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Abstract

Generalized Cross Validation for Ill-Posed Inverse Problems
By Hanyong Wu

In this thesis, we will introduce two popular regularization tools for ill-
posed linear inverse problem, truncated singular value decomposition and
Tikhonov regularization. After that we will implement them with the gener-
alized cross validation (GCV) method to choose regularization parameters.
We consider in particular problems that have noise in the measured data,
noise in the matrix, and noise in both the measured data and the matrix.
Numerical experiments are used to test the GCV method for each of these
noise models.
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Chapter 1

Introduction

An inverse problem in science is the process of calculating from a set of

observations the causal factors that produced them: for example, calculating

an image in computer tomography, source reconstructing in acoustics, or

calculating the density of the Earth from measurements of its gravity field.

This thesis will mainly focus on the inverse problem on image restoration.

Image restoration is the process of removing blur and noise from de-

graded images to recover an approximation of the original image. This field

of imaging technology is becoming increasingly significant in many scientific

applications such as military [6, 7], astronomy [6, 8, 9], surveillance [6, 7],

microwave imaging [3] and so on.

For example, scientists use long-range telescopes to obtain pictures of

distant stars. However, due to the distortion caused by the Earth’s atmo-

sphere and the random interfering light rays coming from different sources,
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astronomers receive blurred images, such as that shown in Figure 1.1.

Observed image True image

Figure 1.1: Satellite image

In each of these applications, obtaining clearer images can be accom-

plished by using computer programs to perform image enhancement tech-

niques.

1.1 Background

In order to solve image restoration problems, the first step is to model the

problem as a mathematical equation. This is often done using the linear

problem

b = Axtrue + e (1.1)
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where b represents the blurred image, A is a blurring matrix, xtrue represents

the true image and e is the error (noise).

With the mathematical model in equation (1.1) in mind, the next step

is to find a method that solves this equation. If we just simply assume e

is small enough compared with b and A−1 exists, we can solve this problem

by using xtrue = A−1b. However, this will lead to a wrong solution, because

in fact A will usually be an n × n ill-conditioned and very large matrix. It

will not only increase the difficulty to compute A−1, but also influence the

accuracy of computation. Additionally, in real applications, the error needs

to be considered.

A filtering method can be utilized to compute an approximation of x, but

before starting the approximation, let us talk about the singular value de-

composition (SVD). The SVD of a matrix is its unitary reduction to diagonal

form, which can be represented as

A = UΣV T =
n∑
i=1

uiσiv
T
i (1.2)

A is anm×nmatrix, U and V are orthogonal matrices, and Σ = diag(σ1, σ2, ..., σn).

The numbers σi (usually in descending order) are called the singular val-

ues of A, and the vectors ui (columns of U) and vi (columns of V ) are

referred to as the left and right singular vectors of A.

The SVD is and important tool for analyzing properties of numerical

linear algebra problems. Here are some basic facts:
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• A set of vectors {u1, u2, ..., un} is called orthonormal if:

uTi uj =


1 if i = j

0 if i 6= j

• An n×n matrix U is called orthogonal if UTU = I; that is, the columns

of U form an orthonormal set.

• It can be shown that

‖A‖2 = σ1 (i.e., the largest singular value)

and if A is nonsingular, then

‖A−1‖2 =
1

σn
(i.e., the reciprocal of the smallest singular value)

Thus, using the 2-norm, the condition number of the matrix A is:

k2(A) =
σ1
σn

This is an important property: If the ratio of σ1
σn

is large, then the

matrix A is ill-conditioned. In the real-world problem, the matrix A is

usually ill-conditioned.

8



By using the SVD of A, the solution can be written as,

xtrue = A−1b = V Σ−1UT b (1.3)

In the thesis, we assume the SVD of a matrix can be obtained and utilized

in computation. Since image restoration problem is often ill-posed, which

means small perturbations in the data result in large errors in the solution.

The matrix, A, which is severely ill-conditioned, may have the following

properties:

• The singular values, σi, decrease to and cluster at zero.

• There might be no gap to separate the large and small singular values.

One common way to stabilize the solution is to discard, or damp, using a

regularization technique called filtering.

1.2 Filtering

In order to solve an ill-posed problem, a filtering or regularization method

is needed. Regularization is a matter of finding out which erroneous SVD

components to filter out and how to filter them out [1].

Our goal is to filter out the effects of the small σi, and this requires

choosing a corresponding regularization parameter, α.

In the next Chapter, we discuss three filtering methods that will be con-

sidered in this thesis: Truncated Singular Value Decomposition (TSVD) and
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Tikhonov regularization. Chapter 3 addresses generalized cross validation

(GCV) as methods to determine good regularization parameters for the fil-

ter factors, as well as an optimal tolerance or parameter to do filtering, given

the true image. Finally, Chapter 4 presents some numerical experiments and

results, comparing filtering methods as well as parameter choice methods and

will also test two methods in different cases. For example, error on b, error

on A and errors on both. Chapter 5 provides conclusions.
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Chapter 2

Regularization Methods

This chapter includes a description of two regularization methods: Truncated

Singular Value Decomposition (TSVD) and Tikhonov regularization.

2.1 Truncated Singular Value Decomposition

Our goal is to avoid the magnification of errors in the problem due to small

singular values, the most straightforward way to filter them out is to directly

truncate those small singular values. This approach is called TSVD. As we

talked before, we need to introduce a tolerance α equal to σk, where k ≤ n,

and all singular values less than the tolerance will get truncated. We defined
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the TSVD filter factors to be

φi =


1 i < k

0 ortherwise

(2.1)

and compute a TSVD filtered solution

x̂ = V Σ†FU
T b, (2.2)

x̂ is our approximation of xtrue, ΣF = diag(φi)Σ is the matrix of singular

value after truncating. That is

ΣF = diag(σ1, σ2 · · · σk, 0 · · · 0)

and

Σ†F = diag

(
1

σ1
,

1

σ2
,

1

σ3
· · · 1

σk
, 0 · · · 0

)
is the pseudo inverse of ΣF .

We can see that those small singular values are truncated, which also

causes the corresponding singular vectors to be truncated as well.

The main point is determining a good value for the tolerance deciding

how many singular values to be truncated. Choosing a tolerance too big

would result in dropping too many singular values, leading to a too smooth

plot solution. On the contrary, choosing a tolerance too small allows too

many small singular values to corrupt the solution, leading to a solution that
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magnifies high frequency components of the noise. Methods to compute good

values for the filtering tolerance will be briefly discussed in Chapter 3. More

details and applications of TSVD can be found in [4].

2.2 Tikhonov Regularization

Tikhonov regularization method seeks to incorporate assumptions about the

size and smoothness of the desired solution. Rather than solving the ill-

conditioned least squares problem ‖b− Ax‖2, this method imposes a penalty

for making the norm of the residual too large, and this in turn reduces the

effect of small singular values [5]. The formula for Tikhonov is,

min
x

(‖b− Ax‖22 + α2‖x‖22)

where α is the regularization parameter (filter) controlling the solution’s

degree of smoothness. After solving the least square equation by using the

SVD of A, we can get Tikhonov filter factors φi =
σ2
i

σ2
i +α

2 . Accordingly, the

Tikhonov solution is,

x̂ = V Σ−1F UT b (2.3)

where ΣF = diag(φi)Σ, and

Σ−1F = diag

(
σ1

σ2
1 + α2

,
σ2

σ2
2 + α2

, ...
σn

σ2
n + α2

)
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When σk is much larger than α there will not be too much influence

from filtering, but when σk decreases and becomes equal or smaller than α,

the filtering term will take the weight in order to keep the solution smooth.

Instead of truncating all small singular values, Tikhonov damps them, which

makes the solution less corrupted by high frequency components of the noise,

see Figure 2.1.
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Figure 2.1: This figure shows the inverse of singular values before and after
Tikhonov regularization in the test problem spectra2 from Regularization
Tools, see [2].
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Similar to the TSVD case, choosing a tolerance too large would result in

dropping too many singular values, leading to a too smooth solution. On

the contrary, choosing a tolerance too small allows too many small singular

values to corrupt the solution, leading to a too oscillating solution. Therefore,

ways to choose an appropriate α value is important.

Recall that the filter factors for TSVD are:

φi =


1 i < k

0 ortherwise

Thus the TSVD corresponds to a sharp filter that simply cuts off the last

n− k components. In Tikhonov regularization, the filter factors are

φi =
σ2
i

σ2
i + α2

correspond to a smooth filter that damps the components corresponding to

σi < α. When k is chosen such that σk = α, the sharp filter TSVD can be

seen as an approximation to the smooth filter of Tikhonov regularization.

Thus, it seems possible that the regularized solutions in each scheme may be

similar.

Moreover, in the Chapter 4 we will also see some experiments to show

the performance comparison between TSVD and Tikhonov Regularization.
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Chapter 3

Choosing Regularization

Parameters

A good filtering parameter for the regularization is always important when

solving inverse ill-posed problems.

If we do not choose any parameter and compute the inverse solution x =

A−1b, then we get a result that is corrupted by high frequency components

of the noise. This is illustrated in the plot on the right in Figure 3.1.

There are two classes of parameter choice methods [1]:

• Those based on a priori knowledge and assumptions about the error

norm. These requires a good estimate of the error,‖e‖2

• Methods that do not require the error norm, but instead seek to extract

this information from the given data.
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Figure 3.1: This figure shows the computed result for the test problem.

When we know about the error norm, we can simply use it in the process

of deciding the parameter for either TSVD or GCV and directly solve it, for

the example above we can get the approximation shown in Figure 3.2
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True x

computing x

Figure 3.2: This figure shows the computed result for the test problem.

However, in this chapter we will focus on situation we have no priori

knowledge and assumptions about the error norm. Generalized cross vali-

dation (GCV) will be mainly discussed in this chapter, which requires no

information about the real error norm, ‖e‖2.
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In addition, this chapter addresses the computation of an optimal regu-

larization parameter, when the true solution is known.

GCV is a widely used and very successful predictive method for choosing

the smoothing parameter. The basic idea is that, if one datum point is

dropped, then a good value of the regularization parameter should predict

the missing datum value fairly well [1].

Our goal is to minimize the absolute value sum of error between the

original points, bi, and the computed points, Ax̂. The GCV function is,

G =
n‖Ax̂− b‖22

trace(I − AAF−1)
(3.1)

where the trace of a matrix is the sum of its diagonal entries. The goal here

is to minimize the GCV function in order to control the error.

3.1 Generalized cross validation for TSVD

Before simplifying the GCV function for the specific cases of TSVD and

Tikhonov regularization, we need the following formula:

trace(I − AAF−1) = trace(I − ΣΣF
−1)

which can make the GCV equation transform to

G =
n‖Ax̂− b‖22

trace(I − ΣΣF
−1)

(3.2)
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When using the GCV method with TSVD, the function to minimize (3.1)

can be simplified to:

G(k) =
n
∑n

i=k+1 b̂
2
i

(n− k)2
(3.3)

where b̂ = UT b, and by using the property:

trace(I − ΣΣF
−1) = n− k

By computing G(k) for all k = 1, 2, · · · , n and finding the minimum value

of G, a value for the truncation tolerance can be computed.

Note: in the case of equation (3.3), instead of computing exact value of

tolerance, we choose to compute out the index of truncation (after which

index all singular values will be tuncated).

3.2 Generalized cross validation for Tikhonov

As we talked above, the GCV function when used with Tikhonov regulariza-

tion can also be simplified to:

G(α) =
n
∑n

i=1 ( b̂i
σ2
i +α

2 )
2

(
∑n

i=1
1

σ2
i +α

2 )2
(3.4)
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where b̂ = UT b, α is the filtering parameter and using the following property:

trace(I − ΣΣF
−1) =

n∑
i=1

1

σ2
i + α2

Because G(α) here is a continuous function, as opposed to the discrete

case in TSVD, we use Matlab’s fminbnd function, which is based on a combi-

nation of Golden Section Search and Quadratic Interpolation Search, to find

the value of α at which G(α) is minimized.

The disadvantage of GCV: Oftentimes the GCV function is very flat near

the minimum, like Figure 3.3. It is sometimes difficult to find the minimum in

such situations, and thus it can be difficult to determine a good regularization

parameter.
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Figure 3.3: This figure shows the computed GCV plot for the test problem
phillips.

Due to the flatness of the GCV function, using Matlab’s fminbnd function

to find the minimum can be very time consuming.
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3.3 Optimal Regularization Parameter

Computing a guaranteed optimal regularization parameter works only when

the true solution is given. Therefore, in real-life situations when the true

solution is not known, this method cannot be used. However, the purpose

of introducing this method is to provide a basis for comparison for the other

parameter choice methods in tests and experiments.

In order to find the optimal regularization parameter, we should minimize

the error between computed x and xtrue, which can be displayed as,

min
x
‖x̂− xtrue‖22

We observe that V is an orthogonal matrix, and from equation (2.3),

x̂ = V ΣF
−1UT b. Then we use the fact that the 2-norm is invariant under

orthogonal transformation, and we can get:

‖x̂− xtrue‖22 = ‖V T x̂− V Txtrue‖22 = ‖ΣF
−1UT b− V Txtrue‖22 (3.5)

To minimize this value for each filtering method, we can find the optimal

regularization parameter.
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3.4 Optimal Regularization for TSVD

Recall that for the TSVD case, Σ†F = diag( 1
σ1
, 1
σ2
, 1
σ3
..., 1

σk
, 0, ..., 0) where

k ≤ n, which means the singular values with indexes larger than k all get

truncated.

After knowing this, we start our minimization of equation (3.5),

‖ΣF
−1UT b− V Txtrue‖22 =

k∑
i=1

(
(UT b)i
σi

− (V Txtrue)i

)2

+
n∑

i=k+1

(
V Txtrue

)2
i

=
k∑
i=1

y2i +
n∑

i=k+1

X2
truei

where yi = (UT b)i
σi

and Xtruei = (V Txtrue)i.

Let ek be be the error corresponding to truncating after k singular values.

We can get,

ek = ek−1 −Xtrue
2
k + y2k

To find the optimal tolerance, we must compute ek for k = 0, 1, 2, ..., n and

find the value of k at which ek is smallest. This will give the truncation index,

and the optimal choice for the tolerance will be equal to σk. One thing we

need to pay attention here is all computation is done in the form of index,

which means we get the index of truncation, not exact tolerance.
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3.5 Optimal Regularization for Tikhonov

Similarly, we can use the way above to find the optimal regularization pa-

rameter for Tikhonov filtering. As we prove before the singular values for

Tikhonove regularization is,

ΣF
−1 = diag

(
σ1

σ2
1 + α2

,
σ2

σ2
2 + α2

, ...,
σn

σ2
n + α2

)

By using this in the minimization of equation (3.5), we can get,

‖ΣF
−1UT b− V Txtrue‖22 =

n∑
i=1

(
σi(U

T b)i
σ2
i + α2

− (V Txtrue)i

)2

Our goal is to find the α that that will minimize this error. Similar to

GCV, we can use Matlab’s build-in fminbnd function to find the optimal

regularization parameter.

In this case, one specific tolerance value can be found. An important note

for finding optimal parameters is that the function to be minimized may have

multiple minimums or local minimums if the graph is not unimodal. In these

situations, we take the global minimum as the optimal regularization param-

eter. By comparing solutions that use the optimal parameter with those that

use the GCV chosen parameter, we can better address the performance of

GCV.
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Chapter 4

Numerical Experiments

This chapter presents a culmination of all the numerical tests and experi-

ments we performed, including in both small-scale matrix test problem and

a large-scale real world application. Each section provides a brief summary

of the goals of the experiment, a presentation of the results and observations

or comments concerning the analysis of the results. We provide a numerical

comparison of the two filtering methods (Tikhonov and TSVD) in different

cases of error. A comparison of parameter choice methods for each filtering

method will also be conducted. Lastly, we will show the performance of GCV

for Tikhonov on a real-world problem.

Some important things need to be addressed before we present our ex-

periments:

• We assume all SVD decompositions can be computed.

• For all test problems, the noise level will be set to be 0.001, which
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means a 0.1% of random noise will be on the matrices.

• Singular values will be in the interval of [0,1].

• For the small scale problems, all matrices will be of size 256× 256.

• We assume we have no idea about the noise level and use parameter

choice methods to find the filtering parameter.

4.1 Test problem experiments

We start by doing some small-scale test problems to warmup, including

deriv2, phillips, shaw and heat in MATLAB’s regulationtools package. The

basic idea is to solve the equation we talked in the beginning of thesis, (1.2).

b = Ax+ e

In the experiments below, three cases, error in only b, error in only A and

errors in both of them, will be tested in all of four problems.

4.1.1 With error in only b

In this section we consider the test problem with error only in b. The first

test problem is deriv2, where the results are shown in Figure 4.1.
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Figure 4.1: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem deriv2.
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For the solutions shown in the bottom row of Figure 4.1, the solution

was computed using the GCV chosen regularization parameter. The solu-

tions in the middle row were computed using a regularization parameter that

minimizes the relative error between the computed solution and the true so-

lution. We refer to this as the “optimal” solution. The left shows results

corresponding to Tikhonov regularization, and the right shows results for

TSVD.

Similar plots are shown for the rest of three test problems in Figures 4.2

through 4.4.
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Figure 4.2: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem phillips.
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Figure 4.3: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem shaw.
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Figure 4.4: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem heat.

30



We can see in the case of error in only b, the performance of TSVD is

pretty good and sometimes better than the Tikhonov.

4.1.2 With error in only A

In this section we consider the test problem with error only in A. The first

test problem is deriv2, where the results are shown in Figure 4.5. We choose

the regularization parameter by GCV.

31



10
-8

10
-6

10
-4

10
-2

10
0

value of a

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

v
a
lu

e
 o

f 
G

GCV plot for Tikhonov

0 50 100 150 200 250 300

index

10
-14

10
-12

10
-10

10
-8

10
-6

v
a
lu

e
 o

f 
G

GCV plot for TSVD

0 50 100 150 200 250 300

index

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

v
a

lu
e

 o
f 

x

x by optimal Tikhonov

x

x true

0 50 100 150 200 250 300

index

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

v
a

lu
e

 o
f 

x

x by optimal TSVD

x

x true

0 50 100 150 200 250 300

index

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

v
a

lu
e

 o
f 

x

x by GCV Tikhonov

x

x true

0 50 100 150 200 250 300

index

-0.02

0

0.02

0.04

0.06

0.08

v
a
lu

e
 o

f 
x

x by GCV TSVD

x

x true

Figure 4.5: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem deriv2.
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For the solutions shown in the bottom row of Figure 4.5, the solution

was computed using the GCV chosen regularization parameter. The solu-

tions in the middle row were computed using a regularization parameter that

minimizes the relative error between the computed solution and the true so-

lution. We refer to this as the “optimal” solution. The left shows results

corresponding to Tikhonov regularization, and the right shows results for

TSVD.

Similar plots are shown for the rest of three test problems in Figures 4.6

through 4.8.
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Figure 4.6: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem phillips.
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Figure 4.7: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem shaw.
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Figure 4.8: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem heat.

36



4.1.3 With errors in both of A and b

In this section we consider the test problem with errors both in b and A. The

first test problem is deriv2, where the results are shown in Figure 4.5. We

choose the regularization parameter by GCV.

For the solutions shown in the bottom row of Figure 4.9, the solution

was computed using the GCV chosen regularization parameter. The solu-

tions in the middle row were computed using a regularization parameter that

minimizes the relative error between the computed solution and the true so-

lution. We refer to this as the “optimal” solution. The left shows results

corresponding to Tikhonov regularization, and the right shows results for

TSVD.

Similar plots are shown for the rest of three test problems in Figures 4.10

through 4.12.
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Figure 4.9: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem deriv2.
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Figure 4.10: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem phillips.
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Figure 4.11: This figure shows the GCV curves (top row) and the the com-
puted reconstructions (rows 2 and 3) for the test problem shaw.
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Figure 4.12: This figure shows the computed reconstructions for the test
problem heat.
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According to the results above, we can see that when there are errors in

both of A and b, the TSVD function may not work well for all cases.

4.2 Application to Image Deblurring

After doing some small-scale matrix experiments, we’d like to see our GCV

Tikhonov regularization’s performance in real-world problem solving. In par-

ticular, we consider a problem in image deblurring, where b is an observed

blurred image, A is a matrix that models the blurring operation, and x is

the true image we want to recover. In this specific example, we use the satel-

lite data [2], assuming zero boundary conditions, and we use different noise

level to test. The basic ideas is to transform the 2-dimensional images into

vectors, and solve the equation,

b = Ax+ e

where b is the observed blurred images, A is the blurring matrix and e is the

random error. In this case, we know rarely about the noise level. Our goal

is to compute an approximation of x, is the true (but unknown) image.

In the applications like this the matrix A is usually very ill-conditioned,

so we need some regularization. We will use Tikhonov regularization.The

other issue is that A is usually very large, and generally it is computationally

infeasible (much too expensive) to compute an SVD of the matrix A. How-
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ever, in certain situations we can compute approximations of A for which we

can compute an SVD. Specifically, in image deblurring the matrix A can be

written as

A = B1 ⊗ C1 +B2 ⊗ C2 + · · ·Bm ⊗ Cm

where ⊗ denotes Kronecker product. If A is an m×n matrix and B is a p×q

matrix, then the Kronecker product A⊗B is the mp×nq block matrix [10]:

A⊗B =


a11B · · · a1nB

...
. . .

...

am1B · · · amnB


It has been shown that in many cases that the first term in this summation,

B1⊗C1 is a good approximation of A. Moreover, if we have a single Kronecker

product like this, the SVD can be computed efficiently. Specifically, if we

compute the SVDs of the smaller matrices B1 and C1,

B1 = UbΣbV
T
b and C1 = UcΣcV

T
c

then the SVD of B1 ⊗ C1 is given by:

B1 ⊗ C1 = (Ub ⊗ Uc)(Σb ⊗ Σc)(Vb ⊗ Vc)T .

By exploiting properties of Kronecker products we do not need to explicitly

form the large matrices to do computations with them. For example, matrix-

43



vector multiplication with Ub ⊗ Uc can be done as:

y = (Ub ⊗ Uc)x ⇔ Y = UcXUb

where y = vec(Y ) and x = vec(X), and vec(X) reshapes a matrix with

columns x1,x2, . . . ,xn into a long vectors with the columns stacked one on

top of the other. That is,

vec(X) = vec([x1 x2 · · · xn]) =



x1

x2

...

xn


Thus, with proper reshaping of the vector x, the large matrix-vector multi-

plication can be done with small matrix-matrix multiplications.

In Tikhonov regularization, we try to solve the damped least squares

problems

min
x

{
||Ax− b||22 + α2||x||22

}
. (4.1)

As discussed in previous chapters of this thesis, the regularization parameter

α controls “smoothness” of the regularized solution. We will generally assume

that a good value of λ is known, or can be estimated from other techniques.

The problem (4.1) is equivalent to solving the overdetermined least squares
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(LS) problem

min
x

∥∥∥∥∥∥∥
 A

αI

x−

 b

0


∥∥∥∥∥∥∥
2

2

. (4.2)

We now consider the LS problem,

min
x

∥∥∥∥∥∥∥
 A

αI

x−

 b

0


∥∥∥∥∥∥∥
2

2

.

To solve this problem, we will use the iterative method LSQR, which is

usually recommended for large scale least squares problems where it is com-

putationally expensive to compute a full decomposition of the given matrix,

but where it is possible to efficiently compute matrix-vector multiplications

with the given matrix.

Before we can solve this, we need a good estimate of the regularization

parameter. To do this, we first use the approximation

A ≈ B1 ⊗ C1

and use the SVD of this approximation as input to the GCV function to

compute an estimate of α. The results of our previous numerical experiments

on small scale matrices leads us to believe that parameters computed using

good matrix approximations should provide good values. We want to verify

this with some large scale problems.

The large scale problems we use are available in the RestoreTools package,
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http://www.mathcs.emory.edu/~nagy/RestoreTools/index.html and some

introduction is refer to [11].

4.2.1 AtmosphericBlur10

Observed image True image

Figure 4.13: This figures show the graph we observe and the true graph
before being blurred

By using GCV function we can find α and then use LSQR to solve the

Tikhonv regularized least squares problem.

And we also plot out the relative residual graph, where a larger number

of iteration leads to a smaller relative residual.
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Reconstructed image by Tikhonov

Figure 4.14: This figure shows the computed reconstructions for the satellite
problem by using GCV regularization parameter.
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Figure 4.15: This figure shows the level of relative residual
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And then we will use optimal regularization parameter to show the best

solution we can get.

Reconstructed image by opt Tikhonov

Figure 4.16: Best possible solutions using optimal regularization parameter.

We can obviously see that for the AtmosphericBlur10, parameters com-

puted using good matrix approximations provide good values.

4.2.2 AtmosphericBlur30

Observed image True image

Figure 4.17: This figures show the graph we observe and the true graph
before being blurred
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By using GCV function we can find α and then use LSQR to solve the

Tikhonv regularized least squares problem.

And we also plot out the relative residual graph, where a larger number

of iteration leads to a smaller relative residual.
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Reconstructed image by Tikhonov

Figure 4.18: This figure shows the computed reconstructions for the satellite
problem by using GCV regularization parameter.
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Figure 4.19: This figure shows the level of relative residual
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And then we will use optimal regularization parameter to show the best

solution we can get.

Reconstructed image by opt Tikhonov

Figure 4.20: Best possible solutions using optimal regularization parameter.
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4.2.3 AtmosphericBlur50

Observed image True image

Figure 4.21: This figures show the graph we observe and the true graph
before being blurred

By using GCV function we can find α and then use LSQR to solve the

Tikhonv regularized least squares problem.

And we also plot out the relative residual graph, where a larger number

of iteration leads to a smaller relative residual.
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Reconstructed image by Tikhonov

Figure 4.22: This figure shows the computed reconstructions for the satellite
problem by using GCV regularization parameter.
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Figure 4.23: This figure shows the level of relative residual
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And then we will use optimal regularization parameter to show the best

solution we can get.

Reconstructed image by opt Tikhonov

Figure 4.24: Best possible solutions using optimal regularization parameter.

We can see that even for AtmosphericBlur50 case, our GCV Tikhonov

still works quite well, which confirm that Tikhonov with GCV parameter

choosing function can work to solve some real-world problems.
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Chapter 5

Conclusions

We have considered two filtering methods for image restoration and two dif-

ferent methods for choosing the regularization parameter. Specifically, we

utilized the singular value decomposition (SVD), as well as tools from nu-

merical linear algebra and MATLAB built-in functions, to efficiently imple-

ment each method. Numerical experiments were conducted to demonstrate

and compare the performance of two filtering methods in different situations

of noise (noise only in b, noise in A, and both). Moreover, we use satellite

image restoration to check the application of Tikhonov regularization with

parameter chosen by GCV function on a real-world problem.

• We first conclude that by implementing with GCV function both of

TSVD and Tikhonov, which are well-known and widely-utilized filter-

ing methods, generally work well for small-scale test problems. This is

evident in the comparison of computed solutions in Chapter 4. In addi-
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tion, we see that when using the optimal parameters, TSVD works bet-

ter than Tikhonov in the cases that the true graph is linear or smooth

(i.e., very few oscillations).

• When choosing a parameter by GCV function, both TSVD and Tikhonov

filtering yield better results in general. However, when we test two reg-

ularization tools in different situation of noise, we found that in some

cases that with noise in both of the matrix A and the data b, TSVD

might not work that good, because noise makes GCV function un-

able to address a good parameter. In addition, we can also see that

in our experiments when using the optimal parameters, TSVD works

better than Tikhonov, it might be concluded as TSVD works better

than Tikhonov when the true graph is close to linear or has very few

oscillation.

• Lastly, we test the performance of Tikhonov with GCV on a real-

world problem, solutions restoration of satellite image. By the com-

parison between solutions processed by Tikhonov with GCV and op-

timal Tikhonov regularizations, we can obviously see that Tikhonov

with GCV can provide a quite good approximation when we having no

information about the actual noise level.

The efficient implementation of these methods illustrate that our tech-

niques can serve as a foundation for further studies. According to a deeper

level of study about GCV function, people also come up with a method
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called weighted GCV, which does improve the performance of GCV function

in choosing filtering parameter. Moreover, further investigation of other pa-

rameter choice methods such as L-Curve analysis may potentially generate

better image restorations [14].
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