
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Xi Wu Date



Essays on Diversification: Cryptocurrencies and Other Assets

By

Xi Wu
Doctor of Philosophy

Economics

Esfandiar Maasoumi, Ph.D.
Advisor

Zhongjian Lin, Ph.D.
Committee Member

Ruixuan Liu, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D, MPH
Dean of the James T. Laney School of Graduate Studies

Date



Essays on Diversification: Cryptocurrencies and Other Assets

By

Xi Wu
M.S., Massachusetts Institute of Technology, 2015

B.S., Nankai University, 2014

Advisor: Esfandiar Maasoumi, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Economics

2022



Abstract

Essays on Diversification: Cryptocurrencies and Other Assets
By Xi Wu

There are three essays in this doctoral dissertation that study assets similarity
and investment diversification. The purpose of this dissertation is to make clear a
central theme: Diversification makes it desirable to identify new asset classes. The
decision of what is a new asset class is based on its comparison with other assets. This
comparison can be based on traditional methods which compare predictive models,
such as GARCH and other time series models, summary data., etc. But these methods
may not be able to pick up other deeper aspects of laws that generate the return
series. These deeper characteristics include nonlinearities, asymmetries, tail behaviors
and other distribution characteristics that may be obscured and even twisted by
model artifacts. For example, a conditional mean regression or time series model, the
workhorse of financial analysis, is by design not able to look beyond the conditional
mean of the returns data and its pattern and evolution. For highly volatile assets such
as cryptocurrencies, but more generally for all non-Gaussian and nonlinear financial
assets, these model-based comparisons and assessments are unnecessarily limiting.
Assessment of “entire” distributions, made possible by entropy metrics, addresses
these limitations. In addition, if the underlying laws are linear / Gaussian, nothing
is lost. Entropy metrics become equivalent to these traditional conditional mean and
variance models assessments.

In the first essay “Cryptocurrency Return Forecast Using Time Series Models and
Entropy Approach”, I investigate the notion of “similarity” between assets, in this
case, cryptocurrencies with a set of other assets, including stock market indices. I
use a novel approach based on entropy. This is in contrast to the traditional ap-
proach of comparing model fits, such as those based on time series models, including
the GARCH model and ARIMA model. The approaches that based on time series
models, which I also examine, reveal predictive structures and moments of underly-
ing probability laws that generate returns. Entropies compare entire distributions of
asset returns and capture all statistical aspects of returns and their differences. Both
approaches are meant to identify new asset classes for diversification purposes. Some-
times assets are diverse in more ways, nonlinear and in higher moments and tails, than
typical conditional mean and quantile models can reveal. Finally, I find max entropy
closest industry portfolios to cryptocurrencies, which ensures shrinkage towards max-
imum diversification of portfolio weights. My findings will be useful in exploring the
prediction of cryptocurrencies returns based on stock market performance.

In the second essay “Contrasting Cryptocurrencies with Other Assets: Full Distri-
butions and the COVID Impact”, I investigate any similarity and dependence based
on the full distributions of cryptocurrency assets, stock indices and industry groups.
I characterize full distributions with entropies to account for higher moments and
non-Gaussianity of returns. Divergence and distance between distributions are mea-
sured by metric entropies, and rigorously tested for statistical significance. I assess



stationarity and normality of assets, as well as the basic statistics of cryptocurrencies
and traditional asset indices, before and after COVID-19 pandemic outbreak. These
assessments are not subjected to possible misspecifications of conditional time series
models which are also examined for their own interests. I find that NASDAQ daily
return has the most similar density and co-dependence with Bitcoin daily return,
generally, but after COVID-19 outbreak in early 2020, even S&P500 daily return
distribution is statistically closely dependent on, and indifferent from Bitcoin daily
return. All asset distances have declined by 75% or more after COVID-19 outbreak.
I also find that the highest similarity before COVID-19 outbreak is between Bitcoin
and Coal, Steel and Mining industries, and after COVID-19 outbreak it is between
Bitcoin and Business Supplies, Utilities, Tobacco Products and Restaurants, Hotels,
Motels industries, compared to several others. This study shed light on examining
distribution similarity and co-dependence between cryptocurrencies and other asset
classes, especially demystify effects of the important timely topic, COVID-19.

In the third essay “Do Cryptocurrencies and Other Assets Converge? A Clustering
Analysis of Asset Returns”, I examine the prospects for clustering, or convergence
of asset classes. In the first instance, I examine if a set of cryptocurrencies form
identifiable clusters within this class. Using entropy metric to assess “similarity”
of entire distributions, I implement Agglomerative Hierarchical Clustering technique
to examine whether or not cryptocurrencies are converging to “clubs” with similar
distributions of returns. To arrive at a more convincing conclusion, I also apply
the K-means Clustering to justify our results. I discover that cryptocurrencies share
similar geographic locations and similar functions tend to converge to same clusters.
I also observe another potential explanation to our results called the “Coinbase ef-
fect”. In the second stage, I examine if these clusters include other asset classes,
such as commodities. I find cryptocurrencies and commodities are separated into
different clusters using entropy metric as cluster proximity, which is consistent with
intuitive assumptions. I also find that the cluster that contains the distributions of
Coal (COAL) and Petroleum and Natural Gas (OIL) have smaller distance to cryp-
tocurrency distributions. To conclude, my work will help to enhance the profiling
of the clusters with additional insights. As a result, this work offers a description
of the market and a methodology that can be reproduced by investors that want to
understand the main trends on the market and that look for cryptocurrencies with
different financial performance.

All these three essays help to reveal the relationship between cryptocurrency re-
turns and other asset returns. And I believe my findings will be useful in exploring the
prediction of cryptocurrency returns based on stock market performance, and I verify
that cryptocurrency is indeed an “orthogonal” assets that provide new opportunities
to diversify risk.
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1

Chapter 1

Preface

This dissertation consists of three essays that study the financial market consists of

cryptocurrencies and other traditional assets, like stock market indexes and commodi-

ties. In this Preface chapter, we will first answer the question that why we focus on

cryptocurrency market, then demonstrate our motivation and contribution.

There are several things that investors do to protect their portfolios against risk.

One significant way to protect one’s portfolio is by diversifying. In short, this means

an investor opts to include various types of asset classes, including bonds, stocks,

commodities, REITs, cryptocurrencies., etc. The idea here is the same as the old

adage “don’t put your eggs all in one basket”. When investors are invested in many

areas, if one fails, the rest will ensure the portfolio as a whole remains secure. This

added security can be measured in the increased profits that a diversified portfo-

lio tends to bring in when compared to an individual investment of the same size.

Therefore, it is key for investors to avoid choosing investments for their portfolios that

are highly “similar”. In this dissertation, we aim to study the “similarity” between

cryptocurrencies and various traditional assets, thus provide guidance for portfolio

diversification.
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1.1 From Money and Fiat Currencies to Cryp-

tocurrencies

Among a variety of emergent phenomena that we observe in human society, one of

the most important is money. There are three functions of money: a store of value, a

unit of account, and a medium of exchange. To facilitate trade by avoiding a problem

of double coincidence of needs that restricts barter trading severely and inherently.

According to economical models, a status of money is acquired in a process of the

spontaneous symmetry breaking by a commodity that is the most easily marketable

or, in other words, that is the most liquid one (Bak et al., 1999; Oswiecimka et al.,

2013).

Fiat money is a type of money that is not backed by any commodity such as

gold or silver, and typically declared by a decree from the government to be legal

tender. Throughout history, fiat money was sometimes issued by local banks and

other institutions. In modern times, fiat money is generally established by government

regulation. Fiat money does not have intrinsic value and does not have use value. It

has value only because the people who use it as a medium of exchange agree on its

value. They trust that it will be accepted by merchants and other people (Goldberg,

2005).

The first cryptocurrency, Bitcoin, was proposed in 2008 (Nakamoto, 2008). The

idea behind it was to decouple a currency from any institution or government, while

preserving its status of a universal means of exchange, and to base a trust in this

currency solely on a technology that supports it. Such a currency had to combine

the advantages of both cash and electronic money: Anonymity of use (like cash)

and capability of being transferred immediately to any place in the world (like elec-

tronic money). The already-existing technologies of asymmetric cryptography and

distributed database (with a new consensus mechanism - “proof of work”) were linked
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into a decentralized secure register—blockchain that forms a staple of Bitcoin. Unlike

traditional currencies, Bitcoin has inherently limited supply to prevent any loss of its

value due to inflation (Wattenhofer, 2016).

1.2 Brief Introduction to Cryptocurrency Market

Cryptocurrency trading is possible, because they are easily convertible to traditional

currencies like U.S. dollar (USD) or the Euro (EUR) and to other cryptocurrencies.

This possibility is provided by 330 trading platforms (August 2020) open 24 hours

a day, seven days a week. This, together with a fact that the most investors are

individuals, distinguishes the cryptocurrency market from foreign exchange (Forex),

where trading takes place from Monday to Friday essentially on the OTC market

where mainly banks and other financial institutions participate in. Another peculiar-

ity of the cryptocurrency market is that there is no reference exchange rate unlike

Forex, where such reference rates are provided by Reuters. The sole exception is

Bitcoin, whose exchange rate to USD is given by futures quoted on Chicago Mer-

cantile Exchange (CME). Decentralization of the market means that the same cryp-

tocurrency pairs are traded on different platforms, which—if accompanied by limited

liquidity—can lead to sizeable valuation differences between platforms that produce

arbitrage opportunities, both the dual and triangluar ones (Watorek et al., 2021;

Makarov & Schoar, 2019; Gebarowski et al., 2019).

The spectacular development of a cryptocurrency market has attracted much

interest of the scientific community. The first Bitcoin-related papers were pub-

lished already in 2013–2015 (Kristoufek, 2013; Kristoufek, 2015), but a real boom

on cryptocurrency-related publications occurred after 2017. Initially, only bitcoin

was of significant interest (Bariviera et al., 2017; Drozdz et al., 2018; Garnier &

Solna, 2019), but soon also other cryptocurrencies went under investigation (Wu et
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al., 2018; Kristoufek & Vosvrda, 2019). Then there appeared studies reporting on

correlations within the market (Stosic et al., 2018; Bariviera at al., 2018; Bouri er al.,

2019), and its relationship with regular markets (Corbet et al., 2018; Corelli, 2018).

Recently, some researchers focused their attention on possible use of BTC as a hedg-

ing instrument for Forex (Urquhart & Zhang, 2019), for gold and other commodities

(Shahzad et al., 2019), as well as for the stock markets (Shahzad et al., 2020; Wang

et al., 2019).

The cryptocurrency market has already gone through a long route from a mere

curiosity and a playground for the technology enthusiasts, via an emerging-market

stage characterized by a relatively small capitalization, poor liquidity, large price fluc-

tuations, short-term memory, frequent arbitrage opportunities, and weak complexity,

to a more mature form characterized by medium capitalization, improved liquidity,

inverse-cubic power-law fluctuations, long-term memory, sparse arbitrage opportuni-

ties, and increasing complexity.

The market of cryptocurrencies is fast and wild. Cryptocurrencies’s philosophy is

to break all borders and barriers, atleast associated with finance and trade. Since the

inception of cryptocurrency, thousand of coins have been launched and are competing

with each other even though it is in early stages of blockchain development. Every

cryptocurrency which gets launched in the market comes with a unique promise that

may turn the world around. In future there may be a single leader while others

are rendered superseded, or there may be only 3-4 coins which will define the entire

payments, lending, trading and banking infrastructures globally. It will be a new

world, in a new light, in a new era (Thakur & Banik, 2018).
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1.3 Motivation and Contribution of the Disserta-

tion

The dissertation consists of three essays, which demonstrate the empirical applica-

tions of testing density similarity and nonlinear co-dependence with entropy metrics.

We aim to find the density similarity between cryptocurrencies and traditional asset

classes, thus to answer the question that if assets converge into any “clubs”. The

findings in this dissertation will offer a description of the market and a methodology

that can be reproduced by investors that want to understand the main trends on the

market and that look for cryptocurrencies with different financial performance.

In the first essay “Cryptocurrency Return Forecast Using Time Series Models and

Entropy Approach”, I investigate the notion of “similarity” between assets, in this

case cryptocurrencies with a set of other assets, including stock market indices. I use

a novel approach based on entropy. This is in contrast to the traditional approach of

comparing model fit, such as those based on time series models, including GARCH

model and ARIMA model. The time series model based approaches, which I also ex-

amine, reveal predictive structures and moments of underlying probability laws that

generate returns. Entropies compare entire distributions of asset returns and capture

all statistical aspects of returns, and their differences. Both approaches are meant to

identify new asset classes for diversification purposes. Sometimes assets are diverse

in more ways, nonlinear and in higher moments and tails, than typical conditional

mean and quantile models can reveal. Finally, I find max entropy closest industry

portfolios to cryptocurrencies, which ensures shrinkage towards maximum diversifi-

cation of portfolio weights. My findings will be useful in exploring the prediction of

cryptocurrencies returns based on stock market performance.

In the second essay “Contrasting Cryptocurrencies with Other Assets: Full Distri-

butions and the COVID Impact”, I investigate any similarity and dependence based
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on the full distributions of cryptocurrency assets, stock indices and industry groups.

I characterize full distributions with entropies to account for higher moments and

non-Gaussianity of returns. Divergence and distance between distributions are mea-

sured by metric entropies, and rigorously tested for statistical significance. I assess

stationarity and normality of assets, as well as the basic statistics of cryptocurrencies

and traditional asset indices, before and after COVID-19 pandemic outbreak. These

assessments are not subjected to possible misspecifications of conditional time series

models which are also examined for their own interests. I find that NASDAQ daily

return has the most similar density and co-dependence with Bitcoin daily return,

generally, but after COVID-19 outbreak in early 2020, even S&P500 daily return

distribution is statistically closely dependent on, and indifferent from Bitcoin daily

return. All asset distances have declined by 75% or more after COVID-19 outbreak.

I also find that the highest similarity before COVID-19 outbreak is between Bitcoin

and Coal, Steel and Mining industries, and after COVID-19 outbreak is between

Bitcoin and Business Supplies, Utilities, Tobacco Products and Restaurants, Hotels,

Motels industries, compared to several others. This study shed light on examining

distribution similarity and co-dependence between cryptocurrencies and other asset

classes, especially demystify effects of the important timely topic, COVID-19.

In the third essay “Do Cryptocurrencies and Other Assets Converge? A Clus-

tering Analysis of Asset Returns”, I aim to examine the prospects for clustering, or

convergence of asset classes. In the first instance, I examine if a set of cryptocur-

rencies form identifiable clusters within this class. Using entropy metric to assess

“similarity” of entire distributions, I implement Agglomerative Hierarchical Cluster-

ing technique to examine whether or not cryptocurrencies are converging to “clubs”

with similar distributions of returns. To arrive at a more convincing conclusion, I

also apply the K-means Clustering to justify our results. I discover that cryptocur-

rencies share similar geographic locations and similar functions tend to converge to
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same clusters. I also observe another potential explanation to our results called the

“Coinbase effect”. In the second stage, I examine if these clusters include other asset

classes, such as commodities. I find cryptocurrencies and commodities are separated

into different clusters using entropy metric as cluster proximity, which is consistent

with intuitive assumptions. I also find that the cluster that contains the distributions

of Coal (COAL) and Petroleum and Natural Gas (OIL) have smaller distance to cryp-

tocurrency distributions. To conclude, my work will help to enhance the profiling of

the clusters with additional insights. As a result, this work offers a description of

the market and a methodology that can be reproduced by investors that want to

understand the main trends on the market and that look for cryptocurrencies with

different financial performance.

To conclude, I make a central theme clear from the results in the essays: Diver-

sification makes it desirable to identify new asset classes. The decision of what is a

new asset class is based on its comparison with other assets. This comparison can

be based on traditional methods which compare predictive models, such as GARCH

and other time series models, summary data., etc. But these methods may not be

able to pickup other deeper aspects of laws that generate the return series. These

deeper characteristics include nonlinearities, asymmetries, tail behaviors and other

distribution characteristics that may be obscured and even twisted by model arti-

facts. For a highly volatile assets such as cryptocurrencies, but more generally for

all non Gaussian and nonlinear financial assets, these model based comparisons and

assessments are unnecessarily limiting. Assessment of “entire” distributions, made

possible by entropy metrics, addresses these limitations.
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Chapter 2

Cryptocurrency Return Forecast

Using Time Series Models and

Entropy Approach

In this chapter, we investigate the notion of “similarity” between assets, in this case

cryptocurrencies with a set of other assets, including stock market indices. We use a

novel approach based on entropy. This is in contrast to the traditional approach of

comparing model fit, such as those based on time series models, including GARCH

model and ARIMA model. The time series model based approaches, which we also

examine, reveal predictive structures and moments of underlying probability laws that

generate returns. Entropies compare entire distributions of asset returns and capture

all statistical aspects of returns, and their differences. Both approaches are meant to

identify new asset classes for diversification purposes. Sometimes assets are diverse

in more ways, nonlinear and in higher moments and tails, than typical conditional

mean and quantile models can reveal. Finally, we find max entropy closest industry

portfolios to cryptocurrencies, which ensures shrinkage towards maximum diversifi-

cation of portfolio weights. Our findings will be useful in exploring the prediction of
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cryptocurrencies returns based on stock market performance.

Keywords:

Cryptocurrency, Bitcoin, Entropy, GARCH, Optimal Portfolio
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2.1 Introduction

In recent years, financial markets witnessed the birth and development of a new

assets class, the cryptocurrency, and it is receiving significant attention. On the one

hand it is based on a fundamentally new technology, the potential of which is not

fully understood. On the other hand, at least in the current form, it fulfills similar

functions as other more traditional assets.

The starting point of the development of cryptocurrency was in the year of 2008,

when the Bitcoin emerged, based on blockchain technology. The cryptocurrency

market is an important markets in the global assets markets. As of February 2019,

there were over 17.53 million bitcoins in circulation with a total market value of around

$63 billion. Today, there are literally thousands of cryptocurrencies in existence, with

an aggregate market value of over $120 billion.

With the rapid development of cryptocurrency market, the literature has focused

on statistical properties and risk behavior of the cryptocurrency by comparing them

with classical assets like equities and exchange rates. Pichl and Kaizoji (2017) found

that cryptocurrency markets are even more volatile than foreign exchange markets.

Chu et al. (2017), Bouri et al. (2017), Katsiampa (2017), Bariviera (2017), Baur et al.

(2018), Stavroyiannis (2018) and Catania and Grassi (2017) observed the phenomenon

of volatility clustering in cryptocurrency market. Osterrieder and Lorenz (2017) and

Begusic et al. (2018) have studied the unconditional distribution of Bitcoin returns

and found that it has more probability mass in the tails than that of foreign exchange

and stock market returns. Regime-switching behaviors are detected by Bariviera et

al. (2017), Balcombe and Fraser (2017). Thies and Molnar (2018) have identified

structural breaks in the volatility process of bitcoin via a Bayesian framework. Re-

cently, Lahmiri et al. (2018) and Lahmiri and Bekiros (2018) have pointed out that

Bitcoin markets are characterized by long memory and multi-fractality.

Most of the existing studies focus on Bitcoin returns. For example, Baur et al.
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(2017) show that Bitcoin returns are essentially uncorrelated with traditional asset

classes such as stocks and bonds, which points to diversification possibilities. Other

studies investigate the determinants of Bitcoin returns. Li and Wang (2017) suggest

that measures of financial and macroeconomic activity are drivers of Bitcoin returns.

Kristoufek (2015) considers financial uncertainty, Bitcoin trading volume in Chinese

Yuan and Google trends as potential drivers of Bitcoin returns. Recently, many

studies discuss that if Bitcoin belongs to any asset classes, with many comparing it

to gold, others to precious metals or to speculative assets (Baur et al., 2017; Bouri

et al., 2017). Some have classified Bitcoin as a new asset class between currency and

commodity (Dyhrberg, 2016).

Another area evoke people’s interest is forecasting Bitcoin volatility, because such

forecasts represent an important ingredient in risk assessment and allocation, and

derivatives pricing theory. Balcilar et al. (2017) analyze the causal relation between

trading volume and Bitcoin returns and volatility. They find that volume cannot

help to predict the volatility of Bitcoin returns. Bouri et al. (2017) find no evidence

for asymmetry in the conditional volatility of Bitcoins when considering the post

December 2013 period and investigate the relation between the VIX index and Bitcoin

volatility. Al-Khazali et al. (2018) consider a model for daily Bitcoin returns and

show that Bitcoin volatility tends to decrease in response to positive news about the

US economy.

GARCH-type models have been employed to forecast cryptocurrency market volatil-

ity. Dyhrberg (2016) explores Bitcoin volatility using GARCH models and sug-

gests that Bitcoin has several similarities with both gold and the dollar. Katsiampa

(2017) explores the applicability of several ARCH-type specifications to model Bitcoin

volatility and selects an AR-CGARCH model as the preferred specification. Conrad

et al. (2018) used the GARCH-MIDAS model to extract the long- and short-term

volatility components of cryptocurrencies. Segnon and Bekiros (2019) found that
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the Markov switching multifractal (MSM) and FIGARCH models outperform other

GARCH-type models in forecasting Bitcoin returns volatility.

Our objective in this chapter is to revisit some stylized facts of cryptocurrency

markets and propose new econometrics models that produce accurate volatility fore-

casts. In contrast to previous studies that use time series models to forecast cryp-

tocurrency returns, in this chapter we also use entropy profiles method to test the

density similarity between cryptocurrency and stock returns. We not only consider

Bitcoin as most of the literatures did, but also consider Ethereum, since both of them

are leading cryptocurrency markets which have large volume and long history. We

use nonparametric entropy metrics to test equality between cryptocurrency density

and stock market index density. Enytropy metrics outperform time series models

(ARIMA and GARCH) in testing the equality between two densities without know-

ing the exact form of the distribution, while time series models have advantage in

that they can tell the model revolution. Another innovative method of this chapter is

that we propose a maximum entropy approach to optimal portfolio selection, which

let us to construct a portfolio with stocks in three industries (Coal, Steel and Mines)

which have most similar densities with Bitcoin.

The rest of the chapter is organized as follows. Section 2 presents the data analysis

and some stylized facts. In Section 3, we provide the statistical properties of our pro-

posed models and study in detail their forecasting performance and adequacy by time

series models (ARIMA model and GARCH model). Also, we display the empirical

results in terms of graphs and regression results. In Section 4, we calculate non-

parametric entropy metrics to test the density equality between two cryptocurrencies

(Bitcoin and Ethereum) and two stock market indexes (SP500 and NASDAQ). We

conduct equality tests on both marginal distributions and conditional distributions.

We find that NASDAQ has the most similar density with Bitcoin. Finally, we revisit

the current mean-variance portfolio optimization method, and propose a maximum
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entropy approach to portfolio selection, which ensures shrinkage towards maximum

diversification of portfolio weights. Section 5 provides the concluding remarks.

2.2 Data and Basic Characteristics

The cryptocurrency data and stock market index data set consists of daily spot ex-

change rates in units of US dollars are from Yahoo Finance1. The price observations

of Bitcoin (BTC-USD) range from July 16, 2010 to April 14, 2019; the price observa-

tions of Ethereum (ETH-USD) range from August 6, 2015 to April 14, 2019; the price

observations of S&P500 stock market index (ˆGSPC) range from January 1, 2010 to

April 12, 2019; the price observations of NASDAQ stock market index (ˆIXIC) range

from January 1, 2010 to April 14, 2019. In each data set of cryptocurrency market

and stock market index, we have open price, intraday high price, intraday low price,

close price (adjusted for splits), adjusted close price (adjusted for both dividends and

splits) and volume. To better illustrate the relationship between cryptocurrency mar-

ket data and stock market indexes, we calculate the daily log return using adjusted

close price:

Returnt = 100 ∗ [ln(Pt) − ln(Pt−1)],

where Pt denotes the adjusted close price in USD at a time t.

We now document main statistical properties of time series for the returns of

S&P500 stock market index, NASDAQ stock market index, Bitcoin and Ethereum.

Figure 1 illustrates the time evolution of prices, volumes and daily log-returns for

S&P500, NASDAQ, Bitcoin and Ethereum. We notice that both Bitcoin and Ethereum

arrive their historical highest price in December 2017. Bitcoin’s price rose 5% in 24

hours, with its value being up 1,824% since 1 January 2017, to reach a new all-time

high on December 17, 2017. After this price peak, the cryprocurrency price dropped

1https://finance.yahoo.com
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dramatically. The descriptive statistics of daily log-returns are reported in Table 1.

The daily returns of cryptocurrency markets exhibit high variability and excess kur-

tosis. These deviations from the Normal distribution, as in Figure 2, are confirmed by

the Jarque-Bera test that rejects the null hypothesis of normality. Figure 2 illustrates

the unconditional distributions of Bitcoin daily returns and Ethereum daily returns,

we observe that the unconditional distributions of Bitcoin returns and Ethereum re-

turns do not converge to Normal distribution, as shown in Figure 2, and this is also

consistent with our Jarque-Bera test result.

We applied the Augmented-Dicker-Fuller (ADF) unit-root test of Dickey and

Fuller (1979), which suggests stationarity of the log-returns. An ADF test tests the

null hypothesis that a unit root is present in a time series sample. The alternative

hypothesis is different depending on which version of the test is used, but is usually

stationary or trend-stationarity. In our case, we use the alternative hypothesis of

stationary. This shows that the null hypothesis is rejected, and the time series of

returns in each markets is stationary. These observations suggest that the cryptocur-

rency market is not as efficient as stock or foreign exchange markets, which display a

complete lack of predictability (Lahmiri et al., 2018).

Table 2.1: Descriptive statistics

Daily log-return S&P500 NASDAQ Bitcoin Ethereum

Observations 2335 2335 3192 1345

Mean 0.04 0.05 0.36 0.30

Standard deviation 0.94 1.08 6.75 7.55

Skewness -0.47 -0.44 2.96 -1.13

Kurtosis 4.60 3.48 93.10 18.83

Augmented Dickey-Fuller -14.16 -14.13 -13.49 -9.75

Jarque-Bera 2147.55 1254.50 1158680 20216.24
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Figure 2.1: Plot of price, volume and daily log-returns

Figure 2.2: Plot of Bitcoin & Ethereum returns distributions
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2.3 Time Series Method

In this part, we use two time series models (ARIMA model and GARCH model)

to forecast cryptocurrency returns. We choose to apply time series models because:

First, the best of the ARIMA models is used to model the linear data of time series

and the residual of this linear model will contain only the nonlinear data. The ARIMA

model specifies the conditional mean of the process. Second, the GARCH is used to

model the nonlinear patterns of the residuals, it specifies the conditional variance of

the process. We use these two models to analyze the univariate series and to predict

the values of approximation. The time series models are useful because they can

give exact forms of the model, in other words, we can get a model with estimated

parameters as a result.

2.3.1 ARIMA Model

We assume that returns {rt} in cryptocurrency markets follow autoregressive frac-

tionally integrated moving average process (ARIMA) (Granger and Joyeux, 1980;

Hosking, 1981), given by the following equation:

Φ(L)(1 − L)d(rt − µ) = Θ(L)ϵt.

The lag polynomials are defined as:

Φ(L) = 1 − ϕ1L− ϕ2L
2 − ...− ϕpL

p,

Θ(L) = 1 − θ1L− θ2L
2 − ...− ϕqL

q,
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where the p and q are autoregressive (AR) and moving average (MA) orders, respec-

tively. L is the lag operator. The innovation process, ϵt can be formalized as:

ϵt = utσt,

where ut is a sequence of independent identically distributed normal random variables

with zero mean and unit variance.

The ARIMA model is suggest for the nonstationary and nonseasonality data series.

ARIMA model is a type of models in the Box-Jenkins modeling. The Box-Jenkins

methodology includes four iterative steps of model identification, parameter estima-

tion, diagnostic checking and forecasting. In identification step, data transformation

is required to make the series stationary. The stationary process is a necessary con-

dition in building an ARIMA model. When the observed time series presents trends

and nonseasonal behavior, data transformation and differencing are applied to the

data series in order to stabilize variance and to remove the trend before an ARIMA

model is applied. In the Box-Jenkins modeling, the autocorrelation function (ACF)

and the partial autocorrelation function (PACF) of the sample data are used in iden-

tifying the order of the time series model. The chosen model then is statistically

checked whether it accurately describes the series. The model fits well if the P-value

of its parameter is statistically significant, as well as its residuals are generally small,

randomly distributed, and contain no useful information, where at this point, the

model can be used for forecasting.

We use maximum likelihood estimation (MLE) to estimate the ARIMA model.

The MLE method tries to maximize the log-likelihood for given values of p, d, and q

when finding parameter estimates so as to maximize the probability of obtaining the

data that we have observed. The p,d, and q are chosen by minimizing the AIC. The

algorithm uses a stepwise search to traverse the model space to select the best model
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with smallest AIC.

We use correlogram analysis to determine p and q in ARIMA model, the auto-

correlation function (ACF) and the partial autocorrelation function (PACF) of the

sample data are used in identifying the order of the time series model.

The fitting result for Bitcoin return is an ARIMA(5,1,0) process, and the fitting

result for Ethereum return is an ARIMA(1,0,0) process. The correlogram analysis

(ACF and PACF) for Bitcoin and Ethereum daily log-returns are shown in Figure 3.

The coefficients of the ARIMA process are shown in Table 2. From the result, we can

see the models are not correctly specified, that will usually be reflected in residuals

in the form of trends, skeweness, or any other patterns not captured by the model.

So, ARIMA model cannot forecast the daily log-returns of cryptocurrency market

perfectly.

Table 2.2: ARIMA model result

ARIMA Bitcoin–ARIMA(5,1,0) Ethereum–ARIMA(1,0,0)

Intercept - 0.2992

AR1 -0.8372 -0.0587

AR2 -0.8465 -

AR3 -0.6398 -

AR4 -0.3741 -

AR5 -0.1275 -

AIC 21518.29 9249.24

BIC 21554.7 9264.86
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Figure 2.3: Correlogram analysis

Figure 2.4: Forecast using ARIMA models

2.3.2 GARCH Model

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is an extension

of the ARCH model that incorporates a moving average component together with the
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autoregressive component. In this chapter, we consider the mean model of AR(1).

The standard GARCH(p,q) model can be written as:

yt = x′(t)b + ϵt,

ϵt|Ψt−1 ∼ N(0, σ2
t ),

σ2
t = (ω +

m∑
j=1

ζjνjt) +

q∑
j=1

αjϵ
2
t−j +

p∑
j=1

βjσ
2
t−j,

where σ2
t denoting the conditional variance, ω the intercept and ϵ2t the residuals from

the mean filtration process.

The GARCH order is defined by (p, q) (ARCH,GARCH), where p is order of

GARCH terms σ2 and q is the ARCH terms ϵ2, with possibly m external regressors

νj which are passed pre-lagged. If variance targeting is used, then ω is replaced by,

σ̃2(1 − P̂ ) −
m∑
j=1

ζj ν̄j

where σ̃2 is the unconditional variance of ϵ2 which is consistently estimated by its

sample counterpart at every iteration of the solver following the mean equation filtra-

tion, and ν̄j represents the sample mean of the jth external regressors in the variance

equation, and P̂ is the persistence. One of the key features of the observed behavior

of financial data which GARCH models capture if volatility clustering which may be

quantified in the persistence parameter P̂ , which can be defined below,

P̂ =

q∑
j=1

αj +

p∑
j=1

βj.

Finally, the unconditional variance of the model σ̂2, and related to its persistence,

is,

σ̂2 =
ω̂

1 − P̂
,
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where ω̂ is the estimated value of the intercept from the GARCH model.

In Table 3, we get the estimated parameters of the GARCH model for daily

returns of S&P500, NASDAQ, Bitcoin and Ethereum market, respectively. The α̂1

is the coefficients to the squared lag residuals in the GARCH equation, and β̂1 is the

coefficients to the lag variance. The GARCH parameters can be interpreted that the

large value of β̂1 cause σt to be highly correlated with σt−1 and gives the conditional

standard deviation process a relatively long-term persistence, at least compared to its

behavior under an ARCH model. We can see from Table 3 that all the ω̂ in the three

marktets (NASDAQ, Bitcoin and Ethereum) are statistically significant, implying

that this is a small amount of positive autocorrelation. Also, all the β̂1 and α̂1 are

highly significant, which implies rather persistent volatility clustering.

In Figure 4, we have the GARCH patterns which plot the trend of estimated

conditional variances (green lines) and the squared residuals (black lines). We can

conclude from the figure that the estimated conditional variances and squared resid-

uals have the same trend, so the estimated conditional variances perfectly depict the

squared residuals of series. The conditional variance processes are second moment

terms, similarly that for the mean process, we are able to estimate the unconditional

variance and residuals in GARCH(1,1):

σ2
t = a + αϵ2t−1 + βσ2

t−1;

rt − µt = ϵt = σtzt.

where zt is an i.i.d. process with Et(zt) = 0 and V art(zt) = 1. Once we fit our

conditional variance models we will be left with the conditional variance process

σ2
t . At this point we know the conditional variance process σ2

t and ϵ2t . This allow

us to obtain the final standardized residuals series zt which is i.i.d and equal to

ϵt/σt = zt. We can see that in a S&P500, NASDAQ, Bitcoin and Ethereum markets,
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the estimated conditional variances and estimated squared residuals move in the same

direction. This is coordinated with our assumptions of GARCH(1,1) model.

In Figure 5, we can see how the forecast of the conditional variance picks up from

the last estimated conditional variance. The black lines are the last 20 residuals, while

the green lines are conditional variances forecast by GARCH, and the orange lines are

the unconditional forecast continuous from the conditional forecast. In fact, we can

see the conditional variance decreases from last estimated ones, slowly, towards the

unconditional variance value, which indicate the accuracy of GARCH model forecast.

Table 2.3: GARCH Estimation

Daily log-return Parameter Estimate Std.Error t Value Pr(>t)

S&P500

ω̂ 0.035544 0.005596 6.3520 0.00000

α̂1 0.161659 0.018509 8.7340 0.00000

β̂1 0.800386 0.019371 41.3186 0.00000

NASDAQ

ω̂ 0.051727 0.008963 5.7714 0.00000

α̂1 0.127917 0.016000 7.9948 0.00000

β̂1 0.826103 0.019636 42.0717 0.00000

Bitcoin

ω̂ 0.774732 0.102623 7.5493 0.000000

α̂1 0.207986 0.015613 13.3210 0.000000

β̂1 0.791014 0.013375 59.1411 0.000000

Ethereum

ω̂ 3.677801 0.758113 4.8513 0.000001

α̂1 0.189519 0.027947 6.7814 0.000000

β̂1 0.742106 0.032977 22.5039 0.000000
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Figure 2.5: GARCH pattern

Figure 2.6: GARCH forecast

In this part, we investigtated GARCH model because it is viewed as attempts to

capture some nonlinearities. Hong & White (2000) removed persistent GARCH effects

from the S&P500 series. In other financial applications, the presence of unaccounted

nonlinear dependence in the residuals of such models has been detected. Pagan &

Schwert (1990) studied the performance of parametric, nonparametric, as well as

semiparametric models of conditional variances in the GARCH setting for monthly

U.S. stock returns. Notably, in most studies the burden of dealing with nonlinearities

is placed on the successful modeling of the conditional mean and conditional variance.

A common conclusion from these studies is that the observed nonlinearities may be too

complex to be exploitable for improved predictability, especially with small samples
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(Stengos, 1995; Hsieh, 1989).

However, GARCH model still has limitations in forecasting the conditional vari-

ance of cryptocurrency return. One of the well established facts in the financial

modeling states that empirical distributions of log-returns time series are skewed and

fat-tailed. Therefore, there are various models which have been introduced that resort

to an alternative non-Gaussian assumption. Since the skewness defines the asymme-

try of the distribution, it has a significant impact on the shape of the tails. Kurtosis is

another parameter of interest under the alternative non-Gaussian fat-tailed assump-

tion. As a result, it is crucial to model skewness and kurtosis as accurately as possible,

also considering changes over time. Given the sensitivity of parametric GARCH to

misspecification of the mean and variances, its nonparametric implementations are

worthy of further research.

2.4 Entropy Profiles Method

2.4.1 Introduction to Information Theory and Entropy

Let us suppose we observe two threshold traits X and Y which are possibly correlated.

This correlation referring to corresponding for X and Y liabilities cannot be measured

by Pearson’ correlation coefficient because the values of X and Y are not observable

in the continuous scale. So, we need to use a measure of correlation for the categorical

values of X and Y , which is the entropy. In this part of the chapter, we will give a

brief introduction to information theory and entropy.

Let ℜ = {a1, a2, ..., aM} be a finite set and p be a proper probability mass function

(PDF) on ℜ. The amount of information needed to fully characterize all of the ele-

ments of this set consisting of M discrete elements is defined by I(ℜM) = log2M and

is known as Hartley’s formula. Shannon (1948) built on Hartley’s formula, within the

context of communication process, to develop his information criterion. His criterion,
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called Shannon’s entropy, is

H(p) = −
M∑
i=1

pilog(pi),

with xlog(x) tending to zero as x tends to zero. This information criterion measures

the uncertainty or informational content that is implied by p. The entropy–uncertainty

measure H(p) reaches a maximum when p1 = p2 = ... = pM = 1/M (and is equal

to Hartley’s formula) and a minimum with a point mass function. It is emphasized

here that H(p) is a function of the probability distribution. For example, if η is

a random variable with possible distinct realizations x1, x2, ..., xM with probabilities

p1, p2, ..., pM , the entropy H(p) does not depend on the values x1, x2, ..., xM of η. If, on

the other hand, η is a continuous random variable, then the entropy of a continuous

density is

H(x) = −
∫

p(x)log(p(x))dx,

where this differential entropy does not have all of the properties of the discrete

entropy. The Shannon’s entropy has three main properties:

1. H(x) = 0 if and only if when there exist one event x with p(x) = 1;

2. The value of entropy reaches the maximum when all events x have the same

probability;

3. For two independent variables X and Y , H(x, y) = H(x) + H(y).

After introducing the Shannon’s entropy measure, a fundamental question arose:

whose information does this measure capture? what does it measure? One answer

to this question is that H is a measure of the amount of information in a message.

To measure information, one must abstract away from any form or content of the

message itself. Further, Renyi (1961, 1970) showed that, for a (sufficiently often)

repeated experiment, one needs on average the amount H(p) + ϵ of zero-one symbols

(for any positive ϵ) in order to characterize an outcome of that experiment. Thus,
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it seems logical to claim that the outcome of an experiment contains the amount of

information H(p).

The information discussed here is not subjective information of a particular re-

searcher. The information observed in a single observation, or a data set, is a certain

quantity that is independent of whether the observer recognizes it or not. Thus,

H(p) is a measure of the average amount of information provided by an outcome of

a random drawing governed by p. Similarly, H(p) is a measure of uncertainty about

a specific possible outcome before observing it, which is equivalent to the amount of

randomness represented by p.

According to both Shannon and Jaynes, H measures the degree of ignorance of

a communication engineer who designs the technical equipment of a communication

channel because it takes into account the set of all possible messages to be transmitted

over this channel during its lifetime.

In addition, some prior information q, defined on ℜ, exists, the cross-entropy

(Kullback-Leibler, K–L, 1951) measure is

I(p; q) =
M∑
i=1

pilog(pi/qi),

where a uniform q reduces I(p; q) to H(p). This measure reflects the gain in infor-

mation with respect to ℜ resulting from the additional knowledge in p relative to q.

Like with H(p), I(p; q) is an information theoretic distance of p from q.

Facing the fundamental question of drawing inferences from limited and insuffi-

cient data, Jaynes (1982) proposed the maximum entropy (ME) principle, which he

viewed as a generalization of Bernoulli and Laplace’s Principle of Insufficient Reason.

Given T structural constraints in the form of moments of the data (distribution),

Jaynes proposed the ME method, which is to maximize H(p) subject to the T struc-

tural constraints. Thus, if we have partial information in the form of some moment
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conditions, Xt (t = 1, 2, ..., T ), where T < M , the ME principle prescribes choosing

the p(ai) that maximizes H(p) subject to the given constraints (moments) of the

problem. The solution to this underdetermined problem is

p̂(ai) ∝ exp{−
∑
t

λ̂tXt(ai)},

where λ are the T Lagrange multipliers, and λ̂ are the values of the optimal solution

(estimated values) of λ. Naturally, if no constraints are imposed, H(p) reaches its

maximum value and the p are distributed uniformly.

Building on Shannon’s work, a number of generalized information measures were

developed. Starting with the idea of describing the gain of information, Renyi (1970)

developed the entropy of order α for incomplete random variables. The relevant

generalized entropy measure of a proper probability distribution is

HR
α (p) =

1

1 − α
log

∑
k

pαk .

The Shannon measure is a special case of this measure where α → 1. Similarly, the

Renyi cross-entropy of order α is

IRα (x|y) = IRα (p, q) =
1

1 − α
log

∑
k

pαk
qα−1
k

,

which is equal to the traditional cross-entropy measure as α → 1.

Metric entropy applied to finance theory has been successfully developed mainly

after 1999. According to Gulko (1999), the ”entropy pricing theory” suggests that in

informational efficient markets, perfectly uncertain market beliefs must prevail. When

the entropy functional is used to index the market uncertainty, then the entropy-

maximizing market beliefs must prevail. To optimize various entropic measures, one

can derive new asset pricing models that are similar to Black-Scholes model with the
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log-normal distribution replaced by other probability distributions.

Entropic methodology was also widely applied within computer science and ma-

chine learning fields. Many statistical procedures, including goodness-of-fit tests and

methods for independent component analysis, rely critically on the estimation of the

entropy of a distribution. Scholars seek entropy estimators that are efficient and

achieve the local asymptotic minimax lower bound with respect to squared error loss

(Berrett et al., 2019). These results facilitate the construction of asymptotically valid

confidence intervals for the entropy of asymptotically minimal width.

2.4.2 Using Entropy to Test Equality of Univariate Densities

The reason why we prefer to use metric entropy to reveal the similarity structure

between cryptocurrency and stock market is to solve the misspecification problem

by ARIMA and GARCH model. We would like to make an inquiry about any un-

conditional or conditional similarity structure without requiring the specification of

conditional Mean-Variance models. Therefore, we will focus our research on non-

parametric density and other functional estimation. Entropies are defined directly in

terms of the actual distributions and not the variables and their moments. Partly for

this reason they also offer a clearer view of the relation between total independence,

conditional similarity, and causality relations in several directions.

Accordingly, we propose to study the cryptocurrency and stock returns for uncon-

ditional, nonparametric similarity using the Kullback-Leibler (KL) (1951) measure

which we have found to be successful in detecting generic and possibly nonlinear

similarity (Granger et al., 2000). The KL measure are seeing increasing and wel-

come use in testing for independence and other hypothesis. For instance, Robinson

(1991), Delgado (1994), Hong & White (2000), and Zheng (2000) are all concerned

with the KL measure for testing independence. Being entropy based, this measure is

defined over the densities of the cryptocurrency and stock returns which we estimate
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nonparametrically.

Maasoumi & Racine (2002) considered a metric entropy that is useful for testing

for equality of densities for two univariate random variables X and Y . The function

computes the nonparametric metric entropy (normalized Hellinger of Granger & Maa-

soumi (2004)) for testing the null of equality of two univariate density (or probability)

functions. For continuous variables,

Sρ =
1

2

∫
(f

1/2
1 − f

1/2
2 )2dx

=
1

2

∫
(1 − f

1/2
2

f
1/2
1

)2dF1(x),

where f1 = f(x) and f2 = f(y) are the marginal densities of the random variables X

and Y . The second expression is in a moment from which is often replaced with a

sample average, especially for theoritical developments. If the density of X and the

density of Y are equal, this metric will yield the value zero, and is otherwise positive

and less than one. We use Sρ to test the distance between cryptocurrency density

and stock market index density. The following properties are satisfied by this entropy

measure Sρ (Granger et al., 2000):

1. Sρ is well defined for both continuous and discrete variables;

2. Sρ is normalized to zero if X and Y are independent, and lies between 0 and 1;

3. The modulus of the entropy measure Sρ is equal to unity if there is a measurable

exact (nonlinear) relationship, Y = g(X) say, between the random variables;

4. Sρ is equal to or has a simple relationship with the (linear) correlation coefficient

in the case of a bivariate normal distribution;

5. Sρ is metric, that is, it is a true measure of distance and not just of Kullback-

Leibler divergence;

6. The entropy measure Sρ is invariant under continuous and strictly increasing

transformations h(·). This is useful since X and Y are independent if and only if
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h(X) and h(Y ) are independent.

Granger et al. (2000) consider a kernel implementation of this metric and demon-

strate how critical values can be obtained under the null of univariate densities equal-

ity in the case of time series data. For the estimation of the univariate densities in

Sρ we use kernel density estimators. For the kernel function we employ the widely

used nonparametric second-order Gaussian kernel, while bandwidths are selected via

likelihood cross-validation (Silverman, 2018). The block bootstrap is conducted via

resampling with replacement from the pooled empirical distributions of X and Y .

We apply the metric Sρ to the daily returns data by setting x = Returncryptocurrency

and y = Returnstock. Table 4 shows the result of the Sρ value and corresponding

p-value. As was noted in Granger et al. (2000) and Skaug & Tjostheim (1996),

the asymptotic distribution of Sρ is unreliable for practical inference, We therefore

compute p-values by resampling the statistic under the null of independence to detect

significant deviation from zero.

Examining Table 4 we see that value of Sρ is smaller when x = Bitcoin and y =

NASDAQ, which indicates that the distance between the densities of Bitcoin daily

returns and NASDAQ daily returns is smaller than other combinations. The p-value

shows that the result is significant. By visualizing the result in Figure 6 and Figure 7,

we can also see the Bitcoin daily returns density and the NASDAQ stock market index

daily returns density have similar shapes. Therefore, it would be more meaningful

for us to study the similarity structure between Bitcoin and NASDAQ markets.
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Table 2.4: Consistent univariate entropy density equality test

S rho p-value

S&P500 & Bitcoin 0.2003 <2.22e-16

S&P500 & Ethereum 0.3273 <2.22e-16

NASDAQ & Bitcoin 0.1705 <2.22e-16

NASDAQ & Ethereum 0.2919 <2.22e-16

Figure 2.7: Density of NASDAQ

Figure 2.8: Density of Bitcoin
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To learn the calendar effect of similarity structure between Bitcoin and NASDAQ

return densities, we analyze the variation of entropy measure Sρ on different weekdays

and month. Table 5 shows the value of Sρ entropy measure and corresponding p-value

on different months as well as different weekdays. We conduct this calendar effect

study because investors want to see the variation, especially the highs and lows of a

metric on an actual calendar itself, since it emphasizes the variation over time rather

than the actual value itself. Figure 8 shows the movement of Sρ entropy measure

along months and weekdays. The time period is from the year of July 19, 2010

to the April 10, 2019. In each year we have 12 trading months, and in each week

we have 5 trading days (Monday to Friday). In contrast to the stocks, there is no

pronounced Monday effect for Bitcoin. From the result we can see the Sρ entropy

measures are lower in September, which is 0.1262. This indicates that the distance

between Bitcoin return density and NASDAQ return density is smaller in September

than other months. The Sρ entropy measures are quite stable along the weekdays, so

we will not discuss the economic interpretation about this.

Table 2.5: Calendar effect of entropy measure

Jan Feb Mar Apr May Jun

S rho 0.2194 0.2509 0.2043 0.2437 0.2315 0.1849

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16

Jul Aug Sep Oct Nov Dec

S rho 0.2151 0.1746 0.1262 0.1645 0.2452 0.2429

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16

Mon Tue Wed Thu Fri

S rho 0.2159 0.1850 0.1931 0.2080 0.1763

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16
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Figure 2.9: Calendar effect of entropy measure

2.4.3 Using Entropy to Test Equality of Densities between

Industries

In this part, we apply the same method in the previous section to test the equal-

ity of densities for two univariate random variables X and Y , where X and Y are

daily returns of Bitcoin and stocks in different industries respectively. The data of

daily stock returns in different industries comes from Kenneth R. French 30 Industry

Portfolios 2. The Kenneth R. French 30 Industry Portfolios data set was created

by CMPT IND RETS DAILY using the 201908 CRSP database, assigned each

NYSE, AMEX, and NASDAQ stock to an industry portfolio at the end of June of

year t based on its four-digit SIC code at that time, then computed returns from

July of t to June of t + 1. We use the daily average value weighted returns for 30

industry portfolios data. The 30 industry portfolios include: Food Products (Food),

Beer Liquor (Beer), Tobacco Products (Smoke), Recreation (Games), Printing and

Publishing (Books), Consumer Goods (Hshld), Apparel (Clths), Healthcare (Hlth),

Medical Equipment, Pharmaceutical Products, Chemicals (Chems), Textiles (Txtls),

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/DataLibrary/det30indport.html



39

Construction and Construction Materials (Cnstr), Steel Works Etc (Steel), Fabri-

cated Products and Machinery (Fabpr), Electrical Equipment (Elceq), Automobiles

and Trucks (Autos), Aircraft, ships, and railroad equipment (Carry), Precious Met-

als, Non-Metallic, and Industrial Metal Mining (Mines), Coal (Coal), Petroleum and

Natural Gas (Oil), Utilities (Util), Communication (Telcm), Personal and Business

Services (Servs), Business Equipment (Buseq), Business Supplies and Shipping Con-

tainers (Paper), Transportation (Trans), Wholesale (Whlsl), Retail (Rtail), Resta-

raunts, Hotels, Motels (Meals), Banking, Insurance, Real Estate, Trading (Fin), Ev-

erything Else (Other). We apply the nonparametric entropy metrics to test equality

of densities for two univariate random variables X and Y by Maasoumi & Racine

(2002),

Sρ =
1

2

∫
(f

1/2
1 − f

1/2
2 )2dx

=
1

2

∫
(1 − f

1/2
2

f
1/2
1

)2dF1(x),

where f1 = f(x) and f2 = f(y) are the marginal densities of the random variables X

and Y , which are daily returns of Bitcoin and stock in different industries respectively.

The result is shown in Table 5 and Figure 9. We can tell from the result that the

univariate density of Bitcoin daily return has smallest distance with the univariate

density of Coal industry daily return, the Sρ between these two densities is 0.0039 and

statistically significant. The density of Bitcoin daily return also has small distance

with densities of Steel, Mines, Games and Txtls industries daily returns, which has

Sρ values of 0.0938, 0.1015, 0.1176 and 0.1176 respectively.

This result makes sense to us due to Bitcoin’s energy consumption. O’Dwyer and

Malone (2014) and Dilek & Furuncu (2018) indicated that there are some pessimistic

argues on Bitcoin and other crytocurrencies because they lack specific center. This

could cause a ‘balloon-lunacy’ financially which would lead to environmental damage
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due to the energy it consumes. Bitcoin has recently been much on the news be it due

to its value or its energy consumption. The rising levels of its energy consumption

and the fact that this consumption will continue to increase brings with it a host of

negativities. The similarity of nearly 80% of the world’s energy consumption on fossil

fuels and that this situation is not likely to change in the future brings with it serious

problems for the environment. Bitcoin mining spreading in areas where electricity is

provided through burning coal causes the already low air quality in these areas to

further worsen. The energy consumed due to increased Bitcoin mining is put forward

as one of the most important problems impeding Bitcoin’s development. The energy

consumption of Bitcoin is mainly caused by Bitcoin mining, which always describe

the Bitcoin production process. Because in this case mining is used both to confirm

processes and to define the people who have put it on record, which is similar with

mining for gold. Mining, dependent on the solution of a complicated crypto-puzzle,

requires an exorbitant amount of computer power. The main cost of Bitcoin mining

is the energy expended to ease the work of accounting done while mining. Internet,

hardware maintenance, cables, etc. are all lower than the energy costs (Hayes, 2015).

In a case where 400 transactions are done per second, it has been calculated that

Bitcoin mining requires 30,582 MW of energy per month (Mishra, 2017). diseases

while particles lead to lung diseases. In a study done by Cambridge university, 58%

of Bitcoin mining is done in China, followed by the US at 16%. Mining in China,

where cheap electricity can be found, involves energy production and consumption

based on coal, which negatively effects the environment. Another study done on

this topic shows that a Bitcoin center in China continues to depend on coal for the

energy consumed by Bitcoin mining (Walt et al., 2017; Hileman & Rauchs, 2017).

This situation causes a significant rise in carbon emissions. Bitcoin mining occurring

in areas where electricity is obtained from coal means the worsening of air quality.

Bitcoin mining is getting even more widespread with every passing day, and it is using
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up even more energy. The Bitcoin energy consumption theory strengthens our result

that Coal, Steel and Mines rank the top 3 in daily return densities’ similarity with

Bitcoin daily return density. We also plot the densities of Coal, Steel and Mines in

Figure 10, Figure 11 and Figure 12. From the figures we can see the shape of densities

between Bitcoin and Coal, Steel and Mines are very similar, which indicate that the

distance between their densities are small.

Table 2.6: Entropy measure between Bitcoin and different Industries

Food Beer Smoke Games Books Hshld

S rho 0.2342 0.2294 0.1859 0.1176 0.1478 0.2276

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16

Clths Hlth Chems Txtls Cnstr Steel

S rho 0.1372 0.1932 0.1516 0.1176 0.1315 0.0938

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16

FabPr ElcEq Autos Carry Mines Coal

S rho 0.1341 0.1415 0.1281 0.1618 0.1015 0.0399

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16

Oil Util Telcm Servs BusEq Paper

S rho 0.1287 0.2219 0.2035 0.1715 0.1602 0.1847

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16

Trans Whlsl Rtail Meals Fin Other

S rho 0.1595 0.1887 0.1982 0.2039 0.1530 0.1894

p-value <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16 <2.22e-16
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Figure 2.10: Entropy measure between Bitcoin and different Industries

Figure 2.11: Density of Coal
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Figure 2.12: Density of Steel

Figure 2.13: Density of Mines

2.4.4 Testing Density Equality Based on Conditional Distri-

bution

In last section, we test the equality of densities for two univariate random variables,

return of stock market index and return of cryptocurrency. While in this section,

we will turn to conduct nonparametric tests for the equality of conditional density

functions. We use w to denote the conditioning discrete variable . w can be a
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multivariate discrete variable. We use Sw to denote the support of W , and we assume

that P (w) = Pr(W = w) is bounded below by a positive constant for all w ∈ Sw.

Suppose we have i.i.d data, {Xi, Ui}n1
i=1, which are random draws from the joint density

function f(x,w) along with i.i.d. draws of {Yi, Vi}n2
i=1 from the joint density function

g(x,w). We use f(x|w) and g(x|w) to denote the conditional density function of x

and Y conditional on U = w and V = w.

We are testing the null hypothesis: Hc
0 : f(x|w) = g(x|w) against the alternative

hypothesis: Hc
1 : f(x|w) ̸= g(x|w).

Define pf (w) = Pr(U = w) and pg(w) = Pr(V = w). Note that pf (w) can differ

from pg(w) here. Using f(x|w) = f(x,w)/pf (w) and g(x|w) = g(x,w)/pg(w), we can

construct the test statistic based on:

J =
∑
w∈δw

∫
[f(x|w)− g(x|w)]2dx =

∑
w∈δw

∫
[
f(x,w)2

pf (w)2
+

g(x,w)2

pg(w)2
− 2f(x,w)g(x,w)

pf (w)pg(w)
]dx.

Let Iui,w = I(Ui = w) denote an indicator function which equals one if Ui = w and

zero otherwise. Ivi,w is similarly defined. We estimate the joint density of f(x,w) and

g(x,w) by:

f̂(x,w) =
1

n1

n1∑
i=1

Kγ,xi,xIui,w, ĝ(x,w) =
1

n2

n2∑
i=1

Kγ,yi,xIvi,w.

Also, we estimate pf (w) and pg(w) by:

p̂f (w) =
1

n1

n1∑
i=1

I(Ui = w), p̂g(w) =
1

n2

n2∑
i=1

I(Vi = w).

Define the leave-one-out empirical functions by:

Fn,−i(x) = (ni − 1)−1

n1∑
j ̸=i

I(Xj ≤ x) Gn,−i(x) = (n2 − 1)−1

n2∑
j ̸=i

I(Yj ≤ x).
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Then we obtain the feasible test statistic given by:

Jn =
∑
w∈δw

∫
[
f̂(x,w)

p̂2f
dFn,−i(x) +

ĝ(x,w)

p̂2g
dGn,−i(x) − f̂(x,w)

p̂f p̂g
dGn,−i(x) − ĝ(x,w)

p̂f p̂g
dFn,−i(x)]

=
∑
w∈δw

{∑
i

∑
j ̸=i

[
K̄γ,xi,xjIui,wIuj,w

n1(n1 − 1)p̂2f
+

K̄γ,yi,yjIvi,wIvj,w

n2(n2 − 1)p̂2g
]

− 1

n1n2p̂f p̂g

∑
i

∑
j

[K̄γ,xi,yjIui,wIvj,w
+ K̄γ,yi,xjIvi,wIuj,w

]
}
.

Li et al. (2009) demonstrated that under the null hypothesis,

T̂n,c = (n1n2ĥ1ĥ2...ĥq)
1/2Ĵn/σ̂n,c → N(0, 1),

where

σ̂2
n,c = 2(n1n2ĥ1...ĥq)

∑
w∈δw

[ n1∑
i=1

n1∑
j ̸=i

(K̄γ̂,xi,xj
Iui,wIuj ,w)2

n4
1p̂f (w)4

+

n2∑
i=1

n2∑
j ̸=i

(K̄γ̂,yi,yjIvi,wIvj ,w)2

n4
2p̂g(w)4

+

n1∑
i=1

n2∑
j=1

(K̄γ̂,xi,yjIui,wIvj ,w)2

n2
1n

2
2p̂f (w)2p̂g(w)2

+

n2∑
i=1

n1∑
j=1

(K̄γ̂,xj ,yiIvi,wIuj ,w)2

n2
1n

2
2p̂g(w)2p̂f (w)2

]
.

The test is one-sided rejecting when the test statistic is sufficiently large.

Therefore, we use the test above to analyze the entropy measure of dependence

between cryptocurrency returns and stock market indexes returns. In empirical appli-

cation, we are interested in knowing the distribution of a continuous variable, return,

conditional on a discrete variable, asset class. In other words, we are testing the

correlation between the conditional distributions of cryptocurrency returns and stock

return. Table 7 shows that the value of Tn is smaller when x = Bitcoin and y =

NASDAQ, which indicates that the conditional densities of Bitcoin daily returns and

NASDAQ daily returns are more similar than other combinations, in other words, the

distribution correlation between Bitcoin daily returns and NASDAQ daily returns is

the strongest among all combinations. This result is consistent with our result in
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testing equality of unconditional densities in last section.

Table 2.7: Multivariate entropy density equality test

Tn p-value

S&P500 & Bitcoin 224.3750 <2.22e-16

S&P500 & Ethereum 383.8469 <2.22e-16

NASDAQ & Bitcoin 149.7332 <2.22e-16

NASDAQ & Ethereum 313.7069 <2.22e-16

Figure 2.14: Joint Density of S&P500 and Bitcoin

Figure 2.15: Joint Density of S&P500 and Ethereum
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Figure 2.16: Joint Density of Nasdaq and Bitcoin

Figure 2.17: Joint Density of Nasdaq and Ethereum

2.4.5 Maximum Entropy Approach to Portfolio Selection

Current Mean-Variance Optimization Approach

Markowitz’s (1952) Mean-Variance (MV) optimization is one of the most common

formulation of portfolio selection problem. We denote the first two moments of the

excess returns R = (R1, R2, ..., RN)′ = (r1 − rf , r2 − ff , ..., rN − rf )′ on N risky assets

as E(R) = (m1,m2, ...,mN)′ = m, and V ar(R) = ((σij)) = Σ, a N ∗ N matrix,

where ri and rf denote the return of the i-th, i = 1, 2, ..., N and the risk-free assets,
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respectively. A portfolio π = (π1, π2, ..., πN)′ is a vector of weights that represents

the investor’s relative allocation of the wealth satisfying ΣN
i=1πi = π′1N , where 1N is

an N1 vector of ones. The Mean-Variance (MV) problem is to choose the portfolio

weight vector π to minimize the variance of the portfolio return V ar(π′R) = π′Σπ

subject to a pre-determined target, µ0 as expected return of the portfolio, i.e.,

min
π

π′Σπ s.t. E(π′R) = π′m = µ0, π′1N = 1.

Merton (1972) obtained the Lagrange multipliers corresponding to the two constraints

in the equation above, respectively, as

γ =
Cµ0 − A

D
, ν =

B − Aµ0

D
,

where A = 1′
NΣ−1m, B = m′Σ−1m, C = 1′

NΣ−11N , and D = BC −A2. The solution

to the above equation is given by

π̂ = (
µ0

B
)Σ−1m

at which we have the MV portfolio variance as

σ2
π̂ = π̂′Σπ̂ =

Cµ2
0 − 2Aµ0 + B

D
.

Therefore, we can write

(
D

C
)σ2

π̂ − (µ0 −
A

C
)2 =

D

C2
.

For a given mean and covariance matrix, the MV paradigm provide a very elegant

way to achieve an efficient allocation such that higher expected returns can only be

achieved by taking on more risk, as it is clear from the efficient frontier equation.

Since the MV portfolio π̂ is derived assuming investor’s trade-off between the mean
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and the variance, the MV portfolio can also be obtained from the following expected

utility maximization problem:

max
π

E(π′R) − λ

2
V ar(π′R) s.t.π′1N = 1,

where λ denotes investor’s degree of relative risk aversion.

To construct a portfolio that can best simulate the Bitcoin daily return density,

we use the top three industries whose densities have smallest Hellinger distance with

the Bitcoin density, which are Steel, Mines and Coal. We first compute the mean,

standard deviation and correlation matrix between stock returns and Bitcoin return

in Table 8. From the table we can summarize that the volatility of Bitcoin is much

higher than the stocks in different industries, in the mean time, the return of Bitcoin

is higher then the stocks. This is consistent with the principle of risk-return trade-

off that is fundamental to the CAPM. Usually, risk is defined as volatility, which is

defined as the standard deviation of the returns. On the other hand, return is either

calculated using arithmetic or logarithmic returns.

We construct a portfolio consist of the three industries (Steel, Mines, Coal), our

portfolio also has an expected risk-return trade-off. Given weight wx, wy and wz to the

three industries respectively, where wx ≥ 0, wy ≥ 0, wz ≥ 0 and wx +wy +wz = 1.For

the portfolio we get an expected return of

r̂p = wxr̂x + wyr̂y + wz r̂z,

and an expected standard deviation of

σp =
√
w2

xσ
2
x + w2

yσ
2
y + w2

zσ
2
z + 2wxwyσx,y + 2wxwzσx,z + 2wywzσy,z.

We plot the possible portfolio and efficient frontier of the portfolio in Figure 17. We
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see that the area of possible portfolios has expanded into a third dimension. The

colors try to show the two different weights. A yellow color indicates a portfolio

consisting mainly of the Steel industry stock, a blue color indicates Mines industry

stock, and a red area indicates a portfolio of Coal industry stock. We also see the

three single asset portfolios (the three red dots). The efficient frontier is the (upper)

edge of all possible portfolios. The efficient frontier can be calculated on its own

without the need to simulate thousands of portfolios and then finding the efficient

ones. We will look at the case without restrictions (with short-selling allowed). So

far we have restricted our portfolios to only contain positive weights (by filtering out

negative weights). To calculate the efficient frontier we can use the following closed-

form formula that calculates the efficient frontier for a given input of risk (σ) and for

some parameters (α, β, γ, δ) using matrix algebra.

r̂ef (σ) =
β

α
+

√
(
β

α
)2 − γ − δσ2

α
,

which is the solution to a quadratic optimization problem. The parameters are given

by the following matrix algebra

α = 1T s−11,

where 1 is a matrix of 1’s with a length of the numbers of stocks, s is a matrix of the

covariances between the assets (with dimension of n ∗ n).

β = 1T s−1ret,

where ret stands for a vector of average returns for each stock.

γ = ret
T
s−1ret,
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and lastly δ is given by

δ = γ − β2.

Given the values for α = 0.3977, β = 0.0113, γ = 0.0015, and δ = 0.0004 we receive

the function for the frontier:

r̂ef (σ) =
0.0113

0.3977
±
√

(
0.0113

0.3977
)2 − 0.0015 − 0.0004 ∗ σ2

0.3977
.

The values for the +-part of the function is the upper, efficient frontier, whereas the

−-part represents the lower, inefficient frontier. The red curve (the upper curve)

is the real efficient frontier, whereas the blue curve (the lower curve) stands for an

inefficient frontier. This is due to the fact, that we can create a mixture of the three

assets that has the same volatility but a higher expected return. As we are able to

short-sell (borrow money by selling stocks that we don’t own and investing this cash)

the efficient frontier doesn’t necessarily touch the three assets, nor does it end at the

points but extends outwards.

However, portfolios constructed from sample moments of stock returns have proved

problematic. The main problems in optimal MV portfolio are that the portfolios are

often extremely concentrated on a few asset, which is a contradiction to the notion

of diversification, and the out-of-sample performances of the MV portfolios are not

very good. It is generally thought that these drawbacks are due to statistical error

in estimating the moments that are used as inputs in the MV optimization. These

errors are known to change optimal portfolio weights dramatically in such a way that

portfolios often involve extreme positions (Jobson and Korkie, 1980).

There have been extensive research on reducing statistical errors in sample mean

and covariance matrix. One alternative is the class of shrinkage estimators. Frost and

Savarino (1986), Jorion (1986), and Ledoit and Wolf (2003) used shrinkage estimation

for the mean and covariance matrix. Shrinkage estimators compensate for the pos-
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itive (negative) error that tends to be embedded in extremely high (low) estimated

coefficients by pulling them downward (upward) and prevent extreme positions in

portfolio selection. Since shrinkage estimators are based on the empirical Bayesian

approaches, a particular prior distribution should be assumed to derive those estima-

tors. Although some prior distributions used in the empirical Bayes estimation are

known to work well, there is no systematic way to choose a prior distribution. For

example, Jorion (1986) used an informative conjugate prior and derived the multi-

variate normal predictive distribution with the mean of minimum variance portfolio

as the target mean. Frost and Savarino (1986) adapted a normal-wishart conjugate

prior and derived multivariate Student’s t predictive density. In their simulation

study, they assumed that means, variances and correlations for all the assets are the

same, so that their target mean and covariance matrix are those of equally weighted

portfolio. As a result, it is very hard to achieve a certain shrinkage target preferred

by asset managers, for example, a capitalization weighted portfolio.

Therefore, we propose a method that ensures shrinkage towards maximum diver-

sification of portfolio weights using a information theoretic approach.

Table 2.8: Sample means, variances, and correlation matrix

Steel Mines Coal Bitcoin

Mean 0.0284 0.0157 -0.0431 0.3791

Variance 1.7373 1.6703 2.8214 7.1256

Correlation 1.0000

2.2574 1.0000

3.1939 2.9771 1.0000

0.5610 0.5667 0.8300 1.0000
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Figure 2.18: Possible portfolios and efficient frontier

Information Theoretic Approach

In this part, we propose a maximum entropy approach to portfolio selection. It can

go beyond the quadratic utility functions and ensures shrinkage towards maximum

diversification of portfolio weights. Our objective function, the Kullback–Leibler in-

formation criteria is defined as pseudo distance between two probability distributions

(portfolio weights), p = (p1, p2, ..., pN)′ and q = (q1, q2, ..., qN)′:

KLIC(p, q) =
N∑
i=1

piln(pi/qi).

The KLIC is also known as the cross-entropy (CE) measure (Golan et al., 1996). If one

minimizes the CE measure with q as the reference distribution that satisfies certain

constraints, one can get a solution, p̂, closest to q. If we set q = (1/N, 1/N, ..., 1/N)′,

uniform distribution, then KLIC(p, q) is same as negative Shannon’s (1948) entropy

measure. Since maximizing Shannon’s entropy subject to some moment constraints

implies estimating p that is the closest to the uniform distribution (i.e., equally

weighted portfolio), well-diversified optimal portfolio can be achieved.
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In order to incorporate problems of imprecision of sample moments estimates,

we define the confidence interval of maximized expected utility values which lead to

inequality constraints to our optimization procedures. This confidence interval can be

interpreted as the degree of uncertainty for the sample moments estimates, and can

be estimated by resampling methods such as bootstrap or Monte Carlo approaches.

First, we will introduce the entropy measures. A discrete probability distribution

p = (p1, p2, ..., pN)′ of a random variable taking N values provides a measure of

uncertainty (disorder) regarding that random variable. In the information theory

literature, this measure of disorder is called entropy. Entropy measures have been

extensively used in econometrics, and for more on this see Maasoumi (1993), Golan

et al. (1996), Ullah (1996), and Bera and Bilias (2002).

A portfolio allocation π = (π1, π2, ..., πN)′ among N risky assets, with properties

πi ≥ 0, i = 1, 2, ..., N and
∑N

i=1 πi = 1, has the structure of a proper probability

distribution. We will use the Shannon entropy (SE) measure

SE(π) = −
N∑
i=1

πilnπi

as a measure of portfolio diversification. When πi = 1/N for all i, SE(π) has its

maximum value lnN . The other extreme case occurs when πi = 1 for one i, and = 0

for the rest, then SE(π) = 0. Therefore, SE that provides a good measure of disorder

in a system or expected information in a probability distribution, can be taken as a

measure of portfolio diversification. In financial applications, portfolios are generally

evaluated in terms of their degree of diversification using the SE measure after port-

folios are obtained using different selection procedures (Fernholz, 2002; Hoskisson et

al., 1993; Lubatkin et al., 1993). We put the entropy itself in the objective function

so as to obtain maximum diversity in a portfolio allocation. It is clear that when

we maximize SE(π) we shrink the portfolio towards an equally weighted portfolio,
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namely, N−11 = (1/N, 1/N, ..., 1/N)′. We wil also consider a more general objective

function. Suppose a portfolio weight changes from πi to qi, then the change in en-

tropy is −lnqi − (−lnπi) = ln(πi/qi). Taking averge of ln(πi/qi) with πi’s as weights

we end up with the notion of CE, CE(π, q = KLIC(π, q). It is clear that when

q = (1/N, 1/N, ..., 1/N)′, CE(π, q) =
∑N

i=1 πilnπi − lnN . Therefore, maximization of

SE is a special case of CE minimization with respect to an equally weighted portfolio.

In our analysis, we will emphasize the minimization of CE(π, q) for a given q as a

reasonable opportunity set for an investor. Thus, starting from an initial portfolio

allocation q, through minimization of CE we can obtain a more diversified portfolio.

Golan et al. (1996) showed that

CE(π, q) =
N∑
i=1

πiln(πi/qi) ≈
N∑
i=1

1

qi
(πi − qi)

2 for qi > 0.

Thus, we adjust small allocations of the initial portfolio q more than the large ones,

possibly resulting in a more diversified portfolio.

To incorporate estimation imprecision of the mean and covariance (as in Bayes-

Stein estimation), we need more general constraint. In general, we consider the

following minimization problem:

min
π

CE(π|q) =
N∑
i=1

πiln(πi/qi)

subject to

EU(π,R, λ) ≥ τ, π ≥ 0, and π′1N = 1,

where U(π,R, λ) is an utility function, λ is the risk aversion parameter, and τ re-

flects investor’s strength of belief in the estimated expected utility values, which we

elaborate further below. We assume that N ∗ 1 random vector R has a distribution
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function F (R) with density f(R). To see the significance of τ , we define

ξ ≡ EU(π̌, R, λ),

where π̌ = (π̌1, π̌2, ..., π̌N) satisfies following expected utility maximization,

π̌ = argmax EU(π, R̃, λ)

subject to

π′1 = 1, and π ≥ 0,

where R̃ is a random sample of size T drawn from the empirical distribution F̂ (R).

As we mentioned previously, estimation imprecision of the sample moments can be

measured directly by resampling methods. Solving the optimization problem using

B sets of samples leads to B portfolios, π̌b, b = 1, 2, ..., B. The investor’s strength

of belief parameter τ can also be related to the degree of shrinkage and be expressed

as, as say the r-th quantile of the distribution of ξ, 0 < r < 1, i.e.,

τ = G−1(r) ≡ ξr,

where G() is distribution of function of ξ. Thus, the first inequality constraint,

EU(π,R, λ) ≥ τ , can be represented as a confidence interval. I = [ξr, ξ
U ], where

ξU is the same as the maximized expected utility of MV efficient portfolio given λ if

EU() is the quadratic expected utility function. This is due to the fact that when

there is no estimation error, the maximized expected utility evaluated at these exact

moments dominates all values generated by π̌b, b = 1, 2, ..., B.

The confidence interval has a nice interpretation as a measure of uncertainty (Bew-

ley, 1988). Suppose an investor has high uncertainty aversion in the portfolio selection

problem. Then, he/she will select relatively low τ , i.e., ξr with a small value of r,
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and use a (1− r)% confidence interval. Since τ ≡ ξr represents an investor’s strength

of belief, we can correspond ξr with a large value of r, with investor who has less

uncertainty in estimation, and vice-versa. Garlappi et al. (2004) used the notion

of the confidence interval to explain investor’s aversion toward uncertainty using a

multi-prior approach, and showed that their estimated portfolio weights shrink toward

the weights of minimum variance portfolio more than those of empirical Bayes-Stein

portfolio. While recent studies based on the empirical Bayes-Stein estimator tried

to estimate admissible moments at the first stage and then optimize the portfolio

weights by the MV principle, weights achieved by minimizing CE objective function

subject to sets of constraints are shrunk directly to an appropriate prior weights, q.

Moreover, as Frost and Savarino (1986) emphasized, there is no certain way to select

a particular informative prior in Bayesian decision rules. One can readily choose al-

ternative informative priors for the Bayes-Stein estimator and obtain different type

of shrinkage estimators for portfolio weights by calculating somewhat complex pre-

dictive density. However, instead of choosing alternative informative priors, one can

choose an appropriate prior weight vector q, and minimize the CE measure to esti-

mate portfolio weights which also has the shrinkage interpretation. Thus, we can say

that CE measure works directly as shrinkage estimator of portfolio weights in asset

allocation problem.

We can use bootstrap or Monte Carlo methods to estimate a distribution of ξ,

i.e., resampling TxN samples for B times from the empirical distribution, F̂ (F ). Let

these resampled series be R̃(b), b = 1, 2, ..., B. Then, π̌(b) and ξ(b) can be calculated

as follows,

π̌(b) = argmax[π′m̃(b) −
λ

2
π′Σ̃(b)π],

ξ(b) = π̌(b)m̂− λ

2
π̌′
(b)Σ̂π̌(b),

where m̂ and Σ̂ are the sample mean and sample covariance matrix estimated from
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original return data R, and m̃(b) and Σ̃(b) are calculated from simulated data R̃(b).

The empirical distribution of ξ can be estimated based on ξ(b), b = 1, 2, ..., B. Then,

the CE minimization problem can be written as

min
N∑
i=1

πiln(πi/qi)

subject to

π′m̂− λ

2
π′Σ̂π ≥ Ĝ−1(r), π ≥ 0, and π′1N = 1,

where Ĝ() denotes the empirical distribution function of ξ. Under the assumption

of smooth expected utility function, it is straightforward to solve the optimization

problem minimize by classical gradient based routine.

Figure 18 shows contour curves of −
∑N

i=1 πiln(πi) and −
∑N

i=1 πiln(πi/π
min
i ) re-

spectively. The left figure shows the contour curves of −
∑N

i=1 πiln(πi) for the three

assets (N = 3) on the daily portfolio standard deviation-mean plane. We consider ev-

ery possible combination of weights π1, π2 and π3, each taking 50 equally spaced values

in (0, 1), and satisfying
∑N

i=1 πi = 1. The upper envelope curve in Figure 18 (left) cor-

responds to the set of MV efficient portfolio. The point where
∑N

i=1 πiln(πi) takes the

highest value represents equally weighted portfolio. The smoothness of each contour

curve ensures existence of a unique solution if we are to solve the minimization prob-

lem with q = N−11. Figure 18 (right) shows contour curves of −
∑N

i=1 πiln(πi/π
min
i ),

where πmin is portfolio weights for minimum variance portfolio. We can see that the

largest value of the function corresponds to minimum variance portfolio. Since min-

imum variance portfolio does not take account of the portfolio mean value, contour

graph on the right hand side is sensitive to the mean values compared to that on the

left hand side. Thus, by minimizing CE with q = πmin, it shrinks toward minimum

variance portfolio and at the same time takes care of the portfolio mean values.
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Figure 2.19: Contour curves

There are several advantages in our information theoretic approach: (I) In our

approach, our utility function can be any form instead of limited to quadratic utility

functions. (II) While previous articles primarily dealt with shrinkage estimators for

the mean and covariance matrix to obtain more well-behaved optimal portfolios, we di-

rectly shrink portfolio composition (p) towards predetermined target portfolio weights

(q) that are of interest to asset managers; (III) Most asset managers are not allowed

to sell short (i.e. the portfolio weights cannot be negative) in the real world. Since

constructed portfolio weights obtain through the maximum entropy (ME) approach

are in the form of “probabilities”, the weights are certainly nonnegative. However,

negative portfolio weights, when they are appropriate, for example, in case of hedge

funds, can also be obtained using the generalized cross entropy (GCE) framework;

(IV) Since the mean and covariance matrix should be estimated, one usually has only

partial information. It is known that if sample sizes of individual returns are not large

enough compare to the number of stocks, sample covariance matrix tends to be very

imprecise. By minimizing the CE measure subject to certain well defined constraints,

one can extract useful information from the sample mean and covariance matrix.
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2.5 Conclusion

This chapter investigates the similarity structure between cryptocurrency and stock

returns. We first provide the statistical properties of our proposed models and study

in detail their forecasting performance and adequacy by time series models (ARIMA

model and GARCH model). The entropy profiles method and time series models play

different roles in forecasting cryptocurrency returns volatility. These two methods are

not competing with each other, but complimentary. The time series method’s advan-

tage is that it can give us a exact form of models, while the entropy profiles method

is a nonparametric approach which can get rid of misspecification problem. Then,

we calculate nonparametric entropy metrics to test the density equality between two

cryptocurrencies (Bitcoin and Ethereum) and two stock market indexes (S&P500 and

NASDAQ). We find density similarity between Bitcoin and NASDAQ stock market

index. Next, we analyze the fluctuation of entropy measure within months and week-

days, and find that the distance is smaller in September and stable among weekdays.

Then we calculate the entropy metrics between Bitcoin and different industries of

stocks, and find that the top three industries which have similar densities with Bit-

coin is Coal, Steel and Mines. Therefore, we can construct a portfolio using these three

industries of stocks, which can best simulate the performance of Bitcoin return. Last,

we discuss the current mean-variance portfolio optimization method, then propose a

maximum entropy approach to portfolio selection, which ensures shrinkage towards

maximum diversification of portfolio weights. Our findings will be useful in exploring

the prediction of cryptocurrency returns based on stock market performance.

Our main conclusion is that indeed cryptocurrency represents an asset class that

can be assessed using simple finance tools. At the same time, cryptocurrency comprise

an asset class which is radically different from traditional asset classes. The statistics

Sρ and maximum entropy approach are useful in forecasting returns of cryptocurrency

based on stock market performance.
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Chapter 3

Contrasting Cryptocurrencies with

Other Assets: Full Distributions

and the COVID Impact

In this chapter, we investigate any similarity and dependence based on the full distri-

butions of cryptocurrency assets, stock indices and industry groups. We characterize

full distributions with entropies to account for higher moments and non-Gaussianity

of returns. Divergence and distance between distributions are measured by metric

entropies, and rigorously tested for statistical significance. We assess stationarity and

normality of assets, as well as the basic statistics of cryptocurrencies and traditional

asset indices, before and after COVID-19 pandemic outbreak. These assessments are

not subjected to possible misspecifications of conditional time series models which

are also examined for their own interests. We find that NASDAQ daily return has

the most similar density and co-dependence with Bitcoin daily return, generally, but

after COVID-19 outbreak in early 2020, even S&P500 daily return distribution is

statistically closely dependent on, and indifferent from Bitcoin daily return. All asset

distances have declined by 75% or more after COVID-19 outbreak. We also find that
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the highest similarity before COVID-19 outbreak is between Bitcoin and Coal, Steel

and Mining industries, and after COVID-19 outbreak is between Bitcoin and Busi-

ness Supplies, Utilities, Tobacco Products and Restaurants, Hotels, Motels industries,

compared to several others. This study shed light on examining distribution similar-

ity and co-dependence between cryptocurrencies and other asset classes, especially

demystify effects of the important timely topic, COVID-19.1

Keywords:

Cryptocurrency, Bitcoin, Entropy, Co-dependence, COVID-19, Vaccine

1This essay has been published: Maasoumi, Esfandiar, and Xi Wu. ”Contrasting Cryptocurren-
cies with Other Assets: Full Distributions and the COVID Impact.” Journal of Risk and Financial
Management 14, no. 9 (2021): 440.
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3.1 Introduction

Since the emergence of Bitcoin based on blockchain technology in 2018, global finan-

cial markets have witnessed the birth and rapid rise of cryptocurrencies as a new asset

class. Cryptocurrencies are based on fundamentally new technologies, the potential

of which highly anticipated but not fully understood. In their current form, however,

cryptocurrencies are also behaving like high growth assets. The cryptocurrency mar-

ket is an important part of the global assets markets. As of September 2020, there

were over 18.53 million Bitcoins in circulation with a total market value of around

$199.62 billion.

With the rapid development of cryptocurrency market, the literature has focused

on statistical properties and risk behavior of the cryptocurrency in comparison with

classical assets, like equities and exchange rates. In the setting of time series models,

Pichl and Kaizoji (2017) found that cryptocurrency markets are even more volatile

than foreign exchange markets. Chu et al. (2017), Bouri et al. (2017), Katsiampa

(2017), Bariviera (2017), Baur et al. (2018) and Stavroyiannis (2018) observed the

phenomenon of volatility clustering in cryptocurrency market. Regime-switching be-

haviors are detected by Bariviera et al. (2017), Balcombe and Fraser (2017). Thies

and Molnr (2018) have identified structural breaks in the volatility process of Bitcoin

via a Bayesian framework. Lahmiri et al. (2018) and Lahmiri and Bekiros (2018)

have pointed out that Bitcoin markets are characterized by long memory and multi-

fractality.

Since the global financial crisis in 2008, the financial markets seems to have stabi-

lized until the World Health Organization (WHO) declared COVID-19 as a pandemic

in 2020. The global economy once again fell into panic: Consumer consumption has

changed, and the types and quantities of products have also changed. Many compa-

nies are trying to escape from the panic by the changes in business and marketing, but

they are still unable to recover their business or reduce their financial burden easily.
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In addition, the unemployment rate and the COVID-19 incidence rate are still not

improving. As the liquidity of capital decreases in many ways due to these changes,

there is also a phenomenon of seeking new investment destinations. Recent studies

show that the effect of the recently developed COVID-19 vaccine will improve real

assets and financial assets (David et al., 2021; Del Giudice et al., 2020; Gherghina et

al., 2020). The cryptocurrency market also shows a sharp decline due to COVID-19

after booming in 2017. Therefore, from an investment perspective, we aim to examine

the evolution of the complexity of the cryptocurrency market and analyze the charac-

teristics of the market from the past bull market to the present COVID-19 pandemic

outbreak to help policymakers and decision-makers ensure future stability.

Recent studies also examined the performance of cryptocurrencies under COVID-

19 pandemic. Vukovic et al. (2021) developed a unique COVID-19 global compos-

ite index that measures COVID-19 pandemic time-variant movements on each day.

Sarkodie et al. (2021) investigated the implication of COVID-19 outcomes on mar-

ket prices of several leading cryptocurrencies. Naeem et al. (2021) quantified the

spillover effects among seven cryptocurrencies to explore the spillover characteristics

cryptocurrencies, and discovered that Bitcoin, Litecoin, and Ripple are the dominant

transmitters to return spillover. Kim and Lee (2021) investigated the evolution of

the complexity of the cryptocurrency market and analyze the characteristics from the

past bull market in 2017 to the present the COVID-19 pandemic, and concluded that

financial market unpredictability is increasing by the ongoing health crisis. These

studies inspired us on investigating deeper on how the density similarities between

cryptocurrencies, stocks and industry groups will be affected by COVID-19 outbreak.

Statistical similarity and co-dependence are central to the analysis of market effi-

ciency and allocation. Most existing studies focus on Bitcoin returns and “correlation”

analysis. For example, Baur et al. (2017) show that Bitcoin returns are essentially

uncorrelated with traditional asset classes such as stocks and bonds, which points
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to diversification possibilities. Other studies investigate the determinants of Bitcoin

returns. Li and Wang (2017) suggest that measures of financial and macroeconomic

activity are drivers of Bitcoin returns. Kristoufek (2015) considers financial uncer-

tainty, Bitcoin trading volume in Chinese Yuan and Google trends as potential drivers

of Bitcoin returns. Recently, many studies examine whether Bitcoin belongs to any

existing asset classes, with many comparing it to gold, others to precious metals or to

speculative assets (Baur et al., 2017; Bouri et al., 2017). Some have classified Bitcoin

as a new asset class within currency and commodity groups (Dyhrberg, 2016).

Another area of interest is forecasting Bitcoin volatility, since such forecasts repre-

sent an important ingredient in risk assessment and allocation, and derivatives pricing

theory. Balcilar et al. (2017) analyze the causal relation between trading volume and

Bitcoin returns and volatility. They find that volume cannot help to predict the

volatility of Bitcoin returns. Bouri et al. (2017) find no evidence for asymmetry

in the conditional volatility of Bitcoins when considering the post December 2013

period and investigate the relation between the VIX index and Bitcoin volatility. Al-

Khazali et al. (2018) consider a model for daily Bitcoin returns and show that Bitcoin

volatility tends to decrease in response to positive news about the US economy.

Scant attention has been paid to the full distributions of these assets. An exception

is Osterrieder and Lorenz (2017) and Begusic et al. (2018) who have studied the

unconditional distribution of Bitcoin returns and found that it has more probability

mass in the tails than that of foreign exchange and stock market returns. Findings

that are based on models of return and volatility, possibly with conditional covariates,

are in effect assessing if similar mechanisms apply to different asset class returns.

While this is an aspect of similarity, it does not respond, and indeed may impinge on

the assessment of similarity of return outcomes/ distributions. Similar distributions

may arise from different evolutions and mechanisms over time.

Our objective in this chapter is to revisit some stylized facts of cryptocurrency
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markets and employ econometrics models for accurate volatility forecasts. In contrast

to previous studies that use time series models to forecast cryptocurrency returns, in

this chapter we use entropy profiles of different asset classes and indices, as well as the

cryptocurrencies. We test for similarity between cryptocurrency and stock returns in

a manner that captures nonlinearities and higher moments, nonparametrically. We

consider both Bitcoin and Ethereum, as leading cryptocurrency which have large

volume and relatively long histories. We use nonparametric entropy metrics to test

equality between cryptocurrency density and stock market index returns. Time series

models (ARIMA and GARCH), in contrast, impose a (traditionally) restrictive linear

structure on the return data. This may produce non robust inferences and conclusions.

Efficient market analysis is based on (typically) linear relation between a given

asset and market returns. In this chapter we examine the general definition of depen-

dence between cryptocurrency return and stock market returns. Stochastic indepen-

dence is tested and degree of dependence is measured with entropy metrics.

The rest of the chapter is organized as follows: Section 2 presents the data analysis

and some stylized facts. In Section 3, we calculate nonparametric entropy metrics to

test the density equality between two cryptocurrencies (Bitcoin and Ethereum), two

stock market indexes (S&P500 and NASDAQ) and 30 commodity industry groups.

We conduct equality tests on both marginal distributions and conditional distribu-

tions for two periods (pre-COVID and COVID era) and compare the results. In

Section 4, we consider a Diff-in-diff analogy to identify any impact of COVID-19. It

is found to be large and significant, producing far greater convergence between asset

classes and cryptocurrencies. Section 5 extended our previous analysis into longer

period, and conducted a three-period analysis to study the effect of vaccine. Section

6 provides the concluding remarks.
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3.2 Data and Basic Characteristics

The cryptocurrency data and stock market index data set consists of daily spot ex-

change rates in units of US dollars are from Yahoo Finance2. The price observations

of Bitcoin (BTC-USD), Ethereum (ETH-USD), S&P500 stock market index (ˆGSPC)

and NASDAQ stock market index (ˆIXIC) range from August 6, 2015 to September

1, 2020. We divided the time period into two parts: pre-COVID (August 6, 2015

– January 31, 2020) and COVID era (February 1, 2020 to September 1, 2020). In

each data set of cryptocurrency market and stock market index, we have open price,

intraday high price, intraday low price, close price (adjusted for splits), adjusted

close price (adjusted for both dividends and splits) and volume. To better illustrate

the relationship between cryptocurrency market data and stock market indexes, we

calculate the daily log return using adjusted close price:

Returnt = 100 ∗ [ln(Pt) − ln(Pt−1)],

where Pt denotes the adjusted close price in USD at a time t.

We now document main statistical properties of time series for the returns of

S&P500 stock market index, NASDAQ stock market index, Bitcoin and Ethereum.

Figure 1 illustrates the time evolution of prices, volumes and daily log-returns for

S&P500, NASDAQ, Bitcoin and Ethereum. We notice that both Bitcoin and Ethereum

arrive their period specific highest price in December 2017 within our analysis period.

After this period price peak, the crypro price dropped dramatically. The descriptive

statistics of daily log-returns are reported in Table 1. The daily returns of cryptocur-

rency markets exhibit high variability and excess kurtosis, both during pre-COVID

and COVID era periods. The deviations from the Normal distribution are confirmed

by the Jarque-Bera test that rejects the null hypothesis of normality.

2https://finance.yahoo.com
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We applied the Augmented-Dicker-Fuller (ADF) unit-root test, which suggests

stationarity of the log-returns. An ADF test tests the null hypothesis that a unit root

is present in a time series sample. The alternative hypothesis is different depending

on which version of the test is used, but is usually stationary or trend-stationary. In

our case, we use the alternative hypothesis of stationary. This shows that the null

hypothesis is rejected, and the time series of returns in each markets is stationary.

These observations suggest that the cryptocurrency market is not as efficient as stock

or foreign exchange markets, which display a complete lack of predictability (Lahmiri

et al., 2018).

Since early 2020, the COVID-19 wreaked unprecedented havoc on the world

economies. Educational institutions, travel industry to public events, almost every-

thing is either postponed or in limbo, which is inevitably going to affect businesses

at every turn. Thousands of cases and deaths have already been recorded globally,

and with the uncertainty on development of vaccines, the stock markets began to

take many hits in terms of new lows. The S&P 500 index hit a period low since 2008

when the world plunged into a financial crisis. The cryptocurrency market has even

become more volatile and has also experienced one of the worst sudden declines. We

also noticed from Figure 1 that both cryptocurrencies and stock market indexes be-

came more uncertain since the COVID-19 outbreak in early 2020. The return prices

and volumes of Bitcoin and Ethereum also surged since early 2020.
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Table 3.1: Descriptive statistics

pre-COVID (Aug 2015 - Jan 2020) COVID era (Feb 2020 - Sep 2020

Daily log-return S&P500 Nasdaq Bitcoin Ethereum S&P500 Nasdaq Bitcoin Ethereum

Observations 1129 1129 1640 1639 147 147 213 213

Mean 0.04 0.05 0.21 0.25 0.05 0.16 0.11 0.45

Standard deviation 0.86 1.04 3.89 7.09 2.72 2.71 4.61 5.92

Skewness -0.57 -0.51 -0.18 -3.44 -0.73 -0.92 -4.49 -3.68

Kurtosis 4.12 3.15 4.72 72.46 5.13 5.27 48.02 35.51

Augmented Dickey-Fuller (ADF) -10.98 ** -11.26 ** -10.93 ** -10.93 ** -5.64 ** -5.48 ** -5.16 ** -4.98 **

Jarque-Bera 862.50 *** 518.27 *** 1538.80 *** 362486 *** 180.51 *** 197.22 *** 21507 *** 11855 ***

Note: Entries marked with *** have empirical p-values < 0.01, ** 0.01 ≤ p < 0.05, and

* 0.05 ≤ p < 0.10 under the null of non-stationary data for ADF test and the null of

normally distributed data for Jarque-Bera test.
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Figure 3.1: Plot of price, volume and daily log-returns
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3.3 Entropy Profiles Method

3.3.1 Brief Introduction to Information Theory and Entropy

Consider two variables X and Y . Correlation between them may be ill defined when

they are discrete, and may be a poor measure of “relation” when nonlinearity and/or

non-Gaussianity is involved.

Let ℜ = {a1, a2, ..., aM} be a finite set and p be a proper probability mass function

(PDF) on ℜ. The amount of information needed to fully characterize all of the

elements of this set consisting of M discrete elements is defined by I(ℜM) = log2M

and is known as Hartley’s formula. Shannon (1948) built on Hartley’s formula in the

context of digitization and communications, to develop Shannon’s entropy:

H(p) = −
M∑
i=1

pilog(pi),

with xlog(x) tending to zero as x tends to zero. This information criterion measures

the uncertainty or informational content that is implied by p. The entropy-uncertainty

measure H(p) reaches a maximum when p1 = p2 = ... = pM = 1/M (and is equal

to Hartley’s formula) and a minimum with a point mass function. It is emphasized

here that H(p) is a function of the probability distribution. For example, if η is

a random variable with possible distinct realizations x1, x2, ..., xM with probabilities

p1, p2, ..., pM , the entropy H(p) does not depend on the values x1, x2, ..., xM of η. If,

on the other hand, η is a continuous random variable, then the

H(x) = −
∫

p(x)log(p(x))dx,

a differential entropy.

Renyi (1961, 1970) showed that, for a (sufficiently often) repeated experiment,

one needs on average the amount H(p) + ϵ of zero-one symbols (for any positive ϵ)
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in order to characterize an outcome of that experiment. Thus, it seems logical to

“expect” that the outcome of an experiment contains H(p) information.

Similarly, H(p) is a measure of uncertainty about a specific possible outcome

before observing it, which is equivalent to the amount of randomness represented by

p. It is proportional to “variance” in the case of a Normal distribution. Thus entropy

is a far superior and robust measure of volatility/risk than variance for non Gaussian

phenomena. It is indeed unique for any distribution, much as the characteristic

function is, both representing all the moments of a distribution, which could be

merely the mean and variance in the case of a Normal variable. Asset returns are not

Gaussian!

Given a prior or competing distribution q, defined on ℜ, the cross-entropy (Kullback-

Leibler, K-L, 1951) measure is

I(p; q) =
M∑
i=1

pilog(pi/qi),

where a uniform q reduces I(p; q) to H(p). This measure reflects the gain in infor-

mation with respect to ℜ resulting from the additional knowledge in p relative to q.

Like with H(p), I(p; q) is an information theoretic distance of p from q. It can be

symmetrized by averaging I(p; q) and I(q; p).

Facing the fundamental question of drawing inferences from limited and insuffi-

cient data, Jaynes proposed the maximum entropy (ME) principle, which he viewed

as a generalization of Bernoulli and Laplace’s Principle of Insufficient Reason.

Given T constraints, perhaps in the form of moments, Jaynes proposed the ME

method, which is to maximize H(p) subject to the T structural constraints. Thus,

given moment conditions, Xt (t = 1, 2, ..., T ), where T < M , the ME principle pre-

scribes choosing the p(ai) that maximizes H(p) subject to the given constraints (mo-
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ments) of the problem. The solution to this underdetermined problem is

p̂(ai) ∝ exp{−
∑
t

λ̂tXt(ai)},

where λ are the T Lagrange multipliers, and λ̂ are the values of the optimal solution

(estimated values) of λ. Naturally, if no constraints are imposed, H(p) reaches its

maximum value and the p are distributed uniformly.

Building on Shannon’s work, a number of generalized entropies and information

measures were developed. Starting with the idea of describing the gain of information,

Renyi (1970) developed the entropy of order α for incomplete random variables. The

relevant generalized entropy measure of a proper probability distribution is

HR
α (p) =

1

1 − α
log

∑
k

pαk .

Shannon measure is a special case of this measure where α → 1. Similarly, the Renyi

cross-entropy of order α is

IRα (x|y) = IRα (p, q) =
1

1 − α
log

∑
k

pαk
qα−1
k

,

which is equal to the traditional cross-entropy measure as α → 1. Only one member

of these “divergence” measures is a metric, which we define below.

Entropy has been actively considered in finance theory since at least 1999. Accord-

ing to Gulko (1999), “entropy pricing theory” suggests that in information efficient

markets, perfectly uncertain market beliefs must prevail. Using entropy to measure

market uncertainty, entropy-maximizing market beliefs must prevail. One can derive

(entropy) optimal asset pricing models that are similar to Black-Scholes model (with

the log-normal distribution replaced by other probability distributions).
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3.3.2 Using Entropy to Test Equality of Univariate Densities

Maasoumi & Racine (2002) considered a metric entropy that is useful for testing for

equality of densities for two univariate random variables X and Y . The function

computes the nonparametric metric entropy (normalized Hellinger, or Granger et

al., 2004) for testing the null of equality of two univariate density (or probability)

functions. For continuous variables,

Sρ =
1

2

∫
(f

1/2
1 − f

1/2
2 )2dx =

1

2

∫
(1 − f

1/2
2

f
1/2
1

)2dF1(x),

where f1 = f(x) and f2 = f(y) are the marginal densities of the random variables X

and Y . The second expression is in a moment from which is often replaced with a

sample average, especially for theoritical developments. If the density of X and the

density of Y are equal, this metric will yield the value zero, and is otherwise positive

and less than one. We use Sρ to test the distance between cryptocurrency density

and stock market index density. Some properties this entropy measure Sρ are given in

(Granger et al., 2000), and Gianerinni, Maasoumi and Dagum (2015). In particular,

the modulus of Sρ is between 0 and unity; Sρ is equal to or has a simple relationship

with the (linear) correlation coefficient in the case of a bivariate normal distribution;

Sρ is metric, that is, it is a true measure of distance and not just of “divergence”. This

is especially important in our applications where triangularity property is required in

meaningful comparative assessments of several distances and asset classes.

Software for nonparametric kernel smoothing implementation of this metric is

made available in R (NP package) among others. For the kernel function, we employ

the widely used nonparametric second-order Gaussian kernel, while bandwidths are

selected via likelihood cross-validation (Silverman, 1986). Block bootstrap is con-

ducted via resampling with replacement from the pooled empirical distributions of X

and Y under the null hypothesis of equality.
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We estimate the metric Sρ for the daily returns data for x = Returncrypto and

y = Returnstock. Table 2 shows the Sρ values and the corresponding p-values. As

was noted in Granger et al. (2000) and Skaug & Tjostheim (1996), the asymptotic

distribution of Sρ is unreliable for practical inference, We therefore compute p-values

by resampling the statistic under the null of equality.

Examining Table 2 we see that Sρ is smallest between x = Bitcoin and y = NAS-

DAQ, both during pre-COVID and COVID era periods, which indicates that the

distance between the densities of Bitcoin daily returns and NASDAQ daily returns

is smaller than other combinations. The p-value shows that the result is significant.

By visualizing the result in Figure 2 - Figure 5, we can also see the Bitcoin daily re-

turns density and the NASDAQ stock market index daily returns density have similar

shapes. While during COVID era, also S&P500 returns distribution is statistically

closely dependent on, and indifferent from Bitcoin’s.

Comparing Sρ before and after the COVID-19 outbreak, we conclude that the

values of Sρ decrease generally in all cases, sometimes dramatically. This suggests

that the densities of cryptocurrency and stock index returns became more similar

with the advent of COVID-19. This mostly due to a large change in the distribution

of major stock indices, but also party due to a smaller movement in cryptocurrency

distributions.

Table 3 reveals the entropy metric Sρ of the assets themselves pre-COVID &

COVID era. By doing so, we can see if the difference between the cryptocurrencies

and stocks is partly due to specific asset change caused by the effect of COVID-19.

The results show that the distributions of S&P500 and NASDAQ changed dramati-

cally and significantly before and after COVID-19 outbreak, which indicates that the

changes of Sρ between cryptocurrencies and stocks may mainly caused by the changes

of stocks’ distributions. We will dive deeper on this part in Section 4.
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Table 3.2: Test equality of univariate densities: cryptocurrencies & stocks

pre-COVID (Aug 2015 - Jan 2020) COVID era (Feb 2020 - Sep 2020)
Difference

Daily log-return S rho p-value S rho p-value

S&P500 & Bitcoin 0.20 <2.22e-16 *** 0.04 0.1010 -0.16

S&P500 & Ethereum 0.33 <2.22e-16 *** 0.08 <2.22e-16 *** -0.25

NASDAQ & Bitcoin 0.16 <2.22e-16 *** 0.04 0.0404 * -0.12

NASDAQ & Ethereum 0.28 <2.22e-16 *** 0.08 <2.22e-16 *** -0.20

Note: Entries marked with *** have empirical p-values < 0.01, ** 0.01 ≤ p < 0.05, and

* 0.05 ≤ p < 0.10 under the null of independence of returns.

Table 3.3: Test equality of univariate densities: assets with themselves pre-COVID

& COVID era

Daily log-return S rho p-value

S&P500 with itself pre-COVID & COVID era 0.13 <2.22e-16 ***

NASDAQ with itself pre-COVID & COVID era 0.10 <2.22e-16 ***

Bitcoin with itself pre-COVID & COVID era 0.02 0.3737

Ethereum with itself pre-COVID & COVID era 0.02 0.0303 *

Note: Entries marked with *** have empirical p-values < 0.01, ** 0.01 ≤ p < 0.05, and

* 0.05 ≤ p < 0.10 under the null of independence of returns.



84

Figure 3.2: Density of NASDAQ: pre-COVID

Figure 3.3: Density of Bitcoin: pre-COVID
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Figure 3.4: Density of NASDAQ: COVID era

Figure 3.5: Density of Bitcoin: COVID era
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3.3.3 Similarity with Select Asset Classes

In this part, we apply the same method to test the equality of densities for daily re-

turns of Bitcoin and stocks in different industry groups. The data for daily stock

returns in different industries comes from Kenneth R. French 30 Industry Port-

folios 3. The Kenneth R. French 30 Industry Portfolios data set was created by

CMPT IND RETS DAILY using the 202006 CRSP database, assigned each NYSE,

AMEX, and NASDAQ stock to an industry portfolio at the end of June of year t based

on its four-digit SIC code at that time, then computed returns from July of t to June

of t + 1. We use the daily average value weighted returns for 30 industry portfolios

data. The 30 industry portfolios include: Food Products (Food), Beer Liquor (Beer),

Tobacco Products (Smoke), Recreation (Games), Printing and Publishing (Books),

Consumer Goods (Hshld), Apparel (Clths), Healthcare (Hlth), Medical Equipment,

Pharmaceutical Products, Chemicals (Chems), Textiles (Txtls), Construction and

Construction Materials (Cnstr), Steel Works Etc (Steel), Fabricated Products and

Machinery (Fabpr), Electrical Equipment (Elceq), Automobiles and Trucks (Autos),

Aircraft, ships, and railroad equipment (Carry), Precious Metals, Non-Metallic, and

Industrial Metal Mining (Mines), Coal (Coal), Petroleum and Natural Gas (Oil), Util-

ities (Util), Communication (Telcm), Personal and Business Services (Servs), Business

Equipment (Buseq), Business Supplies and Shipping Containers (Paper), Transporta-

tion (Trans), Wholesale (Whlsl), Retail (Rtail), Restaraunts, Hotels, Motels (Meals),

Banking, Insurance, Real Estate, Trading (Fin), Everything Else (Other). We apply

the nonparametric entropy metrics test of equality of densities proposed in Maasoumi

& Racine (2002), described above, where f1 = f(x) and f2 = f(y) are the marginal

densities of daily returns of Bitcoin and stocks in different industries, respectively.

From Table 4, we calculated the entropy measures between Bitcoin and select asset

classes. During pre-COVID period, the density of Bitcoin daily return has smallest

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/DataLibrary/det30indport.html
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distance with the density of Coal industry daily return. The Sρ between these two

densities is 0.02 and statistically significant. The density of Bitcoin daily return also

has small distances with densities of Steel Works Etc, as well as Precious Metals,

Non-Metallic, and Industrial Metal Mining industries, with Sρ values of 0.07 and 0.09

respectively. During COVID era, the density of Bitcoin daily return has smallest

distance with the density of Business Supplies and Shipping Containers, Utilities,

Tobacco Products and Restaraunts, Hotels, Motels industries daily returns, with Sρ

values of 0.03. Comparing Sρ before and after the COVID-19 outbreak, we conclude

that the values of Sρ decrease generally in all cases. This is consistent with our

findings with stock indexes in the previous section, which indicates that forecasting

cryptocurrencies’ performance could be more feasible during COVID era.

We also calculated the Sρ with select asset classes with themselves before and after

the COVID-19 outbreak (see column 2 in Table 4). It is clear that for all industry

groups during COVID era, the asset distributions diverge from their own pre-COVID

distributions, and the distribution divergence of industry groups are more significant

comparing with cryptocurrencies’ (shown in Table 3).
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Table 3.4: Entropy measure between Bitcoin and different Industries

pre-COVID and COVID era with itself pre-COVID with Bitcoin COVID era with Bitcoin
Difference

Daily log-return S rho p-value S rho p-value S rho p-value

Food 0.16 <2.22e-16 *** 0.22 <2.22e-16 *** 0.04 0.0808 . -0.18

Beer 0.14 <2.22e-16 *** 0.21 <2.22e-16 *** 0.07 0.1010 -0.14

Smoke 0.14 <2.22e-16 *** 0.14 <2.22e-16 *** 0.03 0.2121 -0.11

Games 0.09 <2.22e-16 *** 0.10 <2.22e-16 *** 0.05 0.0202 * -0.05

Books 0.19 <2.22e-16 *** 0.15 <2.22e-16 *** 0.04 0.0909 . -0.11

Hshld 0.14 <2.22e-16 *** 0.21 <2.22e-16 *** 0.04 0.4040 -0.17

Clths 0.20 <2.22e-16 *** 0.12 <2.22e-16 *** 0.04 0.1212 -0.08

Hlth 0.12 <2.22e-16 *** 0.17 <2.22e-16 *** 0.04 0.1717 -0.13

Chems 0.21 <2.22e-16 *** 0.15 <2.22e-16 *** 0.04 0.1414 -0.11

Txtls 0.26 <2.22e-16 *** 0.11 <2.22e-16 *** 0.07 0.0101 * -0.04

Cnstr 0.23 <2.22e-16 *** 0.14 <2.22e-16 *** 0.04 0.2020 -0.10

Steel 0.14 <2.22e-16 *** 0.07 <2.22e-16 *** 0.05 0.0202 * -0.02

Fabpr 0.19 <2.22e-16 *** 0.13 <2.22e-16 *** 0.04 0.0808 . -0.09

Elceq 0.22 <2.22e-16 *** 0.14 <2.22e-16 *** 0.04 0.1111 -0.10

Autos 0.21 <2.22e-16 *** 0.12 <2.22e-16 *** 0.04 0.1212 -0.08

Carry 0.27 <2.22e-16 *** 0.15 <2.22e-16 *** 0.06 0.0202 * -0.08

Mines 0.09 <2.22e-16 *** 0.09 <2.22e-16 *** 0.05 0.0505 . -0.05

Coal 0.09 <2.22e-16 *** 0.02 <2.22e-16 *** 0.09 <2.22e-16 *** 0.07

Oil 0.22 <2.22e-16 *** 0.11 <2.22e-16 *** 0.05 0.0101 * -0.05

Util 0.22 <2.22e-16 *** 0.22 <2.22e-16 *** 0.03 0.3939 -0.18

Telcm 0.19 <2.22e-16 *** 0.20 <2.22e-16 *** 0.04 0.1313 -0.16

Servs 0.14 <2.22e-16 *** 0.16 <2.22e-16 *** 0.05 0.1111 -0.11

Buseq 0.13 <2.22e-16 *** 0.14 <2.22e-16 *** 0.04 0.1717 -0.10

Paper 0.17 <2.22e-16 *** 0.18 <2.22e-16 *** 0.03 0.3535 -0.15

Trans 0.18 <2.22e-16 *** 0.15 <2.22e-16 *** 0.04 0.1515 -0.11

Whlsl 0.24 <2.22e-16 *** 0.19 <2.22e-16 *** 0.04 0.2020 -0.15

Rtail 0.10 <2.22e-16 *** 0.18 <2.22e-16 *** 0.08 <2.22e-16 *** -0.10

Meals 0.24 <2.22e-16 *** 0.20 <2.22e-16 *** 0.03 0.2626 -0.17

Fin 0.25 <2.22e-16 *** 0.16 <2.22e-16 *** 0.05 0.1010 -0.11

Other 0.20 <2.22e-16 *** 0.20 <2.22e-16 *** 0.04 0.1010 -0.16

Note: Entries marked with *** have empirical p-values < 0.01, ** 0.01 ≤ p < 0.05, and

* 0.05 ≤ p < 0.10 under the null of independence of returns.
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3.3.4 Testing General Nonlinear Co-dependence

The above test of Maasoumi and Racine (2002) may be employed for testing stochastic

independence of any two random variables X and Y . Let f1 = f(xi, yi) be the joint

density and f2 = g(xi)∗h(yi) be the product of the marginal densities. The unknown

density functions are replaced with nonparametric kernel estimates. The methodology

is as before, with the null of independence imposed in the bootstrap resampling

implementation of the test. Bandwidths are obtained via likelihood cross-validation

by default for the marginal and joint densities.

The results are in Table 5. There is significant dependence only between Bitcoin

and NASDAQ before COVID-19 outbreak. During COVID era, independence is com-

fortably rejected for all pairings. The two situations represent very radical changes

in the status of cryptocurrencies for portfolio diversification.

Table 3.5: Independence test

pre-COVID (Aug 2015 - Jan 2020) COVID era (Feb 2020 - Sep 2020)
Difference

Daily log-return S rho p-value S rho p-value

S&P500 & Bitcoin 0.0085 0.0303 * 0.0148 <2.22e-16 *** 0.0063

S&P500 & Ethereum 0.0076 0.5758 0.0172 <2.22e-16 *** 0.0096

NASDAQ & Bitcoin 0.0072 0.0101 * 0.0163 <2.22e-16 *** 0.0091

NASDAQ & Ethereum 0.0061 0.6061 0.0178 <2.22e-16 *** 0.0117

Note: Entries marked with *** have empirical p-values < 0.01, ** 0.01 ≤ p < 0.05, and

* 0.05 ≤ p < 0.10 under the null of independence of returns.

3.4 Difference-in-Differences Analysis

Difference in differences (Diff-in-diff) is a statistical technique used in econometrics

and quantitative research that attempts to mimic an experimental research design

using observational study data, by studying the differential effect of a treatment on

a “treatment group” versus a “control group” in a natural experiment. It calculates
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the effect of a treatment on an outcome by comparing the average change over time in

the outcome variable for the treatment group, compared to the average change over

time for the control group.

Before we construct our Diff-in-diff model, we would like to emphasize that the

entropy metrics exhibit linear decomposition property. The reason why we can de-

compose Sρ is that it is a metric, which means it satisfies the triangularity property

of distances. Therefore, we can write the entropy metric between stock and cryp-

tocurrency during COVID era as the summation of the entropy metric between them

during pre-COVID period plus a time trend λt and plus the COVID effect.

Sρ(fsi,t2 , fcj ,t2) = Sρ(fsi,t1 , fcj ,t1) + λt + COV ID + ϵi,j,

where Sρ(fsi,t2 , fcj ,t2) stands for the entropy metric between stock i and cryptocur-

rency j during COVID era, and Sρ(fsi,t1 , fcj ,t1) stands for the entropy metric between

stock i and cryptocurrency j during pre-COVID period. λt is the time trend de-

fined by λt = Sρ(fsi,t2 , fsi,t1) + Sρ(fcj ,t2 , fcj ,t1), which measures the entropy metric of

both stock i and cryptocurrency j from pre-COVID period to COVID era with it-

self. COV ID is the effect of exogenous shock provided by COVID-19 to the entropy

metrics. ϵi,j is the residual term.

Since we have already calculated the distribution distances between assets in the

previous sections, from equation (9), we can easily estimate the COVID effect on

the entropy metrics, say ̂COV ID. Using entropy metrics Sρ between Bitcoin and

other assets (including S&P500, NASDAQ, the the 30 industry portfolios), we can

estimate the COVID effect ̂COV ID = −0.30. This indicates that after the broke

out of COVID-19 pandemic, the distributions of stocks and cryptocurrencies became

more similar and less independent, quantitatively, the entropy metrics decrease by

-0.30 in average.
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Next, we follow Card Krueger (1994) to construct our Diff-in-diff model:

Sρ(fAi,tj , f0) = β0 + β1 ∗ Covid + β2 ∗ Crypto + βDID ∗ (Covid ∗ Crypto) + ϵ,

where the dependent variable Sρ(fAi,tj , f0) is our variable of interest, it stands for

the entropy metric between asset i’s distribution at time j, fAi,tj , and a benchmark

distribution f0. Crypto and Covid are dummy variables. Crypto equals to 1 if the

asset is crypto, while it equals to 0 if the asset is stock. Covid equals to 1 if during

the COVID era and it equals to 0 if during the pre-COVID period. The coefficient

for the interaction term, Covid ∗Crypto, is the Diff-in-diff estimator. In this way, we

construct our Diff-in-diff model for entropy metric.

We come up with a new method to use our nonparametric entropy metric to

estimate the Diff-in-diff estimator. In Table 6, we show the decomposition of the

Diff-in-diff analysis. The reason why we can decompose Sρ is that it is a metric,

which means it satisfies the triangularity property of distances. If you take three

points, A, B and C, the distance between any of those points is smaller than the total

of the other two distances. Also note that Sρ is a “squared integral”. The second line

in Equation (8) also tells us that it is a simple expectation of 1 − (f2/f1)
1/2. This

is equal to metric developed by Bhathacharya as a measure of relations between two

variables. By algebra, we can derive the Diff-in-diff estimator as the entropy metrics

between stocks and crytos during COVID era subtract the entropy metric between

them during pre-COVID period: β̂DID = Sρ(fsi,t2 , fcj ,t2) − Sρ(fsi,t1 , fcj ,t1).

Table 3.6: DID decomposition

Distribution Stock cryptocurrency Difference

pre-COVID Sρ(fsi,t1 , f0) Sρ(fcj ,t1 , f0) Sρ(fsi,t1 , fcj ,t1)

COVID era Sρ(fsi,t2 , f0) Sρ(fcj ,t2 , f0) Sρ(fsi,t2 , fcj ,t2)

Change Sρ(fsi,t2 , fsi,t1) Sρ(fcj ,t2 , fcj ,t1) Sρ(fsi,t2 , fcj ,t2) − Sρ(fsi,t1 , fcj ,t1)
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3.5 Three-Period Analysis and the Vaccine Effect

Previously, we have confirmed that NASDAQ daily return has the most similar density

and co-dependence with Bitcoin daily return, generally. However, the after COVID-

19 outbreak in early 2020, even S&P500 daily return density is statistically closely

dependent on, and indifferent from Bitcoin daily return. However, it includes only

data up to 2020, when the COVID-19 pandemic occurred, and excludes 2021, when

a vaccine is being developed and the global vaccination rate is increasing. Therefore,

it is important to analysis the density similarity between cryptocurrencies and other

assets after the vaccine rollout. In this section, we would like to discover the effect

of COVID-19 outbreak as well as the vaccine rollout on density similarity between

stocks and cryptocurrencies.

The cryptocurrency data and stock market index data set consists of daily spot

exchange rates in units of US dollars are from Yahoo Finance. The price observations

of Bitcoin (BTC-USD), Ethereum (ETH-USD), S&P500 stock market index (ˆGSPC)

and NASDAQ stock market index (ˆIXIC) range from 6 August 2015 to 30 September

2021. We conduct our analysis across three time periods: Pre-COVID (August 6th ,

2015 – January 31st, 2020), COVID era (February 1st, 2020 – November 30th, 2020)

and Vaccine era (December 1st, 2020 – September 30th, 2021).

Firstly, we document main statistical properties of time series for the returns of

S&P500 stock market index, NASDAQ stock market index, Bitcoin and Ethereum

Figure 1 illustrates the time evolution of prices, volumes and daily log-returns for

S&P500, NASDAQ, Bitcoin and Ethereum. We observe that both stock and cryp-

tocurrency prices increased along the time, and the increases of cryptocurrency prices

were relatively profound after COVID outbreak rather than the increase of stock

prices. Notably, the Bitcoin price soared dramatically after the vaccine rollout. In

addition, we notice that the volume of cryptocurrencies also increased after COVID

outbreak, and the volume of cryptocurrencies became much more volatile simultane-
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ously. Another thing that is worth to mention is the daily log-returns of both stock

and cryptocurrency became more volatile after COVID outbreak, while after the roll-

out of vaccines, the stock returns turned to be stable while the cryptocurrency returns

were still extremely volatile. This highlighted the difficulty to predict cryptocurrency

performance especially after COVID outbreak, thus demystifying the density simi-

larity between stock and cryptocurrency returns is important for both scholars and

investors.

The descriptive statistics of daily log-returns are reported in Table 1. Along all the

three periods, the daily returns of cryptocurrency markets exhibit high variability and

excess kurtosis comparing with stock markets, especially the cryptocurrency returns

had extremely high kurtosis during the COVID era. We observed that the stock

market was more volatile than ever during the COVID era, and after the effective

vaccine rollout, the stock market became less volatile and had a similar volatility

as pre-COVID period. Overall, the daily returns of SP500, Bitcoin and Ethereum

increased along the time, while the daily return of NASDAQ arrived that its peak

during COVID era, and dropped afterwards.

The deviations from the Normal distribution are confirmed by the Jarque–Bera

test that rejects the null hypothesis of normality. We applied the Augmented Dicker–Fuller

(ADF) unit-root test, which suggests stationarity of the log-returns. An ADF test

tests the null hypothesis that a unit root is present in a time series sample. The al-

ternative hypothesis is different depending on which version of the test is used, but is

usually stationary or trend-stationary. In our case, we use the alternative hypothesis

of stationary. This shows that the null hypothesis is rejected, and the time series of

returns in each markets is stationary. These observations suggest that the cryptocur-

rency market is not as efficient as stock or foreign exchange markets, which display a

complete lack of predictability (Lahmiri and Bekiros, 2018).
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[insert table 3.7 here]
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In this section, we still employ Maasoumi and Racine (2002) to test the equality

of univariate densities between stock and cryptocurrency daily log-returns. In our

method, we considered a metric entropy that is useful for testing for equality of

densities for two univariate random variables X and Y. The function computes the

nonparametric metric entropy (Granger et al., 2004) for testing the null of equality

of two univariate density (or probability) functions. For continuous variables,

Sρ =
1

2

∫
(f

1/2
1 − f

1/2
2 )2dx =

1

2

∫
(1 − f

1/2
2

f
1/2
1

)2dF1(x),

where f1 = f(x) and f2 = f(y) are the marginal densities of the random variables X

and Y .

We estimate the metric Sρ for the daily returns data for x = Returcrypto and

y = Returnstock. Table 2 shows the Sρ values and the corresponding p-values. As

was noted in (Granger et al., 2000) and (Skaug and Tjostheim, 1996), the asymptotic

distribution of Sρ is unreliable for practical inference. We therefore compute p-values
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by resampling the statistic under the null of equality.

Examining Table 2, we see that Sρ is smallest between x = Bitcoin and y =

NASDAQ among all the three periods, which indicates that the distance between

the densities of Bitcoin daily returns and NASDAQ daily returns is smaller than other

combinations. The p-value shows that the result is significant. During COVID era,

S&P500 returns distribution is also statistically closely dependent on, and indifferent

from Bitcoin’s.

Comparing Sρ among all the three time periods, we conclude that the values

of Sρ decrease generally in all cases, sometimes dramatically during COVID era,

while the values of Sρ increase (and even higher than pre-COVID period) in all cases

during vaccine era. This suggests that the densities of cryptocurrency and stock

index returns became more similar with the advent of COVID-19, while the densities

become less similar after the vaccine rollout. This is consistent with our intuitive

assumption: highly volatile assets like cryptocurrencies behave more similarly to other

assets during down turns, compared to upturns.

In summary, the cryptocurrency market has recently increased in complexity and

thus unpredictability is increasing due to the development of a vaccine, the complexity

of the cryptocurrency market has still been increasing since then. Vaccination rates

are rising worldwide, but it is estimated that many other factors, such as the emer-

gence of the delta virus or foreshadowing of tapering, are adding to the complexity

of the cryptocurrency market.

[insert table 3.8 here]
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Figure 3.6: Density of NASDAQ: Vaccine era

Figure 3.7: Density of Bitcoin: Vaccine era
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3.6 Conclusion

This chapter investigates the similarity and co-dependence between cryptocurrencies

daily returns and stock daily returns, before and after the COVID-19 outbreak in

early 2020.

Data exhibited different features before and after COVID-19 outbreak. There is

similarity between Bitcoin and NASDAQ stock market index with or without the

COVID event. The similarity and dependence between cryptocurrencies and stock

market indexes has become stronger after COVID-19 outbreak. Our findings are

robust to model misspecification, and avoid linear measures of dependence and cor-

relation. The entropy profiles method and time series models play different roles

in forecasting cryptocurrency returns volatility, and these approaches are compli-

mentary. The time series models elaborate the dynamic movement of returns, on

average (conditional mean models). The entropy profiles method is a nonparametric

approach which reveals the evolution of the entire distributions and their quantiles.

In this chapter, we have several findings: Firstly, we found that during pre-COVID

period, NASDAQ return and Bitcoin return’s distributions are the most similar. Sec-

ondly, we can see during the COVID era, the distances between all asset returns have

declined by 75% or more, and most of these changes are caused by changes of stock

return distributions. We also found that the asset group with the closest similarity

with Bitcoin are Coal, Steel and Mining industries during pre-COVID period, and

Business Supplies, Utilities, Tobacco Products and Restaurants, Hotels, Motels in-

dustries, compared to several others during COVID era. Finally, through non-linear

co-dependence test, we found that during COVID era, the densities of stocks and cryp-

tocurrencies became more similar and less independent. These results are meaningful

because we revealed the similarity and dependence structure between cryptocurrency

and stock distributions. This can be useful in applying existing theories on stocks to

cryptocurrencies.
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As a supplement of our previous study, we also examine newer data as we have

observe the effective vaccines rollout, stock market volatility and the cryptocurrency

prices peak to new high in 2021. By conducting a three-period analysis, we were

trying to answer the question that whether the densities of cryptocurrencies and stock

marker indexes became more / less similar after vaccination. we discovered that the

cryptocurrency market has recently increased in complexity and thus unpredictability

is increasing due to the development of a vaccine. We believe the examination of newer

data will drive more promising and effective policy implications.
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Chapter 4

Do Cryptocurrencies and Other

Assets Converge? A Clustering

Analysis of Asset Returns

Since the first decentralized cryptocurrency, Bitcoin, was created in the year of 2009,

cryptocurrencies gain a growing attention from the media, academics, and finance in-

dustry. However, this new market is very diverse and difficult to predict. In this chap-

ter, we aim to examine the prospects for clustering, or convergence of asset classes.

In the first instance, we examine if a set of cryptocurrencies form identifiable clusters

within this class. Using entropy metric to assess “similarity” of entire distributions,

we implement Agglomerative Hierarchical Clustering technique to examine whether

or not cryptocurrencies are converging to “clubs” with similar distributions of returns.

To arrive at a more convincing conclusion, we also apply the K-means Clustering to

justify our results. We discover that cryptocurrencies share similar geographic loca-

tions and similar functions tend to converge to same clusters. We also observe another

potential explanation to our results called the “Coinbase effect”. In the second stage,

we examine if these clusters include other asset classes, such as commodities. We find
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cryptocurrencies and commodities are separated into different clusters using entropy

metric as cluster proximity, which is consistent with intuitive assumptions. We also

find that the cluster that contains the distributions of Coal (COAL) and Petroleum

and Natural Gas (OIL) have smaller distance to cryptocurrency distributions. To

conclude, our work will help to enhance the profiling of the clusters with additional

insights. As a result, this work offers a description of the market and a methodol-

ogy that can be reproduced by investors that want to understand the main trends

on the market and that look for cryptocurrencies with different financial performance.

Keywords:

Financial markets, Cryptocurrency, Bitcoin, Convergence, Entropy, Clustering anal-

ysis, Agglomerative Hierarchical Clustering, K-means Clustering
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4.1 Introduction

The cryptocurrency market consists of more than 4,000 cryptocoins with over 800

trades per second and more than 280 exchanges. Since the first peer-to-peer and

decentralised digital currency, Bitcoin, was fisrt created in 2008 and mined in 2009,

cryptocurrencies has become a huge new market in a very short term (Nakamoto,

2009). While cryptocurrencies were originally intended to enable anonymous wire

transfers and online purchases, they have indeed become a powerful investment tool

nowadays.

However, this new market is very diverse. Cryptocurrencies with different tech-

nologies, purposes and user base coexist and form a highly heterogeneous market

that is difficult to understand and to manage for those addressing a good investment

allocation.

As other traditional assets, the value of cryptocurrencies swing based on news

events, but cryptocurrencies have no physical assets or governments to back their

value. Moreover, the cryptocurrency market is new, based on a still developing tech-

nology, highly speculative and small in comparison to others. As a result, it is highly

volatile with big upswings, bubbles, and sudden market downturns. Being a market

so novel, big, diverse and volatile, it needs to be understood. Investment managers

are constantly challenged to identify assets and asset classes that are, in some sense,

orthogonal to existing assets, so as to decide if they should be included in further

diversification of assets under management.

Several categorization efforts have been made so far. Burniske and Tatar (2017)

classified over 200 cryptocurrencies into three classes of assets included capital asset,

consumable/transformable assets and store of value asset. However, this classifi-

cation is highly subjective and only cover a small fraction of the cryptocurrencies.

Another approach leverages on statistical methods to analyze the financial perfor-

mance of cryptocurrencies. Stosic et al. (2018) analyze cross correlations between
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price changes of different cryptocurrencies using methods of random matrix theory

and minimum spanning trees, discover distinct community structures in their min-

imum spanning trees. Hu et al. (2019) present stylized facts on the asset pricing

properties of cryptocurrencies by summarizing statistics on cryptocurrency return

properties and measures of common variation for secondary market returns on 222

digital coins, and find a large degree of skewness and volatility in the population of

returns. Song et al. (2019) analyze the structure of the cryptocurrency market based

on the correlation-based agglomerative hierarchical clustering and minimum span-

ning tree. They propose a Bitcoin-Ethereum filtering mechanism, and discover the

leadership of the Bitcoin and Ethereum in the market and six homogeneous clusters

composed of relatively less-traded cryptocurrencies. Sigaki et al.(2019) use time series

to represent the cryptocurrencies, use permutation entropy and statistical complexity

over sliding time-windows of price log returns to quantify the dynamic efficiency of

437 time series of cryptocurrencies. Pele et al. (2020) separate cryptocurrencies from

the classical assets by using various classification techniques applied to the daily time

series of log-returns, mainly due to their tail behavior. All these approaches reveal

that it is possible to establish different groups of cryptocurrencies in terms of their

financial performance. And identifying them, it is useful to better understand the

cryptocurrency market, but also for building a diversified portfolio. Therefore, it is

important for us to study the clustering behavior of cryptocurrency market.

Literature also focused on clustering of cryptocurrencies. Song et al. (2019) ap-

plied the classical methodology based on MST algorithms (Mantegna, 1999) to filter

out the influence of Bitcoins and Ethereum, and it detects six homogeneous clusters.

However, the structure found does not remain stable after the announcement of reg-

ulations from various countries. Zieba et al. (2019) use clustering method together

with other methods, such as VAR models and Granger causality tests, to find that

Bitcoin shock prices are not transmitted to the prices of other cryptocurrencies, thus
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suggested that Bitcoin shall not be generalized to all cryptocurrencies. Corbet et al.

(2018) show that cryptocurrencies are highly connected among themselves and discon-

nected from mainstream assets, such as bonds, stocks, S&P500 and gold. All these

articles evidence the complexity of the underlying structure in the cryptocurrency

market, where some cryptocurrencies influence others even in unexpected ways.

More recently, an increasing body of the literature studies their role in portfolio

diversification. For instance, Platanakis and Urquhart (2020) examine the out-of-

sample benefits of including Bitcoin in a stock-bond portfolio. The empirical find-

ings, using weekly data from October 2011 to June 2018, indicate improvement in

different measures of risk-adjusted returns and are robust to a variety of asset al-

location strategies, risk aversion levels, rolling windows, the inclusion of transaction

costs and different assets, allowance for short selling and optimization techniques. Liu

(2019) apply different portfolio selection models, conducting a large set of robustness

checks to analyze portfolio performance considering 10 cryptocurrencies. They point

out that diversification among cryptocurrencies can enhance performance under the

Sharpe ratio and utility criteria. However, optimal portfolios are often outperformed

by the naive equal weights portfolio and estimation error in parameters of returns

distribution may offset gains of diversification. Kajtazi and Moro (2019) use a mean-

CVar approach to study bitcoin diversification role in different markets, USA, China,

and Europe, finding converging results across markets for performance improvement,

more due to increase in returns rather than reduction of risk. These conclusions

holdmainly for long-only and näıve portfolios, in conformity to other findings in the

literature (DeMiguel et al., 2009; Platanakis et al., 2018). Under a different approach,

Guesmi et al. (2019) use a set of time series models to analyze joint dynamics of

Bitcoin and different financial assets and conclude that investors may benefit from

hedging and diversification gains adding bitcoin to their portfolios.

Cryptocurrencies are examined with this question in mind, in a large set of com-
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parisons with other assets. These comparisons may be viewed as an assessment of

“similarity” with existing asset classes. In this paper, we hope to shed light on these

issues in several important ways that respond to the limitations discussed above.

First, following Maasoumi et al. (2007) and Maasoumi & Wang (2008), we propose a

new concept of convergence based on the similarity of the distributions of asset daily

log-returns. The similarity is measured by the normalization of the Bahattacharya-

Matusita-Hellinger Entropy measure proposed in Granger et al. (2004). This entropy

measure goes beyond the first and second moments of the distributions and is able

to summarize the information of the “entire” distribution. Since it is also a “met-

ric” measure of the “distance” between two distributions (as contrasted with “diver-

gence”), our method provides a detailed picture of the changes in the distance of the

distributions of asset daily log-returns. Our prior work (Maasoumi & Wu, 2021) is

based on the most comprehensive criterion for assessment of such similarity, the sim-

ilarity of the entire distributions. We employed metric entropy testing to rigorously

infer equality of distributions and co-dependence.

In this chapter, we examine the prospects for clustering, or convergence of asset

classes. In the first instance, we examine if a set of cryptocurrencies form identifiable

clusters within this class. In the second stage, we examine if these clusters include

other asset classes, such as commodities. Many analysts have advocated that these

currencies be viewed as commodities, because of their price behavior in recent mar-

kets. The clustering method we employ is similarly comprehensive in its definition

of cluster membership. This is based on the entire statistical distribution of an asset

return as the probability law that generates it. In this sense, testing for equality of

asset distributions is a technique that is shared with our prior work.

The rest of the chapter is organized as follows: Section 2 presents the method-

ology that we used in this chapter. We conducted clustering analysis depends on

measures of proximity or similarity. Section 3 described that data we leveraged on.



114

Section 4 discussed our empirical results. In details, we conduct the cluster analy-

sis of cryptocurrencies, cluster analysis of cryptocurrencies and commodities, as well

as comparing our results using Agglomerative Hierarchical Clustering and K-means

Clustering. Section 5 concluded our findings in this chapter.

4.2 Empirical Methodology

4.2.1 Entropy Measures of Distributional Distance

In our chapter, we define the convergence as the similarity of the distributions of

daily log returns of two cryptocurrencies. Mathematically, two cryptocurrencies are

converging if

H0 : fi = fj,

where fi and fj are marginal densities of the daily log returns of cryptocurrency i

and cryptocurrency j in our analysis. The traditional moment relations can test the

equality of distributions by either mean or variance, but this kind of measurement

is problematic because it lack the power to contain all information in distributions.

While our novel metric entropy measures can compare the entire distributions of

cryptocurrency returns, which capture all information contains in distributions. An-

other highlight of our metric entropy measures is that it is a metric, which means it

satisfies the triangularity rule of distances. Hence, it measures not only divergence

but also distance between two distributions, which will be especially suitable when

implementing cluster analysis, and go beyond hypothesis tests of equality.

We utilize a metric entropy measure Sρ following Maasoumi & Racine (2002).

This entropy is a normalization of the Bhattacharya-Matusita-Hellinger measure of

distance (Granger et al., 2004), and provides a quantified distance between distribu-
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tions of cryptocurrency returns. It is given by

Sρ =
1

2

∫ ∞

−∞

∫ ∞

−∞
(f

1
2
i − f

1
2
j )2dxdy.

In other words, our null hypothesis can be written as:

H0 : Sρ = 0.

Thus, the distributions of two cryptocurrencies converge if and only if we cannot

reject the null hypothesis in our analysis.

The following properties are satisfied by this entropy measure Sρ: (i) Sρ is well

defined for both continuous and discrete variables; (ii) Sρ is normalized to zero if X

and Y are independent, and lies between 0 and 1; (iii) Sρ is metric, which means it is a

true measure of distance and not just of Kullback-Leibler divergence; (iv) The entropy

measure Sρ is invariant under continuous and strictly increasing transformations h().

We employ block bootstrap resampling techniques to conduct tests based on kernel

density implementations of our statistic, with cross validation determining optimal

bandwidths.

4.2.2 Cluster Analysis

Agglomerative Hierarchical Clustering

Based on the entropy measure Sρ in previous sections, we implement Agglomerative

Hierarchical Clustering techniques to examine whether or not cryptocurrencies are

converging to “clubs” with similar distributions of returns (Maasoumi & Wang, 2008).

The Agglomerative Hierarchical Clustering is the most common type of hierar-

chical clustering used to group objects in clusters based on their similarity. The

algorithm Starts with the points as individual clusters, and at each step, merge the
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closest pair of clusters. This requires defining a notion of cluster proximity. In this

chapter, we will apply three different calculations of the proximity between two clus-

ters: complete linkage, single linkage and average linkage. In the complete linkage,

the distance between two clusters is defined as the maximum value of all pairwise dis-

tances between the elements in cluster 1 and the elements in cluster 2, which produces

more compact clusters; In single linkage, the distance between two clusters is defined

as the minimum value of all pairwise distances between the elements in cluster 1 and

the elements in cluster 2, which produces “loose” clusters; In average linkage, the

distance between two clusters is defined as the average distance between the elements

in cluster 1 and the elements in cluster 2. In Figure 1, we show the graph-based

definitions of cluster proximity. The Agglomerative Hierarchical Clustering is often

displayed graphically using a tree-like diagram called a dendrogram, which displays

both the cluster-subcluster relationships and the order in which the clusters were

merged.

Figure 4.1: Graph-based definitions of cluster proximity

This chapter follows Hirschberg, Maasoumi & Slottje (2001), which employed clus-

tering analysis based on the same entropy measure Sρ to identify distinct dimensions

in the 15 indicators of well-being that are commonly used. The algorithm is as follows:

1. Each cryptocurrency return variable is one cluster itself;

2. Compute the proximity matrix based on the same entropy measure Sρ;
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3. Merge the closest two clusters, and form a new cluster;

4. Repeat step 2-3 to update the proximity matrix to reflect the proximity between

the new cluster and the original clusters;

5. Stop until only one cluster remains.

In our analysis, we use the complete linkage clustering algorithm, which finds the

closest two groups based on the “farthest” observations between the two groups, as

judged by a chosen criterion of distance. The complete linkage clustering algorithm

requires a metric measure of distance, since any measures that violate the triangle

rule will lead to inconsistent decisions (Hirschberg & Maasoumi, 2001). Therefore,

our measurement of distance with entropy metric Sρ guarantees the feasibility of this

algorithm. As we mentioned earlier, one of advantages of Hierarchical Agglomera-

tive Clustering method is it allows us to find the most suitable number of clusters.

However, choosing the optimal number of clusters is a vital aspect of our analysis.

K-means Clustering

K-means clustering (MacQueen, 1967) is the most commonly used unsupervised ma-

chine learning algorithm for partitioning a given data set into a set of k clusters. The

basic idea behind K-means clustering consists of defining clusters so that the total

within-cluster variation is minimized, it clustering minimizes within-cluster variances,

that is, squared Euclidean distances in our case, which makes the result easy to un-

derstand and interpret. The standard K-means algorithm is the Hartigan-Wong algo-

rithm (1979), which defines the total within-cluster variation as the sum of squared

distances Euclidean distances between items and the corresponding centroid:

W (Ck) =
∑
xi∈Ck

(xi − µk)2,
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where xi is a data point belonging to the cluster Ck and µk is the mean value of the

points assigned to the cluster Ck. Each observation xi is assigned to a given cluster

such that the sum of squares distance of the observation to their assigned cluster

centers (µk) is minimized. The total within-cluster variation is defined as follows:

tot.withiness =
K∑
k=1

W (Ck) =
K∑
k=1

∑
xi∈Ck

(xi − µk)2,

The total within-cluster sum of square tot.withiness measures the compactness of

the clustering and we want it to be as small as possible. K-means algorithm can be

summarized as follows:

1. Specify the number of clusters (k) to be created using elbow method;

2. Select randomly k objects from the data set as the initial cluster centroids;

3. Assigns each observation to their closest centroid, based on the Euclidean

distance between the object and the centroid;

4. For each of the k clusters, update the cluster centroid by calculating the new

mean values of all the data points in the cluster. The centroid of a K − th cluster is

a vector of length p containing the means of all variables for the observations in the

K − th cluster; p is the number of variables.

5. Iteratively minimize the total within sum of square tot.withiness. In other

words, iterate steps 3 and 4 until the cluster assignments stop changing or the maxi-

mum number of iterations is reached.

4.3 Data

The cryptocurrency data we used in this chapter is from CoinMarketCap 1. This

influential website for cryptocurrencies lists and ranks all major representatives of

this asset class by providing a volume-per-exchange weighted market price, the market

1https://coinmarketcap.com
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capitalisation and the total trading volume itself. We consider cryptocurrencies with

top 50 highest market capitalization 2 Table 1 documented the name, abbreviation,

market capitalization and volume of the cryptocurrencies with top 50 highest market

capitalization. Our analysis used daily data and contained time period from January

1, 2019 to January 1, 2021. Therefore, we exclude 18 cryptocurrencies which have

relative short histories, and use the remaining 32 cryptocurrencies for our analysis.

In each data set of cryptocurrencies, we have open price, intraday high price,

intraday low price, close price (adjusted for splits), adjusted close price (adjusted for

both dividends and splits), market capitalization and volume.

2The term market capitalization (or market cap) refers to a metric that measures the relative
size of a cryptocurrency. It is calculated by: Market Cap = Current Price x Circulating Supply.



120

Table 4.1: Overview of cryptocurrencies for analysis
Rank Name Abbreviation Market Cap ($) Volume ($) Exclude from Analysis

1 Bitcoin BTC 611,351,681,172 55,093,310,438

2 Ethereum ETH 89,044,253,262 18,946,964,605

3 Tether USDT 21,228,581,016 76,275,962,035

4 XRP XRP 10,148,107,889 4,676,476,080

5 Litecoin LTC 9,156,541,209 8,898,953,873

6 Polkadot DOT 8,604,653,503 2,992,452,119 x

7 Bitcoin Cash BCH 6,725,409,669 4,206,360,704

8 Cardano ADA 5,702,145,578 1,273,790,776

9 Binance Coin BNB 5,561,913,834 492,662,644

10 Chainlink LINK 4,850,105,588 1,390,965,360

11 USD Coin USDC 4,082,743,317 1,318,460,238

12 Wrapped Bitcoin WBTC 3,795,216,732 115,203,080 x

13 Bitcoin SV BSV 3,089,652,572 388,116,627

14 Stellar XLM 2,832,570,834 417,164,429

15 Monero XMR 2,561,771,263 2,125,410,453

16 EOS EOS 2,507,061,549 2,531,463,330

17 THETA THETA 2,399,551,082 351,535,327

18 TRON TRX 1,941,458,934 864,302,641

19 NEM XEM 1,855,462,653 111,176,371

20 Tezos XTZ 1,525,665,155 202,102,105

21 Crypto.com Coin CRO 1,467,051,154 144,056,108

22 Celsius CEL 1,438,614,864 17,863,864

23 UNUS SED LEO LEO 1,355,397,178 10,115,030 x

24 VeChain VET 1,352,923,475 255,606,413

25 Uniswap UNI 1,276,488,504 1,218,691,767 x

26 Dogecoin DOGE 1,259,759,889 2,061,148,146

27 Dai DAI 1,219,604,894 420,889,163 x

28 Cosmos ATOM 1,158,321,953 557,792,320 x

29 Binance USD BUSD 1,125,383,198 1,630,986,398 x

30 Aave AAVE 1,039,303,341 208,235,560 x

31 Synthetix SNX 2,033,775,828 189,745,939

32 Neo NEO 1,601,725,575 679,868,891

33 Compound COMP 1,491,931,104 589,707,386 x

34 Maker MKR 1,459,080,487 169,031,549

35 SushiSwap SUSHI 1,245,011,570 887,223,297 x

36 Huobi Token HT 1,197,410,267 310,286,798

37 Elrond EGLD 1,190,289,362 217,917,378 x

38 IOTA MIOTA 1,149,359,392 36,917,888

39 FTX Token FTT 1,086,314,790 29,742,332 x

40 Solana SOL 1,059,078,241 30,739,714 x

41 Filecoin FIL 1,048,187,194 173,466,067 x

42 Dash DASH 1,037,213,333 421,676,095

43 Revain REV 991,918,528 7,497,311

44 Zcash ZEC 921,536,671 603,261,148

45 yearn.finance YFI 925,395,007 389,382,739 x

46 Avalanche AVAX 908,573,876 109,696,557 x

47 Kusama KSM 881,925,395 94,451,652 x

48 Ethereum Classic ETC 878,465,983 951,148,462

49 Algorand ALGO 862,724,869 477,886,074 x

50 Decred DCR 797,471,586 27,126,120
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To better compare performance between different cryptocurrencies, we calculate

the logarithmic return of cryptocurrency i using its adjusted close price at time t:

ri,t = 100 ∗ [ln(Pi,t) − ln(Pi,t−1)], (4.1)

where Pi,t denotes the adjusted close price of cryptocurrency i in USD at time t.

We now document main statistical properties of time series for the returns of cryp-

tocurrencies in Table 3. The results in Table 3 shows the almost zero mean and small

standard deviation for each crypto return series. Firstly, given that the risk-free rate

rf is set to be zero, the Sharpe ratio Sp = (rp − rf )/σp, a risk-adjusted return, is

the mean return divided by its standard deviation. In the case of two cryptocurren-

cies with the same mean returns, a cryptocurrency with a higher Sharpe ratio can

be considered as a superior investment asset. We notice that the cryptocurrencies

with highest Sharpe ratios are: Celsius (CEL), Synthetix (SNX), THETA (THETA),

Bitcoin (BTC), Chainlink (LINK), Huobi Token (HT) and Ethereum (ETH), which

include the two cryptocurrencies with highest market cap (Bitcoin and Ethereum).

Secondly, distribution is approximately symmetric if the skewness is within ±0.5. In

this sense, the return distributions of most cryptocurrencies are relatively asymmetric

and left-skewed. Also, the kurtosis suggests that the distributions of all cryptocur-

rencies exhibit fat tails in comparison to that of the Gaussian distributions whose

kurtosis is equal to three. To conclude, the returns of most cryptocurrencies exhibit

high variability and excess kurtosis. Lastlty, we applied the Augmented-Dicker-Fuller

(ADF) unit-root test of Dickey and Fuller (1979), which suggests stationarity of the

log-returns. An ADF test tests the null hypothesis that a unit root is present in a time

series sample. The alternative hypothesis is different depending on which version of

the test is used, but is usually stationary or trend-stationary. In our case, we use the

alternative hypothesis of stationary. The test results show that the null hypothesis is
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rejected for all 32 crypto returns, which indicate the time series are stationary based

on the strong statistical rejections on unit roots. The deviations from the Normal

distribution are confirmed by the Jarque-Bera test that rejects the null hypothesis of

normality. The test results show that all crypto returns in our analysis do not exhibit

Normal distribution.

Figure 2 illustrates the time evolution of prices and returns for the 32 cryptocur-

rencies. From the plot of historical price data, we can observe that most crypto prices

increased before the end of 2017, and arrived at their first peak of price at the end of

2017. Then the crypto prices decreased till the end of 2018, and soared dramatically

to a new price peak since then. The cryptocurrencies exhibit this pattern include:

ADA, BNB, BTC, DCR, DOGE, ETH, HT, LINK, LTC, NEO, SNX, THETA, TRX,

VET, XEM, XLM and XMR. Some cryptocurrency prices fluctuated around their

mean throughout the time period, including: BCH, DASH, ETC, MIOTA, MKR,

USDC, USDT and ZEC. We also notice cryptocurrency CRO’s price was stable be-

fore 2020, while increased before mid-2020 and then decreased. Also we found the

prices of BSV and EOS decreased after 2019, the price of CEL increased all the time

since it landed, the prices of XRP and XTZ dropped drastically at the end of 2020,

and the price of REV kept decreasing since 2019. We also found that the series of

cryptocurrency returns are stationary during the time period of our analysis, which

also coincident with our ADF test results. And we also noticed that cryptocurrency

returns peaked in March 2020. This was caused by the massive market crash on

March 12-13 saw daily volumes hit $75.9 billion in a single day, the single greatest

daily volume recorded in cryptocurrency history.



123

Table 4.2: Overview of commodities for analysis

Commodity Abbreviation

Food Products FOOD

Beer and Liquor BEER

Tobacco Products SMOKE

Recreation GAMES

Printing and Publishing BOOKS

Consumer Goods HSHLD

Apparel CLTHS

Healthcare, Medical Equipment, Pharmaceutical Products HLTH

Chemicals CHEMS

Textiles TXTLS

Construction and Construction Materials CNSTR

Steel Works Etc STEEL

Fabricated Products and Machinery FABPR

Electrical Equipment ELCEQ

Automobiles and Trucks AUTOS

Aircraft, ships, and railroad equipment CARRY

Precious Metals, Non-Metallic, and Industrial Metal Mining MINES

Coal COAL

Petroleum and Natural Gas OIL

Utilities UTIL

Communication TELCM

Personal and Business Services SERVS

Business Equipment BUSEQ

Business Supplies and Shipping Containers PAPER

Transportation TRANS

Wholesale WHLSL

Retail RTAIL

Restaurants, Hotels, Motels MEALS

Banking, Insurance, Real Estate, Trading FIN

Everything Else OTHER

Notes: Data from Kenneth R. French 30 Industry Portfolios. The database assigns each NYSE, AMEX, and

NASDAQ stock to an industry portfolio at the end of June of year t based on its four-digit SIC code at that time.

(The database uses Compustat SIC codes for the fiscal year ending in calendar year t− 1. Whenever Compustat

SIC codes are not available, the database uses CRSP SIC codes for June of year t.) Then compute returns from

July of t to June of t+ 1.
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Table 4.3: Descriptive statistics for cryptocurrencies

Cryptocurrency Obs Mean Std Sharpe Ratio Skewness Kurtosis ADF Jarque-Bera

BTC 732 0.29 3.79 0.0765 -2.29 33.17 -8.4895 ** 34396 ***

ETH 732 0.23 4.72 0.0487 -2.28 26.70 -8.4519 ** 22517 ***

USDT 732 0.00 0.58 0.00 0.08 15.81 -12.456 ** 7671.8 ***

XRP 732 -0.07 5.08 -0.0138 -1.35 29.45 -7.5929 ** 26838 ***

LTC 732 0.20 5.02 0.0398 -0.67 11.16 -8.7664 ** 3883.4 ***

BCH 732 0.10 5.46 0.0183 -1.08 20.10 -8.5571 ** 12546 ***

ADA 732 0.20 5.31 0.0377 -1.02 11.87 -8.6426 ** 4452.4 ***

BNB 732 0.25 4.70 -0.0532 -2.12 25.51 -9.264 ** 20523 ***

LINK 732 0.51 6.67 0.0765 -0.20 14.58 -8.5009 ** 6532.8 ***

USDC 732 0.00 0.55 0.00 0.46 12.60 -11.589 ** 4900.6 ***

BSV 732 0.08 7.16 0.0112 2.91 44.19 -8.5081 ** 60949 ***

XLM 732 0.01 5.14 0.0019 0.50 13.55 -8.5115 ** 5664.4 ***

XMR 732 0.15 4.57 0.0328 -1.87 19.31 -9.0244 ** 11877 ***

EOS 732 0.00 5.17 0.00 -1.42 14.89 -9.1991 ** 7052.3 ***

THETA 732 0.53 6.78 0.0782 -0.65 10.43 -7.5369 ** 3392.9 ***

TRX 732 0.05 5.19 0.0096 -1.45 15.14 -9.52 ** 7298.2 ***

XEM 732 0.15 5.41 0.0277 0.44 5.45 -7.9895 ** 937.39 ***

XTZ 732 0.20 5.96 0.0336 -1.04 15.68 -8.3612 ** 7682.8 ***

CRO 732 0.14 6.54 0.0214 3.42 51.76 -8.3221 ** 83605 ***

CEL 732 0.70 7.30 0.0959 -0.24 5.46 -8.9476 ** 924.44 ***

VET 732 0.21 6.12 0.0343 -1.17 15.16 -8.392 ** 7219.7 ***

DOGE 732 0.12 4.41 0.0272 1.03 20.84 -9.7068 ** 13457 ***

SNX 732 0.74 8.21 0.0901 0.10 4.48 -8.4729 ** 618.48 ***

NEO 732 0.09 5.24 0.0172 -0.80 10.32 -8.4938 ** 3351 ***

MKR 732 0.03 5.72 0.0052 -3.51 58.30 -9.0152 ** 105787 ***

HT 732 0.22 4.15 0.0530 -1.90 30.80 -8.5629 ** 29547 ***

MIOTA 732 -0.03 5.09 -0.0059 -1.45 20.12 -8.9533 ** 12682 ***

DASH 732 0.02 5.09 0.0039 -0.09 16.81 -8.3025 ** 8677 ***

REV 732 -0.40 5.40 -0.0741 -3.37 63.58 -9.3197 ** 125403 ***

ZEC 732 0.00 5.17 0.00 -0.88 8.34 -8.4652 ** 2233.4 ***

ETC 732 0.02 4.95 0.0040 -1.53 17.98 -8.5885 ** 10212 ***

DCR 732 0.12 4.93 0.0243 -1.47 16.76 -9.1469 ** 8885.4 ***

Notes: Std, S/R, ADF and JB are the abbreviations of the standard deviation, Sharpe ratio, Augmented Dickey

Fuller and Jarque-Bera tests, respectively. Entries marked with *** have empirical p-values < 0.01, ** 0.01 ≤

p < 0.05, and * 0.05 ≤ p < 0.10 under the null of non-stationary data for ADF test and the null of normally

distributed data for Jarque-Bera test.
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Figure 4.2: Time series plot for cryptocurrency prices and cryptocurrency returns (32

cryptocurrencies)
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We also document descriptive statistics for commodities in Table 4 and plot the

time series of commodity returns in Figure 3. Compared cryotos with commodi-

ties, a relative traditional asset class, we found that cryptocurrency returns exhibit

significant high variability, excess skewness and kurtosis, as well as deviation from

Normal distribution. These observations suggest that the cryptocurrency market is

not as efficient as stock or foreign exchange markets, which display a complete lack

of predictability (Lahmiri et al., 2018).

Figure 4.3: Time series plot for commodity returns (30 commodities)
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Table 4.4: Descriptive statistics for commodities

Commodity Obs Mean Std Sharpe Ratio Skewness Kurtosis ADF Jarque-Bera

FOOD 253 0.07 0.74 0.0946 -0.34 2.16 -6.094 ** 55.862 ***

BEER 253 0.05 1.43 0.0350 3.41 26.28 -5.5157 ** 7908.6 ***

SMOKE 253 0.08 1.65 0.0485 -0.04 2.06 -5.2288 ** 46.436 ***

GAMES 253 0.07 0.95 0.0737 0.08 0.97 -5.615 ** 10.938 ***

BOOKS 253 -0.05 1.30 -0.0385 -0.06 0.89 -6.5994 ** 9.1584 **

HSHLD 253 0.10 0.93 0.1075 -0.17 0.74 -6.2566 ** 7.4648 **

CLTHS 253 0.10 1.24 0.0806 -0.45 1.11 -5.7245 ** 22.205 ***

HLTH 253 0.12 1.26 0.0952 0.13 1.30 -5.6234 ** 19.411 ***

CHEMS 253 0.08 1.25 0.0640 -0.03 0.69 -5.1162 ** 5.4918 *

TXTLS 253 0.13 1.60 0.0813 0.61 2.95 -5.4978 ** 110.48 ***

CNSTR 253 0.15 1.14 0.1316 0.47 1.89 -6.0044 ** 48.46 ***

STEEL 253 0.07 1.52 0.0461 0.07 0.71 -5.8882 ** 5.9409 *

FABPR 253 0.12 1.29 0.0930 -0.14 0.84 -5.356 ** 8.7924 **

ELCEQ 253 0.14 1.23 0.1138 -0.10 0.77 -4.6912 ** 7.0821 **

AUTOS 253 0.14 1.47 0.0952 0.14 0.75 -5.4472 ** 7.2045 **

CARRY 253 0.10 1.15 0.0870 -0.32 0.88 -5.2106 ** 13.103 ***

MINES 253 0.10 1.39 0.0719 0.23 0.74 -5.6247 ** 8.6176 **

COAL 253 -0.22 2.10 -0.1048 -0.37 1.39 -5.1724 ** 27.415 ***

OIL 253 -0.05 2.28 -0.0219 0.55 2.74 -5.3632 ** 94.641 ***

UTIL 253 0.07 0.70 0.1000 -0.33 0.87 -7.0213 ** 13.043 ***

TELCM 253 0.02 1.05 0.0190 0.11 1.11 -6.3514 ** 14.281 ***

SERVS 253 0.10 0.95 0.1053 -0.30 1.97 -5.8318 ** 46.46 ***

BUSEQ 253 0.15 1.03 0.1456 -0.33 1.09 -5.141 ** 17.807 ***

PAPER 253 0.06 1.15 0.0522 0.03 0.43 -6.0542 ** 2.1898

TRANS 253 0.05 1.26 0.0397 -0.04 0.46 -5.5597 ** 2.5693

WHLSL 253 0.08 1.02 0.0784 -0.13 0.92 -5.7945 ** 10.286 ***

RTAIL 253 0.05 1.25 0.0400 -0.08 0.72 -5.7551 ** 6.1576 **

MEALS 253 0.06 0.82 0.0732 0.00 1.12 -6.1484 ** 13.889 ***

FIN 253 0.10 0.82 0.1220 -0.49 1.48 -5.7066 ** 34.256 ***

OTHER 253 0.08 0.95 0.0842 1.89 14.84 -6.9311 ** 2519.2 ***

Notes: Std, S/R, ADF and JB are the abbreviations of the standard deviation, Sharpe ratio, Augmented Dickey

Fuller and Jarque-Bera tests, respectively. Entries marked with *** have empirical p-values < 0.01, ** 0.01 ≤

p < 0.05, and * 0.05 ≤ p < 0.10 under the null of non-stationary data for ADF test and the null of normally

distributed data for Jarque-Bera test.
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4.4 Results

4.4.1 Clustering Analysis of Cryptocurrencies

First, we calculate the similarity of the distributions of daily log returns of two cryp-

tocurrencies following Maasoumi & Racine (2002). Software for Nonparametric kernel

smoothing implementation of this metric is made available in R (NP package), among

others. For the kernel function we employ the widely used nonparametric second-order

Gaussian kernel, while bandwidths are selected via likelihood cross-validation (Silver-

man, 1986). Block bootstrap is conducted via resampling with replacement from the

pooled empirical distributions of X and Y under the Null of equality.

Tables 5a-5b present the distances across individual cryptocurrencies for the pe-

riod from January 1, 2019 to January 1, 2021. The calculated Sρ in a grey box

indicates insignificance at the 95 percent level. Since there are too many significant

values, we instead highlight the insignificant ones. From Table 5a-5b, we can clearly

observe that many of the cryptocurrencies have different time distributions of daily

returns, since many of the pair-wise distances Sρ are significant. These results make it

evident that there does not exist any market-wide convergence across cryptocurrency

market.

Table 5a-5b provides detailed information about how one cryptocurrency is dif-

ferent from the remaining cryptocurrencies. Taking Bitcoin (BTC) as an example,

in the first row of Table 5a, we first note that the distance Sρs between Bitcoin and

two other cryptocurrencies, Ethereum (ETH) and Litecoin (LTC), are significant at

the 95 percent level, which means that the time distributions of the daily log returns

of Bitcoin and two other cryptocurrencies were diverging. In particular, the distance

between Bitcoin and Ethereum and Litecoin are 0.0185 and 0.0282, respectively. Sim-

ilarly, Table 5a-5b also lists the other pair-wise distances between cryptocurrencies.

We also plotted the heat map for entropy metrics Sρ between cryptocurrencies in Fig-
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ure 4, which illustrates which cryptocurrencies have large dissimilarities (blue color)

versus those that appear to be fairly similar (red color).

As we mentioned above, although we reject that there exists a market-wide conver-

gence, we find that there are still some distances between individual cryptocurrencies

that are not significant and that are significant but very small (for example, the

distance between Decred (DCR) and Tezos (XTZ) in Table 5b is 0.0094, although

significant, but roughly zero). This finding makes us suspect that there might exist

a club convergence. Clustering analysis allows us to find out whether or not this is

indeed the case, and if so, how many groups or clubs do we have, and what are the

members within each group?



130

Table 5a: Distances Di,j computed between each cryptocurrency series

ETH XRP LTC BCH ADA BNB LINK USDC BSV XLM XMR EOS THETA TRX XEM

BTC 0.0185 0.0166 0.0282 0.0274 0.0406 0.0248 0.0717 0.4993 0.0312 0.0308 0.0303 0.0242 0.0847 0.0275 0.0351

ETH 0.0126 0.0079 0.0114 0.0128 0.0059 0.0323 0.4993 0.0119 0.0155 0.0066 0.0091 0.0413 0.0079 0.0164

XRP 0.0155 0.0156 0.0277 0.0161 0.0473 0.5000 0.0170 0.0164 0.0207 0.0153 0.0585 0.0169 0.0227

LTC 0.0079 0.0087 0.0080 0.0179 0.5000 0.0092 0.0076 0.0074 0.0129 0.0251 0.0073 0.0090

BCH 0.0157 0.0108 0.0247 0.5000 0.0104 0.0106 0.0140 0.0129 0.0322 0.0124 0.0098

ADA 0.0107 0.0129 0.5000 0.0150 0.0148 0.0109 0.0168 0.0166 0.0060 0.0113

BNB 0.0270 0.4993 0.0149 0.0129 0.0057 0.0147 0.0350 0.0083 0.0144

LINK 0.5000 0.0239 0.0219 0.0270 0.0338 0.0051 0.0202 0.0172

USDC 0.4993 0.5000 0.5000 0.4994 0.5000 0.5000 0.5000

BSV 0.0135 0.0180 0.0150 0.0316 0.0122 0.0099

XLM 0.0121 0.0168 0.0321 0.0125 0.0112

XMR 0.0148 0.0336 0.0099 0.0183

EOS 0.0418 0.0090 0.0175

THETA 0.0256 0.0240

TRX 0.0114

XEM

XTZ

CRO

CEL

VET

DOGE

SNX

NEO

MKR

HT

MIOTA

DASH

REV

ZEC

ETC

DCR
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Table 5b: Distances Di,j computed between each cryptocurrency series (cont.)

XTZ CRO CEL VET DOGE SNX NEO MKR HT MIOTA DASH REV ZEC ETC DCR

BTC 0.0500 0.0237 0.0981 0.0555 0.0150 0.1267 0.0364 0.0369 0.0066 0.0314 0.0217 0.0362 0.0394 0.0182 0.0301

ETH 0.0190 0.0138 0.0495 0.0225 0.0233 0.0723 0.0139 0.0130 0.0123 0.0067 0.0127 0.0538 0.0132 0.0095 0.0065

XRP 0.0297 0.0171 0.0682 0.0356 0.0167 0.0939 0.0232 0.0201 0.0143 0.0146 0.0142 0.0427 0.0225 0.0123 0.0188

LTC 0.0086 0.0106 0.0325 0.0123 0.0300 0.0516 0.0058 0.0083 0.0232 0.0062 0.0103 0.0596 0.0061 0.0104 0.0049

BCH 0.0156 0.0121 0.0397 0.0186 0.0268 0.0601 0.0098 0.0122 0.0219 0.0096 0.0128 0.0561 0.0098 0.0111 0.0099

ADA 0.0080 0.0158 0.0236 0.0074 0.0408 0.0386 0.0079 0.0091 0.0319 0.0092 0.0164 0.0709 0.0068 0.0160 0.0044

BNB 0.0155 0.0133 0.0441 0.0186 0.0284 0.0677 0.0110 0.0094 0.0202 0.0061 0.0105 0.0628 0.0092 0.0122 0.0046

LINK 0.0067 0.0270 0.0091 0.0058 0.0682 0.0176 0.0124 0.0153 0.0616 0.0213 0.0321 0.0969 0.0150 0.0323 0.0192

USDC 0.5000 0.4980 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4993 0.5000 0.5000 0.4993 0.5000 0.5000 0.5000

BSV 0.0139 0.0116 0.0355 0.0181 0.0296 0.0532 0.0124 0.0144 0.0244 0.0118 0.0140 0.0551 0.0112 0.0130 0.0117

XLM 0.0140 0.0118 0.0403 0.0167 0.0297 0.0582 0.0089 0.0083 0.0254 0.0118 0.0135 0.0609 0.0101 0.0136 0.0101

XMR 0.0170 0.0158 0.0457 0.0193 0.0362 0.0675 0.0096 0.0103 0.0251 0.0063 0.0170 0.0707 0.0103 0.0135 0.0055

EOS 0.0205 0.0145 0.0481 0.0218 0.0196 0.0674 0.0164 0.0184 0.0158 0.0130 0.0185 0.0453 0.0167 0.0083 0.0109

THETA 0.0102 0.0347 0.0058 0.0080 0.0820 0.0125 0.0193 0.0216 0.0737 0.0267 0.0421 0.1092 0.0193 0.0424 0.0253

TRX 0.0108 0.0128 0.0317 0.0112 0.0277 0.0502 0.0089 0.0098 0.0212 0.0073 0.0119 0.0564 0.0093 0.0086 0.0041

XEM 0.0121 0.0136 0.0305 0.0150 0.0327 0.0476 0.0093 0.0097 0.0285 0.0129 0.0106 0.0606 0.0095 0.0121 0.0094

XTZ 0.0151 0.0150 0.0033 0.0472 0.0286 0.0077 0.0109 0.0408 0.0113 0.0194 0.0732 0.0081 0.0203 0.0094

CRO 0.0420 0.0189 0.0250 0.0602 0.0115 0.0166 0.0191 0.0138 0.0128 0.0480 0.0141 0.0121 0.0129

CEL 0.0120 0.0903 0.0065 0.0258 0.0326 0.0838 0.0354 0.0519 0.1175 0.0273 0.0497 0.0328

VET 0.0529 0.0235 0.0095 0.0133 0.0455 0.0137 0.0251 0.0797 0.0098 0.0240 0.0115

DOGE 0.1174 0.0380 0.0400 0.0104 0.0328 0.0257 0.0393 0.0370 0.0175 0.0310

SNX 0.0436 0.0498 0.1105 0.0562 0.0721 0.1406 0.0450 0.0708 0.0525

NEO 0.0071 0.0317 0.0079 0.0138 0.0697 0.0076 0.0139 0.0068

MKR 0.0312 0.0068 0.0124 0.0699 0.0087 0.0136 0.0072

HT 0.0250 0.0197 0.0373 0.0310 0.0152 0.0224

MIOTA 0.0120 0.0610 0.0070 0.0119 0.0055

DASH 0.0496 0.0143 0.0110 0.0117

REV 0.0676 0.0455 0.0649

ZEC 0.0157 0.0067

ETC 0.0099

DCR

Notes: Figures highlighted are insignificant at p <= 0.05 level.
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Figure 4.4: Heat map for entropy metrics between cryptocurrencies and commodities

The results obtained from hierarchical clustering analysis using three different

linkage (complete, single and average) are summarized in Figures 5. The figure 5

demonstrates how our hierarchical clustering method proceeds, combining the clusters

beginning with the case where each cryptocurrencies is its own cluster to the case

where all the cryptocurrencies are in the same cluster. To determine the optimal

number of clusters, we look at the largest difference of heights in the dendrogram.

The optimal number of clusters is 4 for complete and average linkage and the optimal

number of clusters is 2 for single linkage in our case. Using complete linkage method,

we can cluster the cryptocurrencies into four clubs, and the membership of each club

is summarized in Table 6.
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Table 4.6: Clustering Analysis Results for Cryptocurrencies (complete linkage)

1 CEL SNX XTZ VET LINK THETA

2 REV

3 BSV BCH XEM CRO DASH XLM

MKR ETH MIOTA BNB XMR ADA

TRX DCR ZEC LTC NEO

4 DOGE BTC HT XRP EOS ETC

Figure 4.5: Dendrogram with complete (left), single (middle) and average (right)

linkage for clusters consist of cryptocurrencies
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• Cluster 1: This cluster allocates 6 cryptocurrencies with very high average re-

turns, high volatility as well as high Sharpe Ratios. This cluster includes: Cel-

sius (CEL), Synthetix (SNX), Tezos (XTZ), VeChain (VET), Chainlink (LINK)

and THETA (TEHTA). The average daily log-returns is 0.48%, the average

volatility is 6.84, and the average Sharpe Ratio is 0.07 within this cluster. We

can also observe that the cryptocurrencies in this cluster have low skewness and

kurtosis. We also notice that most of the cryptocurrencies in this cluster have

low volume.

• Cluster 2: This cluster contains only one cryptocurrency, Revain (REV), which

have negative return (also negative Sharpe Ratio) and high skewness and kur-

tosis. The average daily log-return of REV is -0.40%, the average volatility

of REV is 5.40, and the average Sharpe Ratio of REV is -0.07. REV was in-

troduced in the market in 2017 as an Ethereum-based token that interfaces

with the Revain online business review platform. The organisation utilizes the

Ethereum blockchain to record reviews approved by both the system and the

business owner.

• Cluster 3: This cluster contains cryptocurrencies with low returns and low

volatility, as well as mild skewness and kurtosis. This cluster includes: Bitcoin

SV (BSV), Bitcoin Cash (BCH), NEM (XEM), Crypto.com Coin (CRO), Dash

(DASH), Stellar (XLM), Maker (MKR), Ethereum (ETH), IOTA (MIOTA),

Binance Coin (BNB), Monero (XMR), Cardano (ADA), TRON (TRX), Decred

(DCR), Zcash (ZEC), Litecoin (LTC) and Neo (NEO). The average daily log-

returns is 0.11%, the average volatility is 5.32, and the average Sharpe Ratio is

0.02 within this cluster. One of the cryptocurrencies with highest market cap-

italization, Ethereum (ETH), is also included in this cluster. The similarities

among the cryptocurrencies within the cluster can provide possible explana-
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tions: (1) Geographic similarity. For example, we noticed that both Cardano

(ADA) and Neo (NEO) have projects in Asia and most of their investors are

located in Asia, which leads them to be classified in the same cluster. (2) Func-

tion. Dash (DASH) and Monero (XMR) are in the same cluster for the potential

reason that these two cryptocurrencies emphasized on privacy and security. (3)

“Coinbase effect”. We found that during a certain listing time, the cryptocur-

rencies under the same market conditions can show similar trends. For example,

Coinbase announced that Zcash (ZEC) was listed in November 2018, and after

that, two other cryptocurrencies Stellar (XLM) and Maker (MKR) were also

listed on Coinbase within few months. This causes these three cryptocurrencies

to be classified into the same cluster.

• Cluster 4: This cluster contains cryptocurrencies with low returns and low

volatility. This cluster includes: Dogecoin (DOGE), Bitcoin (BTC), Huobi To-

ken (HT), XRP (XRP), EOS (EOS) and Ethereum Classic (ETC). The average

daily log-returns is 0.10%, the average volatility is 4.59, and the average Sharpe

Ratio is 0.02 within this cluster. This cluster contains the cryptocurrency with

highest market capitalization, Bitcoin (BTC). By observing this cluster, our

assumption on geographic similarity is also strengthened. Dogecoin (DOGE)

and XRP (XRP) belonged to the same cluster, and both of them are digital

currencies and most of their investors are based in US.

4.4.2 Clustering Analysis of Cryptocurrencies and Commodi-

ties

In Maasoumi & Wu (2021), we analyzed the density similarity between Bitcoin and se-

lect asset classes, and found that the top three industries which have similar densities

with Bitcoin are Coal, Steel and Mines. This novel finding inspired us to construct a
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portfolio that can best simulate the performance of Bitcoin return using these three

industries of stocks. In Maasoumi & Wu (2021), we calculated the entropy measures

between Bitcoin and select asset classes before and after COVID-19 broke out. Be-

fore COVID-19 broke out, the density of Bitcoin daily return has smallest distance

with the density of Coal industry daily return. The Sρ between these two densities is

0.02 and statistically significant. The density of Bitcoin daily return also has small

distances with densities of Steel Works Etc, as well as Precious Metals, Non-Metallic,

and Industrial Metal Mining industries. After COVID-19 broke out, the density of

Bitcoin daily return has smallest distance with the density of Business Supplies and

Shipping Containers, Utilities, Tobacco Products and Restaurants, Hotels, Motels

industries daily returns. Comparing Sρ before and after the broke out of COVID-19,

we conclude that the values of Sρ decrease generally in all cases.

The previous findings inspired us to implement hierarchical clustering techniques

to examine if the clusters of cryptocurrencies we derived in Section 4.1 include other

asset classes, such as commodities.

The data for commodities comes from Kenneth R. French 30 Industry Portfolios.

We use the daily average value weighted returns for 30 industry portfolios data. The

30 commodities that included in our analysis are listed in Table 2.

Table 7a-7b listed the Sρ between cryptocurrencies and commodities, which pro-

vides detailed information about how one cryptocurrency is different from one com-

modity asset. All the Sρs we calculated are statistically significant at the 95 percent

level, which means that the time distributions of the daily log returns of cryptocur-

rencies and commodities were diverging. Table 7a-7b show the distance between each

pair-wise cryptocurrency and commodity. For example, in row 1 of Table 7a, the Sρ

between Bitcoin (BTC) and Food Products (Food) is 0.1837 and significant at the

95 percent level. This indicates that the time distributions of the daily log returns

of Bitcoin and Food Products were diverging, and distance between their densities is
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0.1837.

Table 7a: Distances Di,j computed between each cryptocurrency and commodity

series
FOOD BEER SMOKE GAMES BOOKS HSHLD CLTHS HLTH CHEMS TXTLS CNSTR STEEL FABPR ELCEQ AUTOS

BTC 0.1837 0.1153 0.0559 0.1413 0.0944 0.1419 0.1021 0.0941 0.0897 0.0645 0.1111 0.0651 0.0875 0.0906 0.0742

ETH 0.2576 0.1698 0.0885 0.2052 0.1378 0.2044 0.1501 0.1328 0.1337 0.0995 0.1595 0.0977 0.1337 0.1405 0.1085

XRP 0.2298 0.1435 0.0720 0.1792 0.1144 0.1785 0.1243 0.1137 0.1118 0.0844 0.1402 0.0807 0.1107 0.1164 0.0923

LTC 0.3287 0.2318 0.1321 0.2735 0.1928 0.2730 0.2060 0.1894 0.1893 0.1495 0.2222 0.1437 0.1865 0.1951 0.1562

BCH 0.2993 0.2052 0.1161 0.2455 0.1704 0.2459 0.1843 0.1689 0.1680 0.1285 0.1982 0.1267 0.1669 0.1742 0.1398

ADA 0.3483 0.2533 0.1496 0.2947 0.2153 0.2940 0.2266 0.2109 0.2116 0.1670 0.2440 0.1655 0.2091 0.2174 0.1794

BNB 0.3473 0.2538 0.1456 0.2951 0.2150 0.2952 0.2271 0.2100 0.2113 0.1615 0.2421 0.1630 0.2088 0.2175 0.1766

LINK 0.4278 0.3330 0.2235 0.3785 0.2983 0.3782 0.3085 0.2945 0.2957 0.2426 0.3283 0.2460 0.2929 0.3016 0.2622

BSV 0.3076 0.2185 0.1313 0.2584 0.1868 0.2570 0.1945 0.1845 0.1839 0.1486 0.2152 0.1461 0.1809 0.1881 0.1587

XLM 0.3038 0.2027 0.1119 0.2460 0.1634 0.2454 0.1775 0.1650 0.1623 0.1310 0.1995 0.1193 0.1603 0.1682 0.1344

XMR 0.3206 0.2216 0.1248 0.2632 0.1848 0.2619 0.1947 0.1794 0.1789 0.1427 0.2121 0.1353 0.1771 0.1852 0.1487

EOS 0.2907 0.2018 0.1205 0.2371 0.1698 0.2369 0.1829 0.1654 0.1654 0.1314 0.1919 0.1289 0.1652 0.1715 0.1400

THETA 0.4272 0.3312 0.2214 0.3757 0.2979 0.3757 0.3071 0.2909 0.2921 0.2391 0.3227 0.2423 0.2892 0.2973 0.2572

TRX 0.3402 0.2465 0.1484 0.2891 0.2112 0.2886 0.2244 0.2094 0.2100 0.1639 0.2416 0.1658 0.2086 0.2170 0.1802

XEM 0.3292 0.2370 0.1355 0.2752 0.1969 0.2742 0.2069 0.1942 0.1932 0.1540 0.2273 0.1494 0.1900 0.1978 0.1634

XTZ 0.3876 0.2947 0.2005 0.3396 0.2662 0.3393 0.2767 0.2622 0.2636 0.2148 0.2926 0.2199 0.2624 0.2703 0.2345

CRO 0.3191 0.2324 0.1524 0.2743 0.2068 0.2735 0.2157 0.2043 0.2055 0.1661 0.2326 0.1689 0.2050 0.2125 0.1820

CEL 0.4985 0.4041 0.3017 0.4521 0.3737 0.4523 0.3850 0.3714 0.3722 0.3215 0.4041 0.3230 0.3694 0.3780 0.3388

VET 0.4193 0.3215 0.2055 0.3661 0.2814 0.3660 0.2928 0.2775 0.2780 0.2263 0.3127 0.2257 0.2747 0.2837 0.2419

DOGE 0.2295 0.1476 0.0690 0.1809 0.1133 0.1809 0.1286 0.1145 0.1139 0.0799 0.1407 0.0791 0.1135 0.1201 0.0910

SNX 0.5187 0.4268 0.3149 0.4729 0.3945 0.4732 0.4050 0.3892 0.3916 0.3324 0.4217 0.3398 0.3889 0.3978 0.3556

NEO 0.3672 0.2755 0.1583 0.3150 0.2368 0.3131 0.2386 0.2264 0.2283 0.1801 0.2608 0.1800 0.2250 0.2335 0.1955

MKR 0.3590 0.2654 0.1633 0.3069 0.2308 0.3067 0.2413 0.2254 0.2262 0.1798 0.2563 0.1805 0.2240 0.2319 0.1943

HT 0.2677 0.1836 0.1023 0.2184 0.1536 0.2173 0.1633 0.1480 0.1491 0.1135 0.1738 0.1146 0.1479 0.1545 0.1242

MIOTA 0.3176 0.2208 0.1249 0.2627 0.1844 0.2626 0.1960 0.1807 0.1809 0.1404 0.2131 0.1373 0.1798 0.1878 0.1513

DASH 0.3053 0.2114 0.1114 0.2515 0.1700 0.2506 0.1836 0.1698 0.1692 0.1294 0.2039 0.1249 0.1668 0.1754 0.1392

REV 0.3279 0.2430 0.1505 0.2809 0.2097 0.2801 0.2186 0.2074 0.2079 0.1683 0.2374 0.1682 0.2055 0.2128 0.1818

ZEC 0.3417 0.2418 0.1419 0.2878 0.2022 0.2880 0.2194 0.2030 0.2034 0.1577 0.2384 0.1559 0.2022 0.2115 0.1711

ETC 0.2933 0.2021 0.1092 0.2394 0.1675 0.2382 0.1751 0.1621 0.1616 0.1259 0.1921 0.1216 0.1592 0.1658 0.1347

DCR 0.3414 0.2416 0.1418 0.2394 0.2026 0.2852 0.2160 0.2016 0.2006 0.1609 0.2362 0.1542 0.1981 0.2064 0.1692
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Table 7b: Distances Di,j computed between each cryptocurrency and commodity

series (cont.)
CARRY MINES COAL OIL UTIL TELCM SERVS BUSEQ PAPER TRANS WHLSL RTAIL MEALS FIN OTHER

BTC 0.1085 0.0843 0.0376 0.0397 0.2071 0.1168 0.1530 0.1312 0.1091 0.0921 0.1314 0.0908 0.1783 0.1782 0.1631

ETH 0.1624 0.1196 0.0481 0.0429 0.2826 0.1676 0.2110 0.1868 0.1547 0.1355 0.1886 0.1345 0.2506 0.2482 0.2289

XRP 0.1360 0.1038 0.0380 0.0368 0.2660 0.1434 0.1858 0.1614 0.1320 0.1127 0.1627 0.1115 0.2243 0.2217 0.2033

LTC 0.2208 0.1719 0.0808 0.0643 0.3584 0.2313 0.2789 0.2501 0.2164 0.1909 0.2537 0.1899 0.3235 0.3195 0.2998

BCH 0.1991 0.1536 0.0694 0.0590 0.3258 0.2048 0.2521 0.2266 0.1922 0.1699 0.2282 0.1678 0.2927 0.2911 0.2686

ADA 0.2424 0.1953 0.0919 0.0835 0.3774 0.2539 0.2996 0.2714 0.2389 0.2136 0.2752 0.2122 0.3435 0.3392 0.3179

BNB 0.2441 0.1934 0.0939 0.0770 0.3762 0.2533 0.2993 0.2726 0.2397 0.2142 0.2762 0.2118 0.3429 0.3395 0.3180

LINK 0.3269 0.2797 0.1581 0.1444 0.4556 0.3381 0.3815 0.3556 0.3246 0.2985 0.3596 0.2958 0.4245 0.4201 0.3979

BSV 0.2091 0.1737 0.0820 0.0780 0.3354 0.2211 0.2621 0.2358 0.2082 0.1854 0.2397 0.1838 0.3044 0.2992 0.2810

XLM 0.1925 0.1493 0.0563 0.0466 0.3331 0.2037 0.2534 0.2241 0.1884 0.1628 0.2262 0.1619 0.2976 0.2939 0.2757

XMR 0.2109 0.1641 0.0690 0.0592 0.3493 0.2220 0.2694 0.2397 0.2055 0.1812 0.2435 0.1798 0.3137 0.3100 0.2908

EOS 0.1940 0.1510 0.0723 0.0711 0.3162 0.2000 0.2452 0.2195 0.1865 0.1667 0.2207 0.1663 0.2831 0.2817 0.2607

THETA 0.3245 0.2746 0.1575 0.1410 0.4557 0.3356 0.3808 0.3529 0.3211 0.2954 0.3569 0.2929 0.4225 0.4194 0.3958

TRX 0.2406 0.1949 0.0929 0.0823 0.3667 0.2484 0.2924 0.2681 0.2354 0.2120 0.2710 0.2099 0.3355 0.3315 0.3095

XEM 0.2222 0.1795 0.0807 0.0763 0.3588 0.2352 0.2808 0.2516 0.2201 0.1949 0.2555 0.1934 0.3246 0.3199 0.2998

XTZ 0.2935 0.2494 0.1421 0.1323 0.4128 0.3011 0.3430 0.3198 0.2890 0.2664 0.3225 0.2637 0.3832 0.3800 0.3576

CRO 0.2323 0.1954 0.1088 0.1005 0.3420 0.2381 0.2758 0.2558 0.2281 0.2083 0.2586 0.2053 0.3153 0.3114 0.2933

CEL 0.4028 0.3558 0.2339 0.2136 0.5248 0.4130 0.4549 0.4306 0.4003 0.3748 0.4342 0.3722 0.4954 0.4916 0.4712

VET 0.3112 0.2602 0.1380 0.1210 0.4492 0.3235 0.3706 0.3419 0.3085 0.2806 0.3460 0.2783 0.4152 0.4111 0.3891

DOGE 0.1404 0.1019 0.0358 0.0300 0.2533 0.1442 0.1858 0.1647 0.1341 0.1152 0.1659 0.1135 0.2241 0.2215 0.2028

SNX 0.4237 0.3732 0.2467 0.2273 0.5450 0.4336 0.4751 0.4510 0.4208 0.3950 0.4551 0.3920 0.5158 0.5121 0.4888

NEO 0.2599 0.2152 0.1064 0.0885 0.3967 0.2748 0.3177 0.2882 0.2593 0.2331 0.2946 0.2293 0.3634 0.3578 0.3403

MKR 0.2575 0.2101 0.1075 0.0960 0.3869 0.2670 0.3119 0.2851 0.2531 0.2289 0.2885 0.2268 0.3539 0.3507 0.3289

HT 0.1757 0.1361 0.0635 0.0601 0.2929 0.1823 0.2227 0.1986 0.1701 0.1511 0.2017 0.1499 0.2622 0.2589 0.2389

MIOTA 0.2127 0.1666 0.0690 0.0607 0.3454 0.2212 0.2686 0.2417 0.2073 0.1831 0.2441 0.1811 0.3116 0.3088 0.2885

DASH 0.1991 0.1545 0.0605 0.0529 0.3341 0.2098 0.2557 0.2286 0.1956 0.1705 0.2319 0.1690 0.3008 0.2959 0.2764

REV 0.2339 0.1963 0.0969 0.0942 0.3546 0.2438 0.2840 0.2600 0.2322 0.2097 0.2630 0.2078 0.3251 0.3203 0.3019

ZEC 0.2359 0.1864 0.0828 0.0693 0.3698 0.2440 0.2919 0.2666 0.2305 0.2046 0.2686 0.2031 0.3370 0.3332 0.3117

ETC 0.1895 0.1494 0.0621 0.0556 0.3221 0.2013 0.2461 0.2170 0.1867 0.1636 0.2204 0.1623 0.2878 0.2840 0.2644

DCR 0.2317 0.1851 0.0820 0.0719 0.3712 0.2433 0.2918 0.2627 0.2281 0.2018 0.2656 0.2007 0.3362 0.3322 0.3119

Notes: Figures highlighted are insignificant at p <= 0.05 level.

Next, we explore whether cryptocurrencies and commodities could form converg-

ing clubs using hierarchical clustering analysis. In other words, we would like to ana-

lyze whether the most similar commodity assets that we have identified with Bitcoin

will belong to the same “clusters” or clubs. We conduct the hierarchical clustering

analysis using three different linkage (complete, single and average) are summarized

in Figures 6. The figure 6 demonstrates how our hierarchical clustering method pro-

ceeds, combining the clusters beginning with the case where each cryptocurrency /
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commodity assets is its own cluster to the case where all the assets are in the same

cluster. The optimal number of clusters is 8 for complete linkage, 4 for single linkage

and 6 for average linkage in our case. Using complete linkage method, we can cluster

the cryptocurrencies into 8 clubs, and the components of each club are summarized

in Table 8.

From Table 8, we noticed that Cluster 1, 2, 3 and 5 only contain commodities,

while Cluster 4, 6, 7 and 8 only contain cryptocurrencies, and the classification of

cryptocurrencies are exactly the same as when we cluster cryptocurrencies only (see

Table 6). Camparing with commodities, cryptocurrencies returns exhibit high vari-

ability and excess kurtosis. Hence, cryptocurrencies and commodities converge to

separated clusters intuitively. In addition, we noticed that Cluster 5, which contains

commodities Coal (COAL) and Petroleum and Natural Gas (OIL) have smaller dis-

tance to cryptocurrencies according to our cluster proximity using entropy metric

Sρ. This result is consistent with our previous analysis in Maasoumi & Wu (2019),

which discovered top density similarity between Bitcoin and Coal, Steel and Mines

industries. This finding will be useful for diversification among different asset classes.
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Table 4.8: Clustering Analysis Results for Cryptocurrencies and Commodities (com-

plete linkage)

1 UTIL MEALS FIN FOOD OTHER

2 CLTHS HLTH CHEMS RTAIL TRANS FABPR

ELCEQ SMOKE TXTLS BOOKS MINES STEEL

AUTOS

3 SERVS HSHLD BUSEQ WHLSL GAMES BEER

CNSTR CARRY TELCM PAPER

4 CEL SNX XTZ VET LINK THETA

5 COAL OIL

6 REV

7 BSV BCH XEM CRO DASH XLM

MKR ETH MIOTA BNB XMR ADA

TRX DCR ZEC LTC NEO

8 DOGE BTC HT XRP EOS ETC
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Figure 4.6: Dendrogram with complete (left), single (middle) and average (right)

linkage for clusters consist of cryptocurrencies and commodities

4.4.3 Comparing with K-means Clustering Results

In the previous section, we have shown that we can get 4 clusters of cryptocurrencies

with entropy metric §ρ as measurement of similarity using Agglomerative Hierarchical

Clustering with complete linkage. Similarly, we can get 8 clusters if we consider both

cryptocurrencies and commodities simultaneously.

Both Hierarchical Clustering and K-means Clustering algorithms look for similar-

ities among data and both use the same approaches to decide the number of clusters.

However, they are slightly different in dealing with different data set: K-means is

method of cluster analysis using a pre-specified number of clusters, which requires

advance knowledge of “K”; While Hierarchical clustering seeks to build a hierarchy

of clusters without having fixed number of cluster. The main differences between the
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two clustering methods are: (1) K-means Clustering uses a pre-specified number of

clusters, the method assigns records to each cluster to find the mutually exclusive

cluster of spherical shape based on distance; Hierarchical Clustering can be either

divisive or agglomerative. (2) K-means Clustering needs advance knowledge of K

(number of clusters one want to divide your data); In Hierarchical Clustering one can

stop at any number of clusters, one find appropriate by interpreting the dendrogram.

(3) In K-means Clustering, one can use median or mean as a cluster centre to rep-

resent each cluster; Agglomerative Hierarchical Clustering begins with “n” clusters

and sequentially combine similar clusters until only one cluster is obtained. (4) In

K-means Clustering, methods used are normally less computationally intensive and

are suited with very large data sets; In Hierarchical Clustering, divisive methods work

in the opposite direction, beginning with one cluster that includes all the records and

Hierarchical methods are especially useful when the target is to arrange the clusters

into a natural hierarchy. (5) In K-means Clustering, since one start with random

choice of clusters, the results produced by running the algorithm many times may

differ; In Hierarchical Clustering, results are reproducible in Hierarchical clustering.

(6) K-means Clustering is found to work well when the structure of the clusters is

hyper spherical (like circle in 2D, sphere in 3D); Hierarchical Clustering does not work

as well as K-means when the shape of the clusters is hyper spherical. The main advan-

tages for K-means Clustering are: Convergence is guaranteed; Specialized to clusters

of different sizes and shapes. While the main disadvantages for K-means Clustering

are: The “K” is difficult to predict; Didn’t work well with global cluster. The main

advantages for Hierarchical Clustering are: Ease of handling of any forms of similar-

ity or distance; Applicability to any attributes types. While the main disadvantages

for Hierarchical Clustering are: Hierarchical clustering requires the computation and

storage of an n×n distance matrix; For very large data sets, this can be expensive and

slow. Therefore, in this section, we aim to compare our results using Agglomerative
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Hierarchical Clustering in the previous section and using K-means Clustering, which

can justify and strengthen our conclusions.

Firstly, we conduct K-means cluster analysis for portfolio only containing cryp-

tocurrencies. We first explore how many clusters can be distinguished in data set.

For this purpose, we use the elbow method for all defined feature sets. We found

that there is a sharp elbow at k = 2, therefore, we determine the optimal number

of clusters is 2. Table 9 and Figure 8 shows the K-means cluster analysis result for

portfolio only containing cryptocurrencies.

Table 4.9: K-means Clustering Analysis Results for Cryptocurrencies

1 CEL VET DOGE SNX NEO MKR

HT MIOTA DASH REV ZEC ETC

DCR

2 BTC ETH XRP LTC BCH

ADA BNB LINK BSV XLM XMR

EOS THETA TRX XEM XTZ CRO

Next, we conduct K-means cluster analysis for portfolio containing both cryp-

tocurrencies and commodities. Implementing elbow method, we found that there is a

sharp elbow at k = 9, thus the optimal number of clusters should be 9. The K-means

cluster analysis results are shown in Table 10 and Figure 10. Comparing cluster anal-

ysis results using K-means and our Agglomerative Hierarchical Clustering method

with entropy metrics as distance measurement, we found that the K-means method

divides the cryptocurrencies and commodities into separate clusters, specifically, all

cryptocurrencies are classified into cluster 1, 2, 3, 4, 5, 6 and 8, while all commodities

are classified into cluster 7 and 9. While with the Agglomerative Hierarchical Cluster-

ing method as we discuss in the previous sections, cryptocurrencies and commodities

can be mixed up into same “clubs” if we tolerate fewer clusters. For example, if we

tolerate only 3 clusters, then commodities Coal and Oil will be in the same cluster
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with cryptocurrencies.

Table 4.10: K-means Clustering Analysis Results for Cryptocurrencies and Com-

modities

1 LINK

2 BSV

3 BTC ETH XRP LTC BCH ADA

BNB XLM XMR EOS THETA TRX

XEM XTZ

4 SNX

5 VET DOGE NEO MKR HT MIOTA

DASH REV ZEC ETC DCR

6 CEL

7 CHEMS STEEL FABPR AUTOS COAL OIL

TRANS

8 CRO

9 FOOD BEER SMOKE GAMES BOOKS HSHLD

CLTHS HLTH TXTLS CNSTR ELCEQ CARRY

MINES UTIL TELCM SERVS BUSEQ PAPER

WHLSL RTAIL MEALS FIN OTHER
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Figure 4.7: Elbow method to determine the optimal number of clusters consist of

cryptocurrencies

Figure 4.8: K-means cluster plot consist of cryptocurrencies
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Figure 4.9: Elbow method to determine the optimal number of clusters consist of

cryptocurrencies and commodities

Figure 4.10: K-means cluster plot consist of cryptocurrencies and commodities
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4.5 Conclusions

In this work, we analyzed the cryptocurrency market that consists cryptocurrencies

with top 50 highest market capitalization, from January 1, 2019 to January 1, 2021,

with a novel method that implementing Agglomerative Hierarchical Clustering (AHC)

and K-means Clustering techniques based on the measurement of similarity entropy

metrics Sρ. We found that cryptocurrencies converge into four different clusters using

AHC while converge into two clusters using K-means Clustering. We discover that

cryptocurrencies share similar geographic locations tend to converge to same “clubs”.

For instance, Cardano (ADA) and Neo (NEO) belong to the same cluster since both

of them have projects in Asia. We also notice that cryptocurrencies converge to same

cluster when they share similar functions. For example, Dash (DASH) and Monero

(XMR) are in the same cluster and they both focus on privacy and security. We

also observe another potential explanation to our results called “Coinbase effect”. In

addition, we also examined if these clusters include other asset classes, such as com-

modities. We find the cluster that contains commodities Coal (COAL) and Petroleum

and Natural Gas (OIL) have smaller distance to cryptocurrencies using entropy metric

as cluster proximity, which is consistent with our previous work.

To conclude, we believe that the methodology that we used provides a consistent

and descriptive tool supported by modern clustering techniques that may be useful for

investors that need to understand the cryptocurrency market, as it depicts the entire

distributions instead of only moments and identify the main trends in a descriptive

manner.

For further investigations, the associations of some of the key financial ratios

and cluster associations could play an important role enhancing the performance

of the algorithms for the asset selection and diversification of portfolios (Brauneis

and Mestel, 2019; Liu, 2019; Platanakis et al., 2018)) or improving the forecasting

performance (Mallikarjuna and Rao, 2019) to tackle the difficulty of a new market.
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