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Abstract 

Immunometabolic profiles in glioma studied with 1H HRMAS NMR 

By Selin Ekici 

Gliomas are one of the most common types of brain tumors, with 20,000 cases diagnosed every year in 

the United States alone. Developing specific imaging biomarkers may aid in noninvasively diagnosing 

and monitoring treatment response in order to improve the prognosis of gliomas. A common property of 

cancer is the Warburg effect, in which cancer cells use aerobic glycolysis over oxidative phosphorylation, 

enabling glycolytic byproducts to serve as the precursors for the synthetic biomass needed for cancer 

proliferation. The precursors for the synthetic biomass arise from glutamine metabolism, which provides 

nitrogen for the biomass that supports the Warburg effect and enables rapid cancer growth. Moreover, 

inflammation in the tumor microenvironment increases the expression of enzymes that metabolize 

glutamine. As glutamine is one of the main substrates for cellular growth in gliomas, it may be a potential 

imaging biomarker for prognosis and treatment monitoring. The goal of this study was to investigate the 

relationship between glutamine and inflammation in the tumor microenvironment. 1H high-resolution 

magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectra were acquired from 16 

histologically-confirmed ex vivo human glioma samples (World Health Organization grade II=5; grade 

III=6; grade IV=5) and metabolites were quantified using LCModel. Concentrations of interleukin (IL)-

1A, IL-1B, IL-8, IL-6, tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) in glioma samples 

were quantified using electrochemiluminescence assays. Principal component analysis (PCA) was 

performed to limit multiple comparisons of the inflammatory markers. Glutamine, glutamate, glutathione, 

lactate, and alanine increased significantly with tumor grade (p£.05). Concentrations of inflammatory 

markers IL-1A, IL-1B, IL-6, and IL-8 also increased with tumor grade (p£.05). Glutamine, alanine, 

glutathione, and lactate were positively associated with the first inflammatory marker PC, and myo-

inositol was positively associated with the second PC. Our findings indicate that inflammation is 

associated with metabolic reprogramming and identifies glutamine as a potential biomarker for metabolic 

reprogramming in gliomas. Future work will translate the investigation of glutamine as an imaging 

biomarker to in vivo studies. 
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1. Introduction  
Gliomas are one of the most common classes of brain tumors, with grade IV 

glioblastomas (GBM) comprising 80% of malignant tumors.1-3 Gliomas are highly 

heterogeneous tumors comprised of cells with multiple genetic and phenotypic signatures, and 

this heterogeneity may contribute to the high rates of treatment resistance.2, 3 Moreover, gliomas 

infiltrate deep into brain tissue. Complete surgical resection is challenging, leading to high 

recurrence rates.4 Current clinical practice for high grade gliomas includes maximal safe 

resection and a combination of chemotherapy and radiation therapy, but due to their 

heterogeneity, infiltrative nature, and treatment resistance, gliomas have a poor prognosis.2, 5 

Imaging biomarkers may provide a noninvasive method of diagnosing and monitoring response 

to treatment. Developing noninvasive and specific biomarkers may ultimately improve the 

prognosis of gliomas. 

A hallmark of many cancers is metabolic reprogramming. The most well-known example 

is the Warburg effect, where carcinogenic cells reprogram their metabolism to rely on aerobic 

glycolysis over more energy-efficient mitochondrial oxidative phosphorylation.6-8 Metabolic 

reprogramming induces high glycolytic flux that maintains the ATP reservoir needed for cancer 

cells to survive, but more importantly provides precursors for the nucleotides, amino acids, and 

lipids needed to proliferate.7 The demand for carbon, nitrogen, and reducing agents are so high 

that up to 90% of the glucose in tumor cells is converted to lactate and alanine, both downstream 

glycolytic byproducts used for producing fatty acids and NADPH.7-11 However, glucose alone 

cannot provide the nitrogen-based compounds and sufficient TCA cycle intermediates required 

for cancer cell proliferation.  
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There is evidence to suggest that this demand is met with glutamine, an amino acid that 

serves as a precursor for the neurotransmitters glutamate and g-aminobutyric acid (GABA).12, 13 

Glutaminolysis, or glutamine catabolism, fills several crucial roles in brain cancer. As one of the 

most abundant amino acids in the brain, glutamine is readily available for breakdown in cells and 

maintains high metabolic flux by supplying intermediates to the TCA cycle. Its products include 

lactate, glutamate, and alanine, which are used to generate NADPH, fatty acids, amino acids, and 

nucleotides.9, 14, 15 Glutamine is not only used for energetics and division, it can also break down 

to the antioxidant glutathione (GSH) and upregulate the pentose phosphate pathway (PPP), 

which allow cells to evade attack from reactive oxygen species that would otherwise kill healthy 

cells. The increase in GSH and PPP products have been linked to the high rates of treatment 

resistance in gliomas, primarily due to the increased ability to neutralize free radicals and reduce 

stress response.11, 14 Cancer cells can develop a glutamine dependence due to its importance for 

proliferation, and pharmacologic strategies are increasingly targeting glutamine pathways as a 

promising avenue for new treatments.10, 15-17 

Glutamine metabolism is also heavily influenced by inflammation, which is often present 

in the tumor microenvironment due to oncogene activation and constitutive inflammatory 

cytokine production by tumor cells.8, 18 Inflammation is an early indicator of tumor progression, 

and chronic inflammation contributes to proliferation and metastasis by inducing 

immunosuppression and extracellular matrix remodeling.19, 20 Inflammatory cells further 

aggravate metabolic dysregulation by releasing growth factors that activate NF-kB and STAT3, 

which promote the release of glutamine into the tumor microenvironment and upregulate the 

expression of enzymes involved in glutaminolysis.20-24 While glutamine and glutaminolysis are 

increasingly common pharmacologic targets, glutamine as an imaging biomarker is largely 
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unexplored. Given the central role of glutamine in providing energy for cancer cells, and the 

recent increase in treatment strategies that target the glutamine pathway, we hypothesize that 

glutamine may be a potential imaging biomarker for prognosis, stratification, and treatment 

monitoring. 

Multi-modal studies that employ metabolomics complemented by immunoassays can 

identify tumor metabolites and inflammatory markers that are indicative of the crosstalk between 

inflammation and glutamine metabolism. Nuclear magnetic resonance (NMR) techniques can 

quantify metabolite concentrations within ex vivo glioma tissue, and advancements in high-

resolution magic angle spinning (HRMAS) NMR have improved the sensitivity of the 

technique.25-27  

NMR and its in vivo analog, magnetic resonance spectroscopy (MRS),28 have been used 

extensively to identify metabolic biomarkers for differentiating between glioma subtypes,  

grading, and characterizing response to treatment.29-32 However, NMR-based techniques provide 

snapshots of metabolic information, without the context of inflammatory drivers and mediators. 

Multi-modal studies that combine NMR metabolomics with immunoassays may better capture 

the interplay between tumor metabolism and the inflammatory microenvironment. An ex vivo 

approach was used to characterize immunometabolic profiles in the glioma microenvironment 

and identify new candidates for biomarker development. 1H HRMAS NMR revealed an 

upregulation of glioma metabolites associated with glutaminolysis including glutamate, lactate, 

and alanine, and these metabolites were significantly correlated with pro-inflammatory 

cytokines.  This multi-modal approach lays the groundwork for more comprehensive profiling of 

glutamine metabolism in gliomas, motivating future studies using MRS to non-invasively 

quantify glutamine in vivo.  
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2. Methods 

2.1 Human Glioma Tissue Samples 
Sixteen histologically-confirmed glioma samples (World Health Organization (WHO) 

grade II=5; grade III=6; grade IV=5) collected during surgical resection or excision from human 

brain tumor patients were obtained from the Cancer Tissue and Pathology Biobank (Emory 

Winship Cancer Institute). Patient inclusion criteria included samples containing >40% tumor 

and a diagnosis of diffuse astrocytoma, infiltrating astrocytoma, oligodendroglioma, anaplastic 

oligodendroglioma, anaplastic astrocytoma, glioblastoma, high grade astrocytoma, or high grade 

glioma. Patients <18 years old were excluded. Samples from eight males and eight females were 

included. The age range for all patients was 28-71 years old with mean age ± standard deviation 

(SD) = 45 ± 13 years. Ten samples were from patients that were isocitrate dehydrogenase (IDH)-

1 positive and one was IDH-2 positive (Table 1).33-35 Tissue samples were flash frozen 

immediately after surgery and stored at -80 °C prior to batch analysis. 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Glioma tissue sample characteristics 
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2.2 Electrochemiluminescence Assays 
Immunoassays were performed on tissue (≥10 mg) that was homogenized in 1x 

homogenization buffer (125 mM Tris, 15 mM MgCl2, and 2.5 mM EDTA) with 1% Triton X-

100 and protease inhibitor (Roche). Total protein was quantified with a bicinchoninic acid 

(BCA) assay. Inflammatory markers were quantified in duplicate from tissue lysate using 

electrochemiluminescence assays according to manufacturer’s instructions (Meso Scale 

Diagnostics, U-Plex Biomarker Assay, K156067l-1; V-Plex Human CRP Kit, K151STD-1). 

Concentrations were obtained for interleukin (IL)-1A, IL-1B, IL-8, IL-6, IL-10, IL-17A, 

interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and C-reactive protein (CRP). Limits of 

detection for each inflammatory marker are shown in Table 2.  

 

 

 

 

 

 

 

 

 

 

Table 2. Limits of detection of inflammatory markers 
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2.3 HRMAS NMR Spectroscopy 
To prepare samples for solid state HRMAS NMR, frozen tissue (10-15 mg) was aliquoted 

using a 2 mm biopsy punch (Braintree Scientific, Inc, MTP-33-31) and placed in an 80 μL 

HRMAS disposable insert (Bruker, B4493) inside a 4 mm zirconium oxide HRMAS rotor 

(Bruker, H14355). All NMR experiments were performed at 4 °C using a 600 MHz NMR 

spectrometer with an HRMAS probe (Bruker, AVANCE III). NMR spectra were acquired using 

both free induction decay (FID) and Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences with a 

pre-saturation water suppression pulse and the following parameters: MAS spinning speed=4000 

Hz; complex data points=16,384; spectral bandwidth=8013 Hz; N=512. Brain metabolite 

concentration ratios and Cramer-Rao lower bounds (CRLBs) were estimated using LCModel36 

with a gamma-simulated 26-metabolite basis set containing MR-detectable metabolites present in 

gliomas (alanine (Ala), ascorbate (Asc), aspartate (Asp), creatine (Cr), phosphocreatine (PCr), 

ethanolamine (Eth), GABA, glucose (Glc), glutamine (Gln), glutamate (Glu), glycine (Glyc), 

glycerophosphocholine (GPC), phosphocholine (PCh), GSH, 2-hydroxyglutarate (2-HG), myo-

Inositol (Ins), lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartylglutamic acid (NAAG), 

phosphoethanolamine (PE), propylene glycol (PGC), scyllo-Inositol (Scyllo), serine (Ser), 

taurine (Tau), valine (Val), and acetate (Act)).37  

2.4 Statistical Analysis 
Statistical analysis was performed with SPSS (IBM, v26.0). To determine the quality of 

the LCModel fit to the data, metabolite CRLBs acquired with the FID and CPMG pulse 

sequences were compared using a paired two sample t-test. All subsequent statistical analyses 

were performed on concentration ratios obtained from the CPMG pulse sequence for metabolites 

with CRLBs £30. To determine differences in metabolite and inflammatory marker 

concentrations as a function of grade, non-parametric Kruskal-Wallis tests were performed with 
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post-hoc pair-wise Dunn’s tests. A Bonferroni correction was applied to the test statistic of the 

Dunn’s test to correct for multiple comparisons. One-way analysis of covariance (ANCOVA) 

was also used to evaluate differences in metabolites and inflammatory markers while accounting 

for age at diagnosis as a covariate in the analysis.  

To limit multiple comparisons for the detected inflammatory markers, principal 

component analysis (PCA) was used to reduce the dimensions of inflammatory marker 

concentrations and identify orthogonal principal components (PCs) that encapsulate the 

maximum amount of variance within the data set.38 Normality of inflammatory marker 

concentrations were determined by plotting the distributions in histograms. As inflammatory 

marker concentrations were not normally distributed, data was log-transformed prior to PCA. 

PCs with eigenvalues ³1 were retained. Each PC was comprised of loadings (a value from -1 to 

1) from individual inflammatory markers. Inflammatory markers with loading components 

greater than |0.45| were used to determine the significant contributions to each PC.39 

Associations between NMR-quantified tumor metabolites and inflammatory marker PCs were 

determined with linear PC regressions. Significance for all analyses was determined using p≤.05. 

3. Results 
Representative NMR spectra acquired with FID and CPMG sequences are shown in 

Figure 1.33, 34 Metabolite CRLBs for Lac and Ins were significantly lower for spectra acquired 

with CPMG compared to the FID sequence (p=.049 and p=.015 for Lac and Ins, respectively); 

Table 3).33, 34 While there were no statistically significant differences in CRLBs observed for the 

other metabolites, most metabolites could be quantified with LCModel from spectra acquired 

with the CPMG pulse sequence, whereas many metabolites acquired with the FID sequence were 

not detected. For example, Lac was quantifiable from three of the spectra acquired with FID 
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compared to 12 spectra acquired with CPMG (Table 3). A representative spectrum acquired with 

the CPMG sequence, along with LCModel fit to the data, is shown in Figure 2.33, 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Mean metabolite CRLBs for FID and CMPG sequences 

Figure 1. Representative spectra acquired with FID and CPMG sequences 
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Several metabolites varied significantly as a function of WHO grade when analyzed with 

a Kruskal-Wallis H-Test and post-hoc pair-wise Dunn’s tests including Ala, Gln, Glu, PCh, 

GSH, and Lac (Table 4).35 GPC, GABA, 2-HG, Ins, and NAA+NAAG were not significantly 

different between WHO grades. Asp could only be quantified in one sample. Importantly, total 

Cr (Cr + PCr) was used to normalize metabolite concentrations and was not significantly 

different between groups (Table 4).35 After controlling for age using an ANCOVA, the log-

transformed Ala, Gln, and GSH concentrations were still significantly different across WHO 

grades (Table 6). Inflammatory markers including IL-1B, IL-6, IL-8, and TNF-

α concentrations increased significantly with grade when analyzed with a Kruskal-Wallis H-Test 

and post-hoc pair-wise Dunn’s tests (Table 7, Figure 3), while IL-1A and CRP did not vary 

significantly (p>.05, Table 8).35 Concentrations of IL-10, IL-17A, and IFN- γ were below the 

detection limits for all samples (Table 2). After including age at diagnosis as a covariate, log(IL-

1B), log(IL-6), and IL-8 concentrations varied significantly with grade (Table 9).  

 

Figure 2. Representative HRMAS spectra of glioma tissue acquired with the CPMG sequence 
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PCA resulted in two inflammatory marker PCs (PC-1 and PC-2). PC-

1 contained contributions from four inflammatory markers (IL-1A, IL-1B, IL-8, CRP), and PC-

2 contained significant contribution from only CRP (Table 10).35 Ala, Gln, GSH, and Lac 

concentration ratios were positively associated with PC-1 (p=.043; p=.067; p<.001; p=.030, 

respectively) while Ins was positively associated with PC-2 (p=.015) (Table 11, Figure 4).35 The 

remaining metabolites were not significantly associated with either of the inflammatory PCs 

(p>.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Metabolites as a function of WHO grade evaluated by Kruskal Wallis H-test 
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Table 6. Tumor metabolites as a function of WHO grade evaluated by ANCOVA F-Test 

Table 5. Tumor metabolites that varied significantly as a function of WHO grade 

Table 7. Inflammatory marker concentration differences as a function of WHO grade 



 12 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

Figure 3. Box plots of inflammatory marker differences as a function of WHO grade 

Table 8. Tumor inflammatory markers as a function of WHO grade evaluated by 
Kruskal Wallis H-Test 
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Table 10. Inflammatory marker loadings onto individual principal components 

Table 9. Tumor inflammatory markers as a function of WHO grade evaluated by 
ANCOVA F-Test 
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Table 11. Linear regressions of significant metabolite concentrations and inflammatory 
principal component scores 

Figure 4. Significant associations between tumor metabolite concentrations and the 
principal components PC-1 contains contributions from IL-1A, IL-1B, IL-8, and CRP; PC-2 
contains contributions from CRP 
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4. Discussion 

In this study, 1H HRMAS NMR was used to investigate glutamine as a potential imaging 

biomarker. Glutaminolysis is associated with glioma growth, and its role in tumor progression 

has been established.7-11 The increase in concentrations of Gln, Glu, Ala, Lac, and GSH 

concentrations with grade seen in our data (Table 4, Table 5) support previous reports indicating 

that glutaminolysis is upregulated in higher grades of gliomas.9, 16, 40 Glutaminolysis allows Gln 

and Glu to serve as precursors for Lac, Ala, and GSH, all metabolites that support mitochondrial 

respiration and cell growth.7, 10 Lac provides NADPH for the production fatty acids, which are 

required for cell division and energy production.41 In this process, Gln is converted to Ala which 

can be integrated into the TCA cycle and promote cell growth.7, 9 GSH production has also been 

shown to be essential for glioma growth, and its production increases with grade.11, 14 

Furthermore, inhibition of enzymes involved in glutaminolysis have been shown to inhibit the 

transformation of glioma cells, suggesting that the increased reliance on glutaminolysis seen in 

gliomas is pivotal for its progression.42, 43  

A number of studies indicate that chronic inflammation, which is present in most tumor 

microenvironments, is linked to cancer metabolic dysregulation.21, 22 Inflammatory markers 

activate the transcription factors NF-kB and STAT3, which aggravate the Warburg effect and 

glutaminolysis by upregulating mitochondrial respiration as well as increasing glucose and 

glutamine uptake by cancer cells.18, 44 The positive correlations between Gln, Ala, GSH, and Lac 

with the first inflammatory marker PC support these observations. PC-1 included contributions 

from inflammatory markers known to activate NF-kB and STAT-3.18, 44-46 Inflammatory markers 

may play a role in the metabolic reprogramming to glutamine-based energetics through an NF-

kB and STAT-3 dependent mechanism (Figure 5). 
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Metabolic reprogramming has come to be known as a hallmark of cancer, as it is present 

in many types of cancer cells.6-8 As a result, pharmacologic strategies are increasingly targeting 

dysregulated metabolic pathways. Inhibition of enzymes involved in glutaminolysis and the 

Warburg effect are effective in slowing the growth of cancer cells, indicating a promising avenue 

for patients with tumors that exhibit metabolic reprogramming.11, 15-17 Noninvasive identification 

of patients who may benefit from these treatments is paramount. The current diagnostic strategy 

of biopsy collection is limited, as the process is invasive and the biopsy samples provide 

pathological information without the context of metabolism.3, 4 On the other hand, a combined 

MRI and MRS approach provides metabolic information that is not reflected in a biopsy alone.47, 

48 Methods employing MRI and MRS to quantify glutamine may indicate which patients might 

benefit from treatments targeting glutamine metabolism. Future work will expand on in vivo 

quantification of glutamine, as well as further characterizing the relationship between 

metabolism and the tumor microenvironment. 

There were several limitations of this study. A small sample size was used, which 

reduced the statistical power of the results. 1H HRMAS NMR analysis included 14 samples, and 

results must be validated with a larger sample. Notably, Cho and NAA did not change 

significantly with grade. As these metabolites commonly change with glioma grade, it may 

indicate a lack of statistical power.27, 30, 49 Moreover, samples for 1H HRMAS NMR was 

aliquoted using a 2 mm biopsy punch, which may not fully represent the molecular heterogeneity 

seen in whole tumors.  

In this study, we present an approach to study the tumor microenvironment that utilizes 

1H HRMAS NMR and inflammatory markers quantification. Metabolites involved in 

glutaminolysis were positively associated with inflammation. Our findings identify glutamine as 
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a potential biomarker of metabolic reprogramming in gliomas. Future work will translate 

glutamine quantification to in vivo studies, which may aid in noninvasively diagnosing and 

monitoring treatment response in order to improve the prognosis of gliomas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Note: Portions of this text and some of the figures and tables have been adapted, with 
permission, from References 33, 34, and 35. Adapted tables and figures are cited within the text. 
 
 
 

 

Figure 5. Schematic representing the relationship between inflammation and 
metabolic dysregulation in the tumor microenvironment GS=glutamine synthetase; 
GLS=glutaminase; TCA=tricarboxylic acid cycle; a-KG=a-ketoglutarate; NF-kB=nuclear 
factor kappa-light-chain-enhancer of activated B cells; STAT 3=signal transducer and 
activator of transcription 3  
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