F' is assumed to be a distribution from the linear

exponential family) used heavily in the statistics literature (Davidian and Giltinan, 1995). Pinheiro
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and Bates (1995) is a standard reference for computation of the integrals in (3.1.6) or (3.1.7). For
adaptive (Liu and Pierce, 1994) or nonadaptive (Jéckel, 2005) quadrature, Appendix 3.A presents
some general formulas to compute these integrals. Whereas the literature tends to favor Laplace
approximations to these integrals, quadrature or Monte Carlo methods should be used in this case,
as we will usually want to assume a distribution that is not necessarily correctly specified. A
Laplace approximation to an already misspecified distribution would likely introduce larger bias
into the estimation process. Quadrature methods will also be reliable only for a small dimension
D as the number of evaluations grows exponentially with D. For larger dimensions, one could use
an expectation-maximization (EM) algorithm as outlined in Hartzel et al. (2001). When deciding
between each method it is also important to keep in mind that the pooled approach requires more
integral evaluations; (3.1.6) requires n integrals to be computed, while (3.1.7) requires > | T; of
them (or nT for a balanced panel).

Based on the previous formulas, the paper proposes two special cases that will be of particular
interest in applications. Both start from a multinomial logit conditional mean as it satisfies the

unit-sum restriction given in Assumption 3.2. That is, these estimators take m(-) as

exp (@}, Bj+cij) for j=1,...,D,

D ’ A
m(X}B+e;) = T xp(wlep ) (3.1.11)
1
1+ZpD=1 eXp(m;tpﬁercip)

for j =d.
Estimator 1 (Multinomial Logit QMLE).

1. Use
d
F(Yi| X, e 8) = [[mii"
j=1

in either (3.1.6) or (3.1.7) with m;;; = m;(X/,8+ ¢;) according to the multinomial logit link.
2. Estimate 6 as in (3.1.8) computing the integrals as in Appendix 3.A.

3. As the multinomial likelihood is inherently misspecified, use the fully robust estimators given

in (3.1.10).

Appendix 3.B contains a formula for the score 861@(0) /00 that can be used to motivate a
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quasi-Newton algorithm as in Hartzel et al. (2001) and also to obtain the fully robust variance
estimator. As in Papke and Wooldridge (1996), this estimator, while being inherently misspecified,
should achieve some optimality properties in the class of linear exponential families for this problem.
Another possible approach would be to specify a population-averaged estimator that uses general
estimating equations (GEE) to gain efficiency (Liang and Zeger, 1986). These would start by
specifying E[Y;;| X;t] directly as in (3.1.1), perhaps using a multinomial logit link. Note that no
model would actually correspond to this link after integration of the random effects. Additionally,
given that the multinomial distribution is inherently misspecified, it might not be worthwhile to
attempt to gain more efficiency by correctly specifying other features of the distribution. Thus, I
recommend the use of the fully robust approach as noted Estimator 1.

If efficiency is a concern, there is another route. As shown in Montoya-Blandén (2021), copulas
can be used to model multivariate fractional outcomes in a way that achieves flexibility in the
dependence patterns between shares, while retaining some robustness to distributional misspecifi-
cation. Furthermore, if the copula and marginals are correctly specified, this leads to an efficient

maximum likelihood approach. This is summarized in the following procedure.

Estimator 2 (Multinomial Logit Copula).

1. Choose marginals G;(-;3,¢;),j = 1,..., D that satisfy (3.1.11), such as beta distributions,

and copula G(-;), for example a Gaussian copula. Then, use

F(Yi| Xit,¢i: 8,0, %) = g(G1(yir1 | Xit; B, 01), - - -, Gp(yaen| Xit; B, ¢p); )

D
X H gj(yitj|Xit§ B, ¢j) )

J=1

in either (3.1.6) or (3.1.7). The copula approach adds some additional precision parameters
for the marginals and dependence parameters for the copula (which can be misspecified).

Compute the integrals as in Appendix 3.A.
2. Estimate (0',¢',4') as in (3.1.8).

3. If the copula is potentially correctly specified, use //l\l_l as the estimator for the asymptotic

variance in (3.1.9). Otherwise, use the fully robust (3.1.10).
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Estimator 2 also encompasses the use of a Dirichlet joint distribution with a multinomial logit
link, as this can be expressed using an independent copula with beta marginals after a transfor-
mation (Connor and Mosimann, 1969; Hijazi and Jernigan, 2009). If there is no reason to believe
that the copula might be correctly specified, then by using the fully robust asymptotic variance
estimator in both the multinomial logit and copula models, we would usually expect Estimator 1
to actually be more efficient, as it has to estimate less parameters to arrive at a solution. This is
studied numerically in Section 3.2.

As a final consideration, recall that these estimators can recover the conditional mean parame-
ters (and random effects variance) that can then be used to estimate the average partial effects by
estimating the derivatives of covariates with respect to (3.1.11). However, if our only goal was to
consistently estimate these partial effects, you could simply estimate a multinomial logit link via
quasi-maximum likelihood and obtain average partial effects as noted in Wooldridge (2005), which
requires no integration. While this is a perfectly valid approach, this method would not generalize
well to the inclusion of possible endogenous covariates. Thus, we instead consider the probit link

version of this issue in the next subsection, that does allow for simple inclusion of endogeneity.

3.1.2 Probit Estimator

With the notation and assumptions outlined in the previous subsection, it becomes easy to define
a very simple estimator that parallels that in Papke and Wooldridge (2008). This time, instead of

a multinomial logit link, assume a probit link for each share:
®(xjy B1 + cin)
E[Yit| Xit, ¢i] = m(XuB + ¢;) = : :
®(x;;pBp + cip)

where ®(+) is the standard normal cumulative distribution function (CDF). Using the properties of

the normal CDF, we can readily integrate the unobserved heterogeneity from the conditional mean
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function to arrive at

@ <w;ﬂ <\/1ﬁ-i1-7’7%)> (i1 Bic)
BE[Y| X = : = : , (3.1.12)

o (e (22))] |o@insn

where for j = 1,...,D, B;; = B;/(1 + 7]2)1/2 and 712- is the j-th diagonal element of I'. Thus,

similarly to Papke and Wooldridge (2008), identification of the conditional mean parameters is
no longer possible (and the same is true for I') but the average partial effects are still identified.
Indeed, as shown by Wooldridge (2005), the average partial effect of covariate ;. on outcome y;;

is given as the derivative or difference (if it is categorical) of
Eﬂfz‘j [(I)(m;tjﬂcj + j{L‘]‘Ecj)] (3.1.13)

where &.; = §;/(1 —l—'yjz)l/ 2 and I explicitly include Z;; to emphasize that it is being integrated out of
this unconditional expectation. Then, given a consistent estimator of the scaled parameters of the
probit link, the average partial effects can be identified. In obtaining this consistent estimator, how-
ever, we run into an important issue: the probit link itself does not necessarily satisfy Assumption
3.2. Specifically, define mq4(X;:B+c¢;) =1 _ZJD:1 ®(x},;Bj+cij). Then it is not necessarily the case
that mq(XuB + ¢;) > 0, as the probit link does not collectively impose Zle ®(z7,;85 + cij) < 1
as is done by the multinomial logit link. This would imply that the conditional mean might not be
correctly specified, and thus estimating 8. from (3.1.12) might not consistently estimate Bg..
However, it is important to note that this method would still provide the best probit link ap-
proximation to each of the conditional mean functions for each fraction separately. By also taking
into account the correlation between each share in the system, it operates in a way similar to a
seemingly unrelated regressions (SUR) approach. That is, imagine fitting a probit link conditional
expectation to each fractional outcome Yj;; using panel methods, where the base category is taken
to be 1 — Y. If we expect this to be a correctly specified model, then we would be consistently
estimating B3 ;. If we repeat this thought experiment for each j =1,..., D, and accept the probit

link as a correctly specified link at each step, then the multivariate solution that approximates
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each of the conditional means while taking into account the correlation between shares should be
a good approximation to the system as a whole. Finally, the method provides this approximation
for the coefficients and partial effects in a way that is simple, computationally fast, and can in-
corporate continuous endogenous covariates using standard control function arguments (Papke and
Wooldridge, 2008). We can also proceed with estimation by multivariate nonlinear least squares
and adjust inference for the use of a potentially misspecified conditional mean function.

Formally, writing a.. = (3., &.) and given the objective function contribution

(o) = (Y5, Xis ) = 5[V — g, (Xiao)/[Y; — o (Kiex,)] (3.1.14)

the pooled multivariate nonlinear least squares estimator of a, = (B¢, &;) with the probit link is

found as

T.
_ Il N N
Q. = arg min B Z Z[Y;t —m(Xpa)] [Yie — m( X))
Ce i=1 t=1
n Ti

D
1 - 2
= argmin 5 Y YD vy — (@) (3.1.15)

i=1 t=1 j=1

where the definitions of & and o come from (3.1.5). Thus, as outlined in White (1981) and section
12.3 of Wooldridge (2010), even if the probit link is potentially misspecified as a conditional mean
for the multivariate fractions, @, is consistent to the value o that creates the best probit link
approximation, in a mean squared error sense, to the true conditional mean E[Y;;|X;;]. Further-
more, if Zle @(.’iétj&cj) < 1 for all ¢ and ¢, we have no reason to expect that the probit link
approximation would be a poor one.

Asymptotic normality centered around e also holds, so that \/n(a. — a) is asymptotically
normal with asymptotic variance given by

Asy. Var(v/n(a, —al)) = A7'BA™, (3.1.16)

C

where, similar to the previous subsection, A = Ey[0%¢;(c.)/0a.0cl] is the Hessian matrix of
the objective contributions and B = Eg[dg¢;(a.)/da. - 0gi(a.)/0al] is the outer product of the

scores. By using the full Hessian that does not assume Eg[Y; — mr. (X;c)] = 0, inference is made
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robust to the possible misspecification of the probit link, as well as autocorrelation in the scores.

Estimation of the asymptotic variance in (3.1.16) follows as

~ 1 92q(@Ae) 5 1~ 0gi(ae) dgi(ae)
A= d B=-— . . 1.1
an - (3.1.17)

- a9 A~
n Oa0c, P oo, oo,

Given that the probit link is a simple special case, formulas for both the scores and Hessian are

available; these are given in Appendix 3.B. This procedure is summarized as follows.

Estimator 3 (Probit pooled multivariate NLS).

1. Estimate . from (3.1.15) by pooling across observations, time and outcome equations with

the probit link.

2. For fully robust inference, estimate the covariance matrix for @, from (3.1.17) using the

formulas in Appendix 3.B.

If the probit link is deemed to be a good approximation, a possible next step to gain efficiency
is to use a two-step estimator that specifies a weighted adjustment to the objective function in
(3.1.14). As the estimator defined in (3.1.15) is also a generalized method of moments (GMM)
estimator with an identity weighting matrix, the two-step choice could be implemented by using
a different weight matrix choice. While the identity choice does not incorporate the correlation
structure between the shares, this correlation is accounted for in the inference step when using the
estimators (3.1.17). Furthermore, both consistency and asymptotic normality is unaffected; the
choice of weighting matrix should only affect efficiency concerns. Given that there is a potential
misspecification problem, once again it does not seem worthwhile to pursue larger efficiency gains
if a crucial part of the distribution might not be correct. For more details, see, e.g., section 12.4 in

Wooldridge (2010).

3.1.3 Bayesian Latent Variable Estimator

While the previous methods are able to handle zeros in the data naturally, they do not account
for the possibly large probability that might accumulate at 0 for some fractions (Liu et al., 2020).
There is now abundant research in ways to deal with these zeros in multivariate fractional out-

comes. However, to account for non-trivial probability at zero; i.e., censoring for corner outcomes,
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the literature usually focuses on limited dependent variable approaches. To this end, I maintain
Assumptions 3.1, 3.3 and 3.4.2 T will assume the following limited dependent variable (LDV) model

holds for all 4, ¢, and j:

* !/
Yit; = xitjﬁj + Cij + €4t -

Here, y7,; is an unobservable latent variable. We can stack the previous model as before, to obtain

Y = X8+ Wic; +¢,

where the definitions mimic those in (3.1.3) with the addition of W; = 1, ® Ip, a DT; x D
matrix, where t7; is a Tj-dimensional vector of ones and Iz, is a T; x T; identity matrix. To
allow for possible autocorrelation and contemporaneous correlation between outcomes, I assume
g; ~ Npr,(0pr, <1, A;l(Qi ® X)). In this specification ¥ is a D x D contemporaneous covariance
matrix that is left unrestricted, €2; is assumed to be known or to be the result of a specific VARMA
process whose parameters need to be estimated, and A, 1 is a precision parameter. As outlined by
Chib (2008), if A; is given a gamma G(v/2,v/2) prior and integrated out, then &; would have a
marginal multivariate ¢ distribution with v degrees of freedom and scale matrix €2; ® 3. That is,
we can allow for robust non-normal errors by giving the precision parameter an appropriate prior.

Now, in contrast to a usual probit or Tobit LDVs, there is no unified way to map the latent
variables Y;; to the simplex 8¢ and obtain its inverse transformation. Even when focusing to those
that allow for zeros, there have been several proposals in the literature, such as re-scaling the sum
of the positive Y;; (Wales and Woodland, 1983), via Box-Cox transformations of ratios of variables
(Fry et al., 2000; Tsagris et al., 2011), by minimizing the Euclidean distance from Y} to S (Butler
and Glasbey, 2008), among others. Due to the computational simplicity of the resulting simulation
scheme, I focus on the scaling transformation given by (Wales and Woodland, 1983) and described
as part of a Bayesian cross-sectional approach in Kasteridis et al. (2011).

This approach fixes the sum of the underlying latent variables to 1, and transforms to observable

2As noted by Chib (2008), Bayesian estimation can usually relax the strict exogeneity assumption for one of
sequential exogeneity, given the distributional assumptions and dynamic completeness of the resulting likelihoods.
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variables supported on 8¢ by using

max{y};;, 0}
1= i p)er: Yip

it = (3.1.18)

for all 4, ¢, and j, where E; = {1 <t <T;,1<j<D: y;‘tj < 0}. The censored set is defined in this
way given that &; is not necessarily independent over time and thus both temporal and contempo-
raneous correlations will influence whether a particular latent observation falls into the censoring
set or not. It will also be necessary for the simulation algorithm to be introduced shortly. Note
that fixing the sum is related to the identification issue mentioned previously, as not constraining
the support of Y, results in infinitely many solutions to the inverse problem of finding the Y} that
generate a particular observable Yj;.

The Bayesian paradigm recognizes that Assumption 3.4 is simply a prior distribution on the
correlated random effects. For simplicity, I once again assume that ¢; directly represents a random
effect, as would occur after employing the Mundlak device. By assigning prior distributions to the
remaining parameters over which there is uncertainty, we can combine them with the likelihood im-
plied by the normality assumption on ¢; to produce a posterior distribution. I assume the following

normal and inverse Wishart conjugate prior distributions on the remaining model parameters:

B ~ N(Bo, Bo)
I~ IW(VF, RF) y (3.1.19)

¥ ~ IW(vs, Ry) .

The data augmentation approach due to Albert and Chib (1993) that is common in Bayesian

estimation of LDVs includes the Y;* as parameters (McCulloch et al., 2000). Thus, with these prior

’

distributions in place, the posterior for all the parameters 3, Y = (Y;*,...,Y."), c=(c},...,c,),

I, 3, and A = (\q,...,\,) conditional on data Y = (Y{,...,Y)), X = (X1,..., X)), and

n
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W = (Wj,...,W,) denoted by 7(+|-) yields

(B3, Y*, e, T, AY, X, W) ocH{[HHIyW—O (y5; <0)

=1 t=17=1

y;}j
+ I(yit; > 0)I | yirj =
v Y1- 2 (tp)en Yip (3.1.20)

x ¢pr (Vi Xi 8 + Wieis A (Q ®2))}

x m(B)m(e)m(A)m(T)n(X).

In this equation, 7(-) for each parameter refers to their assumed prior distribution and I(-) denotes
an indicator function that is equal to 1 when its argument is true and 0 otherwise. Note that for
all ¢, t and j such that y;; = 0, the posterior implies a normal distribution for yj;; truncated to
(—00,0]. For all positive parameters, the distribution is singular and puts all mass at the inversely

transformed values given by

Yirj = Yitg (1 - Z yf@) - (3.1.21)
(

t,p)EE;
From (3.1.20), we can obtain the conditional distribution of each parameter on all other model
parameters and the data to propose a Gibbs sampling scheme to simulate from the posterior. This
is summarized in the following procedure and uses the usual Bayesian updates with conjugate priors

under normality (see, e.g., Chib, 2008).

Estimator 4 (Bayesian LDV estimator). For simplicity, this assumes that A = ¢, and €; = I,

but incorporating other structures is simple. At the s-th simulation step:

1. For each ¢, draw y;(]fs) for all those (t,j) € E; from

TN (—oo0)(Hits] —(t5)» Tt 1))

where TN represents a truncated normal distribution with mean given by p;1|— ;) = E [yftﬂ

1) . x(s—1)
Y St]) .68, T, 2] variance Ui2tj|f(t]) S(tj ,

the vector Y;* excluding the ¢j component. Calculate the remaining components of Y;

Var(y;,;|Y; B,T,%), and where Y™, denotes

*(s)

with (¢,7) ¢ E; via (3.1.21).
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2. Draw B0 |y*() T6-1 56-1) ~ A (B) B(®)) where

i=1

" -1
B - (Bo—l + zxm*@-”xi) |

n —1
B@:ﬁ@@&+2xm*@%ﬁﬂ ,
i=1

V(Sfl) _ (ITZ ® 2(371)) + W/Z’F(sfl)vvi/ )

]

3. For each i, draw c§S)|Y*(S),,6'(S),I‘(S_1), DN N(égs),f‘gs)) where

-1

)

- [r*l@*l) + W (I, ® 2*1<S*1>)Wi]

¢ = T,W](Iy, ® 216Dy (v — x,80)).
4. Draw f‘(s)|cgs) ~ IW(D,R%S)) where

vr=ruvr+n,

RY = Re 3 9.
=1

5. Draw 2(5)\058) ~IW(v, RS)) where

n
Dzzvz-i-ZTi,

i=1

R~ Rp 30 elel.
=1

and el(-s) is a T; x D matrix such that Vec(e;(s)) = Yi*(s) — X8 — VVicgs); i.e., the i-
th residuals in matrix form. This is perhaps the only nonstandard update that arises
from the connection between the vector representation of the distribution for e; with the
matricvariate representation (see section A.1.12 of Greenberg, 2012). That is, given that
g; ~ Np1,(0p1, %1, I, ® ¥), then define the T; x D random matrix €; such that vec(e]) = €;.

Then €; ~ N7,xp(07,x D, 2, X) is matricvariate normal.
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An important final observation is that, just as the LDV approach recognizes the use of Assump-
tion 3.4 as a prior distribution, the same could be done for the maximum likelihood approach in
Section 3.1.1. While the main deterrent from using Bayesian analysis for this class of generalized
or nonlinear mixed effects models has been computational, there are now many available tools that
allow for simulating the posterior of a system using priors (3.1.19) along with the likelihoods given
in (3.1.6) or (3.1.7). Furthermore, as Fong et al. (2010) point out, the use of priors for the covari-
ance matrix of the random effects allows for a more realistic inclusion of the uncertainty of these
estimates in contrast to the use of a single estimate. This would be reflected as more believable

standard errors for the estimated panel coefficients.

3.2 Numerical Exercises

To test the performance and comparative advantages of each method, I present several Monte Carlo
exercises. To ensure that each method satisfies the assumptions laid out in the previous section and
to test them under distinct conditions that might be found in practice, I use several data-generating
processes to test each estimator. Some of these should be well-suited to the specifics of each method
while others will test their robustness to possible misspecification. To keep matters concise, I will

be focusing specifically on the procedures outline in Estimators 1 through 4.

3.2.1 Copula Data-Generating Process

Given that the multinomial logit is a misspecified distribution by construction, it does not allow for
the generation of data that could be used to test the behavior of Estimators 1 and 2 under correct
specification. Therefore, the first Monte Carlo exercise draws variables from a copula model as
that in Montoya-Blandén (2021). Specifically, I will use a Gaussian copula with beta marginals
and a multinomial logit link, which was found to be one of the most numerically stable and robust

methods both for generation and estimation. To this end, I draw pseudo observations uq,...up
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from the Gaussian copula density

o~ (w)
o n) = \/dtleTReXp -3 o (u1) o (up)| - (R = Ip) ;
@~ (up)

with D x D correlation matrix R, where ®~!(-) is the quantile function for the standard normal
distribution. I then use the probability integral transform to guarantee that the draws are from beta
marginals in a mean-precision parameterization. Thus, for each j in 1,..., D, u; is transform by
the inverse of the cumulative distribution function of the beta density with mean m; and precision
¢;, which is given as

I'(¢;) m;e;

I'(m )I[(1 - mj)¢j]y] (1-— yj)[lfmj]%. ’

for 0 < y; < 1. In this first scenario, I draw D = 2 shares (yii1, yir2) for i = 1,...,n individuals
with n € {100,200} and ¢ = 1,2 time periods for a total of 200 or 400 observations on each
share. The third share y;3 is set to 1 — yis1 — yaue for all ¢ and ¢. I set By = (8],85)" with
B1 = (—1,0.5,0) and B2 = (—1.5,0,0.5)". Two covariates x;;1 and z;2 are drawn from standard
normal distributions and unobserved heterogeneity is added in the form of a random effect ¢; drawn
from a multivariate normal distribution with zero mean and covariance matrix I' with I'1; = IT'gg = 1
and T'j9 = I'y; = 0.5. T assume a multinomial logit link as that given in (3.1.11) for the means
my1 and mye of each beta distribution. The precision parameters are set to ¢1 = ¢ = 10 and a
correlation of p = 0.5 is used to form matrix R for use in the Gaussian copula density.

Across 500 Monte Carlo simulations with the previous baseline scenarios, the multinomial quasi-
maximum likelihood (QMLE) and the copula maximum likelihood estimators were calculated using
the conditionally independent version of the likelihood, as in (3.1.6) and use nonadaptive quadrature
with 10 evaluation points in each dimension. For a given application, I would recommend using the
nonadaptive version with a larger number of evaluation points as a starting point to then use the
adaptive version with relatively fewer until the differences are not noticeable between successive
estimates. The probit pooled multivariate nonlinear least squares (PMNLS) is by far the most

efficient method, as it has no need for evaluating integrals and the availability of scores and Hessian
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greatly simplify the computation of robust inference.

Table 3.1: RMSE for Coefficients in a from a Gaussian Copula with Beta Marginals and
Multinomial Logit Link

Method Bio  Pii Bz Peo B Pop
nT = 200

Multinomial QMLE 0.113 0.095 0.084 0.114 0.088 0.094

Copula MLE 0.187 0.080 0.082 0.190 0.086 0.088

Probit PMNLS 0.277 0.248 0.084 0.452 0.101 0.258
nT = 400

Multinomial QMLE 0.079 0.068 0.061 0.098 0.077 0.064

Copula MLE 0.153 0.057 0.059 0.161 0.065 0.059

Probit PMNLS 0.277 0.250 0.077 0.451 0.093 0.258

Note: RMSE across 500 simulations for each estimation procedure when
data are generated from a Gaussian copula with beta marginals.

The results from using Estimators 1 through 3 are given in Table 3.1 in the forms of root
mean squared errors (RMSE) from the true parameters. The analysis focuses on the conditional
mean coefficients 3.3 As expected, given a correctly specified link function, the estimates remain
consistent to the true parameters, as evidenced by the declining RMSE at an expected rate. Both
the multinomial QMLE and copula estimators compete in terms of RMSE but it is not surprising
that the copula estimator tends to be slightly better, given that it is a correctly specified MLE.
The probit estimator, on the other hand, remains inconsistent, which is to be expected given the
incorrect link. As observed by Montoya-Blandén and Jacho-Chéavez (2020), link misspecification
can cause large biases even when two relatively similar links such as the logit and probit are used
in one specification. However, the RMSE information hides an important point. We know from the
theory in the previous section that when unobserved heterogeneity is involved, the probit would
not even identify the correct coefficients, so its inconsistency for the true By is not surprising.

A more complete depiction is given in the following set of results, found in Table 3.2. This table
presents the mean coefficients and standard errors across the 500 Monte Carlo simulations. First,
note that once again the multinomial QMLE and copula MLE are quite close in their performance,
both in terms of mean coefficients and standard errors. This is interesting given that the copula
standard errors rely on the correctly specified variance covariance matrix, while the multinomial

QMLE uses the fully robust formulas (see 3.1.9). Thus, as expected, the fact that the copula

3The results for the complete parameters are available upon request.
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model estimates a larger number of parameters likely diminishes the possible efficiency gains from
correctly specifying the distribution. Now, as mentioned before, while the probit PMNLS is not
correctly capturing the underlying conditional mean coefficients, it should provide the best probit
link approximation to the scaled coefficients. Since we know that both true unobserved hetero-
geneity variances equal 1, this will mean that the probit will identify and consistently estimate
B*/v/2. We note this value under the true conditional mean coefficients in Table 3.2. As can be
observed, the probit PMNLS approach is indeed quite close to these values. The remaining bias
is likely explained by the link misspecification and small sample sizes. Still, this implies that the
average partial effects recovered from using these scaled coefficients will likely be close to the true
effects, or at least as close as the marginal effects from a multinomial and probit specification can
be. As an example, the true average partial effect of x;41 on y;;1 evaluated at x;1 = x4 = 0 using
the multinomial logit link is 0.088. Averaging across the Monte Carlo simulations, I find that this
effect is estimated to be 0.084 on average from the multinomial logit link, and 0.077 from the probit

approximations, where both examples use the full 400 observations.

Table 3.2: Coefficients from a Multinomial Logit Link in a Gaussian Copula with Beta Marginals

Method B1,0 B, B1,2 B2,0 P21 B2,2
nT = 200
—1.033 0459 —0.021 —1524 —0.020 0.462
(0.107)  (0.084) (0.084) (0.118) (0.093) (0.094)
~1.122 0500 —0.022 —1.628 —0.013  0.494
(0.115)  (0.074) (0.074) (0.124) (0.082) (0.082)
. —0.729 0257 —0.071 —1.052 —0.088  0.247
Probit PMNLS (0.054) (0.046) (0.044) (0.056) (0.046) (0.050)
Bo/V/2 —0.707  0.354  0.000 —1.061  0.000  0.354
nT = 400
—1.027 0444 —0036 —1.555 —0.051  0.461
(0.073)  (0.059) (0.059) (0.084) (0.067) (0.068)
~1.113 0495 —0.020 —1.627 —0.017  0.490
(0.083) (0.053) (0.052) (0.089) (0.058) (0.058)
. ~0.726 0252 —0.071 —1.051 —0.086  0.245
Probit PMNLS (0.038) (0.033) (0.031) (0.040) (0.033) (0.036)
Bo/V2 —0.707  0.354  0.000 —1.061  0.000  0.354

Multinomial QMLE

Copula MLE

Multinomial QMLE

Copula MLE

Note: Average coefficients and standard errors across 500 simulations for each estima-
tion procedure when data are generated from a Gaussian copula with beta marginals.
Standard errors are in parenthesis. For multinomial QMLE and probit PMNLS these
are robust to distributional misspecification in each iteration.
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3.2.2 Probit Data-Generating Process

To test an opposing situation to the one in the previous subsection, I now generate values from the

probit PMNLS model. To this end, I generate values of y;1;,j = 1,2 according to

IB,
Yitj = P <$§tj\/j§ + Titj

where r;;; ~ N(0,0.01) is an additional error term that is independent across units, time and
shares. The variance is set low enough so that the multivariate fractions stay within the unit
interval with sufficiently large probability after generation. This generation scheme assumes the
probit link has already integrated out the underlying unobserved heterogeneity and so it generates
directly from the conditional mean of Yj;; given x;;. All remaining values stay the same as in the
previous scenario. Using this data-generating process, the values for RMSE can be found in Table
3.3 and the coefficients with associated standard errors in Table 3.4.

Table 3.3: RMSE for Coefficients from a Multivariate Nonlinear Least Squares with Probit Link

Method Bro  Bi1 Pz Beo P P22
nT = 200

Multinomial QMLE 0.207 0.270 0.157 0.266 0.208 0.193

Copula MLE 0.501 0.224 0.138 0.444 0.199 0.140

Probit PMNLS 0.033 0.038 0.021 0.100 0.026 0.087
nT = 400

Multinomial QMLE 0.168 0.298 0.162 0.230 0.265 0.206

Copula MLE 0.504 0.217 0.130 0.442 0.193 0.130

Probit PMNLS 0.029 0.034 0.016 0.098 0.018 0.083

Note: RMSE across 500 simulations for each estimation procedure when
data are generated from a multivariate nonlinear least squares conditional
mean with additive error.

As expected, the situation has reversed in comparison to the previous scenario. In this setting,
the likelihood-based methods no longer remain consistent to the new true value of the parameters
Bo/V2. Their RMSE is erratic and their coefficients remain biased regardless of the sample size.
The standard errors for all approaches are also lower than in the previous scenarios, likely due to
the reduced variation introduced by the 7;; additive errors in comparison to that from the copula
generating mechanism. On the other hand, the probit estimator now appears to be consistent with

RMSE decreasing with larger sample size. The estimates remain much closer to the true value in
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comparison to before, reflecting the correct specification assumption. Interestingly, using a similar
example as before, it appears that the probit link approximates the average partial effects much
better even when misspecified. In the previous example, the approximation was fairly close to
the averaged estimates from the multinomial QMLE APEs. This does not seem to occur in this
reverse scenario. Now, the true average partial effect of x;:1 on y;41 evaluated at x4 = x40 = 0
using the probit link is 0.109. The average of the estimated APEs from the correctly specified
probit is 0.102, but the approximation by the multinomial logit is 0.084, which remains essentially
unchanged from the previous scenario. Thus, while it seems that the probit link adapts quite well
when it is misspecified, this does not seem to be the case for the multinomial logit QMLE.

Table 3.4: Coefficients from a Multivariate Nonlinear Least Squares with Probit Link

Method B1,0 B1,1 B1,2 B2,0 B2,1 B2,2
nT = 200
—0.907 0.619 0.149 —-1.319 0.198 0.538
(0.047) (0.049) (0.048) (0.057) (0.057) (0.058)
—1.199 0.569 0.128 —1.497 0.188 0477
(0.081) (0.056) (0.055) (0.094) (0.063) (0.062)
—0.683 0.323 0.000 —-0.964 —0.004 0.272
(0.023) (0.023) (0.022) (0.026) (0.024) (0.028)
ﬁo/\@ —0.707 0.354 0.000 —1.061 0.000 0.354
nT = 400
—0.868 0.635 0.126 —1.273 0.236 0.550
(0.033) (0.035) (0.034) (0.04) (0.041) (0.040)
—1.209 0.568 0.124 —1.500 0.188 0.476
(0.056) (0.039) (0.038) (0.066) (0.044) (0.044)
—0.682 0.324 —0.001 —-0.964 —0.004 0.273
(0.016) (0.017) (0.015) (0.019) (0.017) (0.020)
,80/\/§ —0.707 0.354 0.000 —1.061 0.000 0.354

Multinomial QMLE
Copula MLE

Probit PMNLS

Multinomial QMLE
Copula MLE

Probit PMNLS

Note: Average coefficients and standard errors across 500 simulations for each esti-
mation procedure when data are generated from a multivariate nonlinear least squares
conditional mean with additive error. Standard errors are in parenthesis. Maximum
likelihood methods use the fully robust standard errors.

3.2.3 Censored Data-Generating Process

Finally, consider a scenario that takes into account the possibility of having corner solutions ex-

pressed as structural zeros within the data:

Yirj = Ty Bj + cij + €itj - (3.2.1)
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This creates the need to adjust the values previously used for generation, as the underlying latent
variable model (3.2.1) tends to yield too many zeros if the linear index induces a lot of variance on
Y*. Thus, I adjust the population values of the coefficients to 31 = (—0.2,0.15, —0.2)" and B2 =
(—0.15,—0.2,0.15)" and it is now assumed that the variances for both the unobserved heterogeneity
and the additive errors e;;; are given by I' = ¥ with the diagonal components equal to 0.02 and
covariance 0.01. Furthermore, the covariates are generated from normal distributions with mean
equal to 3.5 and standard deviation equal to 0.25. Generating (3, ¥5o) and mapping to observable
multivariate fractions via (3.1.18) was found to produce approximately 20% censoring in the data.
This large proportion of zeros can be taken into account by using the Bayesian alternative given in
Estimator 4.

Table 3.5: Coefficients from a Bayesian Latent Dependent Variable Model

Method B1,0 B1,1 B1,2 B2,0 Ba,1 B2,2

nT = 200

Mean —0.178  0.139 —0.191 —0.137 —0.222  0.175

Median ~ —0.177  0.138 —0.190 —0.136 —0.221  0.174

Std. Dev.  (0.058) (0.041) (0.046) (0.051) (0.04)  (0.043)
nT = 400

Mean —0.197 0.141 —0215 —0.121 -0.217 0.165

Median ~ —0.194  0.140 —0.213 —0.120 —0.215  0.164

Std. Dev.  (0.038) (0.029) (0.030) (0.035) (0.028) (0.029)

Note: Average posterior mean and medians across 500 simulations from a
latent dependent variable model. Standard errors are given as the standard
deviation of the chains.

For estimation purposes, given the conjugate priors outlined for the Bayesian estimator in
Section 3.1.3, all that remains is to specify the hyperparameters of these distributions. I choose
standard uninformative priors for the coefficients by setting By = Oxx1, Bo = 1,000{g, vr =
vs = D+ 1 and Rr = Ry = Ip. With these values, I executed the Gibbs sampling algorithm
outlined in Estimator 4 to find the posterior mean and median across from 5000 simulations after
a burn-in period of 1000. The results for the mean of these Bayesian estimates across 500 Monte
Carlo simulations can be found in Table 3.5. The parameter values can be seen to be close to the
appropriate starting values and get better with a larger sample size. Furthermore, the standard
errors, as measured by the standard deviation across the simulation chains is seen to also decrease

with sample size, as expected. These simulations showcase the simplicity of dealing with censoring



115

using a Bayesian perspective with a data augmentation scheme.

Finally, Figures 3.1 and 3.2 give a graphical depiction of the posterior chains for the coefficients
in a single Monte Carlo draw. One of the major advantages of the Bayesian approach is its ability to
produce a complete distribution for each parameter of interest from which all proceeding information
is derived. As observed in the figures, the distribution of the coefficients centers around their true
values and most sampling steps are taken close to the median. Using the usual diagnostics, I also

confirmed that the chains satisfy the criteria for convergence to their stationary distribution.

3.3 Conclusion

Multivariate fractional outcomes can arise from many interesting applied economic problems. As
the literature has expanded to cover many interesting use of this data in statistics and econometrics,
there have not been many developments that are useful in a panel data context. This paper attempts
to fill that gap by introducing a wide range of methods for dealing with multivariate fractions in
a way that deals with the specific issues surrounding these limited dependent variables, while also
remaining flexible and robust enough to be widely applicable. First, a general maximum likelihood
estimator that allows for correlated random effects was introduced, and noted that it remains robust
to distributional misspecification. A second approach, and perhaps the one that will be most useful,
is a multivariate nonlinear least squares estimator with a probit link that allows for identification
of average partial effects and can incorporate endogeneity, arguably some of the most interesting
challenges in any particular application. A final approach that allows for directly incorporating
the zeros and accounting for this censoring was presented. In line with the literature of limited
dependent variable models, a Bayesian solution is found to be flexible and computationally feasible
comparative to other simulation-based alternatives.

As avenues for future research, it would be interesting to push the limits of these methods,
particularly for applications with many shares, such as budget share allocations across many goods.
Furthermore, it would be interesting to take these method to richer data sets that would allow to
explore additional possibilities for estimation and inference, while providing important answers to

problems where multivariate fractional outcomes can arise.
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Figure 3.1: Trace Plot of Coefficients for Latent Dependent Variable Model
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Figure 3.2: Density Plot of Coefficients for Latent Dependent Variable Model
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Appendices

3.A Details on Integration Methods for MLE

The integrals given by the conditionally independent (3.1.6) and pooled (3.1.7) likelihoods can
be cast in a general way as the problem of numerically evaluating the following integral for some

function f: RP x RP — R:

V = /C: . /C:; f(c,z)cbp(c; 0DX1,I‘) dC y (3A1)

where z € RP represents other possible arguments to the function. From Liu and Pierce (1994),

recall that the Gauss-Hermite quadrature allows one to evaluate the one-dimensional integral

/ g(c,z)exp(—c?) de ~ Zwsg as,2), (3.A.2)

where g : R x RP — R, the abscissas a; denote the zeros of the S-th order Hermite polynomial and

w, are their corresponding weights.

3.A.1 Adaptive Quadrature

The adaptive approach to evaluate the multidimensional integral in (3.A.1) begins by transforming

c,2)¢p(c;0px1,T) '
/ / { op(c;w, Q) ¢p(c;w,Q)de

By a substitution u = (2Q)~'/2(¢ — w), this integral becomes

the integrand as

/_oo /_OO 2%@]% exp(u'u) f(c(u), 2)¢p(c(u); 0px1,T) exp(—u'u) du

where ¢(u) = w + v2Q'?u, Q'/? is the matrix resulting from a Cholesky decomposition of Q
and |Q| is the determinant of Q. Defining the function h(e) = log f(c, z) + log ¢p(c;0px1,T),

the adaptive approach estimates w and @ as the mode and curvature at the mode, respectively, of
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h(c); i.e.,
@ = argmaxh(c),
~  0%h(c)
Q= ococ | ,._5

Given that f(-) is taken to be a (potentially misspecified) distribution for the multivariate fractions
Y, then @ can be interpreted as the posterior mode of ¢ using likelihood f and a Gaussian prior
centered at 0. As noted by Liu and Pierce (1994), these estimators ensure that the log of the chosen
Gaussian density has the same scores and Hessian as f(¢, z)¢p(c;0px1,T). It is in this sense that
this method is adaptive to the specific integrand.
Let as = (as,,...,as,) and compute af = @ + V2QU/2a,. As exp(—u'u) = exp(—uf) x -+ x
2

exp(—u D), we can apply the univariate Gauss-Hermite quadrature process D times to solve the

multivariate integral yielding
b o1 S S D
Vadaptive ~22 |Q| : Z T Z H Ws; eXP(a;as)f(a:, z)qu(a:; 0D><1a I‘) (3A3)
s1=1 sp=1j=1

3.A.2 Nonadaptive Quadrature

This method operates by noting that, since we are already starting from a function times a Gaus-
sian density in (3.A.1), we only need to deal with the correlation between unobserved heterogeneity
values before using Gauss-Hermite quadrature in each dimension. While there is no generally best
way of incorporating this correlation structure into the Gauss-Hermite procedure, Jickel (2005)
describes one of the most numerically robust methods as follows. Using a singular value decom-
position, find U and A such that of I' = UAU’. By a similar substitution to before, define
u = R'(2A)"'/2U’¢, where R is the resulting matrix from multiplying together (D — 1) planar

rotation matrices of 45° degrees each. Then, (3.A.1) becomes

[ | et exp(—w'w) du.
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with ¢(u) = V2UAY2Ru. This time, compute al = V2UAY?2Ra,. Thus, the desired approxi-

mation is given by
S S

Vnonadaptive ~ Wﬁ% Z e Z H w8jf(a:7 Z) : (3A4)

s1=1 sp=1j=1

)

3.A.3 Pruning

One final issue that is of interest for the computation of both (3.A.3) and (3.A.4) is the use of
pruning. Since some of the evaluation points will be given very small weights that might not
contribute much to the value of the integral, one can set these to 0 and decrease the amount
of function evaluations needed without sacrificing much precision. As the individual weights are
always multiplied together for any approximation, set wg = H?Zl ws;. Given a threshold 7g, the
idea of pruning is to use weights

wi = wI(ws > 75),

in each evaluation. While 7¢ can be chosen to be any arbitrary constant designed to reduce

computational intensity without sacrificing numerical precision, Jickel (2005) recommends using
7 = min{w, }P "1 - max{w;} .
S S
This is the value that I use throughout the paper for all integral evaluations.

3.B Derivatives for MLE and Probit Estimators

3.B.1 Scores for Independent and Pooled MLE

Starting from (3.1.6) or (3.1.7), replace the multinomial logit link (3.1.11) into F(Yi| X, ci; B)

and take logs to obtain

d D
log F(Yit| Xt €i58) = Y wnij | @hy;B5 + cij —log | 1+ exp(),, By + cip)
j=1 p=1
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Differentiating this equation with respect to some 3 yields the usual multinomial score

BlogF( zt|th7c7,7B
8,6 Zytw .7 - k

mz‘tk]witk )
= (Yitk — Mitk) Titk ,

where the last step follows from Yj; € S?. We now have the derivative that would apply to the

logarithm of the integrand. Exchanging differentiation and integration, we then have

md
/Ba ) in ijt
aﬁ(k L( d) (8,7 / / { H H miljt

T;
E Yitk — mitk)xitk

t=1

t=15=1 (3.B.1)
X ¢D(Ci§ODx17F)} de; ,
for the likelihood assuming conditional independence and
8€(pool) 7 T TZ
o (BT) _ = pOd (B,T / / ?ﬂt (Yitke — Mitk) itk
or
(3.B.2)

X ¢p(ci;0px1, F)} de; ,

for the pooled likelihood. The terms Lgind) (3,T') and Lz(f ool) (B,T) represent the likelihood before
taking logarithms; i.e., the complete integrals. Stacking across all k = 1,..., D yields the total
score. The scores for T are similar and rely on the score for the normal distribution and the matrix

derivatives of I'. They are given as

1nd
A { T[Tt |04 - el
t=1j5=1 (3B3)

X ¢p(ci;0pxi, F)} de; ,
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for the likelihood assuming conditional independence and

(pool) T;
o4 BT aﬂ(kﬁ ’F)— Ly (B,r / / { ml | T (Ip — e DY)

(3.B.4)
X ¢p(ci; ODxlaF)} de; ,

for the pooled likelihood.

3.B.2 Score and Hessian for Probit NLS

Starting from the objective function (3.1.14), we see that it can be written as a summation across
both ¢t and j, such that
T, D

2
ylt] ztjajc)] :

MM—A

Taking the derivative with respect to some ay. yields

T.
0q¢;(a S . .
81(5% c) == Z Ty ee) itk — P(Figp,Qte) | itk -
¢ t=1
Stacking across k = 1,..., D gives the score as
T A( X 0ne) Winn — P(Ey ane)|Ein

Oailee) _ 5~ : . (3.B.5)

do,

&(&h, pope) [yiep — ®(EL, pape)Titp

Note that each element depends only on its respective coefficient and so 9%¢;(cx.) / Oag 0o =0
for j # k. This then implies that the Hessian will be a diagonal matrix. Taking another derivative
with respect to some ay,, and using d¢(z)/dz = —z¢(z) for any z € R, we have that each diagonal
term will be of the form

82%(00)

T;
= (@) {S(F0tke) + Tiop, Ckelvitk — P( gy tne) | Yitn iy (3.B.6)
804;%804;% —1

forall k=1,...,D.
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