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Abstract 

 

Transmission patterns of extensively drug-resistant tuberculosis in South Africa: a network 

approach 

By Kristin Bratton Nelson 

 

Tuberculosis (TB) is the leading infectious cause of disease worldwide and there were over half a million 

cases of drug-resistant TB in 2017. Transmission plays a critical role in the spread of extensively drug-

resistant (XDR) TB in South Africa and globally. However, an incomplete understanding of the risk 

factors for XDR TB transmission prevents design of effective interventions to curtail transmission. 

Further, there has been little focus on the critical role of missing cases in transmission networks, though 

understanding missingness is essential to ensure accurate estimation of underlying transmission patterns.  

We combined bacterial whole genome sequencing to identify transmission events with network 

analysis to investigate the clinical and behavioral factors driving XDR TB transmission. In Aim 1, we 

used exponential random graph models (ERGMs) to measure associations between clinical markers of 

infectiousness and transmission of XDR TB. Cases reporting 2 to 3 months of cough were more highly 

connected in the network than those reporting no cough and smear-positive cases were more poorly 

connected than smear-negative cases. In Aim 2, we examined associations between social mixing patterns 

and transmission. Cases who spent time in urban settings were more highly connected in the network than 

those who did not, and cases with extended hospital stays were less connected that those who reported 

shorter hospital stays. 

In Aim 3, we assessed the impact of missing XDR TB cases in the transmission network. We 

found that no single scenario we tested could account for the missingness in the empirical transmission 

network. However, missingness was unlikely to be random based on our models; the most likely 

scenarios involved oversampling of low-transmitting cases or omission of a factor strongly related to 

transmission from our models. Our results were strongly influenced by several key assumptions. This 

highlights the uncertainties in our transmission model, and about TB transmission broadly, that preclude 

more exact inference regarding underlying XDR TB transmission patterns. 

Through gaining a clearer understanding of XDR TB transmission patterns in settings of high TB 

incidence, we can directly inform interventions that will halt the spread of drug-resistant TB in countries 

with the highest burdens of disease.   
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1. Background 

 

1.1 Global epidemiology of tuberculosis 

1.1.1 Overview 

Tuberculosis (TB) is the leading infectious cause of death worldwide: in 2016, an estimated 10.4 million 

people fell ill with TB and over 1.6 million died from the disease. [1] The etiologic agent of TB is 

Mycobacterium tuberculosis (Mtb), which is one of several mycobacterial species that make up the 

mycobacterium tuberculosis complex (MTBC). Mtb is an obligate pathogen for which humans are the 

only known reservoir, making human-to-human transmission the most consequential mode of TB spread.  

Historically, Mtb has been a remarkably successful pathogen. Evidence suggests that some form 

of TB has caused disease in human populations since the pre-Neolithic period, and between the 17th and 

19th centuries, it is estimated that TB killed one in five people in North America and Europe. [2] As living 

conditions have improved worldwide over the past century, TB incidence has dropped precipitously. This 

is especially true in high-income countries: annual disease rates in the United States and western 

European countries today range from 3 to 10 per 100,000 persons, with outbreaks largely confined to 

high-risk groups (incarcerated, drug-using, and homeless populations) and immigrant communities. [1, 3, 

4] Progress has been slower in low and middle-income countries, where the majority of global TB cases 

are concentrated today. In 2016, only six countries accounted for over half of all notified TB cases: India, 

Indonesia, China, Nigeria, Pakistan, and South Africa. Collectively, these countries also account for over 

half of global drug-resistant TB cases (54%) and deaths (53%) from TB. [1] Achieving progress towards 

ending the global TB epidemic hinges on advancements in TB treatment, care, and prevention in these 

high-burden areas. 

Recent trends in tuberculosis incidence in these high-burden settings have been shaped by the 

moderate success of modern TB control efforts. The number of diagnosed TB cases in most high-burden 

countries have seen slow though steady reductions since the mid-2000s. This is due in large part to recent 
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improvements in TB diagnosis and treatment, including the implementation of rapid diagnostic tools and 

the introduction of shorter, more effective drug therapy regimens. The current global strategy for TB 

control is laid out by the End TB strategy, the goals of which include reducing worldwide incidence by 

50% by 2025. [5] These goals are deliberately ambitious; however, they are a reminder that the global 

community can and should strive to do better to reduce the massive global burden of TB. Recent trends in 

TB epidemiology now characterize the most pressing challenges facing TB control: the circulation of 

increasingly drug resistant strains of TB, the severity of the HIV/TB co-epidemic, and poor living 

conditions in rapidly urbanizing societies all contribute to the persistence of TB in high-burden settings. 

These trends threaten to reverse recent, precious gains made in TB control and addressing these 

challenges will be central to combating the TB epidemic in coming years. 

 

1.1.2 Multidrug and extensively drug-resistant (MDR and XDR) tuberculosis  

In the 1940s, the discovery of the first anti-tuberculosis drugs and the development of multidrug therapy 

made tuberculosis cure possible for the first time. Though this development would revolutionize TB 

control, it would also lay the foundation for future challenges. Although multidrug therapy is effective in 

the majority of TB cases, it does not always eradicate Mtb infection. Failure to eradicate infection can 

lead to the development of drug-resistant disease. Indeed, the emergence of drug-resistant TB as a major 

public health threat was heralded by a severe epidemic in New York City in the early 1990s, prompting 

concerns about the potential for generalized epidemics of drug-resistant TB. [6] This concern would turn 

out to be well-founded: the true magnitude of the threat of drug-resistant TB would soon be fully realized 

in sub-Saharan Africa, Eastern Europe, and Southeast Asia, where epidemics would flourish in the 

absence of robust public health infrastructure and effective disease control measures.  

Today, the World Health Organization (WHO) estimates that 580,000, or approximately one-fifth 

of all TB cases worldwide, are caused by TB that is resistant to first-line tuberculosis drugs isoniazid and 

rifampicin. These cases are termed multidrug-resistant, or MDR, TB. [1] As MDR strains became 

increasingly prevalent, additional, ‘second-line’ drugs were employed to treat MDR TB patients, causing 



 3 

 

further development of resistance to aminoglycosides (kanamycin, amikacin, capreomycin, and 

streptomycin) and fluoroquinolones (levofloxacin, moxifloxacin, gatifloxacin, and ofloxacin). [7, 8] TB 

strains resistant to at least two first-line and two classes of second-line drugs are termed extensively drug-

resistant, or XDR, TB. Today, the WHO estimates that XDR TB cases make up approximately 10% of all 

MDR TB cases worldwide. [5]  

 

 

1.1.3 Extensively drug-resistant (XDR) tuberculosis in South Africa 

In the wake of the global HIV epidemic, drug-resistant TB successfully gained a foothold and spread 

rapidly in sub-Saharan Africa. Perhaps the most severely affected country was South Africa, where a 

dismal response by the South African government to the HIV/AIDS crisis left HIV largely uncontrolled 

for much of the 1990s. [9] The brewing HIV epidemic, combined with increasing circulation of drug-

resistant TB strains, laid the foundation for a public health crisis. In 2005, the first cluster of XDR TB 

cases was identified and described in a hospital in the rural town of Tugela Ferry, South Africa. [10] By 

the of end 2015, only 11 years after it was first identified, XDR TB had been reported in 117 countries. 

[1, 11] Today, South Africa remains among the countries with the highest burdens of XDR TB. HIV co-

infection among all drug-resistant TB cases in South Africa is 63%; among XDR TB cases, it exceeds 

70%. [1, 12, 13] The province of KwaZulu-Natal, which was home to the 2005 Tugela Ferry outbreak, 

continues to have the highest incidence of XDR TB of any province in South Africa. [14] 

Though XDR TB cases account for a relatively small proportion of the TB burden in South Africa 

and globally, the disease is significantly more difficult and costly to treat than drug-susceptible TB. In 

South Africa, the survival rate from XDR TB is 28%. [15] The drugs that are available to treat XDR TB 

are toxic and cause the majority of patients to experience severe side effects. [16] In addition to the 

physical costs of contracting XDR TB, disease and treatment can exact a devastating financial burden on 

patients. An estimated 20,000 drug-resistant TB patients experience catastrophic costs (defined as costs 

that exceed 20% of individual annual income) in South Africa each year, which can have profound effects 
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on their lives and families even if patients are eventually cured of disease. [17, 18] XDR TB also 

represents a dire economic threat to already-overburdened health systems. Drug therapy for each XDR 

case in South Africa is estimated to cost over $26,000 to the healthcare system, and treatment for XDR 

TB cases consumes over two-thirds of the national budget for TB control despite accounting for fewer 

than 5% of all TB cases. [19, 20] In light of the overwhelmingly poor prognosis for XDR TB patients and 

the healthcare systems charged with managing them, prevention is at present the most powerful tool for 

reducing morbidity and mortality from XDR TB.  

 

 

1.2 Natural history of tuberculosis  

1.2.1 Overview  

The clinical course of pulmonary tuberculosis is often divided in two stages: latent infection and active 

disease. The period of latent infection is one of the hallmarks of the natural history of TB, although its 

biology and epidemiology remain poorly understood. During this period, Mtb is sequestered by the host 

immune system and the infected person is typically asymptomatic. The duration of the latent period can 

be highly variable, ranging from weeks to decades, and the vast majority of infected persons never 

progress to active TB disease. Latently-infected individuals make up a vast reservoir of Mtb: it is 

estimated that as many as one-quarter of the global population is infected. [21, 22]  

Five to fifteen percent (5-15%) of those infected will progress to active pulmonary TB disease 

within several years, and among those cases, the median incubation period is between several months and 

two years. [23, 24] TB patients with active disease typically present with clinical symptoms of night 

sweats, weight loss, fever, and a productive cough. [24] Although TB primarily infects the lungs, TB 

infection can occur in virtually any organ; TB infection in a location outside the lungs is referred to as 

extrapulmonary TB disease. Generally, persons with active, pulmonary TB are considered infectious and 

those with latent infection or with only extrapulmonary disease are not. However, it is worth noting that 

the classification of TB infection into two discrete stages is useful for many clinical and public health 
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purposes but increasingly at odds with our understanding of the biology of TB infection. This is supported 

by a range of epidemiologic and biologic evidence that support the existence of a continuum of disease 

states: for example, the observation that some individuals can be culture- or smear-positive, and thus 

presumably infectious, prior to the onset of clinical disease. [25, 26]  

Transmission of tuberculosis occurs via the airborne route: Mtb bacteria are released into the air 

in aerosolized droplet nuclei by infectious cases and inhaled by susceptible persons. The duration of 

infectiousness of TB cases has been estimated to be several months, with HIV+ cases typically exhibiting 

a shorter pre-diagnosis infectious period than HIV-negative cases. [27] Among undiagnosed cases in high 

burden settings, some estimates suggest that TB cases may be infectious for over a year prior to diagnosis 

and initiation of treatment. [28] Classically, smear-positive TB cases are thought to be more infectious 

than cases who have undetectable levels Mtb in sputum (‘smear-negative’). Bacterial load, and thereby 

infectiousness, is expected to decline after initiation of TB therapy. 

Beyond this, our understanding of TB transmission is surprisingly limited. This can be partially 

attributed to the fact that transmission risk is modulated by a complex interaction of host, pathogen, and 

environmental influences, making it difficult to isolate and study the effect of a single factor. Indeed, this 

complexity is true of many infectious diseases and is not specific to TB. However, several features unique 

to the natural history of TB present challenges to studying transmission. First, the variable and often 

lengthy period of latent infection complicates efforts to infer timing of transmission and definitively 

identify sources of infection. Since tests for latent infection are generally poor and cannot distinguish 

between remote and recent, or resolved and current infection, the results of these tests are difficult to 

interpret. Second, mode of TB transmission, via droplet nuclei, makes it difficult to establish risk of TB 

exposure. Ideally, identifying exposure risk would involve a complete accounting of an individual’s 

history of sharing air with others. Of course, this is nearly impossible to measure accurately and 

completely. This is further complicated by the fact that droplet nuclei can remain suspended in air for 

days after they are expelled from the lungs, making it difficult to definitively identify interactions leading 

to transmission. Finally, the variable and often lengthy duration of infectiousness provides the opportunity 



 6 

 

for TB cases to expose countless others to disease, resulting in an intractably large pool of potential 

secondary cases. The period between latent disease and clinical illness is often called the ‘subacute’ or 

‘subclinical’ period, during which an individual may be shedding bacteria (smear-positive) but feeling 

sufficiently well to maintain their daily routine. Increasingly, this period is recognized as potentially 

important for driving transmission. [25, 28]These features present serious challenges for the design of 

studies aiming to understand transmission dynamics, and existing studies should be interpreted cautiously 

in light of these important limitations. 

The above limitations notwithstanding, our current understanding of TB transmission has 

benefited from a spectrum of scientific approaches. Experimental studies of TB transmission began in the 

1950s, with Wells’ and Riley’s seminal experiments showing airborne transmission of Mtb from humans 

to guinea pigs in hospital TB wards. [29] (More recently, similar studies have updated these findings to 

include the impact of drug resistance and HIV infection on infection and transmission. [30, 31]) These 

experimental studies revealed an important principle of TB transmission that has been borne out in 

epidemiologic studies and will be a central focus of this dissertation: there appears to be significant 

heterogeneity in infectiousness, and therefore transmission, among cases of TB.  

 

1.2.2 Factors influencing transmission 

1.2.2.1 Transmission heterogeneity 

Relative to other respiratory infectious diseases, tuberculosis is considered to be only moderately 

infectious. The reproduction number, often denoted R0, is a fundamental property of an infectious disease 

and defined as the number of individuals a single case of disease is expected to infect in fully susceptible 

population. The reproduction number of TB is thought to range between 1 and 5, depending on the 

epidemiologic context. [32, 33] (For comparison, the reproduction number of measles is estimated to be 

12-18, and influenza is estimated to be between 1 and 2. [34, 35] ) However, these estimates represent the 

average of a distribution, reflecting the fact that some individuals will cause fewer secondary cases and 

others will cause more. Variation in the number of secondary cases per index case is often referred to as 
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‘transmission heterogeneity’. [36] Such heterogeneity is generated by differences across individuals with 

respect to several factors: an individual's duration and extent of infectiousness, the rate at which they 

contact susceptible individuals, and the intensity of such contacts. [37] Broadly speaking, individual 

reproduction numbers for TB tend to follow a right-skewed distribution with a long right tail: this is to 

say that while most cases of disease will cause approximately the expected number of secondary TB 

cases, a minority of cases will cause many more than expected. Individuals that cause an unexpectedly 

high number of secondary cases are often colloquially called ‘superspreaders’ and have been implicated 

as critically important in understanding the transmission dynamics of many diseases. [38-41] 

Such large variation in individual reproduction numbers can be attributed to the unequal 

distribution of host, pathogen, and environmental characteristics that influence transmission. Defining the 

combination of clinical, demographic, and social factors that promote differences in transmission across 

individuals and groups is the first step towards understanding the complex interactions that give rise to 

the patterns by which disease spreads through populations. From a public health standpoint, explaining 

the roots of this heterogeneity can also provide the basis for targeting interventions towards groups and 

individuals responsible for a disproportionate amount of transmission, which offers opportunities to 

optimize use of scarce public health resources.  

 

1.2.2.2 Infectiousness 

‘Infectiousness’ refers to the likelihood that a TB case will spread tuberculosis to others. Biologically, this 

is defined by the quantity and viability of Mtb that an infectious person releases into the surrounding 

environment. Measuring infectiousness is complex: although sophisticated methods analyzing cough 

aerosols have shown that it is possible to measure the rate at which cases expel Mtb-containing particles, 

it is technically and methodologically challenging to measure the ability of such particles to cause 

infection in a susceptible host. [42-45] However, clinical characteristics of TB cases may partially reflect 

infectiousness and be useful for identifying cases who are more likely to transmit TB. Classically, 

untreated, smear-positive patients with cough and cavitary disease are thought to be most contagious, and 
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this is generally supported by epidemiologic studies. [46] Given that these clinical features are easily 

measurable, combining them to create an overall measure of extent and duration of the infectious period 

represents a practical approach to estimating the infectiousness of a TB case.  

The quantity of bacteria found in the sputum or in the lungs of a TB case, often referred to as 

bacillary burden, is considered one marker of infectiousness. The effect of high bacillary burden on 

infectiousness is twofold. First, cases with a high bacillary burden may aerosolize higher quantities of 

Mtb. Second, although infectiousness is typically thought to decline after treatment initiation, cases with a 

high bacillary burden may require a longer period on treatment until they are non-infectious. This may 

effectively increase their infectious period relative to cases with a lower bacillary burden. Several clinical 

tests can estimate bacillary burden in a TB patient. Smear microscopy is a microbiological technique that 

is performed by staining a sample of sputum with a dye that adheres to the mycobacterial cell wall. 

Among cases who test positive for mycobacteria, smear grade can be determined by counting the number 

of mycobacteria visible on the stained slide. Larger quantities of bacteria in sputum assigned a higher 

smear grade. These markers have previously been associated with transmission: positive smear status has 

previously been associated with being ‘genotypically-linked’, or harboring a similar TB strain, to at least 

one other sampled TB case. Similarly, smear-positive TB cases have been shown to be genotypically-

linked to higher numbers of secondary cases than smear-negative cases. Among smear-positive cases, 

higher smear grade has been linked with incremental increases in the number of secondary cases caused 

by an index case. [47-50] 

Bacillary burden can also be measured in the lungs using findings from chest radiograph. Chest 

radiograph can be used to detect areas of acutely damaged lung tissue, or ‘cavities’, indicative of high 

concentrations of bacteria. The presence of cavities is thought to increase transmission risk through 

improving the ability of Mtb in the lungs to access the respiratory tract, and indeed, presence of cavitary 

disease has been linked with a higher likelihood of transmission. [51] Because both tests measure the 

bacillary burden in different organs, combined measures of smear grade and cavitary disease provide a 

composite marker of infectiousness that captures both the quantity of bacteria and the time required until 
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anti-TB therapy controls Mtb infection and the case is rendered non-infectious. Indeed, a recent study 

showed that a combined measure of smear grade and chest radiograph findings is linked with time to 

sputum conversion. [52] 

The duration and nature of TB symptoms may also be related to infectiousness. Studies show that 

coughing produces more particles of the appropriate size and velocity for establishing infection than 

either talking or breathing. Thus, cough is considered the primary method of aerosolization and release of 

infectious Mtb particles.  Recent work has shown that measures of cough aerosol production may identify 

individuals more likely to contribute to community transmission. [44, 45] While characteristics of the 

aerosol reflect the probability that a particular contact results in transmission, the duration of cough 

symptoms can represent the number of potential contacts affected. Some evidence suggests that length of 

the period during which a TB patient has cough may represent the time that they are most likely to be 

infectious. [53-56] Increased cough frequency, though not well-studied, has also been linked to higher 

numbers of secondary TB cases. [57]  Collectively, these characteristics of cough may provide further 

insight into the infectiousness of a TB case. 

This dissertation will examine smear status, chest x-ray, and cough duration as markers of 

transmission potential, though it is important to note several important limitations to this approach. Smear 

status and lung pathology may vary significantly over the course of TB disease, and therefore single chest 

x-rays or sputum samples cannot provide a complete picture of transmission over the full clinical course 

of TB. Moreover, the relationships between these clinical markers and infectiousness may be complex. 

For example, transmission from consistently smear-negative TB cases is well-documented, and there is 

evidence that cough aerosols may vary significantly in their capacity to cause infection. [25, 42, 43, 58] 

Moreover, it remains to be understood to what extent the quantity of Mtb in sputum reflects the amount of 

Mtb that is aerosolized, and of those Mtb particles, the proportion that is fit to cause infection in a 

susceptible host. Despite these limitations, information on patient symptoms combined with clinical tests 

may provide a reasonable picture of the infectiousness of a TB case.  
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1.2.2.3 HIV infection 

The single most influential biologic factor shaping TB epidemiology, particularly in South Africa, is HIV 

infection. The primary effect of HIV infection on TB disease epidemiology is that it shortens the latent 

period: the immunosuppressive effects of HIV cause co-infected cases to progress rapidly to active TB 

disease. [59, 60] However, the link between HIV status and TB transmission is more complex. Patients 

with TB/HIV co-infection often have atypical clinical presentations of TB, such as extrapulmonary and 

smear-negative disease. [61-63] These clinical features are associated with low infectiousness and may 

reduce the likelihood of transmission. On the other hand, smear-negative patients are less likely to receive 

a prompt TB diagnosis. Delays in diagnosis could instead increase the likelihood of transmission, by 

extending the period during which a case is infectious. [61-64] Indeed, studies of the effect of HIV on 

transmission have yielded inconclusive results. Human-to-guinea pig transmission studies have shown 

that HIV-positive TB cases cause more secondary TB cases than HIV-negative cases. [31] (Notably, the 

validity of these results has been questioned. [65]) Observational studies have also examined the 

relationship between HIV status and transmission, where transmission is measured by determining 

whether each case has a TB genetic ‘fingerprint’ similar to that of another sampled case. These studies 

have produced mixed results, perhaps because they cannot distinguish between risk of TB infection, 

progression and transmission. [51, 66-69] Studies that aim to establish the direction of transmission can 

theoretically parse the effect of risk factors on infection and transmission. A study from Malawi that 

established directionality of transmission events found that HIV co-infection reduces the likelihood of 

transmission, and a recent modeling study from South America suggested that transmission from HIV-

negative to HIV-positive individuals may be driving TB spread in areas of with high HIV burden. [69, 70] 

However, this same South American study suggested little, if any, association between HIV status and 

transmission. Taken together, the evidence suggests that HIV-positive TB cases may be less likely to 

transmit TB than HIV-negative cases, but that counterbalancing forces may lead to similar transmission 

potential between HIV-negative and HIV-positive TB cases. 
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1.2.2.4 Demographic factors 

Demographic factors, such as age and sex, modulate transmission dynamics through influencing the 

biology of TB infection as well as the social mixing patterns that drive transmission. Although the 

biology of TB infection may not differ significantly by setting, age and sex-specific contact patterns are 

dependent upon sociocultural norms that drive patterns of person-to-person interactions, and therefore 

their effects on transmission may depend largely on the population of study. Recent work has aimed to 

characterize age- and sex-specific social contact patterns in areas with high incidence of TB in order to 

provide a better understanding of the types of contact that lead to transmission in these settings. [71-74] 

Although their root causes are poorly understood, sex differences in TB incidence and prevalence 

are well-described. Crude TB prevalence is typically higher among men than women, though it is 

uncertain whether this is the result of increased rates of diagnosis or increased biologic susceptibility to 

infection or disease progression. Among diagnosed TB cases, men tend to have poorer treatment 

outcomes than women, which result in longer infectious periods and may increase the likelihood of 

transmission to secondary cases. [75] In low- and middle-income countries, men are more likely than 

women to exhibit social mixing patterns that promote transmission, including frequent congregation at 

bars and in other social settings conducive to transmission. Conversely, women tend to spend a larger 

share of their time at home, and thus may be at higher risk for contracting TB from a household member. 

[72, 75] 

Age also influences both the biology of TB disease and the social contact patterns that drive 

transmission. Adults are more likely to transmit TB than children, since the typical clinical features of 

pediatric TB disease, including smear-negativity and lack of cough symptoms,  makes forward 

transmission from pediatric TB cases less likely. [76] Instead, adults are thought to responsible for most 

TB transmission events: in fact, a recent study using social contact data in Zambia and South Africa 

estimated that over 50% of TB infections could be attributed to contact with adult men. [72]  Age and 

sex-related risks for infection and transmission are closely linked with other behaviors, including 
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smoking, drug, and alcohol use, which are also known to increase risk for TB. These factors may increase 

risk for disease progression, severity, and poor treatment outcomes, thus increasing the extent and 

duration of infectiousness. [77-79]  

 

1.2.2.5 Pathogen genetic factors  

The genetic makeup of Mtb can contribute to biologic differences in the processes of infection and 

transmission.  Although not all genetic variation is important, genetic variation that gives rise to 

differences in the ability of Mtb to cause and propagate disease may affect transmission dynamics. On a 

population level, certain strains of TB have been shown to be more ‘successful’ than others: that is, they 

are associated with higher numbers of secondary cases, are more geographically widespread, or are more 

likely than other strains to cause disease. [80, 81] The hypothesis that these strains are more ‘fit’ is 

supported by laboratory evidence: links between specific genetic variants and pathogenicity or virulence 

have been described extensively in murine and rabbit models. [82-86] Ongoing research focused on the 

genetic underpinnings of Mtb airborne survival represent new and exciting frontiers in this area of 

research. [42, 43, 87]  

However, testing whether associations between genetic makeup and transmissibility are causal on 

a population level is not straightforward. Linking observations of increased virulence in vitro with 

epidemiologic events of interest, such as particularly large TB outbreaks, can only generate hypotheses 

regarding whether certain strains are more transmissible than others. [86] Epidemiologic studies that have 

examined the effect of Mtb lineage and sublineage on whether an individual is involved in a transmission 

cluster suffer from methodological limitations; namely, it is difficult to disentangle the effects of host 

factors from those of pathogen lineage. [66, 67, 88] Studies linking certain TB genotypes with poorer 

response to treatment are subject to similar limitations. [89-91] Certainly, some TB strains appear to be 

well-adapted to a wide range of human populations, with evidence to suggest that this flexibility has 

genetic origins. For example, an extensive amount of laboratory and epidemiologic evidence suggests that 
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Lineage 2, or Beijing, strains, may have particular genetic characteristics that explain their modern 

epidemiologic success worldwide. [92]  

The drug resistance profile of a TB strain has also been hypothesized to impact transmission 

potential. Until very recently, it was thought that drug-resistant TB strains were significantly less 

transmissible than drug-susceptible strains, due to fitness losses incurred through the process of 

developing drug resistance. [93, 94] Several lines of evidence support this theory: in vitro and 

epidemiologic studies have shown that specific mutations associated with drug resistance can reduce the 

growth rate, virulence, and transmissibility of Mtb. [95-100] However, that MDR and XDR TB strains 

have persisted over the past several decades is crude but clear evidence of their evolutionary success. (Of 

note, some partially attribute this phenomenon to the large reservoir of immunocompromised, and highly 

susceptible, individuals as a result of the HIV epidemic. [70, 101]) Indeed, recent studies have 

demonstrated that MDR and XDR TB strains are transmissible in both institutional and community 

settings, and some have suggested that they may be even more transmissible than drug-susceptible strains. 

[66, 102, 103] Recent studies of high-burden countries examining the proportion of XDR TB cases 

attributed to primary transmission, rather than inadequate treatment, suggest that as many as three-

quarters of drug-resistant TB cases are the result of transmission. [12, 104] While it is difficult to 

establish the relative transmissibility of drug-resistant and drug-susceptible strains, it is expressly clear 

that transmission of drug-resistant TB plays major role in its epidemiology.  

 

1.2.2.6 Social and environmental factors 

Social and environmental factors, defined broadly, are those that influence the conditions in which 

exposure to Mtb occurs. The scale on which these factors act on transmission can range from the 

individual to the societal, and factors acting on different scales may influence one another. For example, a 

poorly ventilated and crowded household may be the result of community-level social structures that 

create and reinforce social inequalities. Both these macro- and micro-level environmental factors can give 

rise to favorable conditions for transmission. 
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Although the notion of TB as a ‘social disease’ was formalized by Rene Dubos in the 1950s, TB 

has long been recognized as a disease of poverty. [105] Today, TB remains concentrated among those 

with low social and economic status. Broader social conditions, including poverty and homelessness, are 

consistently associated with tuberculosis transmission in epidemiologic studies, acting through 

downstream factors like crowding, poor living conditions, and malnutrition. [66, 68] Social and economic 

factors driving transmission may take different forms depending upon the setting, but ultimately lead to 

similar impacts on risk of transmission and disease progression. A recent study found that among cities in 

high-income European countries, tuberculosis cases concentrated in areas where homelessness, poverty, 

migrants, overcrowding, and substance abuse were more common. [106, 107] In South Africa, India and 

in other low and middle-income countries experiencing accelerated economic development, rapid 

urbanization has drawn rural populations into the cities in massive numbers. The crowded, informal 

housing that supports these new occupants is fertile grounds for disease transmission. [108] In high- and 

low-income settings alike, social conditions are the driving force behind TB epidemics.  

Larger social and economic forces can influence more proximal, physical environmental factors 

affecting risk of transmission. The local environmental profile of a particular setting– temperature, 

humidity, ventilation, and the level of UV light– plays an important role in mediating transmission 

between individuals, through modifying conditions that enable aerosolized Mtb to travel from infected to 

susceptible persons. [53] Perhaps the most compelling link between environmental conditions and 

transmission exists for ventilation. Crowded and poorly-ventilated institutional settings (in hospitals, 

homeless shelters, and prisons) are well-recognized as being conducive to transmission, and lack of 

ventilation may also explain higher TB incidence in colder areas, where individuals tend to spend more 

time indoors. [109-111] Interestingly, it may also account for the paradoxically low incidence of TB 

among the poorest segment of the population in South Africa, since they may be less likely to have glass 

windows and to meet indoors. [112, 113]  Importantly, ventilation is often a modifiable factor in 

households, hospitals, or other locales with high risk for transmission, and improving ventilation can be a 

relatively inexpensive and effective method of preventing transmission. Similarly, increasing UV light 
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has been shown to kill TB bacteria and is often useful, particularly in healthcare settings, to reduce risk of 

transmission. [114] Given that settings of transmission can be clearly identified, interventions targeting 

modifiable, proximal environmental factors (e.g., UV light, ventilation) in specific locations can be 

practical methods for location-specific TB control. 

 

1.2.2.7 Nature of contact required for transmission 

Identifying the types of contact that lead to TB transmission and the locations where it occurs is a critical 

step in the effort to design targeted interventions. In high- and low-TB incidence areas, households and 

institutional settings, such as hospitals and prisons, are often implicated in transmission. While these 

locations and the type of close contact that occurs in them are often prioritized in TB control efforts, 

increasing evidence points towards a large role for non-close contacts for transmission, especially in high-

incidence areas.  

‘Close’ contact, defined as contact that occurs in households or other locations where an 

individual spends substantial time with others whom they know, is an important source of TB 

transmission. Studies have shown that within households, the probability of TB transmission is high: it is 

estimated that a case of drug-resistant TB will infect approximately half of their household contacts, 

though this proportion is highly variable across settings. [115, 116] Though only about 10% of household 

contacts progress to TB disease, they and other close contacts are practical targets for prevention 

measures, since they are more easily enumerated than casual contacts. Moreover, household transmission 

disproportionately affects children, whose TB disease is typically more difficult to diagnose and treat. 

[76, 117] As such, preventing household transmission has long been a key element of TB control and 

remains the primary focus of the public health response to incident TB cases in low-incidence settings. 

Institutional settings have also been implicated as key locations of TB transmission. In areas with 

low TB incidence, TB outbreaks are commonly linked with homeless shelters and prisons. [118, 119] In 

high-incidence settings, institutions can also play a critical role by creating reservoirs of disease that can 

drive incidence in the broader community. Indeed, the role of ‘institutional amplifiers’ in driving 
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transmission in high-incidence settings is well-documented. [10, 120-123] In South Africa, studies of the 

initial XDR TB outbreak in Tugela Ferry suggested that cases who were infected while in the hospital 

may have contributed to community transmission. [103] Identifying and stopping transmission in these 

locations may be an efficient TB control strategy, as research has suggested that it can reduce incidence in 

both the setting itself and in the wider community. [124] 

While the close contact that occurs in households and institutional settings may provide the most 

convenient targets for TB control measures, molecular epidemiology studies suggest that ‘casual’ (non-

close) contact may account for a majority of transmission in high-incidence settings. In Malawi and South 

Africa, molecular epidemiology studies have estimated that household contacts account for less than 20% 

of transmission. [69, 125-127] In Malawi, these studies have shown that half of TB cases with another 

smear-positive case in their household had a different TB strain from that case, indicating their infection 

was acquired elsewhere. [126, 127] Importantly, interpretation of molecular evidence of transmission has 

limitations that must be carefully considered, and are subject to sampling biases that may partially explain 

‘missing’ transmission links. [128] Even accounting for this source of error, the evidence suggests that a 

high proportion of transmission results from non-close contacts. 

Other types of evidence further support an important role for casual, non-household contact in TB 

transmission, particularly in the high-incidence setting of South Africa. Social mixing studies in South 

African townships have suggested that public transport, schools and workplaces are likely settings for 

transmission. [71, 129] Studies employing environmental sampling approaches further support these 

hypotheses: recent modeling work using empirical data on rebreathed air fractions have estimated that 

over 80% of TB transmission in South Africa takes place outside of the home. [73, 129] Although this 

seems to contradict the conventional wisdom that close, intense contact is required for TB transmission, 

recent work has shown that this may be explained by the combined effect of a long infectious period and 

a high frequency of non-repeated contacts. [130] In other words, the cumulative number of casual 

interactions over a long infectious period represent a significantly larger pool of possible contacts, thereby 

accounting for the observation that a majority of transmission appears to occur through casual contact. 
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1.3 Measuring tuberculosis transmission 

1.3.1 Epidemiologic (contact) investigation 

Retrospective investigations of TB transmission employ several complimentary methods to reconstruct 

transmission events, one of which is epidemiologic, or contact investigation. These investigations 

typically involve an interview with the patient to elicit information on time of illness onset, symptoms, 

names of possible contacts, and locations at which contact leading to infection may have occurred. [131] 

Contacts and locations named by the case are then investigated to identify additional cases with latent 

infection or with active TB disease who can then be referred for treatment. Contact investigation is 

recommended by the WHO as one of several methods of active case finding, primarily because these 

investigations are generally high-yield: latent TB is detected in about 30% of household contacts in low 

incidence countries and 50% of household contacts in high incidence countries. [125, 132] These 

activities are valuable in establishing person-to-person interactions that may be responsible for 

transmission and can provide actionable information for public health authorities that helps identify 

additional cases and reduce further transmission.   

However, there are several major concerns with relying solely on epidemiologic investigations to 

completely enumerate possible transmission links. First, many countries with a high TB burden do not 

have the resources to investigate contacts of every TB case, and routine contact investigation activities are 

therefore limited in most countries with high incidence of TB. Second, epidemiologic investigations have 

an important limitation in that they are subject to recall error by TB cases. A recent study that examined 

agreement in contact reporting found that fewer than 30% of identifiable contacts were reported by both 

persons involved in the event, indicating that some individuals report contacts in a more complete manner 

than others. [133] Unsurprisingly, casual contacts seem to be more prone to recall error than close 

contacts: short person-to-person encounters are less likely to be recalled than more extended encounters. 

[134] This may be of minor concern to public health authorities charged with TB control, since 

transmission may be more likely to occur to individuals with whom cases had more intense contact. In 
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this sense, epidemiologic investigations maximize efficiency by capturing contacts with the highest 

likelihood of progressing to TB disease. However, in light of increasing evidence that casual contact may 

be an important driver of transmission, this bias is problematic when studying population-level 

transmission patterns.  

In short, epidemiologic contact investigations, and the contacts enumerated through them, are 

more likely to reflect close contact rather than casual contact. For examining patterns of transmission, 

therefore, reliance upon these investigative methods alone to identify transmission links may reveal only a 

subset of transmission events. 

 

1.3.2 Molecular genotyping 

Molecular epidemiology offers a complementary method to contact investigation for uncovering 

transmission links. The premise of molecular epidemiology studies of transmission is that TB strains 

sampled from cases between whom transmission occurred should be more similar than strains sampled 

from cases between whom transmission did not occur. In other words, Mtb collected from 

epidemiologically-related cases should have identical, or at least similar, genetic ‘fingerprints’. Changes 

in the Mtb genome occur slowly, but at epidemiologically relevant timescales (months to years), allowing 

these genetic changes to provide information about the likelihood that cases may be linked through 

transmission. Several classes of repetitive elements in the Mtb genome have been exploited to develop 

assays to detect these molecular ‘fingerprints’ in Mtb sampled from TB cases. These methods, reviewed 

elsewhere, include restriction fragment length polymorphism (RFLP) typing, mycobacterial interspersed 

repetitive unit-variable number tandem repeat (MIRU-VNTR) typing, and spacer oligonucleotide, or 

spoligotyping, and they have all been applied extensively in epidemiologic studies. [135] Typically, cases 

with the same or very similar genetic fingerprints are classified as ‘clustered’, or linked through recent 

transmission. Cases with genotypes that differ from other cases’ are termed ‘unique’and are assumed to 

have developed disease due to reactivation of a TB infection acquired in the past. An important caveat to 
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this construct is that unique cases may in fact be the result of transmission if the source case was not 

sampled.  

While these genotyping techniques are widely used to characterize TB epidemiology and detect 

ongoing TB transmission, they have several important limitations. First, these techniques only examine a 

small proportion of the genome (<10%) and thus do not represent potentially important genetic variation 

that exist in other parts of the Mtb genome. Second, these methods are limited by the discriminatory 

power of the finest classification in their respective typing schemes. When the determination of whether a 

case is ‘genotypically linked’ relies upon a typing scheme that provides only a coarse, discrete 

measurement of genetic similarity, inferences regarding transmission links are heavily reliant upon the 

proportion of TB cases sampled. [128, 136] Given the same true number of genotypically linked cases in 

a TB outbreak, the fewer cases that are sampled, the lower the proportion of genotypically linked cases 

appears. Continuous measures of genetic similarity that examine a larger fraction of the Mtb genome are 

less sensitive to these methodologic limitations. 

 

1.3.3 Whole genome sequencing  

With the advent of next generation sequencing platforms, bacterial whole genome sequencing 

(WGS) has recently emerged as a tool with unprecedented ability to identify fine-scale genetic differences 

between TB strains. In comparison to conventional genotyping techniques, WGS examines a larger 

portion of the Mtb genome at a finer resolution, creating a more complete picture of genomic variation 

between bacterial organisms sampled from TB cases. WGS has successfully been used to resolve recent 

transmission events in the context of TB outbreaks [137, 138], as well as characterize broader 

transmission patterns over extended time periods [67, 127, 139, 140]. However, it has been employed 

primarily to confirm or refute previously identified epidemiologic links between cases or to further 

differentiate members of a cluster detected through conventional genotyping, rather than as a stand-alone 

method to identify transmission links. [141] Using sequencing approaches to generate hypotheses about 

transmission events may be an efficient way to fully capture transmission links due to both close and 
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casual contact, since molecular methods are unprejudiced by patient report of contacts. Given the 

limitations of epidemiologic investigations, particularly in high-incidence settings, and improved 

capabilities for resolving transmission links afforded by WGS, new techniques for investigating 

transmission that rely on sequencing data represent a promising way forward for studying TB 

transmission.  

It is instructive when interpreting Mtb sequencing data to define the genomic epidemiology of 

Mtb more broadly. Generally, Mtb is a slow-growing organism that is relatively resistant to the horizontal 

gene exchange that accounts for much of the genetic variation in other bacterial species. [142] As a result, 

almost all genetic variance in Mtb populations is the result of genetic changes arising from errors during 

genome replication, or de novo mutations, in the DNA sequence. These mutations arise relatively slowly 

in Mtb as compared to other bacteria: the mutation rate of Mtb is estimated to be approximately 0.2-0.5 

SNPs/year. [143] Collectively, these characteristics give rise to largely monomorphic, or genetically 

uniform, Mtb populations. [144, 145] However, the long history of Mtb as a human pathogen has given 

modern Mtb a strong phylogeographic structure. Phylogenetic classification schemes split Mtb into seven 

lineages, six modern and one ancient, each named for its world region of origin. [146] Though this 

geographic specificity still persists, increasing human movement and the recent widespread epidemiologic 

success of certain lineages have diversified the modern genomic epidemiology of Mtb. [147] Today, all 

seven lineages of Mtb can be found almost anywhere in the world; however, local epidemics tend to 

maintain their own, unique genomic epidemiology. In New York City, for example, Lineage 4, or Euro-

American, strains predominate. [148] In China, Lineage 2 strains, including the globally prevalent Beijing 

strain, are most common. Among XDR strains in KwaZulu-Natal, South Africa, a specific Lineage 4 

strain named KZN/LAM4 accounts for over 80% of cases. [149, 150] With only several key exceptions, 

the genomic epidemiology of TB in high-incidence settings tends to be highly clonal. [149] 

Despite its slow mutation rate and exceptional clonality, Mtb evolves at a rate that is sufficiently 

high to detect epidemiologically-relevant genetic variation, or genetic variation between Mtb sampled 

from cases linked through transmission. However, the exact genetic distance indicative of transmission 
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between two TB cases is not clearly defined. It has been suggested that the threshold may vary depending 

on the local epidemiologic context, since the dynamics of Mtb infection may be influenced by setting-

specific host and pathogen factors. [151] In general, our understanding of the genetic changes that occur 

over the course of TB infection and disease is limited. Estimations of Mtb mutation rates generally 

converge to an estimate of 0.2- 0.5 SNPs/yr, although there remains little certainty regarding the extent to 

which these estimates are appropriate for the purposes of making inference about individual transmission 

events. [67, 152-154] This particular issue will be discussed further in later chapters of this dissertation. 

 

1.3.3.1 Other applications of whole genome sequencing in tuberculosis 

In addition to providing insights about transmission, whole genome sequencing has the potential to 

revolutionize other aspects of the clinical and public health response to TB. Current methods for diagnosis 

and detection of drug resistance in many low-income countries continue to rely heavily on bacterial 

culture. Although sensitive, a culture diagnosis can take up to two months and delay initiation of effective 

treatment. Next generation sequencing technologies hold promise to dramatically improve the speed of 

TB diagnosis through the development of new diagnostic tools for sequencing bacteria directly from 

sputum samples, effectively eliminating the lag time between presentation at the clinic and a TB 

diagnosis. Moreover, the availability of sequencing results at the time of diagnosis would also allow 

clinicians to determine the drug resistance profile of the infecting strain and tailor a drug regimen 

accordingly. [155-160] Although sequencing-based TB diagnosis and drug susceptibility testing directly 

from sputum is not yet feasible, recent progress in these areas has prompted predictions that TB may be 

the first pathogen for which a ‘complete genomic approach’ may be implemented. [155, 156]  

Whether the lofty promises of NGS for diagnosis, treatment, and control of TB will bear out 

remains to be seen. However, it is clear that the quantity and quality of sequencing data collected through 

routine TB surveillance activities will continue to increase. Several high-income countries, including the 

US and the UK, are in various stages of implementing universal whole genome sequencing for all TB 

cases, and in South Africa, the national laboratory service has begun to sequence isolates from all drug-



 22 

 

resistant TB cases. As more countries follow suit, sequencing data will increasingly be available as a 

possible tool for understanding the local epidemiology and drivers of TB transmission, and TB control 

programs will be charged with using this data to inform TB prevention and control activities. The 

evaluation of systematic approaches to use WGS data to provide actionable information on TB 

transmission will be necessary to facilitate integration of WGS data into routine TB control activities. 

 

1.4 Network approaches for studying infectious disease transmission 

1.4.1 Overview 

Networks and network models are a useful tool for representing and analyzing relationships between 

actors in a system of related components. Network science draws from concepts in mathematical graph 

theory and has been applied in scientific disciplines ranging from neuroscience to ecology, to represent 

biological processes from the cellular level up to that of entire human communities. The application of 

these models in a wide range of contexts reflects the fundamental concept that biological systems, even 

very complex ones, are not arranged randomly. Instead, biological processes occur according to 

proscribed rules, and therefore it is possible to theorize, model, and predict relationships between the 

entities, or ‘actors’ that make up a network. [161] A key conceptual and statistical advantage of analytic 

methods designed expressly for networks is that they acknowledge dependencies between network actors, 

in contrast to conventional modeling methods that typically assume independence of all subjects under 

study. [162] The field of epidemiology has been a particularly enthusiastic adopter of network analytic 

methods, because their relational nature easily lends itself to making inferences about infectious disease 

transmission. [161-165] 

Networks and their associated analytic methods can provide insight into a range of 

epidemiological parameters of interest in infectious disease dynamics. Network analyses can characterize 

drivers of transmission by identifying disease ‘superspreaders’ and revealing the types of relationships 

and social mixing patterns important for disease spread. [166-168] They have been used to inform and 

evaluate disease control activities, by guiding the targeting of interventions towards specific individuals 
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or groups [169-171] and assessing intervention effectiveness. [172] Comparative analysis of networks has 

been used to track the progression of epidemics over time [173, 174] and to characterize the structural 

features unique to the transmission networks of different diseases. [175, 176] Network models can be 

used to forecast future disease trends: either to predict trajectories of outbreaks [177] or to compare 

putative patterns of disease spread under different intervention scenarios. [178] In short, different types of 

network models and methods have been applied to a wide range of epidemiologic questions and 

successfully adapted to different pathogens, settings, and research questions.  

The motivation for constructing a network dictates who, or what, is represented by network nodes 

and the manner in which the data used to create the network should be collected. For example, 

understanding determinants of the spread of a disease is well-suited to a network composed of social 

relationships between diseased and susceptible persons in a population. A network such as this could 

identify factors influencing susceptibility to infection or the likelihood of transmission. Alternatively, a 

network aiming to identify cases responsible for the most number of transmission events may only 

include cases of disease and the other cases whom they infected. [179]  Studies that make use of 

compartmental models to study disease dynamics may require only data on general population structure 

and characteristics to model networks that are representative of artificial populations.  

In addition to choices about who should be sampled, the method of sampling also has important 

implications for network analysis and inference. [180] Egocentric sampling, in which a random sample of 

the population at-risk for disease is surveyed about their contacts, is an attractive option for data 

collection because, given a clearly-defined sampling frame, it can be relatively simple and cost-effective. 

The analytic methods appropriate to analyze networks constructed through egocentric sampling are well-

characterized and straightforward. [181] Adaptive sampling is another method of recruiting individuals 

that make up a network, and is used primarily to capture harder-to-reach populations that may be difficult 

to randomly sample. A common type of adaptive sampling is respondent-driven sampling, in which the 

first sampled individual is used to ‘seed’ a network, and the network is constructed outwards from that 

individuals’ contacts and the contacts of their contacts. [182] This type of sampling requires more careful 
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statistical analysis, since there are often dependencies in the manner that cases are sampled which must be 

accounted for in order to make inferences about a target population. [183]  

Once an appropriate set of network members, or nodes, is identified, information on interactions 

between them determines the construction of links, or edges, in the network. The transmission route of a 

pathogen determines the type of interactions that constitute links between individuals in the network. For 

respiratory pathogens, which are passed from person to person through airborne transmission, links may 

represent any situation that results in two individuals sharing air, which could include shared households, 

workplaces, classrooms, or transit routes. For HIV and other sexually-transmitted diseases, links may 

indicate sexual encounters. For pathogens with environmental drivers, such as mosquito-borne diseases, a 

network might be embedded in space, with links that represent geographic distances between locations. 

[184] Still other types of networks may not represent directly measured contacts between individuals; 

rather, information that implies links may be used to construct the network. For example, if two 

individuals both harbor a pathogen with a similar genetic makeup, this might strongly suggest a 

transmission event occurred between them, even if there is no direct evidence of a specific physical 

interaction. [185] Edges in a network may be considered static or to vary with time: recent extensions of 

network models have addressed the dynamic nature of actor relationships by explicitly modeling the 

formation and dissolution of relationships between individuals in the network. [178]  

The unique arrangement of these two fundamental elements - nodes and edges- define the 

structure of a network. The network models that I will discuss in the following two sections and will use 

in this dissertation aim to represent the generative processes that give rise to the structure of a 

transmission network comprised of TB cases.  

 

1.4.2 Why model networks? 

A modeling approach to network analysis reflects assumptions about the nature of the network and the 

processes that occurred to create it. Specifically, the benefits of building a model of a network, rather than 

simply interrogating the features of an empirical network, are twofold. [186] First, as with any 
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mathematical model, it allows us to recognize that the processes giving rise to a network are regular, if 

stochastic, in nature. Defining the model allows us to simultaneously establish rules that govern the 

formation of connections in the network and acknowledges that these processes, as well as the parameters 

estimated from our hypothesized model of the network, are subject to a degree of uncertainty. Second, 

statistical models of networks, as with other mathematical models, can answer questions that extend 

beyond the observed network. For example, a well-fitting model can be used to simulate networks with 

similar, or slightly different, features in order to understand the potential impact of perturbations in the 

system giving rise to network. The value of specifying these models using empiric data is that they are 

grounded in real-world, if imperfectly-measured, observations and processes. 

As discussed previously, the structure of network data is fundamentally different from that of 

conventional epidemiologic data. The unit of analysis of interest in a network is often relationships 

between individuals, in contrast to conventional epidemiologic analysis which most often examines 

relationships between two or more traits within individuals. As a result, many of the tools for statistical 

inference that are used in conventional epidemiology are not appropriate for networks, since these 

methods are predicated on the assumption that each unit of analysis, or subject, is independent from every 

other. In a network, if Case A is connected with Case B and Case A is also connected with Case C, it may 

not be true that each connection is independent, since Case A is involved in two of them. (For example, if 

Case A and B know one another, Case C might be more likely to be connected to both of them rather than 

to only Case A or Case B. Thus, the connections of Case C are not independent of the connections of 

Cases A and B). Using standard epidemiologic methods to analyze these relationships may result in 

incorrect estimation of both point estimates and their associated standard errors, in much the same manner 

that a naïve analysis of correlated longitudinal data or clustered data may result in incorrect inference. As 

a result, it is important to either explicitly model, or to at least account for, these dependencies by using 

network methods that are uniquely suited for relational data. 

 

1.4.3 Exponential random graph models (ERGMs) 
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Exponential random graph models, or ERGMs, are a class of network models that incorporate node and 

edge attributes as well as small-scale structural features to answer questions about the generative 

processes that give rise to relationships between actors in a network.  

A brief history of the development of ERGMs illustrates the iterative additions of important 

features that make them an attractive option for modeling networks. In 1981, Holland and Leinhardt first 

proposed p* models, which are log-linear models that describe the formation of a tie between two actors 

as a random variable. [187] P* models (like ERGMs) utilize an exponential, or log, link to describe the 

probability of a tie between actors in a graph as a random variable. However, these early network models 

were subject to the unrealistic assumption that dyads, or pairs of nodes, were independent of one another. 

To address this limitation, Markov random graph models, a special class of p* models, were proposed in 

1986 by Frank and Strauss, who were able to eliminate the dyadic dependence assumption. [188] Strauss 

and Ikeda extended this model to include methods for estimation of model parameters using 

pseudolikelihoods; these methods were later replaced by simulation approaches for estimating posterior 

parameter distributions, namely Monte Carlo estimation, which produces parameter estimates with more 

straightforward statistical properties than those produced by pseudolikelihood methods [189-191] Modern 

ERGMs, then, have several convenient statistical properties. First, they can be specified in log-linear 

form; second, they are not subject to the assumption that network actors and dyads of network actors are 

independent; and third, parameter estimates can be obtained using relatively simple Markov Chain Monte 

Carlo (MCMC) methods. 

An ERGM specifies the probability distribution for a set of random graphs or networks. The 

probability of observing a specific network is a function of key predictors of network structure. These 

predictors can describe network structural features, for example, the total number of edges in the network 

or the number of isolates (unconnected nodes). They can also explicitly express local dependencies 

among nodes, for example, the tendency of actors to form ‘triangles’, or three-way relationships between 

3 nodes. Actor attributes may also be incorporated into the model, if one hypothesizes that certain actors 

may preferentially interact with other actors based on their characteristics. This could be expressed by 
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specifying terms for particular dyadic (two-node) configurations. After the desired model terms are 

specified, the resulting ERGM represents the distribution of possible networks given the structural 

constraints defined in the model. [186] The general form of an ERGM is given in Eq. 1: 

 

Eq. 1.   Pr(Y = y) ≡ (1/ κ) exp{ΣAηAgA(y)} 

 

gA(y) = any possible network statistic, where A indexes the multiple 

statistics included in a model vector g(y) 

ηA = coefficients for model terms; their value reflects the change in the conditional 

log odds of a tie for each unit increase in gA that the tie would create 

κ = normalizing constant, the sum of exp{ΣAηAgA(y)} over all possible networks with n actors 

 

1.4.4 Selection (sampling) bias in network models 

While transmission networks may hold great promise for understanding disease dynamics, it is rare to 

observe the complete set of all actors and connections in a network. To the extent that all epidemiologic 

bias can be considered as missing data, this simply means that network studies are subject to the same 

biases as conventional epidemiologic studies. Networks can suffer from misclassification bias, as a result 

of non-response or inaccurate responses of participants, and selection bias, if the method of sampling 

participants is ill-suited to the research question or population of interest. A missing data consideration 

unique to network studies, however, is the concept of the network boundary problem, which is the 

challenge of defining which individuals and ties should be eligible for inclusion in a network. [192] Given 

the potential for bias, it is prudent to consider any inference made from a transmission network in light of 

the potential for missing data. 

Consideration of the effects of missing data is particularly important when using networks to 

study an endemic infectious disease. Epidemics that occur over a clearly defined time period involving a 

finite number of cases can often be sampled nearly in full, obviating the network boundary issue. 
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However, endemic diseases, especially those with long latent periods, give rise to transmission networks 

that can involve connections between individuals that occurred months or years in the past, making 

missing data a virtual certainty. Moreover, the ongoing nature of an endemic disease means that cases 

who are linked to individuals prior to the start or after the end of the sampling period are not represented, 

resulting in a sample that is, temporally speaking, ‘truncated’ on both ends. A wide geographic range of 

cases, as is often the case with endemic diseases, can also complicate complete sampling.  This can result 

in a failure to capture cases and links crossing arbitrary geographic borders, especially since surveillance 

data is most commonly collected and compiled on the level of administrative units that may not 

effectively communicate with one another. Although not specific to endemic disease, deficiencies in 

diagnosing cases can also contribute to the incompleteness of the network. 

Missing data can represent a significant barrier to making inference using network models, and as 

a result, understanding the implications of missing data is increasingly a focus in the field of network 

analysis. Part of the challenge in clearly identifying the consequences of missing data in networks results 

from the interdependencies in a network: missing actors and ties may change the position of other 

elements in the network. Missing even very few actors could change network structure dramatically, 

especially if those actors are highly connected in the network. Recent work has shown that these effects 

may, in certain cases, be less severe than feared. For example, studies have shown that some network 

measures, including the mean degree, the number of edges, and the number of nodes can all be scaled by 

a factor of the sampling fraction to estimate their values in a larger network, as long as nodes of the larger 

network are missing at random. [193] However, it is important to note that not all network statistics are 

affected in the same way by missing data: some are more robust to missing network elements than others. 

[194-197] This should be considered in any attempt to make inference about the structure of a network 

when a significant portion of nodes is missing. 

Unsurprisingly, the effect of missingness in a network also depend on the overall size and 

characteristics of the network. Larger, more centralized networks with positively-skewed degree 

distributions and higher clustering have been shown to be less affected by missing data. [195, 198] 
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Characteristics of missing nodes are also important: highly central missing nodes can have a pronounced 

effect on certain network measures, but can have little to no effect on others; missing nodes that are less 

central have been shown to result in few, if any, network statistics being severely affected. [198] Of 

course, the extent of missing data is also relevant for understanding the implications of missingness. 

Generally, the less data that are missing in a network, the less severe the measurement bias for a range of 

measures. [196-198] Collectively, studies on missingness in networks indicate that the effects of missing 

data can vary substantially, suggesting that a thoughtful consideration of what, and how much, data is 

missing is a critical component of conducting and interpreting a network analysis. 

 

1.5 Transmission networks in tuberculosis 

To date, the application of networks and network modeling to the transmission of tuberculosis has been 

limited, and as a result, its potential utility in providing insights into TB epidemics has been largely 

unexplored. Many studies have mapped putative transmission connections between cases, using social 

contact, molecular data, or both. However, systematic analysis of these networks has been notably absent 

in TB, even as it has gained in popularity in studies of other infectious diseases. The previously described 

challenges of identifying a complete set of potential contacts relevant for TB transmission, as well as the 

difficulty in establishing the timing and source of TB infection, might be reasons for the lack of research 

into TB transmission networks. However, in light of the increasing availability of whole genome 

sequencing to more reliably establish transmission links between individuals, network analysis may hold 

new promise for identifying transmission patterns. 

Most studies utilizing networks to represent TB transmission in low-incidence settings have done 

so primarily to visualize, rather than analyze, putative transmission links between cases. In low-incidence 

settings, which typically experience small outbreaks concentrated in time and space, mapping of 

transmission links is a relatively straightforward task. Indeed, it is often employed to some degree in the 

public health response to an outbreak. Gardy et al. mapped transmission events in an outbreak of 41 cases 

in British Columbia using social contact data. [137] Their analysis of the social network generated from 
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this contact data was limited to determining the most probable source of each TB case and identifying 

‘superspreaders’, or cases who appeared to be the source for the highest number of secondary cases. A 

more recent study of a 14-year outbreak of isoniazid-resistant TB in London used networks in a similar 

manner to show putative transmission links between 344 cases, with the degree of certainty of the link 

based on agreement of epidemiologic and whole genome sequencing information. [140] Both studies 

enjoyed the benefit of near-complete capture of TB cases involved in the outbreak. 

Several recent studies have attempted the significantly more challenging task of constructing 

transmission networks in settings of high TB incidence. Guerra-Assuncao et al. identified the most likely 

source for 1471 TB cases in Malawi diagnosed over a 14-year period, using an algorithm minimizing 

genomic distance between source-secondary case pairs. [67] Other studies have used network-like 

structures to map specific sub-clusters of cases with genomic evidence of transmission, and to identify 

‘superspreaders’, or cases who appear to be connected to a relatively large number of other cases with 

similar TB strains. [104, 199-201] Several studies on drug-resistant TB in South Africa have also used 

networks to map cases and visualize transmission clusters. One of these was the same study which 

provides the data for this dissertation. This study described epidemiologic links of 404 XDR TB cases in 

KwaZulu-Natal province, South Africa over a four-year period, and in particular mapped an ‘illustrative’ 

clusters showing cases with epidemiologic and genomic evidence of transmission. [12] Another recent 

study in Cape Town identified and mapped 16 small clusters associated with 141 untreatable XDR TB 

cases discharged from the hospital back into the community, to assess the likelihood of transmission 

events occurring after patients with incurable disease were released from care. [202] The use of networks 

in these studies served the primary purpose of visualizing potential transmission events, rather than 

defining the structure or properties of a transmission network comprised of TB cases.  

To our knowledge, there are only three studies employing an analytic approach to assess TB 

transmission networks; all three studies were focused on TB outbreaks in the United States. The first 

study constructed a network based in person-to-person and location-based links, and used network metrics 

to indicate key persons and locations driving transmission. [168] The second and third studies were 
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similar, and both showed that individuals occupying a more central position in a social network that 

included active TB cases were more likely to be TST-positive. [203, 204] (The social networks 

constructed in these two studies included both TB cases and their disease-free contacts.) Studies using 

network analysis have been restricted to low TB incidence settings, and have not yet been leveraged in 

areas with a high incidence of TB, in which there is an urgent need to identify drivers of transmission and 

design interventions targeted towards groups and locations most responsible for transmission. Further, 

these studies have used conventional molecular typing tools to define transmission. Network analysis has 

been notably absent from more recent studies using new molecular tools, such as whole genome 

sequencing, to identify transmission links. Combining the discrimination of whole genome sequencing 

approaches for identifying transmission events with statistical methods uniquely suited to network 

analysis may provide new insights into TB transmission patterns in settings with a high incidence of TB.  

 

1.6 Sequencing-based networks, previous work and potential applications in TB 

Although analysis of networks based primarily on genomic sequence data has not been explored in 

TB, they have been used in other infectious diseases to gain meaningful insight into disease 

epidemiology. HIV epidemiology in particular has embraced the use of sequencing data to better 

understand disease transmission dynamics in a wide range of populations. HIV sequence data is highly 

informative on epidemiological time scales due to the rapid evolutionary rate of HIV. Although Mtb 

exhibits comparatively slower rates of evolution, many of the approaches and techniques that have been 

applied to analyze HIV sequencing-based networks, with some key modifications, may also provide 

insight into TB epidemiology.  

Networks created using HIV sequence data have been used to answer a wide range of scientific 

questions. They have been used to estimate basic epidemic parameters, including the distribution of 

sexual partners among HIV cases in the UK [205], and identify secular trends in transmission across 

decades. [206] HIV sequencing-based networks have been used to characterize the size of disease clusters 

and to estimate and predict rates of cluster growth over time. [207-209]  Other studies have used 
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sequencing-based networks to investigate the impact of sequence variants that may directly influence HIV 

fitness and transmission. [210]  Lastly, they have successfully been used to link case characteristics with 

network position, in a similar manner to that proposed in this dissertation: a study in Italy that combined 

HIV sequence data with sexual contact data showed that more highly connected persons in a sequencing-

based network reported longer untreated periods. [211]  

While the evolutionary features of Mtb may present some challenges for using sequence data to 

define transmission events, there are also several strengths to using sequencing-based approaches in TB. 

First, as previously mentioned, Mtb, unlike most other bacterial species, undergoes relatively little 

horizontal gene transfer. As a result, nearly all genomic variation in Mtb arises from de novo mutation. 

This allows genetic distances to be used as reliable proxy for evolutionary distances, without the need for 

complicated analyses to account for additional sources of genomic variation. Second, while epidemiologic 

investigations are biased towards transmissions that are due to close contact, sequencing-based 

approaches to identifying transmission links can capture transmission events due to both close and casual 

contact. This is particularly important in settings with a high burden of TB, where casual contact is 

estimated to account for a majority of transmission events. Third, sequencing approaches provide a 

continuous measure of genomic similarity among isolates, which allows for sensitivity analyses in which 

the ‘threshold’ of genetic similarity used to define transmission can be modified. In contrast, traditional 

genotyping methods provide only a dichotomous measure of relatedness.   

Nonetheless, sequencing-based approached have important limitations. Uncertainty still exists about 

the relative mutation rates of Mtb during latent infection and active disease, and this can complicate 

inference when using exclusively genomic data to define transmission events. Complementing genomic 

data with epidemiologic information can provide an understanding of epidemiologic context in which an 

isolate of Mtb was sampled, as has been shown in applications to HIV. [209, 212] For example, using 

dates of diagnosis to suggest the directionality of transmission events suggested by genomic information 

may be a useful tool for constructing sequencing-based networks that can be used to examine individual-

level factors related to transmission. Devising innovative ways to combine genomic and epidemiologic 
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data may prove to be a powerful approach to furthering our understanding of TB epidemiology in high-

burden settings. 

Motivated by the successful application of sequence-based networks in HIV, we will use the same 

general principles to construct sequencing-based networks using Mtb sequences from cases of XDR TB in 

South Africa. Extending and adapting these methods to the unique features and challenges of the natural 

history of TB is a novel and exciting approach to interrogating the underlying structure and dynamics of 

TB epidemics. This dissertation will aim to create sequencing-based networks of TB transmission in order 

to better understand individual-level factors driving TB transmission. 

 

 

 

2. Rationale and Specific Aims 

 

Tuberculosis (TB) is the leading infectious cause of disease worldwide, with 9 million total cases and 

nearly half a million cases of drug-resistant TB reported in 2015. Recent studies show that transmission 

plays a critical role in the spread of extensively drug-resistant (XDR) TB in South Africa and globally, 

underscoring the importance of preventing transmission to reduce morbidity and mortality from TB. 

Limited public health resources in settings with the highest burdens of TB necessitate careful design and 

prioritization of interventions; however, little information is available to guide targeting of transmission 

interventions. Though previous studies have examined individual-level clinical factors that may influence 

potential for transmission, these studies have important limitations. First, they employ analytic methods 

that do not account for relationships between cases linked through transmission. Second, they use 

molecular typing techniques that examine an exceedingly small proportion (<1%) of the TB genome, 

though recent advances in sequencing have significantly advanced our ability to characterize TB genomic 

variation. In addition to clinical factors, behavioral patterns of TB cases provide information about 

settings and activities permissive of transmission. To date, very few studies have examined social mixing 
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patterns linked with transmission, even though this information has important implications for 

intervention design. Further, no studies have addressed the potential impacts of unsampled cases on 

studying TB transmission networks, which is critical to ensure that an incomplete transmission network 

can accurately reflect underlying TB transmission patterns. 

To fill these gaps, the proposed research will investigate clinical and behavioral drivers of XDR TB 

transmission by combining network analysis methods and bacterial whole-genome sequencing to identify 

transmission events. Although relational network data violates statistical assumptions required for 

standard regression, network models provide a statistically valid alternative to examine associations in is 

network.  In Aim 1, we will use network models to examine the role of clinical features, including sputum 

smear status and grade, cavitary disease, and cough duration, in transmission of XDR TB. In the 

preliminary manuscript, we detail work on the geospatial patterns associated with XDR TB transmission. 

The studies were critical in shaping the research questions posed in Aim 2, by suggesting that urban 

exposure may be a key driver of XDR TB transmission in South Africa. In Aim 2, we will use network 

models to examine three domains of social mixing – close contact, casual contact (represented by contact 

with urban areas), and hospital exposure - and their association with transmission. In Aim 3, we will use 

exponential random graph models (ERGMs) to assess the impact of missing XDR TB cases in our 

transmission network based on different assumptions about potential mechanisms of selection bias.  

Through characterizing XDR TB transmission patterns in settings of high TB incidence, we can inform 

prevention efforts where the benefits of interrupting transmission are greatest.  

 

2.1 Specific Aims  

 

Aim 1: Measure associations between clinical markers of infectiousness of XDR TB disease and 

transmission in the network. 
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Hypothesis: Higher infectiousness, represented by a combining smear-positivity, cavitary disease, and 

cough duration into a cumulative score, will be associated with high centrality in the sequencing-based 

network. 

 

Aim 2: Measure associations between reported social mixing patterns and transmission in the 

network.  

Aim 2a: Measure the association between reported number of close contacts and transmission. 

Aim 2b: Measure the association between casual contact (contact with urban areas) and 

transmission. 

Aim 2c: Measure the association between time spent in hospitals and transmission. 

Hypothesis: We hypothesize that contact with urban areas, through increasing likelihood of frequent, 

casual contact, is driving transmission in KwaZulu-Natal. Time spent in urban areas, reflective of casual 

contact, will be associated with high centrality (Aim 3b), whereas reported number of close contacts and 

hospital exposure, which account for relatively less transmission than casual contact, will be weakly 

associated with network centrality (Aims 3a and 3c). 

 

Aim 3: Characterize a transmission network of XDR TB cases and estimate the effects of 

missing data on the network. 

Hypothesis: Structural features between the observed TRAX and simulated networks will be grossly 

different under selection bias mechanisms in which unsampled cases are much more likely to transmit TB, 

but not if unsampled cases are unlikely to transmit TB.  

 

 

 

3. Data source 
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3.1 Transmission of HIV-associated XDR TB in South Africa (TRAX) 

 

The Transmission of HIV-associated XDR TB in Rural South Africa (TRAX) study is a cross-sectional 

study of 404 XDR TB cases in KwaZulu-Natal, South Africa diagnosed from 2011 to 2014. The primary 

aim was to quantify the proportion of XDR TB cases resulting from transmission as compared to 

amplification of resistance through treatment. Cases were recruited by identifying isolates meeting the 

criteria for XDR TB at the provincial diagnostic laboratory and contacting cases to whom the isolates 

belonged. Consenting patients (next-of-kin for deceased patients) underwent an interview in which they 

reported demographic information and completed a social network questionnaire, which involved 

reporting number and type of close social contacts, congregate locations frequented, and inpatient hospital 

stays prior to XDR TB diagnosis. Clinical information on TB disease was provided by patients and 

supplemented with information from the medical record.  

Mtb was isolated from patient sputum samples, re‐cultured and DNA was extracted. Isolates were 

sequenced on the Illumina (MiSeq) platform, aligned to the H37Rv reference genome (NC_000962.2) 

using the Burrows-Wheeler Aligner [213], and single nucleotide polymorphisms (SNPs) were detected 

using pairwise resequencing techniques against the reference using Samtools v0.1.19. [214] 

 

3.2 Study Population  

 

Cases were enrolled from KwaZulu-Natal, a province of 10.3 million people in eastern South Africa that 

is predominantly rural but home to the city of Durban, which has a population of about 4 million. South 

Africa generally [215] and KZN specifically [216] have high burdens of both HIV (prevalence of 16.9% 

in South Africa) and TB (1076 per 100,000 in South Africa).  
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The TRAX study enrolled 404 XDR TB cases, who accounted for 38% of all XDR TB cases diagnosed in 

KZN from 2011 to 2014. For this study, eligible cases were those that had a sequenced XDR TB isolate. 

396 (98%) cases in the TRAX study had isolates available for whole genome sequencing and 344 (87% of 

396) passed all sequencing quality filters. For XDR cases diagnosed in KZN but not recruited into TRAX 

(n=659), information on case age, sex, and facility of diagnosis is available through the provincial TB 

laboratory. Based on these characteristics, enrolled cases were not significantly different from diagnosed 

but unenrolled cases.  
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4. Preliminary Work 

 

4.1. Preliminary manuscript 

 

[This chapter appears as accepted for publication in the Journal for Infectious Diseases.] 
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Abstract:  

Background: Transmission is driving the global drug-resistant tuberculosis epidemic; nearly three-

quarters of drug-resistant tuberculosis cases are attributable to transmission. Geographic patterns of 

disease incidence, combined with information on probable transmission links, can define the spatial scale 

of transmission and generate hypotheses about factors driving transmission patterns. 

Methods: We combined whole-genome sequencing data with home GPS coordinates from 344 

participants with extensively drug-resistant (XDR) tuberculosis in KwaZulu-Natal, South Africa 

diagnosed from 2011-2014. We aimed to determine if genomically linked (≤5 single nucleotide 

polymorphisms [SNP] differences) cases lived close to one another, which would suggest a role for local 

community settings in transmission.  

Results: 182 study participants were genomically linked, comprising 1084 case-pairs.  The median 

distance between case-pairs’ homes was 108 km (IQR: 64-162 km). Between-district, as compared to 

within-district, links accounted for the majority (912/1084, 84%) of genomic links. Half (526, 49%) of 

genomic links involved a case from Durban, the urban center of KwaZulu-Natal.   

Conclusions: The high proportions of between-district links with Durban provide insight into possible 

drivers of province-wide XDR TB transmission, including urban-rural migration. Further research should 

focus on characterizing the contribution of these drivers to overall XDR TB transmission in KwaZulu-

Natal to inform design of targeted strategies to curb the drug-resistant tuberculosis epidemic. 
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Introduction 

Drug-resistant tuberculosis is a global crisis, causing an estimated 1.2 million cases each year.[5] 

Extensively drug-resistant (XDR) tuberculosis has now been reported from 123 countries and is 

associated with mortality rates from 50-90%.[10, 15, 217] Although drug-resistant tuberculosis strains are 
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initially created by selection of drug-resistant mutants during treatment (acquired resistance), recent 

studies show that the majority of drug-resistant tuberculosis cases now arise due to transmission of 

already drug-resistant strains.[12, 104] This shift makes clear the urgent need for interventions to prevent 

transmission.  

Molecular epidemiology studies have consistently shown that close contacts account for only a 

minority of secondary tuberculosis cases in settings with high tuberculosis incidence, suggesting that a 

substantial proportion of transmission may occur as a result of ‘casual’ contact in the community. [69, 

125-127, 218]  Although modeling and social mixing studies support this hypothesis and point to public 

transportation, schools and workplaces as likely transmission sites in high tuberculosis incidence settings, 

this has not been demonstrated directly.[71, 73, 129] Understanding the role of contacts proximate to or 

distant from the home can generate hypotheses about the modes of contact driving transmission. The 

advent of bacterial whole-genome sequencing (WGS) offers new opportunities to identify tuberculosis 

cases that are likely to be linked through transmission, by discriminating between TB isolates at the level 

of single nucleotide polymorphisms (SNPs). Isolates from different patients that differ by small numbers 

of SNPs are considered likely to represent a transmission event. Recent studies have employed WGS to 

identify probable transmission events, map chains of transmission in tuberculosis outbreaks, and describe 

the burden of tuberculosis disease due to recent infection as compared to reactivation.[127, 137, 138, 141, 

200, 219, 220] However, WGS has been underutilized to describe broader, population-level patterns of 

transmission in tuberculosis-endemic settings.  

The spatial scale of disease transmission can provide insight into the settings and, by extension, 

the modes of contact that contribute to transmission. Tuberculosis transmission requires air exchange—

and therefore close proximity—between an infectious and susceptible person. The nature and location of 

these interactions define the relevant geographic scale for person-to-person interactions resulting in 

transmission.[221, 222]  For example, short distances between transmission-linked cases may indicate 

that local contacts in, or close to, the household are most important in transmission. Alternatively, 

transmission links found across longer distances may indicate that long-distance contacts, and perhaps 



 42 

 

migration, may play an important role in disseminating disease. Previous geospatial analyses in 

tuberculosis have focused on the spatial distribution of cases, rather than the spatial scale of transmission 

links.  Combining geospatial analysis with WGS data has the potential to provide more comprehensive 

information about the dynamic process of disease transmission.  

We combined Mycobacterium tuberculosis (Mtb) whole-genome sequencing and geographic data 

to, first, evaluate the spatial scale of XDR TB transmission in KwaZulu-Natal, South Africa, and second, 

quantify the proportion of transmission occurring within and between municipal districts in KwaZulu-

Natal. Understanding the spatial scale and patterns of transmission can identify specific geographic areas 

and demographic groups that contribute to ongoing transmission and towards which interventions can be 

targeted.  

 

Methods 

Setting  

South Africa has among the highest rates of tuberculosis globally, with 59% of tuberculosis patients co-

infected with HIV. [5, 223] KwaZulu-Natal province, which comprises 11 districts and has a population 

of 10.3 million persons, has the highest tuberculosis and XDR TB burden (3 per 100,000) in South 

Africa.[215, 224] [225] The most populous district, eThekwini, is home to the city of Durban, a common 

destination for employment and educational opportunities. The population in KwaZulu-Natal is highly 

mobile— a recent study found that over a third of the population had changed residence in the past two 

years.[226] 

 

Study design and procedures 

The Transmission of HIV-Associated XDR TB (TRAX) study is a cross-sectional study that enrolled 

culture-confirmed XDR TB patients diagnosed from 2011 to 2014 in KwaZulu-Natal. Detailed methods 

of the TRAX study have been previously published.[12] Briefly, we identified XDR TB cases through the 

single referral laboratory that conducts drug-susceptibility testing (DST) for all public healthcare facilities 



 43 

 

in KwaZulu-Natal. All participants provided written informed consent; for deceased or severely ill 

participants, consent was obtained from next-of-kin.  

We interviewed participants and performed medical record review to collect demographic 

information and medical history. Participants reported the locations of residences, schools, employment, 

hospital admissions and other congregate locations frequented in the five years preceding XDR TB 

diagnosis. A global position system (GPS) coordinate location was collected at the location of each 

participant’s home residence.  

 

Whole genome sequencing 

The diagnostic XDR Mtb isolate was obtained for all participants and re‐cultured on Löwenstein‐Jensen 

slants. We conducted population sweeps, extracted genomic DNA, and prepared sequencing libraries 

using Nextera DNA kits (Illumina, San Diego, CA). Raw paired‐end sequencing reads were generated on 

the Illumina (MiSeq) platform and aligned to the H37Rv reference genome (NC_000962.3) using the 

Burrows‐Wheeler Aligner. All isolates had reads covering >99% of the reference genome, and the lowest 

mean coverage depth for any isolate was 15X. SNPs were detected using standard pairwise resequencing 

techniques (Samtools v0.1.19) against the reference and filtered for quality, read consensus (>75% reads 

for the alternate allele) and proximity to indels (>50 base-pairs from any indel). SNPs in or within 50 base 

pairs of hypervariable PPE/PE gene families, repeat regions, and mobile elements were excluded.[227] 

Alignment files can be found at NCBI Bioproject PRJNA476470. 

 

Analysis 

We defined a genomic link as a pair of XDR TB cases (‘case-pair’) with 5 or fewer SNP differences 

between their Mtb sequences.[67, 140, 200] We mapped and calculated median geographic distance 

between the home residences of genomically linked cases using the sp and geosphere packages in R 

3.4.1.[228] [229]  
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We stratified distances between genomically linked cases by sex, given historically distinct 

migratory behavior among male and females in sub-Saharan Africa. We also stratified by HIV 

coinfection, since the influence of HIV on the susceptibility, progression, and transmissibility of 

tuberculosis remains uncertain.[67, 126, 230-232] Lastly, we stratified by strain type, by comparing pairs 

of the most common Mtb strain type in KwaZulu-Natal, LAM4, with other strain types. We conducted 

our analysis at varying SNP thresholds (≤3 SNPs, ≤1 SNP) to assess the robustness of results to this 

choice. 

To describe patterns of transmission by district of residence, we classified each case according to 

the district of their home residence and calculated the proportion of between- and within-district genomic 

links for all districts. We also calculated the proportion of pairs in each district with links to the urban 

district of eThekwini. 

 

Sensitivity analysis of differential enrollment in TRAX by district 

To assess whether our results were sensitive to differential enrollment of XDR cases by district, we 

compared our results to those we might have observed had we enrolled all cases. We used the complete 

register of diagnosed XDR TB cases from the referral laboratory to calculate the fraction of diagnosed 

cases from each district that participated in TRAX (enrollment fraction).  For within-district links, we 

adjusted the number of genomic links by a factor of the inverse enrollment fraction. For between-district 

links, we adjusted the number of links using the mean of the inverse enrollment fractions for both 

districts. We compared the proportions of within- and between-district links calculated using these 

enrollment fractions to the proportions we observed.  

As cases from rural areas may have reduced access to high-quality healthcare services, we 

hypothesized they may be underdiagnosed, and thus included in TRAX, compared to cases from urban 

eThekwini district.[233, 234] To examine the effect of this potential source of bias, we varied our 

assumptions about the extent of this over-enrollment (assuming the enrollment fraction was anywhere 
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from 20-40% higher in eThekwini than in other districts) and repeated our analysis of between and 

within-district links. 

 

Ethical Considerations 

The study was approved by the Institutional Review Boards of Emory University, Albert Einstein College 

of Medicine, and the University of KwaZulu-Natal, and by CDC’s National Center for HIV, Hepatitis, 

STDs and Tuberculosis.  

 

 

Results  

Between 2011 and 2014, we screened 521 (51%) of 1027 culture-confirmed XDR TB patients diagnosed 

in KwaZulu-Natal and enrolled 404 (78% of screened) (Figure 1). TRAX participants were similar to all 

diagnosed XDR TB cases in terms of age (p=0.52), sex (p=0.76), and district of diagnosing facility 

(p=0.70). Among the 404 participants, 234 (58%) were female, with a median age of 34 years 

(interquartile range [IQR]: 28-43). Three hundred eleven (77%) participants were HIV-positive, of whom 

236 (76%) were on antiretroviral therapy and 155 (50%) were virologically suppressed at enrollment 

(viral load < 400 copies/mL) (Table 4-1). Half (n = 204, 50%) of participants reported living in urban 

sub-districts, and 133 (33%) participants lived in eThekwini district. Mobility of TRAX participants was 

high, with 89 (22%) participants reporting living at a different residence than their current residence in the 

previous five years; 41 (46%) of those residences were in a district other than their current residence. 

Inter-district movement was also common—of those participants that reported spending >2 hours per 

week at congregate locations (n=254), 93 (37%) named a congregate location in a different district than 

their current residence.  

Mtb isolates from 344 (85%) participants passed all sequencing quality filters and were available 

for analysis, creating a total of 58,996 unique case-pairs. Cases with WGS were similar to all enrolled 

cases (Table 4-1). Among these case-pairs, 1084 (1.8%) differed by 5 or fewer SNPs, indicating a 
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genomic link; these case-pairs involved 182 unique participants (Figure 1). Among these 182 cases, the 

median number of genomic links per case was 6 (IQR: 2-17), with 63 (35%) participants having greater 

than 10 genomic links (Supplemental Figure 1). These 182 participants reported residences across all 

eleven districts in KwaZulu-Natal province, and were demographically similar to non-linked cases (Table 

4-1 and 4-2, Figure 1).      

 

Geographic distance between genomically linked participants 

Among the 1084 genomically linked case-pairs, the homes of 3 (0.3%) case-pairs were within 1 km of 

one another, 12 (1%) were within 5 km of one another, and 29 (3%) were within 10 km. The majority of 

case-pairs’ homes (871, 80%) were ≥ 50 km apart, and the homes of over half (589, 54%) of case-pairs 

were more than 100km apart. The median distance between the home residences of genomically linked 

cases was 108 km (IQR: 64-162 km). This distance was similar when we increased the stringency of the 

threshold for genomic links: among pairs with fewer than 3 SNPs, the median distance was 117 km (IQR 

67-162); among pairs with fewer than 1 SNP difference, the median distance was 127 km (IQR 59-152) 

(Figure 3). The median distance between case-pairs homes’ was >95 km for all strata of sex, HIV status, 

and strain type. (Supplemental Table 4-1).  

Since some cases had multiple genomic links, we wanted to determine whether cases with distant 

links also had links close to home. We selected the geographically closest link for each case. Among the 

182 cases involved in genomically linked case-pairs, 20 (11%) cases lived within 5 km of their closest 

link, 40 (22%) lived within 10 km; 68 (37%) lived more than 50 km from their closest geographic link, 

and 22 (12%) of cases lived over 100km from their closest link. The median distance to the closest 

geographic link was 32 km (Supplemental Figure 2). 

 

Within- and between-district links  

Overall, 16% of genomic links were among case-pairs residing within the same district (172/1084), while 

84% of genomically linked case-pairs lived in different districts of KwaZulu-Natal province (912/1084) 
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(Figure 4-4, Table 4-3). Three districts had no within-district genomic links (Amajuba, iLembe, and 

Sisonke) and eThekwini had the highest proportion of within-district links (17%). Proportions of within- 

and between-district links were similar when the SNP threshold was reduced to fewer than 3 SNPs and 

fewer than 1 SNP (Supplemental Table 4-2). 

Approximately half (n=526, 49%) of all case-pairs were linked to the urban district of eThekwini. In 

every district except for two (Sisonke and Amajuba), the plurality of genomic links included a case that 

lived in eThekwini (Figure 4-4, Table 4-3, Supplemental Table 4-3).  eThekwini district had the highest 

proportion (20%) of links with Umzinyathi.   

At the individual case level, nearly a third of genomically linked cases (53, 29%) lived in the 

metropolitan district of eThekwini. Of note, 37 (70%) of these 53 cases were genomically linked to at 

least one other case within eThekwini, and nearly all (n=51, 96%) were genomically linked to at least one 

case outside of eThekwini. Among the 129 cases who lived outside of eThekwini, approximately half 

(n=59, 46%) had at least one genomic link within their home district. Nearly all (n=127, 96%) had at least 

one genomic link outside their home district, and 76 (61%) of those cases had at least one genomic link 

with a case in eThekwini. 

 

Adjustment for differential enrollment by district 

Enrollment fractions, based on the total number of diagnosed cases in each district, ranged from 0.22 in 

Sisonke and Amajuba to 0.50 in Umkhanyakude. Adjusting for enrollment, the proportion of within- and 

between-district links were 15% and 85%, respectively, which is nearly identical to the proportions in the 

unadjusted analysis. District-specific proportions of within- and between-district links were also similar to 

the unadjusted proportions (Supplemental Table 4-4). When we varied the proportion of cases enrolled in 

eThekwini relative to other districts (assuming enrollment was up to 40% higher in eThekwini than in 

other districts), eThekwini still accounted for the plurality of links in all but two districts. 

 

Discussion 
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We aimed to define the spatial scale and identify geographic patterns of XDR TB transmission in 

KwaZulu-Natal, South Africa. We found that genomically linked pairs of XDR TB cases generally lived 

far apart, and that the majority (84%) of genomic links were between cases who lived in different 

districts. Nearly half of all genomically linked case-pairs involved a case in eThekwini district. Taken 

together, this evidence suggests that movement across districts, as well as into and out of eThekwini, may 

play a central role in the dissemination of XDR TB across the province. 

The median geographic distance between genomically liked cases was 108 km, which is 

remarkably high considering that tuberculosis cases with genetically similar strains have been found to be 

geographically clustered in other settings.[235, 236] We found similarly high geographic distances at 

more stringent thresholds of 3 and 1 SNP. Although there is no universal SNP threshold for defining a 

direct transmission link, there is general agreement that the threshold should be tailored to local 

tuberculosis epidemiology.[151, 237] Further, we also examined median distance by strain type, given 

that the genomic epidemiology of XDR TB in KwaZulu-Natal is dominated by a single, highly clonal 

strain (LAM4).[238] The median distance between genomically linked cases was similarly high among 

pairs of cases with the LAM4 strain and among non-LAM4 pairs. Although the LAM4 strain accounted 

for the majority of genomic links in our study, the phenomenon of the predominance of an individual 

clone is common in other settings with a high prevalence of drug-resistant tuberculosis.[148, 239]. 

The high proportions of between-district links and links with eThekwini suggest that cross-district 

movement, and perhaps eThekwini, plays a central role in patterns of XDR TB transmission in KwaZulu-

Natal. While previous studies have shown concentrations of tuberculosis cases in urban areas, suggesting 

that these settings are conducive to transmission, they have not examined the role of urban settings in 

driving transmission patterns and incidence in broader geographic areas.[71, 240] Although our 

convenience sample of XDR TB cases diagnosed during the study period (n=404, 39%) does not provide 

a complete set of transmission links, we performed several analyses to assess whether our results are 

robust to potential selection bias. First, the demographic characteristics of TRAX cases were similar to all 

diagnosed cases in terms of age, sex, and the district of diagnosing facility. Second, our bias analysis 
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showed that the proportions of between-district links and links with eThekwini remained high under 

scenarios of differential enrollment by district. Lastly, given that most cases of TB progress to active 

disease within two years of infection, it is likely that we captured the majority of relevant transmission 

links among TRAX cases, and that these links reflect larger transmission patterns in KwaZulu-Natal. 

[241] 

Collectively, these findings provide insight into possible drivers of XDR TB transmission in 

KwaZulu-Natal. Human movement and migration can transport pathogens across long distances, resulting 

in transmission that occurs far from an individual’s home. Cyclical migration between rural and urban 

areas for employment is common in South Africa and in other rapidly developing countries, and 

effectively creates ‘bridge’ populations between urban and rural areas. This type of migration, which has 

previously been linked to HIV transmission, could also be driving tuberculosis transmission.[230] As 

such, it could explain both the large distances between the homes of genomically linked cases and that 

cases were more likely to be linked to eThekwini district than to another case in their home district.  

In addition to migration for employment, individuals may move between districts for other 

reasons. A previous analysis of TRAX participants showed that 36% of cases who were diagnosed with 

XDR TB in eThekwini lived in a different district, indicating that travel from rural to urban areas for 

healthcare is common.[242] Importantly, travel to seek tuberculosis diagnosis and treatment is likely to 

coincide with an individual’s infectious period, potentially providing abundant opportunities for 

transmission. Inter-district travel, be it for employment, healthcare, or other reasons, expands the 

geographic range of settings that are relevant for transmission. Indeed, almost a quarter of congregate 

locations reported by TRAX participants were outside of their home district, further suggesting that many 

locations that are potential settings of exposure or transmission may be distant from home.  

There are several limitations to this study. Underdiagnosis of XDR TB remains a challenge in 

resource-limited settings where insensitive diagnostic tools are commonly used and limited laboratory 

capacity curbs access to comprehensive drug susceptibility testing. As a result, transmission patterns 

observed among diagnosed cases provide only a limited characterization of province-wide patterns. In this 
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study, however, we employed WGS to identify case-pairs with a high likelihood of transmission based on 

stringent SNP thresholds. The spatial scale we observed suggests an important role of migration, even if 

intermediate cases in the transmission chain were not diagnosed or enrolled in TRAX. Second, we 

captured participant’s homes as only one location. In a setting like KwaZulu-Natal where migration is 

common, individuals may have multiple ‘current' or recent residences, all of which may be possible 

locations of tuberculosis exposure and transmission. Thus, the 22% of cases that reported living in a 

different residence in the past five years may represent a lower bound on the proportion of cases that 

occupy multiple residences throughout the year. Future studies should aim to understand the role of 

cyclical migratory patterns and multiple residences in defining the settings relevant for tuberculosis 

exposure and transmission. Lastly, ‘mixed’ infections, or genetically distinct populations within the same 

host, present potential challenges for inferring transmission based on a single Mtb isolate.[243] Yet, we 

do not expect mixed infections to be differential with respect to participants’ homes, suggesting that our 

results are robust to the potential effects of within-host bacterial heterogeneity.  

Evidence that the drug-resistant tuberculosis epidemic is increasingly attributable to transmission 

of drug-resistant strains has highlighted the importance of understanding transmission patterns in order to 

prevent incident cases.[12, 104, 244, 245] Despite the challenges of measuring transmission, the use of 

next-generation bacterial sequencing technologies brings us a step closer to understanding the settings and 

modes of contact sustaining tuberculosis transmission in high-burden settings. By defining the spatial 

scale of transmission, we provide preliminary data about transmission patterns and lay the foundation for 

further studies that more explicitly examine associations between casual contact in urban settings, 

migratory behavior, and the ongoing spread of XDR TB. Ultimately, this knowledge can inform the 

development of tailored prevention strategies that target geographic areas and demographic groups that 

contribute disproportionately to transmission.  
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4.2  Figures and Tables 

 

Table 4-1. Characteristics of participants in TRAX cohort, and comparison to subset with Whole Genome Sequencing (WGS) results and with 

genomic links – KwaZulu-Natal Province, South Africa. 

Characteristic 
TRAX cohort,  

n=404 

n (%) 

Cases with 

WGS, n=344 

n (%) p-value1 

Genomically linked 

cases (5 SNPs), n=182 

n (%) p-value2 

Demographic      

Female    234 (58)      202 (59) 0.44 111 (61) 0.37 

Age, median (IQR) 34 (28-43) 34 (29-43) 0.19 34 (29-44) 0.97 

    0-15 yr 16 (4) 12 (3) 0.21 9 (5) 0.47 

    16-34 yr 207 (51)  171 (50)  88 (48)  

    35-54 yr 150 (37) 134 (39)  71 (39)  

    55 yr 31 (8) 27 (8)  14 (8)  

Monthly household income      

    <R500 139 (34) 120 (35) 0.36 64 (35) 0.27 

    R500-R2,500 186 (46) 153 (44)  83 (46)  

    >R2,500 79 (20) 71 (21)  35 (19)  

Clinical      

Current or former smoker 39 (10) 35 (10) 0.47 18 (10) 0.98 

Diabetes 23 (6) 22 (6) 0.15 10 (5) 0.47 

HIV positive 311 (77) 266 (77) 0.70 145 (80) 0.27 

     Receiving antiretroviral therapy 236 (76) 204 (77) 0.49 108/145 0.32 

     CD4 cell count (median, IQR) 340 (117–431) 240 (111-425) 0.26 233 (104-316) 0.54 

     Virologic suppression (<400 copies/mL) 155 (50) 134 (39) 0.56 74 (41) 0.49 

Cough      

     Patients with cough 333 (82) 284 (83) 0.87 147 (81) 0.35 
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     Median duration of cough 8 (4-12) 8 (4-12) 0.22 8 (4-12) 0.39 

Sputum smear positive for acid-fast bacilli 270 (67) 235 (68) 0.31 118 (65) 0.16 

Previous treatment for any tuberculosis  291 (72) 247 (72) 0.81 127 (70) 0.38 

    Previous treatment for multidrug-resistant tuberculosis  124 (31) 105 (31) 0.86 45 (25) 0.01 
 

1p-values compare cases with WGS (n=344) to all TRAX participants (n=404) 

2p-values compare linked cases (n=182) to all cases with WGS (n=344) 
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Figure 4-1. Selection of study participants and identification of genomic links using whole genome sequencing (WGS).   
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Figure 4-2. Geographic distribution of XDR TB cases with genomic links in KwaZulu-Natal province, South Africa. 

 

Blue dots indicate georeferenced locations of reported home residences of TRAX cases who are genomically linked; black dots indicate those not 

genomically linked. The eleven districts of KwaZulu-Natal are labeled. The most populous district in KwaZulu-Natal is eThekwini, which 
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includes the city of Durban. Note: As of 2015, Sisonke district is known as Harry Gwala district and as of 2016, Uthungulu district is known as 

King Cetshwayo district.  
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Table 4-2. Geographic distribution of XDR TB cases by district. 

 

District 

n  

(% of total) 

Population 

(thousands) 

Genomically linked  

(% of total) 

Amajuba 4 (1.2) 500 (4.9) 1 (0.5) 

eThekwini 115 (33) 3,400 (33) 53 (29) 

iLembe 11 (3.2) 607 (5.9) 7 (4) 

Sisonke 4 (1.2) 461 (4.5) 3 (2) 

Ugu 32 (9.3) 722 (7.0) 14 (8) 

UMgungundlovu 37 (10.8) 1,018 (10) 26 (14) 

Umkhanyakude 19 (5.5) 626 (6.1) 9 (5) 

Umzinyathi 53 (15.4) 510 (5.0) 37 (20) 

Uthukela 15 (4.4) 669 (6.5) 9 (5) 

Uthungulu 30 (8.7) 908 (8.8) 16 (9) 

Zululand 24 (7.0) 840 (8.2) 7 (4) 

Total 344 10,261 182 

 

Population by district and percent of cases in each district with at least one genomic link. Population statistics sourced from the Statistics South 

Africa 2011 Census (http://www.statssa.gov.za/) 

 

 

 

http://www.statssa.gov.za/)
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Figure 4-3. Map and distribution of geographic distances between home residences of genomically linked case-pairs (5 SNPs) in KwaZulu-

Natal. 
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A. Black dots indicate home residences of XDR TB cases; red lines represent genomic links between cases. B. Black lines on histograms indicate 

the median distance between homes of genomically linked case-pairs at each SNP threshold. Note differences in y axis range across plots
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Figure 4-4. Genomic links (5 SNPs) within and between districts in KwaZulu-Natal. 

 

 

The proportion of genomic links occurring between each district out of the total number of links involving 

that district is represented by the color of the line. Amajuba district, which had only one genomic link, 

was excluded from this analysis. 
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Table 4-3. Proportions of within- and between-district genomic links (5 SNPs) in KwaZulu-Natal. 

 

 District 

Total 

links  

Within-district 

links (%)  

Between-district 

links (%) 

Links with 

eThekwini (%) 

Amajuba 1 0 (0) 1 (100) 0 (0) 

eThekwini 526 91 (17) 435 (83) -- 

iLembe 32 0 (0)  32 (100) 10 (31) 

Sisonke 61 0 (0) 61 (100) 12 (20) 

Ugu 236 12 (5) 224 (95) 75 (32) 

UMgungundlovu 313 23 (7) 290 (93) 100 (32) 

Umkhanyakude 97 1 (1) 96 (99) 25 (26) 

Umzinyathi 334 32 (10) 302 (90) 104 (31) 

Uthukela 160 7 (4) 153 (96) 45 (28) 

Uthungulu 171 5 (3) 166 (97) 50 (29) 

Zululand 65  1(2) 64 (99) 14 (22) 
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4.3 Supplemental Results 

 

Supplemental Table 4-1. Genomic links (5 SNPs) by sex, HIV status, and strain type. 

 Pair 

Total links  

(% of total)  

Median distance,  

in km (IQR) 

Sex   

  Female / Female 382 (35) 96 (49 – 150) 

  Female / Male 534 (49) 107 (69 – 165) 

  Male / Male 168 (15) 131 (84 – 150) 

HIV status   

   HIV+ / HIV+ 654 (60) 104 (58 – 155) 

   HIV+ / HIV- 377 (35) 117 (70 – 166) 

   HIV- / HIV- 53 (5) 136 (80 – 197) 

Strain type   

   LAM4 / LAM4 1075 (99) 127 (68 – 147) 

   Non-LAM4 / Non-LAM4 9 (1) 108 (64 – 162) 
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Supplemental Figure 4-1. Number of genomic links (5 SNPs) per case. 
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Supplemental Figure 4-2. Shortest geographic link among genomic links (5 SNPs) for each case. 
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Supplemental Table 4-2. Within and between-district links at 3 and 1 SNPs. 

 

 ≤ 5 SNPs ≤ 3 SNPs ≤ 1 SNP 

 District 

Total 

links  

Within-

district 

(%) 

Between-

district 

(%)  

With 

eThekwi

ni (%) 

Total 

links  

Within-

district 

(%)  

Between-

district 

(%)  

With 

eThekwi

ni (%) 

Total 

links  

Within-

district 

(%)  

Between-

district 

(%) 

With 

eThekwi

ni (%) 

Amajuba 1 0 (0) 1 (100) 0 (0) 0 - - - 0 - - - 

eThekwini 526 91 (17) 435 (83) -- 115 24 (21)  91 (79) -- 11 4 (36) 7 (64) -- 

iLembe 32 0 (0)  32 (100) 10 (31) 10 (0) 10 (100) 3 (30) 0 - - - 

Sisonke 61 0 (0) 61 (100) 12 (20) 15 (0)  15 (100) 4 (27) 0 - - - 

Ugu 236 12 (5) 224 (95) 75 (32) 74 50 (7)  24 (93) 25 (34) 4 0 (0) 4 (100)  1 (25) 

UMgungundlovu 313 23 (7) 290 (93) 100 (32) 47 1 (2) 46 (98) 9 (19) 2 0 (0) 2 (100) 1 (50) 

Umkhanyakude 97 1 (1) 96 (99) 25 (26) 20 1 (5) 19 (95) 6 (30) 2 0 (0) 2 (100) 1 (50) 

Umzinyathi 334 32 (10) 302 (90) 104 (31) 64 50 (8) 14 (92) 21 (33) 6 0 (0) 6 (100) 2 (33) 

Uthukela 160 7 (4) 153 (96) 45 (28) 37 3 (8) 34 (92) 9 (24) 2  0 (0) 2 (100) 0 (0) 

Uthungulu 171 5 (3) 166 (97) 50 (29) 39 1 (3) 38 (97) 12 (31) 5  0 (0) 5 (100) 2 (40) 

Zululand 65  1(2) 64 (99) 14 (22) 18 1 (6) 17 (94) 2 (11) 0 - - - 
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Supplemental Table 4-3. Within and between-district genomic links (5 SNPs). 
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Total 

number 

of links 

involvin

g each 

district 

Within-

district 

links 

(%) 

Between-

district 

links (%) 

Links with 

eThekwini 

(%) 

Amajuba 0 0 0 0 0 0 0 0 0 1 0 1 0 (0) 1 (100) 0 (0) 

eThekwini   91 10 12 75 100 25 104 45 50 14 526 91 (17) 435 (83) -- 

iLembe     0 2 3 3 2 6 2 4 0 32 0 (0)  32 (100) 10 (31) 

Sisonke       0 6 9 4 15 6 5 2 61 0 (0) 61 (100) 12 (20) 

Ugu         12 45 13 39 16 17 10 236 12 (5) 224 (95) 75 (32) 

UMgungundlovu           23 16 54 27 27 9 313 23 (7) 290 (93) 100 (32) 

Umkhanyakude             1 10 11 11 4 97 1 (1) 96 (99) 25 (26) 

Umzinyathi               32 32 29 13 334 32 (10) 302 (90) 104 (31) 

Uthukela                 7 12 2 160 7 (4) 153 (96) 45 (28) 

Uthungulu                   5 10 171 5 (3) 166 (97) 50 (29) 

Zululand                     1 65  1(2) 64 (99) 14 (22) 
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Supplemental Table 4-4. Enrollment fraction bias analysis of between- and within-district genomic links (5 SNPs). 

 

District 

Sampling 

fraction 

Inverse 

sampling 

fraction 

Total number 

of links 

involving each 

district 

Within-district 

links (%) 

Between-district 

links (%) 

Links with 

eThekwini (%) 

Amajuba 0.22 4.50 24.2 2.3 (9.3) 22.0 (90.7) 1.8 (7.3) 

eThekwini 0.39 2.54 1377.9 230.7 (16.7) 1147.2 (83.3) 230.7 (16.7) 

iLembe 0.28 3.57 106.0 1.8 (1.7) 104.2 (98.3) 30.5 (28.8) 

Sisonke 0.22 4.50 223.6 2.3 (1.0) 221.3 (99.0) 42.2 (18.9) 

Ugu 0.42 2.37 598.0 2.3 (4.8) 595.8 (95.3) 183.3 (30.7) 

UMgungundlovu 0.37 2.68 839.4 28.4 (7.3) 811.0 (92.7) 260.6 (31.0) 

Umkhanyakude 0.50 2.00 232.1 61.6 (0.9) 170.5 (99.1) 56.7 (24.4) 

Umzinyathi 0.36 2.80 915.6 2.0 (9.8) 913.6 (90.2) 277.3 (30.3) 

Uthukela 0.30 3.38 554.6 89.5 (4.3) 465.1 (95.7) 133.0 (24.0) 

Uthungulu 0.40 2.48 499.6 23.6 (2.5) 476.0 (97.5) 125.4 (25.1) 

Zululand 0.38 2.61 206.3 12.4 (1.3) 193.9 (98.7) 36.0 (17.4) 

Total inflated links = 3017.2       
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5. Aims 1 and 2 

5.1 Manuscript 1 

 

Clinical markers and social mixing patterns associated with transmission of extensively drug-

resistant (XDR) tuberculosis. 

 

Abstract: Tuberculosis (TB) is the leading infectious cause of death globally, and drug-resistant TB 

strains pose a serious threat to controlling the global TB epidemic. Interventions to reduce transmission of 

drug-resistant TB in high-burden settings require a clear understanding of the clinical features, types of 

social contact, and settings driving the spread of TB. We constructed a network of genomic links using 

Mtb whole genome sequences and found that XDR TB cases with cavitary disease, reporting 2-3 months 

of cough, or had more extensive contact with urban settings were more highly connected in the network, 

while those with smear-positive disease were less likely to be linked. These associations persisted in 

networks using different SNP thresholds to define genomic links, using undirected networks in which we 

did not make assumptions about direction of transmission, and in analyses using conventional regression 

methods. Understanding the factors driving local TB epidemics can aid in tailoring TB control efforts; 

however, further analyses should explicitly consider the role of missing cases in transmission networks 

and the extent to which this may affect conclusions about transmission patterns. 
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Introduction 

Tuberculosis (TB) is the leading infectious cause of death globally, and drug-resistant TB strains pose a 

serious threat to controlling the global TB epidemic. [5] Recent studies have shown that the majority of 

drug-resistant TB cases in settings with a high burden of TB are due to transmission of drug-resistant 

strains, rather than acquisition of resistance through inadequate or incomplete TB treatment. [12, 104] 

Interventions to reduce the burden of drug-resistant TB in high-burden settings must include efforts to 

reduce transmission, which will require a clear understanding of the clinical features, types of social 

contact, and settings driving the spread of TB.  

Recent work has suggested that transmission heterogeneity, or the notion that there is variation in 

the number of secondary infections caused by individual cases, may play a critical role in shaping TB 

epidemiology in high-burden settings. [41, 130, 246, 247] On a population level, transmission 

heterogeneity arises as a result of inter-individual differences in three domains: the extent and duration of 

infectiousness, rate of contact with susceptible individuals, and the susceptibility of exposed individuals. 

The first two factors can be considered functions of the biologic features of disease; the third is related to 

behavioral patterns that define where and with whom infected persons spend time. [36] Identifying 

individual-level risk factors associated with a high number of secondary cases can provide insight into the 

clinical features that may identify individuals at high risk of transmitting disease, as well as the settings or 

types of contact that should be prioritized for interventions. Indeed, studies have suggested that control 

measures targeted towards individuals more likely to transmit disease, or implemented in specific 

geographic areas, may outperform broader control measures. [41, 248]  

However, the factors driving TB transmission in high-burden settings remain poorly understood. 

Clinical characteristics associated with transmission are markers of high bacterial burden, including 

sputum smear status and cavitary disease on chest x-ray. However, recent studies have suggested that 

smear-negative cases may be responsible for a larger proportion of transmission in high-burden settings 

than previously thought, calling into question the ‘classical’ picture of infectious TB. [69, 126] Coughing 

aids in expelling Mtb from the respiratory tract and into the surrounding environment; as such, length of 
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cough symptoms may also be associated with transmission. However, there are few studies that examine 

duration of cough as a predictor of transmission. [55] An individual’s likelihood of transmitting TB is 

also influenced by social behaviors, or mixing patterns, that enable person-to-person contact permissive 

of transmission. Although studies suggest that over 80% of transmission may occur outside of the home, 

there is limited understanding of the settings and behaviors that drive transmission in community settings 

and among non-close contacts, or persons who do not know one another. Although institutional (i.e., 

hospitals) and congregate community settings have previously been implicated as venues of transmission, 

the relative importance of these settings in driving TB spread is not well understood. [69, 125-127]  

The advent of bacterial whole genome sequencing (WGS) to characterize Mtb patient isolates 

provides new opportunities to study transmission, especially in areas with a high burden of TB. Relative 

to less sensitive genotyping methods, WGS allows for improved precision in identifying cases with highly 

similar Mtb sequences, thereby generating hypotheses about putative transmission events between cases. 

WGS may prove especially useful in settings with a high burden of TB, where the majority of 

transmission is expected to occur in community settings among patients who may not know one another 

and could therefore not be identified through investigation of close contacts. Mtb sequencing data can be 

used to generate a network comprised of putative transmission links between cases, and analytic methods 

specific to networks provide a framework for studying case characteristics associated with transmission. 

Network analysis has been successfully used in combination with whole genome sequences to identify 

clinical and social drivers of HIV transmission [249, 250]; however, such methods have been not been 

utilized to analyze networks of TB transmission and provide insight into potentially important patterns of 

TB spread. [168, 251] 

Identifying individual-level factors associated with transmission can aid in developing 

interventions that will reduce disease spread. In this study, we used bacterial whole genome sequencing to 

define plausible transmission links between extensively drug-resistant TB cases in KwaZulu-Natal, South 

Africa. Using the resulting ‘sequencing-based network’, we measured associations between clinical and 

social mixing factors and transmission using network analysis methods. 
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Methods 

Study design and procedures 

The Transmission of HIV-Associated XDR TB (TRAX) study was a cross-sectional study that enrolled 

culture-confirmed XDR TB patients diagnosed from May 2011 through August 2014 in KwaZulu-Natal, 

South Africa. [12] The primary aim of the study was to determine the proportion of XDR TB cases that 

develop due to transmission, as compared to acquired drug resistance resulting from inadequate treatment. 

Detailed methods of the TRAX study have been previously published. [12] We identified XDR TB cases 

through the single referral laboratory that conducts drug-susceptibility testing (DST) for all public 

healthcare facilities in the province. All participants provided written informed consent. For deceased or 

severely ill participants, consent was obtained from next-of-kin. 

We interviewed participants and collected demographic information, including age, sex, 

occupation, education and income level. Clinical information on the participants’ medical history, 

including previous tuberculosis disease and HIV status, was provided by participants and supplemented 

with information from the medical record. Participants reported the locations of residences, schools, 

employment, and other congregate locations frequented in the five years prior to their XDR TB diagnosis. 

Participants also reported the location and duration of hospital admissions in the five years prior to 

diagnosis.  

 

Whole genome sequencing 

The diagnostic XDR TB isolate was obtained for all enrolled participants and re‐cultured on Löwenstein‐

Jensen slants. We conducted population sweeps, extracted genomic DNA, and prepared sequencing 

libraries using Nextera DNA kits (Illumina, San Diego, CA). Raw paired‐end sequencing reads were 

generated on the Illumina (MiSeq) platform and aligned to the H37Rv reference genome (NC_000962.3) 

using the Burrows‐Wheeler Aligner. All isolates had reads covering >99% of the reference genome, and 

the lowest mean coverage depth for any isolate was 15X. SNPs were detected using standard pairwise 



 

 72 

resequencing techniques (Samtools v0.1.19) against the reference and filtered for quality, read consensus 

(>75% reads for the alternate allele) and proximity to indels (>50 base-pairs from any indel). SNPs in or 

within 50 base pairs of hypervariable PPE/PE gene families, repeat regions, and mobile elements were 

excluded. [227] 

 

Defining transmission links 

We defined a directed genomic link as a pair of XDR tuberculosis cases with 5 or fewer SNP differences 

between their Mtb sequences and considered the case with the earliest diagnosis date as the primary case. 

We constructed a network comprised of directed genomic links between cases, in which each node in the 

network represented a case and each edge, or link, in the network represented a genomic link. For each 

case in the network, we calculated the number of genomic links in which they were the primary case, 

reflecting the number of putative forward transmission events for which the case was responsible. 

 

Clinical markers of infectiousness 

We considered sputum smear, grade, cavitary disease, and duration of cough symptoms as markers of 

infectiousness. Sputum smear grade and status for each patient was collected from the diagnostic XDR 

TB sputum sample. Chest x-ray results at time of XDR TB diagnosis were abstracted from patient 

medical charts. Cough duration prior to diagnosis was reported by each patient at the time of enrollment 

into the study. 

 

Social mixing measures 

We constructed measures of social mixing using information using information reported by cases on their 

close contacts, as well as activities and locations visited prior to XDR TB diagnosis. We constructed a 

measure of hospital contact by using patient-reported locations and durations of hospitals stays in the five 

years prior to diagnosis, by summing the total number of months that each case had spent in hospital 

during this period. To define urban contact, we used information on current and previous residences as 
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well as congregate locations at which patients spent more than two hours per week. The urban exposure 

measure included three components: whether a case reported ever living in eThekwini, whether they had 

been admitted to a hospital in eThekwini in the previous five years, and whether they reported spending 

time at a congregate location in eThekwini (theoretical range of this variable: 0-3). A second urban 

exposure measure was constructed representing the number of urban locations (residential, healthcare, or 

other congregate) at which a case spent time. Participants also completed a social network questionnaire, 

in which they reported the number of close contacts with whom they spent more than two hours per week. 

We used the number of contacts reported in this questionnaire as a measure of close contact.  

 

Exponential random graph models 

While generalized linear models require the assumption that the values of the dependent variable are 

independent across subjects, this assumption is not met by the relational data represented in a network. 

Specifically, node attributes and therefore network position may be correlated across nodes. To address 

this, we used exponential random graph models (ERGMs) to test associations using between node 

attributes and their connectivity, or degree, in the network. These models account for the statistical 

dependencies in network data and produce valid estimates of associations between case attributes and 

network position.  

We fit ERGMs to test associations between individual case attributes (clinical markers of 

infectiousness and social mixing) and their position in the network. In addition to the primary predictors 

of interest, our main models included terms for sex, age category, and HIV status (HIV-negative, HIV-

positive with an undetectable viral load, HIV-positive with an undetectable viral load).  

 

Alternate models and sensitivity analyses 

We tested associations using two alternative SNP thresholds to define genomic links: one more stringent 

(≤ 3 SNPs) and one less stringent (≤ 10 SNPs). We also tested a definition for genomic links that 

combined whole genome sequencing with conventional genotyping (restriction fragment length 
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polymorphism typing, or RFLP) results. In addition, we tested associations in ‘undirected’ networks, in 

which we did not assume a direction of transmission for genomic links. 

In addition to ERGMs, we used standard regression methods to ensure our results were robust to 

analytic method. We used negative binomial regression models and zero-inflated negative binomial 

models to test associations between case attributes (infectiousness and social mixing variables) and 

number of directed genomic links. (Zero-inflated models account for the high proportion of individuals 

with no links in the network.) We performed negative binomial regression and calculated robust standard 

errors using the glm.nb function from the MASS package in R and zero-inflated negative binomial 

models using the COUNTREG procedure in SAS. 

We constructed parsimonious models, which excluded terms that did not change main effect 

estimates by more than 10% when removed from the model, and fully-specified models, which included 

additional terms for year of study enrollment and Mtb strain type, both of which may be artefactually 

related to the number of genomic links per case. The predominant strain of XDR TB circulating in 

KwaZulu-Natal, the LAM4 KZN strain, is highly clonal and therefore a lower SNP threshold may be 

required to define transmission links as compared to other strains. As such, cases with the LAM4 strain 

may be artificially linked with larger number of other cases than cases with other strains; controlling for 

strain type removes this effect. Second, year of enrollment in the study was associated with the likelihood 

of observing transmission links for that case. We observed more transmission links from cases enrolled 

earlier in the study because cases whom they infected could be enrolled in the later years of our study; we 

were unable to capture as many forward transmission from cases enrolled in later years of the study. To 

account for these relationships, we assessed whether models adjusted for Mtb strain type and year of 

study enrollment produced similar results to our main model. 

 

Results 

TRAX cohort 
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Between 2011 and 2014, we screened 521 (51%) of 1027 culture-confirmed XDR TB patients diagnosed 

in KwaZulu-Natal and enrolled 404 (78% of screened). Among the 404 participants, 234 (58%) were 

female, with a median age of 34 years (interquartile range [IQR]: 28-43). Three hundred eleven (77%) 

participants were HIV-positive, of whom 236 (76%) were on antiretroviral therapy and 155 (50%) were 

virologically suppressed at enrollment (viral load < 400 copies/mL) (Table 1). Mtb isolates from 344 

(85%) participants passed all sequencing quality filters and were available for analysis.  

 

Genomic links 

Among 344 cases comprising the sequencing-based network (threshold of ≤ 5 SNPs), there were a total 

of 740 genomic links. 125 cases (36%) had at least one genomic link. Among those cases with genomic 

links, the number of links ranges from 1 to 28; 38 cases (30%) had between 1 and 5 genomic links, 69 

cases (55%) had 6 to 9 genomic links and 18 cases (14%) had more than 10 genomic links (Figure 5-1). 

When the SNP threshold was increased to ≤ 10 SNPs, there were 181 (53%) cases with at least one link; 

at a lower threshold of ≤ 3 SNPs, there were 116 (34%) cases with at least one link (Supplemental Table 

1). 

 

Infectiousness measures 

In our primary model, reporting 2 or 3 months of cough was associated with being more highly 

linked the network than those reporting no cough: the odds of a genomic link among cases with 2 and 3 

months of cough was 2.7 times (95% CI: 2.18, 3.26) higher and 2.4 times higher (95% CI: 1.94, 2.85) 

than those with no cough, respectively (Table 5-2, Figure 5-2).  However, this trend did not continue in 

the highest category of cough; those who reported more than 4 months of cough were less likely to be 

linked. 

Irrespective of smear grade, smear-positive cases were less likely to be linked than smear-

negative cases. Cases with the highest smear grade of 3+ were the least likely to be linked (OR: 0.55, 

95% CI: 0.44, 0.68) (Table 5-2, Figure 5-2). When we ignored smear grade and considered only smear 
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status (smear-negative and smear-positive), smear-positive cases were 0.43 times less likely (95% CI: 

0.15, 1.24) to have a genomic link than smear-negative cases (Supplemental Table 2). Cavitary disease 

was associated with a higher likelihood of genomic links: the odds of a link among cases with cavitary 

disease was 1.5 times higher (95% CI: 1.27, 1.85) than among those with no cavitary disease. 

In networks defined using a more stringent SNP threshold (3 SNPs) and in which we did not 

assume a direction of transmission, the direction and magnitude of associations with infectiousness were 

generally similar (Supplemental Table 3). Associations with smear status were inconsistent across 

networks, but higher smear grade was generally associated with a lower number of genomic links. In the 

full models that included terms for Mtb strain type and year of enrollment, results were very similar to 

those from the primary model (Supplemental Table 4). Conventional regression models showed results 

similar in direction and magnitude to exponential random graph models; however, some associations were 

weaker in zero-inflated negative binomials models (Supplemental Table 5). 

 

Social mixing measures 

In our primary model, cases reporting contact with 1 or more urban settings (residential, 

healthcare, or other congregate) were more highly connected in the network than those whom reported no 

contact. Compared to those reporting no contact with urban settings, cases reporting contact with 1 urban 

setting had 2.6 times the odds of a genomic link (95% CI: 2.19, 3.06); those reporting 2 or more urban 

settings had 1.7 times the odds of a link (95% CI: 1.33, 2.24) (Table 5-3, Figure 5-3). When we 

deconstructed the variable describing contact with urban settings to determine specifically which 

component was most strongly associated with being highly linked, we found that reporting a stay in an 

urban hospital most associated with a high number of genomic links (IRR: 2.65, 95% CI: (1.60, 4.39). 

However, cases with very long lengths of stay in a hospital (irrespective of location) were less likely to be 

linked in the network than those who spent less time. The odds of a genomic link among cases who spent 

3-5 months in hospital was 0.82 times that of those who spent ≤ 2 months (95% CI: 0.69, 0.98); those 

who spent 5 or more months had 0.4 times the odds of a link (95% CI: 0.28, 0.48). Close contact was 
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moderately associated with being linked in the network. Cases who reported 5-10 or more than 10 

contacts were more likely to have a link than cases who reported fewer than four close contacts (Table 5-

3, Figure 5-3). Notably, associations with infectiousness measures (smear status, cavitary disease, cough 

duration) persisted and were similar in magnitude in models including all social mixing predictors. 

Age, HIV status, and all infectiousness measures were important confounders and could not be 

dropped from the model without altering model coefficients substantially; the only predictor that could be 

dropped was sex. Models that excluded sex as a predictor produced very similar results to those models 

including sex, with little improvement in precision. In models that also included terms for Mtb strain type 

and year enrolled, associations were similar in direction and magnitude to results from the primary model, 

with the exception that associations with urban contact were weaker (Supplemental Table 5-7). 

In networks with alternative definitions of genomic links, directions of associations with urban 

contact, hospital contact, and close contacts were generally consistent, but the strength of associations 

were model-dependent (Supplemental Table 5-8). In conventional regression models, results were 

consistent with our main model (Supplemental Table 5-9). 

 

Discussion 

We constructed a network of genomic links using Mtb whole genome sequences and found that XDR TB 

cases with cavitary disease, reporting 2-3 months of cough, or had more extensive contact with urban 

settings were more highly connected in the network, while those with smear-positive disease were less 

likely to be linked. These associations persisted in networks using different SNP thresholds to define 

genomic links, using undirected networks in which we did not make assumptions about direction of 

transmission, and in analyses using conventional regression methods.  

These associations are largely consistent with prior studies of TB transmission. Cough duration 

and cavitary disease have previously been associated with being genotypically-linked to other cases in 

drug-susceptible and multidrug-resistant TB. [51, 55, 57] These studies employed conventional 

genotyping methods to define genotypic links; our study shows that these associations are robust to more 
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precise molecular characterization methods (WGS) with higher specificity to define transmission links 

between cases. Although the trend between cough and network position did not persist in the group with 

the longest duration of cough symptoms; this may reflect an upper bound on the effect of cough duration 

on transmission. Indeed, previous research has suggested that ‘saturation’ of contacts may occur over the 

course of a long infectious period, and long infectious periods may be common in settings with high TB 

burden and among drug-resistant TB patients. [130, 252] Surprisingly, we found a negative association 

between smear status and position in the network. There may be several reasons for this: first, we only 

considered a single sputum result at the time of diagnosis, which may fail to fully represent smear status 

over the course of TB infection. This association may also be due to a relationship between cavitary 

disease and smear status, whereby increased bacterial burden in the lungs leads to higher levels of 

bacteria in sputum. We included both variables in our models, which might attenuate a true positive 

association between smear status and transmission. Another potential explanation for this paradoxical 

finding is that patients with smear-negative disease may experience diagnostic delays, leading to longer 

infectious periods and thus more opportunities for transmission. [28]This is consistent with recent 

evidence suggesting that smear-negative cases may be important in driving transmission in settings with 

high TB incidence. [69, 126] 

We found associations with several social settings that may be associated with transmission. 

Contact with urban settings prior to diagnosis was related to being more highly connected in the network. 

Urban areas are known to have higher incidence of TB, because they tend to provide ideal conditions for 

disease spread by generally increasing person-to-person contact rates, but they have also been 

hypothesized to drive disease incidence in wider geographic areas. Our findings support previous findings 

from this same cohort suggesting that rural-urban migration may be driving transmission of XDR TB in 

KwaZulu-Natal. [253] We also report the number of months spent in the hospital in the five years prior to 

diagnosis was negatively associated with connectivity in the network. This was a peculiar finding, as 

healthcare facilities and other institutional settings are generally considered to be ‘amplifiers’ of 

transmission; as such, TB outbreaks in these settings are known to drive transmission in the larger 
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community. [120] The lack of an association between hospital stays and transmission may be obscured by 

the granularity at which hospital stay data was collected, which was in months. Measuring duration of 

stay in weeks may be more relevant for assessing transmission risk. However, there are also potential 

explanations for our negative findings: individuals that spent time in hospital during their infectious 

periods may have encountered fewer susceptible individuals than those who spent their infectious periods 

living, working, and socializing in their communities.  

We found a weakly positive association with the number of close contacts named by participants 

and network connectivity. We hypothesized that reporting more close contacts would reflect a higher 

level of engagement in person-to-person contact (either through social activities, employment, school, or 

home life) and thus more opportunities for transmission. This trend did not persist among those reporting 

the highest numbers of close contacts, but numbers were small in these groups. As with cough duration, 

this may reflect a threshold above which having more contacts does not necessarily lead to additional 

transmission events, a notion supported by previous modeling studies. [130] 

This analysis has several limitations. First, we enrolled 40% of all diagnosed XDR TB cases in 

KwaZulu-Natal during this time period; therefore, there are missing cases and genomic links in this 

network. If missing cases are intermediates in the transmission chain between sampled, genomically 

linked cases, this would likely lead to larger genomic differences between sampled cases. However, 

reducing the SNP threshold showed similar results to our primary analysis, suggesting that these findings 

may be robust to the effects of missing cases. Although cases enrolled in the study were demographically 

similar to all diagnosed cases in terms of age (p = 0.52), sex (p = 0.76), and district of diagnosing facility 

(p = 0.70), the extent to which enrolled cases are representative of undiagnosed cases in not clear. Second, 

our assumptions about the direction of genomic links using diagnosis dates may have led to incorrect 

classification of the directionality of links. Although we also conducted our analyses using a network in 

which we did not assume directionality and found largely similar results, we still cannot distinguish 

between individual-level factors that increase risk of infection from those that increase risk of 

transmission. However, it is useful to note that, theoretically, that the source of infection should only 
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account for one link per case; the remainder of links are due to forward transmissions. Therefore, this 

limitation likely has little effect on our results. Lastly, the appropriate threshold genetic distance for 

defining transmission remains uncertain, and may depend on local epidemiologic context. [46, 151] 

However, we conducted our analyses using several different thresholds for genomic links and found 

similar results, suggesting that our main results are not sensitive to this threshold. 

Identifying individual-level factors driving tuberculosis transmission can inform development of 

prevention strategies, if such factors can be easily identified and targeted with effective interventions. 

Although network analysis has potential to enhance understanding of drug-resistant TB transmission 

patterns, further analyses should explicitly consider the role of missing cases in analyzing partial 

transmission networks.  Evidence-based interventions will be critical to reduce the burden of TB in 

countries with high levels of ongoing transmission.
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5.2 Figures and Tables 

 

Table 5-1. Demographic, clinical and social mixing characteristics of the TRAX cohort. 

Characteristic 

n (%), 

unless otherwise noted 

   

Demographic  

Female 202 (59) 

Age, median (IQR) 34 (29-43) 

    0-15  12 (3) 

    16-34  171 (50) 

    35-54  134 (39) 

     55  27 (8) 

Monthly household income  

    < R500 120 (35) 

    R500-R2,500 153 (44) 

    > R2,500 71 (21) 

   

Clinical characteristics  

Current or former smoker 35 (10) 

Diabetes 22 (6) 

HIV positive 266 (77) 

     Receiving antiretroviral therapy 204 (77) 

     CD4 cell count (median, IQR) 240 (111-425) 

     Virologic suppression (<400 copies/mL) 134 (39) 

Cough  

     Patients with cough 284 (83) 

     Median duration of cough 8 (4-12) 

Sputum smear negative for acid-fast bacilli 235 (68) 

     Scanty-positive  

     Smear-positive, grade 1 59 (17) 

     Smear-positive, grade 2 51 (15) 

     Smear-positive, grade 3 +  

Cavitary disease 60 (17) 

Previous treatment for any tuberculosis  247 (72) 

    Previous treatment for multidrug-

resistant tuberculosis  
105 (31) 
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Social mixing characteristics  
Number of reported close contacts, median 

(IQR) 7 (4, 10) 

   

Number of months in hospital, median (IQR) 3 (2, 5) 

   

Previous stay at urban hospital  175 (51) 

Current or previous urban residence  39 (11) 

Reported visiting urban congregate setting 38 (11) 
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Figure 5-1. Variation in the number of links among TRAX cases in the sequencing-based network. 
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The number of links per case, or the degree distribution, of the sequencing-based network of TRAX cases. In this network, edges are defined by 

genomic links of ≤ 5 SNPs. Inset: The sequencing-based network. Each dot represents a TRAX cases and each arrow a genomic link. In both 

figures, cases with a lower network degree are in yellow and higher degree in red.
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Table 5-2. Associations between infectiousness and network position. 1 

  n (%) Odds Ratio 95% CI p 

Cough duration    
  

No cough reported 128 (37) Ref  - -  

1 month 60 (17) 0.51 (0.37, 0.71) < 0.01 

2 months 51 (14) 2.66 (2.18, 3.26) < 0.01 

3 months 72 (21) 2.35 (1.94, 2.85) < 0.01 

 4 months 33 (10) 1.06 (0.78, 1.45) 0.72 

      
Smear status      
Smear - 109 (32) Ref  - -  

Smear +, scanty + 37 (11) 0.97 (0.76, 1.24) 0.86 

Smear +, grade 1 59 (17) 0.65 (0.52, 0.82) < 0.01 

Smear +, grade 2 51 (15) 0.70 (0.56, 0.88) < 0.01 

Smear +, grade 3+ 88 (26) 0.55 (0.44, 0.68) < 0.01 

      
Cavitary disease      
No cavitary disease 284 (83) Ref  - -  

Cavitary disease 60 (17) 1.53 (1.27, 1.85) < 0.01 
 

1 Model also includes terms for HIV status, sex, and age
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Figure 5-2. Associations between infectiousness and network position. 

  

 

Figure 2. Dots represent odds ratio estimate and bars represent 95% confidence interval. A. Reference 

category for cough duration is no cough reported. B. Reference category for smear status and grade is 

smear-negative. (Cavitary disease not shown) 

 

A. 

B. 
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Table 5-3. Associations between social mixing measures and network position. 1 

 n (%) Odds Ratio 95% CI p 

Contact with urban areas      
0 urban settings 149 (43) Ref  -  -  

1 urban settings 147 (43) 2.58 (2.18, 3.06) < 0.01 

 2 urban settings 48 (20) 1.56 (1.33, 2.24) < 0.01 

      
Duration in hospital      
0 - 2 months  113 (33) Ref   -  -  

3 - 5 months  81 (24) 0.82 (0.69, 0.98) 0.03 

> 5 months  59 (17) 0.37 (0.28, 0.48) < 0.01 

      
Named close contacts      
0 - 4 contacts 108 (31) Ref   -  -  

5 - 10 contacts 144 (42) 1.19 (0.99, 1.43) 0.05 

> 10 contacts 85 (25) 1.42 (1.16, 1.73) < 0.01 

 

1 Model also includes terms for HIV status, sex, and age, smear status and grade, cavitary disease, and 

cough duration
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Figure 5-3. Associations between social mixing measures and network position. 

  

  

 

 

 

A. 

B. 

C. 
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Figure 3. Dots represent odds ratio estimate and bars represent 95% confidence interval. A. Reference 

category for urban settings is zero. B. Reference category for months in hospital pre-diagnosis is 0-2 

months. C. Reference category for close contacts is 0-5. 
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5.3 Supplemental Results 

 

Supplemental Table 5-1. Characteristics of networks with alternate SNP thresholds and genomic link 

definitions. 

Genomic link 

definition 

Number of edges 

(total links) in 

network 

Cases with at least 

one link (%) 

Mean links per 

case 

Median links 

per case 

Maximum 

number of 

links 

≤ 3 pairwise SNPs, 

undirected 
240 116 (34) 1.4 0.0 22 

Undirected 

RFLP/WGS (≤ 3 

pairwise SNPs) 

combined 

353 100 (29) 2.1 7.50 20 

≤ 10 pairwise SNPs, 

directed 
4704 181 (53) 13.7 2.0 95 
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Supplemental Table 5-2. Associations between infectiousness and network position in models with collapsed variable for smear status. 

  

n (%)  

Total n = 344 Odds Ratio 95% CI p 

Cough duration        

No cough reported 128 (37) Ref -  -  -  

1 month 60 (17) 0.51 0.37 0.70 <0.01 

2 months 51 (14) 2.59 2.12 3.16 <0.01 

3 months 72 (21) 2.28 1.88 2.76 <0.01 

 4 months 33 (10) 1.06 0.78 1.45 0.72 

        

Smear status        

Smear - 109 (32) Ref -  -  -  

Smear + 235 (68) 0.65 0.55 0.76 <0.01 

        

Cavitary disease        

No cavitary disease 284 (83) Ref -  -  -  

Cavitary disease 60 (17) 1.50 1.25 1.81 <0.01 

        

HIV status        

HIV-negative 78 (23) Ref -  -  -  

HIV-positive, undetectable VL 133 (39) 1.17 0.95 1.42 0.14 

HIV-positive, detectable VL 133 (39) 1.02 0.83 1.25 0.87 

        

Sex        

Male 142 (41) Ref -  -  -  

Female 202 (59) 0.92 0.80 1.07 0.28 

        

Age category        

 15 12 (3) Ref -  -  -  
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16-34 171 (50) 0.76 0.53 1.09 0.14 

35-54 134 (39) 0.84 0.58 1.21 0.36 

 55 27 (8) 1.25 0.84 1.86 0.27 
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Supplemental Table 5-3. Associations between infectiousness and network position in networks with alternate genomic link definitions. 

 Undirected ≤ 5 SNPs Directed ≤ 10 SNPs 

Undirected RFLP/WGS  

(≤ 3 SNPs) combined 

  Odds Ratio 95% CI p Odds Ratio 95% CI p Odds Ratio 95% CI p 

Cough duration              

No cough reported Ref  -  -  -  Ref  -  -  -  Ref  -  -  -  

1 month 1.27 1.12 1.45 <0.01 0.51 0.45 0.57 <0.01 0.70 0.54 0.89 <0.01 

2 months 1.67 1.47 1.90 <0.01 1.92 1.77 2.08 <0.01 1.53 1.24 1.88 <0.01 

3 months 1.69 1.51 1.90 <0.01 1.84 1.71 1.99 <0.01 1.37 1.13 1.67 <0.01 

4 months 0.88 0.68 1.12 0.29 0.63 0.52 0.77 <0.01 0.49 0.30 0.81 0.01 

 5 months 0.80 0.62 1.04 0.10 1.11 0.95 1.29 0.20 0.82 0.54 1.24 0.35 

              

Smear status              

Smear - negative Ref  -  -  -  Ref  -  -  -  Ref  -  -  -  

Smear +, scanty + 1.26 1.10 1.45 <0.01 0.78 0.70 0.87 <0.01 1.51 1.16 1.95 <0.01 

Smear +, grade 1 0.66 0.57 0.76 <0.01 0.63 0.57 0.69 <0.01 1.17 0.92 1.48 0.20 

Smear +, grade 2 0.89 0.78 1.02 0.09 0.65 0.60 0.72 <0.01 1.02 0.79 1.32 0.87 

Smear +, grade 3+ 0.80 0.71 0.90 <0.01 0.61 0.56 0.66 <0.01 1.35 1.10 1.67 <0.01 

              

Cavitary disease              

No cavitary disease Ref  -  -  -  Ref  -  -  -  Ref  -  -  -  

Cavitary disease 1.31 1.17 1.46 <0.01 1.50 1.39 1.61 <0.01 1.46 1.21 1.75 <0.01 

              

HIV status              

HIV-negative Ref  -  -  -  Ref  -  -  -  Ref  -  -  -  

HIV-positive, undetectable VL 1.20 1.06 1.35 <0.01 1.41 1.30 1.54 <0.01 1.29 1.04 1.61 0.02 

HIV-positive, detectable VL 1.07 0.95 1.21 0.26 1.19 1.10 1.30 <0.01 1.45 1.17 1.80 0.00 
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Sex              

Male Ref  -  -  -  -  -  -  -  Ref  -  -  -  

Female 1.01 0.93 1.11 0.75 1.12 1.05 1.19 <0.01 1.00 0.86 1.16 0.98 

              

Age category              

 15 Ref  -  -  -  Ref  -  -  -  Ref  -  -  -  

16-34 0.77 0.62 0.97 0.02 0.66 0.57 0.76 <0.01 1.15 0.72 1.82 0.57 

35-54 0.82 0.65 1.03 0.08 0.75 0.65 0.86 <0.01 1.02 0.64 1.64 0.93 

 55 1.08 0.84 1.39 0.53 1.14 0.97 1.33 0.11 1.63 0.97 2.72 0.06 
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Supplemental Table 5-4. Associations between infectiousness and network position in full and parsimonious models. 

   

Parsimonious model  

(excluding sex) 

Full model  

(including TB strain and year) 

  

n (%)  

Total n = 

344 Odds Ratio 95% CI p Odds Ratio 95% CI p 

Cough duration            

No cough reported 128 (37) Ref  -  -  -  Ref  -  -  -  

1 month 60 (17) 0.51 0.37 0.71 <0.01 0.74 0.53 1.04 0.08 

2 months 51 (14) 2.67 2.18 3.26 <0.01 2.15 1.75 2.64 <0.01 

3 months 72 (21) 2.35 1.94 2.85 <0.01 1.96 1.61 2.39 <0.01 

4 months 16 (5) 0.97 0.63 1.48 0.89 1.25 0.81 1.93 0.32 

 5 months 17 (5) 1.17 0.77 1.78 0.46 0.82 0.54 1.24 0.35 

            

Smear status            

Smear - 109 (32) Ref  -  -  -  Ref  -  -  -  

Smear +, scanty + 37 (11) 0.96 0.75 1.22 0.72 1.13 0.87 1.47 0.37 

Smear +, grade 1 59 (17) 0.65 0.51 0.81 <0.01 0.80 0.62 1.01 0.06 

Smear +, grade 2 51 (15) 0.70 0.56 0.88 <0.01 0.73 0.57 0.93 0.01 

Smear +, grade 3+ 88 (26) 0.55 0.44 0.68 <0.01 0.59 0.47 0.74 <0.01 

            

Cavitary disease            

No cavitary disease 284 (83) Ref  -  -  -  Ref  -  -  -  

Cavitary disease 60 (17) 1.52 1.26 1.83 <0.01 1.72 1.41 2.09 <0.01 

            

HIV status            

HIV-negative 78 (23) Ref  -  -  -  Ref  -  -  -  

HIV-positive, undetectable VL 133 (39) 1.19 0.97 1.45 0.10 1.32 1.06 1.63 0.01 

HIV-positive, detectable VL 133 (39) 1.00 0.81 1.23 0.98 1.06 0.86 1.32 0.57 
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Sex            

Male 142 (41) -  -  -  -  Ref  -  -  -  

Female 202 (59) -  -  -  -  0.83 0.71 0.97 0.02 

            

Age category            

 15 12 (3) Ref        Ref        

16-34 171 (50) 0.81 0.56 1.17 0.27 0.67 0.47 0.97 0.04 

35-54 134 (39) 0.91 0.62 1.31 0.60 0.63 0.44 0.92 0.02 

 55 27 (8) 1.37 0.92 2.04 0.12 1.03 0.68 1.55 0.89 

            

Strain            

HP 259 (75) -  -  -  -  Ref  -  -  -  

Non-HP 85 (25) - - - - 37.76 17.89 79.68 <0.01 

            

Year             

2011 58 (17) -  -  -  -  Ref   -  -  -  

2012 107 (31) - - - - 0.43 0.36 0.51 <0.01 

2013 82 (24) - - - - 0.36 0.29 0.44 <0.01 

2014 97 (28) - - - - 0.14 0.10 0.20 <0.01 
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Supplemental Table 5-5. Associations between infectiousness and network position using conventional 

regression methods. 

  
n (%),  

Total n 

= 344 

Negative binomial  
Zero-inflated Negative 

binomial 

Estimate 

 

IRR 95% CI p 

Mean  

difference1 95% CI 

Cough duration             
No cough reported 128 (37) Ref  -  -  -  -  Ref  -  -  

1 month 60 (17) -0.80 0.45 0.43 0.87 0.02 -0.99 -2.32 0.35 

2 months 51 (14) 1.08 2.94 2.92 5.98 <0.01 2.9 -0.59 6.38 

3 months 72 (21) 1.05 2.85 2.85 5.34 <0.01 2.78 -0.29 5.85 

4 months 16 (5) -0.66 0.52 0.25 2.24 0.38 -0.77 -3.42 1.88 

 5 months 17 (5) 0.10 1.11 0.21 3.51 0.86 0.47 -2.66 3.6 

             
Smear status             
Smear - negative 109 (32) Ref  -  -  -   -  Ref  -  -  

Smear +, scanty + 37 (11) 0.55 1.73 1.41 3.33 0.10 0.82 -1.25 2.89 

Smear +, grade 1 59 (17) -0.58 0.56 0.47 1.10 0.09 -0.8 -2.02 0.43 

Smear +, grade 2 51 (15) -0.22 0.81 0.23 1.94 0.63 1.43 -1.55 4.42 

Smear +, grade 3+ 88 (26) -0.38 0.68 0.46 1.22 0.20 -0.7 -1.74 0.35 

             
Cavitary disease             
No cavitary disease 284 (83) Ref   -   -   -   -  Ref  -  -  

Cavitary disease 60 (17) 0.31 1.36 0.72 2.53 0.33 0.78 -0.9 2.46 

             
HIV status             
HIV-negative 78 (23) Ref  -  -  -  -  Ref  -  -  

HIV-positive, undetectable VL 133 (39) 0.35 1.42 0.81 2.75 0.29 0.16 -1.15 1.48 

HIV-positive, detectable VL 133 (39) 0.06 1.06 0.20 1.98 0.85 -0.05 -1.3 1.19 

             
Sex             
Male 142 (41) Ref  -  -  -  -  Ref  -  -  

Female 202 (59) -0.08 0.93 0.21 1.48 0.75 -0.09 -0.97 0.79 

             
Age category             
15 12 (3) Ref  -  -  -  -  Ref  -  -  

16-34 171 (50) -0.48 0.62 0.33 1.62 0.33 -0.7 -2.73 1.33 

35-54 134 (39) -0.23 0.80 0.23 1.99 0.63 0.56 -1.85 2.96 

 55 27 (8) 0.52 1.69 0.81 5.37 0.37 0.54 -2.55 3.64 

 

1 Zero-inflated negative binomial results are expressed as the mean difference in log risk relative to an 

individual with characteristics corresponding to all reference categories.  
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Supplemental Table 5-6. Deconstructing urban contact variable. 1 

  
n (%),  

Total n = 344 

Negative binomial  

Estimate 

 

IRR 95% CI p 

Named urban congregate setting        

No 306 (89)           

Yes 38 (11) -0.27 0.77 0.38 1.54 0.36 

        

Named urban hospital setting        

No 169 (49)           

Yes 175 (51) 0.98 2.65 1.60 4.39 0.26 

       

Named (current or former) urban residence       

No  305 (89)      

Yes 39 (11) 0.10 1.11 0.56 2.19 0.77 

 

1 Model also adjusted for all other social mixing, clinical infectiousness, and demographic variables. 
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Supplemental Table 5-7. Associations between social mixing measures and network position in alternate models. 

   

Parsimonious model  

(excluding sex) 

Full model  

(including TB strain and year) 

  

n (%)  

Total n = 

344 Odds Ratio 95% CI p Odds Ratio 95% CI p 

Contact with urban areas             

0 urban settings 149 (43)  Ref -  -  -    Ref -  -  -   

1 urban settings 147 (43) 2.66 2.23 3.16 <0.01 2.13 1.78 2.56 <0.0001 

2 urban settings 39 (11) 1.65 1.21 2.25 <0.01 1.07 0.78 1.46 0.68 

3 urban settings 9 (3) 3.85 2.53 5.87 <0.01 2.88 1.78 4.64 <0.0001 

              

Duration in hospital             

0 - 2 months  113 (33)  Ref -  -  -    Ref -  -  -   

3 - 5 months  81 (24) 0.90 0.75 1.08 0.25 0.89 0.74 1.08 0.23 

 6 months  59 (17) 0.36 0.27 0.47 <0.01 0.43 0.33 0.58 <0.0001 

              

Named close contacts             

0 - 4 contacts 108 (31)  Ref -  -  -    Ref -  -  -   

5 - 9 contacts 144 (42) 1.19 0.99 1.44 0.07 0.97 0.80 1.18 0.74 

10 - 14 contacts 72 (21) 1.49 1.21 1.83 <0.01 1.39 1.11 1.74 0.00 

 15 contacts 13 (4) 0.98 0.66 1.44 0.91 1.33 0.89 1.99 0.17 

              

Cough duration             

No cough reported 128 (37)  Ref -  -  -    Ref -  -  -   

1 month 60 (17) 0.43 0.31 0.59 <0.01 0.68 0.48 0.95 0.02 

2 months 51 (14) 2.39 1.95 2.93 <0.01 1.82 1.47 2.25 <0.01 

3 months 72 (21) 2.32 1.91 2.83 <0.01 1.88 1.53 2.31 <0.01 

4 months 16 (5) 1.02 0.66 1.57 0.94 1.30 0.82 2.06 0.27 
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 5 months 17 (5) 1.43 0.94 2.18 0.10 1.00 0.65 1.52 0.99 

             

Smear status             

Smear - negative 109 (32)  Ref -  -  -    Ref -  -  -   

Smear +, scanty + 37 (11) 0.89 0.69 1.14 0.34 1.04 0.80 1.36 0.75 

Smear +, grade 1 59 (17) 0.63 0.50 0.81 <0.01 0.80 0.62 1.03 0.09 

Smear +, grade 2 51 (15) 0.63 0.50 0.79 <0.01 0.70 0.55 0.89 <0.01 

Smear +, grade 3+ 88 (26) 0.59 0.48 0.74 <0.01 0.64 0.51 0.80 <0.01 

             

Cavitary disease             

No cavitary disease 284 (83)  Ref -  -  -    Ref -  -  -   

Cavitary disease 60 (17) 1.43 1.26 1.63 <0.01 1.48 1.29 1.69 <0.01 

             

HIV status             

HIV-negative 78 (23)  Ref -  -  -    Ref -  -  -   

HIV-positive, undetectable VL 133 (39) 1.22 1.00 1.49 0.05 1.35 1.09 1.68 0.01 

HIV-positive, detectable VL 133 (39) 0.95 0.78 1.16 0.63 1.07 0.86 1.32 0.56 

             

Sex             

Male 142 (41) -  -  -   -    Ref -  -  -   

Female 202 (59) -  -  -   - 0.79 0.68 0.93 0.01 

             

Age category             

15 12 (3)  Ref -  -  -    Ref -  -  -   

16-34 171 (50) 0.86 0.59 1.25 0.43 0.78 0.54 1.14 0.20 

35-54 134 (39) 0.88 0.60 1.28 0.49 0.66 0.45 0.96 0.03 

 55 27 (8) 1.17 0.78 1.74 0.45 1.14 0.76 1.72 0.52 

              

Strain              
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HP 259 (75) -  -  -   -    Ref -  -  -   

Non-HP 85 (25) - - - - 35.50 16.79 75.05 <0.01 

              

Year               

2011 58 (17) -  -  -  -    Ref -  -  -   

2012 107 (31) - - - - 0.52 0.43 0.63 <0.01 

2013 82 (24) - - - - 0.47 0.37 0.60 <0.01 

2014 97 (28) - - - - 0.16 0.11 0.22 <0.01 
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Supplemental Table 5-8. Associations between social mixing measures and node outdegree in networks with alternate SNP thresholds and 

genomic link definitions. 

 Undirected ≤ 5 SNPs Directed ≤ 10 SNPs 

Undirected RFLP/WGS (≤ 3 SNPs) 

combined 

  Odds Ratio 95% CI p Odds Ratio 95% CI p Odds Ratio 95% CI p 

Contact with urban areas               

0 urban settings Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

1 urban settings 1.49 1.35 1.65 <0.01 1.83 1.71 1.96 <0.01 1.35 1.14 1.61 0.00 

2 urban settings 1.77 1.52 2.06 <0.01 1.47 1.31 1.64 <0.01 1.11 0.84 1.48 0.46 

3 urban settings 1.89 1.47 2.43 <0.01 1.16 0.93 1.44 0.19 1.24 0.77 1.99 0.38 

               

Duration in hospital               

0 - 2 months  Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

3 - 5 months  0.97 0.87 1.08 0.57 0.83 0.77 0.90 <0.01 0.95 0.79 1.15 0.61 

 6 months  0.41 0.35 0.48 <0.01 0.57 0.52 0.63 <0.01 0.71 0.56 0.90 0.00 

               

Named close contacts               

0 - 4 contacts Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

5 - 9 contacts 1.10 0.98 1.22 0.09 1.26 1.17 1.36 <0.01 1.18 0.98 1.43 0.08 

10 - 14 contacts 1.42 1.25 1.60 <0.01 1.32 1.21 1.44 <0.01 1.59 1.29 1.96 <0.01 

 15 contacts 0.70 0.55 0.88 <0.01 0.80 0.68 0.94 0.01 0.74 0.48 1.15 0.18 

               

Cough duration               

No cough reported Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

1 month 1.10 0.96 1.25 0.17 0.86 0.81 0.92 <0.01 0.68 0.53 0.88 <0.01 

2 months 1.57 1.38 1.78 <0.01 1.47 1.38 1.56 <0.01 1.46 1.18 1.80 <0.01 

3 months 1.68 1.49 1.89 <0.01 1.18 1.11 1.25 <0.01 1.38 1.13 1.68 <0.01 

4 months 0.81 0.63 1.04 0.09 0.84 0.75 0.95 <0.01 0.49 0.29 0.81 <0.01 
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 5 months 0.86 0.66 1.12 0.27 0.82 0.73 0.92 <0.01 0.84 0.55 1.28 0.43 

               

Smear status               

Smear - negative Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

Smear +, scanty + 1.23 1.07 1.42 <0.01 0.97 0.90 1.04 0.35 1.56 1.20 2.04 <0.01 

Smear +, grade 1 0.67 0.58 0.78 <0.01 0.60 0.56 0.65 <0.01 1.18 0.92 1.50 0.19 

Smear +, grade 2 0.86 0.75 0.98 0.03 0.78 0.73 0.83 <0.01 1.00 0.77 1.30 0.98 

Smear +, grade 3+ 0.83 0.73 0.93 <0.01 0.81 0.77 0.86 <0.01 1.37 1.11 1.70 <0.01 

               

Cavitary disease               

No cavitary disease Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

Cavitary disease 1.41 1.26 1.57 <0.01 1.27 1.20 1.34 <0.01 1.51 1.25 1.82 <0.01 

               

HIV status               

HIV-negative Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

HIV-positive, undetectable VL 1.25 1.11 1.41 <0.01 1.18 1.11 1.25 <0.01 1.30 1.05 1.62 0.02 

HIV-positive, detectable VL 1.07 0.95 1.21 0.26 0.97 0.92 1.03 0.35 1.46 1.17 1.81 <0.01 

               

Sex               

Male Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

Female 0.91 0.83 1.00 0.05 1.13 1.08 1.18 <0.01 0.92 0.79 1.08 0.31 

               

Age category               

 15 Ref  -  -  -   Ref  -  -  -   Ref  -  -  -   

16-34 0.78 0.62 0.98 0.03 0.82 0.73 0.91 <0.01 1.17 0.73 1.86 0.52 

35-54 0.81 0.64 1.02 0.07 0.98 0.87 1.09 0.66 1.02 0.64 1.65 0.92 

 55 1.01 0.78 1.30 0.97 1.07 0.95 1.21 0.28 1.57 0.94 2.64 0.09 
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Supplemental Table 5-9. Associations between social mixing measures and node outdegree using 

conventional regression methods. 

 
Negative Binomial 

Zero-inflated Negative 

Binomial 

 Estimate 

 

IRR 95% CI p 

Mean  

difference1 95% CI 

Contact with urban areas           

0 urban settings  Ref -  -  -   -   -  -  -   

1 urban settings 0.94 2.55 1.54 4.24 <0.01 2.78 -1.39 6.96 

2 urban settings 0.87 2.40 1.20 4.77 0.01 2.43 -0.8 5.65 

3 urban settings 0.32 1.38 0.25 7.58 0.71 0.79 -3.37 4.96 

           

Duration in hospital           

0 - 2 months   Ref -  -  -   -   -  -  -   

3 - 5 months  -0.01 0.99 0.55 1.78 0.96 -0.5 -1.03 0.03 

 6 months  -1.01 0.36 0.19 0.69 <0.01 -0.68 -1.31 -0.05 

           

Named close contacts           

0 - 4 contacts  Ref -  -  -   -   -  -  -   

5 - 9 contacts 0.27 1.31 0.78 2.22 0.31 -0.06 -0.61 0.49 

10 - 14 contacts 0.44 1.56 0.84 2.88 0.16 0.21 -0.52 0.95 

 15 contacts -0.48 0.62 0.16 2.35 0.48 -0.29 -1.11 0.54 

           

Cough duration           

No cough reported  Ref -  -  -   -   -  -  -   

1 month -0.81 0.45 0.22 0.93 0.03 -0.47 -1.07 0.14 

2 months 1.14 3.11 1.59 6.11 <0.01 1.86 -0.08 3.81 

3 months  1.14 3.12 1.70 5.71 <0.01 2.15 0.36 3.95 

4 months -0.63 0.53 0.15 1.90 0.33 0.37 -2.18 2.92 

 5 months  0.13 1.14 0.41 3.18 0.80 0.74 -1.16 2.64 

           

Smear status           

Smear - negative  Ref -  -  -   -   -  -  -   

Smear +, scanty + 0.69 2.00 1.00 3.99 0.05 0.12 -0.68 0.92 

Smear +, grade 1 -0.49 0.61 0.30 1.22 0.16 0.01 -1.45 1.48 

Smear +, grade 2 -0.51 0.60 0.29 1.24 0.17 0.85 -0.54 2.24 

Smear +, grade 3+ -0.46 0.63 0.38 1.06 0.08 -0.48 -1 0.04 

           

No cavitary disease  Ref -  -  -   -   -  -  -   

Cavitary disease 0.28 1.33 0.75 2.34 0.33 -0.12 -0.66 0.42 
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HIV status           

HIV-negative  Ref -  -  -   -   -  -  -   

HIV-positive, undetectable VL 0.49 1.63 0.92 2.91 0.09 0.02 -0.63 0.67 

HIV-positive, detectable VL 0.29 1.33 0.76 2.32 0.31 0.06 -0.61 0.73 

           

Sex           

Male  Ref -  -  -   -   -  -  -   

Female -0.19 0.83 0.52 1.31 0.42 0.02 -0.51 0.56 

           

Age Category           

15  Ref -  -  -   -   -  -  -   

16-34 -0.67 0.51 0.20 1.30 0.16 -0.55 -1.52 0.42 

35-54 -0.46 0.63 0.24 1.66 0.35 0.6 -2.88 4.09 

 55 0.14 1.15 0.37 3.56 0.81 0.07 -1.28 1.42 

 

1 Zero-inflated negative binomial results are expressed as the mean difference in log risk relative to an 

individual with characteristics corresponding to all reference category. 
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6. Aim 3 

 

6.1 Manuscript 2 

 

Modeling missing cases in transmission networks of extensively drug-resistant (XDR) tuberculosis. 

 

Abstract 

Tuberculosis (TB) is the leading infectious cause of death worldwide, and in 2016, there were over half a 

million new cases of drug-resistant TB. Analysis of transmission networks may be useful to understand 

drivers of transmission, however, constructing transmission network using data collected in settings with 

a high burden of TB will often be incomplete. The absence of cases from a network is concerning, 

because it may pose problems for making inferences about larger, complete transmission networks. We 

conducted a simulation study to examine the impact of different missing scenarios on the structure of 

partial transmission networks. We found that no single scenario we tested could account for the 

missingness in the partial network constructed using data from our TB transmission study. However, we 

found that missingness was unlikely to be random; rather, the most likely scenarios or combination of 

scenarios involved oversampling of low-transmitting cases or omission of a factor strongly related to 

transmission from our models. Our results were strongly influenced by several key assumptions, 

including the genomic threshold for transmission in the empirical network, the average number of 

transmissions per case (mean degree) in the full network, and the number of cases involved in the 

complete transmission network. Therefore, this analysis also highlights the uncertainties around the 

aspects of our model, and parameters of TB transmission more broadly, that preclude more exact 

inference regarding missing cases and thus underlying transmission patterns. 
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Introduction 

Tuberculosis (TB) is the leading infectious cause of death worldwide, and in 2016, there were over half a 

million new cases of drug-resistant TB. [5] Extensively drug-resistant (XDR) tuberculosis is resistant to 

both first and second-line anti-TB drugs and accounts for 10% of all drug-resistant TB cases, representing 

an emergent but severe threat to global public health. Recent studies have found that the majority of drug-

resistant TB cases are due to transmission of already-resistant strains, rather than inadequate treatment. 

This finding has underscored the importance of efforts to understand TB transmission patterns, as these 

patterns can inform the development of strategic interventions to reduce transmission.  

Our ability to identify discrete TB transmission events has improved dramatically in light of the 

increasing availability of whole genome sequencing, which can resolve variation between Mtb sequences 

at the level of individual base pairs. Cases with similar Mtb sequences are likely to be linked through 

transmission; collectively, such links can be used to create networks of putative transmission events. 

Previous studies have descriptively mapped potential transmission links between cases using social 

contact, molecular data, or both, but there has been limited effort to systematically analyze and model TB 

transmission networks, which may provide critical new insight into local TB epidemics. [137, 140] 

Indeed, network-based approaches have been successfully used to enhance our understanding of the 

transmission dynamics of other infectious diseases, including HIV. [251, 254] 

Analyzing transmission networks constructed using Mtb sequencing and epidemiologic data may 

be especially useful to understand drivers of transmission, but data missing from these networks may pose 

serious challenges for making conclusions about transmission patterns. In settings with a high burden of 

TB, collecting information on all cases would require immense resources, and as a result is unrealistic if 

not impossible. Therefore, networks constructed using empirical data will be ‘partial’, representing only a 

subset of cases and links present in the true, but unobservable, transmission network. Cases may be 

unreachable, and therefore missing from empirical networks, for many reasons. For example, poor 

survival after diagnosis may lead to challenges in ascertaining cases. This may be particularly important 

for studies of XDR TB, since the survival rate with treatment is low (28%). [16] Even if all transmission 
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events between diagnosed cases can be captured, little will be known about transmission events among 

undiagnosed cases. Barriers to diagnosis of XDR TB, including the requirement of culture-based drug 

susceptibility testing, contribute to the inability to collect information on undiagnosed cases and 

transmission events that occur among them. If missing data causes the empirical network to poorly 

resemble to the true transmission network, patterns detected in empirical networks may not accurately 

represent underlying transmission patterns. 

Thoughtful consideration of the nature and extent of missing data in a measured transmission 

network can provide insight into what a complete network, had it been measured, may have looked like. If 

cases are missing randomly, inference from a partial transmission network may be feasible. Previous 

studies have suggested that nodes or cases, missing at random from a network can have a minimal effects 

on network structure, and can often allow inference to be made about the complete network. [193] On the 

other hand, if missing cases are systematically different from sampled cases, this may pose a more serious 

challenge. The absence of nodes that are highly connected in a network can have a pronounced effect on 

network structure, which may reduce the validity of conclusions one can make from a partial network. 

[198] Systematic missingness may be especially severe if there are differences between sampled and 

unsampled cases with respect to transmission. For example, if undiagnosed cases are likely to have forms 

of TB that are traditionally more difficult to detect (e.g., smear-negative disease), they may experience 

diagnostic delays and thereby longer infectious periods, and be responsible for more transmission than 

sampled cases. [28] In addition to nature of missing data, the extent of missingness is also important for 

understanding the ability of a partial network to represent a larger one. Unsurprisingly, inference becomes 

increasingly challenging as more cases are missing from network. [196-198] Making explicit hypotheses 

about the mechanisms by which cases may be missing from a transmission network can help us to 

anticipate, and potentially obviate, the effects of missing data. Understanding these effects can inform 

inference from partial transmission networks, either by cautioning generalization of findings to broader, 

unsampled populations or by providing reassurance about the robustness of findings from a partial 

network to missing data.  
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In this study, we used data from a transmission study of extensively drug-resistant (XDR) TB 

cases in KwaZulu-Natal, South Africa to create an empirical transmission network based on Mtb 

sequence data. We simulated hypothetical, ‘complete’ transmission networks based on several different 

assumptions about how data was missing from the empirical network. We aimed to determine the type of 

missingness that was most consistent with the network we observed, in an effort to understand the extent 

to which the empirical network may reflect underlying XDR TB transmission patterns.  

 

 

Methods 

Study design and procedures 

The Transmission of HIV-Associated XDR TB (TRAX) study is a cross-sectional study that enrolled 

culture-confirmed XDR TB patients diagnosed from 2011 to 2014 in KwaZulu-Natal province, South 

Africa. South Africa has among the highest rates of TB globally, driven in part by high HIV prevalence: 

59% of TB patients are co-infected with HIV. [223] KwaZulu-Natal province has the highest TB and 

XDR TB burden (3 per 100,000) in South Africa. [215, 224, 225]  

Detailed methods of the TRAX study have been previously published. [12] Briefly, we identified 

XDR TB cases through the single referral laboratory that conducts drug-susceptibility testing (DST) for 

all public healthcare facilities in the province. All participants provided written informed consent; for 

deceased or severely ill participants, consent was obtained from next-of-kin. We interviewed participants 

and performed medical record review to collect demographic and clinical information. The interview 

included a social network questionnaire that elicited information on locations frequented and close 

contacts prior to diagnosis.  

 

Ethical Considerations 
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The study was approved by the Institutional Review Boards of Emory University, Albert Einstein College 

of Medicine, and the University of KwaZulu-Natal, and by CDC’s National Center for HIV, Hepatitis, 

STDs and Tuberculosis.  

 

Whole genome sequencing 

The diagnostic XDR TB isolate was obtained for all enrolled participants and re‐cultured on Löwenstein‐

Jensen slants. We conducted population sweeps, extracted genomic DNA, and prepared sequencing 

libraries using Nextera DNA kits (Illumina, San Diego, CA). Raw paired‐end sequencing reads were 

generated on the Illumina (MiSeq) platform and aligned to the H37Rv reference genome (NC_000962.3) 

using the Burrows‐Wheeler Aligner. All isolates had reads covering >99% of the reference genome, and 

the lowest mean coverage depth for any isolate was 15X. Single nucleotide polymorphisms (SNPs) were 

detected using standard pairwise resequencing techniques (Samtools v0.1.19) against the reference and 

filtered for quality, read consensus (>75% reads for the alternate allele) and proximity to indels (>50 

base-pairs from any indel). SNPs in or within 50 base pairs of hypervariable PPE/PE gene families, repeat 

regions, and mobile elements were excluded. [227] 

 

Constructing networks using Mtb sequence data 

We defined a genomic link as a pair of XDR TB cases with 5 or fewer SNP differences between their Mtb 

sequences. We constructed sequencing-based transmission networks of TRAX cases, in which each node 

in the network represents an XDR TB case and each edge, or connection, between nodes in the network 

represents a genomic link. We calculated the degree of each node, or the number of genomic links per 

case, in the network; this also referred to as the degree distribution. All network analysis was completed 

using the sna and statnet packages in R.  

We considered the sequencing-based network comprised of TRAX cases as our empirical, or 

measured, network. This empirical network is a partial network, in that it represents a subset of cases and 
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transmission events sampled from the unobserved, complete transmission network that includes all XDR 

TB cases and transmission events in KwaZulu-Natal during the study period.  

 

Defining missing data scenarios 

We hypothesized three different scenarios under which cases may be missing from the empirical network. 

In the simplest scenario, we assumed that cases were missing at random (Scenario 1, Table 6-1). If cases 

are missing at random, we can reasonably confident about inferences from the empirical network.  In the 

second scenario, we considered the possibility that we systematically oversampled cases that were either 

involved in many transmission events (‘high-transmitters’) or few transmission events (‘low-

transmitters’) (Scenario 2, Table 6-1). This scenario encompasses a range of more specific hypotheses 

about why cases who were sampled may be more or less likely to transmit TB. For example, if 

unsampled, undiagnosed cases tended to have longer infectious periods, they may be responsible for more 

transmission events. Conversely, unsampled, undiagnosed cases may have been more likely to live in 

rural areas, have lower contact rates, and thus be responsible for less transmission. This scenario would be 

problematic, because it would indicate that the structure of the empirical network may be meaningfully 

different from the true transmission network. In the third scenario, we made the more specific hypotheses 

that cases were sampled differentially by HIV or smear status (Scenario 3, Table 6-1). For example, HIV-

positive cases may be more likely to have smear-negative disease, which is difficult to diagnose and may 

thereby lead to diagnostic delays and longer infectious periods. Conversely, HIV-positive cases may be 

more closely linked with the healthcare system, and therefore more likely to be promptly diagnosed with 

TB. The implications of this scenario are similar to those of Scenario 2 but may provide additional insight 

as to the potential characteristics of missing cases.  

In the fourth and last scenario, we did not make any assumptions about how cases were sampled, 

but rather accounted for the possibility that we failed to measure a factor that was strongly related to 

likelihood of transmission (Scenario 4, Table 6-1). Previous models included only characteristics of cases 

that we measured in TRAX, which we recognize may not sufficiently capture factors important for 
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explaining variation in transmission potential across individuals. Thus, scenario 4 reflects the hypothesis 

that the variables we included in models to generate transmission networks were missing a component 

that meaningfully impacts transmission.  

 

Fitting exponential random graph models to missing data scenarios 

We used information collected in the TRAX study on demographic and clinical case characteristics 

considered to be related to transmission, including age, sex, HIV status, and clinical markers of 

infectiousness (cough duration and sputum smear status) to parameterize exponential random graph 

models (ERGMs) representing complete XDR TB transmission networks (Table 6-2, Technical 

Appendix). Using exponential random graph models, we modeled the probability of links, or 

transmissions, between the cases in the network as a function of demographic and clinical characteristics. 

We specified these models under each missing data scenario. We tested each of these scenarios across a 

range of values for the average number of transmissions per case, or the overall mean degree in the 

complete network, from 2 to 20. ERGMs were constructed using the ergm package in R, which is a part 

of the statnet suite of software.  

From each model, we simulated 1,000 theoretical, complete transmission networks. To model 

complete transmission networks, we needed to estimate their size, which we assumed was the total 

number of diagnosed and undiagnosed XDR TB cases in KwaZulu-Natal during the study period (2011-

2014). We used data from the South Africa Tuberculosis Drug Resistance Survey to estimate the number 

of diagnosed XDR TB cases and active case-finding studies to estimate the number of additional, 

undiagnosed cases (see Technical Appendix). [13] These sources led us to estimate a complete 

transmission network size of 2000 cases for our primary analyses. 

 

Sampling from simulated networks 

We mimicked our transmission study by sampling a similar number of cases (350) as in our empirical 

network from each simulated, complete network.  
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To determine which missing data scenario was most likely, we aimed to determine which 

scenario produced simulated, sampled networks that closely matched the empirical network. To compare 

the empirical network with the simulated, sampled networks, we used three key structural features from 

the empirical network as ‘target statistics’: i) the proportion of nodes with a degree of zero, or the number 

of unlinked cases in the network, ii) the maximum degree, or the number of links of the most highly 

linked case, and iii) the proportion of nodes with a degree greater than 10, or the proportion of cases with 

more than 10 links. Note that the first target statistic reflects the number of poorly connected cases and 

thus the left side of the degree distribution of the empirical network, while the second two target statistics 

capture highly connected cases, or the right side of the degree distribution. For each model, we calculated 

the proportion of simulated, sampled networks (out of 1,000 simulations) that matched each target 

statistic (Figure 6-1). 

 

Sensitivity Analyses 

The genomic threshold defining a direct TB transmission event is uncertain, so we constructed a second 

empirical, sequencing-based network using a more stringent SNP threshold (3 SNPs). We modified the 

target statistics accordingly and compared our results using this empirical network to our primary 

analysis.  Additionally, we tested the sensitivity of our results to assumptions about the size of the 

complete transmission network. We examined the effect of decreasing (n = 1500) and increasing (n = 

4000) the size of the simulated, complete transmission networks. 

 

Results 

Structure of the empirical, sequencing-based network 

The empirical sequencing-based network comprised of 344 TRAX cases contained 1084 total genomic 

links. Each case had an average of 6.3 links (the overall network mean degree), and 182 (53%) cases in 

the network had at least one genomic link. The mean degree of cases with key clinical and demographic 
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characteristics is shown in Table 6-1; corresponding characteristics of the empirical network defined by a 

3 SNP threshold are shown in Supplemental Table 6-1.  

We defined target statistics based on the following features of the empirical network: 162 (47%) 

cases were unlinked (i.e., degree of 0), the most highly linked case had 62 links (i.e., maximum degree), 

and 62 (18%) cases had 10 or more links (i.e., degree  10) (Table 6-1).  

 

Missing case scenarios 

The assumption that cases were randomly sampled from the complete network (Scenario 1) was generally 

inconsistent with the empirical network (Figure 6-2A). Several models that we tested under this scenario 

could reproduce the first target statistic: for example, the number of unlinked cases in the network was 

48%, roughly matching the empirical network, when we assumed 5 transmissions per case (mean degree 

of 5) in the complete network (Table 6-3). However, none of the models assuming random sampling 

reproduced the second two target statistics: the number of links of the most highly linked case (maximum 

degree), or proportion of cases with more than 10 links (Table 6-3). In other words, models assuming 

random sampling could not account for the cases in the empirical network that were highly connected. To 

determine what a complete transmission network would need to look like to account for these highly 

connected cases under random sampling, we increased the average number of transmissions per case in 

the simulated, complete network until sampled networks reproduced these highly connected cases. We 

found that the average number of transmissions per case in the complete network needed to be 

unreasonably high (200) to reflect this feature of the empirical network (Supplemental Figure 6-1). 

Oversampling of high- or low-transmitters (Scenario 2) significantly changed the structure of 

simulated, sampled networks, but still could not produce networks similar to the empirical network 

(Figure 6-2A). If high-transmitters were oversampled, sampled networks reached a maximum degree of 

9.3, which is higher than under the assumption of random sampling (7.0) but still much lower than in the 

empirical network (62) (Table 6-3). The general structure of sampled networks under this assumption was 

also dissimilar to that of the empirical network: the assumption that high-transmitters were oversampled 
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shifted the peak of the distributions higher than in the empirical network, which has a peak at 0 (Figure 6-

2A). Ultimately, these models failed to reproduce all three target statistics simultaneously (Table 6-3). 

When we assumed that low-transmitters were oversampled, the overall shape of the degree distribution of 

simulated, sampled networks was more consistent with the empirical network, with its peak at 0. (Figure 

6-2B). However, these models failed to reproduce any of the three target statistics from the empirical 

network: the proportion of unlinked cases was too high, ranging from 86-99%, and the maximum degree 

for all models was 2.1, far lower than the target statistic of 62. (Table 6-3). In other words, these models 

produced far more unlinked cases and far fewer highly linked cases than we observed in the empirical 

network. 

Sampling cases differentially by HIV and smear status (Scenario 3) yielded few changes in the 

degree distributions of simulated, sampled networks (Figure 6-3). These models could reproduce the 

target statistic for the number of unlinked cases: the median proportion of unlinked cases across 

simulated, sampled networks was 26-38%, which approached the target statistic of 47% unlinked cases in 

the empirical network. However, models under the assumption of differential sampling by HIV or smear 

status failed to match the other two target statistics, demonstrating their inability to account for highly 

linked cases in the network (Table 6-4). 

None of the first three scenarios, in which we made assumptions about the manner in which cases 

were sampled, produced networks similar to the empirical network. In Scenario 4, we instead made the 

assumption that our initial model was missing one or more individual-level case characteristics that might 

explain variation in the number of links per case that we observed in the empirical network. When we 

added an unmeasured variable strongly linked with transmission to the model, the resulting networks 

most closely reproduced the empirical distribution. Although these models could replicate only one of 

three target statistics (the number of unlinked cases), models including a characteristic very strongly 

linked with transmission (x40) resulted in networks with a higher maximum degree than any other model 

(9.8). (Table 6-4, Figure 6-3). Ultimately, however, this approach still could not produce networks that 
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replicated the maximum degree in the empirical network (62) or the proportion of cases with more than 

10 links (18%) (Table 6-4). 

 

Sensitivity analyses 

Larger complete transmission networks (n=4000 cases) yielded simulated, sampled networks that were 

more sparse with a lower mean degree, a higher proportion of unlinked cases, and fewer highly linked 

cases. Under the assumption of random sampling, models assuming 4000 total XDR TB cases were 

generally unable to reproduce the highly connected cases we observed in the empirical network. 

Complete transmission networks that were smaller than our primary models (n=1500) resulted in sampled 

networks that were more dense, with fewer unlinked cases and more highly linked cases. Simulated, 

sampled networks from these models could not reproduce all three target statistics simultaneously. 

However, if we assumed a high average number of transmissions per case (20), the resulting networks 

could reproduce the third target statistic, or the proportion of cases with more than 10 links in the 

empirical network (Figure 6-4, Supplemental Table 6-2). Thus, assuming fewer total XDR TB cases in 

the complete network resulted in networks more similar to the empirical network than assuming more 

XDR TB cases. 

We also assessed the robustness of our results to the SNP threshold used to define a genomic link 

in the empirical network. Since a 3 SNP threshold required cases’ isolates to be more closely related to 

define a link in the empirical network, the proportion of unlinked cases was higher, and both the 

maximum degree and the proportion of cases with more than 10 links was lower (Figure 6-5). Using a 3 

SNP empirical network, some models were able to reproduce the target statistic for the number of cases 

with greater than 10 links under the assumption of random sampling, which was not possible using the 5 

SNP empirical network (Supplemental Table 6-3). However, random sampling still could not 

simultaneously reproduce all three target statistics of the 3 SNP empirical network. To reproduce the 

maximum degree in the 3 SNP empirical network, the number of average transmissions per case in the 

complete network still needed to be unreasonably high (50) (Supplemental Figure 6-2). When we 
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accounted for an unmeasured factor strongly associated with transmission, the resulting sampled networks 

could meet two of three target statistics of the empirical 3 SNP network (Supplemental Table 6-4). 

However, even in the empirical 3 SNP network, all models we tested still failed to reach the target 

statistic for maximum degree. In other words, even at a more stringent SNP threshold for transmission in 

the empirical network, our models could still not account for the highly linked cases we observed in our 

transmission study.  

 

 

Discussion 

Studies of endemic disease transmission will yield only partial transmission networks, from which we aim 

to draw conclusions about population-level transmission patterns. We found that no single missing data 

scenario we tested could account for the missingness in the partial network constructed using data from 

our TB transmission study. However, we found that missingness was unlikely to be random; rather, the 

most likely scenarios or combination of scenarios involved oversampling of low-transmitting cases or 

omission of a factor strongly related to transmission from our models. Although our initial goal was to 

estimate the relative plausibility of missing data scenarios, our results were strongly influenced by several 

key assumptions. These assumptions included the genomic threshold for transmission in the empirical 

network, the average number of transmissions per case (mean degree) in the complete network, and the 

number of cases involved in the complete transmission network. Therefore, this analysis also highlights 

the uncertainties around the aspects of our model, and parameters of TB transmission more broadly, that 

preclude more exact inference regarding missing cases and thus underlying transmission patterns. 

The first scenario, in which cases were missing at random, was unlikely based on our models. 

This finding was robust to our choice of SNP threshold for the empirical network, assumptions about the 

size of the complete network, and across a range of values for the average number of transmissions per 

case in the complete network. Assuming that our models are correct, this finding suggests that inferences 

about transmission patterns from the empirical network of TRAX cases should be made with caution, as 
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there may be important structural differences between the complete transmission network and the 

measured network.  

In the second and third scenarios, we aimed to identify plausible reasons for systematic 

missingness that would provide insight into the characteristics of missing cases. In Scenario 3, we 

hypothesized that there may be differences with respect to the ability of the healthcare system to 

effectively diagnose cases with atypical clinical presentations (e.g., HIV-positive or smear-negative 

cases), and that as a result, these cases may be over- and under-represented in our study. However, when 

we examined whether this assumption alone could explain the partial network we observed, we found that 

it did not. When we assumed that we preferentially sampled high- or low-transmitting cases, regardless of 

their specific demographic or clinical characteristics, we found that this was also unlikely to be the only 

mechanism of missingness. However, the assumption that low-transmitting cases were more likely to be 

sampled than high-transmitting cases could produce networks similar to the observed network. 

Ultimately, these findings do not provide support for a specific mechanism by which cases are missing 

from the network, but do suggest the possibility that low-transmitting cases were oversampled in our 

transmission study (in other words, high-transmitters were undersampled). There are various reasons why 

this may have occurred: cases who are undiagnosed and thus untreated may have longer infectious 

periods, leading to more transmission. Alternatively, lifestyles or specific behaviors that lead to higher 

contact rates, including frequent cross-province travel for short-term employment opportunities, may also 

lead to a lower likelihood of diagnosis and retention in care. Previous research has suggested that this may 

be an important driver of both TB and HIV transmission in KwaZulu-Natal. [230, 255-257] 

Although these other factors may play an important role in transmission, our network models 

only included clinical (cough duration, smear status, HIV status) and demographic factors (age, sex) 

related to transmission. In the fourth scenario, we tested the hypothesis that our models were missing a 

factor strongly related to transmission. We found that networks including this factor were most consistent 

with the empirical network, suggesting that our initial models may have been missing important variables 

that would explain sources of inter-individual variation in transmission among cases. This ‘unmeasured’ 
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factor may reflect strongly suspected but yet understudied sociocultural or behavioral factors driving 

transmission in high-incidence settings, including cross-province travel for employment or frequent use of 

public transport. [129, 253, 258] However, recent research has also suggested there may be previously 

unrecognized, inherent biological features critical in explaining interindividual variation in transmission; 

for example, that certain individuals may be more able to generate infectious, Mtb-containing aerosols 

independent of their clinical disease presentation. [42, 44] 

Our results were strongly influenced by factors about which there is a substantial degree of 

uncertainty in this setting, including the SNP threshold used to define a direct transmission event between 

two cases as well as key TB transmission parameters. We used a 5 SNP threshold for our primary 

analysis, as it has been used to define transmission in previous studies, but recognize that this threshold is 

not universal and likely depends on local TB epidemiology. [151] An empirical sequencing-based 

network based on a 3 SNP threshold contained many fewer genomic links and was consistent with a 

wider range of tested models than the empirical network based on a threshold of 5 SNPs. This result 

emphasizes the challenge of relying upon pairwise genomic distances to define transmission events: 

conclusions regarding transmission can be vastly different based on the threshold being used. The recent 

development of probabilistic methods to identify transmission is a promising step towards being able to 

construct more accurate empirical transmission networks based on genomic evidence from Mtb patient 

samples. [259] Future research should utilize these new approaches to more accurately define 

transmission events between cases. 

Our results also varied substantially based on key transmission parameters. Our primary models 

varied the average number of transmissions per case (mean degree) in the complete network from 2 to 20. 

This range was selected after considering the range of previous estimates of the effective reproduction 

number of TB (Reff), as there is evidence that this number may vary by setting and we did not find any 

studies estimating this parameter specifically for XDR TB in South Africa. [33] Interestingly, the models 

most consistent with the empirical network had a mean degree of 10 and above, which is substantially 

higher than most previous estimates of the Reff of TB. Further studies on the transmission dynamics of 
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drug-resistant TB in high-incidence settings should better characterize these foundational epidemiologic 

parameters to benefit future quantitative modeling studies. Lastly, changing our assumptions about the 

size of the complete transmission network dramatically changed the structure of sampled networks. 

Underdiagnosis of TB is a persistent challenge in low-resource settings and is even more difficult for 

XDR TB, which requires culture-based drug susceptibility testing. As a result, it is difficult to know the 

true number of XDR TB cases involved in transmission during the time period of our study. Our finding 

that larger complete networks were less likely to match the empirical network suggests that it is unlikely 

we significantly underestimated the number of XDR TB cases in KwaZulu-Natal in our primary analysis. 

However, the results from this sensitivity analysis underscore the broader challenge of diagnosing drug-

resistant TB in low-resource settings, understanding the true magnitude of disease burden, and using this 

information to accurately model population-level transmission dynamics.  

Ultimately, we could not make definitive conclusions about the type of missing data most 

relevant for our transmission study and none of our models reproduced all target statistics of the empirical 

network. This could be due to a failure to accurately define the empirical transmission network, and more 

sophisticated methods to define genomic transmission links, as described above, may be warranted in 

similar future analyses. However, our inability to match the empirical network may also be due to the 

assumptions of the models we used. ERGMs utilize Poisson distributions to describe the number of links 

per network node, and this distribution may fail to capture inherent properties of TB transmission. Indeed, 

recent studies have shown that the Reff of TB, represented in our models by the mean degree in the 

network, may be best represented by a negative binomial distribution. This distribution may better fit the 

structure of the empirical network, and specifically, better account for highly linked cases. We could not 

force our network models to produce sampled networks that followed a negative binomial distribution, 

but further work could investigate the fit of models with different, or fewer, distributional assumptions.  

This study has two key limitations. We assumed that the relative mean degree of sampled cases 

with specific attributes was similar to that of unsampled cases; for example, the relative mean degree of 

HIV-positive cases and HIV-negative cases that we measured in our study was equivalent to the ratio 
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among unsampled cases. This may not be true if sampled cases are systematically different from 

unsampled cases with respect to their relative transmission potential. For example, this may have occurred 

if sampled HIV-positive cases were more likely virologically suppressed and therefore had similar 

transmission potential to HIV-negative cases, relative to unsampled HIV-positive cases. Second, we did 

not distinguish the direction of transmission in modeled or empirical networks. Incorporating 

directionality of transmission would have complicated network models and required specification of 

many additional parameters about which we had low certainty. It is important to note that for a given 

case, every link except one (corresponding to the source case) should theoretically correspond to forward 

transmission. This decision to model undirected networks was made to maintain the simplicity of models 

while ensuring that we didn’t need to specify many parameters about which we were uncertain; we 

believe that it does not reduce the validity of our models. 

Constructing and analyzing transmission networks can provide critical insight into disease 

epidemiology and suggest potential avenues for intervention to reduce the spread of disease. Ironically, 

while a clearer understanding of transmission is perhaps most important in settings with a high burden of 

disease, sparse data in these settings also poses serious challenges for interpretation of transmission 

studies. This is, to our knowledge, the first study to use network modeling approaches to understand TB 

transmission, and the first to explicitly define and assess the support for different mechanisms of 

missingness in a study of TB transmission. We hope that this analysis lays the foundation for future 

efforts to better understand the important and complex role of missing data in TB transmission networks. 

Further, we hope that it has highlighted gaps in our understanding of TB transmission that at present 

hinder modeling efforts, but provided improved estimates can be generated, would enhance our ability to 

build models of TB transmission and use them to further understand disease dynamics.  
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6.2  Figures and Tables 

 

Table 6-1. Missing case scenarios. 

Scenario Complete transmission network model 

1. Cases missing at 

random 

No changes to model terms.  

2. Cases missing by 

connectivity 

No changes to model terms. Sample from complete network nonrandomly using degree to 

define sampling weights. 

       a. Highly connected cases (‘high-transmitters’) more likely to be sampled: sampling      

weighted by degree 

       b. Poorly connected cases (‘low-transmitters’) more likely to be sampled: sampling 

weighted by inverse degree 

3. Cases missing by 

attribute 

 

No changes to model terms. Vary distribution of cases in complete network with attribute 

relative to empiric network. 

       a. Vary distribution of HIV status 

       b. Vary distribution of smear status 

4. Unmeasured 

factor 

Add model term corresponding to strong, unmeasured factor in a minority of cases. Vary 

strength and prevalence of factor. 

a. latent factor that increases transmission by factor of 10 (prevalence: 10%, 20%, 30%) 

b. latent factor that increases transmission by factor of 20 (prevalence: 10%, 20%, 30%) 

c. latent factor that increases transmission by factor of 40 (prevalence: 10%) 
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Table 6-2. Descriptive characteristics of the empirical sequencing-based network of XDR TB cases from 

the TRAX study. 

 n (%) Mean 

Overall    

Edges (genomic links) 1084 - 

Isolates (unlinked cases) 162 (47) - 

Overall mean degree  - 6.3 

Maximum degree 62 - 

Nodes with degree  10 62 (18) - 

    

By attribute    

HIV status    

    HIV - negative 78 (23) 6.2 

    HIV - positive, undetectable viral load 133 (39) 6.7 

    HIV - positive, detectable viral load 133 (39) 5.9 

    

Cough duration    

    No cough 128 (37) 5.0 

    1mo 60 (17) 6.5 

    2mo 51 (15) 8.1 

    3mo 72 (21) 8.1 

    4mo 16 (5) 4.6 

       5mo 17 (5) 3.7 

    

Smear status/grade    

    Negative 109 (32) 6.9 

    Scanty positive 37 (11) 8.4 

    Positive, grade 1 59 (17) 4.6 

    Positive, grade 2 51 (15) 6.4 

    Positive, grade 3+ 88 (26) 5.7 

    

Sex    

    Female 202 (59) 6.1 

    Male 142 (41) 6.4 

    

Age category    

     15 12 (3) 7.8 

    16-34 171 (50) 5.9 

    35-54 134 (39) 6.4 
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     55 27 (8) 7.9 

    

TB Strain    

   LAM4 259 (75) 8.3 

   Other 85 (25) 0.2 

    

Year    

   2011 58 (17) 8.1 

   2012 107 (31) 5.6 

   2013 82 (24) 5.8 

   2014 97 (28) 6.4 
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Figure 6-1. Schematic representation of simulation and sampling methods. 
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Figure 6-2. Degree distributions of simulated, sampled networks under scenarios (1) and (2) compared to 

the empirical network. 
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Figure 6-2. Degree distributions of empirical ( 5 SNPs) and simulated, sampled networks under 

scenarios 1 and 2. A. Grey bars show the distribution of the number of links per case, or the degree 

distribution, of the empirical network ( 5 SNPs) from the TRAX transmission study. Each colored line 

shows the median degree distribution across 1000 simulated, sampled networks for the corresponding 

model. Line color indicates the mean degree, or the average number of transmissions per case, assumed in 

the complete, simulated network. B: Range of the degree distributions of the simulated, sampled networks 

for one model (mean degree = 10). Grey dots show the degree distribution of the empirical network ( 5 

SNPs) from the TRAX transmission study and are equivalent to the distribution shown by the grey bars in 

panel A. Colored boxplots show the median, interquartile range, minimum, and maximum frequencies for 

each degree in the distribution across 1000 simulated, sampled networks. 
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Table 6-3. Target statistics of simulated, sampled networks under scenarios (1) and (2) compared to the empirical network. 

 Target statistic 1 Target statistic 2 Target statistic 3 

Mean degree 

Average 

proportion1 of 

isolates in 

sampled networks 

Proportion of 

sampled networks 

with 40-60% 

isolates 

Average 

maximum degree 

in sampled 

networks 

Proportion of 

sampled networks 

with maximum 

degree > 40 

Average proportion 

of nodes with degree 

> 10 in sampled 

networks 

Proportion of sampled 

networks with > 10% 

of nodes with degree > 

10 

Random sampling (Scenario 1) 

2 0.72 0 1.74 0 0 0 

5 0.48 0.99 2.82 0 0 0 

8 0.35 0.02 3.77 0 0 0 

10 0.30 0 4.41 0 0 0 

15 0.23 0 5.44 0 0.003 0 

20 0.20 0 7.03 0 0.018 0 

 Preferential sampling of high transmitters (Scenario 2a) 

2 0.32 0.01 2.69 0 0 0 

5 0.14 0 4.09 0 < 0.001 0 

8 0.07 0 5.29 0 0.002 0 

10 0.05 0 6.01 0 0.007 0 

15 0.02 0 7.59 0 0.048 0 

20 0.01 0 9.29 0 0.154 0.988 

Preferential sampling of poor transmitters (Scenario 2b) 

2 0.99 0 0.37 0 0 0 

5 0.98 0 0.63 0 0 0 

8 0.97 0 0.87 0 0 0 

10 0.95 0 1.09 0 0 0 

15 0.90 0 1.62 0 0 0 

20 0.86 0 2.08 0 < 0.001 0 
 

1 1,000 networks were simulated from each model, each simulated network was sampled once.
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Figure 6-3. Degree distributions of simulated, sampled networks under scenarios (3) and (4) compared to the 

empirical network. 
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Figure 6-3. Degree distributions of empirical ( 5 SNPs) and simulated, sampled networks under 

scenarios 3 and 4. All models shown assume an average mean degree in the complete network of 10. A. 

Grey bars show the distribution of the number of links per case, or the degree distribution, of the 

empirical network ( 5 SNPs) from the TRAX transmission study. Each colored line shows the median 

degree distribution across 1000 simulated, sampled networks for the corresponding model. Line color 

indicates the distribution of HIV and smear status (Scenario 3) or the strength and prevalence of the 

unmeasured factor (Scenario 4) assumed in the complete, simulated network. B: Range of the degree 

distributions of the simulated, sampled networks for an individual model. Grey dots show the degree 

distribution of the empirical network ( 5 SNPs) from the TRAX transmission study and are equivalent to 

the distribution shown by the grey bars in panel A. Colored boxplots show the median, interquartile 

range, minimum, and maximum frequencies for each degree in the distribution across 1000 simulated, 

sampled networks. 
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Table 6-4. Target statistics of simulated, sampled networks under scenarios (3) and (4) compared to the empirical network. 

Model 1 Target statistic 1 Target statistic 2 Target statistic 3 

 

Average 

proportion 2 of 

isolates in 

sampled 

networks 

Proportion of 

sampled networks 

with 40-60% 

isolates 

Average 

maximum degree 

in sampled 

networks 

Proportion of 

sampled networks 

with maximum 

degree > 40 

Average proportion of 

nodes with degree > 

10 in sampled 

networks 

Proportion of 

sampled networks 

with > 10% nodes 

with degree > 10 

 Cases sampled preferentially by HIV status (Scenario 3a) 3 

10/90 HIV - / + 0.33 0 4.31 0 < 0.001 0 

50/50 HIV - / + 0.38 0.17 4.13 0 < 0.001 0 

60/40 HIV - / + 0.26 0 5.74 0 0.004 0 

70/30 HIV - / + 0.38 0.15 4.15 0 < 0.001 0 

Cases sampled preferentially by smear status (Scenario 3b) 4 

30/70 smear - / + 0.31 0.31 4.24 0 < 0.001 0 

50/50 smear - / + 0.33 0.33 4.43 0 0 0 

70/30 smear - / + 0.31 0.31 4.46 0 0 0 

90/10 smear - / + 0.32 0.32 4.22 0 < 0.001 0 

Unmeasured factor (Scenario 4) 

10x, p = 0.10 0.33 0 4.72 0 < 0.001 0 

10x, p = 0.20 0.35 0.001 4.53 0 < 0.001 0 

10x, p = 0.30 0.34 0.002 4.76 0 < 0.001 0 

20x, p = 0.10 0.36 0.017 6.38 0 0.006 0 

20x, p = 0.20 0.46 0.995 6.04 0 0.005 0 

20x, p = 0.30 0.64 0.017 7.54 0 0.039 0 

40x, p = 0.10 0.57 0.868 9.76 0 0.005 0 
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1 All scenario 3 and 4 models shown assume a mean degree in the complete network of 10. 

2 1,000 networks were simulated from each model, each simulated network was sampled once. 

3 HIV distribution among TRAX cases (in empirical network): 23% HIV-negative, 77% HIV-positive. 

4 Smear distribution among TRAX cases (in empirical network): 32% smear-negative, 68% smear-positive.



 

 133 

Figure 6-4. Effect of modifying complete network size on network models under random sampling. 

 

Figure 6-4. Degree distributions of empirical ( 5 SNPs) and simulated, sampled networks under different 

scenarios Grey bars show the distribution of the number of links per case, or the degree distribution, of 

the empirical network ( 5 SNPs) from the TRAX transmission study; colored line shows the median 

degree distribution across 1000 simulated, sampled networks for the corresponding model. Each model 

makes a different assumption about the total number of XDR TB cases involved in the transmission 

network during the time period of our transmission study (2011-2014), or the size of the simulated, 

complete transmission network. The model shown has a mean degree in the complete network of 10. 
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Figure 6-5. Effect of reducing SNP threshold ( 3 SNPs) on the empirical network. 

 

Figure 6-5. Degree distributions of empirical ( 3 SNPs) and simulated, sampled networks under 

scenarios 1 and 2. Grey bars show the distribution of the number of links per case, or the degree 

distribution, of the empirical network ( 3 SNPs) from the TRAX transmission study. Each colored line 

shows the median degree distribution across 1000 simulated, sampled networks for the corresponding 

model. Line color indicates the mean degree, or the average number of transmissions per case, assumed in 

the complete, simulated network. 
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7.1 Age and smear status 

7.2 Age and HIV  

7.3 Other (Smear status and HIV) 

 

8 Simulation and sampling methods 

 

9 Sensitivity analyses 

 9.1 Genomic threshold for transmission 

 9.2 Complete network size 

 

-- 

 

1 Introduction 

This technical appendix describes the models used in the associated manuscript, including their 

conceptual basis and parameterization as well as simulation procedures and statistical analysis.  

 

1.1 Model framework 

The network models in this study were used to represent and simulate transmission networks of 

active tuberculosis (TB) cases. Links, or edges, in modeled networks represent a transmission 

event that occurred between two cases in the network.  

 

Modeled networks do not involve individuals (1) infected with TB but whom did not progress to 

active disease or (2) exposed contacts of TB cases. Rather, modeled networks reflect all 

transmission events observed from a sample of cases enrolled in a study over a defined four-year 

period.  
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Cases in each modeled network were assigned specific attributes according to a defined 

distribution. (For example, we specified that 70% of cases in the network were HIV-positive.) 

Assigned attributes of each case influence the number of other cases to whom that case is 

connected in the network. (More detail is provided in the Empirical Data section.) 

 

We included each attribute as a ‘nodefactor’ term in the network model. (Some nodefactor terms 

represented joint distributions of two attributes, see Joint Distributions section.) We defined the 

target statistics for each nodefactor term as the number of edges in the network involving nodes 

with that attribute. (For example, the target statistic for the HIV nodefactor term was the number 

of edges involving HIV-positive nodes, or the number of transmission events in the network 

involving HIV-positive cases.) 

 

We calculated target statistics for each nodefactor term using empirical data from the TRAX 

network (see Empirical Data section below). 

 

1.2 Model software 

 

All models were programmed in R. The code used to create and analyze these models is available 

on GitHub (user: kbratnelson). 

 

The modeling methods employed in this study utilized the ergm R package, which requires the 

statnet suite of software. 

 

 

2  Empirical Data 
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The Transmission of XDR TB (TRAX) study is a cross-sectional study that enrolled 404 XDR 

TB cases from KwaZulu-Natal province, South Africa from 2011-2014. This study collected 

clinical, demographic and social network data.  

 

The empiric transmission network was created from 344 cases with available whole genome 

sequencing results of their Mtb isolates. We created sequencing-based networks using pairwise 

differences between Mtb sequences. We considered fewer than 5 single nucleotide 

polymorphisms a transmission link and constructed an undirected network. We also considered a 

more stringent SNP threshold (see Sensitivity Analyses section below). 

 

In this empiric, undirected network, the maximum degree was 62, there were 162 (47%) of cases 

with no links (degree = 0), and 62 (18%) of cases with 10 or more links (degree  10).  

 

To define the likelihood of being linked in the modeled networks based on a particular attribute, 

we used empiric data from the TRAX sequencing-based network. Specifically, we calculated the 

relative mean degree of cases with each attribute as compared to a reference group. (For example, 

we calculated the mean degree of HIV-positive relative to HIV-negative cases.)  

 

To calculate the target statistics for each term in the network model, we multiplied the relative 

mean degree by the overall mean degree specific to the modeled network and the number of 

nodes in that network with the attribute. (For example, to model a network with an overall mean 

degree of 5, we multiplied the mean degree of HIV-positive relative to HIV-negative cases by 5 

and the total number of HIV-positive cases in the network, to give the total number of edges 

associated with HIV-positive cases in the network.) See example calculation below. Models with 

target statistics specified for all levels of every variable did not easily converge, so we reduced 

the number of target statistics for variables with more than four categories. For these variables, 
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we used the 3-4  categories corresponding to the highest number of edges as target statistics to 

parameterize models. 

 

Using these target statistics, we simulated complete transmission networks from each model. 

 

3  Defining models using missing case assumptions 

  

We defined models and simulated complete transmission networks under several scenarios which 

made different assumptions about cases missing from the partial, empirical TRAX network. 

 

3.1 Cases missing at random 

 

We assumed that cases missing at random would result in missing transmission links randomly 

across the network. Therefore, to simulate complete transmission networks based on the 

assumption cases were missing at random, we used the same model but modified the mean 

degree in the complete network. We simulated complete networks with mean degrees of 2, 5, 8, 

10, 15, and 20. 

 

The mean degree in the network roughly corresponds to the number of cases whom were infected 

by another TB case in the network and progressed to disease during the study period. It is 

important to note that the modeled and simulated networks are undirected, so the direction of 

transmission is not indicated. Parameterizing models to include both risk factors for infection and 

transmission was beyond the scope of this project. However, it is important to note that 

Theoretically, one link per case in modeled networks corresponds not to a forward transmission 

event, but to the source case. 
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3.2 Cases missing by level of connectivity 

 

We assumed two opposing scenarios: that cases who were highly connected in the complete 

network were more likely to be sampled, and that cases that were poorly connected in the 

complete network were more likely to be sampled. To simulate the former scenario, we created 

and used sampling weights proportional to each cases’ degree in the complete network; to 

simulate the latter scenario, we created and used sampling weights inversely proportional to 

degree in the complete network. 

 

We sampled cases using this method in complete networks with various mean degrees (2, 5, 8, 

10, 15, 20). 

 

3.3 Cases missing by HIV/smear status 

 

We assumed that cases were undersampled, or oversampled, systematically based on their HIV 

or smear status. We modified the distribution of HIV status in the complete network relative to 

the empirical TRAX network to reflect each hypothesis. For example, in the empirical network, 

70% of cases were HIV-positive. We created scenarios in which the proportion of HIV-positive 

cases in the complete network was 10%, 40%, and 90%. A smaller proportion of cases in the 

complete network relative to the empiric TRAX network (10%, 40%) reflects the assumption 

that HIV-positive cases were oversampled; a larger proportion (90%) reflects the assumption 

HIV-positive cases were undersampled.  

 

We sampled cases from complete networks with varying distributions of HIV and smear status 

with various mean degrees (2, 5, 8, 10, 15, 20). 
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3.4 Unmeasured factor contributing to transmission 

 

We hypothesized that a factor contributing strongly to transmission risk but that was not 

accounted for in our model might have a substantial impact on network structure. We 

hypothesized that such a factor might increase transmission by at least 10 times, that is, cases 

with this factor would be responsible for 10 times as many transmission events than those 

lacking this factor. We created a ‘nodefactor’ term in the model for this unmeasured factor at 

various strengths (10x, 20x, 40x) and varied its prevalence in the population of cases from 10 to 

30%.  

 

4 Size of complete networks 

 

To simulate complete networks, it was necessary to make assumptions about the number of cases 

involved in XDR TB transmission over the time period 2011-2014. We estimated the number of 

diagnosed and undiagnosed XDR TB cases in KwaZulu-Natal province contributing to 

transmission using data from the South African National Tuberculosis Drug Resistance Survey. 

[13] We used active case-finding studies to estimate the proportion of TB cases in South Africa 

that are undiagnosed. [28] 

 

332, 783 TB cases in SA in 2014 

Proportion of cases with pulmonary TB (infectious form) = 0.89 

Proportion of cases in KwaZulu-Natal province (area of study) = 0.31 

Proportion of cases with XDR = 0.005 

 

332, 783 * (0.31) * (0.89) * (0.005) * 4 yrs = 1836 cases (736 - 2572)  
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Accounting for underdiagnosis of TB cases [28], multiply by factor of 2:  

 

1836 cases * 2 = 3672 cases (1472 - 5144)  

 

We simulated networks assuming a complete network size of n = 2000, but also explored the 

impact of changing network size (see Sensitivity Analyses section below). 

 

5  Clinical measures  

 

5.1 Cough duration 

 

We categorized cough duration by month. The marginal distribution is below: 

 

Technical Appendix Table 6-5. Mean degree by cough duration. 

 

 

 

 

 

 

 

 

 

 

 

Cough duration n (%) Mean degree 

No cough 128 (37) 5.0 

1 month 60 (17) 6.5 

2 months 51 (15) 8.1 

3 months 72 (21) 8.1 

4 months 16 (5) 4.6 

5 months 17 (5) 3.7 
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We used target statistics for the largest categories ‘No cough’, ‘1 month’, ‘2 months’, and ‘3 

months’ in network models. 

 

5.2 Smear status 

 

Although both smear status and grade were available, we used only smear status (smear-positive 

and smear-negative) to reduce the number of model parameters. The marginal distribution is 

below: 

 

Technical Appendix Table 6-6. Mean degree by smear status. 

 

 

 

 

 

We used the joint distribution of age and smear status for model target statistics; see Joint 

Distributions section. 

 

5.3 HIV 

 

Although both HIV status and information on virologic suppression were available, we used only 

HIV status (HIV-positive and HIV-negative) to reduce the number of model parameters. The 

marginal distribution is below: 

 

Technical Appendix Table 6-7. Mean degree by smear status. 

Smear status n (%) Mean degree 

Negative 109 (32) 6.9 

Positive 235 (68) 6.0 
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We used the joint distribution of age and HIV status for model target statistics; see Joint 

Distributions section. 

 

5.4 Mtb strain type 

 

The dominant strain of XDR TB in KwaZulu-Natal is the LAM4 strain. There is evidence that the 

phenotype of this strain may lead to differences in its transmission and evolutionary rate. [150, 

260] We categorized Mtb strains into LAM4 or non-LAM4. The marginal distribution is below: 

 

Technical Appendix Table 6-8. Mean degree by Mtb strain type. 

 

 

 

 

 

 

6  Demographic measures 

 

6.1 Age  

  

HIV status n (%) Mean degree 

Negative 78 (23) 6.2 

Positive 266 (77) 6.3 

Mtb strain n (%) Mean degree 

LAM4 259 (23) 8.3 

Non-LAM4 85 (77) 0.2 
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We categorized age into four groups: 0-15, 16-34, 35-54, >55.  The marginal distribution is 

below: 

 

Technical Appendix Table 6-9. Mean degree by age. 

 

 

 

 

 

 

 

 

We used the joint distribution of age/HIV status and age/smear status for model target statistics; 

see Joint Distributions section. 

 

7 Joint distributions 

 

7.1 Age and smear status 

 

Technical Appendix Table 6-10. Mean degree by age and smear status. 

Age category n (%) Mean degree 

0 - 15 12 (3) 7.8 

16 - 34 171 (50) 5.9 

35 - 54 134 (39) 6.4 

> 55 27 (8) 7.9 

Age category Smear status n (%) Mean degree 

0 - 15 Negative 7 (2) 10.1 

16 - 34 Negative 44 (13) 7.3 
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We used target statistics for the largest categories, ’16-34, Smear-negative’, ’35-54, Smear-

positive’, ’16-34, Smear-positive’, and ’35-54, Smear-positive’ as target statistics for network 

models. 

 

7.2 Age and HIV 

 

Technical Appendix Table 6-11. Mean degree by age and HIV status. 

35 - 54 Negative 40 (12) 4.4 

> 55 Negative 18 (5) 10.3 

0 - 15 Positive 5 (1) 4.6 

16 - 34 Positive 107 (31) 5.4 

35 - 54 Positive 79 (23) 7.2 

> 55 Positive 7 (2) 3.0 

Age category HIV status n (%) Mean degree 

0 - 15 Negative 5 (1) 12.8 

16 - 34 Negative 41 (12) 4.4 

35 - 54 Negative 15 (14) 9.9 

> 55 Negative 17 (5) 5.2 
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We used target statistics for the largest categories,’16-34, HIV-positive’, and ’35-54, HIV-

positive’ as target statistics for network models. 

 

7.3 Other (Smear status and HIV) 

 

Although smear-negative disease tends to be more common among HIV-positive TB cases, this 

was not the case in the empirical data. The proportion of cases with HIV was nearly equivalent 

among smear-positive and smear-negative cases and the proportion of smear-positive cases was 

nearly equivalent among HIV-positive and HIV-negative cases. Thus, we chose not to represent 

the joint distribution of smear status and HIV in model target statistics. 

 

8 Simulation and sampling methods 

  

From each network model, we simulated 1000 networks. We specified the following parameters 

of the Markov Chain Monte Carlo (MCMC) algorithm: we set the number of burn-in simulations 

as 100000, the MCMC interval as 5000, and the MCMC sample size as 10000. 

 

0 - 15 Positive 7 (2) 4.3 

16 - 34 Positive 130 (38) 6.3 

35 - 54 Positive 119 (35) 5.9 

> 55 Positive 10 (3) 12.4 
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We ensured that the MCMC algorithm used to estimate parameters for each model converged 

appropriately by checking for adequate mixing of the MCMC chain and sufficient exploration of 

parameter space using the mcmc.diagnostics function in the ergm package. 

 

We sampled 350 cases from each simulated, complete network, mimicking sampling 350 cases in 

our TRAX study from the larger population of XDR TB cases. We compared the degree 

distributions of simulated, sampled sampled networks to that of the empirical TRAX network.  

 

We attempted to ‘match’ three key features of the empirical degree distribution: (1) the 

proportion of nodes, or cases, that were unlinked; (2) the maximum degree of the network; (3) the 

proportion of cases with degree  10. We calculated the proportion of simulated, sampled 

networks from each model that matched target statistics. We also calculated the average 

proportion isolates, average maximum degree, and average proportion of cases with degree  10 

from the set of simulated networks for each model. 

 

9 Sensitivity analyses 

 

 9.1 Genomic threshold for transmission 

 

Since the threshold for defining genomic evidence of transmission is not well-defined, we also 

defined an empirical network using a more stringent threshold of 3 pairwise SNP differences. 

This resulted in no changes to modeled networks, but did change the target statistics we attempted 

to ‘match’ with simulated, sampled networks.  

 

 9.2 Complete network size 
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We considered several other sizes of the complete network. We assumed that the complete 

network may be larger than 2000 cases (n = 4000 cases), or that it may be smaller (n = 1500 

cases). We compared the results from these networks to our main models, which assumed a 

complete network size of 2000 cases. 
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6.4 Supplemental Results 

 

Supplemental Table 6-1. Descriptive characteristics, sequencing-based network of XDR TB cases in the 

TRAX study ( 3 SNP threshold). 

 N (%) Mean 

Total network    

Edges 240 - 

Isolates (Unlinked cases) 228 - 

Degree   1.4 

    

By attribute    

HIV status    

    HIV- 78 (23) 1.15 

    HIV+, undetectable VL 133 (39) 1.50 

    HIV+, detectable VL 133 (39) 1.37 

    

Cough duration    

    No cough 128 (37) 1.30 

    1mo 60 (17) 1.35 

    2mo 51 (15) 1.75 

    3mo 72 (21) 1.69 

    4mo 16 (5) 0.06 

    5mo 17 (5) 0.71 

    

Smear status/grade    

    Negative 109 (32) 1.49 

    Scanty + 37 (11) 1.73 

    Positive, grade 1 59 (17) 1.05 

    Positive, grade 2 51 (15) 1.35 

    Positive, grade 3+ 88 (26) 1.31 

    

Sex    

    Female 202 (59) 1.34 

    Male 142 (41) 1.42 

    

Age category    

    < 15 12 (3) 1.25 

    16-34 171 (50) 1.19 
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    35-54 134 (39) 1.53 

    > 55 27 (8) 1.78 

    

TB Strain    

   HP 259 (75) 1.79 

   Other 85 (25) 0.09 

    

Year    

2011 58 (17) 1.84 

2012 107 (31) 1.36 

2013 82 (24) 1.10 

2014 97 (28) 1.34 
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Supplemental Figure 6-1. Mean degree required to reproduce the maximum degree in the empirical 

network. 

 

Supplemental Figure 6-1 Mean degree required to reproduce the maximum degree in the empirical 

network. Grey bars show the distribution of the number of links per case, or the degree distribution, of the 

empirical network ( 5 SNPs) from the TRAX transmission study. Each colored line shows the median 

degree distribution across 1000 simulated, sampled networks for the corresponding model. Line color 

indicates the mean degree, or the average number of transmissions per case, assumed in the complete, 

simulated network. 
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Supplemental Table 6-2. Effect of modifying network size on network models. 

 Target statistic 1 Target statistic 2 Target statistic 3 

Mean 

degree 

Average proportion1 

of isolates in 

sampled networks 

Proportion of 

sampled networks 

with 40-60% 

isolates 

Average 

maximum degree 

in sampled 

networks 

Proportion of 

sampled 

networks with 

maximum degree 

> 40 

Average 

proportion of 

nodes with 

degree > 10 in 

sampled 

networks 

Proportion of 

sampled networks 

with > 10% of 

nodes with degree > 

10 

Random sampling, complete network size = 1500 

2 0.66 0.012 2.0 0 0 0 

5 0.43 0.881 3.3 0 0.00001 0 

8 0.33 0 4.5 0 0.00032 0 

10 0.30 0 5.2 0 0.00001 0 

15 0.26 0 6.8 0 0.01619 0 

20 0.25 0 8.5 0 0.06679 0.01 

Random sampling, complete network size = 2000 (from Table 3) 

2 0.72 0 1.74 0 0 0 

5 0.48 0.99 2.82 0 0 0 

8 0.35 0.02 3.77 0 0 0 

10 0.30 0 4.41 0 0 0 

15 0.23 0 5.44 0 0.003 0 

20 0.20 0 7.03 0 0.018 0 

Random sampling, complete network size = 4000 

2 0.86 0 1.2 0 0 0 

5 0.70 0 1.8 0 0 0 

8 0.61 0.41 2.2 0 0 0 

10 0.50 0.99 2.7 0 0 0 

15 0.40 0.99 3.3 0 0 0 
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20 0.40 0.15 4.1 0 0 0.988 
 

1 1,000 networks were simulated from each model, each simulated network was sampled once. 
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Supplemental Table 6-3. Effect of reducing the SNP threshold ( 3 SNPs) on the empirical network. 

 Target statistic 1 Target statistic 2 Target statistic 3 

Mean degree 

Average 

proportion1 of 

isolates in sampled 

networks 2 

Proportion of 

sampled networks 

with 40-60% 

isolates 

Average 

maximum degree 

in sampled 

networks 

Proportion of 

sampled networks 

with maximum 

degree > 40 

Average proportion 

of nodes with degree 

> 10 in sampled 

networks 

Proportion of sampled 

networks with > 10% 

of nodes with degree > 

10 

Random sampling,  5 SNP threshold in empirical network (from Table 3) 

2 0.72 0 1.74 0 0 0 

5 0.48 0.99 2.82 0 0 0 

8 0.35 0.02 3.77 0 0 0 

10 0.30 0 4.41 0 0 0 

15 0.23 0 5.44 0 0.003 0 

20 0.20 0 7.03 0 0.018 0 

Mean degree 

Average 

proportion1 of 

isolates in sampled 

networks 2 

Proportion of 

sampled networks 

with 60-80% 

isolates 

Average 

maximum degree 

in sampled 

networks 

Proportion of 

sampled networks 

with maximum 

degree > 15 

Average proportion 

of nodes with degree 

> 10 in sampled 

networks 

Proportion of sampled 

networks with > 2% 

of nodes with degree > 

10 

Random sampling,  3 SNP threshold in empirical network 

2 0.72 0.99 1.74 0 0 0 

5 0.48 0 2.82 0 0 0 

8 0.35 0 3.77 0 0 0 

10 0.30 0 4.41 0 0 0 

15 0.23 0 5.44 0 0.003 0 

20 0.20 0 7.03 0 0.018 0.317 

 

1 1,000 networks were simulated from each model, each simulated network was sampled once. 
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2 Note that model results are the same at both thresholds, but the target statistics and the proportion of models meeting target statistics are 

different. 
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Supplemental Table 6-4. Effect of reducing the SNP threshold ( 3 SNPs) on the empirical network, considering an unmeasured factor.  

Model 1 Target statistic 1 Target statistic 2 Target statistic 3 

Mean degree 

Average 

proportion1 of 

isolates in sampled 

networks 

Proportion of 

sampled networks 

with 60-80% 

isolates 

Average 

maximum degree 

in sampled 

networks 

Proportion of 

sampled networks 

with maximum 

degree > 15 

Average proportion 

of nodes with degree 

> 10 in sampled 

networks 

Proportion of sampled 

networks with > 2% 

of nodes with degree > 

10 

Unmeasured factor (Scenario 4),  3 SNP threshold in empirical network 

10x, p = 0.10 0.33 0 4.7 0 0.001 0 
10x, p = 0.20 0.35 0 4.5 0 < 0.001 0 
10x, p = 0.30 0.34 0 4.8 0 0.001 0 
20x, p = 0.10 0.36 0 6.4 0 0.006 0 
20x, p = 0.20 0.46 0 6.0 0 0.005 0 
20x, p = 0.30 0.54 0.974 7.5 0 0.039 0.988 

 

1 All models shown assume a mean degree in the complete network of 10. 

2 1,000 networks were simulated from each model, each simulated network was sampled once.
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Supplemental Figure 6-2. Mean degree required to reproduce the maximum degree in the  3 SNP 

empirical network. 

 

 

 

Supplemental Figure 6-2. Degree distributions of empirical ( 3 SNPs) and simulated, sampled networks 

under different scenarios. Grey bars show the distribution of the number of links per case, or the degree 

distribution, of the empirical network ( 3 SNPs) from the TRAX transmission study. Each colored line 

shows the median degree distribution across 1000 simulated, sampled networks for the corresponding 

model. Line color indicates the mean degree, or the average number of transmissions per case, assumed in 

the complete, simulated network. 
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7. Public health implications and overall significance 

 

The public health importance of this dissertation is twofold. First, describing relationships between 

individual-level characteristics and transmission can clarify the role of certain cases and behaviors in 

driving the spread of disease. The World Health Organization’s End TB Strategy, which lays out guiding 

principles for the global effort to reduce the burden of TB, urges those charged with TB prevention and 

control to “know their epidemic”. [261] Understanding the local forces contributing to ongoing 

transmission can indeed be transformative for the development of tailored and effective TB control 

policies. Second, identifying the limitations of using incomplete epidemiologic and sequencing data to 

make conclusions about population-level transmission patterns, especially in high-burden settings, is an 

important methodologic contribution to the field of TB transmission research. Not only does this study 

help us to better understand the TRAX cohort and its potential limitations for answering questions about 

transmission patterns, but it also provides a general framework for considering and assessing the impact 

of missing data in studies of partial disease transmission networks. 

In Aims 1 and 2, we identified clinical characteristics, settings, and types of contact associated 

with transmission. In Aim 1, we found that the presence of cavitary disease on chest x-ray and reporting 2 

to 3 months of cough were associated with being highly connected in the network. We also found that 

positive smear status was associated with poor connectivity in the network, which is contrary to the well-

established notion that smear-positive cases more infectious and therefore responsible for more 

transmission than smear-negative cases. We hypothesized that this finding could be due to the fact that 

smear-negative cases are more likely to experience diagnostic delays and thus longer infectious periods, 

perhaps leading to more transmission than among smear-positive cases. In Aim 2, we found that time 

spent in urban settings was associated with being highly connected in the network, suggesting a role for 

urban settings in driving transmission that should be further explored. We also found that cases with 



 

 

 

160 

extended hospital stays were less likely to be highly connected that those who did reported no or short 

hospital stays. Although hospitals are typically considered settings that present a high risk for 

transmission, this finding may reflect significantly reduced contact rates among hospitalized cases due to 

less time spent living, working and socializing in their communities during their infectious period.  

In Aim 3, we developed and tested methods to examine the role of missing cases in the ‘partial’ 

transmission network that we constructed using data from the TRAX study. We found that it was unlikely 

that cases were missing at random from our transmission study, and that the most likely missing data 

scenario involved oversampling ‘low-transmitters’ or failing to account for an unmeasured factor 

contributing to transmission. However, our conclusions were heavily dependent on several assumptions 

that we made about the empirical network and key TB transmission parameters. The results from this 

Aim, although largely inconclusive, highlight broader uncertainty in the field about many features of TB 

transmission and epidemiology, including natural history parameters (e.g., the effective reproduction 

number of TB), metrics used to define transmission (e.g., SNP thresholds), and the true scale of drug-

resistant TB epidemic in South Africa.  

Our findings from Aim 3 provide important context for our findings in Aims 1 and 2. The 

conclusions from our network modeling studies raise uncertainty about whether cases in our study were 

randomly sampled from the larger population of XDR TB cases, and therefore suggest caution when 

interpreting associations detected in the empirical, sequencing-based network. More specifically, our 

results from Aim 3 suggest that our study may have oversampled cases responsible for few transmission 

events relative to those responsible for many transmission events. Previous research has suggested that 

the absence of highly connected, or central, cases in a network may have a substantial effect on network 

structure, which suggests that the network we constructed using Mtb sequencing data from TRAX cases 

may look materially different from the true, complete transmission network. [198] While our results from 

Aim 3 do not necessarily invalidate the associations we measured in Aims 1 and 2, it is unclear whether 
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and to what extent missing cases may affect these associations. Ultimately, the results of Aim 3 suggest 

that the associations measured in the empirical network may not truly reflect underlying transmission 

patterns. These findings may also explain why we failed to see some expected associations with features 

known to be associated with transmission, including smear status. 

Collectively, the findings from this dissertation join a growing body of evidence supporting the 

notion that casual contact may be driving TB transmission in high-incidence settings. In Aims 1 and 2, we 

found that urban contact, rather than more traditional risk factors of long hospital stays and many close 

contacts, were associated with transmission. These traditional risk factors are undoubtedly important and 

should remain targets of TB prevention and control efforts. However, when considered in the context of 

overall transmission, these settings may be relatively less important for transmission than settings in 

which extensive casual contact may occur. Although we did not directly measure rates of casual 

respiratory contact in the TRAX study, we did investigate the possibility that a factor we did not measure 

may contribute materially to the transmission patterns we observed. Indeed, in Aim 3, we found that an 

‘unmeasured’ factor could potentially account for transmission heterogeneity not otherwise explained by 

the clinical and demographic factors included in our initial transmission network models. Rates of casual 

respiratory contact are in general difficult to quantify, but markers of high casual contact rates, including 

frequent inter-district or inter-province migration or regular use of crowded public transport, are 

measurable and may provide insight as to the specific behaviors that may be associated with high casual 

contact rates and thus transmission. If future research confirms an important role for casual contact in TB 

spread, it would have major implications for TB control efforts and provide clear rationale for 

development of interventions to reduce transmission through casual contact. These interventions could 

complement existing approaches to TB control that target primarily close contacts and institutional 

settings. 
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Although TB epidemiology tends to be setting-specific, there are several conclusions from these 

studies that may be generalizable outside of the XDR TB epidemic in South Africa. In Aim 1, we 

examined clinical features driving transmission. We expect that the effect of clinical features of TB 

disease on transmission is generally consistent across settings, since these associations are dependent 

upon human and pathogen physiology that is largely similar across populations. The exposures we studied 

in Aim 2, specifically contact with urban areas, may also be generalizable to settings outside of KwaZulu-

Natal and South Africa. Circular urban-rural migration, in which individuals who live in rural areas travel 

frequently to and from urban areas for employment, is common in many rapidly urbanizing countries with 

high burdens of TB and may similarly drive transmission in other settings [108] Ultimately, however, 

each TB epidemic is unique and transmission patterns will be dependent upon the specific economic and 

social context in which disease transmission occurs. For example, the location, nature, and extent of close 

person-to-person contact in communities is likely very dependent upon local cultural norms, and therefore 

highly setting-specific. In this way, improved characterization of social milieu can inform community-

based ‘risk profiles’ that can inform tailoring of local public health efforts. Indeed, research suggests that 

interventions targeting local ‘catalysts’ of transmission, or factors that increase contact rates and 

infectiousness, can be particularly effective in reducing TB incidence. [262] Understanding both universal 

and local drivers of TB transmission is important to furthering our understanding of TB transmission and 

the relative influences of biological and social factors in driving disease spread. 

To our knowledge, the analytic methods used in this dissertation are a novel approach to studying 

patterns of endemic TB transmission. These methods fit into a broader landscape of recent research 

focused on the role of genomic data in improving our ability to understand and respond to infectious 

disease threats to public health. As pathogen genome sequencing becomes increasingly cheaper, and – 

perhaps most transformative for TB – methods are developed to sequence pathogens directly from patient 

samples, we will have access to unprecedented amounts of data that offer clues into the movement of 
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pathogens through human populations. The availability of this data makes clear the need for new 

approaches to efficiently combine epidemiologic and genomic data to answer specific epidemiologic 

questions. Recently developed methods to resolve chains of transmission using genome sequences, 

including sophisticated Bayesian phylodynamic approaches, are highly computational and depend on a 

series of somewhat restrictive assumptions regarding the natural history parameters of TB. [263] 

Moreover, these methods are designed primarily for use in outbreak scenarios or low-incidence settings in 

which nearly all cases are sampled. [264-267] Developing approaches to understand ongoing transmission 

of endemic pathogens is critically important to further our understanding of TB transmission in high-

incidence settings. To effectively capture the realities of measuring transmission in these settings, new 

methods must not only reconstruct transmission events but also consider the role of missing cases. Our 

work has aimed to fill this gap: although we use a relatively simple approach to defining transmission –

pairwise SNP differences– we aimed to carefully consider the role of missing cases and the effect they 

may have on inference about underlying patterns of disease transmission. To the extent that new types of 

data integration and analytic approaches can be integrated into public health practice, they have the 

potential to revolutionize TB control practices.  

The findings from this dissertation suggest several potential avenues for further research. First, 

we failed to find a complete set of factors accounting for the transmission heterogeneity suggested by our 

empirical transmission network. Specifically, we were unable to identify characteristics unique to cases 

whom were highly connected in the network. ‘Superspreading’ is known to be an important 

epidemiologic feature of other respiratory diseases and may also be critical to understanding TB 

transmission dynamics. [39, 41, 130, 246] Future studies explicitly aiming to identify factors related to 

superspreading may shed light on correlates of transmission risk that can serve as targets of intervention. 

Second, our studies in Aim 3 on missing cases were largely inconclusive, and our results were strongly 

influenced by several key TB transmission parameters on which there is a paucity of data in the literature. 
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This general lack of reliable data for TB transmission models has resulted in the slow application of 

sophisticated transmission modeling techniques in TB relative to other infectious diseases. The advent of 

next generation sequencing methods to understand disease dynamics may help to better define quantities, 

including the effective reproduction number, that will inform future quantitative modeling exercises. 

Additionally, initiatives which aim to better understand respiratory contact patterns in low and middle-

income countries can provide critical data required to better model TB transmission in high-incidence 

settings. Lastly, while transmission studies in high-incidence settings struggle with a lack of data, there 

may be significant insight to be gained from low-incidence settings, where nearly all cases involved in 

transmission can be sampled. Scenarios in which the sampling fraction is high can provide an 

approximation of the ‘complete’ transmission networks that are so elusive in high-incidence settings. 

Moreover, highly detailed epidemiologic data is often more readily available in low-incidence settings, 

which can reliably identify putative transmission events and thus better define the threshold of genomic 

relatedness required to provide convincing evidence of transmission.  

The global drug-resistant TB epidemic is an urgent threat to public health. Interventions to reduce 

transmission can be effective in reducing disease burden, but preventing transmission can seem like an 

overwhelming task: if transmission events are indeed incredibly difficult to identify, especially in TB-

endemic settings, what chance do we have of preventing them? However, there are several reasons to be 

hopeful. First, interventions targeted towards very specific settings that present a high and sustained risk 

of casual contact are feasible and potentially effective approaches to preventing transmission. For 

example, implementing environmental controls in locations such as schools or minibus taxis may 

represent an efficient use of resources. [129, 258, 268] Should casual contact be definitively implicated as 

driving TB transmission in high-incidence settings, future studies should investigate the efficacy and cost-

effectiveness of interventions targeting transmission through casual contact. Environmental controls can 

also reduce transmission risk in settings that are known to promote extended close contact, particularly 
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hospitals. The efficacy of interventions to reduce TB transmission in institutional settings, including 

improvement of infection control practices, installation of UV lighting, and structural improvements to 

increase airflow, is well-documented. Second, reducing transmission can also be achieved indirectly by 

early detection and treatment of TB disease. By identifying locations and types of contact associated with 

transmission, exposed contacts at risk of TB disease can be identified and provided with preventive 

therapy, and those with early-stage TB disease can be promptly diagnosed and started on treatment. 

Fortunately, detection and treatment of XDR TB are two areas in which there have been recent promising 

advances. Detection of XDR TB is largely dependent on the capacity of the healthcare system and the 

efficiency with which patient samples are processed and undergo microbiological testing. At present, 

diagnosis of XDR TB still requires culture-based susceptibility testing which can take weeks to months, 

but point-of-care diagnostics for XDR TB will vastly improve the turnaround time required for diagnosis 

and are currently in the pipeline. Once a patient is diagnosed, they can immediately be started on 

treatment. Treatment of XDR TB is complicated and mortality rates remain high, but this is also an area 

undergoing rapid improvement. The increasing availability of bedaquiline and delaminid, in South Africa 

and elsewhere, has dramatically improved outcomes for XDR TB patients and offers new hope for 

preventing XDR TB transmission by treating, and curing, XDR TB disease. Collectively, these tools can 

reduce transmission of XDR TB in South Africa and globally.
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